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Université Lumière Lyon 2 (France)

Dr. Francois Brémond
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Abstract

This thesis introduces the recent advances on decomposition into low-rank plus sparse matri-

ces and tensors, as well as the main contributions to face the principal issues in moving ob-

ject detection. First, we present an overview of the state-of-the-art methods for low-rank and

sparse decomposition, as well as their application to background modeling and foreground

segmentation tasks. Next, we address the problem of background model initialization as a re-

construction process from missing/corrupted data. A novel methodology is presented show-

ing an attractive potential for background modeling initialization in video surveillance. Sub-

sequently, we propose a double-constrained version of robust principal component analysis to

improve the foreground detection in maritime environments for automated video-surveillance

applications. The algorithm makes use of double constraints extracted from spatial saliency

maps to enhance object foreground detection in dynamic scenes. We also developed two

incremental tensor-based algorithms in order to perform background/foreground separation

from multidimensional streaming data. These works address the problem of low-rank and

sparse decomposition on tensors. Finally, we present a particular work realized in conjunc-

tion with the Computer Vision Center (CVC) at Autonomous University of Barcelona (UAB).
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Résumé

Dans ce manuscrit de thèse, nous introduisons les avancées récentes sur la décomposition

en matrices (et tenseurs) de rang faible et parcimonieuse ainsi que les contributions pour

faire fâce aux principaux problèmes dans ce domaine. Nous présentons d’abord un aperçu

des méthodes matricielles et tensorielles les plus récentes ainsi que ses applications sur la

modélisation d’arrière-plan et la segmentation du premier plan. Ensuite, nous abordons le

problème de l’initialisation du modèle de fond comme un processus de reconstruction à par-

tir de données manquantes ou corrompues. Une nouvelle méthodologie est présentée mon-

trant un potentiel intéressant pour l’initialisation de la modélisation du fond dans le cadre

de VSI. Par la suite, nous proposons une version ≪ double contrainte ≫ de l’ACP robuste

pour améliorer la détection de premier plan en milieu marin dans des applications de vidéo-

surveillance automatisés. Nous avons aussi développé deux algorithmes incrémentaux basés

sur tenseurs afin d’effectuer une séparation entre le fond et le premier plan à partir de données

multidimensionnelles. Ces deux travaux abordent le problème de la décomposition de rang

faible et parcimonieuse sur des tenseurs. A la fin, nous présentons un travail particulier réalisé

en conjonction avec le Centre de Vision Informatique (CVC) de l’Université Autonome de

Barcelone (UAB).
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Chapter 1

Introduction

In this chapter, we provide the thesis context concerning the application of low-rank and

sparse decomposition to the problem of moving object detection in videos.

1.1 Presentation

The detection of moving objects is an important step in computer vision to develop numer-

ous kinds of systems, such as intelligent video surveillance and motion capture, among the

others [26, 57, 173]. These systems are used in a wide range of applications, including retail,

home automation, safety and security [1]. For example, in visual surveillance systems, the

detection of moving objects can be important to identify useful insights from video data, such

as intrusion/anomaly detection, abandoned objects, traffic data collection, etc. These insights

are usually extracted after a sequence of video processing steps that are part of a more general

module named Video Content Analysis (VCA), also known as Intelligent Video Analytics.

Figure 1.1 summarizes the approach described here, where a VCA module is used to auto-

Figure 1.1: Illustration of an intelligent video surveillance system.

1
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Figure 1.2: Block diagram of the background subtraction process.

matically report road traffic incidents. In many domains, VCA is implemented on CCTV

systems, where the most commonly used equipments are stationary cameras or pan-tilt-zoom

(PTZ) cameras to monitor activities in outdoor or indoor environments. Since the cameras

are stationary (or almost stationary), the detection of moving objects can be achieved by

building a representation of the scene background and comparing each new frame with this

one. This process is called background subtraction (BS), also named background/foreground

(B/F) separation, and the scene representation is called the background model (BM) [26,57].

This basic operation works as a two-class classifier and it consists in separating the moving

objects called “foreground” (FG), from the static (or quasi static) information, called “back-

ground” (BG). Typically the BS process includes three main steps: a) background model

initialization, b) background model maintenance, and c) foreground detection (see block dia-

gram in Figure 1.2). These steps work as follows:

• Model initialization - In general, this step consists in creating a BM that best repre-

sents the scene background. It is often assumed that initialization can be achieved by

exploiting some “clean” frames (free of foreground objects) at the beginning of the

sequence, and the scene here is assumed to be stationary or quasi stationary. However,

this assumption is rarely encountered in indoor or outdoor scenarios, because several

challenges appear and perturb this process, such as noise acquisition, dynamic factors,

etc. [25, 135].

• Model maintenance - In real-life scenarios, there are changes that occur over time.

These changes can be local, such as a moving object entering (or leaving) the scene,

or global, such as day-light inference [26, 57]. It is important for any BM to adapt

to these changes. The model maintenance step aims to preserve and maintain the BM

learned in the initialization step to be as close as possible to the real scene background.

• Foreground detection - Given the representation of the scene background, the fore-

ground detection step consists in comparing the learned background model with the

input frame. This process depends on the type of changes expected in the scene back-

ground. These changes could be related to a specific object of interest or any other
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factor, such as noise, illumination changes, among the others [26, 57]. The main chal-

lenge of this step is to minimize the number of false positive and false negative pixels.

The BS process must deal with a large number of challenges that may occur during its

application for moving object detection, as described below:

• Camera jitter: In general, the camera jitter occurs when a fixed camera is affected by

natural or environmental events, such as strong winds or earthquake. In such cases,

the fixed camera presents a nominal motion that is usually indistinguishable from the

motion of the foreground objects, leading to undesirable detection results.

• Camera automatic adjustments: Today, most of digital cameras have automatic ad-

justments, such as automatic exposure mode. This feature automatically determines

the correct exposure for pictures. In automatic mode, the cameras make some deci-

sions without any user input, including the aperture setting, the shutter speed and white

balance. These settings may make difficult the task of segmentation.

• Pan-Tilt-Zoom (PTZ) cameras: Most of background subtraction research is focused

on stationary cameras. However, the adoption of PTZ cameras for intelligent video

surveillance became more frequent because of their ability to cover a wide field of

view. These cameras are capable of (automatically or manually) remote directional

and zoom control. In general, most of background subtraction algorithms fail in the

case of moving cameras, due to the non stationarity of the background.

• Video noise: In general, a video signal can be contaminated by noise in the recording

process. The noise is usually a random pattern that is caused by signal transmis-

sion/acquisition, coding, and between the processing steps. Usually, this phenomenon

can produce undesirable effects or artifacts affecting the background scenes.

• Intermittent object motion: In some cases, moving objects stop for a long period of

time or a background object starts moving. In such situations, the intermittent objects

can produce “ghosting” artifacts in the background model. Typical examples include

parking vehicles and abandoned objects. Dealing with these situations depends on the

context. For some applications, motionless foreground objects must be incorporated

into the background model and others not.

• Dynamic backgrounds: Dynamic factors of the environment are one of the main

causes of dynamic backgrounds that are generally the outcome of an external event or

a chain of events, such as flowing water and moving leaves caused by winds. In such

environment, modeling a good representation of the background is a challenging task

for a background subtraction algorithm, due to the separation of the dynamics of the

foreground objects in comparison to the natural dynamics of the scene background.

• Shadows: Normally shadows are generated as result of a light source blocked by an

opaque object. Shadows can be seen as a dark area that either may be attached or not to

detected objects, causing objects merging and objects shape distortion. The presence

of shadows usually does not allow a robust shape detection of moving objects. In

general, the shadow areas are often misclassified as foreground objects, causing errors

in the segmentation of moving objects.
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Figure 1.3: Background/foreground separation based on low-rank plus sparse de-

composition.

• Illumination changes: Illumination changes often occur over time in outdoor (i.e.

daylight) and indoor (i.e. light switch) scenes. In outdoor environments, the gradual

changes in the appearance of the scene may result from Earth’s rotation changing

patterns of illumination of Earth’s surface. Otherwise, in indoor scenes the occurrence

of a sudden illumination change is a typical factor due to light switch. It is important

for a background subtraction algorithm to adapt to these kind of changes by building

a light invariant model of the background scene.

• Bootstrapping: It is often assumed that a representative model of the background

can be produced by exploiting some clean frames (without moving objects) at the

beginning of the sequence. However, this assumption is rarely encountered in real-

life scenarios, because of continuous clutter presence. In such situations, a robust

initialization process of the background model must be adopted, learning the correct

background model over time.

• Camouflage: Moving objects can be visually similar to the background scene, or

some portion of it. This effect is called camouflage, leading to erroneous distinction

between foreground and background. The camouflage can be at color level, texture

level, or any other appearance/depth feature level.

• Night scenes: Night videos are still a challenging task. Indeed, the low contrast be-

tween foreground and background causes many false detections due to the dramatic

illumination change and low signal to noise ratio (SNR).

Many background subtraction methods facing these issues have been designed over the

last decade [24, 183, 234], and they generally share the same scheme presented previously in

the Figure 1.2. Conventional BS methods exploit the temporal (or spatio-temporal) variation

of each pixel (or region) under many mathematical models, including probabilistic/statisti-

cal models, fuzzy models, neural/neuro-fuzzy models, subspace learning models, among the

others [24, 183, 234].

More recently, the research on decomposition into low-rank plus sparse matrices (or ten-

sors1) has been showing to be a suitable framework to deal with the background/foreground

separation problem [27, 28]. This framework consider that the data to be processed satisfy

two important assumptions: a) the inliers (latent structure) are drawn from a single (or a

union of) low-dimensional subspace(s), and b) the corruptions are sparse. This assumption

holds a particular association to the problem of B/F separation, where the background model

1The reader can also refer to Appendix C for an introduction on tensors
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(almost static) is represented as a low-rank structure and the foreground objects are associ-

ated with the sparse residuals. Figure 1.3 illustrates the process described here. In general,

the input video is converted into a matrix (or tensor) representation and then decomposed

into a sum of low-rank and sparse components. The choice of the number of components

is a free parameter and it varies according to the type of behavior needed to be modeled.

Sometimes a third component that models the Gaussian noise is used to enhance the noise

suppression, improving the foreground detection. However, the key issues and challenges in

such approaches are their capabilities to handle complex and dynamic background scenarios,

as well as performing in a real-time manner.

Given the importance of this subject, the thesis introduces recent advances in decompo-

sition into low-rank plus sparse matrices and tensors, as well as the main contributions to

face the principal issues in this domain. In the next sections, we present a list of the main

contributions developed in the thesis and the outline of each chapter.

1.2 Contributions

In order to fit the above objectives, we have accomplished the following contributions sum-

marized in this thesis2:

• A new library, named LRSLibrary3: that provides a collection of low-rank and

sparse decomposition algorithms. The library was designed for background/fore-

ground separation in videos and it contains a total of 1044 matrix-based and tensor-

based algorithms [180]. It has been fundamental for all the experiments conducted in

the thesis.

• A novel methodology for background model initialization: that considers the back-

ground model initialization as a reconstruction problem from missing/corrupted data.

Given a sequence of images, a simple joint motion-detection and frame-selection op-

eration removes the redundant frames and induces missing entries from the moving

regions. Next, the background model is recovered by matrix/tensor completion under

partially observed data [178, 184].

• A double-constrained Robust Principal Component Analysis (RPCA) method,

named SCM-RPCA: that takes the advantage of shape and confidence maps, both ex-

tracted from spatial saliency maps, to enhance object foreground detection in dynamic

scenes [179].

• An incremental tensor subspace learning (IMTSL) algorithm: that handles the

problem of background/foreground separation in streaming multidimensional data for

intelligent video surveillance applications. Differently from the traditional tensor-

based methods for background/foreground separation that only use the gray-scale or

2We suggest the reader to see the list of publications related to the thesis in the Appendix E.
3Please refer to the Appendix D for a complete description of the library.
4Up-to-date information on February 1, 2018.
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color information, the proposed method constructs a multi-feature low-rank model for

robust modeling of the scene background [176].

• An online stochastic tensor decomposition (OSTD): that is more robust and faster

than IMTSL algorithm for handling streaming multispectral video sequences. The

OSTD algorithm makes use of RPCA on tensors for robust background/foreground

separation. The proposed method was designed to be much faster than IMTSL and to

address the major difficulties of multispectral imaging for video surveillance [182].

• A survey of low-rank and sparse representation: that covers the main aspects of the

recent approaches for low-rank and sparse representation [27].

• An evaluation of subspace clustering algorithms to the problem of human action

recognition from 3D skeletal data: that explores a particular approach for low-rank

and sparse representation, named subspace clustering (SC). Instead of applying SC for

background modeling and foreground separation as shown previously, here we eval-

uate the robustness of some subspace clustering algorithms to the problem of human

action recognition from 3D skeletal data. This is a work realized in conjunction with

CVC at UAB [73, 181].

1.3 Outline

The rest of the thesis is organized as follows:

• Chapter 2 provides an overview of the state-of-the-art methods for low-rank and sparse

decomposition on matrices and tensors, as well as their application to the problem

of background modeling and foreground segmentation. The methods were unified

in a more general framework, named DLSM, that categorizes the matrix separation

problem into three main approaches: implicit, explicit and stable.

• Chapter 3 presents a novel methodology for background model initialization, seen as a

reconstruction problem from missing/corrupted data. This chapter is closely related to

the first part of the DLSM framework introduced in Chapter 2, covering a wide range

of methods for low-rank approximation on matrices and tensors.

• Chapter 4 describes a new double-constrained RPCA, named SCM-RPCA, to improve

the object foreground detection in maritime scenes. This algorithm follows the third

approach of the DLSM framework by adopting a stable decomposition. The algorithm

makes use of double constraints extracted from spatial saliency maps to enhance object

foreground detection in dynamic scenes.

• Chapters 5 and 6 present two incremental tensors-based algorithms in order to per-

form background/foreground separation from multidimensional streaming data. These

chapters address the problem of low-rank and sparse decomposition on tensors. Chap-

ter 5 introduces a new incremental method for higher-order decomposition on tensors,

whereas Chapter 6 presents a new online stochastic algorithm that makes use of robust

principal component analysis on tensors.
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• Chapter 7 presents a particular approach of low-rank and sparse representation, named

subspace clustering, for human action recognition from 3D skeletal data. This chapter

address a particular work realized in conjunction with CVC at UAB.

• Chapter 8 summarizes the conclusions of the thesis, showing the advantages and lim-

itations of the proposed approaches. It also discusses the open issues and future per-

spectives of the thesis.

• Appendices A and B provide a homogenized overview of all different mathematical

notations, symbols and abbreviations found over all chapters in the thesis.

• Appendix C introduces the concept of tensors, as well as their basic operations.

• Appendix D presents the LRSLibrary, showing a brief overview of available algo-

rithms and usage example.

• Appendix E presents a list of publications related to this thesis.
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Chapter 2

Recent approaches via low-rank and

sparse representation

This chapter introduces the principles of low-rank and sparse decomposition for the prob-

lem of B/F separation. Here, we present a concise overview based on our recently published

survey (Computer Science Review, 2016, [27]) to cover the main aspects of the recent ap-

proaches of low-rank and sparse representation. In addition, an extension to tensors was also

considered.

2.1 Introduction

Learning low-rank and sparse structures from corrupted or even incomplete observations has

recently attracted wide attention in intelligent video surveillance to develop robust algorithms

for background modeling and foreground segmentation [27]. As stated in Chapter 1, the main

objective of these algorithms is to highlight the foreground (or moving) objects for further

steps, such as detection, tracking and recognition. However, in this domain the observed data

(images or videos) are rarely pure and often have high dimensionality.

A large number of approaches for robust low-rank and sparse modeling have been pro-

posed in the last few years [27, 49, 117, 259]. These approaches are based on the assumption

that the uncorrupted information lies in a low-dimensional subspace, whereas noise is sparse.

This assumption holds a particular association to the problem of B/F separation, where the

background model (almost static) is represented as a low-rank structure and the foreground

objects are associated with the sparse residuals. However, the key issues and challenges in

such approaches are their capabilities to handle complex and dynamic background scenarios,

as well as performing in a real-time manner. Given the importance of this subject, several

methods have been developed in order to perform B/F separation in a robust way [27].

In the next sections, we present an overview of the state-of-the-art algorithms for low-

rank and sparse decomposition, as well as their application to background modeling and

foreground segmentation tasks. First we start with recovering low-rank and sparse structures

9
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on matrices in Section 2.2, then we present a more general case of RPCA, named subspace

clustering, in Section 2.3. Finally, in Section 2.4, we show how to deal with the multidi-

mensional case through tensor methods. The reader may refer to Appendix A for a complete

description of the mathematical notations and symbols found in the current and next chapters

of the thesis.

2.2 Decomposition into low-rank plus additive matrices

Let a sequence of n gray-scale images (or frames) F1 . . .Fn captured from a static camera,

that is, F ∈ R
i1×i2 where i1 and i2 denote the frame resolution (rows by columns, a.k.a image

height by image width), and considering that all frames are vectorized1 into an observation

matrix A = [vec(F1) . . . vec(Fn)], where A ∈ R
m×n and m = (i1 × i2). The process

of background/foreground separation can be regarded as a matrix separation problem. The

background (almost static and highly correlated between frames) is assumed to lie in a low-

dimensional subspace, where the sparse outliers usually represent the foreground (or moving)

objects. We assume that this matrix separation problem can be unified in a more general

framework formulated as follows:

A =
Y∑

y=1

Ky (2.1)

where, in most of the cases, Y ∈ {1, 2, 3}, and for Y = 1 . . . 3, the matrices K1 . . .K3 are

commonly defined as follows:

• Implicit: For Y = 1, the first matrix K1 is a low-rank matrix (e.g. K1 = L). The

matrix L is assumed to be the best low-rank approximation of the matrix A, where

A ≈ L. The low-rank assumption for A comes from the fact that the uncorrupted

data appear to be highly correlated to a certain degree. This means that we try to re-

cover only the background component (almost stationary) from a sequence of vector-

ized images in the matrix A. We call this decomposition as “implicit decomposition”

due to the fact that we have any constraint with respect to the sparse components (or

foreground objects). The sparse matrix S is recovered by performing the difference

between the input matrix A and its low-rank component L (e.g. S = A − L). Some

methods are included in this category, such as Low-Rank Approximation (LRA), Non-

negative Matrix Factorization (NMF), and Matrix Completion (MC).

An alternative approach is to assume that the first matrix K1 = S is the best sparse

approximation of the matrix A (also known as sparse coding), where A ≈ S. In this

case, we ignore the low-rank structure and we find only the sparse components that

minimize the reconstruction error. This approach is widely used for sparse dictionary

learning [138] and compressed sensing [158]. Some authors [232] considered the

background model can be sparsely represented as a linear combination of a few atoms

in the learned dictionary. However, in the context of this thesis we consider that our

first matrix K1 (implicit decomposition) is recovered from a low-rank perspective.

1This operation consists of stacking vertically all columns of the frame F.
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The main drawback of the methods based on Y = 1 is that there is only one assumption

about the structure of the approximated matrix K1 (either it is low-rank or sparse). In

the case where K1 = L, the foreground objects in the matrix S = A − L are mixed

with dense or sparse noise, or anything else. Otherwise, if we consider that K1 = S,

any assumption about the structure of the background exists. For this reason, some

authors proposed to “explicitly” specify a sparse component, resulting in Y = 2.

• Explicit: For Y = 2, the matrices K1 and K2 are usually assumed to be the low-rank

and sparse representation of the data, respectively, such that K1 = L and K2 = S.

In this case, the input matrix A is decomposed in such way that A ≈ L + S. We

call this decomposition as “explicit decomposition” due to the fact that we have two

constraints: the first one enforcing a low-rank structure over the matrix L, and the sec-

ond one enforcing a sparse structure over the matrix S. Usually we call the methods

based on Y = 2 as robust methods, such as Robust Principal Component Analy-

sis (RPCA), Robust Non-Negative Matrix Factorization (RNMF), Robust Dictionary

Learning (RDL), among the others [27].

Methods based on Y = 2 usually work better for the problem of background/fore-

ground separation in comparison to the methods based on Y = 1. However, in real

life surveillance videos the background is never completely stationary, and there is al-

ways measurement noise or corruptions. In order to deal with this, some authors [260]

proposed to “explicitly” add a new component representing the noise term, resulting

in Y = 3.

• Stable: For Y = 3, the matrices K1, K2 and K3 are usually assumed to be the

low-rank, sparse and noise components, respectively, resulting in K1 = L, K2 = S

and K3 = E, where A ≈ L + S + E. The noise can be modeled by a Gaussian, a

Mixture of Gaussians (MoG) or a Laplacian distribution [140]. This decomposition is

called “stable decomposition” as it separates the outliers in S and the noise in E. In

the case of background/foreground separation, the noise matrix E can also represent

some dynamic properties of the background, as well as it can capture the turbulence in

thermal videos [152].

Several methods based on Y = 3 were developed [28], and they are usually based on

Stable Robust Principal Component Analysis (Stable RPCA) or Stable Principal Com-

ponent Pursuit (Stable PCP) [260] and Three Term Decomposition (TTD) [74, 152].

In Chapter 4, we investigate the problem of moving object detection in maritime envi-

ronment through a stable decomposition framework for separating the mixed dynamic

behavior of the background (e.g. moving water, waves, etc) from the motion of the

objects of interest (e.g. ships or boats).

From this homogenized overview, we call the above framework as Decomposition into

Low-rank and Sparse Matrices (DLSM). In the next sections we introduce each part of this

framework where the state-of-the-art methods based on Y = 1 . . . 3 are presented in the Sec-

tions 2.2.1 (implicit approaches), 2.2.2 (explicit approaches) and 2.2.3 (stable approaches).
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Figure 2.1: Example of a low-rank approximation from an input matrix contami-

nated by Gaussian noise. From left to right: the input matrix A, its rank-1 approxi-

mation and its rank-3 approximation.

2.2.1 Implicit decomposition

The implicit decomposition of the DLSM framework can be seen as a low-rank matrix re-

covery problem, where the uncorrupted data can be recovered from a low-dimensional rep-

resentation of the input matrix. The low-rank approximation is formulated as a minimization

problem, in which the cost function measures the fit between the input matrix A and an

approximating matrix L (the optimization variable), subject to a constraint that the approxi-

mating matrix has reduced rank. This optimization, also known as rank minimization under

hard-rank constraint, is defined as follows:

minimize
L

f(A− L),

subject to rank(L) = r,
(2.2)

where f(.) denotes a loss function and r (1 ≤ r < rank(A)) represents the desired rank. The

minimum error can be given by the Frobenius norm or the ℓ2-norm, due to their invariance

to rotation. Solving (2.2) can be interpreted as finding the best rank r estimation of A in a

least-squares sense, where the loss function is defined as f(A−L) = ||A−L||2F . This means

that (2.2) does not have a local minimum and also a closed form solution can be estimated by

computing the Singular Value Decomposition (SVD) of A. Formally, the SVD of an m × n
real or complex matrix A is a factorization of the form:

A = UΣVT (2.3)

where U is an m ×m real or complex unitary matrix, Σ is an m × n rectangular diagonal

matrix with non-negative real numbers on the diagonal, and VT is an n× n real or complex

unitary matrix. The m columns of U and the n columns of V are called the left-singular

vectors and right-singular vectors of A, respectively. The diagonal entries Σ are known as

the singular values of A and they are ordered in decreasing order. However, instead of taking

all singular values (full SVD), the low-rank approximation problem, according to Eckart and

Young [56] theorem, considers the existence of an optimal rank r approximation, denoted by
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Figure 2.2: Application of low-rank approximation to the background model esti-

mation in a sequence of images.

svdr(A), by truncating the SVD keeping the r largest singular values such that:

svdr(A) =
r∑

i=1

uiσiv
T
i (2.4)

where ui and vi denote the ith column of U and V, respectively, and σi represents the di-

agonal entries of Σ. Figure 2.1 shows an example of an input matrix A contaminated by

a Gaussian noise and its rank-1 (A1 = svd1(A)) and rank-3 (A3 = svd3(A)) approxi-

mation, respectively. As it can be seen, the low-rank approximation can eliminate the noise

component enough. However, some partial information in the rank-1 approximation is lost

compared to the rank-3 approximation. For example, there are only 3 peaks in A1 instead of

4 peaks in A3, that is, A3 is closer to the original matrix (without noise) than A1.

Concerning the problem of background/foreground separation, the low-rank approxima-

tion can be used for the background model initialization task. As an example, Figure 2.2 (a)

shows how to estimate the background model through low-rank approximation. It can be

observed that the rank-1 approximation can recover, successfully, a good representation of

the background model. Figure 2.2 (b) presents the influence of the rank approximation in

the background model. It can be seen that the more the rank is increased the more artifacts

are included into the background model. Taking into account the first 10 singular values, the

high magnitude of the first singular value explains the high correlation between video frames

and why the rank-1 approximation can give a good approximation of the background model.

The best rank r approximation for background modeling is not always evident to find, and it

depends on the scene.
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(low-rank aprox.) (sparse components)

(a) Input frame (b) Background model (c) Moving objects (d) Foreground mask (e) Segmentation

Figure 2.3: Example of moving vehicles segmentation after background model es-

timation from low-rank approximation.

The next step for estimating the foreground components is to find the sparse matrix S,

which can be recovered by performing the difference between the input matrix A and its low-

rank component L = svdr(A) for a given r, such that S = A− L (e.g. Figure 2.3 (c)). The

foreground masks (e.g. Figure 2.3 (d)) are simply obtained by hard thresholding the sparse

matrix S such that:

O = S2 < σ2,

σ2 = var(s),
(2.5)

where O represents the outliers, s = vec(S) denotes the vectorization of the matrix S and

var(s) is the variance of the elements of the vector s. Equation (2.5) is also known as variance

threshold method, that removes all low-variance entries of S. Finally the segmentation of the

moving objects is obtained by coloring the elements of O (see Figure 2.3 (e)).

However, the low-rank approximation method presented previously is based on rank

minimization under hard-rank constraint, and a closed form solution is obtained by SVD.

Unfortunately, this approach has several limitations and drawbacks. It cannot handle affine

transformations, missing entries, gross corruptions, etc. Consider the following example:

Affine transformation and missing entries: In many applications, we need to recover

a minimal rank matrix subject to some problem-specific constraints, often characterized as

an affine set. A typical situation is when the columns are i.i.d. samples of a random pro-

cess with low-rank covariance [165], such as collaborative filtering [2] and latent semantic

indexing [141]. This affine rank minimization problem is defined as follows:

minimize
L

rank(L),

subject to A(L) = b,
(2.6)

where A : R
m×n → R

p denotes a linear mapping and b ∈ R
p represents a vector of

observations of size p. The above minimization is equivalent to seeking the simplest model

satisfying a given set of constraints. A special case of problem (2.6) is the matrix completion

problem:

minimize
L

rank(L),

subject to PΩ(L) = PΩ(A),
(2.7)
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Figure 2.4: Example of low-rank matrix completion for background model estima-

tion.

where PΩ(.) denotes a sampling operator restricted to the elements of Ω (set of observed

entries), i.e., PΩ(A) has the same values as A for the entries in Ω and zero values for the

entries outside Ω.

However, the problems (2.6) and (2.7) are NP-hard and all known finite time algorithms

have at least doubly exponential running times in both theory and practice [40]. Candès

and Recht [40] proposed to replace the rank(.) function with the nuclear norm [63] (sum

of singular values, see Appendix A) making the problem tractable, in such a way that the

problem reduces to:

minimize
L

||L||∗,

subject to PΩ(L) = PΩ(A).
(2.8)

Given that the singular values are always positive, the nuclear norm can be regarded as an

ℓ1-norm of the singular values, while the rank(.) function is the cardinality or ℓ0-norm of the

singular values. The advantages of using the nuclear norm relaxation are: a) the nuclear norm

is convex2, enabling to compute global optima efficiently, b) the nuclear norm is the tightest

convex surrogate of the rank function [63], and c) due to its convexity, the minimization

can be achieved tractably via several popular algorithms, such as semidefinite programming

(SDP) [124], projected subgradient method [55], or low-rank parametrization [165]. Candès

and Recht [40] theoretically proved that the solution of problem (2.8) can exactly recover

the low-rank matrix with a high probability. However, in real applications, the input matrix

can be contaminated by noise and the equality constraint in Equation (2.8) is too strict. For

matrix completion with noise [39], a relaxed form of (2.8) it is often considered as follows:

minimize
L

1

2
||PΩ(L)− PΩ(A)||2F+λ||L||∗ (2.9)

where λ is a trade-off parameter between the error and the low-rank regularization induced

by the nuclear norm, and the selection of λ should depend on the noise level. This is an

unconstrained convex optimization problem, and can be solved in a systematic way using a

proximal algorithm [155, 200]. Figure 2.4 illustrates an example of low-rank matrix comple-

tion for background model estimation. In this example, the input matrix A is sampled from

2For instance, a (strictly) convex function on an open set has no more than one minimum.
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A L

= +

S

Figure 2.5: RPCA via decomposition in low-rank and sparse matrices.

a uniform distribution by PΩ(.) where only 50% of its entries are revealed. As it can be seen,

the low-rank matrix L was reconstructed successfully by using a Singular Value Threshold-

ing (SVT) algorithm proposed by Cai et al. [37]. In Chapter 3 we develop the formulation

of Matrix Completion for the recent approaches. In addition, we investigate the background

model initialization as a reconstruction problem from missing/corrupted data.

2.2.2 Explicit decomposition

When considering the low-rank recovery problem in the case of strong noise, it seems that this

problem is well solvable by the traditional Principal Component Analysis (PCA). However,

the traditional PCA is effective in accurately recovering the underlying low-rank structure

only when the noise is Gaussian. If the noise is non-Gaussian and strong, even a few out-

liers can make PCA fail. To overcome this issue, an extended model called “Robust PCA”

or RPCA was considered by Wright et al. [229], Candès et al. [38] and Chandrasekaran et

al. [41] when the gross errors are sparse, and we call this model as “explicit decomposition”.

The explicit decomposition of the DLSM framework refers to the problem of decompos-

ing an input data matrix A into the sum of two other matrices in such way that A = L + S,

where L is a low-rank matrix and S express the corrupted entries assumed to be sparse (see

Figure 2.5). This definition is also known as Robust Principal Component Analysis (RPCA),

and can be formulated as follows:

minimize
L,S

rank(L) + card(S),

subject to A = L+ S,
(2.10)

where card(S) = ||S||0 denotes the number of non-zero entries of S. Usually problem (2.10)

is rewritten as:

minimize
L,S

rank(L) + λ||S||0,

subject to A = L+ S,
(2.11)

where λ > 0, similar to the Equation 2.9, is a weight parameter that balances the significance

between minimizing ||S||0 and minimizing rank(L). That is, for a larger λ the optimal
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Figure 2.6: Background/foreground separation by RPCA via PCP.

solution will maximize the sparsity in S providing a less “low-rankness” in L, whereas a

smaller λ will result in a minimum sparsity in S and a more low-rankness in L.

The low-rank minimization concerning L offers a suitable framework for background

modeling due to the high correlation between frames. So, minimizing L and S implies that

the background is approximated by a low-rank subspace that can gradually change over time,

while the moving foreground objects constitute the correlated sparse outliers which are con-

tained in S. The rank(L) influences the number of “modes” of the background that can be

represented by L: if rank(L) is too high, the model will incorporate the moving objects into

its representation; if the rank(L) is too low, the model tends to be uni-modal and then the

multi-modality which appears in dynamic backgrounds will be not captured. The quality of

the background/foreground separation is directly related to the assumption of the low-rank

and sparsity of the background and foreground, respectively.

However, as stated in Section 2.2.1, rank(L) = ||σ(L)||0 and ||S||0 yields a highly non-

convex optimization problem. The problem (2.10) involves both low rank matrix recovery

problem and ℓ0-minimization problem, and both are NP-hard and hard to approximate [9,38,

229]. In order to address this issue, a tractable optimization problem is obtained by relaxing

(2.10) with convex envelopes that are easier to minimize [38, 229]. Usually the ℓ0-norm is

replaced with the ℓ1-norm and the rank(.) with the nuclear norm ||.||∗, yielding the following

convex surrogate:

minimize
L,S

||L||∗+λ||S||1,

subject to A = L+ S,
(2.12)

where ||L||∗+λ||S||1 is the convex envelope of rank(L) + λ||S||0 over the set of (L,S)
such that max(||L||F , ||S||1,∞) ≤ 1 (see Appendix A) [229]. Wright et al. [229] showed

that, under natural probabilistic models, the low-rank matrix L and the sparse matrix S can

be efficiently recovered by solving a convex program. However, the recovery depends on an

appropriate choice of the regularizing parameter λ > 0. Usually, λ is widely assigned as

λ = 1√
max(m,n)

, becoming a universal choice [38,229]. Shortly, Candès et al. [38] extended
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Figure 2.7: Visual comparison of foreground segmentation between PCP and Stable

PCP for dynamic background. From left to right: input video, RPCA via PCP, and

RPCA via Stable PCP.

the work of Wright et al. [229] for matrices with missing values and showed that it is possible

to recover both the low-rank and the sparse components exactly by solving a convex program,

called Principal Component Pursuit (PCP), by minimizing a weighted combination of the

nuclear norm and of the ℓ1-norm. The RPCA for matrices with missing entries is formulated

as follows:

minimize
L,S

||L||∗+λ||S||1,

subject to PΩ(A) = PΩ(L+ S).
(2.13)

Figure 2.6 presents an illustration of the background/foreground separation by using RPCA

via PCP proposed by Candès et al. [38]. Essentially, the nuclear-norm term corresponds to

the low-frequency components while the ℓ1-norm describes the high-frequency components.

Usually, the low-frequency components (smooth variations) represent the background model

and the high-frequency components are the foreground objects. However, this separation is

not a trivial task. For example, low frequency components from foreground objects can leak

into extracted background images for areas that are very crowded by moving objects. The

leakage as ghost artifacts which appear in extracted background cannot be well handled by

adjusting the weights between the two regularization parameters. An inverse problem occurs

when we seek to separate the moving objects from a very dynamic background. Figure 2.7

shows a typical issue faced by RPCA via PCP for handling very dynamic background scenes

(e.g. videos recorded by maritime video surveillance systems). As can be seen, the fore-

ground segmentation is highly contaminated by sparse outliers coming from the dynamic

factors in the background model. In order to deal with this issue, some authors [10, 260]

proposed a stable version of PCP, discussed in the next section.

2.2.3 Stable decomposition

As previously shown, the PCP has some limitations, as the low-rank component needs to

be exactly low-rank and the sparse component needs to be exactly sparse (e.g. consider the

input matrix as the sum of a true low-rank matrix plus a true sparse matrix, see Figure 2.5).
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However, in real applications the observations are often corrupted by noise. Zhou et al. [260]

proposed a stable version of PCP, named Stable PCP (or SPCP), adding a third component

that guarantees stable and accurate recovery in the presence of noise. The SPCP is defined

by the following model:

minimize
L,S,E

||L||∗+λ1||S||1+λ2||E||2F ,

subject to A = L+ S+E,
(2.14)

where λ1 > 0 and λ2 > 0 are weighting parameters, E is the noise term, and it is usually

assumed to be ||E||2F≤ ǫ, where ǫ > 0, allowing the existence of a Gaussian noise. The

model (2.14) can be also represented as a relaxed version of PCP:

minimize
L,S

||L||∗+λ||S||1,

subject to ||A− L− S||2F≤ ǫ,
(2.15)

resulting in a stable recovery of L and S. SPCP offers a suitable framework for background/-

foreground separation in real-life applications, as the background model is frequently con-

taminated by noise. Reconsidering the Figure 2.7, we can see a visual comparison between

PCP and SPCP. We can note a relevant improvement given by SPCP compared to PCP in

the foreground segmentation mask when dealing with scenes containing a highly dynami-

cal background. In the SPCP model, the dynamical factors from the background model are

usually included in the noise matrix E, decreasing the number of wrong sparse components

added in the matrix S.

2.2.4 Solvers

In the last few years several algorithms (also named solvers) have been proposed for solv-

ing RPCA. All these algorithms require solving the following generalized model defined as

follows:

minimize
L,S

λ1flow(L) + λ2fsparse(S) + λ3fnoise(E),

subject to C,
(2.16)

where flow(.), fsparse(.) and fnoise(.) are surrogate loss functions that are easier to mini-

mize (usually convex functions), and C is a constraint on the matrices L,S and E. Depend-

ing on the choice of flow(.), fsparse(.) and fnoise(.), different instantiations of the prob-

lem (2.16) can be produced. Usually flow(.), fsparse(.) and fnoise(.) are taken to enforce

the low-rank, sparsity, and noise constraints of L,S and E, respectively. Common choices

for flow(.), fsparse(.) and fnoise(.) are the nuclear norm, ℓ1-norm, and (squared) Frobe-

nius norm, respectively. The constraint C is generally based on: a) an equality, such as

||A − L − S||ηnorm= 0 or A = L + S, or b) an inequality, such as ||A − L − S||ηnorm≤ ǫ
where η and ǫ are defined commonly as η ∈ {1, 2} and ǫ = 0.5. The ||.||norm could be any

norm, and the most used are the ℓ2-norm and the Frobenius norm.
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2.2.4.1 Optimization algorithms

A wide number of algorithms for solving RPCA both via PCP and via SPCP were proposed

in the literature [27, 117]. Here we present an overview of the state-of-the-art algorithms,

but for a more complete review, please refer to the recent surveys Bouwmans et al. [27] and

Lin [117]. In Chapter 4 we present a special case of RPCA via SPCP in which a partic-

ular type of constraint is employed. We also propose a new variant of SPCP to deal with

background/foreground separation in maritime video surveillance applications.

Given the original formulation of RPCA, where flow(L) = rank(L) = ||σ(L)||0 and

fsparse(S) = card(S) = ||S||0, this minimization problem yields a NP-hard discrete opti-

mization problem. To overcome this difficulty, a common way is to convert it into a contin-

uous optimization problem, and there are two principal ways to do this. The first way is by

converting into a convex program. For example, flow(.) and fsparse(.) are replaced by the

nuclear norm and the ℓ1-norm, respectively. The second way is by converting into a non-

convex program. More specifically, using a non-convex continuous function to approximate

the rank(.) and the card(.) functions. For example, replacing the rank(.) by the Schatten-p
pseudo norm ||.||Sp

and card(.) by ℓα pseudo norm ||.||α where 0 < α < 1. The princi-

pal advantage of convex programs is that a global optimal solution can be relatively easily

obtained. The disadvantage is that the solution may not be strictly low-rank or sparse. In con-

trast, the advantage of non-convex optimization is that low-rank and/or sparse solutions can

be obtained. However, their global optimal solution may not be reached. The quality of the

solution may heavily depend on the initialization. So the convex and non-convex algorithms

complement each other. In the next paragraphs we introduce both convex and non-convex

algorithms for solving RPCA.

Convex algorithms: The nuclear norm in the PCP/SPCP problem can be represented

as a semidefinite program and solved by interior point methods [29, 38, 117, 165]. These

methods are implemented in some commercial solvers such as Mosek3, SeDuMi4, YALMIP5

and CVX6. However, interior point methods are typically limited to small size problems (e.g.

n < 100), due to the O(n6) complexity. In real applications such as computer vision and

machine learning, we often require matrices of size n > 104, making interior point meth-

ods impractical. To overcome this issue, recent approaches focus on first-order optimization

methods instead. In general, first-order methods have less numerical precision than interior

point methods, but large scale problems can be solved efficiently because no second-order in-

formation needs to be stored. First-order methods, such as iterative thresholding algorithms

for ℓ1-minimization [37], perform nuclear-norm minimization by repeatedly shrinking the

singular values of the input matrix. This approach reduces the complexity of each iteration to

the cost of a SVD. However, iterative thresholding algorithms, such as SVT, converge very

slowly [38]. Sub-gradient methods have also been used for convex minimization problems

with very large number of dimensions [165]. The main advantages of sub-gradient methods

are their simplicity to implement and their scalability to large-scale problems. However, as

3https://www.mosek.com/
4http://sedumi.ie.lehigh.edu/
5https://yalmip.github.io/
6http://cvxr.com/
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it remains on SVD, the computation of the singular values can be computationally expen-

sive. Currently, the majority of optimization methods for large scale computing are based

on first order methods [117]. The most popular techniques include the Accelerated Proximal

Gradient (APG) [16, 145], the Frank-Wolfe algorithm [65, 86], and the Alternating Direction

Method (ADM) [119, 120].

Non-convex algorithms: RPCA is a popular convex optimization scheme for decom-

posing an observation matrix into its sparse and low rank components. However, the current

methods based on convex optimization are computationally expensive as they require either

matrix inversion and/or full (or partial) SVD. Moreover, replacing ℓ0-norm by ℓ1-norm to

achieve sparsity may be suboptimal, since the ℓ1-norm is a slack approximation of the ℓ0-

norm leading to an over-penalized problem [131]. Recently, some authors [77, 92, 94, 109,

116, 129, 131, 146, 190, 223, 242, 244, 250] developed a non-convex counter part to rank min-

imization and RPCA. In general, non-convex optimization problems are NP-hard, even if

our goal is to compute a local minimizer [188]. However, some problems, such as deep

neural networks (or deep learning) [18, 107], dictionary learning [187] and tensor decompo-

sition [69] can be efficiently solved with heuristic algorithms such as (noisy) gradient descent

and alternating directions [188]. Indeed, recent works demonstrate that some non-convex reg-

ularizers can outperform their convex counterparts [222, 231]. Several non-convex regulariz-

ers have been proposed, such as the ℓp-norm [133], Capped ℓ1-norm [249], Logarithm [68],

Exponential-Type Penalty (ETP) [67], Smoothly Clipped Absolute Deviation (SCAD) [62],

Minimax Concave Penalty (MCP) [245], Geman [70] and Laplace [206].

The major limitation of the convex approaches for rank minimization (i.e. nuclear norm

minimization) is that all the singular values are simultaneously minimized. As previously

shown in Equation (2.8), the nuclear norm is essentially an ℓ1-norm of the singular values

and it has a shrinkage effect leading to a biased estimator. In order to deal with this issue,

Hu et al. [85] developed a better approximation to the rank by Truncated Nuclear Norm

(TNN), which is given by the nuclear norm subtracted by the sum of the largest few singular

values. By minimizing TNN, the tailing singular values are influenced to be small, while

the magnitudes of the first r singular values are unaffected. A weighted version of the TNN,

named Weighted Nuclear Norm (WNN), was also proposed in Gu et al. [77], adding larger

weights to smaller singular values. In Lu et al. [130], an Iteratively Reweighted Nuclear Norm

(IRNN) algorithm was proposed to solve the non-convex non-smooth low-rank minimization

problem. The authors developed a weighted version of the Singular Value Thresholding

(SVT) algorithm, which has a closed form solution and is solved iteratively by IRNN. In Lu

et al. [129], the authors used a non-convex continuous function to approximate the rank(.)
and the card(.) functions, replacing the rank(.) by the Schatten-p pseudo norm ||.||Sp

and

card(.) by ℓα pseudo norm ||.||α where 0 < α < 1. The authors have shown that the

algorithm can be solved effectively by Iteratively Reweighted Least Squares (IRLS) [129]. In

Lu et al. [131], the authors generalized the SVT, which is widely used in many convex low-

rank minimization methods. A Generalized Singular Value Thresholding (GSVT) operator is

proposed to solve the non-convex low-rank minimization problem in place of SVT.

Most recently, some authors [94,146,242] proposed fast methods for non-convex RPCA.

For example, in Netrapalli et al. [146] the method has a linear convergence rate, low com-

plexity, global convergence guarantee and a theoretical guarantee for exact recovery of the
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low-rank matrix. The method consists of simple alternating (non-convex) projections onto

low-rank and sparse matrices. When the rank r is small, the method nearly matches the com-

plexity of the traditional PCA. In Kang et al. [94], the authors proposed a new matrix norm

for non-convex rank approximation, named γ-norm. The γ-norm overcomes the imbalanced

penalization by different singular values in convex nuclear norm. The authors adopted the

difference of convex (DC) programming [196] to decompose a non-convex function as the

difference of two convex functions. As the final solution might not be a globally optimal

one, the experiments have shown that the algorithm produces promising results and con-

verges more than twice faster than Netrapalli et al. [146] and 54 times faster than traditional

convex RPCA solved by inexact augmented Lagrange multiplier (IALM) [38]. Finally, Yi

et al. [242] proposed fast and efficient non-convex algorithms for RPCA via gradient de-

scent. The method was also extended to solve robust PCA with partial observations (matrix

completion). In short, the authors propose a projected gradient method that uses a novel

sorting-based sparse estimator to produce a rough estimate of the sparse matrix based on the

observed matrix. The sparsification operator keeps simultaneously a α-fraction of the entries

of the residual matrix that have large magnitude. The algorithm outperforms previous non-

convex RPCA approaches and shows a linear convergence rate under proper initialization.

2.3 Relation to low-rank/sparse subspace clustering

Subspace clustering via sparse [59] and/or low-rank representation [121] can be regarded

as a particular case of RPCA. Differently from RPCA, where inliers7 lie on a single low

dimensional subspace, Low-rank/Sparse Subspace Clustering (L/S-SC) methods consider the

inliers are drawn from the union of low-dimensional subspaces. These two common models

can be summarized as follows:

• Sparse Subspace Clustering (SSC):

Z,E
min ||Z||1+λ||E||l, s.t. X = AZ+E, diag(Z) = 0, (2.17)

• Low-Rank Representation (LRR):

Z,E
min ||Z||∗+λ||E||l, s.t. X = AZ+E, (2.18)

In the above formulations, Z ∈ R
m×n, E ∈ R

m×n and A ∈ R
m×n as the represen-

tation matrix, the noise matrix, and the dictionary matrix (linearly spans the data space),

respectively, where λ > 0 is a parameter to balance the effects of two terms. By choosing

A = X (i.e., X = XZ + E), we assume that the data matrix X is self-expressive. When

A = I (I = diag(1, 1, . . . , 1)), LRR degenerates to RPCA [38], which is suitable for the

case that data are drawn from a single subspace. An appropriate dictionary A enables the

low-rank representation to reveal the true subspace structure of the data lying near several

subspaces [43,121]. Usually, the minimization of ||Z||1 enforces the sparsity in the represen-

7Data points that have strong mutual coherence.
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Figure 2.8: Illustration of three typical types of errors in the matrix data (from Liu

et al. [121]): a) noise, b) random corruptions, and c) sample-specific corruptions.

tation matrix Z for SSC, and the minimization of ||Z||∗ enforces the low-rank assumption for

LRR. The ||E||l can be replaced by:

• Squared frobenius norm (||.||2F ) to specify the Gaussian disturbance (Figure 2.8(a)).

• l1-norm (||.||1) to characterize the sparse errors (entry-wise corruption) (Figure 2.8(b)).

• l2,1-norm (||.||2,1) to deal with sample-specific corruptions and outliers (Figure 2.8(c)).

Robustness of SSC and LRR algorithms has been reported previously in the works of El-

hamifar et al. [59] and Liu et al. [121]. The SSC algorithm addresses the subspace clustering

problem using techniques from sparse representation theory, while LRR aims to decompose

the data matrix as the sum of a clean, self-expressive, low-rank dictionary plus a matrix of

noise. Normally, the observed data is chosen to be the dictionary and the noise is assumed to

be sparse.

2.3.1 Recent advances in subspace clustering

In the last few years, several authors have developed improved versions of the SSC and LRR

given their successes in many computer vision applications. Several variants of SCC and

LRR have been developed to deal with special cases when the data matrix can be corrupted

by noise, missing entries, and outliers.

SSC variants: Wang et al. [222] developed a modified version of SSC that considers

the problem of subspace clustering under noise. Specifically, when random noise is added

to the unlabeled input data points, which are assumed to lie in a union of low-dimensional

subspaces. Patel et al. [159] proposed a novel algorithm called Latent Space Sparse Sub-

space Clustering (LS3C) for simultaneous dimensionality reduction and clustering of data

lying in a union of subspaces. Specifically, the method learns the projection of data and finds

the sparse coefficients in the low-dimensional latent space. Cluster labels are then assigned

by applying SC to a similarity matrix built from these sparse coefficients. Soltanolkotabi

et al. [185] developed a robust version of SSC to cluster noisy data. In particular, the au-

thors used geometric functional analysis to show that the algorithm can accurately recover

the underlying subspaces under minimal requirements on their orientation and on the num-
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ber of samples per subspace. Xu et al. [233] proposed a new subspace clustering algorithm,

named re-weighted sparse subspace clustering (RSSC) that consists of an iterative weighting

(reweighted) l1 minimization framework which improves the performance of the traditional

l1 minimization framework used in the original SSC. Yang et al. [238] proposed a SSC variant

to deal with missing entries outperforming the natural approach (low-rank matrix completion

followed by sparse subspace clustering) when the data matrix is high-rank or the percent-

age of missing entries is large. Li et al. [111] proposed a unified optimization framework

for learning both the affinity (affine transformation) and the segmentation (identification of

multiple subspaces). The framework is based on expressing each data point as a structured

sparse linear combination of all other data points, where the structure is induced by a norm

that depends on the unknown segmentation.

LRR variants: Babacan et al. [12] considered the problem of clustering data points into

low dimensional subspaces in the presence of outliers. The authors first developed an iter-

ative expectation-maximization (EM) algorithm and then derived its global solution. While

the first method is based on an alternating optimization scheme for all unknowns, the sec-

ond method makes use of recent results in matrix factorization leading to fast and effective

estimation. Both methods are extended to handle sparse outliers and missing values. Vidal

and Favaro [214] proposed a framework, named Low Rank Subspace Clustering (LRSC), that

considers the problem of fitting a union of subspaces to a collection of data points drawn from

one or more subspaces and corrupted by noise and/or gross errors. The authors decomposed

the corrupted data matrix as the sum of clean and self-expressive dictionary plus a matrix

of noise and/or gross errors. The solution involves a novel polynomial thresholding opera-

tor on the singular values of the data matrix, which requires a minimal shrinkage. Chen et

al. [43] proposed a new framework, named robust low-rank representation (Robust LRR), by

considering the low-rank representation as a low-rank constrained estimation for the errors

in the observed data. This framework aims to find the maximum likelihood estimation of the

low-rank representation residuals and the experimental results have shown the robustness of

this method to various type of noises (illumination, occlusion, etc) compared to the original

LRR.

Combinations of SSC and LRR: Wang et al. [222] showed that SSC and LRR are

fundamentally similar in that both are convex optimizations exploiting the intuition of “Self-

Expressiveness”. The authors proposed a new algorithm, named Low-Rank Sparse Subspace

Clustering (LRSSC), by combining SSC and LRR taking the advantages of both methods in

preserving the “Self-Expressiveness Property” and “Graph Connectivity” at the same time.

Patel et al. [160] proposed three novel algorithms for simultaneous dimensionality reduction

and clustering of data lying in a union of subspaces. Specifically, the authors described meth-

ods that learn the projection of the data points and find the sparse and/or low-rank coefficients

in the low-dimensional latent space.

2.3.2 Adequacy for the background/foreground separation

L/S-SC methods were widely applied to the motion segmentation (or motion clustering) prob-

lem by separating a video sequence into multiple spatio-temporal regions, as they correspond

to different rigid-body motions in the scene [59,93,111,164,216,233,238]. Differently from
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Figure 2.9: Turning sparse point trajectories into dense regions. Figure from Ochs

and Brox [149].

background/foreground separation by RPCA where the entire video sequence is represented

by a dense matrix decomposed into its low-rank and sparse components, L/S-SC methods

work slightly differently. In general, they solve this problem by extracting a set of points in

an image, and tracking these points through the video. Given a set of points drawn from a

union of linear (or affine) subspaces, all the trajectories associated with a single rigid motion

live in a low-dimensional subspace. Therefore, the motion segmentation problem reduces to

clustering a collection of point trajectories according to multiple subspaces [59, 215]. Usu-

ally the algorithms assume that the feature points are visible in all the frames. However, some

authors [164, 216] extended existing methods to the case of missing data, where some of the

features are not visible in all the frames. Figure 2.9 (top) illustrates how motion trajectories

are clustered into multiple subspaces using Hopkins 155 database [205]. As can be seen,

the output from subspace clustering methods differs from the traditional foreground masks

given by RPCA approaches. In general, clustering motion trajectories results in sparse tra-

jectories and some additional efforts need to be done to obtain a foreground mask. Some

authors [32, 149, 150] developed novel techniques for turning sparse point trajectories into

dense regions, please see Figure 2.9 (bottom). Compared to the binary foreground masks

obtained from RPCA methods, where the background is represented by a black color and the

moving objects by a white color, subspace clustering approaches can provide a more complete

information about the moving objects, splitting them into different class of motions. In ad-

dition, L/S-SC methods can deal with a particular limitation of the traditional B/F separation

methods, that cannot perform well the case of moving cameras.

7Hopkins 155 dataset: http://www.vision.jhu.edu/data/hopkins155/
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Figure 2.10: Families of tensor methods for multi-way data analysis. Adapted from

Acar and Yener [3].

2.4 Extension to tensors

As seen in previous sections, matrix-based low-rank and sparse decomposition methods used

for background subtraction work only on a single dimension and consider the image as a

vector; hence, multidimensional data for efficient analysis can not be considered. In addition,

the local spatial information is lost and erroneous foreground regions can be obtained. Some

authors [83, 112, 176, 182, 192, 204] used a tensor representation to solve this problem.

In the thesis, we address some related works that employ robust tensor subspace learning

for the background/foreground separation problem. First, we present the principal tensor

decomposition tools in Section 2.4.1, then we describe the recent works that employ RPCA

on tensors in Section 2.4.2. Moreover, we also present in Chapters 5 and 6 two different

approaches for background modeling via tensor subspace learning.

2.4.1 Tensor decomposition and factorization

Tensor decompositions have been widely studied and applied to many real-world problems [76,

99,132]. They were used to design low-rank approximation algorithms for multidimensional

arrays [3, 72, 76, 105] taking full advantage of the multi-dimensional structures of the data.

In the next sections we introduce two widely-used models for low rank decomposition

on tensors: the Tucker decomposition (Section 2.4.1.1) and the PARAFAC decomposition

(Section 2.4.1.2). Other approaches were also developed [3, 45, 76] and usually they are

classified as alternative models (see Figure 2.10). The reader may refer to [3, 45, 76, 99] for

a deep literature review on tensor methods. We suggest the reader to refer to Appendix A

for a summarized overview of mathematical notations and symbols used for tensors. The

reader can also refer to Appendix C for an introduction on tensors, their properties and their

operations.
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Figure 2.11: Illustration of a Tucker model for a third-order tensor. A third-order

tensor is decomposed as the sum of a low-rank tensor (a core tensor multiplied by its

factor matrices) and a residual tensor. Image adapted from [3, 99].

2.4.1.1 Tucker decomposition

The Tucker decomposition can be considered as a form of higher-order principal component

analysis. It decomposes a tensor into a small tensor, named core tensor, multiplied by a matrix

along each mode [99] (please refer to Figure 2.11 for a better illustration). For an N -order

tensor X ∈ R
I1×I2×...×IN , the Tucker model is formulated as:

X = G ×N
i=1 Ui + E (2.19)

where G ×1 U1 ×2 U2 . . . ×N UN is the Tucker model, G ∈ R
r1×r2×...×rN represents

the core tensor, Ui ∈ R
Ii×ri are the factor matrices along the N modes, r1 × r2 × . . . ×

rN represents the rank of each mode, and E contains the residuals. Unlike the SVD for

matrices, the core tensor G does not always result in a diagonal tensor. The columns of

Un are the principal components of the n-mode fibers on X . For a third-order tensor, the

core tensor of minimal size is defined by r1 (the column rank), r2 (the row rank), and r3
(the tube rank). In other words, the multi-linear rank of an N -order tensor is represented by

an N -tuple (r1, r2, . . . , rN ). The Tucker decomposition is also considered as a non-convex

optimization problem. Several algorithms were developed to solve the Tucker model and the

most popular are based on the Alternating Least Squares (ALS) framework [99], also named

as Tucker-ALS. However, the ALS method is not guaranteed to converge to a global optimal.

In Goldfarb and Qin [72], the authors solve the Tucker model under a convex optimization

framework by using an alternating direction augmented Lagrangian (ADAL) method, also

named as Tucker-ADAL.

Some authors [3, 104, 105] considered the Tucker model as the generalization of SVD to

higher-order tensors8. Lathauwer et al. [104, 105] presented a Tucker model (also named as

Tucker3) with orthogonality constraints on the components, and this approach is frequently

referred to as Higher-Order Singular Value Decomposition (HOSVD). The HOSVD is com-

puted by flattening the tensor in each mode and calculating the singular vectors corresponding

to its mode. In other words, it considers the tensor as multiple matrices and forces the un-

8Is important to note that, unfortunately, there does not exist a higher order SVD that inherits all

the properties of the matrix SVD [3, 99, 210, 211].
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Figure 2.12: Illustration of the CP decomposition of a third-order tensor as the sum

of rank-1 tensors ur1 ◦ur2 ◦ur3 for r ∈ {1, 2, . . . , R}. Image adapted from [3,99].

folding matrix along each mode of the tensor to be low rank as follows:

X =
N∑

n=1

U[n]Σ[n]V[n]T + E (2.20)

where U[n]Σ[n]V[n]T represents the SVD applied in the n-mode matricized tensor X [n] (see

Appendix C). This approach is usually referred to as Multilinear SVD [45, 104]. A major

difference between SVD and HOSVD is that SVD represents a matrix as a sum of rank-one

matrices, while HOSVD does not have this property.

2.4.1.2 CANDECOMP/PARAFAC decomposition

CANDECOMP/PARAFAC(CP)-decomposition can be seen as a special case of the Tucker

model, where the core tensor is superdiagonal and the number of components in the factor

matrices is the same [99]. The CP-decomposition expresses a tensor as the sum of a finite

number of rank-one tensors (please refer to Figure 2.12). Given an N order tensor X , the R-

component CP model (also referred to as canonical decomposition) results into the following

optimization problem:

X =
R∑

r=1

ur1 ◦ ur2 ◦ ur3 = U1 ◦U2 . . . ◦UR + E (2.21)

where ◦ denotes the outer product, Ui ∈ R
Ii×R, U1 ◦U2 . . .◦UR represents the PARAFAC

model, and E contains the residuals. Differently from the matrix case, the rank of a tensor is

a NP-hard problem [82, 99]. In practice, the rank of a tensor is determined numerically by

fitting several rank-R CP models. It is important to note that the best rank-R approximation

of a tensor of a rank higher than R is not guaranteed [45, 53]. In general, to compute the

rank-R CP model in the presence of noise, the Frobenius norm of the difference between the

data tensor and its CP approximation is minimized as follows:

minimize
L

1

2
||X − L||2F , (2.22)

where L = U1 ◦ U2 . . . ◦ UR. Usually the PARAFAC model is considered to be the

method closest to SVD for matrices, because it decomposes an N -order tensor as the sum
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Figure 2.13: Extending robust principal component analysis on a third-order tensor.

of rank-one tensors. In general, the algorithms for solving the PARAFAC model use the

ALS framework due to its simplicity. These algorithms were also named as CP-ALS. In

the CP-ALS, each component matrix is optimized at a time, keeping the other component

matrices fixed [45, 99]. Algorithms based on closed form solutions and gradient methods

have also been proposed [202]. Other authors, e.g. Xu and Yin [236], imposed additional

structure on the coefficients of the CP decomposition, such as non-negativity. In Zhou et

al. [254], the authors proposed an accelerated and online algorithm for fitting the PARAFAC

model. Their method achieves the solution much faster than the traditional PARAFAC solved

by ALS. Algorithms for solving the PARAFAC model with missing entries were also pro-

posed [201,243,252]. In Chapter 3, we investigate a particular problem of background model

initialization. Not only matrix-based completion methods are evaluated, but also the recent

approaches for tensor completion. We address the problem of background model initializa-

tion as a reconstruction problem from missing/corrupted data.

2.4.2 Robust Principal Component Analysis on tensors

In the last few years, some authors [72, 115, 128, 182, 204] extended the Robust PCA frame-

work to the multilinear case. Basically, the RPCA for matrices was reformulated into its

“tensorized” version. For an N -order tensor X , it can be decomposed as:

X = L+ S + E , (2.23)

where L,S and E represent the low-rank, sparse and noise tensors, respectively (please see

Figure 2.13). Similarly to the matrix-case, problem (2.23) can be rewritten as the following

optimization problem:

minimize
L,S

rank(L) + card(S)

subject to X = L+ S.
(2.24)

Due to the intractability of problem (2.24), the rank(.) and card(.) are replaced by their

convex envelopes, such as nuclear norm and the element-wise ℓ1-norm. However, differently

from matrices, the rank of a tensor is known to be NP-hard to compute. It is usually replaced

by the tensor n-rank.

Definition 2.1. (Tensor n-rank). Let X ∈ R
I1×I2×...×IN be an N -th order tensor. The n-

rank of X , denoted as rankn(X ), is defined as the number of linearly independent n-mode

fibers of X by
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rankn(X ) = rank(X[n]) (2.25)

For matrices, rank(X) = rank(XT). However, for a N -th order tensor this is not true. The

convex envelope of a rankn(X ) = rank(X[n]) is replaced by ||X[n]||∗. Given an N -order

tensor X , its nuclear norm can be generalized as follows:

||X ||∗=
N∑

n=1

||X[n]||∗. (2.26)

Equation (2.26) represents the Sum of Nuclear Norms (SNN) [122] also referred to as tensor

trace norm. So, replacing the rank(.) by SNN and card(.) by ℓ1-norm in Equation (2.24),

the tensor RPCA can be described by the following optimization problem:

minimize
L,S

N∑

n=1

||L[n]||∗+λ||S||1

subject to X = L+ S.
(2.27)

This formulation, first introduced in Li et al. [115], was also extended to the Stable PCP

problem:

minimize
L,S

N∑

n=1

||L[n]||∗+λ||S||1

subject to ||X − L − S||2F≤ ǫ,

(2.28)

resulting in a stable recovery of L and S . Li et al. [115] proposed a multilinear extension

of the PCP and SPCP problem to the tensor case. The tensor is decomposed into a low di-

mensional structure plus additive (sparse) component. Their method, named Rank Sparsity

Tensor Decomposition (RSTD), employs the alternating direction method (ADM) for the op-

timization, leading to a block coordinate descent (BCD) algorithm. Some computer vision

applications, such as image restoration, BS and face recognition, were also addressed [115].

Subsequently, Tran et al. [204] proposed a tensor-based method for video anomaly detection,

applying the Stable PCP decomposition in each tensor mode. The proposed method uses

the IALM framework [38] for each unfolded matrix of a tensor to determine which frames

are anomalous in a video. Next, Tan et al. [192] proposed a method, named Low-n-rank Ten-

sor Recovery Based on Multi-linear Augmented Lagrange Multiplier Method (LTR-MALM),

to overcome the slowly convergence of the previous algorithm [115]. A new minimization

method based on augmented Lagrange multiplier method (ALM) is used. The authors showed

in the experimental results that the LTR-MALM algorithm is at least several times faster than

the RSTD algorithm, while their results are comparable in terms of accuracy. Moreover, Don-

ald and Qin [72] developed a rich framework with several variants of Higher-Order RPCA

(HORPCA) methods for robust tensor recovery. Convergence guarantee and proofs of each

method were also addressed. Recently, Zhao et al. [253] proposed a Robust Bayesian Tensor

Factorization (BRTF) scheme for incomplete tensor completion data. BRTF provides a fast

multi-way data convergence but tuning of annoying parameters and batch processing are the



2.5. Conclusion 31

major difficulties of this approach. Finally, Lu et al. [128] proposed a new approach for ro-

bust PCA on tensors. Their model is based on a new tensor Singular Value Decomposition

(t-SVD) method developed by [97, 251]. t-SVD is the best close representation of SVD for

third order tensors, decomposing X = U ∗ S ∗ VT .

2.5 Conclusion

In summary, we presented an overview of the state-of-the-art methods for low-rank and sparse

decomposition, as well as their application to the problem of background/foreground separa-

tion. The methods were unified in a more general framework, named DLSM, that categorizes

the matrix separation problem into three main approaches: implicit, explicit and stable. In

addition, we presented the matrix separation problem from a single low dimensional subspace

to a union of low-dimensional subspaces, introducing the subspace clustering approach. We

also showed its adequacy to the problem of background/foreground separation by cluster-

ing motion trajectories. Finally, we extended the matrix case to the tensor case for handling

multidimensional data.
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Chapter 3

Background model initialization via

matrix and tensor completion

In this chapter, we investigate the problem of background model initialization as a reconstruc-

tion problem from missing/corrupted data. This problem can be formulated as a matrix or

tensor completion task where the image sequence (or video) is revealed as partially observed

data. This work is based on our publication (SBMI/ICIAP, 2015, [178]), and on its extended

version for tensors (PRL, 2016, [184]). In addition, the majority of matrix and tensor comple-

tion algorithms presented here were made publicly available in the LRS library [180]1 (see

Appendix D).

3.1 Introduction

As outlined in Chapter 1, background model initialization is commonly the first step of the

BS process. It typically consists of creating a background model that best represents the

scene background. In a simple way, this can be done by manually setting a static image that

represents the background. Indeed, it is often assumed that initialization can be achieved

by exploiting some clean frames at the beginning of the sequence, and the scene here is

assumed to be stationary or quasi stationary. Naturally, this assumption is rarely encountered

in real-life scenarios, because of continuous clutter presence. In addition, this procedure

presents several limitations, because it needs a fixed camera with constant illumination, and

the background needs to be static (commonly in indoor environments), and having no moving

object in the first frames. In practice, several challenges appear and perturb this process, such

as noise acquisition, bootstrapping, dynamic factors, etc. [25, 135].

The main challenge is to obtain a first background model when video frames contain

foreground objects. Some authors perform the initialization of the background model by the

arithmetic mean [102] (or weighted mean) of the pixels between successive images. Prac-

1LRSLibrary: https://github.com/andrewssobral/lrslibrary

33
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Figure 3.1: Proposed approach to background model initialization: given an input

image, a joint motion-detection and frame-selection operation is applied. Next, a

low-rank reconstruction process recovers the background model from the partially

observed data.

Table 3.1: Classification of background model initialization methods according to

Bouwmans et al. [25]. The approaches presented in this chapter are in bold face.

Type of methods Related works

Temporal Statistics Mean, Color Median, MoG [186, 262], KNN [263], BE-AAPSA [163]

Subintervals of Stable Intensity WS2006 [220], IMBS-MT [21], LaBGen [106]

Model Completion RSL2011 [166]

Optimal Labeling Photomontage [4]

Subspace Estimation Eigen [151], RSL [52], RPCA [38]

Missing Data Reconstruction Matrix Completion [178], Tensor Completion [184]

Neural Networks SC-SOBS [134], BEWiS [51]

tically, some algorithms are: (1) batch, using n training frames (consecutive or not), (2)

incremental with known n or (3) progressive with unknown n, as the process generates par-

tial backgrounds and continues until a complete background image is obtained. Furthermore,

initialization algorithms depend on the number of background modes and the complexity of

their background models. However, BS initialization has also been achieved by many other

methodologies [24, 25, 135].

In 2014, Maddalena and Petrosino [135] initiated a first survey on background initial-

ization models. This survey was extended in Maddalena and Petrosino [136] by adding

new methods. Moreover, the authors assembled a dataset, named SBI 2015, consisting of

sequences frequently adopted for background initialization. Second, a more complete sur-

vey was developed in Bouwmans et al. [25] by adding new methods and extending the SBI

2015 dataset. The main investigations used methods based on temporal statistics [163, 186,

262, 263], subintervals of stable intensity [21, 106, 220], model completion [166], optimal

labeling [4], subspace estimation [38, 52, 151], and neural networks [51, 134]. Table 3.1

summarizes the type of methods according to the taxonomies presented in [25]. Concerning

the works based on subspace learning (related to this chapter), we can cite for example the

computation of eigen values and eigen vectors [151], and the robust subspace learning ap-

proach proposed by De La Torre and Black [52]. However, the recent research on subspace

estimation by sparse representation and rank minimization [28] has been showing a suitable

framework for background modeling. The background model is recovered by the low-rank

subspace that can gradually change over time, while the moving foreground objects constitute

the correlated sparse outliers.
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3.2 Proposed methodology

In this chapter, we present a novel methodology for background model initialization, clas-

sified as Missing Data Reconstruction in Table 3.1. The initialization of the background

model is addressed as a reconstruction problem from missing data. Indeed, this problem can

be formulated as a matrix or tensor completion task, where the image sequence (or video)

is revealed as partially observed data. The missing entries are induced from the moving

regions through a simple joint motion-detection and frame-selection operation. The redun-

dant frames are eliminated, and the moving regions are represented by zeros in our obser-

vation model. The second stage involves evaluating twenty-three state-of-the-art algorithms

including thirteen matrix completion and ten tensor completion algorithms. These algorithms

aim to recover the low-rank component (or background model) from partially observed data.

All experiments were performed by using the SBI dataset proposed by Maddalena and Pet-

rosino [136]2. Figure 3.1 shows the proposed framework. In this chapter, the processes

described here are conducted in a batch manner.

3.2.1 Joint motion detection and frame selection

The elimination of redundant frames is an important step for a fast low-rank reconstruc-

tion process, removing the irrelevant information and decreasing the high computational cost

of some matrix and tensor based methods. All algorithms evaluated in this thesis (except

GROUSE) are batch methods, requiring all frames to be vectorized and stored in a column

vector from a big matrix (usually, frame resolution× number of frames) before optimization.

Given a sequence of images, in order to reduce the number of redundant frames, a simple

joint motion-detection and frame-selection operation is applied. First, the color images are

converted into their gray-scale representation. So, let a sequence of n gray-scale images

(frames) F1 . . .Fn captured from a static camera, that is, F ∈ R
I1×I2 where I1 and I2

denote the frame resolution (rows by columns). The difference between two consecutive

frames (motion detection step) is calculated by:

Dt =

{
0 if t = 1
√

(Ft − Ft−1)2 otherwise
, (3.1)

where t = 1, . . . , n, 0 ∈ R
I1×I2 denotes a zero matrix3 and Dt ∈ R

I1×I2 denotes the matrix

of pixel-wise L2-norm differences from frame t− 1 to frame t. Next, the sum of all elements

of Dt is stored in a data vector d ∈ R
n whose t-th element is given by:

dt =

I1∑

x=1

I2∑

y=1

Dt(x, y), (3.2)

where Dt(x, y) is the matrix element located in the row x ∈ [1, . . . , I1] and column y ∈

2http://sbmi2015.na.icar.cnr.it/SBIdataset.html
3A matrix with all its entries being zero.
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Table 3.2: Number of selected frames after the frame-selection process.

# Sequence Frames Selected Reduction τ

1 Board 228 64 71.93% 0.125

2 Candela m1.10 350 84 76.00% 0.100

3 CAVIAR1 610 88 85.57% 0.100

4 CAVIAR2 460 83 81.96% 0.125

5 CaVignal 258 65 74.81% 0.125

6 Foliage 394 68 82.74% 0.600

7 Hall&Monitor 296 94 68.24% 0.075

8 HighwayI 440 59 86.59% 0.100

9 HighwayII 500 49 90.20% 0.075

10 HumanBody2 740 86 88.38% 0.050

11 IBMtest2 90 33 63.33% 0.100

12 People&Foliage 341 55 83.87% 0.100

13 Snellen 321 70 78.19% 0.125

14 Toscana 6 6 0.00% -

[1, . . . , I2]. Then, the data vector d is normalized between 0 and 1 by:

d̄ = norm(d) =
d−min(d)

max(d)−min(d)
, (3.3)

where min(d) and max(d) denote the minimum and the maximum value of the vector, re-

spectively. The frame-selection step is done by calculating the derivative of d̄ by:

d′ =
d

dt
d̄, (3.4)

Next, the vector d′ is also normalized as in Equation (3.3). Finally, the index of the more

relevant frames is obtained by thresholding d̄
′
:

v =

{
1 if |d̄′ − µ′| > τ

0 otherwise
, (3.5)

where µ′ denotes the mean value of the vector d̄
′
, and τ ∈ [0, 1] controls the threshold

operator. In this chapter, ṅ ≤ n represent the set of all frames where v = 1, and the parameter

τ was chosen empirically for each scene. Figure 3.2 illustrates the frame selection operation

in HallAndMonitor scene. The normalized vector (in blue) shows the difference between two

consecutive frames. The derivative vector (in red) draws how much the normalized vector

changes. Then, it is thresholded and the more relevant frames are selected (in orange). For

this example, with τ = 0.075, only 94 relevant frames are selected from a total of 296 frames

(68, 24% of reduction). Table 3.2 shows the number of selected frames after frame selection

process for the SBI dataset. As it can be seen, an average of 80% of reduction was achieved

for each scene. The Toscana scene was ignored, due to its small amount of frames.



3
.2

.
P

ro
p

o
sed

m
eth

o
d

o
lo

g
y

3
7

Frames

0 50 100 150 200 250 300

D
if

fe
re

n
c

e
 b

e
tw

e
e

n

c
o

n
s
e

c
u

ti
v

e
 f

ra
m

e
s

0

0.2

0.4

0.6

0.8

1

Frame Selection

vector d normalized derivative of vector d selected frames

Figure 3.2: Illustration of the frame-selection operation.



3
8

B
A

C
K

G
R

O
U

N
D

M
O

D
E

L
IN

IT
IA

L
IZ

A
T

IO
N

10 20 30 40 50 60 70 80 90

1

2

3

4

5

6

7

8

×10
4

10 20 30 40 50 60 70 80 90

1

2

3

4

5

6

7

8

×10
4

10 20 30 40 50 60 70 80 90

1

2

3

4

5

6

7

8

×10
4

10 20 30 40 50 60 70 80 90

1

2

3

4

5

6

7

8

×10
4

Figure 3.3: Illustration of the low-rank reconstruction process. From top to bottom:

matrix-based and tensor-based completion process. From left to right: a) the selected

frames, b) the moving regions are represented by non-observed entries (black pixels),

c) the moving regions filled with zeros, and d) the recovered data after low-rank

reconstruction process.
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3.2.2 Low-rank reconstruction from missing data

In this section the low-rank reconstruction is addressed from two points of view: matrix

completion (MC) and tensor completion (TC). First, we start with a matrix concept of the

completion process in Section 3.2.2, and next we describe a generalized concept with ten-

sors in Section 3.2.2, providing brief descriptions of the methods adopted for the evaluation

(Section 3.3).

The matrix completion case

As explained previously in Chapter 2, MC aims to recover a low rank matrix from partial

observations of its entries. In recent years, several methods for low-rank matrix recovery have

been proposed. Basically, they are divided into two categories based on their approaches to

modeling the low-rank prior [259]. The first approach is to minimize the rank of the input

matrix subject to some constraints. The second approach is to factorize the input matrix as

the product of two factor matrices; the rank of the input matrix is upper bounded by the ranks

of the factor matrices.

Matrix completion by rank minimization A direct approach to recover a low-rank

matrix is to find a matrix L ∈ R
m×n with minimum rank that best approximates the matrix

A ∈ R
m×n, as reported in Section 2.2.1, Equation (2.7). Candès and Recht [40] showed that

this problem can be formulated as:

minimize
L

rank(L),

subject to PΩ(L) = PΩ(A),
(3.6)

where rank(L) indicates the rank of the matrix L, and PΩ denotes the sampling operator

restricted to the elements of Ω (set of observed entries), i.e., PΩ(A) has the same values as A

for the entries in Ω and zero values for the entries outside Ω. Candès and Recht [40] proposed

to replace the rank(.) function with the nuclear norm:

minimize
L

||L||∗,

subject to PΩ(L) = PΩ(A),
(3.7)

where ||L||∗=
∑r

i=1 σi such that σ1, σ2, ..., σr are the singular values of L and r is the rank

of L. The nuclear norm makes the problem tractable and Candès and Recht [40] proved theo-

retically that the solution can be exactly recovered with a high probability. In addition, Cai et

al. [37] proposed an algorithm based on soft Singular Value Thresholding (SVT) to solve this

convex relaxation problem. However, in real world applications the observed entries may be

noisy. In order to make the problem (3.7) robust to noise, Candès and Plan [39] proposed a

stable matrix completion approach relaxing the equality constraint by:

minimize
L

1

2
||PΩ(L)− PΩ(A)||2F+λ||L||∗, (3.8)
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where ||.||F denotes the Frobenious norm and the parameter λ controls the rank of L. The

selection of λ should depend on the noise level [39].

A few recent works used an online formulation for matrix completion [15, 80, 127]. On-

line algorithms are useful because they are faster and need less storage compared to most

batch techniques. In He et al. [80], the authors introduce GRASTA (Grassmannian Ro-

bust Adaptive Subspace Tracking Algorithm), an online robust subspace tracking algorithm

that operates on highly subsampled data. In Balzano and Wright [15], the authors present

GROUSE (Grassmanian Rank-One Update Subspace Estimation), a subspace identification

and tracking algorithm that builds high quality estimates from very sparsely sampled vec-

tors. In Lois and Vaswani [127], the authors introduce the ReProCS (Recursive Projected

Compressive Sensing) algorithm for both online MC and online RPCA.

Matrix completion by matrix factorization Instead of minimizing rank, another ap-

proach for performing MC is through matrix factorization (MF). MF methods decompose the

matrix A ∈ R
m×n as the product of two factor matrices: A = WHT , where W ∈ R

m×r,

H ∈ R
n×r, and r controls the rank of W and H. Therefore, if r is small, A has a

small rank. Using matrix factorization to model a low-rank matrix is based on the fact that

rank(WHT) ≤ min(rank(W), rank(H)). The problem of recovering a low-rank matrix

can be converted into estimating two factor matrices W and H. In the case of missing values,

the factorization-based methods for MC aim to solve the following optimization problem:

minimize
1

2
||PΩ(A)− PΩ(WHT)||2F . (3.9)

A straightforward approach to solve the problem (3.9) is by minimizing the function over

W or H alternately, fixing the other one. Each subproblem of estimating W or H turns

into a least-squares problem, which admits a closed-form solution. Algorithms of this type

have been well studied in many works in the recent matrix recovery literature [87, 193]. For

example, the matrix completion solver LMaFit [227] also adopted the alternating strategy to

solve the following equivalent form of the problem (3.9):

minimize
1

2
||Z−WHT||2F ,

subject to PΩ(Z) = PΩ(A),
(3.10)

where Z is an auxiliary variable. Additionally, LMaFit integrates a nonlinear successive

over-relaxation scheme to accelerate the convergence of alternation.

Nonnegative factors Non-negative Matrix Factorization (NMF) is a special case of

the traditional MF, where the factor matrices W and H have no negative elements. The

non-negativity makes the resulting matrices easier to inspect4, as in many applications (e.g.

images, texts, etc.) the data is non-negative. However, NMF is an NP-hard problem that

requires to impose additional assumptions (e.g. lowrankness, convexity, etc.) on the data

4NMF learns a parts-based representation of the data, whereas PCA learn holistic representa-

tions [108].
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points in order to reduce the original NMF to a tractable problem. In the literature, some

authors [237,255] have addressed the non-negativity and low-rank completion to take the ad-

vantages of both, obtaining superior results than those of just using one of the two properties.

Randomized decomposition The factorization of large matrices becomes expensive

and sometimes impractical for the traditional (deterministic) MF algorithms. In recent years,

some authors focused on modern randomized matrix approximation techniques [78]. These

algorithms use random sampling to identify a subspace that captures most of the underlying

information of a matrix. Instead of computing the SVD of the whole matrix A, the random-

ized low-rank SVD [61, 228] consists of computing a rank-r approximation of A, such that

A ≈ QQTA, where Q ∈ R
m×r is orthonormal representing the economic QR decompo-

sition5 of AΩ = QR such that Ω ∈ R
m×r is a random sub-Gaussian6 matrix. Then, the

algorithm efficiently computes the SVD of a relatively small matrix B = QTA. Zhou and

Tao [257] proposed a fast alternative way, named Bilateral Random Projections (BRP), that

avoids the SVD for large matrices. The effectiveness and the efficiency of BRP was verified

in the GoDec [256], SSGoDec [256] and GreGoDec [258] algorithms for low-rank matrix

approximation and completion. Given r bilateral random projections of a m × n dense ma-

trix A, the low-rank approximation L can be rapidly built by L = Y1(X
T
2 Y1)

−1YT
2 , where

Y1 = AX1, Y2 = ATX2, and X1 ∈ R
n×r and X2 ∈ R

m×r are random matrices.

Riemannian optimization Another widely-used regularization strategy in low-rank

matrix factorization is to constrain the search space and optimize over manifolds. Keshavan

et al. [96] proposed to solve the following matrix completion problem:

minimize
1

2
||PΩ(A)− PΩ(WΣHT)||2F ,

subject to W ∈ Gr(r,m),H ∈ Gr(r, n),Σ ∈ R
r×r,

(3.11)

where Gr(r, p) denotes the set of r-dimensional subspaces in R
p, which forms a Riemannian

manifold, named Grassmannian. Keshavan et al. [96] proposed an algorithm named OptSpace

to iteratively estimate the factor matrices, where W and H are updated by gradient descent

over the Grassmannian, while Σ is updated by least squares.

Instead of exploring the geometries of search spaces of factor matrices, Vandereycken [209]

proposed to directly optimize a function over the set of fixed-rank matrices:

minimize
L

1

2
||PΩ(A)− PΩ(L)||2F ,

subject to A ∈Mr,
(3.12)

where Mr denotes the set of rank-r matrices in ∈ R
m×n, which forms a smooth manifold.

Vandereycken [209] developed a conjugate gradient descent algorithm named LRGeomCG

5If A is an m-by-n matrix with m > n, then QR computes only the first n columns of Q and the

first n rows of R.
6A sub-Gaussian distribution is a probability distribution with strong tail decay property [33].



42 BACKGROUND MODEL INITIALIZATION

Table 3.3: List of MC algorithms evaluated for BM initialization.

Type Method Main techniques Author(s)

RM
IALM Augmented Lagrangian Lin and Wei (2010) [118]

RMAMR Augmented Lagrangian Ye et al. (2015) [241]

MF

SVP Hard thresholding Jain et al. (2010) [87]

OptSpace Grassmannian Keshavan et al. (2010) [96]

MC-NMF Non-negative factors Xu et al. (2012) [237]

LMaFit Alternating Wen et al. (2012) [227]

ScGrassMC Grassmannian Ngo and Saad (2012) [148]

LRGeomCG Riemannian Vandereycken (2013) [209]

GROUSE Online algorithm Balzano and Wright (2013) [15]

OR1MP Matching pursuit Wang et al. (2015) [224]

GoDec Randomized Zhou and Tao (2011) [256]

SSGoDec Randomized Zhou and Tao (2011) [256]

GreGoDec Randomized Zhou and Tao (2013) [258]

RM - Rank Minimization

MF - Matrix Factorization

to efficiently optimize any smooth function over Mr.

Background modeling through matrix completion

Considering the background model initialization as a matrix completion problem, once the

frame-selection process is done, the moving regions of the ṅ frames, selected in the previous

step (see Section 3.2.1), are determined by:

Mk = thresh(Dk) =

{
1 if 0.5(Dk)

2 > β

0 otherwise
, (3.13)

where k ∈ {1, . . . , ṅ}, thresh(.) denotes a thresholding function, Dk is computed as in

Equation (3.1) using only the ṅ selected frames and β is a thresholding parameter (in this

chapter, β = 1e−3 for all experiments). Next, the moving regions of each selected frame

are filled with zeros by Fk ◦Mk, where Mk denotes the complement of Mk, and ◦ de-

notes the element-wise multiplication of two matrices. For color images, each channel is

processed individually, then they are vectorized into a partially observed real-valued matrix

A = [vec(F1) . . . vec(Fṅ)], where A ∈ R
m×n, m = (I1 × I2), and n = ṅ. Figure 3.3 (top)

illustrates our matrix completion process. It can be seen that the partially observed matrix

can be recovered successfully even with the presence of many missing entries. So, let L be

the recovered matrix from the matrix completion process, the background model is estimated

by calculating the average value of each row, resulting in a vector l ∈ R
m, and then reshaped

into a matrix B ∈ R
I1×I2 .
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Table 3.4: List of TC algorithms evaluated for BM initialization.

Type Method Main techniques Author(s)

CP
NCPC Non-negative factors Xu and Yin (2013) [236]

BCPF Bayesian CP Factorization Zhao et al. (2015) [252]

TenALS Alternating Jain et al. (2014) [88]

SPC Smooth PARAFAC Yokota et al. (2016) [243]

TD

HoRPCA-IALM Augmented Lagrangian Goldfarb and Qin (2014) [72]

FaLRTC Trace norm Liu et al. (2013) [122]

geomCG Riemannian Kressner et al. (2013) [100]

TMac Alternating Xu et al. (2015) [235]

t-SVD Fourier domain Zhang et al. (2014) [251]

t-TNN Nuclear norm Hu et al. (2015) [84]

CP - CANDECOMP/PARAFAC decomposition.

TD - Tucker decomposition / HOSVD / N-mode SVD.

The tensor completion case

Differently from previous matrix-based methods that consider the image as a vector, so that

the local spatial information is almost lost, some authors use a tensor representation to solve

this low-rank reconstruction problem. Tensor decompositions have been widely studied and

applied to many real-world problems [76, 99, 132]. As outlined in Chapter 2, Section 2.4,

CP decomposition and Tucker decomposition are two widely-used low rank decompositions

of tensors. Today, the Tucker model is better known as the Higher-Order SVD (HOSVD)

from the work of Lathauwer et al. [105]. The HOSVD of a tensor X can be seen as the

generalization of the matrix SVD, which involves the matrix SVDs of its unfolding matrices.

In general, the low-rank completion for tensors is formulated as the following optimization

problem:

minimize
L

rank(L),

subject to PΩ(L) = PΩ(X ),
(3.14)

where L ∈ R
I1×I2×...×IN is a tensor with minimum rank that best approximates the tensor

X . However, similarly to the matrix case, the optimization problem (3.14) is a non-convex

optimization problem. This is commonly solved through trace norm optimization by:

minimize
L

||L||∗,

subject to PΩ(L) = PΩ(X ).
(3.15)

For a general tensor case, the definition of the trace norm is represented by a combination of

the trace norms of all matrices unfolded along each mode as:

||X ||∗=
N∑

i=1

αi||X [i]||∗, (3.16)
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where αi’s are constants satisfying αi ≥ 0 and
∑N

i=1 αi = 1. However, unlike in the matrix

case, computing the rank of a general tensor (N > 2) is an NP hard problem [82]. In tensor

literature [76], three non-convex ways to deal with tensor completion problem can be found:

Tucker A natural approach is to analyze the tensor completion problem through Tucker

model, introduced in Chapter 2 (see Section 2.4.1.1), in such a way that:

minimize
L

1

2
||X − L||2F ,

subject to PΩ(L) = PΩ(X ).
(3.17)

where L = G ×1 U1 ×2 U2 . . .×N UN is the Tucker model, G ∈ R
r1×r2×...×rN represents

the core tensor, Ui ∈ R
Ii×ri are the factor matrices along the N modes and r1 × r2 ×

. . . × rN represents the rank of each mode. This can be solved by block coordinate descent

method by iteratively optimizing two blocks X and G,U1, . . . ,UN . Similar to the matrix

case, approaches based on Riemannian optimization were also used for tensor completion

problems. In Kasai and Mishra [95], the authors developed a novel Riemannian metric and

explore the symmetry structure in Tucker decomposition.

CANDECOMP/PARAFAC A second approach is to use the CP model, introduced

in Chapter 2 (see Section 2.4.1.2), resulting in the following optimization problem:

minimize
L

1

2
||X − L||2F ,

subject to PΩ(L) = PΩ(X ).
(3.18)

whereL = U1◦U2 . . .◦UN , ◦ denotes the outer product, Ui ∈ R
Ii×r, and U1◦U2 . . .◦UN

represents the PARAFAC model and r represents the rank of the model. An alternative

to the canonical tensor decomposition is the Tensor-Train (TT) format introduced by Os-

eledets [153]. Recent work employing TT in the context of tensor completion was released

by Grasedyck et al. [75]. TT format offers a number of advantages over the canonical decom-

position, and it is therefore attractive to consider its application to function approximation.

Tucker3 or Higher-Order SVD A third alternative is to consider the tensor as mul-

tiple matrices and force the unfolding matrix along each mode of the tensor to be low rank,

(see Tucker model in Chapter 2, Section 2.4.1.1), as follows:

minimize
L

1

2

N∑

i=1

αi||X [i] − L[i]||2F ,

subject to PΩ(L) = PΩ(X ).

(3.19)

where αi’s are constants satisfying αi ≥ 0 and
∑N

i=1 αi = 1. This approach is also known

as matrix SVD adapted for tensors. Recently Kilmer and Martin [97] and Zhang et al. [251]

proposed a real representation of SVD for third order tensors called t-SVD (Tensor Singular
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Value Decomposition). For a tensor X ∈ R
I1×I2×I3 , its SVD is formulated by X = U ∗ S ∗

VT , where U ∈ R
I1×I1×I3 and V ∈ R

I2×I2×I3 are orthogonal tensors, and S ∈ R
I1×I2×I3 is

a rectangular f -diagonal tensor (see Appendix C, Section C.4.3) and ∗ denotes the t-product

(see Appendix C, Section C.4.3).

A few recent works used non-convex functions instead of the nuclear norm as the surro-

gates of rank for rank minimization. Tomioka and Suzuki [203] proposed a structured version

of Schatten norms for tensors. The authors consider the following more general overlapped

Sp/q−norm defined by: ||X ||Sp/q= (
∑N

n=1||X [n]||qSp)
1/q , where ||X||Sp= (

∑r
i=1 σ

p
i )

1/p

is the Schatten p-norm for matrices. When p −→ 0 the minimization is intractable, and when

p = 1 turns out to be the nuclear norm. For non-convex cases: 0 < p < 1 [259].

3.3 Experimental results

In order to evaluate the proposed approach, twenty-three state-of-the-art low-rank reconstruc-

tion algorithms were selected. These algorithms include thirteen MC and ten TC algorithms,

and they are listed in Table 3.3 and in Table 3.4, respectively. The algorithms were grouped

into two categories, as well as their main techniques, following the same definition of Zhou et

al. [259]. The parameters of each method were tuned for each sequence, so that the estimated

background model is the best as possible.

Data set In this chapter, the SBI dataset7 [136] was chosen for the background ini-

tialization task. This dataset contains 14 image sequences and their corresponding ground

truth backgrounds. It provides also MATLAB scripts for evaluating background initialization

results in terms of six metrics8: 1) Average Gray-level Error (AGE), 2) Percentage of Error

Pixels (pEPs), 3) Percentage of Clustered Error Pixels (pCEPs), 4) Peak-Signal-to-Noise-

Ratio (PSNR), 5) Multi-Scale Structural Similarity Index (MS-SSIM), and 6) Color image

Quality Measure (CQM).

Methodology The algorithms are ranked as follows: 1) for each algorithm we calcu-

late its rank position for each metric (Metric Rank); Next, 2) we sum the value of the rank

position for each algorithm over the six metrics, and finally, 3) we calculate the rank position

over the sum, and we call it as Scene Rank. For the Global Rank, first we sum the Scene

Rank for each algorithm, then we calculate its rank position over the sum. MATLAB codes

are publicly available at https://github.com/andrewssobral/mctc4bmi

Quantitative analysis Tables 3.5 and 3.6 show the rank of MC and TC algorithms,

respectively, over the SBI dataset. Analyzing the scene rank of MC algorithms, LRGeomCG

was the top-1 in 9 over 14 scenes, becoming the first algorithm in the Global Rank of its

category. For TC algorithms, TMac was the top-1 in 11 over 14 scenes, becoming the first

7http://sbmi2015.na.icar.cnr.it/SBIdataset.html
8Please, refer to Maddalena and Petrosino [136] for a complete description of each metric.
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algorithm in the Global Rank of its category. In order to compare the best MC and the best

TC algorithms, Table 3.7 presents the top-5 matrix and top-5 tensor completion algorithms,

respectively, over the SBI dataset. As it can be seen, the first four best ranked algorithms

(headed by LRGeomCG) are based on the MC approach. This is an interesting factor be-

cause usually tensor-based methods are seen to be more robust for multidimensional data

completion in comparison to matrix-based methods. However, given that SBI dataset scenes

are based on RGB color images, this may not mean that they are multidimensional enough

for the power of TC methods. In order to provide more detailed results, Tables 3.8, 3.9, 3.10

and 3.11 present the quantitative results of the top-10 best algorithms over all scenes from the

SBI dataset. The results are ordered by the Scene Rank, and the Global Rank shows the best

ranked algorithms for all scenes. Finally, Table 3.12 summarizes the top-1 best algorithms

for each individual scene. The performance of tensor-based approaches has been highlighted

only on two scenes: Candela˙m1.10 by SPC and HallAndMonitor by t-TNN.

Qualitative analysis Figures 3.4 and 3.5 compare the background estimated by the

top-10 best ranked low-rank reconstruction algorithms. As it can be seen, almost all meth-

ods present similar visual results, except in some particular cases where the IALM method

presents some color divergence artifacts. These color artifacts are expected because the ma-

trix completion process is done for each color channel separately. The CQM can penalize

such color artifacts, however it is averaged with other five metrics, decreasing its importance.

Finally, we verified that for some scenes, in particular for Board, CAVIAR1, and CaVignal

(columns 1, 3 and 5 of Figure 3.4) all low-rank reconstruction algorithms failed to remove

some artifacts, showing some areas with shadings with different tones.
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Table 3.5: Scene rank and global rank of each MC method over SBI dataset.

Method

Scene Rank

Global RankBoard Candela m1.10 CAVIAR1 CAVIAR2 CaVignal Foliage HallAndMonitor HighwayI HighwayII HumanBody2 IBMtest2 PeopleAndFoliage Snellen Toscana

LRGeomCG 3 1 2 1 1 2 1 2 1 1 2 1 1 1 1

LMaFit 2 5 1 2 2 3 4 4 3 2 1 3 3 10 2

RMAMR 4 2 3 4 3 4 3 1 4 3 3 5 4 2 2

MC-NMF 6 8 3 2 5 6 6 6 5 5 6 2 5 2 4

IALM 1 3 13 13 4 5 2 3 1 6 12 6 7 4 5

ScGrassMC 5 10 5 5 6 8 5 8 6 4 7 4 6 7 6

GROUSE 8 4 12 11 7 1 7 5 7 8 5 7 2 11 7

GreGoDec 9 7 7 7 10 10 9 9 8 9 8 8 8 5 8

OR1MP 7 11 10 7 8 9 8 7 9 7 4 10 10 8 9

SSGoDec 13 9 9 6 11 11 11 10 10 10 10 12 9 6 10

GoDec 10 6 6 9 9 12 10 11 13 11 9 11 13 9 11

OptSpace 11 13 11 12 11 7 13 13 12 13 13 9 11 12 12

SVP 12 12 8 10 13 13 12 12 11 12 11 13 12 12 13

Table 3.6: Scene rank and global rank of each tensor completion method over SBI

dataset.

Method

Scene Rank

Global RankBoard Candela m1.10 CAVIAR1 CAVIAR2 CaVignal Foliage HallAndMonitor HighwayI HighwayII HumanBody2 IBMtest2 PeopleAndFoliage Snellen Toscana

TMac 1 5 1 1 1 1 3 1 1 1 1 1 1 3 1

SPC 2 1 2 2 5 3 6 3 3 2 2 2 3 1 2

t-SVD 2 3 5 4 4 2 2 2 2 3 3 3 2 4 3

t-TNN 4 4 6 6 6 4 1 5 4 5 4 5 4 2 4

FaLRTC 6 2 4 3 3 6 4 4 5 6 5 8 6 5 5

geomCG 4 9 2 4 2 10 9 10 9 4 9 3 9 9 6

BCPF 8 6 8 9 9 8 4 7 6 7 6 7 7 7 7

TenALS 7 7 9 7 8 5 8 6 8 9 8 6 5 6 7

NCPC 9 8 7 8 7 7 7 8 7 8 7 9 7 8 9

HoRPCA-IALM 10 10 10 10 10 9 10 9 10 10 10 10 10 10 10
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Table 3.7: Comparison of the top-5 matrix completion with the top-5 tensor com-

pletion methods over SBI dataset.

Method

Scene Rank

Global RankBoard Candela m1.10 CAVIAR1 CAVIAR2 CaVignal Foliage HallAndMonitor HighwayI HighwayII HumanBody2 IBMtest2 PeopleAndFoliage Snellen Toscana

M LRGeomCG 3 5 2 1 1 1 3 2 1 1 2 1 1 1 1

M LMaFit 2 8 1 2 2 2 6 4 3 2 1 2 2 10 2

M RMAMR 4 6 3 4 3 3 4 1 4 3 4 5 3 4 3

M MC-NMF 6 9 4 2 6 6 8 6 6 5 5 3 5 3 4

T TMac 5 10 5 6 4 5 7 5 5 4 3 4 4 7 4

M IALM 1 7 10 10 5 4 4 3 1 6 10 6 6 9 6

T SPC 7 1 6 5 9 8 10 8 8 7 6 7 8 2 7

T t-SVD 8 3 8 8 8 7 2 7 7 8 7 8 7 5 8

T t-TNN 9 4 9 8 10 9 1 10 9 9 8 9 9 5 9

T FaLRTC 10 2 7 7 7 10 9 9 10 10 9 10 10 8 10

M Matrix-based completion.

T Tensor-based completion.
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Figure 3.4: Part 1 - Visual comparison for the background model initialization over

the first 7 scenes of the SBI dataset. From top to bottom: 1) example of input frame,

2) background model ground truth, and background model results for the top 10 best

ranked low-rank recovery algorithms: 3) LRGeomCG, 4) LMaFit, 5) RMAMR, 6)

MC-NMF, 7) TMac, 8) IALM, 9) SPC, 10) t-SVD, 11) t-TNN, and 12) FaLRTC.
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Figure 3.5: Part 2 - Visual comparison for the background model initialization over

the last 7 scenes of the SBI dataset. From top to bottom: 1) example of input frame,

2) background model ground truth, and background model results for the top 10 best

ranked low-rank recovery algorithms: 3) LRGeomCG, 4) LMaFit, 5) RMAMR, 6)

MC-NMF, 7) TMac, 8) IALM, 9) SPC, 10) t-SVD, 11) t-TNN, and 12) FaLRTC.
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Table 3.8: Part 1 - Quantitative results of the top-10 low-rank reconstruction algo-

rithms over SBI dataset.

Board

Method AGE pEPs pCEPS MSSSIM PSNR CQM Scene Rank

MIALM 16.0145 29.0732 22.6921 0.6704 21.2760 45.3854 1

MLMaFit 18.8825 35.9543 27.5213 0.6754 20.1326 43.7285 2

MLRGeomCG 18.8829 35.9543 27.5213 0.6754 20.1325 43.7282 3

MRMAMR 18.9599 36.1311 27.6463 0.6752 20.1081 43.6978 4

T TMac 19.0408 36.2409 27.8293 0.6726 20.0735 43.7571 5

MMC-NMF 20.5415 39.8140 31.5610 0.6382 19.5552 43.3572 6

T SPC 24.2711 46.6494 37.8201 0.6181 18.4161 42.9340 7

T t-SVD 24.6558 47.7927 39.5244 0.6183 18.3139 43.1752 8

T t-TNN 24.8947 48.3994 40.0396 0.6162 18.2481 43.2070 9

T FaLRTC 25.0577 48.6067 40.3171 0.6165 18.1905 43.1227 10

Candela m1.10

Method AGE pEPs pCEPS MSSSIM PSNR CQM Scene Rank

T SPC 1.6942 0.2180 0.1263 0.9930 39.4553 51.9223 1

T FaLRTC 1.8368 0.5455 0.3630 0.9917 37.6151 51.9974 2

T t-SVD 1.8697 0.5988 0.4745 0.9918 34.8058 48.0497 3

T t-TNN 1.8944 0.6185 0.4824 0.9916 34.5269 47.1672 4

MLRGeomCG 1.9037 0.6579 0.4991 0.9912 33.8805 45.0354 5

MRMAMR 1.8950 0.6609 0.5090 0.9912 33.7306 44.9021 6

MIALM 1.9144 0.6688 0.5060 0.9911 33.8414 44.9827 7

MLMaFit 1.9680 0.8079 0.6165 0.9903 33.2250 44.5333 8

MMC-NMF 2.0237 0.9746 0.7517 0.9892 32.7856 44.2348 9

T TMac 2.0456 1.0150 0.7842 0.9888 32.5507 43.7920 10

CaVignal

Method AGE pEPs pCEPS MSSSIM PSNR CQM Scene Rank

MLRGeomCG 5.4839 6.4118 3.9890 0.9111 28.3288 52.9853 1

MLMaFit 5.4853 6.4154 3.9890 0.9111 28.3273 52.9850 2

MRMAMR 5.4959 6.4301 3.9890 0.9111 28.3100 53.0123 3

T TMac 5.4979 6.5074 4.0625 0.9109 28.2877 53.0188 4

MIALM 5.9824 7.1875 3.8272 0.9002 27.7931 50.7009 5

MMC-NMF 5.9749 8.1949 5.4890 0.8997 27.4603 52.8197 6

T FaLRTC 7.1125 8.3309 5.4081 0.8876 26.9316 47.6830 7

T t-SVD 7.1949 8.3676 5.4669 0.8860 26.8741 47.8262 8

T SPC 7.1215 8.6176 5.6581 0.8846 26.8208 51.0394 9

T t-TNN 7.2519 8.4743 5.5184 0.8851 26.8285 47.4856 10

Foliage

Method AGE pEPs pCEPS MSSSIM PSNR CQM Scene Rank

MLRGeomCG 11.6932 20.8924 14.9861 0.9535 23.9826 39.0643 1

MLMaFit 11.7062 20.9271 15.0417 0.9535 23.9744 39.0737 2

MRMAMR 11.8031 21.1458 15.2222 0.9532 23.9134 39.1203 3

MIALM 11.8963 21.5417 15.6215 0.9528 23.8960 38.4825 4

T TMac 12.0335 21.9826 15.9861 0.9498 23.7072 38.7549 5

MMC-NMF 15.1040 25.4340 19.5069 0.9114 21.4930 36.5547 6

T t-SVD 16.2432 29.1424 22.2674 0.9033 21.4422 33.9587 7

T SPC 17.1535 33.2743 22.7951 0.8937 21.0282 32.9964 8

T t-TNN 18.5811 34.3993 24.7222 0.8734 20.5579 32.2173 9

T FaLRTC 22.1739 45.7639 31.2569 0.8197 19.2060 30.8085 10

MMatrix-based completion.

T Tensor-based completion.
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Table 3.9: Part 2 - Quantitative results of the top-10 low-rank reconstruction algo-

rithms over SBI dataset.

CAVIAR1

Method AGE pEPs pCEPS MSSSIM PSNR CQM Scene Rank

MLMaFit 5.6735 6.6274 5.4830 0.9120 28.1792 51.1680 1

MLRGeomCG 5.6735 6.6274 5.4830 0.9120 28.1790 51.1680 2

MRMAMR 5.6641 6.6508 5.5094 0.9121 28.1736 51.1897 3

MMC-NMF 5.6737 6.6284 5.4830 0.9120 28.1787 51.1680 4

T TMac 5.6945 6.7017 5.5593 0.9116 28.1425 51.1681 5

T SPC 5.8531 7.2815 6.0628 0.9093 27.9196 51.1901 6

T FaLRTC 5.8699 7.3008 6.0801 0.9093 27.9042 51.1497 7

T t-SVD 5.8736 7.3222 6.0801 0.9092 27.9014 51.1434 8

T t-TNN 5.8792 7.3222 6.0801 0.9092 27.8956 51.1384 9

MIALM 6.7411 10.0464 7.8440 0.8802 26.5992 50.7632 10

CAVIAR2

Method AGE pEPs pCEPS MSSSIM PSNR CQM Scene Rank

MLRGeomCG 1.1822 0.3265 0.1038 0.9971 39.8982 59.1772 1

MLMaFit 1.1823 0.3265 0.1038 0.9971 39.8978 59.1772 2

MMC-NMF 1.1823 0.3265 0.1038 0.9971 39.8978 59.1772 2

MRMAMR 1.1925 0.3276 0.1048 0.9971 39.8581 59.1748 4

T SPC 1.2136 0.3845 0.1312 0.9968 39.5137 59.1832 5

T TMac 1.1877 0.3286 0.1058 0.9970 39.8569 59.1736 6

T FaLRTC 1.2923 0.3845 0.1343 0.9967 39.2267 59.1819 7

T t-SVD 1.2896 0.3855 0.1363 0.9967 39.2218 59.1766 8

T t-TNN 1.3058 0.3866 0.1363 0.9967 39.1549 59.1797 8

MIALM 1.4858 0.6460 0.2431 0.9945 36.7150 58.4525 10

HallAndMonitor

Method AGE pEPs pCEPS MSSSIM PSNR CQM Scene Rank

T t-TNN 2.0417 0.1716 0.0000 0.9938 38.2894 46.4244 1

T t-SVD 2.0469 0.1847 0.0000 0.9938 38.2084 46.3998 2

MLRGeomCG 2.0476 0.2237 0.0000 0.9938 38.0243 46.3813 3

MIALM 2.0476 0.2237 0.0000 0.9938 38.0242 46.3813 4

MRMAMR 2.0417 0.2261 0.0000 0.9938 38.0214 46.3837 4

MLMaFit 2.0498 0.2249 0.0000 0.9938 37.9193 46.3371 6

T TMac 2.0599 0.2415 0.0000 0.9937 37.5664 46.2214 7

MMC-NMF 2.0640 0.2415 0.0000 0.9937 37.4073 46.1720 8

T FaLRTC 2.2531 0.4025 0.0012 0.9925 36.4659 44.1228 9

T SPC 2.2763 0.5303 0.0024 0.9927 35.8033 43.8510 10

HighwayI

Method AGE pEPs pCEPS MSSSIM PSNR CQM Scene Rank

MRMAMR 2.6453 0.1992 0.0130 0.9779 36.2748 58.2536 1

MLRGeomCG 2.6535 0.2018 0.0130 0.9779 36.2808 58.2359 2

MIALM 2.6598 0.1953 0.0130 0.9777 36.2798 58.2441 3

MLMaFit 2.6562 0.2018 0.0130 0.9779 36.2687 58.2344 4

T TMac 2.6788 0.1992 0.0130 0.9777 36.1917 58.2417 5

MMC-NMF 2.9940 0.5677 0.1328 0.9726 34.9387 57.8914 6

T t-SVD 4.2271 0.8138 0.3516 0.9643 32.4894 58.0333 7

T SPC 3.8228 1.2982 0.8568 0.9655 33.0111 57.8709 8

T FaLRTC 4.8294 0.8294 0.3516 0.9624 31.7239 57.8150 9

T t-TNN 4.7145 1.2474 0.6849 0.9611 31.6223 57.9345 10

MMatrix-based completion.

T Tensor-based completion.
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Table 3.10: Part 3 - Quantitative results of the top-10 low-rank reconstruction algo-

rithms over SBI dataset.

HighwayII

Method AGE pEPs pCEPS MSSSIM PSNR CQM Scene Rank

MIALM 2.7526 0.3555 0.0026 0.9908 35.3406 46.3161 1

MLRGeomCG 2.7526 0.3555 0.0026 0.9908 35.3406 46.3161 1

MLMaFit 2.7528 0.3555 0.0026 0.9908 35.3361 46.3122 3

MRMAMR 2.7687 0.3555 0.0026 0.9908 35.3015 46.3119 4

T TMac 2.7697 0.3763 0.0039 0.9908 35.2287 46.2181 5

MMC-NMF 2.8791 0.3672 0.0026 0.9901 34.9279 46.1025 6

T t-SVD 3.8271 0.4596 0.0299 0.9864 33.0601 46.4679 7

T SPC 3.4289 0.5091 0.0091 0.9878 33.5406 46.1876 8

T t-TNN 4.1262 0.5013 0.0299 0.9850 32.4600 46.2045 9

T FaLRTC 4.1368 0.5286 0.0247 0.9850 32.4087 46.2637 10

HumanBody2

Method AGE pEPs pCEPS MSSSIM PSNR CQM Scene Rank

MLRGeomCG 5.7621 4.6497 2.4414 0.9788 28.7047 40.1984 1

MLMaFit 5.7627 4.6510 2.4414 0.9788 28.7017 40.1985 2

MRMAMR 5.7661 4.6628 2.4505 0.9787 28.6899 40.2114 3

T TMac 5.8044 4.7292 2.4583 0.9786 28.6019 40.2122 4

MMC-NMF 6.1841 5.3919 2.9102 0.9760 28.1319 39.7334 5

MIALM 6.5515 5.6836 2.7969 0.9730 27.6232 39.1328 6

T SPC 6.8470 6.2174 3.3984 0.9715 27.2413 38.4319 7

T t-SVD 7.0378 6.2409 3.4922 0.9688 27.1468 38.2726 8

T t-TNN 7.2657 6.5391 3.6341 0.9667 26.9194 37.8676 9

T FaLRTC 7.3432 6.6953 3.7344 0.9670 26.8229 37.5329 10

PeopleAndFoliage

Method AGE pEPs pCEPS MSSSIM PSNR CQM Scene Rank

MLRGeomCG 29.2393 57.7812 48.2135 0.8332 16.8399 32.1823 1

MLMaFit 29.2520 57.8125 48.2539 0.8331 16.8367 32.1796 2

MMC-NMF 29.5094 57.4115 47.6497 0.8346 16.7286 32.1034 3

T TMac 29.4402 57.1888 47.6719 0.8233 16.6676 32.1267 4

MRMAMR 29.3027 57.9049 48.3906 0.8329 16.8253 32.1624 5

MIALM 30.6975 58.2839 49.0560 0.8011 16.2927 31.7307 6

T SPC 32.2676 59.8932 51.2461 0.7850 15.8266 31.8834 7

T t-SVD 32.7286 60.1901 51.9622 0.7755 15.7204 31.7717 8

T t-TNN 33.1854 60.4258 52.3255 0.7724 15.6211 31.7342 9

T FaLRTC 33.7695 61.0026 52.9258 0.7620 15.4770 31.6863 10

Snellen

Method AGE pEPs pCEPS MSSSIM PSNR CQM Scene Rank

MLRGeomCG 24.4846 50.4340 42.8337 0.9250 18.6585 42.1307 1

MLMaFit 24.5473 50.6318 42.9977 0.9249 18.6457 42.1328 2

MRMAMR 24.6804 50.9790 43.3449 0.9245 18.6077 42.1378 3

T TMac 24.8743 51.9965 44.3528 0.9206 18.5311 41.8552 4

MMC-NMF 26.8535 58.6082 51.6541 0.9170 17.9515 41.5184 5

MIALM 28.5543 59.2930 52.1943 0.8821 17.3378 39.2210 6

T t-SVD 28.9166 58.9169 53.2407 0.8854 17.2301 39.8213 7

T SPC 29.4769 59.9489 53.0478 0.8779 17.1026 37.3224 8

T t-TNN 31.3521 65.6877 59.1001 0.8722 16.8427 38.3602 9

T FaLRTC 36.3661 74.2911 66.3725 0.8258 15.7664 35.3544 10

MMatrix-based completion.

T Tensor-based completion.
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Table 3.11: Part 4 - Quantitative results of the top-10 low-rank reconstruction algo-

rithms over SBI dataset.

IBMtest2

Method AGE pEPs pCEPS MSSSIM PSNR CQM Scene Rank

MLMaFit 3.6413 1.4544 0.6081 0.9868 32.8931 44.9527 1

MLRGeomCG 3.6413 1.4544 0.6081 0.9868 32.8930 44.9516 2

T TMac 3.6575 1.4831 0.6289 0.9868 32.8424 44.9660 3

MRMAMR 3.6715 1.4674 0.6146 0.9868 32.8495 44.9352 4

MMC-NMF 4.0120 2.4844 1.4427 0.9814 31.3615 43.9484 5

T SPC 4.3337 2.7161 1.6836 0.9810 30.9463 42.2799 6

T t-SVD 4.5889 2.8060 1.9362 0.9780 30.4336 42.3460 7

T t-TNN 4.7017 2.9089 2.0495 0.9772 30.2330 41.8205 8

T FaLRTC 4.7449 3.0091 2.0404 0.9776 30.1724 41.0093 9

MIALM 5.7583 5.2370 2.3164 0.9462 26.1977 38.9603 10

Toscana

Method AGE pEPs pCEPS MSSSIM PSNR CQM Scene Rank

MLRGeomCG 7.3009 11.8569 8.4394 0.8959 24.2914 36.3206 1

T SPC 8.1087 12.9096 8.8235 0.9077 24.5368 38.5918 2

MMC-NMF 7.6612 11.5710 7.6317 0.8911 24.3671 36.2805 3

MRMAMR 7.3381 11.9000 8.4723 0.8959 24.2800 36.3043 4

T t-SVD 8.4022 14.1319 10.2058 0.9096 24.3111 38.1849 5

T t-TNN 8.6326 13.9075 9.7881 0.9101 24.2766 38.2244 5

T TMac 7.3742 12.0163 8.5815 0.8958 24.2609 36.2690 7

T FaLRTC 9.4138 15.6027 11.3146 0.9051 23.8897 38.1260 8

MIALM 9.5171 16.8137 13.3448 0.8887 23.0985 34.9645 9

MLMaFit 23.1736 42.7019 38.5535 0.7486 16.8984 25.6812 10

MMatrix-based completion.

T Tensor-based completion.

Global rank over all scenes

Method Global rank

MLRGeomCG 1

MLMaFit 2

MRMAMR 3

MMC-NMF 4

T TMac 4

MIALM 6

T SPC 7

T t-SVD 8

T t-TNN 9

T FaLRTC 10
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Table 3.12: Summary of the top-1 best algorithms for each scene. The columns Top-

1 MC and Top-1 TC show the best algorithms among matrix and tensor completion

methods, respectively. The last column highlights the winner algorithm among the

top-10 best ranked low-rank recovery methods.

Scenes Top-1 MC Top-1 TC Scene Top-1

Board IALM TMac M IALM

Candela m1.10 LRGeomCG SPC T SPC

CAVIAR1 LMaFit TMac M LMaFit

CAVIAR2 LRGeomCG TMac M LRGeomCG

CaVignal LRGeomCG TMac M LRGeomCG

Foliage GROUSE TMac M LRGeomCG

HallAndMonitor LRGeomCG t-TNN T t-TNN

HighwayI RMAMR TMac M RMAMR

HighwayII IALM TMac M IALM

HumanBody2 LRGeomCG TMac M LRGeomCG

IBMtest2 LMaFit TMac M LMaFit

PeopleAndFoliage LRGeomCG TMac M LRGeomCG

Snellen LRGeomCG TMac M LRGeomCG

Toscana LRGeomCG SPC M LRGeomCG

M Matrix-based completion.

T Tensor-based completion.

3.4 Conclusion

In this chapter, we have formulated the background initialization problem as a matrix or ten-

sor completion task, and evaluated twenty-three recent low-rank recovery algorithms. The

key idea is to first eliminate the redundant frames in a video, and consider their moving re-

gions as non-observed values. This approach results in a data completion problem, which

can be represented by a matrix or a tensor with missing entries. We show that the back-

ground model can be recovered even with partially observed data. The experimental results

on the SBI dataset show the comparative evaluation of recent methods for matrix and ten-

sor completion, and highlight the good performance of LRGeomCG method over its direct

competitors. Finally, we note that matrix-based completion methods show an attractive po-

tential for background modeling initialization in video surveillance. Moreover, in Bouwmans

et al. [25], the proposed approach was classified in a new category of background initializa-

tion methods, named Missing Data Reconstruction methods. Future research may concern to

evaluate incremental and real-time approaches of low-rank reconstruction algorithms for the

background model initialization of streaming videos.
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Chapter 4

Improving foreground detection by

double-constrained robust PCA

This chapter investigates the problem of moving object detection in maritime environment for

automated video-surveillance applications. To cope with this particular situation, a double-

constrained robust principal component analysis algorithm, named SCM-RPCA (Shape and

Confidence Map-based RPCA), is proposed. The work presented in this chapter is based on

our publication (IEEE AVSS, 2015, [179]), and the related source code can be found in the

SCM-RPCA website1.

4.1 Introduction

As outlined in Chapter 2, the recent advances in low-rank and sparse decomposition offer

a suitable framework for background modeling due to the high correlation between frames.

However, the Robust Principal Component Analysis (RPCA) solved via Principal Component

Pursuit (PCP) is limited to the low-rank component being exactly low-rank and the sparse

component being exactly sparse (see Section 2.2.2). However, the observations in real ap-

plications are often corrupted by noise that affects every entry of the data matrix. Therefore,

Zhou et al. [260] proposed a stable PCP (SPCP) that guarantees stable and accurate recovery

in the presence of entry-wise noise (see Section 2.2.3). SPCP assumes that the observation

matrix A is represented as A = L+S+E (also named as three-term decomposition), where

L is a low-rank matrix, S is constrained to be a sparse matrix, and E is a noise term. To re-

cover L, S and E, Zhou et al. [260] proposed to solve the following optimization problem, as

a relaxed version of PCP: minimize
L,S,E

||L||∗+λ1||S||1+λ2||E||2F , s.t. A = L+ S+E, where

λ1 > 0 and λ2 > 0 are arbitrary weighting parameters. This decomposition is called “stable”

decomposition as it separates the outliers in S and the noise in E.

1SCM-RPCA: https://sites.google.com/site/scmrpca/
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(a) Input image (b) Saliency detection

(c) Object con!dence map

(d) Shape constraint

(e) Foreground mask

RPCA

Figure 4.1: Block diagram of the proposed approach. Given an input image (a), a

saliency detector is applied (b). Next, the confidence map (c) is built by normalizing

the saliency map, while the shape constraint (d) is built by thresholding this one, and

(e) the foreground mask obtained by thresholding the RPCA sparse component.

Maritime surveillance represents a challenging scenario due to the different background

dynamics of the observed scenes, such as moving water, waves, etc [20]. Indeed, the mo-

tion of the objects of interest (i.e. ships or boats) can be mixed with the dynamic behavior

of the background (non-regular patterns). Many algorithms have been designed to perform

foreground detection, see surveys [24, 28, 183], but only a few of them have been designed

for maritime scenes. Some related work can be found in Bloisi et al. [20]. The authors pro-

pose a multimodal approach for BS to deal with the water background. In addition, Liu et

al. [125] propose an iterative approach for ship target segmentation in infrared images based

on multiple features. However, the recent research on subspace estimation by sparse repre-

sentation and rank minimization shows an interesting framework to separate moving objects

from the background in videos. The background sequence is modeled by the low-rank sub-

space that can gradually change over time, while the moving foreground objects constitute

the correlated sparse outliers.

In scenes where the background is very dynamic (i.e. sea waves in maritime surveil-

lance [20]), the motion of the objects of interest (i.e. boats) will be mixed with the dynamic

behavior of the background (i.e. waves). SPCP-based methods try to deal with this problem

under the term where the multi-modality of the background (i.e. waves) is considered as noise

component (E), while the moving objects (i.e. boats) are considered as sparse component (S).

The low-rank component (L) represents the static part of the background.

In this chapter, a double-constrained RPCA, named SCM-RPCA (Shape and Confidence

Map-based RPCA), is proposed to improve foreground detection in dynamic scenes. The

sparse component is constrained by shape and confidence maps, both extracted from spatial

saliency maps. One advantage of the SCM-RPCA in relation to its direct competitors, is

the possibility of combining two types of source, which may come from: spatial, temporal,

and spatio-temporal information; however, here we focus only on spatial saliency maps. Our

motivation is to study how it improves RPCA in the task of foreground detection in maritime

scenes. Fig. 4.1 highlights our proposed approach. Given an input image (a), a saliency

detector is applied (b). Next, the confidence map (c) is built by normalizing the saliency map,

while the shape constraint (d) is built by thresholding the saliency map, and (e) the foreground

mask is obtained by thresholding the RPCA sparse component.
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4.2 Related work

In the literature, there are several modifications which concern the original SPCP. Some au-

thors [152, 239, 241] added constraint in the sparse term in order to improve the foreground

detection. First, Oreifej et al. [152] used a turbulence model to enforce an additional con-

straint on the rank minimization. The authors quantify the scene’s motion in terms of the mo-

tion of the particles, which are driven by dense optical flow. The obtained confidence map (a

real-valued matrix) provides a rough prior knowledge of the moving objects’ locations, which

can be incorporated into the matrix optimization problem. Subsequently, Yang et al. [239]

proposed a motion-assisted matrix restoration (MAMR) model for foreground-background

separation. Thus, a dense motion field is estimated for each frame by dense optical flow, and

mapped into a weighting matrix, which indicates the likelihood of each pixel belonging to the

background. By incorporating this information, areas dominated by slowly-moving objects

are suppressed, while the background that appears at only a few frames has more chances to

be recovered in the foreground detection results. In addition, Ye et al. [241] extended MAMR

(RMAMR) (also adopted in Chapter 3), which is robust to noise for practical applications.

4.3 Proposed method

In this chapter, we propose to combine some ideas proposed by Oreifej et al. [152] and Ye et

al. [241]. The weighting matrix proposed by Ye et al. [241] can be used as a shape constraint

(or region constraint), while the confidence map proposed by Oreifej et al. [152] reinforces

the pixels belonging to the moving objects. A modified version of the original 3WD method

proposed by Oreifej et al. [152] was implemented adding the shape constraint as done in

RMAMR. Part of the reason we chose to modify the 3WD instead of RMAMR is it robustness

to deal with the multimodality of the background. The second contribution of this chapter

refers to the way of building the shape constraint and confidence map. Instead of using dense

optical flow (temporal descriptor) as a preliminary step, we suggest using a saliency detector

(spatial descriptor). In some cases where a) the object of interest moves very slowly (i.e long

distance boats) or b) the background is very dynamic (i.e boats in the sea), the optical flow

may not be enough to ensure the object detection. In addition, computing the dense optical

flow requests high computational cost, while computing the saliency map is commonly much

faster. Several saliency detection methods have been proposed in the literature [22]. In this

chapter, the BMS2 method proposed by Zhang and Sclaroff [247, 248] was selected, due to

its speed performance and accuracy results.

Consider a sequence of n gray-scale images (frames) F1 . . .Fn captured from a static

camera, that is, F ∈ R
I1×I2 where I1 and I2 denotes the frame resolution (rows by columns).

All frames are vectorized into a observation matrix A = [vec(F1) . . . vec(Fn)], where A ∈
R

m×n and m = (I1 × I2). The decomposition is formulated as:

minimize
L,S,E

||L||∗+λ1||Π(S)||1+λ2||E||2F , s.t. A = L+W ◦ S+E (4.1)

2http://cs-people.bu.edu/jmzhang/BMS/BMS.html
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Author(s) Minimization

Oreifej et al. (2013) [152] minimize
L,S,E

||L||∗+λ1||Π(S)||1+λ2||E||2F
subject to A = L+ S+E

Ye et al. (2015) [241] minimize
L,S,E

||L||∗+λ1||S||1+λ2||E||2F
subject to W ◦A = W ◦ (L+ S+E)

SCM-RPCA (proposed) minimize
L,S,E

||L||∗+λ1||Π(S)||1+λ2||E||2F
subject to A = L+W ◦ S+E

Table 4.1: Comparison of the proposed method and related works.

where Π ∈ R
m×n and W ∈ [0, 1]m×n are the confidence map and shape constraint (bi-

nary map), respectively, and “◦” denotes element-wise multiplication of two matrices. As

explained previously, the confidence map Π reinforces the pixels belonging to the moving

objects and the shape constraint W defines the region of interest. Table 4.1 compares the

proposed method with those by Oreifej et al. [152] and Ye et al. [241]. These minimization

problems are convex and can be solved by the Alternating Direction Method (ADM) under

the Augmented Lagrangian Multiplier (ALM) framework [118].

4.3.1 Double-constrained robust PCA

To solve the problem in Equation (4.1), the ALM [118] is used. The ALM framework con-

verts the constrained optimization problem in (4.1) to the minimization of the augmented

Lagrange function:

Γ(L,S,E,Y) = ||L||∗+λ1||Π(S)||1+λ2||E||2F
+ < Y,A− L−W ◦ S−E) > +

β

2
||(A− L−W ◦ S−E)||2F

(4.2)

where Y ∈ R
m×n is a Lagrange multiplier matrix, β > 0 is the penalty parameter for the

violation of the linear constraint, and <,> denotes the matrix inner product. Next, the ADM

is used to update L, S, E and Y alternatively for each iteration t:

Lt+1 = argmin
L

Γ(L,St,Et,Yt),

St+1 = argmin
S

Γ(Lt+1,S,Et,Yt),

Et+1 = argmin
E

Γ(Lt+1,St+1,E,Yt),

Z = (At+1 − Lt+1 − St+1 −Et+1),

Yt+1 = Yt + βtZ

(4.3)
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Algorithm 1 Algorithm for solving SCM-RPCA.

Input: A ∈ R
m×n (observation), Π ∈ R

m×n (confidence map), W ∈ [0, 1]m×n

(shape constraint), tmax max # of iterations, and ǫ error tolerance.

t = 0
while (||Z||F /||A||F ) > ǫ or t < tmax do

Υ = β−1
t Yt

URVT = svd(A− Lt −Et +Υ)
Lt+1 = Us(1/βt)(R)VT

St+1 = W ◦ s(λ/βtΠ)(A− Lt+1 −Et +Υ)

κ = (1 + 2λ2

βt
)−1

Et+1 = κ(A− Lt+1 − St+1 +Υ)
Z = At+1 − Lt+1 − St+1 −Et+1

Yt+1 = Yt + βtZ
βt+1 = ρβt
t = t+ 1

end while

return L ∈ R
m×n (background), S ∈ R

m×n (foreground), and E ∈ R
m×n

(noise).

where Z ∈ R
m×n is the residual. Then, a closed form solution for each of the minimization

problems can be defined by:

Υ = β−1
t Yt,

URVT = svd(A− Lt −Et +Υ),

Lt+1 = Us(1/βt)(R)VT ,

St+1 = W ◦ s(λ/βtΠ)(A− Lt+1 −Et +Υ),

κ = (1 +
2λ2

βt
)−1,

Et+1 = κ(A− Lt+1 − St+1 +Υ)

(4.4)

where svd(.) denotes a full singular value decomposition, and s(.)(.) is the soft thresholding

operator defined by:

s(α)(X) = sign(X)max(abs(X)− α, 0) (4.5)

and it is applied to a matrix X in an element-wise manner. The main steps of the proposed

algorithm are shown in Algorithm 1. Usually the convergence is done when

(||Z||F /||A||F ) ≤ ǫ, (4.6)

where ǫ is the error tolerance, or when the # of iterations is reached (t = tmax). The pa-

rameters λ and λ2 are scalars and define the weighting parameter for the sparse and noise

component, respectively, and ρ is a constant scalar and growth factor for the β parameter.
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Oreifej et al. [152] shows when βt is a monotonically increasing positive sequence, the iter-

ations converge to the optimal solution of problem 4.1. Here, λ, λ2, ρ, and β0 were defined

empirically as 2, 1/||A||2, 1.25, and 5/
√
m, respectively.

4.3.2 Definition of shape and confidence map

In this chapter, both the confidence map Π and the shape constraint W are constructed from

spatial information given by saliency maps instead of optical flow, as proposed originally by

Oreifej et al. [152] and Ye et al. [241]. Consider a sequence of n saliency maps denoted by

M1, . . . ,Mn where M ∈ R
I1×I2 , so:

(4.7a)Π = [vec(norm(M1)) . . . vec(norm(Mn))]

(4.7b)W = [vec(thresh(M1)) . . . vec(thresh(Mn))]

where norm(.) denotes the min-max normalization, scaling all entries of M between 0 and

1, as defined in Chapter 3, Equation 3.3. Subsequently, thresh(.) denotes the thresholding

function defined as:

(4.8)thresh(M) =

{
1 if (0.5M)2 < µ

0 otherwise

where µ = 0.5η(std(vec(M)))2, and std(.) denotes the standard deviation of a data vector.

Here, η was chosen experimentally and defined as 10.

4.4 Experimental results

In order to evaluate the performance of the proposed method for background subtraction, four

videos extracted from the UCSD Background Subtraction Dataset3 proposed by Mahadevan

and Vasconcelos [137] and three videos from MarDT dataset4 proposed by Bloisi et al. [19]

were selected. The UCSD and MarDT datasets consist of 18 and 28 video sequences, respec-

tively, both acquired from stationary and moving cameras; here, we have selected only the

four sequences from UCSD and three sequences from MarDT, all sequences coming from

stationary cameras.

We have compared the SCM-RPCA with its direct competitors: the original PCP pro-

posed by Candès et al. [38], the stable PCP proposed by Aravkin et al. [10], the 3WD pro-

posed by Oreifej et al. [152], and the RMAMR proposed by Ye et al. [241]. Note that the

PCP and stable PCP are not constrained, while 3WD and RMAMR are single-constrained

RPCA. It is important to note that for all constrained RPCA methods here evaluated have

3http://www.svcl.ucsd.edu/projects/background_subtraction/

ucsdbgsub_dataset.htm
4http://www.dis.uniroma1.it/˜labrococo/MAR/index.htm
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Table 4.2: Precision, Recall and F-Measure metrics.

Metrics Description

Precision (Pr) TP/(TP + FP )
Recall (Re) TP/(TP + FN )

F-Measure (F1) 2× (Pr ×Re)/(Pr +Re)

TP = # of foreground pixels classified as foreground.

FP = # of background pixels classified as foreground.

TN = # of background pixels classified as background.

FN = # of foreground pixels classified as background.

used saliency maps as input constraint. In the next sections, we report the qualitative and

quantitative evaluation, as well as the computational cost evaluation of the selected algo-

rithms.

4.4.1 Qualitative and quantitative evaluation

Figures 4.2 and 4.3 show the visual results for background subtraction task in the UCSD and

MarDT datasets, respectively. The true positive pixels (TP ) are in white, true negative pixels

(TN ) in black, false positive pixels (FP ) in red and false negative pixels (FN ) in green. Is

important to note that in the UCSD scenes we have used the original spatial saliency map

provided by BMS, while for the MarDT scenes we have subtracted its temporal median due

to the high saliency from the buildings around the river. The quantitative results in Table 4.3

show that the SCM-RPCA outperforms the previous methods, with the highest average F -

measure over the selected video sequences. Each metric is described in Table 4.2. As can

be seen from Figures 4.2 and 4.3, and Table 4.3, the combination with confidence map and

shape constraint can reduce the amount of false positive pixels.

4.4.2 Computational cost

In Table 4.4, we report the computational cost evaluation over four videos of UCSD Back-

ground Subtraction Dataset [137]. The algorithms are implemented in MATLAB (R2014a)

running on a laptop computer with Windows 7 Professional 64 bits, 2.7 GHz Core i7-3740QM

processor and 32Gb of RAM. Note that in Table 4.4 the number of iterations (Iter) of the

proposed method is slightly less than the 3WD and RMAMR, except for the Ocean scene.

However, the computation time is slightly increased, except for the Boats scene. We noticed

that the combination of shape constraint and confidence map did not changed significantly

the number of iterations and computation time over original 3WD.
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Figure 4.2: Visual comparison of background subtraction results over three scenes

of UCSD dataset. From top to bottom: surfers, boats and birds. From left to right:

(a) input frame, (b) saliency map generated by BMS, (c) ground truth, (d) proposed

approach, (e) 3WD, and (f) RMAMR. The top 3 best algorithms (organized by rank)

from Table 4.3 were chosen.
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Figure 4.3: Visual results of SCM-RPCA over three scenes of MarDT dataset. From

left to right: (a) input frame, (b) saliency map with its temporal median subtracted

(due to the high saliency from the buildings around the river), (c) low-rank compo-

nent, (d) sparse component, (e) foreground mask, and (f) ground truth.
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Table 4.3: Quantitative results on four videos of UCSD Background Subtraction

Dataset.
Birds Surfers Boats Ocean Rank

Re Pr F1 Re Pr F1 Re Pr F1 Re Pr F1 Avg.F1

PCP 0.842 0.094 0.170 0.754 0.075 0.137 0.814 0.100 0.178 0.748 0.115 0.200 0.171

Lag-SPCP-QN 0.413 0.322 0.362 0.244 0.282 0.261 0.405 0.215 0.281 0.484 0.313 0.380 0.321

RMAMR 0.823 0.229 0.358 0.775 0.248 0.376 0.816 0.230 0.359 0.777 0.175 0.286 0.345

3WD 0.586 0.604 0.595 0.538 0.405 0.462 0.673 0.473 0.556 0.563 0.337 0.422 0.509

SCM-RPCA 0.573 0.638 0.604 0.518 0.565 0.541 0.663 0.550 0.602 0.457 0.544 0.497 0.561

Table 4.4: Computational cost evaluation over four videos of UCSD Background

Subtraction Dataset.
Birds Surfers Boats Ocean

(242× 156× 71) (344× 224× 41) (344× 224× 31) (316×196×176)

Iter Time∗ Iter Time∗ Iter Time∗ Iter Time∗

PCP +100 27.29 +100 21.19 +100 18.47 +100 110.53

Lag-SPCP-QN 29 10.12 53 16.27 39 10.01 18 29.49

RMAMR 34 10.63 35 13.09 33 11.44 35 44.22

3WD 30 4.53 26 4.28 31 4.06 42 29.96

SCM-RPCA 29 4.59 25 4.37 27 3.82 43 33.02

(width× height× length) denotes the frame resolution and the number of processed frames.
∗ Time for matrix decomposition (in seconds). Does not include the time to compute the input constraint (saliency maps).
+ Iteration limit 100 reached.

4.5 Conclusion

In summary, a double-constrained version of RPCA is proposed to improve the foreground

detection in dynamic scenes. The sparse component is constrained by shape and confidence

maps both extracted from spatial saliency maps. The experimental results indicate a better

enhancement of the object foreground mask when compared with its direct competitors. As

shown in qualitative and quantitative evaluation, the combination with confidence map and

shape constraint can reduce the amount of false positive pixels. In addition, the computational

cost evaluation demonstrates that the proposed algorithm has a slightly change in the number

of iterations and computation time compared to the original 3WD.

In further works, we plan to investigate how spatio-temporal saliency detectors can help

the proposed approach to improve the foreground detection. In this chapter, the confidence

map and shape constraint were built from the same source, specifically by saliency maps. We

will explore how different sources can be used to build separately these constraints.



Chapter 5

Incremental tensor subspace learning

using multiple features

In this chapter, we present an incremental multi-feature tensor subspace learning (IMTSL) al-

gorithm for handling streaming multidimensional data in the case of intelligent video surveil-

lance applications. The proposed method constructs a multi-feature low-rank model for ro-

bust modeling of the scene background. Moreover, the IMTSL method updates the low-rank

model incrementally through an incremental learning of its unfolding matrices. This work is

based on our publication (ICIAR, 2014, [176]), and the related source code can be found in

the IMTSL website1.

The remainder of this chapter is organized as follows. First we start with some related

work in Section 5.1. Section 5.2 describes the incremental and multi-feature tensor subspace

learning algorithm. Section 5.3 presents the foreground detection method. Finally, in Sec-

tions 5.4 and 5.5, the experimental results are shown, as well as conclusions.

5.1 Related work

In the literature, several authors have employed tensor decomposition for learning a low-rank

representation of the data. [211] by Vasilescu and Terzopoulos was one of the first works

to employ HOSVD (see Chapter 2, Section 2.4.1.1) for performing a multilinear analysis

of facial images under different illumination conditions, expressions, viewpoints and person

identities. The image sequence is represented as a higher-dimensional tensor and then de-

composed in order to separate and parsimoniously represent the constituent factors, resulting

in a “TensorFaces” representation. Wang and Ahuja [219] also employed HOSVD for learn-

ing the expression subspace and person subspace from an ensemble of facial images. The

algorithm performs a simultaneous face and facial expression recognition, which can classify

the given image into one of the basic facial expression categories. He et al. [81] presented

1IMTSL: https://github.com/andrewssobral/imtsl
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Figure 5.1: Block diagram of the proposed approach. In the step (a), the last N
frames from a streaming video are stored in a sliding block or tensor At. Next,

a feature extraction process is done at step (b) and the tensor At is transformed

in another tensor Tt (step (c)) . In (d), an incremental higher-order singular value

decomposition (iHOSVD) is applied in the tensor Tt resulting in a low-rank tensor

Lt. Finally, in the step (e) a foreground detection method is applied for each new

frame to segment the moving objects.

a tensor subspace analysis algorithm called TSA (Tensor Subspace Analysis), which detects

the intrinsic local geometrical structure of the tensor space by learning a lower dimensional

tensor subspace. Experiments on PIE and ORL databases demonstrated the efficiency and

effectiveness of the method. However, in these last works any experiment was carried out for

the background subtraction problem.

Recently, online tensor subspace learning approaches have been introduced. Sun et

al. [189] proposed three tensor subspace learning methods: DTA (Dynamic Tensor Analysis),

STA (Streaming Tensor Analysis) and WTA (Window-based Tensor Analysis). However, Li

et al. [83] explained that the above tensor analysis algorithms cannot be applied to background

modeling and object tracking directly. To solve this problem, some authors [83, 112, 113]

proposed a high-order tensor learning algorithm, called incremental rank-(R1,R2,R3) tensor

based subspace learning. This online algorithm builds a low-order tensor eigenspace model in

which the mean and the eigenbasis are updated adaptively. The authors model the background

appearance images as a 3-order tensor. Next, the tensor is subdivided into sub-tensors. Then,

the proposed incremental tensor subspace learning algorithm is applied to effectively mine

statistical properties of each sub-tensor. The experimental results show that the proposed

approach is robust to appearance changes in background modeling and object tracking. The

method described above only uses the gray-scale and color information. In some situations,

only the pixels intensities may be insufficient to perform a robust foreground detection. To

deal with this situation, an incremental and multi-feature tensor subspace learning algorithm

is presented in this chapter.

5.2 Proposed method

Differently from previous related works, where the tensor model is built directly from the

video data (i.e., each frontal slice of the tensor is a gray-scale image), in this chapter the

tensor model is built from the feature extraction process. First, the last A3 frames from a

streaming video data are stored in a tensor At ∈ R
A1×A2×A3 , where t represents the tensor
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A at time t. A1 and A2 is the frame width and frame height respectively, and A3 is the number

of stored frames (A3 = 25 in the experiments). Subsequently, the tensor At is transformed

into a tensor Tt ∈ R
T1×T2×T3 after a feature extraction process, where T1 is the number of

pixels (T1 = A1 × A2), T2 the number of feature values for each frame (T2 = A3) and T3

the number of features. Here, 8 features are extracted: 1) red channel, 2) green channel, 3)

blue channel, 4) gray-scale, 5) local binary patterns (LBP), 6) spatial gradients in horizontal

direction, 7) spatial gradients in vertical direction, and 8) spatial gradients magnitude. All

frames’ resolution are resized to 160x120 (19200 pixels), so the dimension of the tensor

model is Tt ∈ R
19200×25×8. The steps described here are shown in Figure 5.1 (a), (b) and

(c). The steps (d) and (e) will be described in the next sections.

Incremental high-order singular value decomposition

Let A ∈ R
m×n be a matrix of full rank r = min(m,n). Its singular value decomposition

can be expressed as: A = UΣVT, where U ∈ R
m×m and V ∈ R

n×n are orthonormal

matrices containing the eigenvectors of AAT and ATA, respectively, (i.e. right and left

singular vectors of A), and Σ = diag(σ1, . . . , σr) is a diagonal matrix with the eigenvalues

of A in descending order. However, the matrix factorization step in SVD is computation-

ally very expensive, especially for large matrices. Moreover, the entire data may be not

available for decomposition (e.g. streaming data when the full size of the data is unknown).

Businger [36], and Bunch and Nielsen [34] are the first authors who have proposed to update

SVD sequentially with the arrival of more samples, i.e. appending/removing a row/column.

Subsequently, various approaches [15, 31, 110, 139, 169] have been proposed to update the

SVD more efficiently and supporting new operations. Recently, Baker et al. [13] provided a

generic approach to perform a low-rank incremental SVD. An implementation of the algo-

rithm is freely available in the IncPACK MATLAB package2.

In this chapter, we have used a modified version of the algorithm in [13]. The original

version supports only the updating operation. As described previously, the tensor model

Tt is updated dynamically. The last feature values are appended (i.e. updating operation)

and the old feature values are removed (i.e. downdating operation) for each new frame. A

simple change would be to modify the algorithm so that, instead of using a hard window, we

insert an exponential forgetting factor λ < 1 (λ = 1 no forgetting occurs), weighting new

columns preferentially over earlier columns. The forgetting factor is explained in the work of

Ross et al. [169].

The proposed iHOSVD algorithm is shown in Algorithm 2. It creates a low-rank tensor

model Lt with the dominant singular subspaces of the tensor model Tt. T [n]
t denotes the

n-mode unfolding matrix (see Appendix C) of the tensor T at time t. r[n] and t[n] are the

desired rank r and its thresholding value of the n-mode unfolding matrix (r[1] = 1, r[2] = 8,

r[3] = 2, and t[1] = t[2] = t[3] = 0.01 in the experiments). U
[n]
t−1, Σ

[n]
t−1, and V

[n]
t−1 denote

the previous SVD of the n-mode unfolding matrix of the tensor T at time t− 1.

2http://www.math.fsu.edu/˜cbaker/IncPACK/
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Algorithm 2 iHOSVD algorithm.

Input: Tt, r[n], t[n]
St ← Tt
if t = 0 then

for i = 1 to n do {Performs the standard rank-r SVD}
[U

[i]
t , Σ

[i]
t , V

[i]
t ]← SVD(T [i]

t , r[i], t[i])
end for

else

for i = 1 to n do {Performs the incremental rank-r SVD}
[U

[i]
t , Σ

[i]
t , V

[i]
t ]← iSVD(T [i]

t , r[i], t[i], U
[i]
t−1, Σ

[i]
t−1, V

[i]
t−1)

end for

end if

St ← Tt ×1 (U
[1]
t )T . . . ×n (U

[n]
t )T (×n denotes the n-mode product between

tensor T and matrix U)

Output: St, U[1]
t , ..., U

[n]
t

5.3 Foreground detection

The foreground detection consists of segmenting all foreground pixels of the image to obtain

the foreground components for each frame. As explained in the previous sections, a low-

rank model Lt is built from the tensor model Tt incrementally. Then, for each new frame

a weighted combination of similarity measures is performed. This process has two stages:

first a similarity function is calculated, then a weighted combination is performed. Let Ft ∈
R

A1×A2×T3 the feature’s set extracted from the input frame at time t and F ′
t the set of low-

rank features reconstructed from the low-rank model Lt at time t; the similarity function S
for the k-th feature (k = {1, . . . , T3}) at the pixel (i, j) is computed as follows:

St(i, j, k) =





Ft(i,j,k)
F ′

t(i,j,k)
if Ft(i, j, k) < F ′

t(i, j, k)

1 if Ft(i, j, k) = F ′
t(i, j, k)

F ′
t(i,j,k)

Ft(i,j,k)
if Ft(i, j, k) > F ′

t(i, j, k)

whereFt(i, j, k) andF ′
t(i, j, k) are the feature value of pixel (i, j) for the feature k at time t,

respectively. Note that St(i, j, k) assumes values in [0, 1]. Furthermore, St(i, j, k) is close to

one if Ft(i, j, k) and F ′
t(i, j, k) are very similar. Next, a weighted combination of similarity

measures is computed as follows:

Wt(i, j) =

T3∑

k=1

wkSt(i, j, k)

where T3 is the total number of features and wk weight for the k-th feature (w1 = w2 =
w3 = w6 = w7 = w8 = 0.125, w4 = 0.225, w5 = 0.025 in the experiments). The weights
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are chosen empirically in order to maximize the true positive pixels and minimize the false

negative pixels in the foreground detection. The foreground mask FG at time t is obtained

by applying the following threshold function:

FGt(i, j) = f(Wt(i, j)) =

{
1 if Wt(i, j) < τ

0 otherwise

where τ is the threshold value (τ = 0.5 in the experiments). In the next section we shows the

experimental results of the proposed method.

5.4 Experimental results

In order to evaluate the performance of the proposed method for background modeling and

subtraction, the BMC dataset3 proposed by Vacavant et al. [207] is selected. We have com-

pared our method with GRASTA algorithm proposed by He et al. [80] and BLWS algorithm

proposed by Lin and Wei [118]. Tables 5.1 and 5.3 show the quantitative and the visual results

(input image, ground-truth and foreground detection) with synthetic and real video sequences

of the BMC dataset. The quantitative results in Table 5.14 show that the proposed method

outperforms the previous methods, with the highest F-measure average and best scores over

all video sequences except in 212, 312, 412 and 512. The visual results in Table 5.1 show the

foreground detection for the frame #300 (Street) and frame #645 (Rotary), respectively. The

experiments were performed on a computer running Intel Core i7-3740qm 2.7GHz processor

with 16Gb of RAM. However, the proposed algorithm requires aprox. 2min per frame for

background subtraction, where more than > 95% of time is used for low-rank decomposi-

tion. Further research consist in improving the speed of the incremental low-rank decompo-

sition for real-time applications. Matlab codes and experimental results can be found in the

iHOSVD homepage5.

3http://bmc.iut-auvergne.com/
4In terms of Precision, Recall and F-Measure (defined in Chapter 4, Table 4.2)
5https://sites.google.com/site/ihosvd/
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Table 5.1: Part 1 - Quantitative and visual results with synthetic videos of the BMC

dataset.

Scenes Method Recall Precision F-measure Visual Results

Street Image GT IMTSL

112

IMTSL

GRASTA

BLWS

0.725

0.700

0.700

0.945

0.980

0.981

0.818

0.817

0.817

212

IMTSL

GRASTA

BLWS

0.692

0.787

0.786

0.845

0.847

0.847

0.761

0.816

0.816

312

IMTSL

GRASTA

BLWS

0.566

0.695

0.697

0.831

0.965

0.971

0.673

0.807

0.812

412

IMTSL

GRASTA

BLWS

0.637

0.787

0.785

0.838

0.843

0.848

0.723

0.814

0.815

512

IMTSL

GRASTA

BLWS

0.652

0.669

0.664

0.893

0.960

0.966

0.753

0.789

0.787
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Table 5.2: Part 2 - Quantitative and visual results with synthetic videos of the BMC

dataset.

Scenes Method Recall Precision F-measure Visual Results

Rotary Image GT IMTSL

122

IMTSL

GRASTA

BLWS

0.748

0.680

0.663

0.956

0.902

0.921

0.839

0.776

0.771

222

IMTSL

GRASTA

BLWS

0.649

0.637

0.633

0.913

0.548

0.560

0.759

0.589

0.594

322

IMTSL

GRASTA

BLWS

0.555

0.619

0.603

0.927

0.530

0.538

0.694

0.571

0.569

422

IMTSL

GRASTA

BLWS

0.548

0.623

0.620

0.942

0.778

0.775

0.693

0.692

0.689

522

IMTSL

GRASTA

BLWS

0.677

0.791

0.793

0.932

0.714

0.711

0.784

0.751

0.750

Average

IMTSL

GRASTA

BLWS

-

-

-

-

-

-

0.749

0.618

0.742
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Table 5.3: Visual comparison with real videos of the BMC dataset.

Sequence Video “Wandering student”(frame #651)

Sequence Video “Traffic during windy day”(frame #140)

5.5 Conclusion

In summary, an incremental and multi-feature tensor subspace learning algorithm is pre-

sented. The multi-feature tensor model allows us to build a robust low-rank model of the

background scene. Experimental results show that the proposed method achieves promising

results for the background subtraction task. However, additional features can be added, en-

abling a more robust model of the background scene. Moreover, the proposed foreground

detection approach can be changed to automatically select the best features allowing an accu-

rate foreground detection. Further research consist of improving the speed of the incremental

low-rank decomposition for real-time applications. Additional support for dynamic back-

grounds might be interesting for real and complex scenes.



Chapter 6

Online stochastic tensor decomposition

for multispectral video sequences

In this chapter, we propose an online stochastic tensor decomposition algorithm, named

OSTD, to perform background/foreground separation in streaming multispectral video se-

quences. Differently from the IMTSL method presented in the previous chapter, that em-

ployed an incremental version of HOSVD, the OSTD algorithm makes use of RPCA on

tensors for a robust background/foreground separation. In addition, OSTD was designed to

be much faster than IMTSL and address the major difficulties of multispectral imaging for in-

telligent video surveillance applications. The work presented in this chapter is based on our

publication (IEEE ICCV Workshop on RSL-CV, 2015, [182]), and the related source code

can be found in the OSTD website1.

6.1 Introduction

Until now, most of background subtraction algorithms were designed for mono (i.e. graylevel)

or trichromatic cameras (i.e. RGB) within the visible spectrum or near infrared part (NIR).

Recent advances in multispectral imaging technologies give the possibility to record multi-

spectral videos for video surveillance applications [17]. In addition, this task becomes more

complex when the data size grows (i.e. massive multidimensional data), since the real-world

scenario requires larger data to be processed in a more efficient way, and in some cases, in a

continuous manner (streaming data).

The primary advantage of multispectral cameras for video surveillance is the possibility

to take into account the spatial (or spatio-temporal) relationships among the different spectra

in a neighbourhood, allowing more elaborate spectral-spatial (and -temporal) models for a

more accurate segmentation. However, the primary disadvantages are cost and complexity,

due its massive and multidimensional characteristics.

1OSTD: https://github.com/andrewssobral/ostd
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Usually a multispectral video consists of a sequence of multispectral images sensed

from contiguous spectral bands. Each multispectral image can be represented as a three-

dimensional data cube, or tensor, and here we call frame the measurements corresponding to

a single spectral band (frontal slice of the tensor). Due to the specific nature of these data,

many of the bands within multispectral images are often strongly correlated. In addition, pro-

cessing multispectral images with hundreds of bands can be computationally burdensome.

In order to address these major difficulties of multispectral imaging for video surveillance

(in particular, the detection of moving objects), this chapter proposes an online stochastic

framework for tensor decomposition of multispectral video sequences. In short, the main

contributions of this chapter are:

• an online stochastic framework for tensor decomposition to deal with multi-dimensional

and streaming data, and

• the use of multispectral video sequences instead of standard mono/trichromatic im-

ages, enabling a better background subtraction.

First, we start with the related work in Section 6.2. The proposed method is described in

Section 6.3. Finally, in Sections 6.4 and 6.5, the experimental results are shown, as well as

conclusions.

6.2 Stochastic decomposition on tensors

Most of incremental tensor subspace learning approaches apply matrix SVD in the unfolded

matrices. These approaches are usually an incremental version of the Tucker3 model (see

Chapter 2, Section 2.4.1.1). However, the matrix factorization step in SVD is computation-

ally very expensive, especially for large matrices. Therefore, real time processing is sacri-

ficed, due to the major challenges discussed above. In order to address these problems, this

chapter proposes a robust and fast online tensor-based algorithm for RGB videos, as well

as for MSVS (multispectral video sequences). The proposed algorithm is based on stochas-

tic decomposition of low-rank and sparse components. The idea of online stochastic RPCA

optimization was previously proposed by Feng et al. [64] and Goes et al. [71], and it was

successfully applied to background subtraction in [89–91]. In this chapter, we extend this

approach to tensor analysis. The stochastic optimization is applied on each mode of the ten-

sor and the individual basis2 are updated iteratively followed by the processing of one video

frame per time instance. In addition, a comparison of RGB and MSVS is provided, which

shows that visible together with NIR spectral bands provide an improved foreground estima-

tion compared to RGB features alone.

2Here, we refer basis as the set of elements (vectors) from a low-dimensional subspace.
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6.3 Proposed method

Let say that Y is an input N -th order tensor, which is corrupted by outliers, say E ; then Y can

be reconstructed by separating it into low-rank tensor X (that corresponds to BG), and sparse

error E (that corresponds to FG objects), i.e., Y = X + E , under the convex optimization

framework developed in Goldfarb and Qin [72] as:

minimize
X ,E

1

2

N∑

i=1

||Y [i] −X [i] − E [i]||2F+λ1||X [i]||∗+λ2||E [i]||1, (6.1)

where ||X [i]||∗ and ||E [i]||1 denote the nuclear and l1 norm of each i-mode unfolding matrices

of X and E , respectively. Efficient methods such as CP decomposition and Tucker decom-

position [99] (a.k.a HOSVD) are used for low-rank decomposition of tensors (see Chapter 2,

Section 2.4). In addition, APG, HORPCA-s based on ADAL and HORPCA-M based on I-

ADAL were also developed in Goldfarb and Qin [72] to solve the problem in Equation (6.1).

However, as mentioned above, these methods are based on batch optimization and are not

suitable for scalable or streaming data.

In this chapter, an online optimization is considered to solve problem (6.1). The major

challenge is the computation of HOSVD, because the nuclear norm keeps all the samples

tightly and therefore all samples are accessed during optimization at each iteration. Therefore,

it suffers from high computational complexity. In contrast, an equivalent nuclear norm is used

in this chapter for each i-mode unfolding matrices of X , whose rank is upper bounded, as

shown in Recht et al. [165], as:

(6.2)||X [i]||∗ =
inf

Li,Ri

0.5(||Li||2F+||Ri||2F ),

subject to X [i] = LiR
T

i ,

where Li ∈ R
p×r, Ri ∈ R

q×r, p × q denotes the dimension of the unfolding matrix X [i],

and r is the rank. Equation (6.2) shows that i-mode unfolding matrices of low-rank tensor

X can be an explicit product of each low-dimensional subspace basis L ∈ R
p×r and its

coefficients R ∈ R
q×r and this re-formulated nuclear norm is shown in [35,165,167]. Hence,

Equation (6.1) is re-formulated by substituting Equation (6.2) by:

(6.3)minimize
X ,E,L,R

1

2

N∑

i =1

||Y [i] −X [i] − E [i]||2F +
λ1

2
(||Li||2F + ||Ri||2F ) + λ2||E [i]||1,

subject to X [i] = LiR
T

i .

The objective function minimization, avoiding the constraints in Equation (6.3) and setting

X [i] = LiR
T

i , is defined as follows:

minimize
L,R,E

1

2

N∑

i=1

||Y [i] − LiR
T

i − E [i]||2F+
λ1

2
(||Li||2F+||Ri||2F ) + λ2||E [i]||1, (6.4)
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where λ1 and λ2 are regularization parameters for low-rank and sparsity patterns. Equa-

tion (6.4) is the main equation for stochastic tensor decomposition, which is not completely

convex with respect to Li and Ri. However, Equation (6.3) gives the global optimal solution

to the original optimization problem in Equation (6.2), as proved in Feng et al. [64]. The

following cost function is required to be optimized for solving Equation (6.3) as:

fn(L) =
1

n

N∑

i=1

n∑

t=1

l(Y(t)[i],Li) +
λ1

2n
||Li||2F , (6.5)

where n is the number of samples, and Y(t)[i] denotes the ith mode of a tensor Y at time

instance t given by:

l(Y(t)[i],Li) = minimize
L,R,E

||vec(Y(t)[i])− Lir− e||22+
λ1

2
||r||22+λ2||e||1. (6.6)

where r ∈ R
r and e ∈ R

p are vectors of coefficient and noise for matrix RT

i and unfolded

matrix E [i], respectively. Finally, the objective function lt(Li) for updating the basis Li at

time instance t is given by:

lt(Li) =
1

n

n∑

t=1

{
1

2
||vec(Y(t)[i])− Lir

(t) − e(t)||22+
λ1

2
||r(t)||22

+λ2||e(t)||1
}
+

λ1

2n
||Li||2F , (6.7)

The main goal is to minimize the cost function in Equation (6.5) through stochastic optimiza-

tion method, as shown in Algorithm 3. In case of BG modeling, one video frame (i.e. RGB

image) at a time t is processed in an online manner. The coefficient r, sparse outliers e and

basis Li are optimized in an iterative way. Moreover, r and e are estimated with fixed random

basis Li by projecting one sample using Equation (6.2). This subproblem requires to solve

the following small-scale convex optimization problem at time instance t:

r(t) = (LT

i Li + λ1I)
−1LT

i

{
vec(Y(t)[i])− e(t−1)

}
, (6.8)

e(t) =





M(t)(k)− λ2, if M(t)(k) > λ2,

M(t)(k) + λ2, if M(t)(k) < λ2,

0, otherwise,

(6.9)

where M(t) = vec(Y(t)[i]) − Lr(t) and M(t)(k) is the k-th element in M(t). The basis Li

is estimated using Equation (6.13) through minimizing the previously computed coefficients

r and e, and it is updated using Algorithm (4). If the rank r is given and the basis Li is

estimated as above, then Li converges to the optimal solution asymptotically as compared

to its batch counterpart, as shown in Feng et al. [64]. The BG sequence is then modeled by

low-rank tensor X which changes at a time instance t. Finally, a hard thresholding scheme is

applied on a sparse component to get the binary FG mask (see Equation 4.8).
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Algorithm 3 Online Stochastic Tensor Decomposition

Input: Y ∈ R
I1×I2×...×IN .

Initialize: X = E = 0 (low-rank and sparse components), L ∈ R
p×r (initial basis),

A ∈ R
r×r, B ∈ R

p×r, r ∈ R
r, R ∈ R

q×r, e ∈ R
p, I ∈ R

r×r (unitary matrix),

λ1 =
1√

max(size(Y)
, and λ2 = 10λ1.

1: for t = 1 to n do {access each sample}
2: for i = 1 to N do {each tensor mode}
3: Access each sample from ith mode of tensor Y by Y(t)[i].

4: Compute the coefficients r and noise e by projecting the new sample as:

{
r(t), e(t)

}
= argmin

1

2
||vec(Y(t)[i])− L

(t−1)
i r− e||22

+
λ1

2
||r||22+λ2||e||1. (6.10)

5: Compute the accumulation matrices A(t) and B(t):

A(t) ← A(t−1) + r(t)r(t)T, (6.11)

B(t) ← B(t−1) + (vec(Y(t)[i])− e(t))r(t)T. (6.12)

6: Compute L
(t)
i with previous iteration L

(t−1)
i and update the basis using Al-

gorithm (4).

L
(t)
i = argmin

1

2
Tr[L

(t−1)T
i (A(t) + λ1I)L

(t−1)
i ]− Tr(L

(t−1)T
i B(t)).

(6.13)

7: L(t)[i] ← LiR
T

i (low-dimensional subspace for each i-th mode)

8: vec(E(t)[i])← e(t) (sparse error)

9: end for

10: end for

Output: X = 1
N

N∑
i=1
X [i], E =

N∑
i=1
E [i].

Algorithm 4 Basis Update

Input: L = [l1, ..., lr] ∈ R
p×r, A = [a1, . . . , ar] ∈ R

r×r, B = [b1, . . . ,br] ∈
R
p×r.

1: Ã← A+ λ1I

2: for j = 1 to r do {access each column of L}
3: Update each column of basis matrix L

(6.14)lj ←
1

Ãjj

(bj − Lãj) + lj

4: end for

5: return L (Updated basis)



80 ONLINE STOCHASTIC TENSOR DECOMPOSITION

6.4 Experimental results

In this section, we present our experimental results in detail. We first evaluate the proposed

method performance on synthetic generated data; then the qualitative and quantitative analy-

sis on MSVS is presented.

6.4.1 Evaluation on synthetic data

The proposed method is first quantitatively tested on synthetic data. For data evaluation,

a true low-rank tensor L of size 30 × 30 × 30 is generated by rank-3 factor matrices e.g.,

Y[k] ∈ R
30×3 where k = 1, 2, 3. Each factor matrix Y[k] consists of three components such

as [sin(4π k
30 ), cos(4π

k
30 ), sgn(sin(π))]. The first two components are different and third

one is common in all modes. A random entries of L is corrupted by outliers from uniform

distribution and small noise N (0, 0.01). We used Root Relative Square Error (RRSE) as

measure for evaluation, given by
||L̂−L||2
||L||2

, where L̂ is the estimated low-rank tensor. We

compare our RRSE performance with other state of the art methods, such as BRTF [253],

CP-ARD [142], CP-ALS [99], HORPCA [72] and HOSVD [72], respectively (see Chapter 2,

Section 2.4). Figure 6.1 shows the value of RRSE for the recovered tensor L̂. We consider two

cases for robust tensor recovery for true data generation in Figure 6.1. First, the magnitude

is considered within a range of true data (fully observed data) as shown in Figure 6.1 (a).

However, Figure 6.1 (b) shows that the magnitude is taken larger for corrupting some entries

in true low-rank (partially observed data). In each case, the proposed method shows a very

significant improvement compared to its batch counter-part, such as BRTF.

6.4.2 Evaluation on multispectral video sequences

We evaluate the proposed method on MSVS dataset [17]. This is the first dataset on MSVS3

available for research community in background subtraction. The main purpose of this dataset

is to show the advantage of multispectral information for an efficient foreground-background

separation when illumination variations and color saturation occurs. Both qualitative and

quantitative results are presented.

The MSVS dataset contains a set of 5 video sequences with 7 multispectral bands (6 vis-

ible spectra and 1 NIR spectrum). Each sequence presents a well known BS challenge, such

as color saturation and dynamic background. Figure 6.2 shows the visual comparison of the

proposed approach for BS task over three scenes of MSVS dataset. The true positives pixels

(TP ) are in white, true negatives pixels (TN ) in black, false positives pixels (FP ) in red and

false negatives pixels (FN ) in green. Figure 6.3 shows the visual results of these sequences

using individual band with RGB features. This qualitative evaluation shows that BS using

stochastic tensor decomposition on 7 multispectral bands together with visible spectra pro-

vides a satisfactory FG segmentation. Figure 6.4 shows the result from RGB image, 6 visible

spectrum and 1 NIR spectral band together with visible spectra.

3http://ilt.u-bourgogne.fr/benezeth/projects/ICRA2014/
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Figure 6.1: Performance of reconstructed low-rank tensor.

(a) (b) (d) (e) (f )(c)

Figure 6.2: Visual comparison of background subtraction results over three scenes

of the MSVS dataset. From left to right: (a) input RGB image, (b) ground truth, (c)

proposed approach, (d) BRTF, (e) HORPCA, and (f) CP-ALS.

The proposed method is also tested for quantitative analysis. The MSVS dataset contains

images of size 658×492 for each band. So, the size of the input tensorAwith 7 multispectral

bands is 658×492×7 for each video frame. The F-measure value (see Table 4.2) is computed

for each video sequence with its available ground truth images. Table 6.1 shows a comparison

results achieved using the RGB bands and all the seven multispectral bands (MSB). The

average F-measure score is compared for each video with 3 other methods: CP-ALS [99],

HORPCA [72], and BRTF [253] (see Chapter 2, Section 2.4). The experimental evaluations

show that the proposed methodology outperforms the other approaches.

The proposed scheme processes each multispectral or RGB image per time instance

reaching almost real-time processing, whereas CP-ALS, HORPCA, and BRTF are based on

batch optimization strategy. Due to this limitation, the CP-ALS, HORPCA, and BRTF were

applied for each 100 frames at time (reducing the computational cost) of the whole video

sequence (fourth-order tensor). In this chapter, the parameter r in Algorithm (3) was defined

experimentally as 10. For CP-ALS, the rank was defined as 50 for better visual results. For

HORPCA and BRTF, we used their default parameters. To obtain the foreground mask, the

sparse component E was thresholded. We calculated the mean of E along the third dimension,

generating a matrix E, then a hard threshold function (see Equation 4.8) was applied.
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(a)

(b)

Figure 6.3: Visual results of the proposed method on each RGB and multispectral

band. From top to bottom: input image, low-rank component, sparse component,

and the foreground mask. From left to right: RGB image, set of 6 visible, and 1 NIR

spectrum are shown in each column separately.

Table 6.1: MSVS dataset: Comparison of average F-measure score in (%) with other

approaches.
Methods 1st 2nd 3rd 4th 5th Avg

CP-ALS
RGB 58.69 RGB 71.25 RGB 51.32 RGB 60.21 RGB 49.35 RGB 58.16

MSB 71.61 MSB 83.50 MSB 68.54 MSB 78.63 MSB 66.97 MSB 73.85

HORPCA
RGB 63.23 RGB 78.52 RGB 55.69 RGB 67.56 RGB 58.80 RGB 64.76

MSB 80.65 MSB 84.79 MSB 68.12 MSB 77.56 MSB 74.47 MSB 77.11

BRTF
RGB 68.56 RGB 79.21 RGB 63.56 RGB 73.22 RGB 62.51 RGB 70.32

MSB 85.30 MSB 89.63 MSB 68.11 MSB 84.65 MSB 77.91 MSB 82.76

Proposed
RGB 78.63 RGB 85.96 RGB 79.56 RGB 76.32 RGB 71.23 RGB 76.69

MSB 93.65 MSB 95.17 MSB 90.64 MSB 89.29 MSB 92.66 MSB 92.28



6.4. Experimental results 83

(a) (b) (c) (d) (e)

Figure 6.4: FG results on 1st and 2nd videos of the MSVS dataset. (a) input image,

(b) ground truth, (c) results for only RGB, (d) for only 6 visible bands, and (e) for 1
NIR spectral band alone.

6.4.3 Basis initialization with bilateral random projections

Bilateral Random Projections (BRP) was first proposed by Zhou and Tao [257] as a fast low-

rank approximation method for dense matrices. The effectiveness and the efficiency of BRP

was verified in [256] for the GoDec algorithm to perform low-rank and sparse decomposition.

Given r bilateral random projections of a m×n dense matrix X, the low-rank approximation

L can be rapidly built by:

L = Y1(A
T
2 Y1)

−1YT
2 (6.15)

where Y1 = XA1, Y2 = XTA2, and A1 ∈ R
q×r and A2 ∈ R

p×r are random matrices.

In this section, we evaluate the robustness of BRP for the basis initialization instead of

the traditional uniformly distributed random numbers (UDRN). For demonstration, Figure 6.5

shows a fast background modeling convergence for the first 20 video frames on the 3rd video

of the MSVS dataset. As it can be seen, BRP enables a fast and effective low-rank approx-

imation, reducing the amount of false positive pixels in the background model initialization

task. Finally, the power scheme modification proposed by Zhou and Tao [257] can accelerate

the low-rank recovery when the singular values of X decay slowly.

6.4.4 Computational time

Execution times have also been analyzed in our experiments. The time is recorded in CPU

time as [hh : mm : ss] and Table 6.2 shows the computational time of each method for the

first 100 frames varying the image resolution. As it can be seen, the proposed algorithm is

much faster than its direct competitors: it is almost 5 times faster than BRTF considering

frames with size 160 × 120, and 10 times faster than CP-ALS for frames with size 320 ×
240. The algorithms were implemented in MATLAB (R2014a) running on a laptop computer

with Windows 7 Professional 64 bits, 2.7 GHz Core i7-3740QM processor and 32Gb of

RAM. The MATLAB implementation of the proposed approach is available at https://

github.com/andrewssobral/ostd, and the the evaluated algorithms are available in
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(a) (b) (c) (d) (e)

Figure 6.5: FG results on the 3rd video of the MSVS dataset (red = FP). From top

to bottom: basis initialization with UDRN and BRP. From left to right, the FG mask

at: (a) frame 1, (b) frame 5, (c) frame 10, (d) frame 15, and (e) frame 20.

Size HORPCA CP-ALS BRTF Proposed

160× 120 00:01:35 00:00:40 00:00:22 00:00:04

320× 240 00:04:56 00:02:09 00:03:50 00:00:12

Table 6.2: Execution times according to different image resolutions.

the LRS4 [177] library.

6.5 Conclusion

In summary, we proposed an online stochastic tensor decomposition algorithm for robust

BS application. Experimental results show that the proposed methodology outperforms the

other considered approaches, and we have achieved almost real time processing, since one

video frame is processed at time. The basis initialization with BRP can accelerate the low-

rank approximation, reducing the amount of false positive pixels in the background model

initialization step. In addition, the basis is updated incrementally, making it more robust

against gross outliers. A future research may concern the recent advances on randomized

principal component analysis [61, 78, 228]. Instead of making a full decomposition of the

unfolded matrices, the randomized algorithms provide an efficient computational framework

that computes a compressed representation of the data using random sampling.

4http://github.com/andrewssobral/lrslibrary



Chapter 7

Robust subspace clustering: from single

subspace to multiple subspaces

In this chapter, we investigate a particular approach of low-rank and sparse representation,

named subspace clustering. Differently from previous methods described in the last chap-

ters, where inliers lie on a single low dimensional subspace, subspace clustering methods

consider the inliers are drawn from the union of low-dimensional subspaces. Instead of ap-

plying subspace clustering for background modeling and foreground separation as shown in

the previous chapters, we evaluate the robustness of some subspace clustering algorithms for

human action recognition from 3D skeletal data. This chapter presents a particular work re-

alized in conjunction with the Computer Vision Center (CVC) at Autonomous University of

Barcelona (UAB). The work presented here is currently under revision for publication [181].

This chapter is also related with a recently published survey (Sensors, 2016, [73]) on hu-

man pose estimation from monocular images in collaboration with researchers from China

University of Petroleum and CVC.

7.1 Introduction

Human action recognition (HAR) is an important problem in computer vision. Application

fields include video surveillance, automatic video indexing and human computer interaction.

Most solutions for HAR learn action patterns from sequences of image features, like Space-

Time Interest Points (STIP) [103], temporal templates [50], 3D SIFT [171], optical flow [6,

8], Motion History Volume [225], among the others. These features are commonly used

to describe human actions, which are subsequently classified using techniques like Hidden

Markov Models [6] and Support Vector Machines [170]. Recent and exhaustive reviews of

methods for HAR can be found in [162, 226].

However, the development of advanced motion sensing devices, and especially the emer-

gence of Microsoft Kinect [79], has enabled us to capture the human skeleton from the depth

information in real-time, which inspired the research on activity recognition from 3D skeletal

85
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Figure 7.1: Proposed framework for robust subspace clustering of human activities

through skeletal data.

data. An increasing number of algorithms have employed depth data in vision-based human

action recognition [5, 44, 126]. The human body is represented as an articulated system of

rigid segments connected by joints (human skeleton) [174,175], and human action is consid-

ered as a continuous evolution of the spatial configuration of these segments. In essence, the

problem of action recognition is based on the information extracted from a number of action

descriptors calculated from a skeleton fitted to the body of a tracked subject.

On the one hand, approaches for recognizing human activities from skeletal data play

an important role in human motion analysis using depth imagery. On the other hand, very

few researches explore the recent advances in robust subspace clustering. In particular, we

consider that the skeletal actions can be drawn from the union of low-dimensional subspaces.

In accordance with the last advances on subspace clustering, Sparse Subspace Clustering

(SSC) [59] and Low-Rank Representation (LRR) [121] are both considered as the state-of-

the-art methods for subspace clustering [60, 185, 213, 214, 222] (see Chapter 2, Section 2.3).

In the meantime, most of related works on subspace clustering were applied to motion seg-

mentation [93,111,164,216,233,238], face clustering [43,111,156,233], and video summa-

rization or scene categorization [58, 197]. Only a few works [58, 198] have explored the use

of low-dimensional subspace approaches for human activity analysis from 3D skeletal data.

In this chapter, we present a methodology for robust subspace clustering of human ac-

tivities from 3D skeletal data (whose black diagram is shown in Figure 7.1). In addition, we

evaluate some LRR and SSC-based approaches for the 3D skeletal action recognition prob-

lem. A comparison between five skeletal representations is also covered in the experimental

results. First, we start with the related work in Section 7.2. A brief introduction to subspace

clustering is provided in Section 7.3. Next, the feature extraction process from skeletal data

is described in Section 7.4. Finally, the experimental results on recent skeletal action datasets

are reported in Section 7.5, as well as conclusions in Section 7.6.

7.2 Related works

Here, we present some works related to skeletal action recognition taking into account a

supervised learning perspective (Section 7.2.1) and from an unsupervised one (Section 7.2.2).
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7.2.1 Supervised skeletal-based action recognition

Recent skeletal-based action recognition approaches have incorporated new representations

for describing actions, and some related works are here summarized.

Xia et al. [230] present an approach to human action recognition using histograms of 3D

joint locations (HOJ3D) as a compact representation of postures. The 3D skeletal joint loca-

tions are extracted from Kinect depth maps using Shotton et al.’s method [174]. The HOJ3D

computed from the action depth sequences are reprojected using LDA and then clustered

into k posture visual words, which represent the prototypical poses of actions. The temporal

evolutions of those visual words are modeled by discrete hidden Markov models (HMMs).

Devanne et al. [54] proposed a spatio-temporal motion trajectory representation for skele-

tal action recognition. Each trajectory consists of one motion channel corresponding to the

evolution of the 3D position of all joint coordinates within frames of action sequence. The ac-

tion recognition is achieved through a shape trajectory representation that is learnt by a K-NN

classifier, which takes benefit from Riemannian geometry in an open curve shape space.

In Yang et al. [240], a feature descriptor is proposed for action recognition based on dif-

ferences of skeleton joints (EigenJoints), which combine action information including static

posture, motion property, and overall dynamics. An Accumulated Motion Energy (AME)

method is proposed to perform informative frame selection, which is able to remove noisy

frames and reduce computational cost. In addition, a non-parametric Naı̈ve-Bayes-Nearest-

Neighbor (NBNN) is employed to classify multiple actions.

In Vemulapalli et al. [212], a new skeletal representation is proposed that explicitly mod-

els the 3D geometric relationships between various body parts using rotations and transla-

tions in 3D space. Since 3D rigid body motions are members of the special Euclidean group

SE(3), the proposed skeletal representation lies in the Lie group SE(3)× ...×SE(3), which

is a curved manifold. Using the proposed representation, human actions can be modeled as

curves in this Lie group. The classification is done using a combination of dynamic time

warping (DTW), Fourier temporal pyramid representation and linear SVM.

In Pazhoumand-Dar et al. [161], a novel technique that automatically determines dis-

criminative sequences of relative joint positions is proposed for each action class. The au-

thors employ a combination of spatio-temporal based skeleton features and propose a new

similarity function based on the longest common subsequence (LCSS) algorithm [217] for

dealing with both simple and complex actions. The LCSS algorithm provide an intuitive

notion of similarity between trajectories by giving more weight to similar portions of the

sequences [217].

Tao et al. [195] proposed a novel body-part motion based feature called Moving Poselet,

which corresponds to a specific body part configuration undergoing a specific movement. A

simple algorithm for jointly learning Moving Poselets and action classifiers is also proposed.
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7.2.2 Clustering human activities from skeletal data

To date, only a few works have been proposed to use subspace clustering approaches for

human activity recognition from skeletal data.

Ball et al. [14] used the k–means algorithm for recognizing individual persons from their

walking gait using three-dimensional skeleton data extracted from Microsoft Kinect.

Zhang et al. [246] proposed a subspace clustering approach, named SCAR, to recognize

human activity and detect exceptional activities. However, different from previously de-

scribed approaches, the proposed method was validated on data collected from RFID-based

systems.

Oszust et al. [154] presented an approach for recognition of signed expressions based on

visual and skeletal data obtained from Kinect sensor. Three clustering algorithms; k–means,

k–medoids and minimum entropy clustering (MEC) [114], are used to isolated Polish sign

language words from time series data.

Kitsikidis et al. [98] presented a method for body motion analysis in dance combining

the skeletal tracking data of multiple sensors. A posture vocabulary is generated by perform-

ing k–means clustering on a large set of unlabeled postures. Then, body part postures are

combined into body posture sequences and the Hidden Conditional Random Fields (HCRF)

classifier is used to recognize motion patterns.

Finally, in Azis et al. [11] k–means clustering is applied to build a dictionary of frame

representatives, and actions are encoded as sequences of frame representatives.

7.3 Introduction to subspace clustering

Subspace clustering, also referred to as spectral clustering, can be regarded as an extension of

the traditional clustering algorithms that seeks to find clusters that best fit a collection of data

points taken from a high-dimensional space [157,185,213]. Subspace clustering is defined as

the problem of fitting a union of subspaces to a collection of data points drawn from one or

more subspaces and corrupted by noise and/or gross errors. Mathematically, let X ∈ R
M×N

be the data matrix consisting of N vectors {xi ∈ R
M}Ni=1 which are assumed to be drawn

from the union of K linear (or affine) subspaces Sk of unknown dimensions dk = dim(Sk)
with 0 < dk < M . The subspace clustering problem is to find the number K of subspaces,

their dimensions {dk}Kk=1, the subspace bases, and the clustering of vectors xi into these

subspaces [12, 213].

In the last few years, a large number of subspace clustering methods have been developed.

Vidal et al. [213, 214] presented four categories of subspace clustering algorithms: algebraic

methods (i.e., Generalized PCA or GPCA [215]), iterative methods (i.e., k-plane cluster-

ing [30] — generalization of the k-means algorithm), statistical methods (i.e., “mixtures of

PCA”, and MPPCA [199]) and spectral clustering-based methods (ie. factorization-based

affinity [23, 48], sparse subspace clustering or SSC [59, 60], and low-rank representation or

LRR [43,121,214]). Among them, methods based on spectral clustering have been shown to
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Figure 7.2: Illustration of the subspace clustering framework based on sparse and

low-rank representation approaches for building the affinity matrix.

perform very well for several applications in computer vision. In general, these methods tries

to first find a sparse or low-rank representation Z of the data matrix X and then apply a SC

method on Z [147].

In the literature, von Luxburg [218] defined spectral clustering-based methods in two

steps. First, a symmetric affinity matrix C ∈ [cij ] is constructed, where cij = cij ≥ 0 mea-

sures whether points i and j belong to the same subspace. Ideally cij ≈ 1 if points i and

j are in the same subspace and cij ≈ 0 otherwise. The second step consists in building a

weighted undirected graph where the data points are the nodes and the affinities cij are the

weights. Finally, the segmentation of the data is found by clustering the eigenvectors of the

graph Laplacian using central clustering techniques, such as k-means (see Figure 7.2). How-

ever, a good affinity matrix is the main challenge of this approach. Sometimes the data points

could be very close to each other, even from different subspaces (e.g. near the intersection of

two subspaces) [213, 214].

Previous works [23, 48] tried to build the affinity matrix of X by computing the SVD

from data matrix X = UΣV
T where C = VrV

T

r and Vr are the top r = rank(X)
singular vectors of X. However, in real world applications, the data are often contaminated

by noise and gross errors. In addition, selecting a good r becomes very difficult and many

datasets are better modeled by affine subspaces [213, 214].

Recent advances on sparse and low-rank representation approaches have allowed the

development of robust methods for building the affinity matrix in the case of data corrupted

by noise and/or gross errors. As mentioned in Chapter 2, SSC [59] and LRR [121] are both

considered as the state-of-the-art methods for subspace clustering. In this chapter we evaluate

LRR and SCC (and their variants) for human activity recognition from 3D skeletal data.
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7.4 Feature extraction on skeletal action datasets

Given a video sequence containing a specific human action, the 3D skeletal joint locations

are inferred from depth maps via Kinect device using Shotton et al.’s method [174]. The

3D coordinates of each skeletal joint are represented as x ∈ R
D, where D = 3. The J

extracted skeletal joints are stored in a data vector x = {x1, x2, . . . , xJ}T ∈ R
P , where

P = DJ . For the whole video sequence, all skeleton joint locations are stored in a data

matrix X(1) ∈ R
P×T as:

X(1) =




x1,1 x1,2 · · · x1,T

x2,1 x2,2 · · · x2,T

...
...

. . .
...

xP,1 xP,2 · · · xP,T



, (7.1)

where T is the number of frames. As T may vary per video sequence, a skeletal representation

needs to be applied in data matrix X(1), resulting in a feature matrix X(2) ∈ R
F×T∗

with

fixed size (T ∗ < T ). Finally, the skeletal representation of each action is grouped into an

action matrix X(3) ∈ R
M×N for clustering, where M = FT ∗ and N is the total number of

actions. The steps described here are shown in Figure 7.3. Several skeletal representations

have been proposed in the literature (please refer to Tagliasacchi [191] for a complete survey).

In this chapter, we have selected five well-known skeletal representations:

• AJP (Absolute Joint Positions) is the concatenation of 3D coordinates of all joints

x1, . . . , xJ .

• RJP (Relative Joint Positions) is the concatenation of all vectors −−→xixj , 1 ≤ i < j ≤ J .

• JAQ (Joint Angles Quaternions) is the concatenation of the quaternions corresponding

to all joint angles.

• SE3AP (SE3 Lie Algebra with Absolute Pairs) and SE3RP (SE3 Lie Algebra with

Relative Pairs), both proposed by Vemulapalli et al. [212], where each individual body

part is represented as a point in a Lie group which is a curved manifold. Using this

representation, human actions can be modeled as curves in this Lie group. For classi-

fication, the action curves are mapped from the Lie group to its Lie algebra, which is

a vector space.

However, these skeletal representations are not sufficient for effective classification or

clustering due to various issues, like rate variations, temporal misalignment, noise, etc. To

deal with these problems, Dynamic Time Warping (DTW) [143] was first applied to handle

rate variations. Next, the warped curves are represented using the Fourier temporal pyramid

representation [221] removing the high frequency coefficients, handling the temporal mis-

alignment and noise issues. This procedure is illustrated in Figure 7.4. Table 7.2 shows the

length of each skeletal representation before and after the temporal modeling procedure. The

length is represented by F times T ∗ of the feature matrix X(2), where the difference of RAW

length and Final length depends of the skeletal body model. It is important to note that the
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Figure 7.3: Steps behind the construction of the action representation matrix.

Figure 7.4: Temporal modeling procedure applied in the skeletal representation to

deal with rate variations, temporal misalignment, and noise.

RAW data from a skeletal representation (output of Figure 7.4(a)) is not the same as the RAW

data built up from 3D skeletal joint locations (X(1) in Figure 7.3).

Pre-processing step: In this chapter, we have employed the same pre-processing step as

adopted by Vemulapalli et al. [212]. This step work as follows:

• Invariance to absolute location: all 3D joint coordinates were transformed from

the world coordinate system to a person-centric coordinate system by placing

the hip center at the origin.

• Invariance to scale: one of the skeletons is used as reference, and all the other

skeletons were normalized (without changing their joint angles) such that their

body part lengths are equal to the corresponding lengths of the reference skele-

ton.

• Invariance to rotation: the skeletons were rotated so that the ground plane pro-

jection of the vector from left hip to right hip is parallel to the global x-axis.

7.5 Experimental results

In this section, we evaluate the performance of five state-of-the-art subspace clustering algo-

rithms on two skeletal action datasets: UTKinect-Action [230]1 and Florence3D-Action [172]2.

Table 7.1 compares both datasets in term of number of actions, subjects and sequences. For

all subspace clustering algorithms shown in Table 7.3, we followed the same pipeline:

1http://cvrc.ece.utexas.edu/KinectDatasets/HOJ3D.html
2http://www.micc.unifi.it/vim/datasets/3dactions/
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Table 7.1: Datasets for human action recognition from 3D skeletal data.

Dataset # of actions # of subjects # of sequences

UTKinect-Action 10 10 199

Florence3D-Action 9 10 215

Table 7.2: Length of each skeletal representation before (RAW column) and after

(Final column) temporal modeling.

Dataset

AJP RJP JAQ SE3AP SE3RP

RAW Final RAW Final RAW Final RAW Final RAW Final

UTKinect 4218 7182 42180 71820 11248 19152 8436 14364 151848 258552

Florence3D 215 2352 11025 17640 3920 6272 2940 4704 38220 61152

1. First, thelow-rank or sparse representation of the action matrix X(3) is obtained.

2. An undirected weighted graph W is constructed by using the low-rank or sparse rep-

resentation to define the affinity matrix of the graph. W ∈ R
N×N is a symmetric

non-negative similarity matrix representing the weights of the edges.

3. The clustering of the nodes is computed using a spectral clustering algorithm. We

choose here the Ng et al.’s method [147] based on the normalized Laplacian as the

standard SC method.

7.5.1 Evaluation protocol

In the evaluation, all the parameters are chosen so that the final average clustering error is

the lowest (see Section 7.5.2). For all algorithms we varied the threshold ρ in the coefficient

matrix in [0, 1] increasing by 0.01. The best ρ is found when the clustering error is minimal.

Then, to eliminate the effect of randomness, we repeated such trial 20 times and compared

representative algorithms based on the average accuracy and standard deviation.

Implementation details: For all algorithms, we use the MATLAB code provided by their

authors. All experiments are carried out using MATLAB 2015a on a laptop machine

with Intel(R) Core(TM) i7-3740QM CPU at 2.70 GHz and 32 GB RAM.

7.5.2 Evaluation metrics

Following Chang et al. [42], we adopted clustering accuracy (ACC) as evaluation metrics in

the experiments. Let qi be the clustering label resulted from a clustering algorithm and pi
the corresponding ground truth label of an arbitrary data point xi. Then, ACC is defined as

follows:

ACC =

∑n
i=1 δ(pi,map(qi))

n
(7.2)
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Table 7.3: Selected subspace clustering algorithms for evaluation on skeletal action

datasets.

Representation Method Author(s)

low-rank
LRR Liu et al. (2013) [121]

LRSC Vidal and Favaro (2014) [214]

sparse

SSC Elhamifar and Vidal (2009) [59]

RSSC Xu et al. (2015) [233]

LS3C Patel et al. (2013) [159]

where δ(x, y) = 1 if x = y and δ(x, y) = 0 otherwise. map(qi) is the best mapping function

that permutes clustering labels to match the ground truth labels using the Kuhn-Munkres

algorithm [144]. A larger ACC indicates better clustering performance.

7.5.3 Results on UTKinect-Action dataset

For this dataset, the action matrix X(3) was projected into a r = 2s dimensional subspace

using PCA, where s = 10 represents the number of distinct actions. Thus, the number of

rows of X(3) ∈ R
M×199 is reduced, where M = 20 is the final row size of the action ma-

trix before subspace clustering. Figure 7.5 shows the feature embedding visualizations using

t-SNE [208]. Each clip is visualized as a point and clips belonging to the same action have

the same color. Note that the features are better grouped after temporal modeling improving

the clustering accuracy. Table 7.4 shows the performance comparison in terms of clustering

accuracy and std of selected subspace clustering methods between the five skeletal represen-

tations, respectively. The best scores for each skeletal representation are in bold face. As it

can be seen, LRSC and RSSC both using AJP and RJP as skeletal representation show the

best results in terms of clustering ACC compared to their direct competitors. The confusion

matrices for these two algorithms are shown in Figure 7.6.

7.5.4 Results on Florence3D-Action dataset

This is a challenging dataset due to the high intra-class variations, where the same action is

performed using the left hand in some sequences and the right hand in others. In addition, the

presence of actions like drink from a bottle and answer phone are quite similar to each other.

For this dataset, the action matrix X(3) was projected into a r = 10s dimensional sub-

space using PCA, where s = 9 represents the number of distinct actions. Thus, the row size

of X(3) ∈ R
M×215 is reduced, where M = 90 is the final row size of the action matrix be-

fore subspace clustering. Table 7.5 shows the performance comparison in terms of clustering

accuracy and std of five subspace clustering methods between five skeletal representations,

respectively. The best scores for each skeletal representation are in bold face. This is best

viewed in Figure 7.7, that shows the feature embedding using t-SNE [208]. We note that
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Table 7.4: Clustering accuracy and std of five subspace clustering methods between

five skeletal representations extracted from UTKinect dataset.

Method AJP RJP JAQ SE3AP SE3RP

SSC 0.913 ± 0.055 0.936 ± 0.048 0.777 ± 0.027 0.893 ± 0.040 0.820 ± 0.057

RSSC 0.921 ± 0.020 0.951 ± 0.037 0.760 ± 0.018 0.900 ± 0.022 0.826 ± 0.026

LRR 0.795 ± 0.035 0.788 ± 0.026 0.643 ± 0.034 0.659 ± 0.041 0.653 ± 0.042

LRSC 0.951 ± 0.040 0.812 ± 0.074 0.762 ± 0.013 0.768 ± 0.028 0.777 ± 0.042

LS3C 0.751 ± 0.034 0.723 ± 0.018 0.680 ± 0.013 0.675 ± 0.023 0.579 ± 0.020

some features are more overlapped than others, which results in a difficult task for clustering.

As it can be seen, the RSSC using AJP as skeletal representation shows the best result in

terms of clustering ACC compared to its direct competitors. The confusion matrix for this

algorithm is shown in Figure 7.8. However, compared to the results obtained with UTKinect

dataset, the Florence3D dataset seems to be more difficult even for the state-of-the-art meth-

ods, due to very similar actions such as drink from a bottle and answer phone, as can be

seen in Table 7.6. Most of evaluated methods have clustering ACC decreased by a factor of

approximately 10%.

7.5.5 Comparison to the state-of-the-art methods

As previously described, the methodology presented in this chapter explores an unsupervised

learning approach through robust subspace clustering methods for skeletal action recognition.

Table 7.6 compares the result of several state-of-the-art methods with the best subspace clus-

tering method for both datasets. As can be seen, LRSC (low-rank based) and RSSC (sparse

based) both achieved promising results compared with state-of-the-art supervised methods.

The proposed work explores unlabeled data to find some intrinsic “natural” structures, orga-

nizing them into k-groups taking into account the recent advances on sparse and low-rank

representation approaches. Evidently, supervised approaches usually outperforms the unsu-

pervised ones in several key tasks.



7.5. Experimental results 95

walk

sitDown

standUp

pickUp

carry

throw

push

pull

waveHands

clapHands

Figure 7.5: Feature embedding visualizations of AJP skeletal representation before

(left) and after (right) temporal modeling procedure from UTKinect actions using

t-SNE.
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Figure 7.6: From top-down: confusion matrix for LRSC with AJP skeletal repre-

sentation and RSSC with RJP skeletal representation in the UTKinect dataset.
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Table 7.5: Clustering accuracy and std of five subspace clustering methods between

five skeletal representations extracted from Florence3D-Action dataset.

Method AJP RJP JAQ SE3AP SE3RP

SSC 0.788 ± 0.002 0.742 ± 0.028 0.708 ± 0.002 0.670 ± 0.005 0.642 ± 0.021

RSSC 0.790 ± 0.001 0.733 ± 0.045 0.706 ± 0.001 0.679 ± 0.004 0.673 ± 0.010

LRR 0.784 ± 0.002 0.503 ± 0.022 0.493 ± 0.012 0.522 ± 0.014 0.469 ± 0.014

LRSC 0.723 ± 0.007 0.730 ± 0.004 0.693 ± 0.001 0.692 ± 0.009 0.561 ± 0.026

LS3C 0.655 ± 0.020 0.624 ± 0.019 0.732 ± 0.009 0.473 ± 0.018 0.612 ± 0.039

wave
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Figure 7.7: Feature embedding visualizations of AJP skeletal representation before

(left) and after (right) temporal modeling procedure from Florence3D actions using

t-SNE.
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Figure 7.8: Confusion matrix for RSSC in the Florence3D dataset with AJP skeletal

representation.
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Table 7.6: Performance comparison with state-of-the-art methods.

Type Author(s) Approach Recognition rate

UTKinect-Action dataset

S Xia et al. (2012) [230] Histograms of 3D joints 90.92%

S Zhu et al. (2013) [261] Random forests 87.90%

S Vemulapalli et al. (2014) [212] Points in a Lie Group 97.08%

U proposed LRSC + AJP or RSSC + RJP 95.10%

Florence3D-Action dataset

S Seidenari et al. (2013) [172] Multi-Part Bag-of-Poses 82.00%

S Cippitelli et al. (2016) [47] Key poses 82.10%

S Vemulapalli et al. (2014) [212] Points in a Lie Group 90.88%

U proposed RSSC + AJP 79.00%

S - Supervised, U - Unsupervised

7.6 Conclusion

In summary, we presented a methodology to recognize human activities from skeletal data

through robust subspace clustering. The 3D skeletal joints locations are inferred from depth

maps via the Kinect device using Shotton et al.’s method [174]. The experimental results

showed that low-rank based (e.g. LRSC) and sparse based (e.g. RSSC) methods are both

unsupervised approaches which provide interesting results for human action recognition from

skeletal data compared with state-of-the-art supervised methods.

Ideas for future work include the possibility to apply recent Robust PCA methods for

filtering the noise in the action matrix before the subspace clustering step. In addition, recent

feature selection algorithms [168] can be evaluated to reduce the dimension of the action

matrix instead of traditional PCA approach.
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Chapter 8

Conclusions

In this chapter, we summarize the main contributions of the thesis covering the strengths and

weaknesses of the proposed approaches presented in the main chapters of this thesis. Finally,

we provide an outlook of the future research possibilities and directions.

8.1 Summary and contributions

The recent research on decomposition into low-rank plus sparse matrices or tensors shows

a general-purpose framework that covers a wide range of applications where the data to be

processed have two important assumptions: a) the inliers are drawn from a single (or a union

of) low-dimensional subspace(s), and b) the corruptions are sparse. In the thesis, we have

explored the fact that this assumption holds a particular association to the problem of B/F

separation where the background model (almost static) is represented as a low-rank structure

and the foreground objects are associated with the sparse residuals. However, the key is-

sues and challenges in such approaches are their capabilities to handle complex and dynamic

background scenarios, as well as performing in a real-time manner. Given the importance of

this subject, the thesis presented here has brought the following contributions:

• In Chapter 1, we introduced the problem of moving object detection under back-

ground/foreground separation for visual-surveillance applications. We highlighted that

the recent research on decomposition into low-rank plus sparse matrices shows a suit-

able framework to separate moving objects from the background.

• In Chapter 2, we gave an overview of the state-of-the-art methods for low-rank and

sparse decomposition, as well as their application to background modeling and fore-

ground segmentation tasks. The methods were unified in a more general framework,

named DLSM, that categorizes the matrix separation problem into three main ap-

proaches: implicit, explicit and stable. In addition, we developed the matrix separation

problem from a single low dimensional subspace to the union of low-dimensional sub-

spaces, introducing the subspace clustering approach. We showed also its adequacy

101
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to the problem of background/foreground separation by clustering motion trajectories.

Finally, we extended the matrix case to the tensor case for handling multidimensional

data.

• In Chapter 3, we presented a novel methodology for background model initializa-

tion seen as a reconstruction problem from missing/corrupted data. The redundant

frames are eliminated and the moving regions are set to be non-observed values. Next,

twenty-three matrix and tensor low-rank recovery algorithms were evaluated for the

background initialization problem. The experimental results on the SBI dataset high-

lighted the good performance of LRGeomCG method over its direct competitors. Fi-

nally, we note that matrix-based completion methods show an attractive potential for

background modeling initialization in video surveillance.

• In Chapter 4, we proposed a double-constrained version of RPCA to improve the fore-

ground detection in maritime environments for automated video-surveillance appli-

cations. The sparse component is constrained by shape and confidence maps, both

extracted from spatial saliency maps. The experimental results indicate a better en-

hancement of the object foreground mask when compared with its direct competitors.

• In Chapter 5, an incremental and multi-feature tensor subspace learning algorithm

(IMTSL) was presented. Different from previous related works where a tensor model

is built directly from the video data (i.e., each frontal slice of the tensor is a gray-scale

image), in this work the tensor model was built from a previous feature extraction pro-

cess. The multi-feature tensor model allows us to build a robust low-rank model of the

background scene. In addition, an incremental high-order singular value decomposi-

tion was proposed, making our method able to process streaming data when the full

size of the data is unknown. The experimental results have shown that the proposed

method achieves promising results for the background subtraction task.

• In Chapter 6, we proposed an online stochastic tensor decomposition algorithm, named

OSTD, for handling streaming multispectral video sequences for intelligent video

surveillance applications. Differently from the IMTSL algorithm, the OSTD algorithm

makes use of robust principal component analysis on tensors for a robust background/-

foreground separation. The experimental results have shown that the proposed method

outperforms its direct competitors, and we have achieved almost real time processing,

since one video frame is processed in an online optimization scheme. Moreover, it is

shown that the basis initialization with BRP can accelerate the low-rank approxima-

tion, reducing the amount of false positive pixels in the background model initializa-

tion step.

• Finally, in Chapter 7 we presented a particular work realized in conjunction with Com-

puter Vision Center (CVC) at Autonomous University of Barcelona (UAB). In this

chapter, we have shown a methodology to recognize human activities from 3D skeletal

data through robust subspace clustering approaches. The experimental results showed

that LRSC and RSSC methods were both unsupervised approaches which provided

interesting results compared with state-of-the-art supervised methods.
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8.2 Limitations and future perspectives

The strengths of the contributions introduced in the thesis have been demonstrated through

many experimental evaluations. However, there are limitations which could be open oppor-

tunities for future research.

• The methodology presented in Chapter 3 has two main drawbacks. First, it makes

use of a simple joint motion-detection and frame-selection operation that removes the

redundant frames and induces missing entries from the moving regions. This joint

operation cannot deal with many real-world challenges of background model initial-

ization, due to its sensitivity to noise, inability to deal with dynamic background and

stopped objects, among the others. Secondly, the matrix and tensor completion ap-

proaches evaluated in this work make use of a batch optimization process, requiring

that all video frames be stored in memory in advance. This is an important issue that

limits the application in the case of streaming data or high resolution images.

Future researches may concern: a) the investigation of a more robust approach for

frame-selection that can handle the major challenges of video surveillance applica-

tions, and b) the development or evaluation of incremental and real-time approaches

for low-rank reconstruction, enabling the algorithm to perform the background model

initialization in streaming videos.

• The double-constrained RPCA algorithm presented in Chapter 4 makes use of shape

and confidence maps, both extracted from spatial saliency maps. Thus it strongly

depends on the robustness of the saliency extractor, that could present incorrect seg-

mentation in the presence of high visual saliency objects coming from the background

scene. In addition, both confidence map and shape constraint were built from the

same source, instead of two complementary sources. Finally, the proposed SCM-

RPCA works in a batch manner, requiring all frames be stored in memory, restricting

the application in streaming or high resolution videos.

Future work may concern the investigation of how spatio-temporal saliency detectors

can help the proposed approach to improve the foreground detection, or how different

sources could be used to build complementary shape and confidence maps. Further-

more, the development of an incremental version of the proposed algorithm could be

desirable for streaming applications.

• The incremental and multi-feature tensor subspace learning algorithm presented in

Chapter 5 has two main drawbacks. The first one is related to the high computational

cost of the incremental SVD method, making it infeasible for real-time applications.

The second one is related to the foreground detection method that relies on three ba-

sic steps: a) similarity function, b) weighted combination of features, and c) hard

thresholding. The major limitation concerns the set of weights for each feature, that

are calculated manually, making the foreground detection step unable to automatically

adjust to new conditions.

Further research may consists in improving the speed of the incremental low-rank de-

composition for real-time applications. Additional supports for dynamic backgrounds
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might be interesting for real and complex scenes. Finally, the investigation of fast op-

timization algorithms for finding the most appropriate weights could be an important

research direction for this work.

• The online stochastic tensor decomposition algorithm proposed in Chapter 6 makes

use of an online stochastic optimization algorithm to decompose the unfolded ma-

trices of a tensor into a low-rank and sparse representation. The main drawback of

the proposed algorithm is the computational cost required to process each unfolded

matrix.

A future research may concern the exploitation of recent advances on randomized

principal component analysis [61, 78, 228]. Instead of making a full decomposition

of the unfolded matrices, the randomized algorithms provide an efficient computa-

tional framework that computes a compressed representation of the data using random

sampling. In other words, it captures the essential information that can then be used

to obtain a low-rank matrix/tensor approximation. Finally, the implementation of the

OSTD algorithm in C/C++ language with GPU support could improve its scalability

for high resolution and real-time applications.

• Finally, concerning Chapter 7, ideas for future work include the possibility to apply

recent Robust PCA methods for filtering the noise in the action matrix before the

subspace clustering step. In addition, recent feature selection algorithms [168] can be

evaluated to reduce the dimension of the action matrix instead of the traditional PCA

approach.



Appendix A

Notations and symbols

In this section we provide a homogenized overview of all different mathematical notations

and symbols found over all chapters in this thesis. Table A.1 presents a summarized overview

of the adopted symbols.

Matrices For matrices, A stands for the observation matrix, L is the low-rank matrix, S is

the unconstrained (residual) matrix or sparse matrix, and E is the noise matrix. I is

the identity matrix. For the specific matrices, the notations are given in the section of

the corresponding method.

Tensors Similar to matrices, but represented by calligraphic letters, such as A, L, S , and E .

Norms The different norms used for vectors and matrices in this thesis are classified as

follows:

• Vector ℓα-norm, with 0 ≤ α ≤ 2: ||v||0 is the ℓ0-norm of the vector v, and it

corresponds to the number of non-zero entries. ||v||1=
∑

i vi is the ℓ1-norm

of the vector v, and it corresponds to the sum of the vector elements. ||v||2=√∑
i(vi)2 is the ℓ2-norm of the vector v, and it corresponds to the Euclidean

distance.

• Matrix ℓα-norm, with 0 ≤ α ≤ 2: ||A||0 is the ℓ0-norm of the matrix A, and

it corresponds to the number of non-zero entries. ||A||1= maxj
∑

i|Aij | is the

ℓ1-norm of the matrix A, and it corresponds to the maximum absolute column

sum norm. ||A||2=
√
σmax(ATA) = σmax(A) is the ℓ2-norm of the matrix

A, and it corresponds to the largest singular value of the matrix A or the square

root of the maximum eigenvalue of ATA. The ℓ2-norm for matrices is also

known as spectral norm. The ℓ2-norm is also employed in its squared version

such that ||A||22= σmax(A
TA).

• Matrix ℓ∞-norm: ||A||∞= maxi
∑

j |Aij | is the ℓ∞-norm of the matrix A,

and it corresponds to the maximum absolute row sum norm. The ℓ∞-norm of

105



106 NOTATIONS AND SYMBOLS

the matrix A is equivalent to the ℓ1-norm of the transposed matrix, such that

||A||∞= ||AT||1.

• Matrix ℓα,β-norm, with 0 ≤ α, β ≤ 2: ||A||α,β is the ℓα,β-mixed norm of the

matrix A, and it corresponds to the ℓβ-norm of the vector formed by taking

the ℓα-norms of the columns of the matrix A. The norm ℓ1,1 is equivalent to∑
i,j |Ai,j |, that is the sum of all absolute values of the matrix elements. The

norm ℓ1,2 is equivalent to σ(
∑

i|Ai|), that corresponds to the singular value

of the vector formed by taking the ℓ1-norms of the columns of the matrix A.

The norm ℓ2,1 is equivalent to
∑

i||Ai||2 or trace(
√
ATA). The norm ℓ2,2 is

equivalent to
√
trace(AAT) (also known as Frobenius norm).

• Matrix Frobenius norm: ||A||F=
√∑

i

∑
j |Aij |2 =

√
trace(AAT) is the

Frobenius norm of the matrix A, and it is defined as the square root of the sum of

the squared absolute values of its elements. The Frobenius norm is equivalent to

ℓ2,2-norm and it is sometimes also called the Euclidean norm, which may cause

confusion with the vector ℓ2-norm. The Frobenius norm is also employed in its

squared version such that ||A||2F=
∑

i

∑
j |Aij |2= trace(AAT), representing

the sum of squares of all entries.

• Matrix max norm: ||A||max= max|Aij | is the max norm of the matrix A, and

it corresponds to the maximum absolute value of the matrix A. The max norm

is equivalent to the ℓ∞,∞-norm such that ||A||max= ||A||∞,∞.

• Matrix nuclear norm: ||A||∗=
∑

i σi(A) is the nuclear norm of the matrix A,

and it corresponds to the sum of the singular values of the matrix A. The nuclear

norm is equivalent to the ℓ1-norm applied on the vector whose elements are

the singular values of the matrix, such that ||A||∗= ||σ(A)||1. For a desired

rank r in low-rank minimization, the nuclear norm is also defined by ||A||∗=∑r
i=1 σi(A).

• Matrix Schatten-p norm, with 0 ≤ p ≤ 2: the Schatten-p norm is the p-norm

applied to the vector of singular values of a matrix. The Schatten p-norm is de-

fined by ||A||Sp
= (

∑
i(σi(A))p)1/p, where σi(A) represents the i-th singular

value of the matrix A. For p = 1 and p = 2, it yields the nuclear norm and the

Frobenius norm, respectively. The case p =∞ yields the spectral norm.

• Tensor Frobenius norm: ||X ||F=
√∑

i . . .
∑

N |Xi...N |2 is the Frobenius norm

of an N th-order tensor X , and it is defined as the square root of the sum of the

absolute values of its elements. The Frobenius norm is sometimes also called

the Euclidean norm, which may cause confusion with the vector ℓ2-norm. The

Frobenius norm is also employed in its squared version representing the sum of

squares of all entries, such that ||X ||2F=
∑

i . . .
∑

N |Xi...N |2.
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Table A.1: Summary of symbols used in this thesis.

x, y, z,X, Y, Z Scalars (lowercase or uppercase letters)

x,y, z Vectors (lowercase bold letters)

X,Y,Z Matrices (uppercase bold letters)

X ,Y,Z Tensors (uppercase calligraphic bold letters)

xi ith element of vector x

X(i, j),Xij Entry at position (i, j) of matrix X

X (i, j, k),Xijk Entry at position (i, j, k) of 3th-order tensor X
X (i1, i2, . . . , iN ),Xi1i2...iN Entry at position (i1, i2, . . . , iN ) of N th-order tensor X
xi ith vector

x
(t)
i ith vector at time instance t

Xi ith matrix

X
(t)
i ith matrix at time instance t

Xi ith tensor

X (t)
i ith tensor at time instance t

Xi: A vector formed by all columns of the ith row of a matrix X

X:j A vector formed by all rows of the jth column of a matrix X

X:jk,Xi:k,Xij: Column, row, and tube fibers of a third-order tensor X
Xi::,X:j:,X::k Horizontal, lateral and frontal slices of a third-order tensor X
xT,XT Transpose of vector x and matrix X

X Denotes the complement of the matrix X

X [n] n-mode matricization of tensor X
X[n] Matrix representing the n-mode matricization of tensor X
X (t)[n] n-mode matricization of tensor X at time instance t
X(t)[n] Matrix representing the n-mode matricization of tensor X at time instance

0 ∈ R
m×n Zero matrix. A matrix with all its entries being zero.

1 ∈ R
m×n All-ones matrix. A matrix where every element is equal to one.

R The set of real numbers

R
n The set of all real vectors of length n

R
m×n The set of all real matrices of size m× n

R
I1×I2×...×IN The set of all N th-order real tensors of size I1 × I2 × . . .× IN
{. . .} A set, depending on context

[x, y] Closed interval from x to y
|.| Absolute value of a real number

||.|| Norm (in general)

||.||0 ℓ0-norm (number of non-zero elements)

||.||α Elementwise ℓα-norm

||.||∞ Infinity norm

||.||max Max norm

||.||F Frobenius norm

||.||α,β Elementwise ℓα,β-mixed norm (matrices only)

||.||Sp
Schatten p-norm (matrices only)

||.||∗ Nuclear norm (matrices only)

〈., .〉 Inner product
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var(x) Variance of the elements of the vector x

std(x) Standard deviation of the elements of the vector x

card(S) Denotes the number of non-zero entries of matrix S

rank(.) Matrix or tensor rank

rankr(X) rank-r approximation of matrix X (general case)

svdr(X) rank-r approximation of matrix X by SVD

vec(X), vec(X ) Vectorization of matrix X or tensor X
x⊗ y Outer product between vectors x and y

X ◦Y Element-wise multiplication between matrices X and Y

X⊗Y Kronecker product between matrices X and Y

X ×n U n-mode product between tensor X and matrix U

X ×N
i=1 Ui Shorthand for X ×1 U1 ×2 U2 ×3 . . .×N UN

PΩ(.) Sampling operator

min(x1, x2, . . . , xN ) The smallest among scalars {xi}
min(x),min(X) The smallest element of a vector x or matrix X

max(x),max(X) The biggest element of a vector x or matrix X

minx f(x) The minimum value of real function f with respect to x
argminx f(x) The minimizer of real function f with respect to x
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List of abbreviations

ADM Alternating Direction Method

ALM Augmented Lagrange Multipliers

ALS Alternating Least Squares

APG Accelerated Proximal Gradient

B/F Background/Foreground

BCD Block Coordinate Descent

BM Background Model

BMI Background Model Initialization

BMM Background Model Maintenance

BRP Bilateral Random Projections

BS Background Subtraction

CANDECOMP CANonical DECOMPosition

CP CANDECOMP/PARAFAC

DLSM D ecomposition into Low-rank and Sparse Matrices

FD Foreground Detection

FS Foreground Segmentation

GSVT Generalized Singular Value Thresholding

HOSVD Higher-Order Singular Value Decomposition

IALM Inexact Augmented Lagrange Multiplier

iHOSVD Incremental HOSVD

IMTSL Incremental Multi-feature Tensor Subspace Learning

IRLS Iteratively Reweighted Least Squares

IRNN Iteratively Reweighted Nuclear Norm

L/S-SC Low-rank/Sparse Subspace Clustering

LRA Low-Rank Approximation

LRR Low-Rank Representation

MC Matrix Completion

MF Matrix Factorization

NMF Non-negative Matrix Factorization

MoG Mixture of Gaussians
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OSTD Online Stochastic Tensor Decomposition

PARAFAC PARAllel FACtors

PCA Principal Component Analysis

PCP Principal Component Pursuit

RDL Robust Dictionary Learning

RM Rank Minimization

RNMF Robust Non-negative Matrix Factorization

RPCA Robust PCA

SC Subspace Clustering

SCM-RPCA Shape and Confidence Map-based RPCA

SDP Semidefinite Programming

SNN Sum of Nuclear Norms

SSC Sparse Subspace Clustering

SVD Singular Value Decomposition

SVT Singular Value Thresholding

TC Tensor Completion

TD Tucker Decomposition

TNN Truncated Nuclear Norm

t-SVD Tensor Singular Value Decomposition

TTD Three Term Decomposition



Appendix C

Introduction to tensors

Figure C.1: From left to right: illustration of tensor’s dimensionality, and partial vi-

sualization of the TensorFaces representation (image from Vasilescu thesis’s [210]).

From the point of view of multi-linear algebra, a tensor can be considered as a multi-

dimensional or multi-way array of data, usually seen as a generalization of the vector con-

cept [99, 104]. For example, a scalar is represented as a 0th-order tensor, a vector as a 1st-

order tensor, and a matrix (a 2-dimensional array) as a 2nd-order tensor. The order (also

degree or rank) of a tensor is the dimensionality of the array needed to represent it. Tensors

of order three or higher are usually called higher-order tensors. Figure C.1 (left) gives an

example of tensor’s dimensionality. Since the human brain’s is limited to three dimensional

perception, the visualization of high dimensional data is still a non trivial task. However,

several approaches have been proposed in the literature for visualizing data with four or more

dimensions [123, 194]. An easy way to interpret the fourth dimension case is to consider a

cube’s sequence, for example a sequence of color images (a spatio-temporal volume) where

its first three dimensions are represented by its width, height and color channels (i.e. RGB

color model). In the case of the fifth (or more) dimension, an interesting example is the repre-

sentation of the TensorFaces proposed by Vasilescu and Terzopoulos [211] (Figure C.1 right).

The image database consists of 28 male subjects imaged in 15 different views, under 4 dif-

ferent illuminations, performing 3 different expressions. In Vasilescu and Terzopoulos [211],
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Figure C.2: Illustration of a third-order tensor X ∈ R
5×6×6 and its entries.

(a) Tensor fibers (b) Tensor slices

Figure C.3: Decomposing a third-order tensor into fibers and slices.

the facial image data tensor is represented by R
7943×28×15×4×3, yielding a total of 7943

pixels per image.

Tensors have been widely used in mathematics and physics for decades, and they have

become very popular in psychometrics and chemometrics for multi-way data analysis [99].

However, in the last few years, with the accelerated growth of higher-dimensional data sets,

the use of tensors has expanded to other fields, such as neuroscience, data mining, signal/im-

age/video processing, computer vision and machine learning, among the others [7,45,46,66,

99, 101, 210].

In the next sections, we introduce the basic operations of multi-linear algebra on tensors.

For a deeper discussion on tensors, their properties, their operations and their applications,

the reader may refer to [3, 99].

C.1 Tensor basics

As introduced in the previous section, a tensor can be defined as a multidimensional array of

data1. Following the usual conventions found in the literature [99, 104], a tensor is denoted

by calligraphic letters, e.g. X . The order of a tensor is the number of dimensions, also

known as ways or modes, and an N -th order tensor of size I1 × I2 × . . . × IN is defined

as X ∈ R
I1×I2×...×IN . Each element in tensor X is addressed by Xi1i2...in representing an

entry at position (i1, i2, . . . , in), where 1 ≤ ij ≤ Ij , j = 1, . . . , N . Figure C.2 shows a

third-order tensor of size 5 × 6 × 6 and its modes. In the next sections, we present some of

the most important operations that are usually done in tensors.

1The definition of tensors used in this thesis should not be confused with tensor fields used in

physics and differential geometry in mathematics, such as, stress tensor, Einstein tensor, metric tensor,

curvature tensor, among the others [99].
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Figure C.4: Matricization of a third-order tensor into its n-mode matrices.

C.2 Fibers and slices

A tensor can be decomposed into subarrays by fixing a subset of its indices. A tensor fiber

can be regarded as a one-dimensional fragment (or column vector) of a tensor and it is defined

by fixing every index except one. A third-order tensor Xijk has column, row, and tube fibers

denoted by X:jk, Xi:k and Xij:, as can be seen in Figure C.3 (a). A second property is the

tensor slice. A tensor slice is a two-dimensional section of a tensor, when all but two indices

are fixed, resulting in a matrix called slice. A third-order tensor Xijk has horizontal, lateral

and frontal slices indicated by Xi::, X:j: and X::k, as can be seen in Figure C.3 (b). Fibers

and slices are the core of the most important operations on tensors, such as vectorization,

matricization, n-mode product, among the others [99], some of which are described in the

next sections.

C.3 Vectorization and matricization

In order to work with tensors, it is often convenient to represent tensors as vectors or matri-

ces. This process is known as vectorization or matricization, and consist in reordering the

elements of an N -th order tensor into a vector or a matrix, respectively [99]. For example, a

5× 6× 8 tensor can be arranged as a vector of 240 elements or a 5× 48 matrix.

Definition C.1. (Tensor vectorization). Let X ∈ R
I1×I2×...×IN be an N -th order tensor.

The vectorized tensor, denoted by vec(X ), is a vector formed by the tensor entries, such that

tensor entry (i1, i2, . . . , in) is mapped to vector entry j, where
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j = 1 +
N∑

k=1

(ik − 1)Jk and Jk =
k−1∏

m=1

Im (C.1)

Definition C.2. (Tensor matricization). Let X ∈ R
I1×I2×...×IN be an N -th order tensor.

The n-mode tensor matricization, with n ∈ {1, 2, . . . , N}, denoted by X [n], maps the tensor

element (i1, . . . , il, . . . , in) to matrix element (il, j), where

j = 1 +

N∑

k=1
k 6=l

(ik − 1)Jk and Jk =
k−1∏

m=1
m 6=l

Im (C.2)

In essence, the tensor vectorization vec(X ) is formed by stacking the entries of X in

column-major order, while in the tensor matricization the n-mode fibers are rearranged to be

the columns of the matrix X[n]. Consider the following example:

Example C.1. (Tensor vectorization and matricization) Let a third-order tensorX ∈ R
2×3×2

formed by the following two frontal slices

X::1 =

[
1 3 5

2 4 6

]
and X::2 =

[
7 9 11

8 10 12

]
; (C.3)

then, the vectorization of X is

vec(X ) = [1 2 3 4 5 6 7 8 9 10 11 12]T (C.4)

and the three n-mode matrices of X are

X[1] =

[
1 3 5 7 9 11

2 4 6 8 10 12

]
(C.5)

X[2] =



1 2 7 8

3 4 9 10

5 6 11 12


 (C.6)

X[3] =

[
1 2 3 4 5 6

7 8 9 10 11 12

]
(C.7)

C.4 Other tensor operations

Similarly to vectors and matrices, addition and subtraction between two tensors are defined

in a element-wise manner. However, the multiplication between tensors is more complex.

For a complete treatment of tensor multiplication, please refer to Kolda and Bader [99]. In

the thesis, we focus only on the n-mode product between a tensor and a vector or a matrix.
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C.4.1 n-mode tensor vector product

The n-mode vector product of an N -th order tensor X ∈ R
I1×I2×...×IN with a vector v ∈

R
In is denoted by X ×n v. Each n-mode fiber is multiplied by the vector v, and usually is

expressed by

X ×n v =

In∑

in=1

xi1i2...iN vin (C.8)

C.4.2 n-mode tensor matrix product

The n-mode matrix product of an N -th order tensor X ∈ R
I1×I2×...×IN with a matrix U ∈

R
J×In is denoted by X ×n U. Each n-mode fiber is multiplied by the matrix U, and usually

is expressed by

G = X ×n U ⇔
In∑

in=1

xi1i2...iNujin (C.9)

C.4.3 t-product

LetA be an I1×I2×I3 tensor and B be an I2×I4×I3. The t-product ofA and B, C = A∗B,

is an I1 × I4 × I3, defined as follows [97]:

Cij: =
I2∑

k=1

Aik:

⊙
Bkj:, (C.10)

where
⊙

denotes a circular convolution.

C.4.4 f -diagonal

An I1 × I2 × I3 tensor A is called f -diagonal, if each frontal face of A is a diagonal ma-

trix [97].
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Appendix D

LRSLibrary

Figure D.1: LRSLibrary GUI.

The LRSLibrary [180]1 provides a collection of low-rank and sparse decomposition al-

gorithms in MATLAB. The library was designed for background/foreground separation in

videos, and it contains a total of 104 matrix-based and tensor-based algorithms. The library

is also equipped with an easy-to-use graphical user interface (GUI), enabling the user to se-

lect the type of method (e.g. RPCA for Robust PCA) and its related algorithm (e.g. FPCP

for Fast PCP), please see Figure D.1 (left). The library also disposes of an additional tool to

resize and crop videos (Figure D.1 (right)).

The remainder of this appendix is organized as follows. First we start with the moti-

vation behind the LRSLibrary in Section D.1. Section D.2 presents a brief overview of the

algorithms available in the LRSLibrary. Section D.3 evaluates the computational cost of each

algorithm and its speed. Finally, in Sections D.4 and D.5, we present a usage example of the

LRSLibrary, as well as conclusions.

1LRSLibrary: https://github.com/andrewssobral/lrslibrary

117



118 LRSLIBRARY

D.1 Motivation

The main motivation behind the LRSLibrary was to build an easy-to-use framework for ap-

plying low-rank and sparse decomposition tools for the background/foreground separation

problem. The library was developed to be open source and free for academic/research pur-

pose. The LRSLibrary was crucial for all experiments conducted in the current thesis.

D.2 Algorithms

Up to the date of writing, the LRSLibrary provided 104 algorithms for B/F. An updated

list of currently available algorithms can be found in the library website. The algorithms

were grouped into the following categories: RPCA for Robust PCA, ST for Subspace Track-

ing, MC for Matrix Completion, TTD for Three-Term Decomposition, LRR for Low-Rank

Representation, NMF for Non-negative Matrix Factorization, NTF for Non-negative Tensor

Factorization, or TD for standard Tensor Decomposition.

D.3 Computational cost

Many efforts have been recently concentrated to develop low-computational subspace learn-

ing algorithms. In this section, an evaluation of the computational cost of the LRSLibrary

algorithm’s is shown in Figure D.3. It presents the averaged CPU time and the speed classi-

fication of each algorithm to decompose a 2304 × 51 matrix or a 48 × 48 × 51 tensor. The

speed classification criterion (SCC) function was defined as:

SCC(t̄) =





1 if t̄ < 1 (very fast: represented by blue color)

2 if 1 ≤ t̄ < 5 (fast: represented by green color)

3 if 5 ≤ t̄ < 20 (medium: represented by yellow color)

4 if 20 ≤ t̄ < 60 (slow: represented by red color)

5 if t̄ ≥ 60 (very slow: represented by dark red color)

(D.1)

where t̄ is the average time (in seconds) over three successive executions. Figure D.2 presents

the icons used by LRSLibrary GUI to represent the speed classification of each algorithm.

The experiments were performed using an Intel Core i7-3740QM CPU 2.70GHz with 16Gb

of RAM running MATLAB R2013b and Windows 7 Professional SP1 64 bits.

Figure D.2: Icons that represent the speed classification of each LRS algorithm.
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Figure D.3: CPU time consumption and the speed classification of each algorithm.
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D.4 Usage example

The LRSLibrary was designed to be easy to use. It contains several ready-to-use functions to

help the user to perform B/F by low-rank and sparse representation. Listing D.4 demonstrates

how to perform matrix and tensor factorization, given an input video file. The final results are

stored in the out variable, and the function show results shows the background subtraction

process. Please, refer to the online version of demo.m2 file for a complete overview.

1 % First run the setup script

2 lrs_setup; % or run('C:/lrslibrary/lrs_setup')

3 % Load configuration

4 lrs_load_conf;

5 % Load video file

6 video = load_video_file(fullfile(lrs_conf.lrs_dir,'dataset','demo.avi'));

7

8 %%---------------------------------

9 %% Demo: Matrix-based factorization

10 M = im2double(convert_video_to_2d(video));

11 m = video.height;

12 n = video.width;

13 p = video.nrFramesTotal;

14 opts.rows = m;

15 opts.cols = n;

16

17 % Robust PCA using FPCP algorithm

18 out = process_matrix('RPCA', 'FPCP', M, opts);

19 % Subspace Tracking using GRASTA algorithm

20 out = process_matrix('ST', 'GRASTA', M, opts);

21 % Matrix Completion using GROUSE algorithm

22 out = process_matrix('MC', 'GROUSE', M, opts);

23 %% Low Rank Recovery using FastLADMAP algorithm

24 out = process_matrix('LRR', 'FastLADMAP', M, opts);

25 % Three-Term Decomposition using 3WD algorithm

26 out = process_matrix('TTD', '3WD', M, opts);

27 % Non-negative Matrix Factorization using ManhNMF algorithm

28 out = process_matrix('NMF', 'ManhNMF', M, opts);

29

30 % Show results

31 show_out(M,out.L,out.S,out.O,p,m,n);

32

33 %%--------------------------------

34 %% Demo: Tensor-based factorizatin

35 T = tensor(im2double(convert_video_to_3d(video)));

36

37 % Non-Negative Tensor Factorization using bcuNCP algorithm

38 out = process_tensor('NTF', 'bcuNCP', T);

39 % Tensor Decomposition using Tucker-ALS algorithm

40 out = process_tensor('TD', 'Tucker-ALS', T);

41

42 % Show results

43 show_3dtensors(T,out.L,out.S,out.O);

2https://github.com/andrewssobral/lrslibrary/blob/master/demo.m
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D.5 Conclusions

The LRSLibrary provides a wide variety of subspace learning algorithms that can be accessed

by an easy-to-use GUI and command line functions. The library was designed to serve as

a framework for detection and segmentation of moving objects using robust matrix-based

and tensor-based factorization techniques. The experimental results in speed classification

can further help the user to choose the best algorithm for his own experiments. We expect

to continuously improve the LRSLibrary, adding new features and new subspace learning

methods.
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List of publications

The thesis has led to the following publications1:

Talks

• 2016 - Sobral, Andrews. “Recent advances on low-rank and sparse decomposition for

moving object detection.”. Workshop/atelier: Enjeux dans la détection d’objets mo-

biles par soustraction de fond. Reconnaissance de Formes et Intelligence Artificielle

(RFIA), 20162.

Journal papers

• 2017 - Sobral, Andrews; Gong, Wenjuan; Gonzalez, Jordi; Bouwmans, Thierry; Za-

hzah, El-hadi. “Robust Subspace Clustering of Human Activities from 3D Skeletal

Data”, (in progress).

• 2016 - Sobral, Andrews; Zahzah, El-hadi. “Matrix and Tensor Completion Algo-

rithms for Background Model Initialization: A Comparative Evaluation”, In the Spe-

cial Issue on Scene Background Modeling and Initialization (SBMI), Pattern Recog-

nition Letters (PRL), 2016. [184].

• 2016 - Gong, Wenjuan; Zhang, Xuena; Gonzalez, Jordi; Sobral, Andrews; Bouw-

mans, Thierry; Tu, Changhe; Zahzah, El-hadi. “Human Pose Estimation from Monoc-

ular Images: A Comprehensive Survey”, Sensors, 2016. [73].

1The reader can refer to https://scholar.google.fr/citations?user=

0Nm0uHcAAAAJ for an updated list of publications and their citations.
2http://rfia2016.iut-auvergne.com/index.php/autres-evenements/

detection-d-objets-mobiles-par-soustraction-de-fond
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• 2016 - Bouwmans, Thierry; Sobral, Andrews; Javed, Sajid; Ki Jung, Soon; Zahzah,

El-Hadi. “Decomposition into Low-rank plus Additive Matrices for Background/-

Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale

Dataset”, Computer Science Review, 2016. [27].

Books

• 2017 - Bouwmans, Thierry; Sobral, Andrews; Zahzah, El-hadi. Handbook on “Back-

ground Subtraction for Moving Object Detection: Theory and Practices”, (in progress)3.

Book chapters

• 2017 - Sobral, Andrews; Bouwmans, Thierry; Zahzah, El-hadi. “Robust Tensor Mod-

els”. Chapter in the handbook “Background Subtraction for Moving Object Detection:

Theory and Practices”, (in progress).

• 2015 - Sobral, Andrews; Bouwmans, Thierry; Zahzah, El-hadi. “LRSLibrary: Low-

Rank and Sparse tools for Background Modeling and Subtraction in Videos”. Chapter

in the handbook “Robust Low-Rank and Sparse Matrix Decomposition: Applications

in Image and Video Processing”, CRC Press, Taylor and Francis Group, 2015. [180].

Conferences

• 2015 - Sobral, Andrews; Javed, Sajid; Ki Jung, Soon; Bouwmans, Thierry; Zahzah,

El-hadi. “Online Stochastic Tensor Decomposition for Background Subtraction in

Multispectral Video Sequences”. ICCV Workshop on Robust Subspace Learning and

Computer Vision (RSL-CV), Santiago, Chile, December, 2015. [182].

• 2015 - Javed, Sajid; Ho Oh, Seon; Sobral, Andrews; Bouwmans, Thierry; Ki Jung,

Soon. “Background Subtraction via Superpixel-based Online Matrix Decomposition

with Structured Foreground Constraints”. ICCV Workshop on Robust Subspace Learn-

ing and Computer Vision (RSL-CV), Santiago, Chile, December, 2015. [90].

• 2015 - Sobral, Andrews; Bouwmans, Thierry; Zahzah, El-hadi. ”Comparison of Ma-

trix Completion Algorithms for Background Initialization in Videos”. Scene Back-

ground Modeling and Initialization (SBMI), Workshop in conjunction with ICIAP

2015, Genova, Italy, September, 2015. [178].

• 2015 - Sobral, Andrews; Bouwmans, Thierry; Zahzah, El-hadi. “Double-constrained

RPCA based on Saliency Maps for Foreground Detection in Automated Maritime

Surveillance”. Identification and Surveillance for Border Control (ISBC), Interna-

tional Workshop in conjunction with AVSS 2015, Karlsruhe, Germany, August, 2015. [179].

3https://sites.google.com/site/foregrounddetection/
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• 2015 - Javed, Sajid; Sobral, Andrews; Bouwmans, Thierry; Ki Jung, Soon. “OR-

PCA with Dynamic Feature Selection for Robust Background Subtraction”. In Pro-

ceedings of the 30th ACM/SIGAPP Symposium on Applied Computing (ACM-SAC),

Salamanca, Spain, 2015. [91].

• 2014 - Javed, Sajid; Ho Oh, Seon; Sobral, Andrews; Bouwmans, Thierry; Ki Jung,

Soon. “OR-PCA with MRF for Robust Foreground Detection in Highly Dynamic

Backgrounds”. In the 12th Asian Conference on Computer Vision (ACCV 2014),

Singapore, November, 2014. [89].

• 2014 - Sobral, Andrews; Baker, Christopher G.; Bouwmans, Thierry; Zahzah, El-

hadi. “Incremental and Multi-feature Tensor Subspace Learning applied for Back-

ground Modeling and Subtraction”. International Conference on Image Analysis and

Recognition (ICIAR’2014), Vilamoura, Algarve, Portugal, October, 2014. [176].

Websites

• Andrews Sobral’s homepage

http://andrewssobral.wixsite.com/home

• Publons

https://publons.com/author/619460/andrews-sobral#profile

• Behance.net project

http://be.net/andrewssobral

• GitHub profile

https://github.com/andrewssobral

• LRSLibrary - Low-Rank and Sparse tools for Background Modeling and Subtraction in Videos

https://github.com/andrewssobral/lrslibrary

• MTT - Matlab Tensor Tools for Computer Vision

https://github.com/andrewssobral/mtt

• IMTSL - Incremental and Multi-feature Tensor Subspace Learning

https://github.com/andrewssobral/imtsl

• OSTD - Online Stochastic Tensor Decomposition:

https://github.com/andrewssobral/ostd

Social networks

• Academia

http://univ-larochelle.academia.edu/AndrewsSobral

• ResearchGate

http://www.researchgate.net/profile/Andrews_Sobral
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