D. S. Blanc, C. Petignat, B. Janin, J. Bille, and P. Francioli, Frequency and molecular diversity of Pseudomonas aeruginosa upon admission and during hospitalization: a prospective epidemiologic study, Clinical Microbiology and Infection, vol.4, issue.5, pp.242-247, 1998.
DOI : 10.1111/j.1469-0691.1998.tb00051.x

Y. Van-laethem, F. Jacobs, P. Lebecque, A. Malfroot, P. M. Tulkens et al., Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium, Clin. Microbiol. Infect, vol.13, pp.560-578, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00510521

T. Pitt and . Pseudomonas, Burkholderia, and related genera, Microbiology and microbial infections, p.1882, 1998.

R. T. Villavicencio, The history of blue pus, Journal of the American College of Surgeons, vol.187, issue.2, pp.212-216, 1998.
DOI : 10.1016/S1072-7515(98)00137-9

A. G. Gerster, THE RULES OF ASEPTIC AND ANTISEPTIC SURGERY, The American Journal of the Medical Sciences, vol.95, issue.4, 1888.
DOI : 10.1097/00000441-188804000-00025

C. Hardalo and S. C. Edberg, Pseudomonas aeruginosa: Assessment of Risk from Drinking Water, Critical Reviews in Microbiology, vol.139, issue.2
DOI : 10.1007/978-1-4615-3036-7_18

A. V. Grishin, M. S. Krivozubov, A. S. Karyagina, A. L. Gintsburg, C. K. Stover et al., Pseudomonas Aeruginosa Lectins As Targets for Novel Antibacterials, Acta Naturae, vol.7, issue.10, pp.29-41, 2015.

M. V. Olson, J. M. Madigan, and . Brock, Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen Principles and practices of infectious diseases Biologie des micro-organismes, Nature Wagner, V. E.; Iglewski, B. H. P. aeruginosa Biofilms in CF Infection. Clin. Rev. Allergy Immunol, vol.406, issue.13, pp.959-964, 1995.

M. Feldman, R. Bryan, S. Rajan, L. Scheffler, S. Brunnert et al., Role of Flagella in Pathogenesis ofPseudomonas aeruginosa Pulmonary Infection The Pseudomonas aeruginosa Flagellar Cap Protein, FliD, Is Responsible for Mucin Adhesion, Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development, pp.43-51, 1998.

R. Adamo, S. Sokol, G. Soong, M. I. Gomez, and A. Prince, Flagella Activate Airway Epithelial Cells through asialoGM1 and Toll-Like Receptor 2 as well as Toll-Like Receptor 5, American Journal of Respiratory Cell and Molecular Biology, vol.30, issue.5, pp.627-634, 2004.
DOI : 10.1172/JCI116779

URL : http://ajrcmb.atsjournals.org/content/30/5/627.full.pdf

. Microbiol, Burrows, L. L. Pseudomonas aeruginosa Twitching Motility: Type IV Pili in Action, Annu. Rev, vol.26, issue.20, pp.146-154, 1980.

P. Aeruginosa, P. Binds-integrin, C. Vallet, I. Olson, J. W. Lory et al., The chaperone/usher pathways of Pseudomonas aeruginosa: Identification of fimbrial gene clusters (cup) and their involvement in biofilm formation, Proc. Natl. Acad. Sci, pp.6911-6916, 2001.

W. A. Lynn, D. T. Golenbock, S. M. Lipopolysaccharide-antagonists-moskowitz, and R. K. Ernst, Lipopolysaccharide antagonists, Immunology Today, vol.13, issue.7, pp.271-276, 1992.
DOI : 10.1016/0167-5699(92)90009-V

J. S. Lam, V. L. Taylor, S. T. Islam, Y. Hao, D. E. Kocíncová et al., Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front. Microbiol Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Med. Maladies Infect aeruginosa quorum-sensing systems and virulence, Curr. Opin, vol.36, issue.27, pp.78-91, 2006.

M. Zhang, L. Smith, R. S. Kelly, R. Iglewski, B. H. Phipps et al., The hierarchy quorum sensing network in Pseudomonas aeruginosa The Pseudomonas Autoinducer N-(3- Oxododecanoyl) Homoserine Lactone Induces Cyclooxygenase-2 and Prostaglandin E2 Production in Human Lung Fibroblasts: Implications for Inflammation, Protein Cell J. Immunol, vol.6, issue.37, pp.56-60, 1959.

E. C. Pesci, J. B. Milbank, J. P. Pearson, S. Mcknight, A. S. Kende et al., Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa More than a signal: non-signaling properties of quorum sensing molecules A cell-cell communication signal integrates quorum sensing and stress response, Proc. Natl. Acad. Sci. USA 1999 Severe Hypophosphatemia in Sepsis as a Mortality Predictor, pp.11229-11234, 2006.

P. Delepelaire, Type I secretion in gram-negative bacteria, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1694, issue.1-3, pp.149-161, 2004.
DOI : 10.1016/j.bbamcr.2004.05.001

URL : https://hal.archives-ouvertes.fr/hal-00020359

J. F. Alcorn, J. R. Wright, J. J. Mun, C. Tam, D. Kowbel et al., Clearance of Pseudomonas aeruginosa from a Healthy Ocular Surface Involves Surfactant Protein D and Is Compromised by Bacterial Elastase in a Murine Null-Infection Model The LasB Elastase of Pseudomonas aeruginosa Acts in Concert with Alkaline Protease AprA To Prevent Flagellin-Mediated Immune Recognition Extracellular Toxins of Pseudomonas-Aeruginosa Pseudomonas Exotoxin A: optimized by evolution for effective killing Inhibition of pulmonary surfactant function by phospholipases, Degradation of Pulmonary Surfactant Protein D by Pseudomonas aeruginosa Elastase Abrogates Innate Immune Function. 38. Kuang, pp.30871-30879, 1974.

M. A. Matthay, Alveolar epithelial injury and pleural empyema in acute P. aeruginosa pneumonia in anesthetized rabbits, J. Appl. Physiol, vol.75, pp.1661-1670, 1993.

B. Konig, M. L. Vasil, W. Konig, M. L. Vasil, W. Konig et al., Role of haemolytic and non-haemolytic phospholipase C from Pseudomonas aeruginosa in interleukin-8 release from human monocytes Role of hemolytic and nonhemolytic phospholipase C from Pseudomonas aeruginosa for inflammatory mediator release from human granulocytes Role of bacterial proteases in pseudomonal and serratial keratitis Pseudomonas aeruginosa degrades pulmonary surfactant and increases conversion in vitro, J. Med. Microbiol. 46. Konig, B Int. Arch. Allergy Immunol. Biol Chem Am. J. Respir. Cell Mol. Biol, vol.46, issue.32, pp.471-478, 1997.

S. H. Rooijakkers, S. K. Gupta, S. A. Masinick, J. A. Hobden, R. S. Berk et al., Pseudomonas aeruginosa Alkaline Protease Blocks Complement Activation via the Classical and Lectin Pathways Bacterial proteases and adherence of Pseudomonas aeruginosa to mouse cornea, J. Immunol. 2012 Exp Eye Res, vol.188, issue.52, pp.386-393, 1996.

R. Lau, G. W. Britigan, and B. , Pseudomonas aeruginosa pyocyanin modulates mucin glycosylation with sialyl-Lewisx to increase binding to airway epithelial cells, Muc. immunol, vol.2016, issue.9, pp.1039-1050

K. G. Leidal, K. L. Munson, and G. M. Denning, Small Molecular Weight Secretory Factors from Pseudomonas aeruginosaHave Opposite Effects on IL-8 and RANTES Expression by Human Airway Epithelial Cells, Pseudomonas Pyocyanin Increases Interleukin-8 Expression by Human Airway Epithelial Cells, pp.5777-5784, 1998.

L. Allen, D. H. Dockrell, T. Pattery, D. G. Lee, P. Cornelis et al., Pyocyanin Production by Pseudomonas aeruginosa Induces Neutrophil Apoptosis and Impairs Neutrophil-Mediated Host Defenses In Vivo The role of pyocyanin in Pseudomonas aeruginosa infection Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis The significance of iron in infection, J. Immunol. Trends Mol. Med. Environ. Microbiol. Rev Infect Dis, vol.174, issue.3, pp.3643-3649, 1981.

G. Döring, M. Pfestorf, K. Botzenhart, and M. A. Abdallah, Impact of proteases on iron uptake of Pseudomonas aeruginosa pyoverdin from transferrin and lactoferrin, Infect. Immun, vol.56, pp.291-293, 1988.

A. M. Abdel-mawgoud, F. Lepine, E. Deziel, M. E. Davey, N. C. Caiazza et al., Rhamnolipids: diversity of structures, microbial origins and roles. Appl. microbio. and biotech Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1 Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton, 65. Shaver, C. M.; Hauser, A. R. Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung, pp.1323-1359, 2000.
URL : https://hal.archives-ouvertes.fr/pasteur-00819624

L. Garrity-ryan, B. Kazmierczak, R. Kowal, J. Comolli, A. Hauser et al., The arginine finger domain of ExoT contributes to actin cytoskeleton disruption and inhibition of internalization of Pseudomonas aeruginosa by epithelial cells and macrophages Pseudomonas aeruginosa ExoT inhibits in vitro lung epithelial wound repair, Hauser, A. R. Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung, pp.7100-7113, 2000.

T. L. Yahr, A. J. Vallis, M. K. Hancock, J. T. Barbieri, D. W. Frank et al., ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system Paradoxical cAMPinduced lung endothelial hyperpermeability revealed by Pseudomonas aeruginosa ExoY Activities of Pseudomonas aeruginosa effectors secreted by the Type III secretion system in vitro and during infection ExoU is a potent intracellular phospholipase, Proc. Natl. Acad. Sci. USA 1998. 73. Hancock, R. E. W.; Brinkman, F. S. L. Function of Pseudomonas porins in uptake and efflux, pp.13899-13904, 2004.

A. Sukhan and R. E. Hancock, The Role of Specific Lysine Residues in the Passage of Anions through the Pseudomonas aeruginosa Porin OprP Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides, M. C. Mechanisms of solute transport through outer membrane porins: burning down the house, pp.139-167, 1990.

N. Folschweiller, I. J. Schalk, H. Celia, B. Kieffer, M. A. Abdallah et al., The pyoverdin receptor FpvA, a TonB-dependent receptor involved in iron uptake by Pseudomonas aeruginosa (review), Mol. Membr. Biol, vol.17, pp.123-156, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00174681

R. G. Ankenbauer, H. N. Quan, and . Fpta, FptA, the Fe(III)-pyochelin receptor of Pseudomonas aeruginosa: a phenolate siderophore receptor homologous to hydroxamate siderophore receptors., Journal of Bacteriology, vol.176, issue.2, pp.307-326, 1994.
DOI : 10.1128/jb.176.2.307-319.1994

X. Z. Li, H. Nikaido, K. Poole, N. Cadieux, C. Bradbeer et al., Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa Sequence changes in the ton box region of BtuB affect its transport activities and interaction with TonB protein Bacterial Biofilms: A Common Cause of Persistent Infections The biofilm matrix, Antimicrob. Agents Chemother J. Bacteriol. Science, vol.39, issue.8, pp.5954-5961, 1948.

C. Ryder, M. Byrd, D. J. Wozniak, P. Tielen, M. Strathmann et al., Role of polysaccharides in Pseudomonas aeruginosa biofilm development Alginate acetylation influences initial surface colonization by mucoid Pseudomonas aeruginosa Pseudomonas aeruginosa: a key problem in cystic fibrosis Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia, Curr. Opin. Microbiol. Microbiol Res Asm News Govan, J. R. W. Microbiol Rev, vol.10, issue.60, pp.644-648, 1996.

B. Ralston, M. R. Parsek, E. M. Anderson, J. S. Lam, and D. J. Wozniak, Genetic and Biochemical Analyses of the Pseudomonas aeruginosa Psl Exopolysaccharide Reveal Overlapping Roles for Polysaccharide Synthesis Enzymes in Psl and LPS Production, Mol. Microbiol, vol.73, pp.622-638, 2009.

K. Zhao, B. S. Tseng, B. Beckerman, F. Jin, M. L. Gibiansky et al., Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms, Assembly and Development of the Pseudomonas aeruginosa Biofilm Matrix. PLoS. Path, pp.388-391, 2009.
DOI : 10.1371/journal.ppat.1000354

L. Yang, Y. Hu, Y. Liu, J. Zhang, J. Ulstrup et al., Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development, Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix, pp.1705-1717, 2011.
DOI : 10.1111/j.1365-2958.2009.06934.x

K. M. Colvin, V. D. Gordon, K. Murakami, B. R. Borlee, D. J. Wozniak et al., The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa Purification and properties of hemagglutinin from pseudomonas aeruginosa and its reaction with human blood cells, Proc. Natl. Acad. Sci. U.S.A. 2015 e1001264. 96. Gilboa-Garber, pp.11353-11358, 1972.

A. Imberty, S. Vidal, M. Phaner-goutorbe, D. Avichezer, D. J. Katcoff et al., AFM investigation of Pseudomonas aeruginosa lectin LecA (PA-IL) filaments induced by multivalent glycoclusters Analysis of the amino acid sequence of the Pseudomonas aeruginosa galactophilic PA-I lectin On the specificity of the dgalactose-binding lectin (PA-I) of Pseudomonas aeruginosa and its strong binding to hydrophobic derivatives of d-galactose and thiogalactose, Chem. Commun. J. Biol. Chem. Biochim. Biophys. Acta, vol.47, issue.1116, pp.9483-9485, 1992.

A. Imberty, M. Wimmerová, E. P. Mitchell, and N. Gilboa-garber, Structures of the lectins from Pseudomonas aeruginosa: insights into the molecular basis for host glycan recognition, Microbes and Infection, vol.6, issue.2, pp.221-228, 2004.
DOI : 10.1016/j.micinf.2003.10.016

URL : https://hal.archives-ouvertes.fr/hal-00306814

M. Sattler, A. R. Smyth, P. Williams, M. Cámara, A. Stocker et al., A Glycopeptide Dendrimer Inhibitor of the Galactose-Specific Lectin LecA and of Pseudomonas aeruginosa Biofilms, Angew Chem Int Edit, vol.50, pp.10631-10635, 2011.

S. E. Matthews, S. De-bentzmann, B. Guéry, B. Cournoyer, A. Imberty et al., Antiadhesive Properties of Glycoclusters against Pseudomonas aeruginosa Lung Infection, J. Med. Chem, vol.57, pp.10275-10289, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01147368

C. Chemani, A. Imberty, S. De-bentzmann, M. Pierre, M. Wimmerová et al., Role of LecA and LecB Lectins in Pseudomonas aeruginosa-Induced Lung Injury and Effect of Carbohydrate Ligands, Infection and Immunity, vol.77, issue.5, pp.2065-2075, 2009.
DOI : 10.1128/IAI.01204-08

URL : https://hal.archives-ouvertes.fr/hal-00396635

C. Chippaux and E. Puchelle, Cytotoxicity of Pseudomonas aeruginosa internal lectin PA-I to respiratory epithelial cells in primary culture, Infect. Immun, vol.62, pp.4481-4487, 1994.

R. S. Laughlin, M. W. Musch, C. J. Hollbrook, F. M. Rocha, E. B. Chang et al., The Key Role of Pseudomonas aeruginosa PA-I Lectin on Experimental Gut-Derived Sepsis, Annals of Surgery, vol.232, issue.1, pp.133-142, 2000.
DOI : 10.1097/00000658-200007000-00019

S. Müller, S. De-bentzmann, A. Imberty, C. Fleck, and W. Römer, A lipid zipper triggers bacterial invasion, Proc. Natl. Acad. Sci. 2014, pp.12895-12900

S. P. Diggle, R. E. Stacey, C. Dodd, M. Cámara, P. Williams et al., The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa, Environmental Microbiology, vol.336, issue.6, pp.1095-1104, 2006.
DOI : 10.1126/science.1112422

N. Gilboa-garber, D. J. Katcoff, and N. C. Garber, PA-IIL lectin gene and protein compared to PA-IL, FEMS Immunology & Medical Microbiology, vol.146, issue.1, pp.53-57, 2000.
DOI : 10.1128/jb.178.4.1134-1140.1996

N. Gilboa-garber and A. Imberty, Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients, Nat Struct Mol Biol, vol.9, pp.918-921, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00307301

M. Matsukawa and E. P. Greenberg, Putative Exopolysaccharide Synthesis Genes Influence Pseudomonas aeruginosa Biofilm Development, Journal of Bacteriology, vol.186, issue.14, pp.4449-4456, 2004.
DOI : 10.1128/JB.186.14.4449-4456.2004

J. L. Kadurugamuwa and T. J. Beveridge, Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion., Journal of Bacteriology, vol.177, issue.14, pp.3998-4008, 1995.
DOI : 10.1128/jb.177.14.3998-4008.1995

K. Nemoto, K. Hirota, K. Murakami, K. Taniguti, H. Murata et al., Effect of Varidase (Streptodornase) on Biofilm Formed by <i>Pseudomonas aeruginosa</i>, Chemotherapy, vol.49, issue.3, pp.121-125, 2003.
DOI : 10.1159/000070617

M. C. Van-loosdrecht, W. Norde, and A. J. Zehnder, Physical Chemical Description of Bacterial Adhesion, Journal of Biomaterials Applications, vol.133, issue.2, pp.91-106, 1990.
DOI : 10.1099/00221287-96-2-359

K. Sauer, A. K. Camper, G. D. Ehrlich, J. W. Costerton, and D. G. Davies, Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm, Journal of Bacteriology, vol.184, issue.4, pp.1140-1154, 2002.
DOI : 10.1128/jb.184.4.1140-1154.2002

E. Deziel, Y. Comeau, and R. Villemur, Initiation of Biofilm Formation by Pseudomonas aeruginosa 57RP Correlates with Emergence of Hyperpiliated and Highly Adherent Phenotypic Variants Deficient in Swimming, Swarming, and Twitching Motilities, Journal of Bacteriology, vol.183, issue.4, pp.1195-1204, 2001.
DOI : 10.1128/JB.183.4.1195-1204.2001

P. Chiang and L. L. Burrows, Biofilm Formation by Hyperpiliated Mutants of Pseudomonas aeruginosa, Journal of Bacteriology, vol.185, issue.7, pp.2374-2378, 2003.
DOI : 10.1128/JB.185.7.2374-2378.2003

M. Givskov and T. Tolker-nielsen, A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms, Mol. Microbiol, vol.59, pp.1114-1128, 2006.

M. Klausen, A. Aaes-jorgensen, S. Molin, and T. Tolker-nielsen, Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms, Molecular Microbiology, vol.22, issue.1, pp.61-68, 2003.
DOI : 10.1111/j.1574-6941.1997.tb00351.x

M. Klausen, A. Heydorn, P. Ragas, L. Lambertsen, A. Aaes-jorgensen et al., Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants, Molecular Microbiology, vol.413, issue.6, pp.1511-1524, 2003.
DOI : 10.1038/35101627

T. Tolker-nielsen, U. C. Brinch, P. C. Ragas, J. B. Andersen, and C. S. Jacobsen, Development and Dynamics of Pseudomonas sp. Biofilms, Journal of Bacteriology, vol.182, issue.22, pp.6482-6489, 2000.
DOI : 10.1128/JB.182.22.6482-6489.2000

S. K. Kim and J. H. Lee, Biofilm dispersion in Pseudomonas aeruginosa, Journal of Microbiology, vol.4, issue.2, pp.71-85, 2016.
DOI : 10.1016/S1534-5807(02)00295-2

Y. C. Lee and R. T. Lee, Carbohydrate-Protein Interactions: Basis of Glycobiology, Accounts of Chemical Research, vol.28, issue.8, pp.321-327, 1995.
DOI : 10.1021/ar00056a001

G. K. Hirst, THE AGGLUTINATION OF RED CELLS BY ALLANTOIC FLUID OF CHICK EMBRYOS INFECTED WITH INFLUENZA VIRUS, Science, vol.94, issue.2427, pp.22-25, 1941.
DOI : 10.1126/science.94.2427.22

S. Cecioni, A. Imberty, and S. Vidal, Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands, Chemical Reviews, vol.115, issue.1, pp.525-561, 2015.
DOI : 10.1021/cr500303t

URL : https://hal.archives-ouvertes.fr/hal-01146938

J. P. Mccoy, . Jr, J. Varani, and I. J. Goldstein, Enzyme-linked lectin assay (ELLA), Experimental Cell Research, vol.151, issue.1, pp.96-103, 1984.
DOI : 10.1016/0014-4827(84)90359-8

B. Liedberg, C. Nylander, and I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators, pp.299-304, 1983.

C. Chen, S. Song, N. Gilboa-garber, K. S. Chang, and A. M. Wu, Studies on the binding site of the galactose-specific agglutinin PA-IL from Pseudomonas aeruginosa, Glycobiology, vol.30, issue.4, pp.7-16, 1998.
DOI : 10.1016/0161-5890(93)90062-G

L. Ch-pi, T-shape" interaction with histidine explains binding of aromatic galactosides to Pseudomonas aeruginosa lectin LecA, ACS Chem. Biol, vol.8, pp.1925-1955, 2013.

Y. M. Chabre, D. Giguere, B. Blanchard, J. Rodrigue, S. Rocheleau et al., Combining Glycomimetic and Multivalent Strategies toward Designing Potent Bacterial Lectin Inhibitors, Chemistry - A European Journal, vol.16, issue.23, pp.6545-62, 2011.
DOI : 10.1080/07328309708006539

URL : https://hal.archives-ouvertes.fr/hal-00603063

J. L. Reymond, Multivalency effects on Pseudomonas aeruginosa biofilm inhibition and dispersal by glycopeptide dendrimers targeting lectin LecA, Org. Biomol. Chem, vol.14, pp.138-148, 2016.

S. Cecioni, J. Praly, S. E. Matthews, M. Wimmerová, A. Imberty et al., Rational Design and Synthesis of Optimized Glycoclusters for Multivalent Lectin-Carbohydrate Interactions: Influence of the Linker Arm, Chemistry - A European Journal, vol.36, issue.20, pp.6250-6263, 2012.
DOI : 10.1107/S0021889803021800

URL : https://hal.archives-ouvertes.fr/hal-00691472

F. Pertici and R. J. Pieters, Potent divalent inhibitors with rigid glucose click spacers for Pseudomonas aeruginosa lectin LecA, Chemical Communications, vol.17, issue.33, pp.4008-4010, 2012.
DOI : 10.1002/chem.201003402

F. Pertici, N. J. De-mol, J. Kemmink, and R. J. Pieters, Optimizing Divalent Inhibitors of Pseudomonas aeruginosa Lectin LecA by Using A Rigid Spacer, Chem. Eur. J. 2013, vol.19, pp.16923-16927

A. Imberty, N. E. Nifantiev, and S. Vidal, Synthesis of Multivalent Carbohydrate-Centered Glycoclusters as Nanomolar Ligands of the Bacterial Lectin LecA from Pseudomonas aeruginosa, Chem. Eur. J. 2013, vol.19, pp.9272-9285
URL : https://hal.archives-ouvertes.fr/hal-00849902

Z. H. Soomro, S. Cecioni, H. Blanchard, J. Praly, A. Imberty et al., CuAAC synthesis of resorcin[4]arene-based glycoclusters as multivalent ligands of lectins, Organic & Biomolecular Chemistry, vol.10, issue.19, pp.6587-6597, 2011.
DOI : 10.1002/jcc.540100804

URL : https://hal.archives-ouvertes.fr/hal-00691498

Y. M. Chabre, D. Giguère, B. Blanchard, J. Rodrigue, S. Rocheleau et al., Combining Glycomimetic and Multivalent Strategies toward Designing Potent Bacterial Lectin Inhibitors, Combining Glycomimetic and Multivalent Strategies toward Designing Potent Bacterial Lectin Inhibitors, pp.6545-6562, 2011.
DOI : 10.1080/07328309708006539

URL : https://hal.archives-ouvertes.fr/hal-00603063

J. F. Nierengarten, J. Iehl, V. Oerthel, M. Holler, B. M. Illescas et al., Fullerene sugar balls, Chemical Communications, vol.40, issue.22, pp.3860-3862, 2010.
DOI : 10.1039/c0cc00034e

URL : https://hal.archives-ouvertes.fr/hal-01319252

S. Cecioni, V. Oerthel, J. Iehl, M. Holler, D. Goyard et al., Synthesis of Dodecavalent Fullerene-Based Glycoclusters and Evaluation of Their Binding Properties towards a Bacterial Lectin, Chemistry - A European Journal, vol.7, issue.11, pp.3252-3261, 2011.
DOI : 10.1039/b909729e

URL : https://hal.archives-ouvertes.fr/hal-00691514

N. Kottari, Y. M. Chabre, T. C. Shiao, R. Rej, and R. Roy, Efficient and accelerated growth of multifunctional dendrimers using orthogonal thiol???ene and SN2 reactions, Chemical Communications, vol.11, issue.16, pp.1983-1988, 2014.
DOI : 10.1039/c3ob41422a

M. Reynolds, M. Marradi, A. Imberty, S. Penadés, S. Pérez et al., Multivalent Gold Glycoclusters: High Affinity Molecular Recognition by Bacterial Lectin PA-IL, Chemistry - A European Journal, vol.40, issue.14, pp.4264-4273, 2012.
DOI : 10.1107/S0021889806045833

URL : https://hal.archives-ouvertes.fr/hal-00720311

I. Otsuka, B. Blanchard, R. Borsali, A. Imberty, and T. Kakuchi, Enhancement of Plant and Bacterial Lectin Binding Affinities by Three-Dimensional Organized Cluster Glycosides Constructed on Helical Poly(phenylacetylene) Backbones, ChemBioChem, vol.42, issue.17, pp.2399-2408, 2010.
DOI : 10.1007/978-3-662-00148-6

URL : https://hal.archives-ouvertes.fr/hal-00546468

C. Ligeour, L. Dupin, A. Marra, G. Vergoten, A. Meyer et al., Synthesis of Galactoclusters by Metal-Free Thiol " Click Chemistry " and Their Binding Affinities for Pseudomonas aeruginosa Lectin LecA, Eur. J. Org. Chem, pp.7621-7630, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01101623

E. Souteyrand, J. Vasseur, Y. Chevolot, and F. Morvan, Structure Binding Relationship of Galactosylated Glycoclusters toward Pseudomonas aeruginosa Lectin LecA Using a DNA-Based Carbohydrate Microarray, Bioconjugate Chem, vol.25, pp.379-392, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00952679

E. M. Johansson, E. Kolomiets, F. Rosenau, K. E. Jaeger, T. Darbre et al., Combinatorial variation of branching length and multivalency in a large (390???625 member) glycopeptide dendrimer library: ligands for fucose-specific lectins, New Journal of Chemistry, vol.389, issue.7, pp.1291-1299, 2007.
DOI : 10.4052/tigg.15.291

E. Kolomiets, E. M. Johansson, O. Renaudet, T. Darbre, and J. L. Reymond, Neoglycopeptide Dendrimer Libraries as a Source of Lectin Binding Ligands, Organic Letters, vol.9, issue.8, pp.1465-1468, 2007.
DOI : 10.1021/ol070119d

J. Reymond, Inhibition and Dispersion of Pseudomonas aeruginosa Biofilms by Glycopeptide Dendrimers Targeting the Fucose-Specific Lectin LecB, Chemistry & Biology, vol.15, pp.1249-1257, 2008.

J. Reymond, Glycopeptide Dendrimers with High Affinity for the Fucose-Binding Lectin LecB from Pseudomonas aeruginosa, ChemMedChem, vol.4, pp.562-569, 2009.

E. M. Johansson, R. U. Kadam, G. Rispoli, S. A. Crusz, K. M. Bartels et al., Inhibition of Pseudomonas aeruginosa biofilms with a glycopeptide dendrimer containing D-amino acids, MedChemComm, vol.118, issue.5, pp.418-420, 2011.
DOI : 10.1021/ja9621760

C. Ligeour, L. Dupin, A. Angeli, G. Vergoten, S. Vidal et al., Importance of topology for glycocluster binding to Pseudomonas aeruginosa and Burkholderia ambifaria bacterial lectins, Organic & Biomolecular Chemistry, vol.108, issue.46, pp.11244-11254, 2015.
DOI : 10.1021/jp031178l

URL : https://hal.archives-ouvertes.fr/hal-01318130

J. Vasseur, Y. Chevolot, and F. Morvan, The influence of the aromatic aglycon of galactoclusters on the binding of LecA: a case study with O-phenyl, S-phenyl, O-benzyl, S-benzyl, O-biphenyl and O-naphthyl aglycons, Org. Biomol. Chem, vol.12, pp.9166-9179, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01084164

J. Vasseur, G. Vergoten, Y. Chevolot, F. Morvan, and S. Vidal, Toward the Rational Design of Galactosylated Glycoclusters That Target Pseudomonas aeruginosa Lectin A (LecA): Influence of Linker Arms That Lead to Low-Nanomolar Multivalent Ligands, Chem. Eur. J, vol.22, pp.11785-11794, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01489130

C. Ligeour, O. Vidal, L. Dupin, F. Casoni, E. Gillon et al., Mannose-centered aromatic galactoclusters inhibit the biofilm formation of Pseudomonas aeruginosa, Organic & Biomolecular Chemistry, vol.146, issue.31, pp.8433-8444, 2015.
DOI : 10.1099/00221287-146-10-2395

URL : https://hal.archives-ouvertes.fr/hal-01317684

D. Hauck, I. Joachim, B. Frommeyer, A. Varrot, B. Philipp et al., LecB with Distinct Binding Modes, ACS Chemical Biology, vol.8, issue.8, pp.1775-1784, 2013.
DOI : 10.1021/cb400371r

URL : https://hal.archives-ouvertes.fr/hal-00955015

M. Andreini, M. Anderluh, A. Audfray, and A. Bernardi, Monovalent and bivalent N-fucosyl amides as high affinity ligands for Pseudomonas aeruginosa PA-IIL lectin, Carbohydrate Research, vol.345, issue.10, pp.1400-1407, 2010.
DOI : 10.1016/j.carres.2010.03.012

URL : https://hal.archives-ouvertes.fr/hal-00499322

A. Imberty and R. Roy, X-ray structures and thermodynamics of the interaction of PA-IIL from Pseudomonas aeruginosa with disaccharide derivatives, ChemMedChem, vol.2, pp.1328-1366, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00305550

K. Marotte, C. Preville, C. Sabin, M. Moume-pymbock, A. Imberty et al., Synthesis and binding properties of divalent and trivalent clusters of the Lewis a disaccharide moiety to Pseudomonas aeruginosa lectin PA-IIL, Organic & Biomolecular Chemistry, vol.28, issue.18, pp.2953-2961, 2007.
DOI : 10.1021/bc070129z

URL : https://hal.archives-ouvertes.fr/hal-00305549

P. Dumy and O. Renaudet, High affinity glycodendrimers for the lectin LecB from Pseudomonas aeruginosa, Bioconjug Chem, vol.24, pp.1598-611, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00903491

K. Buffet, E. Gillon, M. Holler, J. F. Nierengarten, A. Imberty et al., Fucofullerenes as tight ligands of RSL and LecB, two bacterial lectins, Organic & Biomolecular Chemistry, vol.18, issue.23, pp.6482-92, 2015.
DOI : 10.1002/chem.201200010

A. Imberty and A. Titz, The virulence factor LecB varies in clinical isolates: consequences for ligand binding and drug discovery, Chemical Science, vol.7, pp.4990-5001, 2016.

J. J. Lundquist and E. J. Toone, The Cluster Glycoside Effect, Chemical Reviews, vol.102, issue.2, pp.555-578, 2002.
DOI : 10.1021/cr000418f

V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective ???Ligation??? of Azides and Terminal Alkynes, Angewandte Chemie International Edition, vol.20, issue.14, pp.2596-2605, 2002.
DOI : 10.1002/1099-0682(200011)2000:11<2311::AID-EJIC2311>3.0.CO;2-7

C. W. Tornoe, C. Christensen, and M. Meldal, Peptidotriazoles on Solid Phase:?? [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides, The Journal of Organic Chemistry, vol.67, issue.9, pp.3057-64, 2002.
DOI : 10.1021/jo011148j

R. Huisgen, 1,3-Dipolar Cycloadditions. Past and Future, Angewandte Chemie International Edition in English, vol.26, issue.10, pp.565-598, 1963.
DOI : 10.1021/jo01064a001

Y. Chevolot, C. Bouillon, S. Vidal, F. Morvan, A. Meyer et al., DNA-Based Carbohydrate Biochips: A Platform for Surface Glyco-Engineering, Angewandte Chemie International Edition, vol.347, issue.14, pp.2398-2402, 2007.
DOI : 10.1002/0471142700.nc1207s22

URL : https://hal.archives-ouvertes.fr/hal-00137357

G. Vergoten, I. Mazur, P. Lagant, J. C. Michalski, and J. P. Zanetta, The SPASIBA force field as an essential tool for studying the structure and dynamics of saccharides, Biochimie, vol.85, issue.1-2, pp.65-73, 2003.
DOI : 10.1016/S0300-9084(03)00052-X

URL : https://hal.archives-ouvertes.fr/hal-00093963

P. Derreumaux and G. Vergoten, A new spectroscopic molecular mechanics force field. Parameters for proteins, The Journal of Chemical Physics, vol.72, issue.21, pp.8586-8605, 1995.
DOI : 10.1002/jcc.540150207

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, pp.1087-1092, 1953.
DOI : 10.1063/1.1700747

A. Novoa, T. Machida, S. Barluenga, A. Imberty, and N. Winssinger, PNA-Encoded Synthesis (PES) of a 10???000-Member Hetero-Glycoconjugate Library and Microarray Analysis of Diverse Lectins, ChemBioChem, vol.10, issue.14, pp.2058-65, 2014.
DOI : 10.1002/chem.200305465

O. Fu, A. V. Pukin, H. C. Quarles-van-ufford, J. Kemmink, N. J. De-mol et al., Functionalization of a Rigid Divalent Ligand for LecA, a Bacterial Adhesion Lectin, ChemistryOpen, vol.13, issue.4, pp.463-70, 2015.
DOI : 10.1016/0022-1759(76)90068-5

B. Gerland, A. Goudot, G. Pourceau, A. Meyer, V. Dugas et al., Synthesis of a Library of Fucosylated Glycoclusters and Determination of their Binding toward Pseudomonas aeruginosa Lectin B (PA-IIL) Using a DNA-Based Carbohydrate Microarray, Bioconjugate Chemistry, vol.23, issue.8, pp.1534-1581, 2012.
DOI : 10.1021/bc2006434

URL : https://hal.archives-ouvertes.fr/hal-00728803

J. J. Vasseur, G. Vergoten, Y. Chevolot, F. Morvan, and S. Vidal, Toward the Rational Design of Galactosylated Glycoclusters That Target Pseudomonas aeruginosa Lectin A (LecA): Influence of Linker Arms That Lead to Low-Nanomolar Multivalent Ligands, Chemistry, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01489130

V. Hong, A. K. Udit, R. A. Evans, and M. G. Finn, Electrochemically Protected Copper(I)-Catalyzed Azide-Alkyne Cycloaddition, ChemBioChem, vol.126, issue.9, pp.1481-1486, 2008.
DOI : 10.1042/bj2190001

A. V. Pukin, A. J. Brouwer, L. Koomen, H. C. Van-ufford, J. Kemmink et al., Thiourea-based spacers in potent divalent inhibitors of Pseudomonas aeruginosa virulence lectin LecA, Organic & Biomolecular Chemistry, vol.16, issue.44, pp.10923-10928, 2015.
DOI : 10.1055/s-1984-30885

C. Ligeour, A. Meyer, J. Vasseur, and F. Morvan, Bis-and Tris-Alkyne Phosphoramidites for Multiple 5?-Labeling of Oligonucleotides by Click Chemistry, Eur. J. Org. Chem, pp.1851-1856, 2012.

H. Hemmi, NMR Analysis of Carbohydrate-Binding Interactions in Solution: An Approach Using Analysis of Saturation Transfer Difference NMR Spectroscopy, Methods in molecular biology, vol.1200, pp.501-510, 2014.
DOI : 10.1007/978-1-4939-1292-6_41

M. Mayer and B. Meyer, Group Epitope Mapping by Saturation Transfer Difference NMR To Identify Segments of a Ligand in Direct Contact with a Protein Receptor, Journal of the American Chemical Society, vol.123, issue.25, pp.6108-6117, 2001.
DOI : 10.1021/ja0100120

C. Geraldes, The interaction of La3+ complexes of DOTA/DTPA glycoconjugates with the RCA(120) lectin: a saturation transfer difference NMR spectroscopic study, J Biol Inorg Chem, vol.16, pp.725-734, 2011.

S. Castro, M. Duff, N. L. Snyder, M. Morton, C. V. Kumar et al., Recognition of septanose carbohydrates by concanavalin A, Organic & Biomolecular Chemistry, vol.70, issue.21, pp.3869-3872, 2005.
DOI : 10.1006/meth.1999.0852

J. P. Ribeiro, S. Andre, F. J. Canada, H. J. Gabius, A. P. Butera et al., Lectin-Based Drug Design: Combined Strategy to Identify Lead Compounds using STD NMR Spectroscopy, Solid-Phase Assays and Cell Binding for a Plant Toxin Model, ChemMedChem, vol.16, issue.3, pp.415-419, 2010.
DOI : 10.1016/j.bbagen.2005.12.021

D. Bini, R. Marchetti, L. Russo, A. Molinaro, A. Silipo et al., Multivalent ligand mimetics of LecA from P.???aeruginosa: synthesis and NMR studies, Carbohydrate Research, vol.429, pp.23-28, 2016.
DOI : 10.1016/j.carres.2016.04.023

M. Mayer and B. Meyer, Characterization of Ligand Binding by Saturation Transfer Difference NMR Spectroscopy, Angewandte Chemie International Edition, vol.38, issue.12, pp.1784-1788, 1999.
DOI : 10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-Q

A. Viegas, J. Manso, F. L. Nobrega, and E. J. Cabrita, Saturation-Transfer Difference (STD) NMR: A Simple and Fast Method for Ligand Screening and Characterization of Protein Binding, Journal of Chemical Education, vol.88, issue.7, pp.990-994, 2011.
DOI : 10.1021/ed101169t

B. Meyer and T. Peters, NMR Spectroscopy Techniques for Screening and Identifying Ligand Binding to Protein Receptors, Angewandte Chemie International Edition, vol.42, issue.8, pp.864-890, 2003.
DOI : 10.1002/anie.200390233

G. Pourceau, A. Meyer, Y. Chevolot, E. Souteyrand, J. Vasseur et al., Oligonucleotide Carbohydrate-Centered Galactosyl Cluster Conjugates Synthesized by Click and Phosphoramidite Chemistries, Bioconjugate Chemistry, vol.21, issue.8, pp.1520-1529, 2010.
DOI : 10.1021/bc1001888

URL : https://hal.archives-ouvertes.fr/hal-00519471

T. Hasegawa, M. Numata, S. Okumura, T. Kimura, K. Sakurai et al., Carbohydrate-appended curdlans as a new family of glycoclusters with binding properties both for a polynucleotide and lectins, Organic & Biomolecular Chemistry, vol.7, issue.15, pp.2404-2416, 2007.
DOI : 10.1039/b703720a

J. Diot, M. I. Garcia-moreno, S. G. Gouin, C. Ortiz-mellet, K. Haupt et al., Multivalent iminosugars to modulate affinity and selectivity for glycosidases, Org. Biomol. Chem., vol.4, issue.2, pp.357-63, 2009.
DOI : 10.1055/s-1999-3430

URL : https://hal.archives-ouvertes.fr/hal-00376671

M. J. Damha, P. A. Giannaris, and S. V. Zabarylo, An improved procedure for derivatization of controlled-pore glass beads for solid-phase oligonucleotide synthesis, Nucleic Acids Research, vol.18, issue.13, pp.3813-3834, 1990.
DOI : 10.1093/nar/18.13.3813

A. Meyer, M. Noël, J. Vasseur, and F. Morvan, Hetero-Click Conjugation of Oligonucleotides with Glycosides Using Bifunctional Phosphoramidites, European Journal of Organic Chemistry, vol.47, issue.13, pp.2921-2927, 2015.
DOI : 10.1021/jm049476+

J. Morvan and F. , Microwave assisted "click" chemistry for the synthesis of multiple labeled-carbohydrate oligonucleotides on solid support, J. Org. Chem, vol.71, pp.4700-4702, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00080319

G. Pourceau, A. Meyer, J. J. Vasseur, and F. Morvan, Azide Solid Support for 3???-Conjugation of Oligonucleotides and Their Circularization by Click Chemistry, The Journal of Organic Chemistry, vol.74, issue.17, pp.6837-6879, 2009.
DOI : 10.1021/jo9014563

URL : https://hal.archives-ouvertes.fr/hal-00429556

F. Morvan and Y. Chevolot, Effects of the Surface Densities of Glycoclusters on the Determination of Their IC50 and Kd Value Determination by Using a Microarray, ChemBioChem, vol.16, pp.2329-2336, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01489380