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Résumé en français

0.1 Contexte

Des téléphones aux centres de calcul, les systèmes informatiques jouent aujourd’hui
un rôle majeur dans la plupart des activités humaines. On les retrouve dans des
contextes variés, dont la diversité reflète celle de leurs applications. En première
approche, on peut distinguer trois types de système informatique:

Les systèmes généralistes, comme les stations de travail, sont conçus pour effectuer
raisonnablement efficacement un bon nombre de tâches (comme naviguer sur le
web, utiliser une suite bureautique ou jouer à des jeux vidéos). Leur principale
caractéristique est leur flexibilité, puisqu’ils peuvent exécuter des programmes
arbitraires installés ou écrits par l’utilisateur final.

Les systèmes embarqués, en revanche, sont spécifiquement dédiés à une ou quelques
tâches bien spécifiques. Ils sont enfouis dans toutes sortes de système, des
smartphones (où ils accélèrent par exemple les opérations d’encodage/décodage)
au module de commande des engins spatiaux. Ils se caractérisent par les con-
traintes fortes qui pèsent sur leur conception. En effet, ils doivent par exemple
respecter des contraintes de latence (temps réel), de consommation énergé-
tique, de taille, de coût et de tolérance aux fautes – souvent simultanément.

Les super-ordinateurs, par contraste, sont optimisés pour des tâches de calcul in-
tensif, comme les simulations scientifiques (par exemple en climatologie ou
météorologie) et l’intelligence artificielle (réseaux de neurones). Par rapport
aux systèmes généralistes, la différence majeure est leur grande puissance de
calcul, puisqu’ils doivent effectuer un grand nombre d’opérations par seconde
pour satisfaire aux exigences de performance.

Toutes ces différences influent sur la façon dont ces systèmes sont conçus et pro-
grammés. Par exemple, afin de supporter un grand nombre de cas d’utilisation,
les ordinateurs généralistes sont basés sur des processeurs génériques offrant un
jeu d’instruction prédéfini. Afin d’améliorer les performances, plusieurs straté-
gies sont mises en oeuvre dans ces architectures, comme l’utilisation de plusieurs
niveaux de cache ou de techniques superscalaires. Ainsi, un processeur moderne peut,
par exemple, ordonner les instructions dynamiquement en fonction des ressources
disponibles, ou “deviner” la valeur d’une condition de branchement à partir du passé
afin d’exécuter certaines parties du code par avance. Ces mécanismes complexes
profitent à la fois aux programmeurs et aux utilisateurs finaux:

13



• Le même jeu d’instruction peut être réutilisé d’une génération de processeur
à l’autre, fournissant une inter-compatibilité ascendante et descendante entre
logiciel et matériel.

• Les programmes peuvent être écrits dans un langage de programmation haut
niveau, traduit ensuite en une série d’instruction élémentaires par un compi-
lateur, sans qu’il soit nécessaire de connaître précisément l’architecture sous-
jacente.

• Les techniques d’optimisation statiques (à la compilation) et dynamiques (mises
en oeuvre lors de l’exécution, comme les techniques superscalaires) assurent
dans la plupart des cas des performances décentes aux utilisateurs, sans efforts
excessifs de la part des programmeurs.

Ces commodités ont rendu possible les environnements logiciels sophisitiqués que
nous utilisons quotidiennement. Malheureusement, ces avantages ne sont pas gratu-
its: par nature, les architectures génériques ne peuvent fournir des performances ou
une efficacité optimales, quelle que soit l’application.

En fait, les processeurs génériques représentent un compromis pertinent entre
performance et flexibilité. Si ce compromis convient à beaucoup d’applications, tel
n’est pas toujours le cas. Par exemple, dans le cadre de systèmes embarqués haute-
ment contraints en ressources, l’utilisation de processeurs génériques peut entraîner
un dépassement du budget alloué en termes de surface de silicium ou de consom-
mation énergétique. L’utilisation d’architectures spécifiques, nommées accélérateurs
matériel, s’impose alors.

Cette thèse traite la conception de tels d’accélérateurs (plus spécifiquement
d’accélerateurs implémentés sur FPGA). Nous nous intéressons à la conception de
modèles de performance permettant la mise en oeuvre de compromis spécifiques
à chaque application, selon diverses métriques (précision, surface, débit, etc.). Ce
manuscrit est composé de deux parties majeures: dans les chapitres 2 et 3, l’on
s’intéresse aux compromis entre précision et coût matériel (notamment). Dans les
chapitres 4 et 5, on se concentre sur une classe d’applications, les stencils. Le reste
de ce chapitre présente succintement ces deux problématiques et nos contributions.

0.2 Compromis entre coût et précision

Dans la première moitié de ce manuscrit, on s’intéresse à la précision des résultats.
Les compromis portant sur la précision représentent un vaste champ d’opportunités
pour les architectes matériel. Un exemple classique est l’utilisation de l’arithmétique
en virgule fixe au lieu de l’arithmétique en virgule flottante pour réduire les coûts
matériel et la consommation énergétique. Naturellement, la précision ne peut être
réduite indéfiniment: chaque implémentation doit satisfaire à des contraintes de
précision spécifiques, dont le respect doit être vérifié lors de l’exploration de l’espace
de conception.

Déterminer si une implémentation en virgule fixe donnée respecte une contrainte
de précision représente un problème difficile en général. On peut distinguer deux
classes de techniques: simulatoires et analytiques. Les techniques basées sur la
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simulation sont facilement applicables et offrent de bons résultats à condition de
disposer de suffisamment d’échantillons. Cependant, elles sont lentes à mettre
en oeuvre car estimer la précision de chaque solution requiert un grand nombre
d’exécutions. Les modèles analytiques sont beaucoup plus rapides à évaluer, ce qui
permet l’exploration de plus de solutions en peu de temps, et donc l’identification de
meilleur compromis. Cependant, leur applicabilité limitée représente un défi majeur.

Avant ces travaux, les techniques analytiques ne pouvaient traiter que des sys-
tèmes uni-dimensionnels. dans le chapitre 3, nous étendons les techniques précé-
dentes à des algorithmes multi-dimensionnels, comme des filtres d’image. Nous nous
concentrons sur les filtres Linéaires, Spatialement Invariants (LSI), une généralisa-
tion des filtres Linéaires, Invariants dans le Temps supportés par d’autres approches.
Nous proposons un flot partant d’une description algorithmique (écrite en C/C++).
Les deux principaux défis que nous relevons sont:

• Extraire une représentation mathématique compacte d’un filtre linéaire à partir
d’une description impérative en C/C++.

• Dériver un modèle de précision fiable à partir d’une telle représentation.

Le premier de ces défis est relevé dans le cadre du modèle polyédrique. Nous
représentons les filtres LSI comme des Systèmes d’Équations aux Récurrences Uni-
formes (SUREs) ou, de façon équivalente, des graphes de flots de donnée multi-
dimensionnels (MDFGs), par analogie aux graphes de flot de signal (SFGs) utilisés
comme représentation intermédiaire par les approches précedentes.

Une différence majeure entre SFGs et MDFGs est que les MDFGs / SUREs
n’imposent pas d’ordre d’itération canonique à chaque dimension. Cela nous per-
met de supporter des filtres d’image récursifs complexes, scannant leurs entrées dans
toutes les directions. Nous utilisons des techniques polyédriques d’analyse de dépen-
dance afin de transformer le programme en systèmes d’équation aux récurrences
affines. Un certain nombre de simplifications et de transformations sont requises,
comme l’uniformisation des dépendances, avant que le système puisse être reconnu
comme un SURE.

Pour la seconde problématique – inférer des modèles de précision – nous pro-
posons deux approches. Toutes deux se ramènent à calculer l’intégrale et la norme
L2 de la réponse impulsionnelle du filtres, mais depuis des points de vue duaux:

• Dans le domaine temporel, nous dérivions ces sommes en déroulant / évaluant
les équations de récurrence définissant le système.

• Dans le domaine fréquentiel, nous exploitons les propriétés algébriques des
fonctions de transfert pour calculer celles représentant la propagation de chaque
erreur. Nous calculons alors les sommes requises à partir de la réponse fréquen-
tielle.

Pour le deuxième cas, nous proposons une version simplifiée et plus efficace de
l’algorithme proposé par Ménard et al. [23]. Nos expériences démontrent que nos
modèles sont obtenus rapidement, et leur efficacité est illustrée en comparant avec
des simulations sur des données réelles.
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Finalement, nous montrons comment l’approche fréquentielle peut être utilisée en
amont de l’optimisation des largeurs afin de traiter la quantification des coefficients,
un problème généralement ignoré dans les autres travaux.

0.3 Compromis pour l’implémentation de stencils

Dans la seconde partie de cette thèse, nous nous concentrons sur les compromis
possibles pour l’implémentation de stencils itératifs sur FPGA. Les stencils itératifs
(ou plus simplement stencils) sont un motif de calcul retrouvé dans de nombreuses
applications, des simulations scientifiques à la vision par ordinateur. Chaque appli-
cation présente des contraintes spécifiques en fonction de la taille du domaine, du
schéma de dépendance et des caractéristiques intrinsèques du calcul.

En première approche, les performances d’un stencil sont principalement déter-
minées par les ressources de calcul utilisées et les performances de la mémoire. Le
pavage (ou tiling), présenté dans le chapitre 4, est un outil essentiel pour optimiser
ces deux aspects, en améliorant la localité mémoire d’une part et en autorisant la
parallélisation à différentes niveaux d’autre part.

Au chapitre 5, nous proposons une méthode systématique pour l’impl’ementation
de stencil itératifs sur FPGA. Notre méthode s’appuie sur un gabarit d’architecture
flexible, fondé sur le pavage et exposant diverses paramètres:

• Les performances maximales peuvent être controlées en ajustant le facteur de
déroulage du chemin de données. Ceci autorise des compromis entre débit et
surface.

• Des tuiles plus grandes peuvent être utilisées pour réduire les besoins en bande
passante, au prix d’une plus grande utilisastion en mémoire locale.

• L’espace d’itération peut être pavé selon un sous-ensemble de ses dimensions,
afin de réduire encore plus l’utilisation en bande passante. Le prix à payer est
une perte de contrôle partielle sur l’utilisation en mémoire locale, qui devient
proportionnelle à la taille de chaque dimension non pavée.

En outre, nous proposons des modèles de performance simples, dérivés d’une analyse
à haut niveau des performances du système. Ces modèles peuvent servir de base à
l’exploration de l’espace des solutions.

Pour valider notre architecture et nos modèles, nous avons implémentńotre ap-
proche sous la forme d’un outil de génération de code visant Vivado SDSoC. Nous
avons identifié, pour différentes cibles de performance, plusieurs solutions poten-
tielles en utilisant nos modèles de performance / surface. Nos expériences démon-
trent la bonne précision de nos modèles de performance. Nos modèles de surface
s’avèrent, bien que moins précis, suffisants pour estimer a priori les solutions les plus
intéressantes. Ces modèles ont donc fait la preuve de leur utilité lors de la phase de
conception.

Finalement, au cours de ce travail, nous avons constaté l’importance de la conti-
guité en mémoire pour réduire la latence et bénéficier des accès bursts proposés par
le bus. Nous avons donc conçu une disposition mémoire spécifique pour les tencils.
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Pour l’instant, ce layout n’est implémenté que pour les stencils 2D. Sa généralisation
à des stencils de dimension supérieure mériterait d’autres travaux.

0.4 Perspectives

Nos travaux ouvrent plusieurs perspectives.
Une direction de recherche évidente consisterait à étendre notre travail sur les

modèles de précision à une classe plus grande de programmes, comme les filtres
linéaires non-invariants, ou des filtres constitués d’opérations arbitraires. Une autre
piste, peut-être plus intéressante, serait de supporter des programmes non polyé-
driques. Par exemple, certains algorithmes, comme la transformée de Fourier rapide,
présentent de grandes régularités et un flot de contrôle statique sans pour autant
être représentables avec des dépendances affines. La propagation des erreurs dans
de tels algorithmes présente encore des défis, et nous ne savons pas si le déroulage
peut être évité.

On pourrait aussi imaginer utiliser des modèles de précision analytiques dans
d’autres contextes, par exemple pour analyser les erreurs de quantification dans
des programmes en virgule flottante, ou pour prédire l’impact d’erreurs transitoires
(“soft errors”) ou d’opérateurs approximatifs sur la correction du programme. Une
difficulté majeure est que, dans de tels cas, les erreurs ne vérifient pas les mêmes
propriétés statistiques que le bruit de quantification de le cas de la virgule fixe.

Nos travaux sur les stencils s’appuie sur une compréhension claire des facteurs
majeurs affectant leur performance. Des observations similaires peuvent être for-
mul’ees pour de nombreux algorithmes. Une approche plus générique, ciblant tous
les algorithmes se prêtant au pavage, pourrait probablement être proposée.

Nos recherches sur le placement contigu des données en mémoire. Cette problé-
matique, importante en pratique, n’a pas été très étudiée. Elle ouvre des questions
intéressantes, comme sur la façon de réduire le nombre de tampons requis ou la né-
cessité d’utiliser des mémoires locales pour réordonner les entrées. Nous suspectons
l’existence de compromis intéressants entre la séquentialité des données d’une part
et leur contiguïté d’autre part. Cependant, cette question mériterait de plus amples
investigations.

Pour finir, l’interaction entre les stencils et la précision est difficile à étudier.
La capacité des FPGAs à gérer des données de taille arbitraire constitue l’un de
leurs avantages majeurs, autorisant des réductions en surface significatives pour les
applications supportant une certaine dégradation de la précision. Pouvoir carac-
tériser l’impact (par exemple) de formats en virgule fixe sur la précision de stencils
autoriserait des compromis très intéressants.

0.5 Conclusion

Lors de la conception d’accélerateurs matériel, le défi majeur réside dans la taille
de l’espace de conception à explorer, en particulier quand certaines dimensions de
design comme la précision, sont envisagées. Comme chaque application possède des
exigences spécifiques, une solution unique ne peut répondre à tous les besoins. Dans
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cette thèse, nous défendons une approche rigoureuse de la conception matérielle,
basée sur l’utilisation de modèles. Nous avons démontré l’efficacité de cette stratégie
à deux problématiques distinctes: les stencils et l’optimisation des largeurs. À
mesure que les accélérateurs se répandent, l’utilisation de modèles spécifiques devien-
dra essentiel pour comprendre l’impact des choix de conception sur le comportemet
du système. Notre travail représente une étape dans cette direction.
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Chapter 1

Introduction

1.1 Context

From smartphones to data centers, computer systems now play a major role in most
human activities. They are found in vastly different contexts, reflecting the diversity
of their applications. We distinguish three main types of computing environments:

General-purpose computers, such as desktop workstations, are designed to run
reasonably efficiently a number of applications (e.g., web browsers, office suites
or video games). Their main feature is their flexibility, as they can run arbi-
trary programs installed or written by the end user.

Embedded systems, on the other hand, are dedicated to some specific task or
set of tasks. They can be found within all sorts of systems and devices, from
smartphones (where they typically handle encoding/decoding tasks) to the
command system of spacecrafts. Their characteristic is the highly constrained
environment in which they operate, as they are usually subject to real-time,
power, size, cost or fault-tolerance constraints (often at the same time).

Supercomputers are optimized towards High-Performance Computing (HPC)
workloads, such as scientific simulations (e.g., climatology, seismology) or ma-
chine learning applications. Compared to general-purpose computers, the ma-
jor difference is their significant computing power, as they must perform a
large number of operations per second to meet performance requirements.

All these differences influence the way these systems are designed and pro-
grammed. For example, since they must support a large number of use cases,
general-purpose computers are based on generic processor design offering a pre-
defined instruction set. Several design strategies are used to improve performance,
such as adding multiple levels of cache or applying superscalar techniques in the
processor. A modern processor may thus, for instance, schedule instructions dy-
namically based on available resources, or “guess” the value of a branching condition
based on past executions. These complex mechanisms benefits both end users and
programmers, since:

• The same instruction set may be used over several CPU generations, providing
backward and forward compatibility between software and hardware.
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• Compilers can translate programs written in a high-level programming lan-
guage into sequences of elementary instructions, without exact knowledge of
the supporting architecture.

• Compile- and run-time optimizations (from memory hierarchy to superscalar
techniques) ensure that users get decent performance in most cases without
excessive optimization efforts from the programmer.

These facilities have made possible the sophisticated software environments that
we use daily. Unfortunately, these advantages come at a price: generic architectures
cannot, by their very nature, provide optimal performance or efficiency for any
particular application.

Generic processors represent a convenient trade-off between performance and
flexibility. While this is suitable for many applications, such is not always the
case. For instance, in resource-constrained embedded systems, generic processors
may exceed power and area budget for a given performance goal. The use of more
efficient, special-purpose hardware accelerators is then necessary. Such accelerators,
and the the problem of their design, are at the core of this thesis.

1.2 Hardware Accelerators

In a broad sense, the term accelerator denotes any processing device that gives up
some genericity to execute a type of computation more efficiently than a general-
purpose processor (along which they are commonly used). Floating-point coproces-
sors, such as Intel’s C8087 (introduced in 1980) constitute good examples1. More
generally, for the purpose of this discussion, we distinguish:

• Programmable accelerators, designed for a class of applications while retaining
some level of programmability. Well-known examples include Digital Signal
Processors (DSPs) and Graphics Processing Units (GPUs). DSPs are special-
purpose processors that offer efficient support for common signal processing
operations (e.g., dot products). GPUs, on the other hand, have evolved from
domain-specific chips into powerful semi-generic computing platforms for data-
parallel floating-point computations.

• Custom, fixed-function accelerators, on the other hand, are specifically de-
signed for a single, well-defined task. They may be implemented as costly
Application-Specific Integrated Circuits (ASICs), or on top of reconfigurable
logic, such as Field-Programmable Gate Arrays (FPGAs).

Naturally, fixed-function implementations represent the highest level of special-
ization, and offer the greatest potential of optimizations. Notice, though, that such
architectures move the responsability of hardware design closer to application de-
velopers. Since it is a notoriously difficult and costly endeavour, their adoption has
long been mostly limited to applications with extreme constraints and requirements.

1Such functionality has since been merged into general-purpose CPUs, but not, for example, in
some Digital Signal Processors
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The last fifteen years, however, have seen a renewed interest for custom acceler-
ators. This may be explained by several factors. First, our computing needs have
increased significantly, partly due to the growing amount of data produced each day,
and the need to process them. Secondly, this period coincides with a turning-point
in the hardware industry, with the end of the traditional scaling “laws” that have
driven its development for more than 40 years.

In particular, the breakdown of Dennard scaling, which stated that power density
(W/cm2) would remain constant as transistor density increased, has had significant
impact on both software and hardware design. Since dynamic (transistor-switching)
power is proportional to clock frequency, manufacturers could exploit reductions in
processor size to raise frequencies from one generation to the next without increasing
the power budget. This resulted in regular performance upgrades for single-threaded
code. Nowadays, however, static power is no longer negligible compared to dynamic
power, mainly due to current leakages, and this strategy is no longer applicable.

Consequently, thermal dissipation is becoming a major issue. In fact, it is ex-
pected that, as transistor density continues to increase (albeit more slowly than
before), a growing portion of integrated circuits will have to be turned-off at any
given time to stay below nomimal thermal dissipation power (a phenomenon some-
times called “Dark Silicon”). Further improvements will then only come from better
use of available transistors. Heterogeneous, accelerator-rich architectures are thus
expected to become the norm. Unfortunately, designing hardware accelerators is still
significantly more difficult than writing software. Lowering the barrier to entry, for
example by developing new tools and methodologies, is thus an important challenge
to address the needs of tomorrow’s computing.

1.3 Accelerator Design

In both embedded systems and HPC, accelerator design may be stated as an opti-
mization problem. One either seeks to minimize resource usage under performance
constraints, or to maximize performance under resource constraints. In particular,
when designing custom accelerators, the design space is extremely large, as many
factors can influence the quality of the design. For example, wordlength may be
reduced to trade accuracy for lower area cost, or local memory usage may be in-
creased to tackle bandwidth limitations. The number of solutions is so large, one
cannot expect to come up with an “optimal” or near-optimal design at first try; a
time-consuming Design-Space Exploration (DSE) phase is usually required.

New methodologies are needed to enable and speed up this exploration. Tradi-
tional hardware design relies on the use of low-level Hardware Description Languages
(HDLs), such as VHDL and Verilog, to specify the architecture. These Register-
Transfer Level (RTL) languages provide a poor level of abstraction; in particular,
cycle accuracy is part of their semantics, as state changes happen synchronously at
clock signal edges. While this level of control is sometimes required, when designing
accelerators, it typically hinders DSE by making it difficult to explore architectural
variants.

In contrast, High-Level Synthesis (HLS) tools compile an algorithmic specifi-
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cation (usually written in C or C++) to a low-level (RTL) description. With this
approach, many implementation details are handled automatically by the tool, based
on target frequency, hardware platform and designer directives. This rise in abstrac-
tion allows much faster DSE, as far-reaching, system-level architectural changes can
be implemented in a few lines of code. Consequently, HLS can be combined with
methodologies based on code generation to explore a large number of design points
in a short amount of time.

1.4 Presentation of This Work

For efficient exploration, though, HLS alone is not sufficient. Tools are required
to guide the designer and help him/her make the right implementation choices in
each situation. As accelerators are used in different contexts (HPC vs. embedded
systems), and since each application has unique characteristics (access patterns,
arithmetic intensity, numerical stability), such tools must integrate domain-specific
constraints to identify a suitable set of trade-offs between all performance metrics.

This thesis focuses on such DSE methodologies for i) fixed-point accelerators ii)
FPGA accelerators for stencil computations. The document is organized as follows:

• The first two chapters are concerned with performance/accuracy trade-offs.
Many applications can tolerate significant accuracy degradations before the
quality of results is strongly affected. It is common to exploit this tolerance
by converting floating-point applications to use fixed-point arithmetic, to ben-
efit from its overall lower cost. Chapter 2 discusses this problem, and some
methods to evaluate the accuracy degradation resulting from conversion to
fixed-point. In Chapter 3 we present our contributions to the construction of
analytical accuracy models for linear systems.

• The next chapters are concerned with implementation trade-offs for iterative
stencil computations. Iterative stencil computations form a large class of algo-
rithms with applications in scientific computing, embedded vision and more.
They are presented in Chapter 4, along with implementation strategies. While
many authors have proposed a “one size fits all” approach, in Chapter 5, we
embrace the diversity of applications by proposing multiple architectural vari-
ants, along with associated performance models.

• We conclude in Chapter 6 with a review of our contributions and a discussion
of potential perspectives.
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Chapter 2

Accuracy Evaluation

2.1 Introduction

Floating-point arithmetic is based on a flexible approximation of real numbers of-
fering sensible trade-offs between precision and representable range, freeing applica-
tion developers from these concerns. Software programmers often forget about the
complexity of the underlying machinery and take its almost universal support on
general purpose hardware for granted. However, because of its significant resource
cost, floating-point arithmetic is not always an option for embedded system design-
ers. Instead, they must settle on less convenient, but more cost-effective fixed-point
implementations.

Implementing fixed-point computations is inherently challenging, as the pro-
grammer or designer must take extra care to avoid numerical overflows while re-
taining enough accuracy for application requirements. At the same time, he/she
must also ensure that design concerns, such as power consumption and area budget,
are correctly addressed. Reconciling all these constraints at once is a difficult task,
and applications are usually first specified, prototyped and functionally validated in
floating-point arithmetic, with floating-point to fixed-point conversion handled at a
later stage in the design flow.

Floating-point to fixed-point conversion exposes trades-offs between performance
(area cost, power consumption) and accuracy. Design goals can be formalized as a
constrained optimization problem. For example, one may wish to maximize accuracy
under some fixed area budget, or minimize area cost subject to an application-
specific accuracy constraint. The process of solving such problems is called Word-
Length Optimization (WLO). Finding an optimal or near-optimal solution usually
implies exploring a large design space, especially in a hardware design context where
datapaths can be tailored to arbitrary bit-widths.

During WLO, the cost and accuracy of each candidate implementation must be
assessed to determine whether it represents an improvement over the best known
solution. Quick accuracy evaluation is especially challenging, as the impact of nu-
merical errors on the output can be hard to predict. For this reason, bit-accurate
fixed-point simulations are often used, but their poor performance combined with
the large number of simulations required to produce reliable accuracy estimates
leads to significant iteration times. As a consequence, WLO is often performed
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semi-manually by expert designers, driving the exploration by identifying the most
interesting design points. It is an error-prone, time-consuming task, taking up to
50% of overall design time [1], which is often interrupted as soon as a satisfying
solution is found, leading to suboptimal implementations.

Combinatorial optimization algorithms can be used to perform WLO in a more
systematic manner. In practice, because of long simulation times, this choice sup-
poses the availability of a more efficient accuracy evaluation method. Analytical
techniques try to solve this problem by constructing an accuracy model from a
floating-point or infinite-precision specification, allowing the accuracy degradation
associated to a fixed-point implementation to be estimated almost instantly, without
simulations. Such methods have the potential to considerably improve the applica-
bility of fully automated WLO. Unfortunately, as we will see in this chapter, they are
currently limited to one-dimensional signal processing kernels and cannot properly
handle higher-dimensional filters such as image or video processing algorithms.

2.2 Hardware Representation of Real Numbers

Implementing numerical computations implies choosing a finite, explicit approxima-
tion of real numbers. The two most popular options, fixed-point and floating-point
arithmetic, have mostly opposite characteristics in terms of ease-of-use, hardware
cost and numerical properties. After a brief review of fixed-point and floating-point
arithmetic, this section describes their respective advantages and drawbacks, along
with the trade-offs they expose.

2.2.1 Fixed-Point Arithmetic

In fixed-point arithmetic, real numbers are represented as integers, with an implicit
scaling factor determining the position of the binary point. Concretely, let x be
some arbitrary number and Ix̂ its integral representation. The interpretation x̂ ≈ x
is given by:

x̂ = radixe × Ix̂

where radix is the base of the numeral system (usually 2) and e is a fixed exponent.
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Figure 2.1: Qm,n format with m-bit integral part and n-bit fractional part.

Depending on implementations, Ix̂ may be stored in two’s complement represen-
tation, or as a sign-bit and an absolute value. When the binary point, determined by
the scaling factor, falls in the middle of the representation, digits are partitioned into
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integral and fractional parts, depending on their position. A fixed-point format with
m-bit integral part and n-bit fractional part is often written Qm,n (see Figure 2.1).

Fixed-point arithmetic is implemented on top of integer arithmetic. Explicit
rescaling operations must be performed to ensure compatibility of operands, control
word-length or avoid overflows. For example, consider the (unsigned) fixed-point
addition of v1 = 2−1 × 10011b and v2 = 2−3 × 01101b. A custom word-length
implementation is illustrated in Figure 2.2. The two numbers must first be aligned
be to the same exponent by scaling v2 down by two positions, which leads to the
truncation of its two least significant bits. Finally, a sixth, guard bit is used to
account for bit-growth and prevent overflows. This is not the only solution: for
example, both operands could be further shifted by one position to keep output
wordlength under 6 bits, or rounding could be used instead of truncation to improve
error bounds.

Binary point position

1 0 0 1 1

0 1 1 0 1

v
1

v
2
≫2

Quantized bits

+

1 0 1 10 0=

Guard bit

Figure 2.2: Fixed-point addition of two 5-bit numbers.

Fixed-point multiplication illustrates well the challenges of fixed-point arith-
metic. Consider the product v1×v2, with v1, v2 defined as in the previous paragraph.
No alignment is required to perform the operation, as:

v1 × v2 = (2−1 × 10011b)× (2−3 × 01101b) = 2−4 × (10011b× 01101b).

The result can thus be computed without loss of accuracy, irrelevant of the scaling
factors. However, fixed-point multiplication of same word-length numbers produces
a result of double bit-width, which can lead to a phenomenon sometimes called bit-
width explosion. Additional truncations or roundings, called quantizations, must
be introduced to avoid this problem. This leads to computational errors whose
magnitude depends on the computation and the severity of the quantizations.

2.2.2 Floating-Point Arithmetic

Contrary to fixed-point arithmetic, where scaling factors are implicitly encoded in
the computation, floating-point arithmetic uses explicit exponents in the represen-
tation itself in order to automatically scale to different ranges of values. It can be
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Table 2.1: Interpretation of a IEEE 754 Floating-Point Number

Exponent Value T Interpretation Remark
e = emin 0 (−1)S × 0
e = emin �= 0 (−1)S × 2e × 0.T Denormal numbers

emin+ 1 ≤ e < emax any (−1)S × 2e × 1.T Normal numbers
e = emax 0 (−1)S ×∞ Infinities
e = emax �= 0 NaN “Not a Number”

seen as a form of binary scientific notation. For example, whereas chemists refer to
the Avogadro constant as:

6.02214086× 1023 mol−1,

it can also be written in binary form as:

1.11111110000110000101111× 101001110 mol−1.

More formally, a floating-point number consists in a sign bit S, a signed exponent
E and a fixed-point number M with 1-bit integral part, called the mantissa or
significand. The represented value is:

(−1)S × 2E ×M

S
(sign)

E
(biased exponent)

T
(trailing significand field)

1 bit w bits p− 1 bits

w − 1 0 p− 2 0

Figure 2.3: Binary Representation of a IEEE 754 Floating-Point Number

Most floating-point implementations are based on the IEEE754 standard and use
the binary representation pictured in Figure 2.3. This encoding saves 1 bit by not
storing the integral part of the significand, but inferring it from the fractional part
and the exponent. The interpretation, detailed in Table 2.1, assumes that (most)
floating-point numbers are stored in so-called normal form, which also ensures that
they are represented with a maximum number of significand bits. The exponent e is
stored as a biased integer e� such that e = e� − 2w−1 + 1 . We write e = emin when
e� = 0, and e = emax when e� = 2w − 1

While floating-point arithmetic can be emulated on top of integer arithmetic,
performance is prohibitive. Consequently, most implementations rely on dedicated
hardware support, usually in the form of a Floating-point Processing Unit (FPU),
off-the-shelf operators or as a custom datapath.
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2.2.3 Comparison

In the following, we discuss the main differences between fixed-point and floating-
point arithmetic with respect to programmability, hardware cost, availability and
numerical properties.

Programmability

To the programmer or hardware designer, floating-point arithmetic offers many ad-
vantages in terms of simplicity, as floating-point hardware automatically performs
necessary rescalings to maximize accuracy and minimize the risk of overflows.

In contrast, programming in fixed-point arithmetic often implies dealing with
such problems manually. For example, multiplying two 8-bit unsigned fixed-point
numbers, with respective exponents −2 and −4, may be written in C:

uchar8 mul_2_4( uchar8 a , uchar8 b) {
return ( a >> 4) ∗ (b >> 6) ;

}

The programmer must manually keep track of the implicit factor of each datum in
order to perform the right operation.

Libraries such as SystemC (OSCI), ac_fixed (Mentor Graphics) and ap_fixed

(Xilinx) can handle some of these concerns for the hardware designer by performing
automatic rescalings given the format of operands. However, fine-grained control
of wordlength often requires the introduction of manual quantizations, expressed as
intermediary variables which clutter the specification with implementation details.

Area Cost and Power Consumption

Floating-point hardware implementations are significantly more costly than fixed-
point implementations. For example, floating-point adders require pre-alignment
logic (usually in the form of expensive barrel shifters), adder/rounding logic and
normalization logic with leading-zero detection. This makes floating-point arith-
metic prohibitive for area-constrained applications. Power usage of floating-point
operators is also typically higher than that of integer operators used in fixed-point
arithmetic.

Availability

Because of their significant hardware cost, many embedded processors do not even
feature FPUs. On these platforms, the use of fixed-point arithmetic is virtually
mandatory.

Numerical Properties

In fixed-point arithmetic, the scaling factor is the weight of the least significant bit
and corresponds to the smallest non-zero representable value, also called quantization
step. Along with wordlength, it determines the range of representable numbers. For

27



-1.5e+06 -1e+06 -500000 0 500000 1e+06 1.5e+06
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Represented Value

M
a
x
im

u
m

 E
rr

o
r

Absolute Error in Single-Precision Floating-Point

Figure 2.4: Maximum representation error of floating-point numbers as a function
of represented value.

example, the b = (m+ n+ 1)-bit Qm,n format has quantization step 2−n and covers
the range:

[−2b−n−1, 2b−n−1 − 1].

This interval can be extended by increasing the size b of the representation or choos-
ing a coarser quantization step. This necessary trade-off between range and accuracy
is a major disadvantage of fixed-point arithmetic.

In contrast, floating-point formats feature a variable exponent which allows them
to represent a wide interval of numbers. Specifically, the range of (normalized) non-
negative values that can be represented by a b = (w+ p)-bit IEEE754 floating-point
number is:

[2−(2w−1−2), 22
w−1

− 22
w−1−p]

Small values are encoded with a small exponent and considerable accuracy, while
bigger exponents allow very large values to be represented, albeit possibly with
larger errors. In other words, while fixed-point numbers have a fixed quantization
step and bounded absolute errors, floating-point has quantization steps proportional
to magnitude of numbers and bounded relative errors. Floating-point quantization
step size as a function of number magnitude is plotted in Figure 2.4.

The notion of dynamic range can be introduced to summarize these properties.
Dynamic range is defined as the ratio between the smallest and largest representable
values and does hence not depend on the scaling factor of fixed-point formats. Dy-
namic range of fixed-point and floating-point formats are plotted in Figure 2.5 as a
function of wordlength. We can observe that for very small bit-widths, fixed-point
numbers actually offer a larger dynamic range. But as wordlength increases, this
phenomenon is reversed and floating-point arithmetic gives much more flexibility.
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2.2.4 Summary

Floating-point arithmetic is more versatile than fixed-point arithmetic and offers
better numerical properties, with a wide range of representable values and small
relative errors. Unfortunately, its significant hardware cost hinders its adoption in
many embedded contexts and fixed-point arithmetic must then be used.

2.3 Floating-Point to Fixed-Point Conversion

As many DSP processors lack support for floating-point arithmetic, or because of
its significant area cost in FPGA and ASIC designs, many applications must be
implemented in fixed-point. Unfortunately, programming in fixed-point arithmetic
is a challenging task as overflows and numerical errors may significantly degrade
accuracy. For this reason, these concerns are usually addressed at a later design
stage: the application is specified and validated in floating-point arithmetic, before
being converted to fixed-point.

In this section, we discuss the problem of floating-point to fixed-point conversions.
We then expose the techniques available to address this problem automatically, with
a focus on accuracy evaluation, a step that often is the bottleneck of the process.

2.3.1 Problem Setup

The intent of float-to-fix is to assign to each value in a computation a fixed-point
format minimizing the risk of overflow and ensuring that enough accuracy is re-
tained with respect to the reference implementation/specification. That specifica-
tion may be given as a block diagram, Signal Flow Graph (see Section 2.4.1), or as
a C/C++/Matlab source code.
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Preventing overflows is usually achieved by performing range analysis on the
input specification: the interval of each value (i.e., each signal in the graph, or
each variable in the program) is determined in order to allocate enough bits in the
most significant positions. Word-lengths are then adjusted until a suitable trade-off

is found between performance/cost and accuracy. Depending on the context and
target platform, the problem being solved can be stated differently:

• In a software/DSP setting, the challenge consists in finding a fixed-point spec-
ification that i) meets (or exceeds) accuracy requirements, ii) can be imple-
mented using available CPU primitives.

The design space is thus limited by the word-lengths and instructions proposed
by the target processor.

• In a hardware design setting, floating-point to fixed-point conversion takes the
form of a Word-Length Optimization, where one tries to minimize area cost or
maximize accuracy, subject to some accuracy or cost constraint.

The design space is usually considerably larger than in software fixed-point, as
the datapath can be fine-tuned to arbitrary word-lengths. WLO problems are
combinatorial in nature. It has been shown that a restricted analytical form
of the multiple wordlength assignment problem is of NP-hard complexity [2].

Let w denote a fixed-point configuration, λ(w) the associated error and C(w) the
cost estimate of that implementation. We distinguish two forms of WLO problems.
The accuracy maximization problem may be stated as:

max
w

λ(w) subject to C(w) ≤ Cmax

and the cost minimization problem as:

min
w

C(w) subject to λ(w) ≤ λmax

These optimization problems can be solved using combinatorial optimization algo-
rithms, or a more ad-hoc, semi-manual exploration. At a high-level, all approaches
boil down to the same idea: starting from an initial configuration w0, the current
solution is iteratively refined to optimize the objective function. At each step, the
cost C(w) and accuracy λ(w) are evaluated and a new configuration is chosen until
some acceptance condition is reached (for example, the absence of progress), or until
the designer in charge of the conversion is satisfied with the results.

To perform this optimization automatically and reach a good solution in rea-
sonable time, sufficiently fast methods are required for evaluating the cost and ac-
curacy of a design. Cost estimation is a challenging task, as the actual cost may
depend on decisions made by the design tool after float-to-fix conversion, such as
operator-sharing. In practice, more-or-less comprehensive high-level cost estimates
are used [3, 4].

While quantization noise can negatively impact the behavior of the system, over-
flows have an even stronger consequences on numerical correctness. Word-Length
Optimization is mostly focused in tweaking the size of the fractional part of fixed-
point operands to approach the optimal solution. However, before entering the
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optimization loop, it is necessary to determine the size of the integral part, in order,
depending on the criticity of the application, to limit or the risk or guarantee the
absence of overflows. This analysis is called range estimation.

2.3.2 Range Estimation

In order to avoid overflows, it is necessary to ensure that the range of values spanned
by each variable during the computation does not exceed the capacity of its repre-
sentation. This range naturally depends on inputs and can be estimated from their
own range or from representative samples.

When input range is known, any static analysis designed to compute safe variable
bounds can be used. Interval or Affine Arithmetic have been extensively applied
to this problem. Affine arithmetic can model exactly range propagation through
a linear non-recursive program, but non-linearity or the presence of feedback loops
gives rise to approximations.

For LTI systems, the L1 norm of the transfer function (which can be computed by
hand, or automatically from an adequate representation) gives precise information on
the range of outputs. David Cachera and Tanguy Risset proposed a formal approach
based on the polyhedral model and the (max,+) tropical algebra to compute ranges
on affine loop nests operating on uni-dimensional arrays [5].

In general, without stringent restrictions on the nature of the system, any safe
static method is bound to produce pessimistic over-approximations: computing the
precise semantics of a program is an undecidable problem. Moreover, even when
error bounds can be determined exactly (for example, using affine arithmetic in a
basic block with linear operations), numbers close to the minimum or maximum
values are unlikely to be observed in practice, as they correspond to statistical
extremes.

As a constrained example, consider the addition of 5 independent uniform ran-
dom variables ranging over interval [0, 1]. Their sum is obviously distributed over
interval [0, 5]. However, as evident from the plot of its probability density function
(see Figure 2.6), values over 4 are unlikely to be observed - in fact, the probability is
less than 1%. One may choose to use saturating arithmetic and only assume values
less than 4, without significantly affecting the results of the computation. However,
purely static methods are unlikely to help the designer to recognize such situations.

Except in critical systems, where overflows are not acceptable, simulation is thus
often preferred, or used in complement, to static analyses: provided that inputs are
in a sufficient number and statistically representative, measured bounds indirectly
reflect signal characteristics, and are thus often much more tight than those obtained
with static approaches.

2.3.3 Accuracy Metrics

Formulating an accuracy constraint supposes the choice of a particular metric to
characterize performance degradations. Two main classes of metrics may be used:

“Hard” metrics (error bounds) In critical systems, accuracy constraints are usu-

31



Figure 2.6: PDF of the sum of 5 i.i.d random variables with distribution U([0, 1]).

ally specified as a hard bounds on error. Typically:

|e| = |x̂− x| < ε

Statistical metrics In signal and image processing systems, soft metrics based on
the statistics of signals are usually used. The most common one is called noise
power and involves the first and second statistical moments of the error, seen
as a random noise e:

P (e) = E(e2) = µ2
e + σ2

e

where µe and σ2
e denote the mean and variance of variable e. Noise power is

generally given in decibels (dB):

Plog(e) = 10 log10 P (e) dB.

A related way to measure the relative magnitude of signals and errors is the
Signal to Quantization Noise Ratio (SQNR). It is defined as:

SQNR = Plog

�
Signal

Error

�
= Plog(Signal)− Plog(Error)

Signal power Plog(Signal) is generally known from representative inputs. Com-
puting noise power or SQNR is thus equivalent.

Finally, whereas in noise power, only the first two moments are used, estimates
of higher-order moments give more information on the shape of the probability
distribution and can be used to define even more fine-grained constraints [6].
However, in the following, we will mostly consider noise power, as noise power
and SQNR are the most widely used metrics.
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2.3.4 Accuracy Evaluation

Accuracy evaluation is the process of evaluating the accuracy degradation occasioned
by a fixed-point implementation.

Simulation

Given a fixed-point specification w, the obvious way to determine its accuracy is to
perform bit-accurate fixed-point simulations with representative inputs and compare
the results with the reference implementation. This approach produces reliable
estimates and is easy to implement for any computation. However, it is also very
time-consuming:

• Compared to floating-point or native integer operations, fixed-point simula-
tions suffer from a large performance hit on general purpose hardware.

• To produce reliable estimates of statistical metrics, this process must be re-
peated a large number of times to determine the statistical moments of the
error with enough confidence.

Since accuracy evaluation is performed at every WLO step, the use of simulations
is often a bottleneck limiting the depth of the design space exploration, leading to
suboptimal implementations

Analytical Approaches

In analytical methods, an accuracy model of the specification is constructed prior to
WLO to avoid simulations and speed up accuracy evaluation. While the construc-
tion of the model may be relatively costly, it can be used to quickly determine the
accuracy of any solution, thus considerably increasing the number of optimization
steps that can be performed.

2.4 Analytical Accuracy Evaluation

Our contributions, exposed in the next chapter, focus on analytical accuracy evalu-
ation. The principle of analytical accuracy evaluation is to derive an accuracy model
from a floating-point specification. The statistical moments of quantization errors,
viewed as random variables, are propagated through the computation to construct
a symbolic expression of overall noise power at the output of the system.

Two kinds of model are required: first, the statistical properties of quantization
errors need to be determined. Secondly, the overall impact of the system on these
errors at the output must be captured by abstract models.

Current methods operate on dataflow models such as Signal Flow Graphs as an
intermediate representation of the system (Section 2.4.1). These graphs are trans-
formed with simple rewrite rules to introduce error sources (Section 2.4.2) repre-
senting quantization errors as additional inputs. Quantization noise models (Sec-
tion 2.4.3) provide expressions for the mean and variance of these errors as a function
of input and output precisions. The challenge then consists in constructing a noise
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formula representing the moments of errors at the output of the system. A variety
techniques have been proposed to achieve this goal, with different assumptions on
the system. They are discussed in the rest of this section.

2.4.1 Signal-Flow Graphs

Signal Flow Graphs [7] (SFGs) are a flavor of synchronous data flow [8] graphs used
in the signal processing community to model discrete computations. Semantically,
each node in a SFG represents a sequence of values, defined in terms of the node’s
predecessors. In particular, SFGs contain explicit delay operations, in the form of
“register” nodes (usually marked z−1): at any point in time, the output of these
nodes is defined as their input at the previous clock cycle.

As an example, an SFG for a Finite Impulse Response (FIR) filter is shown in
Figure 2.7. The input sequence x(n) is delayed through a series of register nodes
which can collectively be seen as a shift register. The output y(n) is defined as the
dot product of the content of the shift register and a vector of coefficients (bi)0≤i≤3.

Alternatively, SFG nodes may be expressed as recurrence equations. For exam-
ple, the SFG in Figure 2.7 is a graphical representation of the following system:





y(n) = m3(n) + p2(n) m2(n) = b2δ2(n)

p2(n) = m2(n) + p1(n) m3(n) = b3δ3(n)

p1(n) = m1(n) +m0(n) δ3(n) = δ2(n− 1)

m0(n) = b0x(n) δ2(n) = δ1(n− 1)

m1(n) = b1δ1(n) δ1(n) = x(n− 1)

SFGs are schedulable if any cycle contains at least one delay node, while graphs
with 0-weight cycles do not represent any meaningful system. An SFG verifing
this condition is unambiguously defined modulo initial conditions – the state of the
system before the beginning of the computation. This validity condition may be
seen as a restriction of the conditions [9] given by Karp, Miller and Winograd for a
system of uniform recurrence equations to be explicitly defined.

z−1 z−1 z−1

b
1

b
2

b
3

b
0

+ + +

x (n)

y (n)

Figure 2.7: SFG of a FIR Filter computing the formula: y(n) =
�3

i=0 bix(n− i).
Nodes labeled z−1 represent one-cycle delays and triangle-shaped nodes multipli-
cation by a constant coefficient.
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#de f i n e N 4

#pragma MAIN_FUNC
f l o a t f i r 8 ( ) {
#pragma DYNAMIC [−1 , 1 ]

f l o a t sample ;

#pragma OUTPUT
f l o a t acc ;
i n t i ;

#pragma DELAY
s t a t i c f l o a t X[N ] ;
X[ 0 ] = sample ;

acc = X[N − 1 ] ∗ b [N − 1 ] ;

f o r ( i = N − 2 ; i >= 0 ; i−−) {
acc += X[ i ] ∗ b [ i ] ;
X[ i + 1 ] = X[ i ] ;

}
re turn acc ;

}

Figure 2.8: FIR filter implementation for the Id.Fix conversion tool.

Some tools such as Id.Fix [10] build a SFG out of a annotated C program.
After WLO, a C/C++ fixed-point implementation, using the ac_fixed library, is
output. There are two main advantages to this approach. First, a source code
implementation is more easily integrated into a custom validation framework than a
SFG or a block diagram. Perhaps more importantly, this technique can be used in a
HLS context, with WLO viewed as a source-to-source transformation. In Figure 2.8,
an implementation of the FIR filter in Figure 2.7 is given, as accepted by Id.Fix:

This code actually represents one iteration of the FIR. After parsing, the control
flow of the top function (marked by the MAIN_FUNC pragma) is fully flattened and
an acyclic data flow graph is built with a producer-tracking simulation. Finally, the
DELAY pragma helps the tool insert the delay nodes, corresponding to dependences
across consecutive function calls.

2.4.2 Error Sources

In a fixed-point implementation, an arithmetic operator can introduce multiple er-
rors: inputs may need to be quantized to fit the operator’s format and the precision
of the output may also be reduced to limit bit-width growth.

Quantizations may be expressed explicitly as additional operations, as shown in
Figure 2.9. In analytical accuracy evaluation, though, round-off errors are modeled
as additive noise perturbating an infinite-precision signal. This is usually reflected
through a graph transformation: each quantization is replaced with an addition

35



x

y

+ z

Q
0

Q1

Q2 ≡

x

y

+ z

+

e0

+

e1

+

e2

Figure 2.9: Introduction of error sources in a Signal Flow Graph.

between the original signal and the quantization error. The virtue of this transfor-
mation is to reframe quantization errors as new system inputs, which can be modeled
as a stochastic process known as Pseudo Quantization Noise (PQN).

2.4.3 Pseudo Quantization Noise model

Analytical accuracy evaluation seeks to predict the influence of quantization errors
on the output of the system. At first, this may appear like an infeasible task, since
actual errors depend on system inputs. As it turns out, in the vast majority of
cases, quantization errors can be statistically characterized from the precision of the
original and quantized signals, and the mode of quantization (truncation, rounding
or convergent rounding). Moreover, this Pseudo Quantization Noise is uncorrelated
from the input signal and other error sources, which further simplifies the analysis.

For example, consider the truncation of some infinite-precision signal x to x�,
with quantization step q = 2−n. We have:

x� = x+ ex

with error ex = x� − x within the interval:

I =]− q; 0[.

It can be shown [11] that, if quantization step q is sufficiently small, ex can be
modeled as uniformly distributed variable:

ex ∼ U(I)

such that signal x and quantization noise ex are uncorrelated. We can thus give the
mean and variance of the error:

E(ex) = −q/2 Var(ex) =
q2

12

The model above captures the distribution of errors as a continuous probabil-
ity distribution, and is thus suitable for modeling the quantization of an infinite-
precision (analog, floating-point) signal to fixed-point precision. Using rounding
instead of truncation leads to a similar model with I = (−q/2; q/2] and E(ex) = 0,
whereas discrete distributions can be used to characterize round-off errors between
fixed-point formats [12]. Noise models for different configurations are shown in Fig-
ure 2.10.
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Quantization Mode Mean Variance
discrete continuous discrete continuous

Truncation − q
2
(1− 2−k) − q

2
q2

12
(1− 2−2k) q2

12

Rounding − q
2
× 2−k 0 q2

12
(1− 2−2k) q2

12

Convergent Rounding 0 0 q2

12
(1− 2−2k) q2

12

Figure 2.10: PQN characteristics based on input / output signal precision and
quantization mode. q represents the quantization step and k the number of elimi-
nated bits when converting between fixed-point formats. Note that when k → ∞,
the discrete model converges towards the continuous model.

2.4.4 Operator-Level Noise Propagation

Under certain conditions, noise mean and variance can be naturally propagated
through linear operations (addition of signals and multiplication by a constant). In
particular, if x� = x+ ex, y� = y + ex, then:

λx� + y� = (λx+ y) + eλx+y

where eλx+y = λex + ey. Thanks to the linearity of the expected value operator,

E(eλx+y) = E(λex + ey) = λE(ex) + E(ey)

and the mean of the error at the output can thus be computed from the average
error of the input signals.

Variance propagation is a bit more subtle. If X and Y represent two uncorrelated
random variables, then:

Var(λX + Y ) = λ2Var(X) + Var(Y ).

When input errors are known to be independently distributed, this formula may be
used to derive the output error variance of linear operators. Unfortunately, this is
not true when noises are, in fact, correlated. This may happen even when all noise
sources are independently distributed. For example, consider the degenerate case
where λ = 1 and X = Y . X and Y denote the same random variable and are thus
obviously correlated. We have:

Var(X + Y ) = Var(2×X) = 4× Var(X) �= Var(X) + Var(Y ) = 2× Var(X)

which only holds if Var(X) = 0.
Operator-level propagation of noise statistical parameters is used by Tourreilles

et al. [13] to implement a Word-Length Optimization pass within the GAUT HLS
framework. However, the assumption is made that errors are always independent.
In some cases, this can lead to large over- or under-approximations of noise power.

The following conditions together guarantee the absence of correlations between
errors within a SFG, and can thus be used to verify whether the simple noise prop-
agation method exposed above is applicable.

• All noise sources are uncorrelated.
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• Distinct paths between the same two nodes contain different numbers of delays.

The second condition ensures that a single value cannot contribute twice to the same
error. It is verified, for example, by the FIR filter in Figure 2.7. However, many
computations do not possess this property ; in such cases, accuracy estimation must
capture correlations between noises to produce reliable results. This is a global
property of the graph and cannot be handled at the operator level.

Another major difficulty is the presence, in many applications, of non-linear
operations such as multiplications between signals. Indeed, we have:

(x+ ex)× (y + ey) ≈ xy + (xey + yex), (2.1)

(where the term exey is deemed negligible and voluntarily omitted). The error term
xey + yex depends not only on error signals ex and ey, but also on signals x and y.
To address this issue, many techniques are restricted to linear systems, while others
try to fallback to the linear case through linearization.

2.4.5 Noise Propagation in Linear Systems

Linear systems form a convenient framework for the study of error propagation. In
such algorithms, signals and errors do not interfere and may be considered indepen-
dently. Let T be linear system, x an input signal and �x = x + � the same input
perturbated by some random noise �. By definition of linearity:

T (�x)− T (x) = T (�)

In other words, the propagated error is simply the output of the system when applied
to the input error.

A linear system is called Linear, Time-Invariant (LTI) if a translation of its
input by a constant offset results in the same offset at the output. Formally:

∀δ, T (τδ(x)) = τδ(T (x)),

where τδ represents the translation of a signal by δ:

τδ(x)(n) = x(n+ δ).

The temporal behavior of an LTI system y = T (x) is fully characterized by its
impulse response h, i.e., the output of the system when stimulated by a unit impulse.
For any input x:

y = h ∗ x,

where ∗ denotes the convolution operation. Equivalently, the transfer function H,
defined as the Z-transform of the impulse response h, contains the same information
in the complex-frequency domain, where multiplication replaces convolution:

Y = HX

.
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A well-formed single-input, single-output (SISO) SFG where the only operations
(besides delays) are additions and multiplications by scalar values always represents
an LTI system1. We give an intuition of the proof, by inductive reasoning on the
structure of the graph, in the case of a non-recursive system:

• If the output node is also the input node, then the computation is the identity
transformation x(t) �→ x(t) which is obviously LTI.

• Otherwise, suppose the hypothesis true for each sub-SFG induced by all the
ancestors of one of the output’s predecessors (i.e., the sub-graphs computing
the operands of the output node). Proceeding by case analysis:

– If the output is a delay, let T be the system represented by the subgraph
corresponding to its unique predecessor. Then, the SFG implements the
system: τ−1 ◦ T .

– Similarly, if the output is a linear operation (x, y) �→ λx+y, let Tx and Ty

be the systems corresponding to its operands. The implemented system
is: λTx + Ty.

For example, the FIR filter represented by the SFG in Figure 2.7 is an LTI system.
In general, a multiple-input, multiple-output (MIMO) SFG verifying the same

conditions as above (well-formedness, linear operators) does not represent an LTI
system per se, but can be modeled as a combination of LTI systems. More precisely,
let T : (x1, . . . , xm) �→ (y1, . . . , yn) be the mapping between signals represented by
the SFG. For any i ∈ {1, . . . , n}, there exists m LTI systems Ti,1, . . . , Ti,m such that:

yi =
m�

j=1

Ti,j(xj).

In other words, each input contributes additively to each output. In the temporal
and frequency domain, we may also write:

yi =
m�

j=1

hi,j ∗ xj Yi =
m�

j=1

Hi,jXj.

This observation is key to analyze error propagation in an LTI system. Indeed,
after modeling quantization errors as additional inputs (see Section 2.4.3), the SFG
can be seen as a MIMO system. Since PQN-modeling only introduces additions,
the propagation of each error to each output can be modeled as an LTI-system, and
thus be fully captured by the corresponding impulse response or transfer function.

This approach is used in [14] to implement automatic wordlength optimization
on an annotated Simulink block-diagram using transfer functions. However, the
computation of these transfer functions is not detailed, and may not be automatic.
Menard et al. [15] proposed a similar approach base on graph algorithm computing
the transfer functions. The SFG is decomposed into acyclic subgraphs whose transfer
functions are recursively computed and combined into a single one modeling the
propagation of each noise source.

1The converse is not true.
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2.4.6 Noise Propagation in Non-Linear Systems

As mentioned in Section 2.4.4, non-linear operations such as multiplication between
signals introduce a problematic dependency between signals and noise propagation.

Constantinides et al. [16] proposed to recast non-linear systems as linear time-
varying systems to apply some results on LTI systems to non-linear algorithms.
Their approach supposes that each node represents a differentiable operation:

y(t) = f(x1(t), . . . , xn(t)).

Since error values �1(t), . . . , �n(t) are small in comparison with signals, a first-order
Taylor approximation of the output error is given by:

�(t) ≈
∂f(t)

∂x1

�1(t) + · · ·+
∂f(t)

∂xn

�n(t)

For example, if f(x1, x2) = x1 × x2:

�(t) ≈ x2(t)�1(t) + x1(t)�2(t)

(Note that this expression is essentially the same as Equation 2.1.)
This small-signal model is a linear function of input errors with time-varying

coefficients: as evidenced by the above example, the partial derivatives depend on
the value of t. To account for this fact, values of the derivatives are computed
numerically through simulation with sufficiently large representative inputs. The
SFG is then transformed into its corresponding small-signal model, with derivatives
as input coefficients. For each noise source, another simulation is run with a noise of
known mean and variance as input. The statistical moments of the output are then
computed, and linearity is used to i) scale the results to noises of different mean
and variance ii) build an accuracy model reflecting the additive contribution of each
noise source as a function of fixed-point encodings.

This method can be seen as a hybrid simulation-based and analytical method:
whereas simulations are used to construct the accuracy model, none are required dur-
ing accuracy evaluation. Unfortunately, they make the unrealistic assumption that
variance contributions of different noise sources can be summed, implicitly suppos-
ing that they are uncorrelated. There is no validation of accuracy estimates against
simulations. Their propagation model is thus similar to that of Tourreilles [13] and
of probably limited applicability.

In other approaches [17,18], a system is characterized by its time-varying impulse
response. Expressions of noise power are then derived from signal statistics (cross-
correlation, second-order moments) computed after a single floating-point simula-
tion. Finally, an approach based on Affine Arithmetic [19] has been proposed. We
believe this approach to be fundamentally tied to that of Rocher et al. [18], with
correlation between signals captured by a different formalism.

2.4.7 System-Level Approaches

To handle large systems made of several sub-components and manage the combi-
natorial explosion of the design space, a hierarchical, divide-and-conquer approach
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may be beneficial [20]. The WLO process is decomposed into sub-problems where
each component is assigned an accuracy budget. The issue is that the output noise
of sub-systems is not uniformly distributed. Its statistical distribution must be cap-
tured by different means, for example with PDF-shaping [6] or by its spectral power
density [21].

2.5 Limitations of Analytical Accuracy Evaluation

The analytical accuracy evaluation techniques overviewed in this chapter are intrin-
sically limited by the use of SFGs as an intermediate representation. Indeed, this
representation can only compactly model one-dimensional systems is thus not suit-
able for image and video processing applications. While SFGs can in fact be built
from such algorithms by unrolling the full computation, their size is proportional
to the dimensions of the image/scene – while the SFG of an IIR filter does not de-
pend on the length of the sequence – which leads to severe scalability issues when
constructing the accuracy model.

In trivial cases, such as the convolution of an image by a mask of coefficients,
this problem can be sidestepped by restricting the analysis to the computation of a
single element. For example, the kernel of a Gaussian blur filter may be extracted
into the following C function:
pixe l_t gauss ian_blur ( p ixe l_t pxs [ 9 ] ) {

re turn ( 0 .025∗ pxs [ 0 ] + 0.108∗ pxs [ 1 ] + 0.025∗ pxs [ 2 ]
+ 0.108∗ pxs [ 3 ] + 0.469∗ pxs [ 4 ] + 0.108∗ pxs [ 5 ]
+ 0.025∗ pxs [ 6 ] + 0.108∗ pxs [ 7 ] + 0.025∗ pxs [ 8 ] ) ;

}

which is seen by tools such as ID.Fix [10] as a multiple-inputs, single-output LTI
system. Assuming that input quantization noise is spatially uncorrelated and iden-
tically distributed, as per the Widrow hypothesis, output noise does not depend on
the position in the image and the accuracy model built for this function may be
used to estimate the accuracy of the full algorithm. However, this strategy suffers
from several shortcomings.

The first one is that output noise is almost always spatially correlated, even when
input noise is not. For example, consider two adjacent pixels in the output of the
Gaussian filter: since they are computed from overlapping windows of inputs, a large
error in one value can strongly affect both results, and the errors are thus correlated.
It is not a problem when processing a single filter, as noise power or SQNR can
still be obtained from the statistical moments determined by the accuracy model.
However, it means that the trick above can not be repeatedly applied to handle
image processing pipelines made of the composition of multiple filters.

Another issue is that more complex cases, such as recursive algorithms, cannot be
conveniently expressed as a simple function as above. Unfortunately, the scalability
issues of current methods are even more important for these cases, as the number of
propagation paths to be considered grows exponentially with the size of the image.

Finally, the impact of the quantization of constant coefficients is not fully ex-
plored by previous approaches. In methods handling LTI systems [14, 15, 22, 23],
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it is usually assumed that the sensitivity of the transfer function to the quantiza-
tion of coefficients has been assessed before floating-point to fixed-point conversion.
Accuracy evaluation tools should also help the designer in this process.

Solutions to some of these problems are discussed in the next chapter.
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Chapter 3

Improving Applicability of

Source-Level Accuracy Evaluation

3.1 Introduction

In the previous chapter, we exposed the Word-Length Optimization and accuracy
evaluation problems. We described a range of analytical techniques to derive closed-
form accuracy models from floating-point specifications. We saw that such models
can considerably speed-up design space exploration and allow for better implemen-
tations – however, their elaboration requires a precise modeling of the computation,
a technical challenge that currently limits the scope of analytical methods to small
sets of problems.

Recent work [REFs] has focused on statistical modeling of decision (branching)
operators to handle non-static, data-dependent control flow. To our knowledge, noise
propagation through arithmetic operations with singularities, such as division, is still
difficult to capture reliably. In this chapter, we extend the applicability of analytical
approaches in another direction. Specifically, we add support for multi-dimensional
algorithms, such as image or video processing filters.

As a first step in this endeavor, we focus on Linear Shift-Invariant (LSI) filters,
a multi-dimensional generalization of LTI systems. This class of computations is
exemplified by the Deriche edge detector, a recursive image filter beyond the reach
of previous approaches. This algorithm is discusssed in Section 3.2. In Section 3.3,
we proceed with a more formal account on LSI systems. Our contributions per se
are described in Section 3.4. They can be summarized as follows:

• We replace SFGs with Multi-Dimensional Flow-Graphs (MDFGs) as an in-
termediate representation of the system/program. This representation allows
us to capture regular access patterns over multiple dimensions and is thus
well-suited to model the class of computations we target.

• We propose a recursive algorithm to efficiently compute all the multi-dimensional
transfer functions within a MDFG. These transfer functions compactly model
the propagation of quantization noise between any two operations.

• We (partially) address the problem of inferring MDFGs from source code spec-
ifications. Specifically, we borrow a powerful dependence analysis technique
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from the polyhedral compilation toolset to transform affine loop-nests into
systems of recurrence equations. The MDFG is retrieved through a series of
equational, semantic-preserving transformations.

• Finally, we present a methodology to handle the quantization of coefficients
prior to Word-Length Optimization, by automatically computing the frequency
response of the modified system.

We present experimental results in Section 3.5. We discuss future work, exten-
sions and some open problems in Section 3.6 and conclude in Section 3.7.

3.2 Motivating Example: Deriche Filter

The Deriche or Canny-Deriche edge detector is a recursive image filter that cannot
be handled by current techniques. It constitutes a good example of a Linear Shift-
Invariant algorithm. Like most edge detection techniques, the Deriche filter proceeds
by computing the gradient field of the image. Horizontal and vertical gradients
Gx and Gy are compted independently. By symmetry, computing Gy is the same
as computing Gx on the transpose of the image: from now on, we thus focus on
horizontal gradient Gx to simplify the discussion.

The algorithm can be decomposed in two groups of recursive passes. The image
is first processed in both horizontal directions (left-to-right and right-to-left). The
results are then summed and the output is processed similarly along the vertical
axis1. More precisely, the computation can be described by the following equations,
where I represents the input image:

x1(i, j) = a1I(i, j) + a2I(i− 1, j) + b1x1(i− 1, j) + b2x1(i− 2, j)

x2(i, j) = a3I(i+ 1, j) + a4I(i+ 2, j) + b1x2(i+ 1, j) + b2x2(i+ 2, j)

x = x1 + x2

y1(i, j) = a5x(i, j) + a6x(i, j − 1) + b1y1(i, j − 1) + b2y1(i, j − 2)

y2(i, j) = a7x(i, j + 1) + a8x(i, j + 2) + b1y2(i, j + 1) + b2y2(i, j + 2)

Gx = y1 + y2

These equations describe the flow of data along with the actual operations. Some
of them are recursively defined (x1, x2, y1 and y2) ; for this specification to be com-
putable, their value must hence be explicitly given outside some region. We simply
define _(i, j) = 0 whenever (i, j) /∈ [0;W − 1] × [0;H − 1], where W and H are
symbolic constants representing the dimensions of the image.

The expression of the coefficients a1, . . . , a8 and b1, b2 depends on a scalar param-
eter α > 0, defining the amount of smoothing applied prior to gradient computation.
With other edge detectors such as the Sobel filter, a smoothing pass is usually needed
as a pre-processing phase to remove high-frequency noise that can could cause false
edge detections. In the Deriche filter, low-pass filtering and gradient computation

1Because of separability properties of the filter, the order between vertical and horizontal passes
is mostly arbitrary.
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are combined into a single step. The coefficients of the recurrence equations are de-
fined such that the frequency response of the filter reflects the combination of the two
phases. The main benefit is that the number of operations per pixel is not affected
by the amount of smoothing required. In a non-recursive implementation with a
convolution kernel, the size of the mask can vary greatly depending on the value of
α. This makes the Deriche filter a great fit for noisy images, requiring a large amount
of filtering. Finally, this algorithm exhibits interesting signal-processing properties:
as the smoothing (i.e., noise filtering) filter is recursively implemented, quantization
noise itself tends to be filtered out in later computations.

These qualities make the Deriche filter an interesting choice for limited-wordlength
implementations on DSP processors or FPGAs, whose design phase often includes a
floating-point to fixed-point conversion step. Unfortunately, earlier analytical accu-
racy evaluation methods are unable to construct an accuracy model for the Deriche
filter or similar algorithms. Indeed, SFGs can only represent regular computations
such as Deriche by fully flattening the control flow, thus distinguishing the computa-
tion of individual pixels and intermediary values. This results in a very large graph,
where the number of propagation paths increases exponentially with each dimension
of the image because of recursivity. Current techniques are thus affected by severe
scalability issues when processing multi-dimensional algorithms.

Besides multi-dimensionality, Deriche exhibits another feature that cannot be
appropriately captured by SFGs: non-causality. Fixing some column index j, let
us write x2(i, j) = x2,j(i). The equation x2,j defines an LTI system, specifically an
Infinite Impulse Response (IIR) filter. However, interpreting i as the time time di-
mension, the processing order imposed by the recurrence is reversed: x2,j(i) depends
on x2,j(i+ 1). This may be viewed as a dependence on “future” outputs, and could
be modeled as a SFG by reversing the interpretation of delay nodes. Now, consider
the summation of x1,j and x2,j in x = x1 + x2: as the summation of two LTI filters,
it is also LTI, but each output now depends simultaneously on the “past” and the
“future”. Signal Flow Graphs are designed to model streaming computations, and
cannot handle such dependence patterns. In other words, some one-dimensional LTI
filters cannot be compactly represented as SFGs either.

In the following, we address these difficulties by using a more suitable represen-
tation that doesn’t require any unrolling/flattening and does not impose a single,
synchronous execution order. The class of systems currently supported by our ap-
proach, called Linear Shift-Invariant systems, is described in the next section.

3.3 Linear Shift-Invariant Systems

Some basic notions on LTI systems have already been defined in the previous chapter.
However, in order to make the description of our contributions clearer, we want to
take the time to discuss LTI and LSI systems in a more formal way.

3.3.1 Signals

An n-dimensional signal (or nD-signal for short) is a mapping from n-dimensional
coordinates to scalar values. For example, a time-varying signal is a 1D-signal
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mapping time to values, whereas a gray image is a 2D-signal from pixel coordinates
to intensity levels.

Signals can be defined on continous (Rn) or discrete (Zn) domains. In computers,
though, we almost always process discrete signals. In the following, an nD-signal
thus denotes a function: Zn → R. If a signal x is only defined on some subset
D ⊂ Zn, we extend it to Zn by fixing x(�v) = 0 if �v /∈ D.

Operations on real numbers can be “lifted” to signals in a natural way. In par-
ticular, if x and y are nD-signals and λ ∈ R is a scalar constant, we define addition
and scalar multiplication of signals as:

(x+ y)(�u) = x(�u) + y(�u) and (λx)(�u) = λ(x(�u)).

Equipped with these two operations, Zn → R is a vector space over R.
Another importation operation is the shifting of a signal by a constant offset.

Let x be an nD-signal and �u ∈ Zn a vector of coordinates. The translation of x by
�u, denoted τ�u(x), is defined as:

τ�u(x) = x ◦∆�u

where ∆�u is the translation of coordinates: �v �→ �v + �u. In other words,

τ�u(x)(�v) = x(�v + �u).

3.3.2 Linear Shift-Invariant Systems

A multidimensional system (or filter) T is a dimension-preserving transformation
between signals: it transforms an n-dimensional input into an n-dimensional output.
It is thus a map T : (Zn → R) → (Zn → R). T is called Linear, Shift-Invariant
(LSI) if it verifies the following properties:

Linearity For any scalar k ∈ R and any inputs a, b ∈ (Zn → R):

T (λa+ b) = λT (a) + T (b).

Shift-Invariance For any vector �u ∈ Zn,

T (τ�u(x)) = τ�u(T (x)),

The linearity requirement implies that T is a linear map in the usual sense, i.e.,
preserves the vector space structure. Shift-invariance means that it also preserves
shifts: applying a shift before or after T produces the same result. In other words,
LSI filters commute with translation of signals.

Examples

• Any LTI system, such as the FIR filter, is also LSI.

• The Deriche filter, like many image processing algorithms, is a two-dimensional
LSI system. This is a sensible property for an edge detector: indeed, the gradi-
ent operator �∇ is linear and edge localization should be translation-invariant.
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3.3.3 Algebraic Structure of LSI Systems

In Section 3.2, we saw that the 2D Deriche filter is made of compositions and summa-
tions of simpler 1D LTI filters, operating over rows and columns in both directions.
LTI and LSI systems are stable over linear operations and composition, which guar-
antees that the Deriche kernel is indeed linear and shift-invariant.

More precisely, let T , T � be two filters of same dimensionality n, x be an nD-
signal, λ a scalar value and �d a vector of Zn. We define the following operations:

Addition (T + T �)(x) ≡ T (x) + T �(x).

x T + T � y x≡

T

T �

+ y

Multiplication by a scalar (λT )(x) ≡ λ (T (x)).

x λT y ≡ x T ×λ y

Composition (T � ◦ T )(x) = T �(T (x)).

x T � ◦ T y ≡ x T T � y

Note that these operations are not the same as those defined for signals: they
map systems to systems, and not signals to signals.

One easily proves that the space of LSI filters is stable (or closed) under these op-
erations, i.e., their result is always linear and shift-invariant. Moreover, composition
is a bilinear operation:

(λx+ y) ◦ z = λ(x ◦ z) + y ◦ z and : z ◦ (λx+ y) = λ(z ◦ x) + z ◦ y

As a direct consequence, observe by setting λ = 1 that composition distributes over
addition. Finally, the “empty” system:

idn : x �→ x

is an identity element with respect to composition. These properties equip LSI
systems with a structure of unital algebra over R, i.e., a vector space with a bilinear
product and a multiplicative identity.
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3.3.4 Impulse Response

An LSI system is characterized by its impulse reponse, i.e., the output of the system
to a unit impulse. A n-dimensional unit impulse is an nD-signal defined as:

δn(�x) =

�
1 �x = �0

0 otherwise
.

Let hT = T (δn) (or just h, where T is clear from context) denote the impulse response
of T . It can be shown that for any signal x,

T (x) = hT ∗ x,

where ∗ denotes the convolution operation:

(x ∗ y)(�v) =
�

�w∈Zn

x(�v − �w)y(�w)

Examples

• The impulse response of a FIR filter is given by its coefficients. Indeed,

h(n) =
N�

i=0

biδn(n− i) =

�
bn 0 ≤ n ≤ N

0 otherwise

In other words, a FIR filter computes the convolution of its input with its
coefficients.

• In general, the impulse reponse of an n-dimensional recursive LSI system is
an n-dimensional surface with infinite support. For example, the truncated
impulse response of the Deriche filter, centered around the origin, is shown
in Figure 3.1. This impulse response corresponds to the mask that should be
used in a non-recursive implementation to approximate the same frequency
response.

3.3.5 Transfer Function and Z-Transform

Impulse responses describe the behavior of systems in the spatial (or temporal)
domain. For analysis purposes, though, the frequency-domain point-of-view is often
more convenient. The frequency behavior of LSI systems can be captured through
transfer functions.

The transfer function of a system is the result of taking the Z-transform of its
impulse response. The Z-transform is the discrete analog of the Laplace transform.
It takes a signal from the spatial domain to the complex frequency domain, and is
defined as:

Z(x)(�z) =
�

�w∈Zn

x(�w)z−w1

1 . . . z−wn

n ,

where �z = (z1, . . . , zn) ∈ Cn.
In practice, this definition is rarely useful to compute transfer functions, thanks

to the following properties:
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z

Figure 3.1: Impulse Response of the deriche edge detector estimated by our tool
(horizontal gradient).

Linearity For any λ ∈ R and any signals x and y,

Z(λx+ y) = λZ(x) + Z(y).

Space shifting For any vector �u = (u1, . . . , un),

Z(x− �u)(�z) = z−u1

1 . . . z−un

n Z(x)(�z).

Spatial convolution / frequential product The Z-transforms maps spatial con-
volutions to products in the frequency domain:

Z(x ∗ y) = Z(x)Z(y).

These results allow us to quickly determine the transfer function of a composite
system from that of its sub-parts.

Example: The FIR Filter Recall that the impulse response of an FIR filter is
given by its coefficients. It may be written as a linear combination of unit impulses:

hT =
N�

i=0

biτ−i(δ)
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Knowing that Z(δ) = 1 and applying the above properties, we have:

Z(hT )(z) =
N�

i=0

biz
−i.

Example: IIR Filter An IIR filter is usually defined by a recurrence equation of
form:

y(n) =
N�

i=0

bix(n− i)−
M�

j=1

ajy(n− j) ⇔ y(n)+
M�

j=1

ajy(n− j) =
N�

i=0

bix(n− j).

With the same kind of reasoning as for the FIR filter, we can compute its transfer
function:

z �→

�N
i=0 biz

−i

1 +
�M

j=1 ajz
−j

3.3.6 Frequency Response

The frequency response of the system is computed from the transfer function by
constraining each component of its input vector to lie on the unit circle:

HT (ω1, . . . ,ωn) ≡ Hz,T (e
iωn , . . . , eiωn).

where ω1 and ω2 are real numbers. We have the following, fundamental identity:

HT = F(hT ),

where F denotes the Fourier transform.
The relation between the impulse response, the transfer function and the fre-

quency response of a system is pictured in Figure 3.2. Remark that, even though
HT only has real parameters, it does not contain less information on the frequency
behavior than Hz,T . In fact, Hz,T can be retrieved from HT using the following
relation:

Hz,T = Z(F−1(HT )).

3.4 Analytical Accuracy Evaluation for LSI Systems

We now present our approach to derive analytical accuracy models from source-code
description of multi-dimensional LSI systems.

3.4.1 Overview

Our approach can be decomposed into four steps.

50



hT

Hz,T HT

Z
F

F−1

φ �→ (�ω �→ φ(eiω1 , . . . , eiωn))

Figure 3.2: Relation between the impulse response, transfer function and fre-
quency response of a system T . The transfer function Hz,T is the Z-transform of
the impulse response. The frequency response HT is obtained by restricting the
transfer function to the unit circle for each component. Finally, hT and HT are
related by the Fourier transform.

Representation Extraction

The first step of our method is to extract a multi-dimensional flowgraph represen-
tation from an algorithmic (e.g., C/C++) specification. Our technique is based on
the polyhedral model, a mathematical framework for analysis and transformation
of programs with regular control flow and access patterns. The source code is an-
alyzed and translated into an equivalent system of recurrence equations, which is
then further refined into a flowgraph.

Coefficients Quantization

The effect of coefficients quantization is assessed by comparing the frequency re-
sponses of the floating-point and fixed-point implementations. The frequency re-
sponses are computed automatically.

Accuracy Model Construction

Once a set of fixed-point coefficients compatible with application requirements has
been determined, an analytical accuracy model is derived from the flowgraph rep-
resentation. This is done by computing the transfer function from each node to the
output, modeling the impact of quantization noise on the final result.

Wordlength Optimization

The accuracy model constructed in the previous step can then be exploited to per-
form fast automatic wordlength optimization.

3.4.2 Multidimensional Flow-Graphs

Multidimensional LSI systems can be conveniently represented as multidimensional
flowgraphs (MDFGs). As an example, consider the following subset of the Deriche
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x1

I x

x2

(a1, (0, 0))

(a2, (−1, 0))

(a3, (1, 0))

(a4, (2, 0))

(b1, (−1, 0)) (b2, (−2, 0))

(b1, (1, 0)) (b2, (2, 0))

Figure 3.3: Partial flowgraph of the Deriche filter

filter:

x1(i, j) = a1I(i, j) +a2I(i− 1, j) + b1x1(i− 1, j) +b2x1(i− 2, j)

x2(i, j) = a3I(i+ 1, j) +a4I(i+ 2, j) + b1x2(i+ 1, j) +b2x2(i+ 2, j)

x = x1 + x2

The corresponding flowgraph is shown in Figure 3.3. Each node in the graph rep-
resents an equation (or the input signal I). Each equation is the summation of
incoming edges, labeled with a multiplier and an offset vector. For example, The
edge (a3, (1, 0)) from I to x2 represents the summand a3I(i + 1, j) in the definition
of x2.

Linear SFGs can be trivially encoded as MDFGs. For example, delay nodes may
by replaced as node with incoming edge labeled: (1,−1), where 1 represents the unit
multiplier and −1 the time offset.

3.4.3 Inference of MDFGs from Source Code

The first step in our approach is to extract the flow-graph representation of a sys-
tem from its algorithmic specification. It is based on Systems of Affine Recurrence
Equations (SAREs), a denotational representation of programs than can be inferred
from polyhedral source code.
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Polyhedral Model

The polyhedral model is a framework for modeling, analyzing and transforming a
large class of regular programs and program fragments known as Static Control Parts
(SCoPs) or Affine Control Loops (ACLs). While several extensions to the model have
been proposed [24,25], SCoPs are usually defined by the following constraints:

• The program is composed exclusively of for loops, if-then-else statements and
computations on scalar values and array elements.

• Guards and array indices take the form of affine constraints on enclosing loop
iterators, statically-known constants and symbolic parameters.

A consequence of this definition is that control flow is static, as guards cannot
refer to values computed within the same SCoP. In other words, the sequence of
instructions is determined exactly by parameter values.

Example The following program is a SCoP.

f l o a t sum=0;
f o r ( i n t i =0; i<N; i++) {

sum += arr [ i ] ;
}

Example This program is not a SCoP: control flow depends on values of array
elements and is thus not static.

f l o a t sum=0;
f o r ( i n t i =0; i<N; i++) {

i f ( a r r [ i ] > 0)
sum += arr [ i ] ;

}

Example This program is not a SCoP either: control flow is static, but guards
contain non-affine operations.

f l o a t sum=0;
f o r ( i n t i =0; i<N; i++) {

f o r ( i n t j =0; j<i ∗ i ; j++) {
sum += arr [ i ] ;

}
}
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Array Dataflow Analysis

The flow of computations in polyhedral programs can be determined exactly using a
powerful dependence analysis technique called Array Dataflow Analysis (ADA) [26].
It captures instance-wise and element-wise dependences:

• Instance-wise means that the successive iterations of each statement in the
program are distinguished from each other.

• Element-wise means that accesses to different elements from the same array
are also distinguished.

As a simple example, consider the following fragment:

f o r ( i n t i =0; i<N; i++)
S0 : x [ i ] = 0 ;

f o r ( i n t j =0; j<N; j++)
S1 : x [ i ] = x [ i ] + a [ j ] ;

Without instance-wise information, all that can be said is that S1 depends on both
S0 and S1. Without element-wise information, an instance of S1 at (i, j) depends
on all instances of S0 and S1, as they all write the same variable x. With ADA,
though, the dependence information found for the read x[i] in S1 is the following:

Producer of x[i] at S1(i, j) =

�
S0(i) j = 0

S1(i, j − 1) j > 0
.

For each operand used in each statement instance, we can thus determine exactly
the statement instance (if any) that produced this value.

From ADA to SAREs

The dataflow information given by ADA can be used to transform the program to
a semantically equivalent system of affine recurrence equations. Each statement in
the program becomes an equation, where references to array elements are replaced
by the producer of the corresponding value. For example, the program above can
be written:





S0(i) = 0

S1(i, j) = a(j) +

�
S0(i) j = 0

S1(i, j − 1) j > 0

This form captures computations and data dependences in a single representa-
tion, abstracting away storage locations.

From SAREs to Multidimensional Flow-Graphs

While multidimensional flow-graphs can always be seen as systems of recurrence
equations, the opposite is not necessarily true. Moreover, even when that is the

54



case, additional work is sometimes required to exhibit the underlying flow-graph
nature. This is almost always the case for SAREs built from ADA.

For example, consider the following code, representing an FIR filter:

f l o a t tmp [ 3 ] ;

f o r ( i n t i =0; i<N; i++) {
S0 : tmp [ 2 ] = x [ i ] ;
S1 : y [ i ] = 0 .25∗ tmp [ 0 ] + 0 .5∗ tmp [ 1 ] + 0.25∗ tmp [ 2 ] ;

f o r ( i n t j =0; j <2; j++)
S2 : tmp [ j ] = tmp [ j +1] ;
}

A simplified version of the output obtained after ADA and SARE extraction is shown
below:





S0(i) = x(i)

S1(i) = 0.25 ∗ S2(i− 1, 0) + 0.5 ∗ S2(i− 1, 1) + 0.25 ∗ S0(i)

S2(i, j) =

�
S0(i) j = 1

S2(i− 1, j + 1) otherwise

Even though FIR filters are LSI systems, the system above is not directly equiv-
alent to a flow-graph. The reason is that equations and operands do not all have the
same dimensionality: S0 and S1 are one-dimensional while S2 has two dimensions
because of the copy loop.

The solution here is to inline the definition of S2 in all use sites. However, it
cannot be done directly because of the recursive reference in S2. We tackle this
problem by computing the transitive closure of the copy relation defined by S2. The
equation changes to:

S2(i, j) = S0(i− j + 1)

We can now inline S2 and the system becomes:
�
S0(i) = x(i)

S1(i) = 0.25 ∗ S0(i− 2) + 0.5 ∗ S0(i− 1) + 0.25 ∗ S0(i)

Finally, we can also inline S0 into S1, which gives us the following single equation:

S1(i) = 0.25 ∗ x(i− 2) + 0.5 ∗ x(i− 1) + 0.25 ∗ x(i).

Another common, more subtle difficulty arises because index dimensions in SAREs
extracted from source code correspond to iteration dimensions and not data dimen-
sions. To illustrate this problem, consider the simplified Deriche filter code below:

// Hor i zonta l ( l e f t −to−r i g h t ) pass
f o r ( i n t i =0; i<W; i++) {

ym1=0; ym2=0; xm1=0;
f o r ( i n t j =0; j<H; j++) {
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S1 : x1 [ i ] [ j ] = a1∗ I [ i ] [ j ] + a2∗xm1 + b1∗ym1 + b2∗ym2 ;
S2 : xm1 = I [ i ] [ j ] ;
S3 : ym2 = ym1 ;
S4 : ym1 = x1 [ i ] [ j ] ;

}
}

// Right−to− l e f t pass not shown f o r b r ev i ty .
f o r ( i n t i =0; i<W; i++) {

. . .

}

// x = x1+x2
f o r ( i n t i =0; i<W; i++)

f o r ( i n t j =0; j<H; j++)
S5 : x [ i ] [ j ] = x1 [ i ] [ j ] + x2 [ i ] [ j ] ;

// Ve r t i c a l ( top−to−bottom ) pass not shown f o r b r ev i ty .
f o r ( i n t j =0; j<H; j++) {

. . .

}

// Ve r t i c a l ( bottom−up) pass
f o r ( i n t j =0; j<H; j++) {

tp1=0; tp2=0; yp1=0; yp2=0;
f o r ( i n t i=W−1; i >=0; i−−) {

S6 : y2 [ i ] [ j ] = a7∗ tp1 + a8∗ tp2 + b1∗yp1 + b2∗yp2 ;

S7 : tp2 = tp1 ;
S8 : tp1 = x [ i ] [ j ] ;
S9 : yp2 = yp1 ;
S10 : yp1 = y2 [ i ] [ j ] ;

}
}

// y = y1+y2
f o r ( i n t i =0; i<W; i++)

f o r ( i n t j =0; j<H; j++)
S5 : y [ i ] [ j ] = y1 [ i ] [ j ] + y2 [ i ] [ j ] ;

In this implementation, the horizontal passes visit columns of the image in the
inner loop, whereas the vertical passes visit columns of the image (after horizontal
filter) in the outer loop. This can be viewed as applying a horizontal pass on the
transpose of the image. In fact, the code for horizontal and vertical passes are almost
identical due to this transposed view of the image.

Ignoring boundary conditions, the SARE inferred for the above program is:
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



S1(i, j) = a1I(i, j) + a2S2(i, j − 1) + b1S4(i, j − 1) + b2S3(i, j − 1)

S2(i, j) = I(i, j)

S3(i, j) = S4(i, j − 1)

S4(i, j) = S1(i, j)

S5(i, j) = S1(i, j) + x2(i, j)

S6(j, i) = a7S8(j, i+ 1) + a8S7(j, i+ 2) + b1S10(j, i+ 1) + b2S9(j, i+ 1)

S7(j, i) = S8(j, i+ 1)

S8(j, i) = S5(i, j)

S9(j, i) = S10(j, i+ 1)

S10(j, i) = S6(j, i)

S11(i, j) = y1(i, j) + S6(j, i)

Because ADA constructs statement domains by examining the loop structure
– and not array dimensions – statements corresponding to the horizontal passes
(S1, . . . , S4) and array summations (S5, S11) are defined on (i, j) coordinates, whereas
vertical passes (S6, . . . , S10) are defined on transposed (j, i) coordinates. The link
between the two views is made in equation S8 and S11. To transform a SARE into
a MDFG, we actually need to turn it into a system of uniform recurrence equations
(SURE), such that dependence patterns are reflected by constant dependence vec-
tors. Such is not the case here: for example, the dependence vector between S5 and
S8 in the definition of S8 is:

(i− j, j − i)

which is clearly non-constant.
However, since the non-uniformity is introduced by benign permutations of di-

mensions, the SARE can be transformed into an equivalent SURE. We adapt tech-
niques for uniformization/localization [27, 28] of dependences to properly align the
equations. Simple pattern-matching can then be used to retrieve the constant co-
efficients and build a SURE/MDFG. If the system cannot be properly uniformized,
then the analysis fails and no MDFG can be built.

We voluntarily left aside the problem of boundary conditions. They are reflected
in the system as additional case branches. For example, the true equation for S1 is
equivalent to:

S1(i, j) =

�
a1I(i, j) + a2S2(i, j − 1) + b1S4(i, j − 1) + b2S3(i, j − 1) j > 0

a1I(i, j) j = 0

We use ad-hoc heuristics on domains and conditions to select the case-branch that
corresponds to the general case. More sophisticated algorithmic-template recogni-
tion methods [29,30] could be used to determine that other case branches correspond
to 0-initial conditions outside the image domain.
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3.4.4 Computation of Transfer Functions

A key enabler to analyze the quantization of coefficients and construct the accuracy
model is the ability to derive transfer functions from an MDFG. In this section, we
present a recursive algorithm computing the transfer function from each node in the
graph to the output. The result is a map associating each node in the graph to the
transfer function representing the propagation of its contribution to the final result.

The idea behind our algorithm is the following. Let vi be a node in the graph and
(vj, kj, �dj) the set of (source,multiplier, offset) triples representing incoming edges.
We can distinguish two cases:

• Case 1: Node vi does not belong to any cycle. Then, for each predecessor vj
and any node vk, let TFk→j be the transfer function from vk to vj. By simple
applications of the rules in Section 3.3.5, we have:

TFk→i =
�

j

kjz
dj,1
1 . . . zdj,nn TFk→j.

• Case 2: There is at least one cycle involving vi. Then, let vi� be a dummy
node replacing vi as the source of every edge going out of vi, thus breaking
any cycle. We have:

TFk→i =

�
j kjz

dj,1
1 . . . z

dj,n
n TFk→j

1−
�

j kjz
dj,1
1 . . . z

dj,n
n TFi�→j

.

In other words, in the absence of any cycle, transfer functions can be computed
by simple application of the computation rules given in Section 3.3.5. Cycles are
eliminated simply by considering the current node as an input node and then solving
for the actual transfer function by including recursive contributions. A pseudocode
description of the algorithm is given in Figure 1.

By construction, we observe that no transfer function between any pair of nodes
is computed twice. We conclude that this algorithm is of quadratic complexity O(n2)
where n represents the number of vertices in the graph.

This algorithm is fundamentally similar to the one presented by Menard et al. [23]
for LTI systems: likewise, we dismantle cycles to recursively solve for the global
transfer function. However, their technique was much more complex, requiring 4
graph transformations, enumeration techniques to break down the graph into cycles
and explicit substitutions to compute the transfer function. Our algorithm simply
relies on a memoization strategy in the depth-first search traversal to resolve circular
references and guarantee termination.

3.4.5 Quantization of Coefficients

Word-Length Optimization is essentially concerned with quantization of signals:
input values and intermediary values. The quantization error of constant system
coefficients, such as the coefficients of the FIR or Deriche filters, does not vary over
time/space and does hence not lend itself well to statistical analysis and accuracy
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Function computeTFs(output: Node): Map<Node,TF> is
aux(node, ∅)

end

Function aux(node: Node, baseNodes: Set<Node>): Map<Node, TF> is
/* Base case. If the node is a base node, return identity.

*/

if node ∈ baseNodes then
return {node → 1};

end
/* Construct transfer function map from incoming edges. */

tmpMap := {s → 0};
foreach (pred, k, �d) ∈ incomingEdges(node) do

map’ := aux(pred, baseNodes ∪ {node});
S := kzd11 . . . zdnn ; /* Transfer function factor. */

foreach other ∈ keys(map�) do
if other �= node then

tmpMap[other] += S × map’[other];
end

end
end
/* Remove recursive contribution. */

selfTF := tmpMap[node]; /* 0 if there is no cycle. */

map := {};
foreach other ∈ keys(tmpMap) do

if other �= node then
map[other] += tmpMap[other]

1−selfTF
;

end
end
return map;

end
Algorithm 1: Computation of transfer functions
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characterization. However, these errors affect the response of the system and aggres-
sive quantizations can naturally compromise its function. It is usually assumed that
these problems have been handled prior to floating-point to fixed-point conversion,
for example by assessing the sensitivity of the system transfer function to small vari-
ations of coefficients. Instead, we propose to exploit the knowledge gathered during
the analysis of the system to help the designer verify that the frequency character-
istics of the filter with quantized coefficients matches functional requirements.

These requirements are usually expressed as a frequency response template. Typ-
ically, min and max-bounds are defined on the frequency response of the system.
However, inspection by an expert designer is often required. Since we can already
compute the transfer function of the quantized system, we propose to compute and
display the frequency response, using the relation:

H(ω1, . . . ,ωn) = Hz(e
iω1 , . . . , eiωn).

If possible, automatic validation of frequency response based on a specified template
can also be performed. Integrating the quantization of coefficients into the scope of
computed-assisted floating-point to fixed-point conversion provides benefits in terms
of productivity and leaves less room for errors.

3.4.6 Accuracy Model Construction

The propagation of quantization noise from each node in the graph is fully deter-
mined by the coefficients of the impulse response associated to that node. Indeed,
let ex be the error signal at node x and e�x its propagation to the output. As we are
dealing with LSI systems, the resulting error at the output is given by:

e�x = hx,T ∗ ex

Following the PQN-model, we represent the values of ex over space as inde-
pendent, identically distributed (i.i.d) random variables. Let µex and σ2

ex stand
respectively for the mean and variance of the underlying probability distribution.
We have:

e�x(�v) =
�

�w

hx,T (�w)ex(�v − �w).

Because of non-correlation we conclude that:

µe�x = µex

�

�v

hx,T (�v) σ2
e�x

= σ2
ex

�

�v

h2
x,T (�v)

To compute the first two moments of e�x, we thus need to determine the sum and
sum of squares of the impulse response coefficients. We will show two different ways
to achieve this: a direct one, using the flowgraph representation to approximate the
impulse response by abstract simulation on a unit impulse ; and a slightly more
efficient approach based on the frequency response.
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Direct approach A well-formed [31] SURE / MDFG gives a computable speci-
fication of a system. In our context, the SURE are derived from the schedule of a
program. This property ensures that the resulting recurrence equations are indeed
computable. We exploit this fact to simulate the subsystem corresponding to the
propagation of each quantization noise: we use a unit impulse as input to compute
the impulse response coefficients over a sufficiently large window around the origin,
naively computing the values of each equation “on-demand”.

This direct simulation scheme requires the introduction of boundary conditions
for each equation. We assume that the filters (and sub-filters) we study are stable:

M =
�

�v

|hT (�v)| < ∞.

If the input is bounded by B, then the output is bounded by MB: the system cannot
result in infinite amplification of inputs. This is a reasonable assumption in almost
all applications. A direct consequence is that:

lim
|�v|→∞

hT (�v) = 0.

We exploit this fact by setting x(�v) = 0 for any equation x when |�v| > r. This is
a good approximation provided r is large enough, and allows for the computation
of the impulse responses to terminate. However, determining the correct value of
r such that the approximation error is below some bound ε is not trivial. In our
experiments, though, we found values of r = 50 to give excellent results.

Approach based on the frequency response An alternative approach to the
direct solution above is to compute the frequency response of the system based on
the formulas in Section 3.3. The sums

�
h(�v) and

�
h2(�v) can also be interpreted

in the frequency domain:

• The first one is simply the gain of the system for a constant input, i.e., the
frequency response at �0: �

�v

h(�v) = H(�0)

.

• The second one is the L2 norm of the impulse response, and is preserved in
the frequency domain. According to Parseval’s theorem:

�

�v

h2(�v) ≈
1

N

�

�w

H2(�w).

where N denotes the number of samples over (−π, π]n taken for the frequency re-
sponse. The method above is easy to implement given the transfer functions of the
system and is slightly more efficient than the direct simulation-based approach, as
a closed-form expression of the frequency response can be obtained without having
to unroll the recurrence equations.
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Table 3.1: Model construction time for our tool and ID.Fix.

Algorithm ID.Fix (s) Our tool (s)

IIR8 23.1 20.5
Sobel (32×32) 169.1 9.2
Sobel (64×64) 2173.1 9.7
Sobel (128×128) - 9.4
Sobel (32×32) 160.1 9.2
Sobel (64×64) 2010.9 9.5
Sobel (128×128) - 9.4
Deriche blur (16×16) - 6.5

3.5 Experimental Validation

We integrated our approach, using the direct (time-domain) variant, within a com-
piler framework. The front-end (SURE extraction) was implemented within the
GeCoS 2

flow, developed at Irisa. The backend was written in OCaml.

In Table 3.1, we contrast the scalability of our approach to that ID.Fix, an
accuracy analysis tool based on the work Ménard et al. [23]. The lesson we draw
from these experiments is that, while our tool is insensitive to problem size when
dealing with image filters, ID.Fix is not and suffers from major scalability problems
with larger problem sizes. In fact, at the time we ran these experiments, ID.Fix
could not handle filters over images larger than 64x64, even for non-recursive filters.

ID.Fix has seen major engineering efforts and it is possible that performance has
improved since then. In particular, for the non-recursive Sobel and Gaussian blur
filters, a simple analysis shows that run time should be proportional to the number
of pixels in the image and thus only increase by a factor of four between the 32×32
and 64×64 versions, In practice, though, we observed a performance degration of
more than 13 times. This suggests the presence of performance bugs. In any case,
the story stays the same: our tool can scale to any (or even parametric) image size
because it captures the dimensionality nature of these filters, whereas ID.Fix cannot,
as it needs to “flatten” the control flow to treat these algorithms as 1D kernels.

In a second round of experiments, we compared the error predicted by our tool
for a set of fixed-point configurations with the one actually observed between fixed-
point and floating-point simulations. We emphasize that, unlike many prior work,
these experiments have been run against real data (sound and image files) and
not randomly generated test benches. It means that we also take into account
potential estimation errors due to correlation between noises. This is important as
most real world data shows strong spatial correlation, unlike artificial data where
each sample has been randomly generated. Our results show that these phenomena
do not strongly affect the validity of the Widrow hypothesis, as the deviations we
observed were all below 5%.

2http://gecos.gforge.inria.fr
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Table 3.2: Validation of our model against simulations and ID.Fix.

Algorithm Actual error (dB) Predicted error Estimation error (dB/%)

IIR8 -17.80 -17.84 -0.04/-0.2%
Sobel 11.62 12.04 0.42/3.6%
Gauss 3.78 3.78 <0.01/0.1%
Deriche -18.01 -18.06 -0.05/-2.78%

3.6 Future Work and Extensions

In Chapter 2, we saw that extensions of analytical methods to non-LTI methods are
almost all-based on a linearization of the system with time-varying coefficients. This
linearization, based on perturbation theory, is reflected as a graph transformation
where noise propagation is modeled as linear operations on error signals with input
coefficients. The noise model is usually built from coefficient-signals characteristics,
which are assessed with varying numbers of parameterization simulations.

Although we haven’t studied this topic in much detail, we believe this approach
can also be applied to multidimensional algorithms. However, to properly esti-
mate signal statistics, the number of required samples increases exponentially with
the number of dimensions (this phenomenon is sometimes called the dimensionality
curse). It is possible that, for systems of high-dimensionality, the amount of memory
and/or time required to perform the parameterization phase becomes prohibitive.

An obvious limitation of our approach is the applicability to polyhedral pro-
grams only. We cannot compactly capture regular but non-affine control flow as in
the FFT transform: in such cases, parts of the programs must still be unrolled until
the polyhedral conditions are met. Abstract models based on probabilistic semantics
may be constructed to conservatively capture the propagation of noise probability
distributions through arbitrary control flow. Some work has been done in this direc-
tion [32] based on discretization of the measure space. However, the accuracy and
performance of the technique are tied to the granularity of that discretization - to
our knowledge, no purely analytical lattice has been defined.

Even within the polyhedral model, we expect the round-off error behavior of some
algorithmic patterns to be difficult to capture. For example, in the next two chapters,
we will consider the hardware implementations of iterative stencil computations (or
stencils for short). Let G ⊂ Zn denote an n-dimensional domain. A Jacobi-style
stencil is given by a transformation (G → K) → (G → K), defined as a recurrence
relation of form:

Dn+1(�w) = f(�w,Dn(�w + �d0), . . . , Dn(�w + �dm))

In most applications, one is interested, given some initial state D0, in computing DT

where T may be a constant or computation-dependent number of iterations.
Note that, in the general case, the computation may depend on spatial coordi-

nates �w. For example, �w could be used to implement absorbing boundary conditions,
or the coefficients actually depend on the spatial position. the iteration number. In
simpler cases, such as the heat equation with uniform coefficients, the recurrence

63



relation is defined as a dot product with a vector of constant coefficients:

Dn+1(�w) =
�
Dn(�w + �d0) . . . Dn(�w + �dm)

�
·




k0
...
km




In such cases, assuming boundary conditions Dn(�w) = 0 if �w /∈ G, we may model
the effect of a single stencil iteration as the convolution of the grid with a mask of
coefficients, which is a linear filter with transfer function Hz. Then the stencil as a
whole may be modeled as a linear filter with transfer function : HT

z . If T is a known
constant, the techniques presented in this chapter may be applied, with a caveat:
signal power over successive iterations may be reduced such that Widrow’s quanti-
zation theorem does not apply anymore, thus breaking a fundamental assumption of
our modeling. Stencil with space-varying coefficients and non-constant coefficients
are even harder to model. In the general case, assessing the accuracy of iterative
computations may require other sets of techniques.

3.7 Conclusion

Over the last two chapters, we discussed trade-offs opportunities between, e.g., sili-
con area and accuracy. In Chapter 2, we exposed the problem accuracy evaluation
and the limitations of simulation-based methods. In Chapter 3, we presented our
contributions to analytical accuracy evaluation, a class of methods that seek to en-
able more thorough design space exploration through accuracy models. Our work
generalizes earlier techniques, applicable to linear systems, to the multidimensional
case. To accomodate a source-level design flow, this generalization required the use
of techiques from the polyhedral compilation toolset.

In the remaining of this thesis, we focus on another class of algorithms: iterative
stencil computations. Due to their ubiquity, stencils and their acceleration have
been the subject of much study. The diversity of their applications and the large
number of corresponding algorithms gives rise to different constraint sets that each
call for specific trade-offs between throughput, bandwidth requirements and area,
to name a few. After a review of generic techniques for the optimization of stencils
in Chapter 4, we will present our results and contributions in Chapter 5, based once
again on a rigorous modeling of the design space.
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Chapter 4

Implementation and Optimization of

Stencil Computations

4.1 Introduction

Iterative stencil computations (often just called stencils) are a family of regular
algorithms used in application domains as varied as numerical analysis, computer
simulations and image processing. Stencils operate over multidimensional grids of
data, repeatedly updating each cell from neighbor values in successive timesteps.
This computational pattern can be easily described as compact loop nests, as in
Figure 4.1, where the outer loop iterates over time iterations while the innermost
loops scan the spatial grid.

a [ 0 ] [_] = . . . ; // Set i n i t i a l c ond i t i on s .

f o r ( i n t t=1; t<T; t++) // Temporal loop
f o r ( i n t x=1; x<N+1; x++) // Spa t i a l loop

a [ t ] [ x ] = ( a [ t −1] [ x−1]+a [ t −1] [ x]+a [ t −1] [ x+1]) /3 ;

Figure 4.1: Naive implementation of a 1D Jacobi stencil.

Perhaps surprisingly, such simple algorithms are challenging to implement effi-
ciently. Not only are they often applied to very large domains (requiring a large
amount of computing power to meet performance needs), but each update opera-
tion also typically involves many earlier results (up-to 29 in some applications). For
these reasons, naive implementations are severely memory-bound, since values need
to be fetched redundantly from external memory.

The main goal of this chapter is to expose these obstacles and strategies to over-
come them. It is organized as follows. In Section 4.2, we give some basic definitions
on stencil computations. In Section 4.3, we motivate the relevance of these con-
cepts with selected examples. In Section 4.4, we discuss the main implementation
challenges in the formalism of the roofline model [33]. In Section 4.5, we introduce
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the tiling transformation, a fundamental tool in the implementation of regular al-
gorithms such as stencils. In Section 4.6, other forms of tiling are presented, that
present varying advantages in terms of parallelism or external communication. In
Section 4.7, we discuss the problem of memory allocation. We conclude in Sec-
tion 4.9.

4.2 Definitions

A d-dimensional stencil is an iterative computation over a d-dimensional grid (or
array) of data. The grid is iteratively updated a problem- or instance-dependent
number of times, called timesteps. At each timestep, the value of every point in the
grid is recomputed from the value of its neighbors, according to a uniform (fixed)
dependence pattern. Precisely, let A(t, �x) denote the value of the grid at point �x
and timestep t. It is defined by a relation of the form:

A(t,−→x ) = f
�
−→x ,A ((t,−→x ) +

−→
d0), . . . , A ((t,−→x ) +

−−→
dm−1))

�
, (4.1)

where m is the number of dependences and the
−→
di ’s are constant dependence vectors.

4.2.1 Classification

Spatial invariance: Remark that, in the general case, the computation may de-
pend on spatial position −→x . When such is not the case, except perhaps at domain
boundaries, we call the stencil spatially-invariant. Spatially varying stencils typi-
cally depend on position-specific coefficients. However, in our definition, the update
formula does not depend on t and the computation for any given point is thus the
same acrosse time iterations.

Access patterns: Stencils usually classified based on their dependence patterns:

• A stencil with Jacobi-style dependences (or Jacobi stencil) is a stencil where
new values are computed exclusively from previous timesteps. Dependence
vectors are of form: (−k,−→v ) with k > 0.

• Otherwise, it is called Gauss-Seidel. Dependence vectors are of form (−k,−→v )
with k ≥ 0, with k = 0 for at least one dependence.

The names Jacobi and Gauss-Seidel refer to eponymous iterative methods for solving
systems of linear equations. These methods are themselves stencil computations,
with Gauss-Seidel slightly improving upon Jacobi by using more recent results to
improve convergence.

4.2.2 Boundary Conditions

The equation 4.1 only properly defines the computation in the interior of the grid ;
boundary points, where dependence vectors reach outside of the domain, need special
handling. Many forms of boundary conditions have been proposed, depending on
application requirements. For example:
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• Homogeneous Dirichlet boundary conditions, where values are set to 0 at grid
boundaries, are often used in image processing applications.

• In physics simulations, more exotic schemes such as reflecting, absorbing or
periodic boundary conditions are often used. Reflecting and periodic boundary
conditions ensure that the energy of the system stays constant over time, while
absorbing conditions may be used to simulate an infinite field by letting energy
dissipate outside of the grid.

In this chapter, we mostly ignore boundary conditions, as they typically account
fo a small fraction of the computation and do not represent a major performance
factor.

4.3 Examples

In this Section, we illustrate the above definitions with various examples from dif-
ferent fields.

4.3.1 Cellular Automata

Cellular (finite-state) automata (CA), such as Conway’s Game of Life (GoL), [34]
are famous examples of stencil computations. In GoL, points (called cells) admit
only two states: dead or alive. Between consecutive timesteps, live cells switch off if
they have less than 2 or more than 3 extant neighbors, while dead cells turn to life
if they are surrounded by exactly 3 live cells. As an example, Figure 4.2 illustrates
a common GoL pattern known as the glider.

Figure 4.2: Glider pattern in Game of Life.

CAs have many practical applications – they are used, for example, in the sim-
ulation of physical [35] and biological systems [36]. They are also studied from a
theoretical point of view for their ability to exhibit complex global behavior out of
local rules and configurations [37].

However, automata are uncommon examples of stencils in that cells can only
take a small number of values. Thanks to this small state-space, GoL and related
automata lend themselves very well to implementation techniques based on memo-
ization, such as the HashLife algorithm. In this thesis, we mostly focus on numerical
stencils, which expose a virtually infinite state-space. For such stencils, memoization
is impractical and the computation rules must be applied repeatedly for each point
in the grid.
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4.3.2 Smith-Waterman

Smith-Waterman is a dynamic programming algorithm for sequence alignment, with
applications in bioinformatics. A sequence is defined as a list of symbols from a
finite alphabet Σ (for example, a protein is a sequence of nucleotids). The Smith-
Waterman algorithm determines the similarity between two biological sequences
A = a1 . . . am and B = bi . . . bn by inserting “gaps” within A and B to find the
best alignment (in a given sense). Those gaps, called indels, model the insertion
or deletion of a symbol in either A and B since the sequences diverged from a
hypothetical common ancestor. The higher their similarity, the more likely they are
to be historically related.

For example, let Σ = {A,B,C}. Consider the following alignments of sequences:

BBAABAC BBAABAC--

ABA-BAD ---ABABAD

Both are valid, as the resulting strings have the same length. However, one clearly
represents a more plausible biological evolution, as it maximizes the number of
matching symbols and reduces the count of indels.

To model this intuition, we assign a similarity score D(a, b) to any pair of symbols,
and affect a penalty W to the introduction of an indel in either A or B. The best
alignment score for the two sequences is built iteratively from that of their prefixes,
by filling out a matrix H of size m× n with the following formula:

H(i, j) = max





0
H(i− 1, j − 1) +D(ai, bj)

H(i− 1, j)−W
H(i, j − 1)−W

The best score is given by H(m,n). The alignment itself can be retrieved by walking
backwards to reconstruct the series of insertions/deletions and substitutions.

The computation of the score matrix is a 1D stencil, where each row corresponds
to a timestep. Since H(i, j) depends on H(i, j−1), it has Gauss-Seidel dependences,
with the following dependence vectors:

(−1,−1), (−1, 0), (0,−1).

4.3.3 Finite-Difference Methods

The bulk of stencil computations arise from forward-time, Finite-Difference dis-
cretization of partial differential equations (PDEs). Depending on application, the
output of such stencils is the state of the system after some predetermined simulation
time, or when some equilibrium has been reached.

Stability of such numerical schemes usually requires smaller timesteps compared
to backward, implicit methods, but are also simpler to implement. They typically
result in large computational workloads, especially in High-Performance Computing
world.
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Heat Equation The heat equation is one of the canonical examples of stencils. It
models the transfer of heat in a medium over time. Consider a surface with uniform
thermal conductivity. The function u(t, x, y) giving the temperature at time t and
position (x, y) is a solution to the following PDE:

∂u(t, x, y)

∂t
= α

�
∂2u(t, x, y)

∂x2
+

∂2u(t, x, y)

∂y2

�
.

This equation can be discretized to the following stencil computation1:

U(t, x, y) = U(t− 1, x, y)

+ c0 (U(t− 1, x− 1, y) + U(t− 1, x+ 1, y)− 2U(t− 1, x, y))

+ c1 (U(t− 1, x, y − 1) + U(t− 1, x, y + 1)− 2U(t− 1, x, y)) ,

where c0 = α∆t/∆x2 and c1 = α∆t/∆y2 are constant coefficients depending solely
on the discretization steps along each dimension. It thus defines a 5-point, spatially-
invariant Jacobi stencil with the following dependence vectors:

(−1, 0, 0), (−1,−1, 0), (−1, 1, 0), (−1, 0,−1), (−1, 0, 1)

Boundaries may be handled, for example, by fixing u(t, x, y) = K outside the surface.
In general, the coefficients c0 and c1 may depend on position (x, y), as thermal

conductivity is not necessarily uniform. In such case, the stencil becomes:

U(t, x, y) = U(t− 1, x, y)

+ c0(x, y) (U(t− 1, x− 1, y) + U(t− 1, x+ 1, y)− 2U(t− 1, x, y))

+ c1(x, y) (U(t− 1, x, y − 1) + U(t− 1, x, y + 1)− 2U(t− 1, x, y))

and hence loses the property of space-invariance.
Note that we may recover this property by switching to a multi-field stencil.

Indeed, the definition of stencils does not constrain update operations to a compute
a single-value ; way me choose to embed field coefficients with actual values, simply
propagating coefficients from one time iteration to the next.

Seismic Modeling Finite-difference stencils are also used in seismology, for ex-
ample to model the propagation of seismic waves in a medium. This problem is
called seismic modeling. Specifically, one is interested in computing the pressure
field P after a pre-determined simulation time, given some initial conditions and a
space-varying propagation velocity field v.

As with most PDEs, many finite difference schemes may be used to discretize
this problem, resulting in stencils of varying numerical complexity and stability
properties. A simple 6-point scheme, spanning two iteration steps, is illustrated in
Figure 4.3. The update equation is of form:

Px,y,t =bx,y + Px,y,t−1 − Px,y,t−2+

ax,y (Px+1,y,t−1 + Px−1,y,t−1 + Px,y+1,t−1 + Px,y−1,t−1)

1This is a Forward-Time, Central-Space (FTCS) discretization. Other discretization schemes
may be used, resulting in stencils with different numerical properties in terms of stability and
accuracy.
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Figure 4.3: Seismic Modeling.

Fields a and b represent spatially-varying coefficients, computed from the deriva-
tives of the velocity field. The same remarks as for the heat equation regarding
spatial invariance also apply here.

Yee’s Algorithm Yee’s algorithm for Maxwell equations is one of the first finite-
difference methods for PDEs. It simultaneously solves for the electrical and magnetic
fields E and H in the time domain.

At first glance, this method does not exactly match the definition of stencils
given at the beginning of this Section. Let ∆t be the size of time iterations. At the
n-th timestep, fields E and H are mutually recomputed at time (n − 1/2)∆t and
n∆t. Moreover, in cartesian 3D space, the discretization lattices used for E and H
are offset from one another by (∆x/2,∆y/2,∆z/2) so that each point of E (or H)
is surrounded by 6 points of H (or E) along the canonical axes.

To simplify the discussion, we will restrict ourself to the 1D case. The spatial and
temporal decomposition of the iteration space is illustrated by the picture below,
along with the data dependence vectors:

E(n−1/2)∆t

Hn∆t

E(n−1/2)∆t

Hn∆t

We can transform this scheme to a stencil in the conventional sense by “grouping”
elements of E and H diagonally:
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In this form, Yee’s algorithm is a multi-field Gauss-Seidel stencil, where each
point computes two values out of four other groups. The dependence vectors are:

(−1,−1), (−1, 0), (−1, 1), (0,−1)

The apparent self-dependency in the above diagram only imposes an order in the
computation of E and H within the same iteration.

4.4 Implementation Challenges

Performance of scientific kernels (such as stencils) is the result of complex interplay
between hardware resources (cache/local memory, bandwidth, computing power),
architectural behavior and application-/implementation-specific factors.

In the case of stencils, the most important performance factor is the balance
between computations and communication. An implementation is said compute-
bound if its performance is ultimately limited by the available amount of computing
power ; in contrast, it is said IO-bound if computing power is in excess compared
to the available memory bandwidth. The balance between both is the prominent
challenge in the implementation of stencils.

This problematic may be conveniently exposed in the formalism of the roofline
model [33], an intuitive tool for understanding performance characteristics of par-
allel implementations. It relates performance of numerical algorithms, measured in
GFlops2, i.e., with their arithmetic intensity and the characteristics of the imple-
mentation platform.

Arithmetic intensity I (also called compute/IO ratio) is the implementation-
specific ratio, expressed in Flops/B, of computations over communication volume.
Let β be the bandwidth limit (in GB/s) of our architecture. We see easily that
the maximum performance, achievable via parallelization (not taking other resource
constraints into account) is simply:

10−6 × β × I (GFlops).

Since β is a constant, the only way to improve this throughput is thus to reduce
memory accesses to increase arithmetic intensity .

Naturally, performance is also ultimately limited by the peak throughput P of
the architecture (for example, on a multi-core architecture, throughput is limited by
the number of cores and their frequency). We may thus derive a bound on achievable
performance:

min(P, 10−6 × β × I) (GFlops).

All these phenomena are illustrated in Figure 4.4. Arithmetic intensity (in
flops/byte) is represented in the horizontal axis, while attainable performance (in
GFlops) is displayed in the vertical axis. This plot only gives coarse-grained, conser-
vative performance estimates; in most cases, other factors such as bad data locality

2In the case of stencils, the number of updates per second may be a more meaningful metric ;
both are related by a constant, application-dependent factor (the number of operations per update)
and are thus equivalent.
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Figure 4.4: Roofline Model

also negatively affect the attainable throughput. This model may be refined to ac-
count for other limitations, materialized as additional ceilings; for example, peak
throughput may be lower without SIMD support. Actual bandwidth limits also de-
pend on a variety of factors, such as access patterns, which can degrade attainable
throughput by introducing additional latency.

Finally, observe that arithmetic intensity is ultimately capped by the amount of
local memory ; indeed, it can only be improved by reducing the number of memory
accesses via buffering. The tiling transformation, exposed in the next sections,
gives a mean to control tradeoffs between computation, communication and memory
usage.

4.5 Tiling Transformation

Tiling is a fundamental tool in many implementations of stencil computations. Its
first use is to improve data-locality, by partitioning the computation into smaller
chunks, called tiles, that can fit on local memory. Its second purpose is to extract
coarse-grained parallelism, to dispatch batches of work to multiple processing ele-
ments, or pipeline the execution of independent tiles on the same datapath. For
example, most GPU stencil implementations map tiles to different thread blocks,
where fine-grained parallelism is used to concurrently execute independent compu-
tations on multiple threads [38]. Intermediary values can thus be kept in block-local
shared memory, without external memory accesses.

Multiple flavors of tiling have been proposed in the literature. In this Section, we
introduce the fundamental ideas of tiling with rectilinear (or hyper-parallelepipedic)
tiling. Like most tiling methods, it consists in partitioning the iteration space into
convex regions, according to carefully chosen tiling hyperplanes. We will see in
Section 4.6 that different hyperplanes may be used to expose trade-offs in terms of
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f l o a t A[T+1] [N+1] = . . . ;

f o r ( i n t t=1; t<=T; t++) // Temporal loop
f o r ( i n t x=1; x<=N; x++) // Spa t i a l loop

S : A[ t ] [ x ] = f (A[ t −1] [ x ] , A[ t ] [ x−1]) ;

Figure 4.5: Naive Gauss-Seidel stencil implementation

parallelism and communication behavior. However, most of the terminology remains
the same and is better understood in a simple context.

4.5.1 Iteration Space and Dependences

Consider the affine stencil loop-nest in Figure 4.5. As you may recall from Chapter 3,
we can represent all instances of statement S as a (convex) polyhedral domain:

DS = {(t, x) ∈ Z2 | 1 ≤ t ≤ T ∧ 1 ≤ x ≤ N}.

DS is called the iteration space of statement S. As any polyhedron, it is the inter-
section of finitely many half-spaces, determined by affine constraints. In this case,
affine constraints are simply derived from loop bounds, which depend on parameters
T and N .

Most iterative stencils may be implemented as such perfectly-nested loops, where
the outermost loop iterates over timesteps, and the d-th innermost loops scan the
spatial grid. A d-dimensional stencil hence gives rise to a n = (d + 1)-dimensional
iteration domain.

The iteration space of statement S can be conveniently represented as a regular
lattice of integral points (see Figure 4.6). Each point represents an instance (or
execution) of statement S. Its coordinates are the values of of iterators (t, x).

4.5.2 Schedule

In Figure 4.6, the iteration order of the original program is represented as dashed
path. Since the loops iterate over each dimension in increasing order, it simply
corresponds to a lexicographic scan of the domain:

(1, 1), (1, 2), . . . , (1, N), (2, 1), (2, 2) . . . , (2, N), . . . , (T, 1), (T, 2), . . . , (T,N).

In general, iteration order may be linked to that of a schedule. Given an iteration
domain DS, a schedule is a map Θ : DS → O where O is a set equipped with a partial
or total order �. The relative execution order between two instances �i,�j ∈ DS is
given by that of their image in (O,�) by Θ. Precisely:

�i ≺ �j ⇒�i executed before �j.

An interesting class of schedules is given by affine schedules, the set of piecewise,
quasi-affine maps to some lexicographically ordered polyhedron. For example, in the
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Figure 4.6

initial stencil, O = DS and the schedule is simply the identity map. The number of
dimensions in polyhedron O is called the dimensionality of the schedule.

Let I = Θ(DS) ⊂ Zm stand for the image of domain D by an affine schedule
Θ. For simplicity, let us assume that Θ is an injective function, i.e., each point in
I has a single pre-image in D. When such is the case, the schedule defines a total
execution order. In pseudo-code, it corresponds the following program:

lexfor(�i ∈ I) S[Θ−1(�i)];

where lexfor denotes a lexicographic domain scan.
In other words, the program scans the schedule image of the domain in lexi-

cographic order, and executes the corresponding pre-image instance. Under some
conditions, it is possible to modify the execution order of the program without al-
tering its semantics ; in the formalism of the polyhedral model, we often apply
combinations of affine transformations to the co-domain of the schedule, before re-
generating imperative code. However, the problem of turning the lexfor construct
above into efficient code is a non-trivial problem that was not truly solved until 1991
by Ancourt et al. [39]. More recently, Boulet et al. [40] proposed to implement this
scan as a state machine, by computing the next relation, mapping each iteration
point to its successor in the domain.

4.5.3 Dependence Relation

The schedule in the original program is simply:

{S[t, x] → [t, x]},
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Since each statement writes in a different memory cell, we easily see that data
accesses induce the following dependence relation:

{S[t, x] → S[t�, x�] : t� = t− 1 ∨ x� = x− 1},

In more complex cases, dependence analysis techniques such as Array Dataflow
Analysis [26], discussed in the previous chapter (see Section 3.4.3), may be used to
determine the dependence relation of polyhedra programs, such as stencils, auto-
matically. Intuitively, this relation defines a validity condition for any schedule: an
instance must always be executed after all its dependences.

Because of our single-assignment addressing, our program only has true or data-
dependences: a statement instance depends on another iff it uses the value produced
by that instance. In many cases, to reduce memory usage, some form of memory
contraction must be implemented (see Section 4.7). For example, the result of in-
stance S(t, x) could be mapped to A[t%2][x] without changing semantics under the
initial schedule. However, such redundant memory allocations may result in false
or spurious dependences, which may impede re-scheduling or prevent paralleliza-
tion. However, for polyhedral programs, such dependences can always be eliminated
[Feautrier SSA], in order to separate scheduling and memory allocation concerns.

Consider an arbitrary schedule Θ : DS → Zm. We say that Θ is valid if it
is compatible with the dependence relation defined by the original program, in the
following sense:

∀(t, x), (t�, x�) ∈ DS, (t�, x�) → (t, x) ⇒ (t, x) ≺ (t�, x�).

As we sill see, tiling consists in defining a new, higher-dimensional schedule for the
original stencil.

4.5.4 Tiling

In the original schedule, consider the number of steps between the production of a
value and its first reuse by a later iteration. The value produced by instance (t, x)
is first re-used by iteration (t + 1, x): the reuse distance is thus equal to N , the
spatial size of the domain. If N is large enough, the value will be evicted from cache
before being next accessed. Ignoring domain boundaries, cache miss rates are thus of
50%. Since RAM accesses can take hundreds of CPU cycles on modern architecture,
this problem can significantly affect performance. It is even more severe for higher-
dimensional stencils, as in numerical solvers, the size of the grid typically grows
exponentially with dimensionality.

Tiling addresses this issue by partitioning the domain into tiles arbitrary size, in
order to improve locality behavior. Figure 4.7 illustrates rectangular tiling for our
running example. A fundamental idea of tiling is that tiles must be atomic, i.e.,
there must exist a valid schedule of instance where the execution of distinct tiles do
not overlap. An example of such a schedule, corresponding to a lexicgraphic ordering
of tiles, is represented in Figure 4.7 as a dashed path. As we will see, this schedule
is not unique – others can be used, for example, to harvest inter-tile parallelism.

The pattern in the figure corresponds to a 4-dimensional schedule: the outer-
most two dimensions correspond to the space of tiles, while innermost dimensions
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Figure 4.7: Tiling of a 1D Gauss-Seidel stencil with 2× 2 rectangular tiles.

correspond to intra-tile iterations. The schedule may be described by the following
quasi-affine map:

�
S[t, x] →

��
t− 1

2

�
,

�
x− 1

2

�
, (t− 1) mod 2, (x− 1) mod 2

��

Asuming that 2, the size of tiles, divides T and N evenly, this tiling may be imple-
mented in source code as in Figure 4.8.

Tiling improves locality by reducing the re-use distance between two intra-tile
iterations, which is now bounded by the volume of the tile. Tile size thus gives
a mean to control temporal locality, enhancing performance under memory and
bandwidth constraints, since results can now be kept in fast memory, reducing the
need for external memory accesses. Thanks to this property, tiles are often used as
communication boundaries: results produced within a tile are kept in cache available
for later iterations, while outer dependencies must be fetched from elsewhere (e.g.,
loaded from shared memory sent by another node on the network).

4.5.5 Tile-Level Dependencies

Instance-level dependencies naturally induce tile-level dependencies. We say that
a tile depends on another tile if a point in the first tile depends on a point in the
second tile. Because of atomicity, we may view the result of tiling as a new stencil,
where tiles take the role of statement instances.

In the Gauss-Seidel example, this new stencil happens to have the same depen-
dences as the untiled stencil. However, this needs not be the case. For example,
consider the tiled Jacobi stencil in Figure 4.9. Observe that instance-level depen-
dencies cross the barrier between two tiles in both directions: in other words, with
this tiling, the tile-level stencil has a circular dependence. There is naturally no
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f l o a t A[T+1] [N+1] = . . . ;

// I t e r a t i o n s over t i l e s
f o r ( i n t t0=1; t0<=T; t0+=2)

f o r ( i n t x0=1; x0<=N; x0+=2)
/∗ −−−−−−−−−−−−−−− External communication boundary −−−−−−−−−−−−−−−−− ∗/

// Intra−t i l e i t e r a t i o n s .
f o r ( i n t t1=0; t1 <2; t1++)

f o r ( i n t x1=0; x1<2; x1++) {
in t t = t0+t1 ;
i n t x = x0+x1 ;
A[ t ] [ x ] = f (A[ t −1] [ x−1] , A[ t −1] [ x ] ) ;

}

Figure 4.8: Tiled source code of the 1D Gauss-Seidel stencil.

schedule of instances that is atomic for tiles and compatible with this dependence
relation, and this tiling is invalid.

4.5.6 Skewing

The problem of the stencil in Figure 4.9 is the bi-directionality of data flow across the
hyperplane normal the horizontal dimension. In a more general sense, a tiling of an
n-dimensional iteration space is defined by n tiling hyperplanes (φ0, . . . ,φn−1), and
size / offset parameters. It can be shown [41] that a tiling is valid if the projection
dependence vectors along each normal to tiling hyperplanes is of the same sign: this
condition captures the necessity of uni-directionality we already mentioned.

In rectilinear tiling, tiling hyperplanes are simply the canonical hyperplanes,
normal to one of the canonical basis vector. For our Jacobi stencil, dependence
vectors are:

(−1,−1), (−1, 0), (−1, 1)

The vertical tiling hyperplane is normal to the (0, 1) basis vector. We see that:

(−1,−1) · (0, 1) = −1 whereas (−1, 1) · (0, 1) = 1,

which are of opposite signs. One way to address this issue is to apply rectilinear
tiling to a skewed iteration space, where unidirectionality with respect to canonical
hyperplanes has been enforced.

For example, consider the domain transformation:

{S[t, x] → S �[t, x+ t]}.

We may apply this transformation to the dependence vectors to verify that rectilinear
tiling is now valid:

(−1,−2), (−1,−1), (−1, 0).

All dependence vectors now have non-positive components along each dimension:
rectilinear linear tiling can now be applied.
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Figure 4.9: Invalid tiling for a Jacobi skewing.

The result of skewing+tiling for the Jacobi stencil is illustrated in Figure 4.10.
Inevitably, tiling after skewing introduces incomplete tiles at domain boundaries.
If the domain is small compared to tile size, partial tiles can account for a large
proportion of tiles and introduce a significant overhead, as their implementation
cannot be fully specialized.

It is to be noted that writing efficient implementations of skewed and tiled sten-
cils by hand is a challenging task. When tile dimensions are compile-time constants,
polyhedral code generation techniques can be applied. For example, the Pluto com-
piler features efficient algorithms for finding valid tiling hyperplanes and performing
source-to-source tiling transformations. However, when tile dimensions are dynamic
parameters, tiling can no longer be seen as a polyhedral transformation. Parametric
code generators have been proposed, for example, for rectilinear tiling [42–44]. Such
generators can allow dynamic tile-size tuning.

4.5.7 Tile Halo and Communication Volume

The set of external dependencies of a tile is called its halo. For 1D stencils, halo
volume grows linearly with tile size, while computation volume grows quadratically;
this fact generalizes to higher-dimensional volumes as well. Since the halo of a tile
can be seen as its (input) communication volume, it means that increasing tile size
also improves the compute/IO ratio, thus reducing bandwidth requirements, at the
cost of increased memory usage.

For multidimensional rectilinear tiles, a tight upper-bound of communication
volume, based on the concept of depth, can be given. Let (dj)1≤j<M be the depen-
dence vectors of the stencil. For reasons that will be made clearer, we require that
dependence vectors all have non-positive coordinates. Dependence depth along the
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Figure 4.10: Legal tiling for the Jacobi 1D stencil after skewing transformation.

n-th dimension is defined as:

δn = max
j

(−dj · 1n),

where 1n denotes the 1n-th canonical basis vector.
Let Sn denote tile size in the nth dimension. Then, communication volume is

bounded by:
d�

i=0

δi
�

j �=i

Sj

Consider the restricted case where Si = S for all i. Then, this bound simplifies to:

(
�

i

δi)S
d
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Figure 4.11: Tile wavefronts for the 1D Gauss-Seidel stencil.

While the volume of the tile is Sd+1. The ratio between computation and commu-
nicaton is thus:

S�
i δi

,

and thus increases linearly with size S.

4.5.8 Wavefront Parallelism

Wavefront parallelism has been initially introduced for instance-wise parallelism,
and is not directly linked to tiling. A wavefront is a hyperplane of parallel instances
in regular commputations such as stencils. When a stencil is tiled, one is interested
in finding sets of independent tiles for parallel execution.

In Figure 4.11, tile wavefronts are pictured in alternating colors for the Gauss-
Seidel stencil. Observe that, because wavefronts scan diagonals of the domain, first
and last wavefronts contain less tiles, and thus, less parallelism than others. This
problem is called load imbalance, and its elimination is one of the main motivation
behind many non-rectilinear tiling techniques.

Extracting wavefront parallelism may once again be seen as an application of
skewing. It consists in exposing parallelism in the outer n− 1 schedule dimensions,
through a suitable domain transformation. For example, we may apply the following
skewing to the domain of tiles of the Gauss-Seidel stencil:

{S[t, x] → S[t+ x, x]}
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Figure 4.12: Wavefront parallelism extraction as an application of skewing
(Gauss-Seidel stencil).

We can see in Figure 4.12 than wavefronts actually correspond to vertical bands of
tiles in the transformed tile domain.

4.5.9 Hierarchical Tiling

In this Section we only considered one level of tiling. In order to accomodate multiple
levels of memory hierarchy, a recursive tiling strategy may be adopted, by splitting
tiles repeatedly. For example, smallest tiles may be unrolled for register-level tiling,
while largest ones serve as coarse-grained communication units.

While in most hierarchical approaches, the same tiling hyperplanes are used atl
all levels, hierarchical tiling can be used to expose nested parallelism through further
domain transformations. For example, jagged tiling allows better control of the grain
of intra-tile parallelism [45].

4.6 Tiling Variants

Rectilinear tiling offers a convenient way to extract coarse-grained parallelism from
regular computations. However, it suffers from a significant drawback called load
imbalance. Indeed, in hyper-parallelepipedic domains, tile wavefronts usually con-
tain varying numbers of tiles: at the beginning and the end of the computation,
there is thus not enough parallelism to evenly dispatch tiles on multiple proces-
sors. As a synchronization point is required after each wavefront to enforce inter-tile
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dependences, this results in a suboptimal use of computational resources, as some
processing elements need to wait for others to finish their work. This problem is
especially severe on small grid sizes, since the number of large wavefronts does not
compensate for this waste of computing power. Dynamic tile scheduling may help
mitigate the issue [46], by allowing to run some tiles earlier, but does not address
the root of the problem.

In technical terms, for stencil computations, rectilinear tiling is said to lack the
concurrent start-up property. We say that a tiling technique enables concurrent
start along some (usually canonical) dimension i if tiles along the corresponding
unit vector can be computed in parallel. This definition can be extended to any
subspace of Zn. Concurrent start over several dimensions can be beneficial in two
ways:

• First, it provides more coarse-grained parallelism.

• Secondly, it reduces the need for synchronizations.

In this Section, we review several techniques which all feature concurrent start along
at least one canonical dimension. Each of them also exposes subtle trade-offs, e.g.,
in terms of communication volume and fine-grained-parallelism.

4.6.1 Overlapped Tiling

The first technique we review is called overlapped tiling [47]. While most tiling
transformations are tesselating, i.e., partition the iteration space into non-verlapping
tiles, overlapped tiling enables concurrent start through redundant computations
(see Figure 4.13). This method eliminates the need for communication along one or
several dimensions, but comes with a significant computational overhead, especially
for “tall” tiles spanning a large number of timesteps. Overlapped tiling is hence
an interesting strategy on architecture where memory bandwidth is commonly the
performance bottleneck, such as GPUs. Even then though, actual performance
results from a complex interplay of factors, and tile shape selection is an important
concern. Indeed, the amount of redundant computation increases with tile height,
and can thus quickly become detrimental to performance. Moreover, as illustrated
by Figure 4.14, the minimal tile and its halo may have a relatively complex ; to
simplify the control flow, more data than necessary must often be transferred. The
proportion of useful communication thus also decreases with tile height. Finally, the
amount of “live” data within decreases at each time iteration, resulting in suboptimal
use of accelerator memory resources.

4.6.2 Diamond Tiling

For Jacobi stencils, rectilinear tiling constrains one of the tiling hyperplane to be
parallel to original spatial dimensions. Diamond tiling [48] lifts that restriction and
determines tiling hyperplanes from the envelope of the cone spanned by dependence
vectors (see Figure 4.15). The main benefit of this technique is to enable concurrent
start along one spatial dimension. However, in most cases, tiles cannot be started
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Figure 4.13: Overlapped tiling for a 1D 3-point Jacobi. Rectangular tiles of size
3 × 3 are extended to recompute all their dependencies down to the lower time
boundary. Darker regions correspond to redundant computations.

x

y

Figure 4.14: Shape of the input induced by a 2D Jacobi stencil for overlapped
tiling, with tile size 2×5×5. The shape of the top of the tile is displayed in orange.
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Figure 4.15: Diamond tiling for 1D 3-point Jacobi stencil. Tiling hyperplanes
(dashed lines) are inferred from faces of the dependence cone, spanned by depen-
dence vectors (red arrows). Each horizontal band of tiles can benefit from concur-
rent start. Note the heterogeneous shape of tiles in consecutive bands.

along all dimensions concurrently. Diamond tiling has proven efficient over con-
ventional tiling on multi-core CPUs [49] and GPU architectures [50]. However, it
suffers from a double-drawback: i) bandwidth requirements are irregular, since the
first and last intra-tile timesteps require more memory accesses per iteration. This
can lead to a computation being memory-bound, in spite of its average bandwidth
usage not exceeding the architectural limit. ii) Similarly, first and last timesteps
expose less parallelism than others, since tiles exhibit narrow “peaks” with fewer
iterations. Consequently, intra-tile wavefronts exhibit the same pipelined startup
pattern as tile wavefronts in conventional tiling. One may argue that diamond tiling
does not truly solve the problem of load imbalance: it displaces it to a finer-grained
level.

4.6.3 Hexagonal Tiling

Hexagonal tiling [51], shown in Figure 4.16 is a variant of diamond tiling that par-
tially addresses the problems exposed above. Instead of deriving tile shapes from
the narrowest dependence cone, tile peaks are “flattened” thus that each intra-tile
timestep exposes a minimal level of parallelism. This strategy allows to reduce load
and bandwidth imbalance. We observe that, as with diamond tiling, its full gen-
eralization to higher-dimensional stencils, while enabling concurrent start along all
spatial dimensions, is not possible.

Another approach, developed for GPUs, is named split tiling. It combines some
of the benefits and drawbacks of diamond and overlapped tiling. Like diamond
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Figure 4.16: Illustration of hexagonal tiling, a generalization of diamond tiling.
Unlike diamond tiling, the elongated top and bottom faces guarantee a minimum
amount of intra-tile parallelism at each time step, while still allowing concurrent
start along one of the iteration space boundaries.
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Figure 4.17: Similarly to hexagonal tiling, split tiling improves upon diamond
tiling by enabling concurrent start while preserving fine-grained parallelism.

tiling, it enables concurrent start without introducing redundant computations. On
the other hand, like overlapped tiling, it only requires external memory communi-
cation at time boundaries. The technique is illustrated in Figure 4.17. It consists
in splitting each spatial wavefront in phases of heterogeneously-shaped trapezoidal
tiles. These phases are executed sequentially, with output halos of the first phase
kept in scratchpad memory for the second phase, reducing external bandwidth re-
quirements. The main drawback of this approach is probably the large amount of
shared memory needed to keep inter-tile dependencies on-chip and the complexity
introduced by alternating tile shapes, which does not make this technique a good fit
for architectures such as FPGAs, more optimized towards streaming access patterns
with limited buffering.

4.7 Memory Allocation

Naive stencil implementations such as the one in Figure 4.5, where each memory
cell is written at most once, are suboptimal in terms of memory usage. Indeed,
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the memory footprint of the kernel increases linearly with simulation time, while
the lifespan of each value does not exceed a few timesteps. As we will see, it is
possible to reduce memory usage by re-using space affected to values that are no
longer needed.

We call memory mapping or memory allocation a function assigning statement
instances to memory addresses. For the purpose of this discussion, let us define
mappings as functions of form:

�i ∈ S �→ φ(�i) ∈ N,

where S denotes the iteration space of some statement S.3 For example, if each
statement S(i, j) writes to address S[i][j], where S is a multidimensional array of
size M ×N , then memory allocation is given by:

φ(i, j) = i×M + j.

A natural problem is to minimize the memory usage of the algorithm by as-
signing multiple instances in S to the same location. The challenge is to reclaim
memory containing outdated values without overwriting live values. The validity of
an allocation is thus closely tied with execution order: we can reuse memory cells
when all the consumers of the value they contain have been scheduled.

To make this statement clearer, we need to introduce some terminology. Let �i
denote an instance in iteration space S. The uses of �i, uses(�i) ⊂ S, are the set of
iteration points �j such that �i ∈ deps(�j) (or equivalently, (�j,�i) ∈ deps). We wish to
ensure that cell φ(�i) is not overwritten before the last use of �i.

Let us restrict discussion to quasi-affine schedules. Such a schedule θ : S → S �

maps iteration points to their position in a new, lexicographically ordered domain
S �, such that�i is executed before �j if and only if θ(�i) ≺θ θ(�j). The last use of a value
�i is naturally the lexicographic maximum of the image of its use set by the schedule:

Lastθ(�i) = lexmax
�
θ(uses(�i))

�
. Let this iteration point be �j. We can now state the

validity condition for a memory mapping φ under a schedule θ:

�i �= �j, �i � �j � Lastθ(�i) ⇒ φ(�i) �= φ(�j).

Two instances �i and �j which cannot be mapped to the same location are said in
conflict (we write �i �� �j). A schedule thus implicitly defines a set of conflicting
statement instances, similar to the conflict graph used in register allocation. The
analogy goes even further ; for example, whereas in register allocation, the maximum
number of live values is given by the size of the maximum clique, in our context, we
can define the maximum set D such as D×D is a subset of the conflicting set. The
size |D| gives a lower bound on required memory size.

In general, fixing a particular memory allocation early on restricts the set of valid
schedules and can thus hinder, e.g., efficient parallelization. The main problem is
that memory reuse introduces non-flow dependences. For this reason, it is custom-
ary to consider these two problems independently: reordering optimizations, such

3For simplicity, we only assume that there is a single statement S in the program ; when
such is not the case, one usually makes the simplifying assumption that statements write to non-
overlapping memory areas.
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as tiling and parallelization, are applied first ; one then looks for an allocation that
reduces memory usage, without changing the order of execution. This second step is
called memory contraction. For simplicity, one often restricts the search to modular
allocations, i.e., affine mappings combined with modulos with compile-time con-
stants on each array dimension. Another approach is to use a schedule-independent
memory allocations. In the specific case of stencils, one can use schedules based on
Universal Occupancy Vectors (UOV) [52]. Such schedules are easy to compute and
are not affected by execution order.

4.8 Tile Size Selection

Tile size can significantly impact the performance of a stencil implementation. Un-
principled tile size selection is likely to result in sub-optimal performance and/or
waste precious resources such as bandwidth, scratchpad memory or (in the case of
overlapped tiling) computing power. For this reason, various methods have been
proposed to adapt the size of tiles to the problem, requirements and/or architecture
at hand, usually with the goal of maximizing performance. These approaches may
be classified into static (analytical) and empirical methods.

Static methods are usually based on more or less elaborate performance models.
For example, early techniques may mostly consider cache/local memory size [53,54],
while more recent work focuses on fine-grained modeling. Note that parametric
tiling may be combined with static methods to dynamically select tile size based,
e.g., domain size parameters.

Empirical methods take the form of compile-time tuning. They are often used
to adapt generic software packages to an unknown target platform. For example,
the build process of several linear algebra libraries (such as LAPACK/CUBLAS)
famously includes an auto-tuning phase. In this case, empirical tuning is more
practical than using analytical models, as the same software may be built on a large
number of (future) platforms, with possibly vastly different architectures.

4.9 Conclusion

In this chapter, we have exposed the problem of accelerating iterative stencil com-
putations, a large class of compute- and data-intensive algorithms. We adopted a
fairly high-level point-of-view, exposing the main challenges and techniques in a
non architecture-specific way. A large part of our discussion was devoted to the
tiling transformation and its variants, a tool used in most efficient implementations
of stencil computations, particularly on multi-core processors Graphics Processing
Units.

In the next chapter, we focus on implementation trade-offs for stencil computa-
tions on FPGAs. Their strong embedded systems roots make them a natural choice
for the implementation of stencils in computer vision applications. Moreover, due
to their flexibility and power efficiency compared to GPUs, FPGAs are also gaining
traction in the HPC world.
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Embedded and HPC applications possess dramatically different requirements:
in the embedded world, one is usually interested in minimizing cost (area / power
consumption) under a fixed performance constraint. In contrast, implementations
targeting HPC algorithms should provide maximum performance for a given plat-
form. Applications themselves have very different characteristics ; some stencils are
much more compute-intensive than others, and grid size vary greatly between two
use cases.

Unfortunately, most FPGA stencil accelerators are ad-hoc implementation, or
generic templates that fail to integrate this diversity. In the next chapter, we will
see that there is, in fact, no single best accelerator architecture for stencils. Based on
the tiling transformation and the high-level view exposed in the current chapter, we
derive a systematic methodology for FPGA stencil accelerators than can accomodate
a large set of concerns.
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Chapter 5

Managing Trade-Offs in FPGA

Implementations of Stencil

Computations

5.1 Introduction

In Chapter 4, we discussed the problem of accelerating stencil computations from
a high-level, architecture-agnostic point-of-view. We showed the importance of the
tiling transformation for both pallelizing stencils and reducing communication needs,
problematics that arise on most implementation platforms.

We now focus on the design and implementation of FPGA stencil accelerators.
Thanks to their inherent flexibility, FPGA platforms are natural choices for imple-
menting stencils, as they can accomodate a large set of design constraints. However,
we observe that earlier work on the topic has usually focused on ad-hoc implementa-
tions for specific algorithms, or failed to provide ways to enable application-specific
trade-offs.

In this work, we attempt to fill this gap by providing a systematic FPGA design
methodology for stencil accelerators, based on iteration-space tiling. We propose a
family of designs based on sensible design parameters, exposing intuitive trade-offs
between throughput, bandwidth requirements and local memory usage. We focus
on system-level issues, not on fine-grained performance tuning. For this reason, we
have developed a code generator producing HLS-optimized C/C++ architectural
descriptions. The main design knobs are:

• Unrolling Factor: Our accelerators are based on a heavily pipelined datapath
derived from HLS tools. The amount of the fine-grained parallelism at the
datapath is configured through unrolling of the innermost loops. This adjusts
the level of parallelism in terms of stencil update operations per clock cycle to
application requirements.

• Tile Shape: The choice of tile shapes, characterized by the sizes of a tile in
each dimension (possibly not tiling some of them), enables trade-offs between
on-chip memory usage and bandwidth consumption.
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We also propose simple analytical models for both performance and area cost to
guide the exploration of the design space. Using these models, a designer is easily
able to identify the most interesting design points.

We also tackle the largely ignored problem of deriving memory layouts opti-
mized for contiguity. Indeed, in the kind of architectures we are targeting, memory
accesses typically suffer from a significant latency overhead. Contiguous burst mem-
ory transfers must be used to achieve reasonable performance. However, typical
memory layouts for stencils (such as affine modular allocations) only result in poor
contiguity and do not allow for large burst transfers. We propose a data layout
based on canonical projection of tile faces, partitioning inputs and outputs of a tile
into a small number of contiguous regions.

This Chapter is organized as follows. In Section 5.2, we present our design space
of stencil accelerators. We discuss our design principles and implementation choices,
as well as our design parameters and the trade-offs they enable. In Section 5.3,
we derive performance and area models for our architecture. In Section 5.4, we
present our contiguity-optimizing memory layout. In Section 5.5, we present our
HLS implementation and code generation flow. In Section 5.6, we present and
discuss our experimental results. We discuss related work on stencil accelerators
and other considerations Section 5.7, and conclude in Section 5.8.

5.2 Architectural Design Space

In this section, we present our parameterized family of FPGA stencil accelerators.

5.2.1 Target Platform

In this work we target the Xilinx Zynq platform. However, our work is equally
applicable to other hybrid System on Chip platforms, such as the Intel SoC, featuring
an FPGA fabric tightly-coupled with a general purpose processor. In both Zynq and
SoC, the FPGA shares coherent access to main memory with the CPU cores through
the last level of cache.

5.2.2 Accelerator Overview

An overview of the architecture can be seen in Figure 5.1. Our accelerator takes
as input a series of tile coordinates, and computes them in a single pass. It is
implemented as a bus master device on the AXI4 bus, using HP ports to access
external memory. The implementation decouples memory accesses from execution
through macro-pipelining at the tile-level. Macro-pipeline stages are implemented
as HLS actors:

• Communication (Read and Write) actors read/write tile results from/to main
memory through HP ports.

• The compute actor performs actual tile computations.
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Figure 5.1: Diagram of the architecture.

Communication and compute actors are inter-connected with FIFOs of suffi-
ciently large size. The main benefit of this decoupling is that it provides overlapping
between computation and communication: tile inputs can be fetched / committed
in parallel with computation. If available bandwidth is sufficient, memory access
time can thus be effectively hidden, provided that the number of tiles to execute is
large. Indeed, even with computation/communication overlapping, the execution of
the first and last tile in a sequence necessarily introduces some latency overhead.

5.2.3 Compute Actor

We now focus on the compute actor, the computationl core of our architecture.

Execution Datapath

The compute actor computes each tile in a single sweep using a deeply pipelined
datapath, derived by te HLS tool. The entire set of operations in a tile is pipelined
with Initiation Interval of one. In terms of input C code to HLS, this pipelining
is realized by coalescing the loop nest iterating over a tile into a single loop, and
pipelining the body of the loop.

The updates within a single time step are independent of each other and can
be fed to the datapath every cycle, provided that the data is available on FIFOs.
However, pipelining across time steps requires that results from the previous time
step have been entirely computed before being first accessed, which is not necessarily
true in presence of pipelining. This imposes a constraint on tile size and pipeline
depth ; such constraints are discussed in Section 5.2.5.

Our datapath can be further configured to perform an arbitrary number of stencil
updates per cycle, simply by unrolling the innermost loop by a fixed factor before
coalescing. Adjusting this factor allows us to control the computational intensity
of our IP. Empirically, we observe that pipeline depth ∆ depends on the target
operating frequency provided by the user, but not on unrolling factor. It is not
surprising, since propagation time should not be affected by the replication induced
by unrolling, but is a beneficial property for controlling throughput.

93



Memory Re-Use

The execute actor takes advantage of reuse of input data and intermediate results
within a tile. We apply a technique similar to the one by Cong et al. [55] to minimize
local memory usage and avoid memory bank conflicts. However, we use HLS arrays
instead of explicit FIFOs, which necessitates dealing with the initialization of these
arrays for each tile. This can be achieved in two ways:

1. By increasing the number of memory ports in the on-chip memory to parallelize
the initialization (i.e., without performance overhead)

2. By inserting wait-states to serialize the initialization phase.

We use the latter as on-chip memory is a scarce resource. These wait states
correspond to the halo of the tile: our loop scans halo regions along with iteration
points to pre-load external dependencies. If such were not the case, for example, the
first iteration on a tile would need to read all its dependencies in parallel from dif-
ferent BRAMs or FIFOs. With this approach, all external dependencies are already
available in registers or on-chip memory when an update is started.

5.2.4 Overview of the Read/Write Actors

The read actor streams in input data to the execute actor, and the write actor
streams out results from the execution actor. These actors perform burst accesses
to external memory through the AXI4 interface. We use a custom data layout,
discussed in Section 5.4, to ensure that most memory accesses are contiguous.

We take special care to minimize idle time and maximize bus occupation to get
as close as possible to the maximum achievable bandwidth (e.g., 600 MB/s per HP
port with 32 bit bus width). To this aim, the compute actors are in fact split in
several parallel actors to, e.g., re-order memory elements and compute addresses in
parallel with actual memory transfers.

5.2.5 Design Parameters

Our approach aims at exposing relevant design knobs to drive the design space
exploration. These knobs are:

• The choice of the Unrolling Factor (UF), representing the number of stencil
updates per cycle (in steady state). The datapath performs UF updates par-
allel. The value of UF hence determines the amount of parallelism. Increasing
this factor will boost the maximum throughput that can be attained, but will
also raise bandwidth requirements to keep feeding the datapath.

The choice of this parameter is mostly driven by the throughput requirements.
Larger values give higher throughput, but increase area cost. In HPC applica-
tions, one will want to increase this factor as much as possible, while in many
embedded applications, a small value of UF may be sufficient.
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Figure 5.2: Illustration of partial tiling for a 2D jacobi.

• The choice of the tile sizes (S0, . . . , Sd) is also critical, as tile shape determines
data locality. Tile sizes control the trade-off between off-chip bandwidth re-
quirements and on-chip memory usage. Larger sizes reduce bandwidth require-
ments, but increase on-chip data storage.

Larger tile sizes also reduce the overhead due to halo regions, further improving
throughput.

• Finally, we allow for partial tiling (see Figure 5.2): one may choose to only
tile outer domain dimensions, while leaving one or several inner dimensions
untiled. In these dimensions, a tile spans the entirety of the domain. This
technique can be interesting if the stencil grid is too large to fit in on-chip
memory, but bands across only some dimensions are not. Another benefit of
this approach, compared to full-tiling, is that it reduces the overhead of partial
tiles, due to only a subset of domain dimensions needing to be skewed.

While tiling in all dimensions can be used for domains of any (and even un-
known) size, partial tiling is only applicable if domain dimensions are known
at compile-time and relatively small. For this reason, it is an interesting ap-
proach, for example, for computer vision algorithms, while tiling all dimensions
may always be required in most HPC use-cases.

Constraints We require that tile size in the innermost dimension, Sd, is evenly
divisible by UF. This constraint avoids complex controls arising from cases where
only a subset of unrolled iterations are valid computations. Also, Tile sizes in the
spatial dimensions are constrained to have more iterations than the pipeline depth:
S1 ×

S2

UF
> ∆ to prevent dependence violations.
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5.3 Performance Modeling

The parameters above expose a huge design space to be explored. In this section we
present performance models to guide the exploration of this space. We adopt the
following conventions:

• The dimensions of a tile in the skewed iteration space are written as S0×S1×
. . . Sd, where d is the number of data dimensions. S0 is thus the number of
time steps spanned by a tile, while for i > 0, Si represents its extent along the
i-th data dimension. In case of partial tiling, dimensions Sd−k+, . . . , Sd, where
k denotes the number of untiled dimensions, correspond to iteration domain
dimensions.

• Dependence vectors are denoted (d0, . . . , dnd−1), where nd is the number of
such dependencies. For any i ≤ d, ui is the i-th canonical basis vector of Zd+1

with 1 as its i-th component and 0 elsewhere.

• The unrolling factor is written UF.

5.3.1 Asymptotic Performance Model

The important metric to model is the number of stencil updates per cycle1, computed
as follows:

UpdatesPerCycle =
TileVolume(S0 × S1 × S2)

TileCycles
.

TileCycles denotes the number of cycles it takes to execute a tile, while TileVolume =
ΠSi simply corresponds to the amount of computation in a tile.

Assuming overlapping between computation and communication, TileCycles cor-
responds (in steady-state) to the slowest between the communication and compu-
tation tasks. In other words, is the maximum between the number of cycles spent
for computing, CompCycles, and the number of cycles spent for memory transfers,
CommCycles:

TileCycles = max(CompCycles,CommCycles)

This is the asymptotic performance of our design that is reached when the prob-
lem size is large enough to make the overhead at the boundaries (where the compu-
tation and communication are not fully overlapped) negligible.

Performance of the Compute Actor

Recall that the pipelined datapath of the compute actor computes, in steady-state,
UF updates per cycle. In addition to the tile volume, the compute actor scans the
boundary halo regions to fetch input data. Representing the dependence depth in
the d-th dimension (i.e., the thickness of the halo in that dimension) as hd, the
number of times the compute actor datapath is invoked per tile is thus:

CAVolume = S0 × (S1 + h1)×

�
S2 + h2

UF

�

1Note that UpdatesPerCycle is a direct proxy to throughput, which is UpdatesPerCycle ×
FlopsPerUpdate× Frequency.
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Since the initiation interval is always 1 for our design, the total number of cycles
that it takes to execute the compute actor, assuming all inputs are ready, is given
by:

CompCycles = CAVolume +∆− 1

where ∆ denotes the pipeline depth of the compute actor datapath. Pipeline depth,
determined by the HLS tool during RTL generation, is a function of the update
formula and synthesis frequency, but is not influenced by the choice of tile sizes or
unrolling factors.

Communication Modeling

It is critical to make use of burst communication to maximize bandwidth utilization.
Indeed, the number of cycles for a memory transfer of n contiguous words can be
accurately estimated as:

BurstCycles(n) = n+ BurstLatency

BurstLatency = Frequency(MHz)×Kburst × 0.01

where Kburst is a constant representing burst latency at 100MHz (about 30 cycles in
our case). For this reason, we use a custom memory layout, detailed in 5.4, to ensure
that almost all memory transfers permit burst accesses. Moreover, we concurrently
use all HP ports such that burst latency can be totally hidden. Hence, modeling the
communication cost can be simplified to modeling the data volume.

The data volume to be communicated is exactly the halo regions of a tile. This
can be approximated by:

CommVolume =
d�

i=0

(Si + hi)−
d�

i=0

Si.

When the data element is one word, CommVolume directly translates to the
number of transfer cycles: CommCycles. If the stencil operates, for example, on
multiple numerical fields, this formula may need to be changed to reflect larger
element-size.

5.3.2 Modeling the Area Cost

Precise modeling of the area cost can be extremely challenging, and is heavily in-
fluenced by the HLS tool and the algorithm. However, it is not difficult to make
relative comparisons among design points in our parameter space.

Indeed, we can expect unrolling factor and communication volume to both have
linear relationships with area: UF with LUTs/DSPs and communication volume
with on-chip buffer requirement. This suggests, prior to Design Space Exploration,
to sample the design space and perform linear regressions in order to compute area
models.

To aggregate usage reports into a single number, we choose to use the sum of the
utilization rates (Slice/BRAM/DSP) as area metric. While no metric is perfect, we
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choose this one as it captures the relative scarceness of hardware resources on the
board. To represent the interaction between UF and tile size, and to relate these
values to area, we propose infer the following linear functions from a few design
points:

Cdp = adp × UnrollFactor + bdp

Cmem = amem × CommVolume + bmem

where ai, bi must be learned with linear regression.
As we demonstrate in Section 5.6, a simple estimate based on unrolling factor

and tile face volumes gives sufficient insight about the area cost to guide the design
space exploration. Moreover, we will see that only a few design points are required
to obtain sufficiently accurate models, which means that this approach is practical.

5.4 Data Layout

We mentioned in Section 5.3.1 that contiguity plays an important role in maximizing
memory bus occupation, as it reduces access latency thanks to burst accesses. In-
deed, only a small fraction of the available bandwidth can be effectively used without
bursts. For example, on the ZC706 board we use for our experiments, each memory
access incurs a latency penalty of about about 30 cycles. This means that the best
bandwidth efficiency that can be achieved on a given memory port, using bursts of
maximum size (256 words) is approximately 90%. However, if we instead use bursts
of only 32 words, we see efficiency drops to about 50% because of burst latency. It
is thus critical for performance that most communication is performed using bursts
of maximum size.

Traditional memory layouts for multi-dimensional arrays (and modular contrac-
tions thereof, such as alternating between two copies of spatial grid) typically provide
contiguity outward from innermost array dimensions: for example, in a 3D array
A[M][N][P], consecutive elements A[t][x][y] and A[t][x][y+1] may be stored
contiguously, as well as full consecutive lines A[t][x][_] and A[t][x+1][_].

Consequently, when tiling iteration spaces along all dimensions, with such lay-
outs, we find ourselves repeatedly accessing many small contiguous fragments. For
example, the rectangular region A[t][x][y] → A[t][x+N][y+M] is composed of
N + 1 contiguous segments of length M + 1. Suppose that M and N represent tile
dimensions, and that this region represents the halo-face of a tile along the tempo-
ral dimension. M and N are likely much smaller than maximum burst size, and
communication time is thus dominated by burst latency.

The discussion above suggests to partition the inputs set of a tile into faces, and
to store those faces contiguously. It is easy, using this kind of decomposition, to
ensure that each face can be read contiguously. In fact, it is equivalently easy to
enforce that all tile inputs form one contiguous segment in memory, for example by
ordering them by their first read in the tile. The problem is that, then, writes cannot
be performed contiguously, and nothing is gained performance-wise because of this
asymmetry. Moreover, some results may be used by multiple tiles and must hence
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be stored redundantly ; there is thus an imbalance between read and write volume.
Of course, we can also ensure contiguity for writes, with symmetric problems.

We tackle this challenge by storing projection of tile inputs / outputs along each
dimension into distinct buffers. In this section, we present an allocation strategy
providing the following benefits:

• Each tile can read/write all its inputs/outputs in a small number of contigu-
ous accesses, usually providing enough contiguity that burst latency becomes
negligible.

• Read and write volume are strictly equal, with some outputs being stored in
multiple buffers.

Our idea is to project tile faces along canonical dimensions, splitting communication
volume into distinct buffers such that both tile inputs and and outputs map to
contiguous segments in these buffers.

5.4.1 Example: 3D Iteration Space

Our decomposition is illustrated in Figure 5.3 for a 3D iteration space. Inputs to a
tile are partitioned into 4 buffers, B0, B1, B2 and Baux. The “thickness” of each buffer
B0, . . . , B2 corresponds to dependence depth hd along that dimension. Each buffer
is extended along exactly one dimension ; this is necessary to enforce contiguity,
and necessitates the introduction of buffer Baux, of size B0 × B1 × B2 to store the
“corner” of the tile.

Observe that each input corresponds to a full face from a neighboring tile, and
part of a face from a diagonal neighbor. For example, let (t, x, y) denote current tile
coordinates ; buffer B2 corresponds to outputs of tiles (t, x, y−1) and (t−1, x, y−1).
It means that we must be able to “shift” a window on the axis along which this face is
extended, and that the corresponding regions must always correspond to contiguous
memory segments. This requirement imposes that all input/output buffers Bi are
stored in a single array. Also, it constrains the order of dimensions within these
arrays: the projection-dimension i must be the innermost, and the one along which
we are extending the outermost.

In this example, we have chosen to extend dimension tile face 0 along dimension
1, tile face 1 along dimension 2 and tile face 2 along dimension 0. Dimensions order
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for arrays B0, B1 and B2 are thus:

B0 : 1, 2, 0 B1 : 2, 0, 1 B2 : 0, 1, 2

Since h0 = 1 in many stencils, effective order of dimensions in buffer B0 is usually
canonical ; however, in buffer B1, array dimensions are “rotated” compared to natural
order 0, 1, 2. It means that, while inputs can be read/written contiguously, they must
unfortunately be buffered on-chip as the order in which they are used (produced)
by a tile does not match the order in which they are read (written) to/from main
memory.

Finally, as with most memory allocations (see Section 4.7), one of our goals is to
reduce memory consumption by re-using memory cells. This can be easily done at
the face-buffer level using modular allocation.

5.4.2 Generalization

A natural question is to determine whether the allocation strategy presented above
for 3D iteration spaces can be extended to higher-dimensional cases. A first attempt
is to replicate the partitioning above by similarly extending each face along exactly
one dimension, and using one auxiliary buffer Baux of size

�
hi. However, there are

some issues with this approach.
Indeed, let X = (x0, x1, . . . , xd) be the vector of coordinates of a tile. Suppose

that face Bi is extended along dimension j. Then, Bi contains points from tiles
X − ui and and X − ui − uj, where uk are unit vectors. Baux contains dependencies
from tile X −

�
uk. However, by simply extending face along one dimension, we

miss dependencies from diagonal tiles distant from current tile by more than 2 and
less than d+1 unit vectors. For example, in a 4D iteration space, we might typically
miss dependencies from tile (x0 − 1, x1 − 1, x2 − 1, x2)

Generalizing our memory layout to higher-dimensional spaces hence requires the
introduction of additional buffers to handle such “corner” and “edge” cases and cover
all dependencies. For a 4D iteration space, 3 additional buffers of size S0 × h0 ×
h1 × h2, . . . must be introduced. Overall, we thus need 8 distinct memory arrays.

At the time of this writing, we have only implemented our memory layout for
the 3D iteration space case, and further work is required to properly handle higher-
dimensional cases.

5.5 Implementation

Our family of accelerators has been implemented via a code generator producing
C/C++ architectural descriptions. This code is optimized for HDL synthesis by
Vivado HLS, and system integration (block diagram generation, hardware invoca-
tion) is handled automatically by SDSoC. The output of our generator thus consists
almost exclusively in C/C++ code, for both the hardware and software parts.

We did not choose to produce HDL (VDHDL or Verilog) descriptions because
(i) fine-tuning for performance was not our primary goal (ii) HLS tools are now
mature enough that system-level issues impact performance more significantly than
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missed micro-optimizations. In fact, we believe that targeting a high-level language
and relying on (pragma-driven) HLS optimizations significantly increased our pro-
ductivity and the quality of our design. For example, the ability of Vivado HLS to
derive multiple-input, multiple-output deeply pipelined operators (e.g., 87 stages for
anisotropic diffusion) is essential to our methodology.

5.5.1 Code Generator Overview

Our experimental toolchain has been made freely available as open-source software2.
Current implementation is specialized to 2D stencils operating over 3D iteration
spaces, and implementations of full and partial tiling are distinct. However, there
is no fundamental reason for doing so and much of the code is in fact shared be-
tween both implementations ; some engineering work is required to generalize these
implementations into a single generic tool.

The input of the generator are the tile size, the unroll factor and the update
formula. In the case of partial tiling, tile size in the last dimension corresponds to
domain size. All other domain dimensions (for both full and partial tiling) are left
as runtime parameters.

Based on these inputs, the generator produces:

• A software program, in charge of allocating/initializing memory buffers and
orchestrating the execution of tile wavefronts.

• HLS code for the IP.

• A Makefile and synthesis scripts.

The Makefile can be used to compile the program to software code and for sim-
ulation and validating the implementation against a reference (untiled) software
implementation. It can also be used to invoke the synthesis scripts and generate a
bootable SD card for the Zynq board. This SD card contains a bitstream with our
IP, a minimal Linux distribution and a version of the generated program invocating
our IP for the computation of tiles.

Our code generator is implemented as a set of Python scripts. Generation of the
code for scanning tile wavefronts is handled by the Integer Set Library [56]. The
HLS code is mostly based on a template.

5.5.2 HLS Code Overview

It is well known that, while the efficiency of HLS tools has significantly improved
over the years, HLS-optimized code written by a seasoned hardware designer is still
very different from functionally-equivalent code written by a software programmer.
The goal of this paragraph is to give the reader a hint of some of the challenges and
code changes we had to implement to reach reasonable performance. Our guiding
principle was to bring the performance our IP as close as possible to the theoretical
ideal of the roofline model. This was done by exploiting parallelim at all-levels
to hide latency and by avoiding at all costs the introduction of idle states in the
Read/Write/Compute processes.

2https://github.com/gdeest/hls-stencil
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void top ( i n t N, T∗ arr_in , T∗ arr_out ) {
#pragma HLS DATAFLOW

f i f o_t f in , f out ;

// Read Actor
f o r ( i n t i =0; i<N; i++) {

#pragma HLS PIPELINE I I=1
f i n . wr i t e ( a r r [ i ] ) ;

}

// Compute Actor
f o r ( i n t i =0; i<N; i++) {

#pragma HLS PIPELINE I I=1
fout . wr i t e ( compute ( f i n . read ( ) ) ) ;

}

// Write Actor
f o r ( i n t i =0; i<N; i++) {

#pragma HLS PIPELINE I I=1
ar r [ i ] = fout . read ( ) ;

}
}

Figure 5.4: Use of the DATAFLOW directive to implement computation / commu-
nication overlapping.
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Our architecture is realized as a set of HLS actors, implemented with the DATAFLOW
directive. An extremely simplified architecture skeleton representing the use of this
directive is illustrated in Figure 5.4. With this pragma, the HLS tools automat-
ically infers task-level parallelism within a basic block, and implements tasks as
independent HDL processes communicating through FIFOS or ping-pong buffers.
Unfortunately, this directive presents several limitations:

• First, it is inherently oriented toward streaming access patterns and does not
allow for feedback loops, which unfortunately prevents us to use it for handling
reuse within a tile3. While our code could have benefitted from actor-based
parallelism at different levels, we must restrict its use to the macro-pipeline of
tiles.

• Secondly, it is not reliable for inferring useful parallelism when communicating
through arrays, unless access patterns are extremely regular and the tool can
prove that each element is read/written exactly once. Since we must deal with
complex guards to handle tile boundaries, our code breaks this analysis and
we must use explicit FIFOs for communication between actors.

Communication and computation are thus performed by independent processes
to implement computation / communication overlapping. We rely crucially on the
ability of the HLS tool to infer burst accesses when using pipelined loops to read-
/write from/to AXI4 bus master interfaces. Using this implicit mechanism, instead
of explicit bursts performed with the memcpy() function (natively recognized by Vi-
vado HLS), allowed us to reliably stream values to FIFOs in parallel with memory
accesses.

Full tiling uses a custom, tile-face based memory layout (see Section 5.4). Ac-
cesses between different buffers are in fact performed in parallel by different read-
/write actors. Since some faces cannot be read/written in lexicographic order via
burst accesses, we use additional HLS actors to re-order these values. This intro-
duces additional re-ordering buffers, and thus constitutes a “hidden” cost of full
tiling. Note, however, that this overhead is indirectly taken into account when de-
riving area models through linear regressions.

Since the DATAFLOW directive does not allow for loops in the actor graph, the
execution datapath of the compute actor cannot be kept as “clean” as we would like.
It actually performs three different tasks:

• Computing results.

• Reading inputs from input FIFOs (through additional iterations) and writing
outputs to output FIFOS (when relevant).

• Managing reuse memory.

Our memory architecture for storing inputs and intermediary results is similar to
that proposed by Cong et al. [55], with one memory buffer per iteration space di-
mension.

3This limitation is necessary to allow semantically equivalent sequential software simulation
of the IP. In our opinion, it illustrates one limitation of pragma-based HLS: with a high-level
description of the architecture using native software constructs, this limitation could be overcome.
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Table 5.1: Number of floating-point operations, and pipeline depth for one update
of the kernels.

Kernel flops Pipeline depth

Jacobi 2D 1 ×, 4 + 43

Anisotropic Diffusion 9 ×, 17 +, 2 /, 9 exp 87

Finally, to minimize the number of memory ports used and overall simplify con-
trol, we implement a unrolled stencil as a stencil operating over a wider data-type.
This allows to read and write from at most one-FIFO per loop iteration, and signif-
icantly simplifies some analyses by the HLS tools.

5.6 Experimental Validation

We proceed with the experimental validation of our methodology. We emphasize
that our motivation is not to derive the design with the highest throughput ; indeed,
we wish to accomodate different situations with specific performance requirements.
We need to show that we are able to select the “right size” for a given context. In
this section, our goal is thus:

• To establish the accuracy of the performance model for different design pa-
rameters.

• To show that design points can be successfully compared in terms of hardware
resource usage.

5.6.1 Experimental Setup

Kernels

We validate our work on two different stencil kernels: Jacobi 2D and Anisotropic
diffusion. Jacobi 2D is a standard example for stencils that have relatively few
number of operations, such as the heat equation, and is strongly bandwidth con-
strained. Anisotropic diffusion is an iterative smoothing filter, which is much more
compute-intensive. The characteristics of their update operations are summarized
in Table 5.1.

Tools / Platform

We use our code generation (see Section 5.5) and Xilinx SDSoC 2016.3. Designs are
synthesized for the ZC706 Zynq evaluation board (featuring an XC7Z045 chip). The
target frequency for all designs was set to 142.86 MHz (i.e., the maximum frequency
supported by default by SDSoC which is below the architectural limit of 150 MHz
for the AXI4 bus). We could have used multiple clock domains to synthesize the
compute actor at a higher frequency that the communication actors ; however, this
is not currently natively supported by SDSoC, and would have required dropping
to Vivado HLS and performing the integration manually in IP integrator. Since
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Figure 5.5: Predicted and measured area/throughput for the Jacobi2D kernel.

(i) our goal is to validate our methodology as a whole, rather than fine-tuning
the hardware for better performance, and (ii) this would likely provide only minor
frequency improvements, we believe this compromise to be benign. We note that
extending our models to the case where compute and communication actors are
synthesized at different frequencies is straightforward.

Methodology

For each kernel, we used our code generator (see Section 5.5) to generate a series of
design using different tile sizes, unrolling factors and tiling modes (full and partial).
These designs were then synthesized using Xilinx SDSoC 2016.3, targeting the ZC706
Zynq evaluation board with an XC7Z045 chip. For each design point, we sampled
the number of CPU cycles it took to execute a set of tiles on the board with the
Zynq Global Timer. This timer represents a number of CPU cycles, which was
than converted to FPGA cycles based on their erlative frequency (the default clock
frequency for the ARM cores is 800 MHz).

Contrary to many prior work, all performance numbers provided in this section
were obtained from actual accelerators instances running on the target FPGA plat-
form. Hence, our results account for all performance degradation issues related to
bus interconnect and/or external memory.

We adopt the following convention: a design is abbreviated as S0xS1xS2_UF.
As mentioned in Section 5.3.2, the area cost is the sum of utilization rates for
Slices/BRAMs/DSPs, and takes a value between 0 and 300. The target board has
54650 slices, 545 BRAM tiles, and 900 DSPs.
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Figure 5.6: Predicted and measured area/throughput for the Anisotropic Diffu-
sion kernel.

5.6.2 Full Tiling

Jacobi 2D

We use four target performances; 1, 2, 4, and 8GFlop/s; to illustrate the trade-offs
exposed by our design knobs. A number of design points that have the desired per-
formance with different tile shapes were synthesized. Linear regression for the area
model used the following four design points: 4x16x16_2, 8x16x32_4, 32x32x32_8,
and 64x64x64_16.

Figure 5.5 summarizes the area and throughput of the resulting designs, as well
as those predicted by the model. Throughput is represented in the horizontal axis,
while are is shown in the vertical axis. For readability reasons, area is displayed as
rank : design points are vertically ordered from the less costly to the most expensive
in terms of resource usage.

One thing that is clearly visible in the figure is that the performance model is
quite accurate. Almost all points are on the target GFlop/s based on the model.
Moreover, performance results were extremely stable across repeated experiments.
This is not necessarily surprising, as FPGAs are mostly deterministic ; however,
bus contention issues and access to shared memory could have introduced signifi-
cant variability, which was not the case. The largest divergence from model is 7%
(16x120x240_12) ; as these divergences were also highly reproducible, this suggests
that the performance model could be further improved.

The area result is also mostly in agreement with the model. An unexpected
event was the observation of some interchanges between the ranks predicted by the
linear area model. It was found that these differences were due to powers-of-two tile
sizes leading to much simpler address computations (especially modulo operations)
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Table 5.2: Resource Usage for the Jacobi 2D kernel

Design Slices BRAMs DSP48E

2× 32× 32, UF=2 9663 27 66

8× 16× 32, UF=4 11123 30 104

16× 32× 64, UF=8 13148 57 180

34× 70× 70, UF=14 18103 126 372

in communication actors, and thus using less DSPs. This favors powers-of-two tile
sizes over slightly smaller shapes using less on-chip memory. However, it is mostly
an artefact of the HLS tool: since tile sizes are known at HDL-synthesis time, these
operations could be implemented more efficiently in FPGA logic, probably reducing
or eliminating the occurrence of such phenomena.

To minimize area cost, the design knobs we provide suggest to first set the
unrolling factor to the smallest value that can meet performance requirement, and
then adjusting tile size to “feed” the datapath at a sufficient rate. However, we
observe that in some use cases, using slightly higher UF may be beneficial for area
cost. Design points such as 8x60x180_6 and 16x120x240_12 are examples of these
cases. We might explain this phenomenon by the diminishing returns from increasing
the tile sizes. Indeed, increasing tile size improves performance in two different ways:

• by improving locality ;

• by reducing the overhead due to the halo regions.

Once the tile size is large enough to keep the datapath busy (i.e., the accelerator
is no longer I/O-bound), then further performance comes only from reductions in
overhead. The above designs are in such situations, where the performance target is
at the limit of what can be achieved by the given UF, such that large tile sizes have
to be used to meet the goal. Our performance model can identify these situations
and point to better design points.

We report the resource usage for the best performing designs for each target
performance in Table 5.2.

Anisotropic Diffusion

We use four target performance levels: 4, 8, 12, and 16 GFlop/s. A number of de-
sign points that have the desired performance with different tile shapes were synthe-
sized. The area model is learnt with the following points: 2x16x32_1, 4x16x32_2,
and 16x16x32_4. The area-throughput trade-off is summarized in Figure 5.6, and
Table 5.3 reports the detailed resource usage for the best performing designs.

We do not repeat the same discussion as in Jacobi 2D case; all of them applies to
anisotropic diffusion as well. One key difference is that the importance of BRAM is
much less significant compared to Jacobi 2D. This is because the arithmetic intensity
of this kernel is high (37 floating-point operations, including 9 exponentiation), and
not much data locality is needed to keep the accelerator busy.
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Table 5.3: Resource Usage for the Anisotropic Diffusion kernel

Design Slices BRAMs DSP48E

2× 16× 32, UF=1 12675 29 138

4× 16× 32, UF=2 17119 30 248

8× 16× 30, UF=3 22961 32 375

16× 16× 32, UF=4 26000 37 468
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Figure 5.7: Area results of partial tiling for the two kernels and different perfor-
mance targets.

5.6.3 Partial Tiling

Partial tiling is an attractive alternative to full tiling for small problem sizes. To
illustrate this, we implemented this strategy and compared it to fully tiled cases.
Figure 5.7 illustrates the trade-offs between the two approaches.

We selected the less expensive design meeting different performance targets for
both full and partial tiling. In the case of partial tiling, observe that area cost
actually depends on domain size, since tiles span an entire dimension of the domain.
Consequently, only one result is reported for full tiling, while in the case of partial
tiling, several designs were generated for different domain sizes.

For both kernels, observe that partial tiling always provides lesser area cost for
small problem size, but the situation is reversed for larger domains. This can be
explained by the growing buffer requirements for partial tiling This reversal also
occurs sooner as performance requirement increase, since larger tile size must be
used ; partial tiling offers less degree of freedom in adjusting tile size to increase
compute/IO ratio. Partial tiling is thus beneficial for relatively small problem sizes
with moderate performance requirements.

Note that, for anisotropic diffusion, it scales to larger problem sizes for a given
performance target. This is a consequence of choosing GFlops as a performance
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metric: since anisotropic diffusion is much more compute-intensive than Jacobi,
more operations are performed per update, and thus, per byte transferred from
main memory. Smaller tile sizes can be kept to meet a given GFlops target.

5.7 Discussion

In this section, we conclude with a discussion on earlier work and some additional
considerations.

5.7.1 Comparison with Earlier Work

The main contribution of our work is a family of designs that cover wide range of
performance requirements, accompanied by a performance model to quickly narrow
down on the most relevant design points. It would be interesting to directly compare
our design with earlier work experimentally. However, this is not practical. Indeed,
most implementations are not freely available, and often target different FPGA
platforms. Fortunately, a large subset of prior work is within, or comparable to, the
family of designs described in this chapter. We may hence compare their relative
system-level characteristics.

Untiled variants [55, 57, 58] may be viewed as designs with tile size in the time
dimension set to 1, and the remaining dimensions equal to the problem size. They
can give similar performance to other designs for very small problem sizes, where
the entire data fit on chip ; however, for larger instances, intermediary results must
be “spilled” to main memory and temporal locality cannot be exploited. To demon-
strate the ineffectiveness of such approaches compiled to tiled variants, we have
implemented untiled stencils. Attaining 1GF/s with Jacobi 2D kernel for 256× 256
image uses 25% of the available BRAM, and the limit is reached with 512 × 512
using 95% of BRAMs.

Natale et al. [59] propose to scale computations of iterative stencils to multi-
FPGA systems by replicating and chaining Streaming Stencil Timesteps (SST) over
several FPGAs. Each SST is in charge of computing one timestep over the entire
grid. Within a timestep, intermediary results are kept on FIFOs of optimal size, but
are also forwarded to the next SST. Compared to our design, this approach provides
only limited control over throughput and bandwidth requirements. Throughput
may be increased by increasing the number of SSTs ; however, this leads to a cor-
responding increase in local memory requirements. One may view this strategy as
a combination of (i) temporal tiling with (ii) an unrolling of the outermost loop di-
mension. Chaining multiple FPGAs allows this architecture to scale to arbitrary
throughput requirements, but the absence of tiling in spatial dimensions means that
it cannot handle arbitrary problem sizes.

We did not implement overlapped tiling, because the overhead due to redundant
computations is in most cases too significant, as revealed by a quick analysis. For
example, consider the Jacobi 2D example, where the data dimensions are tiled by
S × S. Overlapped tiling for two time steps requires the halo of S × S extend
by one in each direction to be redundantly computed. The amount of redundant
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computation grows as tile size along the time dimension is increased. Generalizing
to any tile size (St+1) in the time dimension, the overall computational volume is :

St�

x=1

�
(S + 2x)2 − S2

�
=

St�

x=1

�
4Sx+ 4x2

�

which can be further simplified to:

4

�
St(St + 1)

2
S +

St(St + 1)(2St + 1)

6

�

The relative importance of the overhead depends on the non-redundant compu-
tation (St × S2). When St = S, the overhead is more than three times larger than
the actual computation (367 %). Tiles must hence be kept thin and flat to reduce
this overhead ; but doing so also decreases temporal re-use, and is not interesting
on our platform.

5.7.2 Additional Considerations

We have extensively discussed the trade-offs of different design choices in Section 5.6.
Many other factors, if taken into account, could also influence the trade-off, such as
synthesis frequency of the different actors. In this work, all designs were synthesized
at the same frequency (143 MHz) on a single clock domain. The communication
and computation parts could use independent clocks, allowing the compute actor to
reach higher frequencies than the 150 MHz limit of the AXI bus. This change would
unveil another design dimension that should be considered when selecting a design
for a particular context.

We have not discussed how to handle domain boundaries. In our implementation,
boundary and incomplete tiles are currently handled in software, in parallel with
“full” tiles in the same wavefront. For small domains and/or large tile sizes, this
can introduce a large performance overhead as the software is much slower than
the accelerator, and the number of “full” tiles is low: the software then becomes
a performance bottleneck. Moreover, steady-state performance is not attained on
small tile wavefronts.

This problem is not fundamental, as the domain could be easily padded with
“dummy” iterations to execute all tiles in hardware. Padding has an impact on
overall performance that depends on tile size, problem size, and tiling strategy. For
example, we would have 10.09% dummy iterations with 4 × 16 × 16_2 tiles on a
50 × 512 × 512 domain. However that this overhead decreases with partial tiling
for the same performance target, and drops to 2.63% with 2× 16× 512_2 with the
same domain size.

In this work, we only considered single-field stencils with Jacobi-style depen-
dences operating on 32-bit floating-point data. Our generator could be easily ex-
tended to Gauss-Seidel dependence patterns (with an additional skewing) and multi-
field stencils such as FDTD. The use of fixed-point or custom floating-point arith-
metic would open a whole avenue of trade-offs involving accuracy, giving FPGAs a
real advantage compared to less flexible platforms such as GPUs.
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All these factors influence throughput and/or area, and could impact the specific
trade-offs and performance modeling, by introducing additional design knobs.

5.8 Conclusions

In this chapter, we discussed a design methodology for FPGA stencil accelerators
based on a tunable family of designs and accurate performance / area models. Our
results show that different constraints call for different implementations, a fact that
is not acknowledged by much of earlier work. For example, partial tiling provides
benefits over full tiling for some problem sizes but not others, as evidenced by both
our performance models and our experimental validation.

Our methodology is based on the tiling transformation, and our implementation
targets HLS tools for their ability to implement efficient hardware into well-optimized
high-level code. Targeting C/C++ instead of HDL code frees us from the need to
implement many optimizations ourselves, by re-using those provided by the HLS
tool. Our experience suggests that the use of domain-specific generative approaches
is an effective strategy.

Finally, we have shown that high-level system modeling, using reasonably simple
performance models based on a system-level view, was sufficient to predict perfor-
mance with excellent accuracy. We believe that the overall approach of providing
a few, carefully chosen design knobs and simple performance models to drive the
exploration could be generalized to other classes of accelerators.
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Chapter 6

Conclusion

6.1 Review of our Contributions

In this thesis, we present methodological and technical contributions to the design
of hardware accelerators. As discussed in Chapter 1, such architectures are expected
to meet strict resource or performance constraints. Often, these requirements can
only be satisfied by implementing fine-grained trade-offs between hardware resources
(e.g., power, bandwidth and area) and performance metrics (e.g., throughput, la-
tency and accuracy). However, the design space is usually extremely large: identi-
fying such trade-offs can be a challenging task. A core idea of this work is to tackle
this complexity by providing analytical models to drive the exploration.

Performance-Accuracy Trade-Offs In the first half of this manuscript, we fo-
cus on accuracy. Trade-offs between accuracy and performance constitute a large
field of opportunities for hardware designers. A classical example is the use of fixed-
point arithmetic instead of floating-point to cut down hardware cost and reduce
power consumption. Naturally, accuracy may not be reduced indefinitely: the im-
plementation must satisfy application-specific accuracy constraints, which should be
validated/enforced during design-space exploration.

Determining whether a given fixed-point configuration satisfies accuracy con-
straints happens to be a difficult problem in general. Two main classes of techniques
are proposed in the literature: techniques based on simulations, and analytical tech-
niques. Simulation is the most widely applicable, and is also very effective given
enough real-world inputs. However, analytical models are much faster to evaluate
than simulations, and can thus be used to explore a large number of design points
in a short time, possibly identifying better solutions. The main challenge remains
their limited applicability.

Prior to our work, analytical techniques could only handle one-dimensional sys-
tems. In Chapter 3, we extend earlier methods to multi-dimensional algorithms,
such as image filters. We focus on Linear, Shift-Invariant filters, a generalization
of 1D Linear Time-Invariant filters supported by other approaches. We propose a
source-level design flow, where the architecture is specified as a C/C++ description.
Our main challenges are thus:
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• From a given a C/C++ algorithm, how can we retrieve a compact, mathemat-
ical representation of the underlying linear system ?

• From that representation, how can we derive a reliable accuracy model ?

The first challenge is addressed within the polyhedral model. We choose to
represent LSI algorithms as Systems of Uniform Recurrence Equations (SURE).
SUREs may also be seen as Multi-Dimensional Flow Graphs, a generalization of
Signal-Flow Graphs used as an intermediate representation in earlier approaches.
A major difference is that, contrary to SFGs, MDFGs/SUREs do not impose a
“canonical” iteration order for each dimension. Complex, recursive image filters,
that scan the image in all directions, may thus be represented. We use dataflow
analysis to transform the program into a system of affine recurrence equations.
Before this system can be recognized as SURE, some amount of transformation is
required, including linearization/uniformization of dependences.

For the second problem – inferring accuracy models – we propose two different
approaches. Both boil down to computing the integral and L2 norm of the impulse
response, but from dual points of view:

• In the time-domain approach, we derive these sums by unrolling / evaluating
recurrence equations defining the system.

• In the frequency-domain approach, we use algebraic properties to derive the
transfer functions of the system. We thus compute the sums above from the
frequency response.

For the latter case, we propose a much simplified and more efficient version of the
algorithm proposed by Menard et al [23]. Experiments show that our models are
fast to derive. Their effectiveness is demonstrated on real-world input: results show
an excellent match between measured and predicted accuracy degradations.

Finally, we show how the frequency-domain approach could be used, before
WordLength Optimization, to handle the quantization of coefficients, a problem
largely dismissed by other works.

Implementation Trade-Offs for Stencils on FPGAs In the second part of
this thesis, we focus on implementation trade-offs for iterative stencil computations.
Stencil computations form a widespread computational pattern used in many appli-
cations, from scientific simulations to embedded vision. Applications vary greatly
in terms of constraints, domain size, dependencies and computational intensity.

At a high level, the performance of stencil implementations is mostly determined
by computational throughput and memory performance. The tiling transformation,
discussed in Chapter 4, is an essential tool to improve both aspects, by enhancing
memory locality and enabling parallelism at multiple levels.

In Chapter 5, we present a systematic design methodology for implementing sten-
cil computations on FPGAs. Our approach is based on a flexible design template,
rooted in the tiling transformation, and featuring several design knobs:

• Maximum throughput can be controlled by adjusting the unrolling factor of
the core datapath. This allows trade-offs between throughput and area.
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• Larger tile sizes can be used to reduce bandwidth requirements at the cost
of increased memory usage.

• The iteration space can be tiled in only some dimensions to further reduce
bandwidth usage. The price is a partial loss of control over local memory size,
as it is proportional to the size of the domain along untiled dimensions.

In addition, we provide simple performance models, derived from a high-level anal-
ysis, to serve as a basis for Design-Space Exploration.

To validate our design and models, we implemented our approach as a code-
generation flow targeting Vivado SDSoC. For multiple performance targets, we iden-
tified interesting design points using our performance models. We then compared
predicted values against measured performance/area. Our experiments show that
our performance model is extremely accurate and that our resource usage model is
accurate enough to identify the most interesting design points. Our models can thus
serve as a basis for systematic design space exploration.

Finally, during this work, we realized the importance of memory contiguity to
reduce latency and truly benefit from burst accesses on FPGA platforms. We thus
devised a custom memory layout for our use case, currently only implemented for
for the 2D-data stencils. However, it is still unclear whether this layout could be
efficiently generalized to higher-dimensional stencils.

6.2 Perspectives

Our work opens several perspectives.
An obvious direction would be to extend our work on analytical accuracy to a

wider class of programs, such as linear non-shift invariant algorithms or arbitrary
non-linear filters made of “smooth” operations. A more interesting research direction
might be to support non-polyhedral programs. Some of these algorithms, such as
the Fast Fourier Transform, are regular, static control flow yet cannot be represented
compactly with affine dependences. It is unclear how quantization noise propagates
in such algorithms, and if unrolling can be avoided.

One could also imagine the use of analytical accuracy models in other contexts,
for example to handle round-off errors in floating-point programs, or to predict the
impact of transient (“soft”) errors and approximate operators on the correctness of
the program. A major difficulty is that, in such cases, errors do not verify the
same statistical conditions as fixed-point quantization noise. For example, the latter
two would probably show highly discontinuous error distributions and correlation
between error sources.

Our work on stencils relies on a clear understanding of the major factors affect-
ing the performance of stencil computations, as illustrated by the Roofline model.
Similar observations also apply to many other algorithms. A more generic approach,
targeting all algorithms, could probably be derived.

Properly extending our contiguity-optimizing memory layout beyond 2D stencils
is another research direction. While this problematic is importance in practice to
fully utilize the available bandwidth, it has not been largely investigated. One issue
is to limit the number of additional memory buffers required to communicate tile
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faces. Another one is to reduce the need for re-ordering memory. We suspect that
contiguity and sequentiality are both desirable, but essentially incompatible proper-
ties: in higher-dimensional algorithms, one cannot have both in general. However,
this question would deserve proper investigation.

Another idea would be to use tile-face based halo decomposition to reduce com-
munication volume, for example by shrinking the wordlength of communicated data
(thus introducing round-off errors at tile boundaries) or by applying compression at
the tile-level.

Finally, the interaction of stencils and accuracy is unclear, and should be inves-
tigated. The ability of FPGAs to handle arbitrary wordlengths is one of their major
selling-point, as significant reductions in area can be achieved when applications tol-
erate some level of round-off noise. Being able to properly characterize the impact
of (for example) fixed-point encodings on the accuracy of stencils could allow for
very effective trade-offs.

6.3 Conclusion

The main challenge of designing hardware accelerators is the huge design space of
possible implementations for each application, especially when design dimensions
such as accuracy are considered. Because different applications have different needs,
a single solution cannot be expected to satisfy all constraints in every case. In this
thesis, we defend a systematic, model-based approach to design. We have demon-
strated the efficiency of this strategy in two different problematics (stencils and
wordlength optimization). We believe that, as accelerators become more and more
widespread, the use of domain-specific models will become essential to understand
the implications of each design choice on the behavior of the system. Our work is a
step in that direction.
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