O. Aalen, Nonparametric inference for a family of counting processes. The Annals of Statistics, pp.701-726, 1978.

R. Aid, L. Campi, A. N. Huu, and N. Touzi, A STRUCTURAL RISK-NEUTRAL MODEL OF ELECTRICITY PRICES, International Journal of Theoretical and Applied Finance, vol.8, issue.07, pp.925-947, 2009.
DOI : 10.1111/j.1540-6261.1997.tb02721.x

URL : https://hal.archives-ouvertes.fr/hal-00390690

R. Aid, L. Campi, and N. Langrené, A STRUCTURAL RISK-NEUTRAL MODEL FOR PRICING AND HEDGING POWER DERIVATIVES, Mathematical Finance, vol.10, issue.3, pp.387-438, 2013.
DOI : 10.1017/CBO9780511569708.016

URL : https://hal.archives-ouvertes.fr/hal-00525800

Y. Ait-sahalia, Testing Continuous-Time Models of the Spot Interest Rate, Review of Financial Studies, vol.XVI, issue.2, pp.385-426, 1996.
DOI : 10.1090/psapm/016/0161375

Y. Aït-sahalia and J. Jacod, Testing for jumps in a discretely observed process. The Annals of Statistics, pp.184-222, 2009.

Y. Aït-sahalia and J. Jacod, High-frequency financial econometrics, 2014.

T. Martin, M. Barlow, and . Yor, Semi-martingale inequalities via the garsia-rodemich-rumsey lemma, and applications to local times, Journal of functional Analysis, vol.49, issue.2, pp.198-229, 1982.

F. Benth, Cointegrated commodity markets and pricing of derivatives in a nongaussian framework, Advanced Modelling in Mathematical Finance, pp.477-496, 2016.

F. Espen-benth, J. Kallsen, and T. Meyer-brandis, A Non???Gaussian Ornstein???Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing, Applied Mathematical Finance, vol.368, issue.2, pp.153-169, 2007.
DOI : 10.1111/1368-423X.00042

F. Espen-benth, C. Paul, and . Kettler, Dynamic copula models for the spark spread, Quantitative Finance, vol.10, issue.3, pp.407-421, 2011.
DOI : 10.1080/15326349708807456

F. Comte, S. Gaïffas, and A. Guilloux, Adaptive estimation of the conditional intensity of marker-dependent counting processes, Annales de l'institut Henri Poincaré, pp.1171-1196, 2011.
DOI : 10.1214/10-AIHP386

URL : https://hal.archives-ouvertes.fr/hal-00333356

R. David and . Cox, Regression models and life-tables, Breakthroughs in statistics, pp.527-541, 1992.

G. Crane, Time and space varying copulas. arXiv preprint arXiv:0812, 2008.

F. William, B. Darsow, . Nguyen, T. Elwood, and . Olsen, Copulas and markov processes, Illinois Journal of Mathematics, vol.36, issue.4, pp.600-642, 1992.

P. Diggle, A Kernel Method for Smoothing Point Process Data, Applied Statistics, vol.34, issue.2, pp.138-147, 1985.
DOI : 10.2307/2347366

O. Aalen, Nonparametric inference for a family of counting processes. The Annals of Statistics, pp.701-726, 1978.

R. Aid, L. Campi, A. N. Huu, and N. Touzi, A STRUCTURAL RISK-NEUTRAL MODEL OF ELECTRICITY PRICES, International Journal of Theoretical and Applied Finance, vol.8, issue.07, pp.925-947, 2009.
DOI : 10.1111/j.1540-6261.1997.tb02721.x

URL : https://hal.archives-ouvertes.fr/hal-00390690

R. Aid, L. Campi, and N. Langrené, A STRUCTURAL RISK-NEUTRAL MODEL FOR PRICING AND HEDGING POWER DERIVATIVES, Mathematical Finance, vol.10, issue.3, pp.387-438, 2013.
DOI : 10.1017/CBO9780511569708.016

URL : https://hal.archives-ouvertes.fr/hal-00525800

Y. Ait-sahalia, Testing Continuous-Time Models of the Spot Interest Rate, Review of Financial Studies, vol.XVI, issue.2, pp.385-426, 1996.
DOI : 10.1090/psapm/016/0161375

Y. Aït-sahalia and J. Jacod, Testing for jumps in a discretely observed process. The Annals of Statistics, pp.184-222, 2009.

Y. Aït-sahalia and J. Jacod, High-frequency financial econometrics, 2014.

T. Martin, M. Barlow, and . Yor, Semi-martingale inequalities via the garsia-rodemich-rumsey lemma, and applications to local times, Journal of functional Analysis, vol.49, issue.2, pp.198-229, 1982.

F. Benth, Cointegrated commodity markets and pricing of derivatives in a nongaussian framework, Advanced Modelling in Mathematical Finance, pp.477-496, 2016.

F. Espen-benth, J. Kallsen, and T. Meyer-brandis, A Non???Gaussian Ornstein???Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing, Applied Mathematical Finance, vol.368, issue.2, pp.153-169, 2007.
DOI : 10.1111/1368-423X.00042

F. Espen-benth, C. Paul, and . Kettler, Dynamic copula models for the spark spread, Quantitative Finance, vol.10, issue.3, pp.407-421, 2011.
DOI : 10.1080/15326349708807456

D. Bosc, Three essays on modeling the dependence between financial assets
URL : https://hal.archives-ouvertes.fr/pastel-00721674

M. Mori, B. , and J. Stephen-marron, Asymptotic optimality of the least-squares crossvalidation bandwidth for kernel estimates of intensity functions, Stochastic Processes and their Applications, pp.157-165, 1991.

R. Carmona and M. Coulon, A Survey of Commodity Markets and Structural Models for Electricity Prices, Quantitative Energy Finance, pp.41-83, 2014.
DOI : 10.1007/978-1-4614-7248-3_2

R. Carmona, M. Coulon, and D. Schwarz, Electricity price modeling and asset valuation: a multi-fuel structural approach, Mathematics and Financial Economics, vol.46, issue.1, pp.167-202, 2013.
DOI : 10.1287/mnsc.46.7.893.12034

R. Carmona and V. Durrleman, Pricing and Hedging Spread Options, SIAM Review, vol.45, issue.4, pp.627-685, 2003.
DOI : 10.1137/S0036144503424798

URL : http://math.stanford.edu/~valdo/papers/siam.pdf

R. Carmona and V. Durrleman, Generalizing the Black???Scholes formula to multivariate contingent claims, The Journal of Computational Finance, vol.9, issue.2, p.43, 2005.
DOI : 10.21314/JCF.2005.159

A. Cartea, G. Marcelo, and . Figueroa, Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality, Applied Mathematical Finance, vol.12, issue.4, pp.313-335, 2005.
DOI : 10.1287/mnsc.46.7.893.12034

F. Chen, S. Paul, K. Yip, and . Lam, On the Local Polynomial Estimators of the Counting Process Intensity Function and its Derivatives, Scandinavian Journal of Statistics, vol.30, issue.4, pp.631-649, 2011.
DOI : 10.1214/aos/1176325632

F. Comte, S. Gaïffas, and A. Guilloux, Adaptive estimation of the conditional intensity of marker-dependent counting processes, Annales de l'institut Henri Poincaré, pp.1171-1196, 2011.
DOI : 10.1214/10-AIHP386

URL : https://hal.archives-ouvertes.fr/hal-00333356

R. David and . Cox, Regression models and life-tables, Breakthroughs in statistics, pp.527-541, 1992.

G. Crane, Time and space varying copulas. arXiv preprint arXiv :0812, 2008.

F. William, B. Darsow, . Nguyen, T. Elwood, and . Olsen, Copulas and markov processes, Illinois Journal of Mathematics, vol.36, issue.4, pp.600-642, 1992.

P. Diggle, A Kernel Method for Smoothing Point Process Data, Applied Statistics, vol.34, issue.2, pp.138-147, 1985.
DOI : 10.2307/2347366

A. Goldenshluger and O. Lepski, Bandwidth selection in kernel density estimation: Oracle inequalities and adaptive minimax optimality, The Annals of Statistics, vol.39, issue.3, pp.1608-1632, 2011.
DOI : 10.1214/11-AOS883

URL : https://hal.archives-ouvertes.fr/hal-01265258

J. Michael, H. Stanley, and R. Pliska, Martingales and stochastic integrals in the theory of continuous trading. Stochastic processes and their applications, pp.215-260, 1981.

D. Heath, R. Jarrow, and A. Morton, Bond pricing and the term structure of interest rates : A new methodology for contingent claims valuation, Econometrica : Journal of the Econometric Society, pp.77-105, 1992.

M. Hoffmann, On estimating the diffusion coefficient: parametric versus nonparametric, Annales de l'IHP Probabilités et statistiques, pp.339-372, 2001.
DOI : 10.1016/S0246-0203(00)01070-0

C. Houdré and P. , Exponential Inequalities, with Constants, for U-statistics of Order Two, Stochastic inequalities and applications, pp.55-69, 2003.
DOI : 10.1007/978-3-0348-8069-5_5

P. Jaworski and M. Krzywda, Coupling of Wiener processes by using copulas, Statistics & Probability Letters, vol.83, issue.9, pp.2027-2033, 2013.
DOI : 10.1016/j.spl.2013.05.011

M. Jeanblanc, M. Yor, and M. Chesney, Mathematical methods for financial markets, 2009.
DOI : 10.1007/978-1-84628-737-4

URL : https://hal.archives-ouvertes.fr/hal-00426898

C. Lacour, P. Massart, and V. Rivoirard, Estimator Selection: a New Method with Applications to Kernel Density Estimation, Sankhya A, vol.58, issue.2, pp.1-38, 2016.
DOI : 10.1007/978-1-4899-3324-9

URL : https://hal.archives-ouvertes.fr/hal-01346081

S. Suzanne, . Lee, A. Per, and . Mykland, Jumps in financial markets : A new nonparametric test and jump dynamics, The Review of Financial Studies, vol.21, issue.6, pp.2535-2563, 2007.

M. Lerasle, N. Molter-magalhães, and P. , Optimal Kernel Selection for Density Estimation, High Dimensional Probability VII, pp.425-460, 2016.
DOI : 10.1007/b13794

URL : https://hal.archives-ouvertes.fr/hal-01224097

E. Liebscher, Construction of asymmetric multivariate copulas, Journal of Multivariate Analysis, vol.99, issue.10, pp.2234-2250, 2008.
DOI : 10.1016/j.jmva.2008.02.025

K. Nakajima and K. Ohashi, A cointegrated commodity pricing model, Journal of Futures Markets, vol.39, issue.11, pp.995-1033, 2012.
DOI : 10.1111/j.1540-6261.1997.tb02721.x

B. Roger and . Nelsen, An Introduction to Copulas, 2006.

J. Andrew and . Patton, Modelling asymmetric exchange rate dependence, International economic review, vol.47, issue.2, pp.527-556, 2006.

D. Revuz and M. Yor, Continuous martingales and Brownian motion, 2013.

P. Reynaud and . Bouret, Adaptive estimation of the intensity of inhomogeneous poisson processes via concentration inequalities. Probability Theory and Related Fields, pp.103-153, 2003.

P. Reynaud and . Bouret, Concentration inequalities, counting processes and adaptive statistics, ESAIM : Proceedings, pp.79-98, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00866826

L. Rüschendorf, Random variables with maximum sums, Advances in Applied Probability, pp.623-632, 1982.

C. Sempi, Coupled brownian motion In Combining Soft Computing and Statistical Methods in Data Analysis, pp.569-574, 2010.

M. Sklar, Fonctions de répartition à n dimensions et leurs marges, Université Paris, vol.8, 1959.

B. Alexandre and . Tsybakov, Introduction to nonparametric estimation, 2009.

J. Klaus and . Utikal, Nonparametric inference for a doubly stochastic poisson process. Stochastic processes and their applications, pp.331-349, 1993.

O. Vasicek, An equilibrium characterization of the term structure, Journal of Financial Economics, vol.5, issue.2, pp.177-188, 1977.
DOI : 10.1016/0304-405X(77)90016-2

E. Almut and . Veraart, Modelling the impact of wind power production on electricity prices by regime-switching lévy semistationary processes, Stochastics of Environmental and Financial Economics, pp.321-340, 2016.

S. Wu, Construction of asymmetric copulas and its application in two-dimensional reliability modelling, European Journal of Operational Research, vol.238, issue.2, pp.476-485, 2014.
DOI : 10.1016/j.ejor.2014.03.016

T. Zhang and S. Kou, Nonparametric inference of doubly stochastic poisson process data via the kernel method. The annals of applied statistics, p.1913, 2010.

F. Espen-benth and S. Koekebakker, Stochastic modeling of financial electricity contracts, Energy Economics, vol.30, issue.3, pp.1116-1157, 2008.
DOI : 10.1016/j.eneco.2007.06.005

R. Tomasz, J. Bielecki, A. Jakubowski, L. Vidozzi, and . Vidozzi, Study of dependence for some stochastic processes. Stochastic analysis and applications, pp.903-924, 2008.

D. Bosc, Three essays on modeling the dependence between financial assets
URL : https://hal.archives-ouvertes.fr/pastel-00721674

R. Carmona and V. Durrleman, Pricing and Hedging Spread Options, SIAM Review, vol.45, issue.4, pp.627-685, 2003.
DOI : 10.1137/S0036144503424798

URL : http://math.stanford.edu/~valdo/papers/siam.pdf

R. Carmona and V. Durrleman, Generalizing the Black???Scholes formula to multivariate contingent claims, The Journal of Computational Finance, vol.9, issue.2, p.43, 2005.
DOI : 10.21314/JCF.2005.159

M. Chen and S. Li, Coupling methods for multidimensional diffusion processes. The Annals of Probability, pp.151-177, 1989.
DOI : 10.1214/aop/1176991501

URL : http://doi.org/10.1214/aop/1176991501

U. Cherubini, E. Luciano, and W. Vecchiato, Copula methods in finance, 2004.
DOI : 10.1002/9781118673331

U. Cherubini, S. Mulinacci, and S. Romagnoli, On the distribution of the (un)bounded sum of random variables, Insurance: Mathematics and Economics, vol.48, issue.1, pp.56-63, 2011.
DOI : 10.1016/j.insmatheco.2010.09.004

F. William, B. Darsow, . Nguyen, T. Elwood, and . Olsen, Copulas and markov processes, Illinois Journal of Mathematics, vol.36, issue.4, pp.600-642, 1992.

F. Durante, J. F. Sánchez, and C. Sempi, Multivariate patchwork copulas: A unified approach with applications to partial comonotonicity, Insurance: Mathematics and Economics, vol.53, issue.3, pp.897-905, 2013.
DOI : 10.1016/j.insmatheco.2013.10.010

P. Embrechts, A. Höing, and A. Juri, Using copulae to bound the Value-at-Risk for functions of dependent risks, Finance and Stochastics, vol.7, issue.2, pp.145-167, 2003.
DOI : 10.1007/s007800200085

J. Fermanian and M. Wegkamp, Time-dependent copulas, Journal of Multivariate Analysis, vol.110, 2004.
DOI : 10.1016/j.jmva.2012.02.018

J. Maurice, . Frank, B. Roger, B. Nelsen, and . Schweizer, Best-possible bounds for the distribution of a sum -a problem of kolmogorov. Probability Theory and Related Fields, pp.199-211, 1987.

P. Elton, K. Hsu, and . Sturm, Maximal coupling of euclidean brownian motions, Communications in Mathematics and Statistics, vol.1, issue.1, pp.93-104, 2013.

P. Jaworski and M. Krzywda, Coupling of Wiener processes by using copulas, Statistics & Probability Letters, vol.83, issue.9, pp.2027-2033, 2013.
DOI : 10.1016/j.spl.2013.05.011

M. Jeanblanc, M. Yor, and M. Chesney, Mathematical methods for financial markets, 2009.
DOI : 10.1007/978-1-84628-737-4

URL : https://hal.archives-ouvertes.fr/hal-00426898

X. David and . Li, On default correlation: A copula function approach. Available at SSRN 187289, 1999.

T. Lindvall and L. Rogers, Coupling of multidimensional diffusions by reflection. The Annals of Probability, pp.860-872, 1986.

G. Makarov, Estimates for the Distribution Function of a Sum of Two Random Variables When the Marginal Distributions are Fixed, Theory of Probability & its Applications, pp.803-806, 1982.
DOI : 10.1137/1126086

B. Roger and . Nelsen, An introduction to copulas, 2006.

J. Andrew and . Patton, Modelling asymmetric exchange rate dependence, International economic review, vol.47, issue.2, pp.527-556, 2006.

L. Rüschendorf, Random variables with maximum sums, Advances in Applied Probability, pp.623-632, 1982.

C. Sempi, Coupled brownian motion In Combining Soft Computing and Statistical Methods in Data Analysis, pp.569-574, 2010.

R. Aid, L. Campi, A. N. Huu, and N. Touzi, A STRUCTURAL RISK-NEUTRAL MODEL OF ELECTRICITY PRICES, International Journal of Theoretical and Applied Finance, vol.8, issue.07, pp.925-947, 2009.
DOI : 10.1111/j.1540-6261.1997.tb02721.x

URL : https://hal.archives-ouvertes.fr/hal-00390690

R. Aid, L. Campi, and N. Langrené, A STRUCTURAL RISK-NEUTRAL MODEL FOR PRICING AND HEDGING POWER DERIVATIVES, Mathematical Finance, vol.10, issue.3, pp.387-438, 2013.
DOI : 10.1017/CBO9780511569708.016

URL : https://hal.archives-ouvertes.fr/hal-00525800

F. Espen-benth and S. Koekebakker, Stochastic modeling of financial electricity contracts, Energy Economics, vol.30, issue.3, pp.1116-1157, 2008.
DOI : 10.1016/j.eneco.2007.06.005

D. Bosc, Three essays on modeling the dependence between financial assets
URL : https://hal.archives-ouvertes.fr/pastel-00721674

R. Carmona and M. Coulon, A Survey of Commodity Markets and Structural Models for Electricity Prices, Quantitative Energy Finance, pp.41-83, 2014.
DOI : 10.1007/978-1-4614-7248-3_2

R. Carmona and V. Durrleman, Pricing and Hedging Spread Options, SIAM Review, vol.45, issue.4, pp.627-685, 2003.
DOI : 10.1137/S0036144503424798

URL : http://math.stanford.edu/~valdo/papers/siam.pdf

U. Cherubini, E. Luciano, and W. Vecchiato, Copula methods in finance, 2004.
DOI : 10.1002/9781118673331

T. Deschatre, Abstract, Dependence Modeling, vol.26, issue.1, pp.141-160, 2016.
DOI : 10.1080/07362990802128958

B. Dupire, Pricing with a smile, Risk, vol.7, issue.1, pp.18-20, 1994.

O. Féron and E. Daboussi, Commodities, Energy and Environmental Finance, chapter Calibration of electricity price models, pp.183-207, 2015.

C. Gouriéroux, J. Jasiak, and R. Sufana, The Wishart Autoregressive process of multivariate stochastic volatility, Journal of Econometrics, vol.150, issue.2, pp.167-181, 2009.
DOI : 10.1016/j.jeconom.2008.12.016

D. Heath, R. Jarrow, and A. Morton, Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation, Econometrica: Journal of the Econometric Society, pp.77-105, 1992.

L. Steven and . Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options. The review of financial studies, pp.327-343, 1993.

P. Jaworski and M. Krzywda, Coupling of Wiener processes by using copulas, Statistics & Probability Letters, vol.83, issue.9, pp.2027-2033, 2013.
DOI : 10.1016/j.spl.2013.05.011

M. Jeanblanc, M. Yor, and M. Chesney, Mathematical methods for financial markets, 2009.
DOI : 10.1007/978-1-84628-737-4

URL : https://hal.archives-ouvertes.fr/hal-00426898

A. Langnau, A dynamic model for correlation, Risk, vol.23, issue.4, p.74, 2010.

K. Nakajima and K. Ohashi, A cointegrated commodity pricing model, Journal of Futures Markets, vol.39, issue.11, pp.995-1033, 2012.
DOI : 10.1111/j.1540-6261.1997.tb02721.x

A. Paul and . Samuelson, Proof that properly anticipated prices fluctuate randomly. IMR; Industrial Management Review (pre-1986, p.41, 1965.

M. Sklar, Fonctions de répartition à n dimensions et leurs marges, Université Paris, vol.8, 1959.

O. Vasicek, An equilibrium characterization of the term structure, Journal of Financial Economics, vol.5, issue.2, pp.177-188, 1977.
DOI : 10.1016/0304-405X(77)90016-2

R. Aid, L. Campi, A. N. Huu, and N. Touzi, A STRUCTURAL RISK-NEUTRAL MODEL OF ELECTRICITY PRICES, International Journal of Theoretical and Applied Finance, vol.8, issue.07, pp.925-947, 2009.
DOI : 10.1111/j.1540-6261.1997.tb02721.x

URL : https://hal.archives-ouvertes.fr/hal-00390690

Y. Aït-sahalia and J. Jacod, Testing for jumps in a discretely observed process. The Annals of Statistics, pp.184-222, 2009.

Y. Aït-sahalia and J. Jacod, High-frequency financial econometrics, 2014.

O. Eiler-barndorff-nielsen, N. Shephard, and M. Winkel, Limit theorems for multipower variation in the presence of jumps. Stochastic processes and their applications, pp.796-806, 2006.

F. Espen-benth, J. Kallsen, and T. Meyer-brandis, A Non???Gaussian Ornstein???Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing, Applied Mathematical Finance, vol.368, issue.2, pp.153-169, 2007.
DOI : 10.1111/1368-423X.00042

F. Espen-benth, R. Kiesel, and A. Nazarova, A critical empirical study of three electricity spot price models, Energy Economics, vol.34, issue.5, pp.1589-1616, 2012.
DOI : 10.1016/j.eneco.2011.11.012

H. Biermé and A. Desolneux, A fourier approach for the level crossings of shot noise processes with jumps, Journal of Applied Probability, pp.100-113, 2012.

A. Cartea, G. Marcelo, and . Figueroa, Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality, Applied Mathematical Finance, vol.12, issue.4, pp.313-335, 2005.
DOI : 10.1287/mnsc.46.7.893.12034

R. Cont and P. Tankov, Financial modelling with jump processes, 2003.
DOI : 10.1201/9780203485217

URL : https://hal.archives-ouvertes.fr/hal-00002693

O. Féron and E. Daboussi, Commodities, Energy and Environmental Finance, chapter Calibration of electricity price models, pp.183-207, 2015.

H. Föllmer and M. Schweizer, Hedging of contingent claims Applied stochastic analysis, p.389, 1991.

H. Geman and A. Roncoroni, Understanding the Fine Structure of Electricity Prices*, The Journal of Business, vol.79, issue.3, pp.1225-1261, 2006.
DOI : 10.1086/500675

URL : https://hal.archives-ouvertes.fr/halshs-00144198

J. Gonzalez, J. Moriarty, and J. Palczewski, Bayesian calibration and number of jump components in electricity spot price models, 2016.

J. Jacod and P. Protter, Discretization of processes, 2011.
DOI : 10.1007/978-3-642-24127-7

URL : https://hal.archives-ouvertes.fr/hal-00103988

R. Kiesel, G. Schindlmayr, H. Reik, and . Börger, A two-factor model for the electricity forward market, Quantitative Finance, vol.12, issue.3, pp.279-287, 2009.
DOI : 10.1016/j.enpol.2003.10.013

J. Li, V. Todorov, and G. Tauchen, Volatility occupation times. The Annals of Statistics, pp.1865-1891, 2013.
DOI : 10.1214/13-aos1135

URL : http://doi.org/10.1214/13-aos1135

J. Li, V. Todorov, and G. Tauchen, Jump Regressions, Econometrica, vol.85, issue.1, pp.173-195, 2017.
DOI : 10.3982/ECTA12962

URL : https://www.econometricsociety.org/sites/default/files/ecta1653-sup-0001-Supplement.pdf

J. Julio, . Lucia, S. Eduardo, and . Schwartz, Electricity prices and power derivatives: Evidence from the nordic power exchange, Review of derivatives research, vol.5, issue.1, pp.5-50, 2002.

C. Mancini, Estimation of the Characteristics of the Jumps of a General Poisson-Diffusion Model, Scandinavian Actuarial Journal, vol.15, issue.1, pp.42-52, 2004.
DOI : 10.1007/978-3-662-06400-9

C. Robert and . Merton, Option pricing when underlying stock returns are discontinuous, Journal of financial economics, vol.3, issue.12, pp.125-144, 1976.

T. Meyer-brandis and P. Tankov, MULTI-FACTOR JUMP-DIFFUSION MODELS OF ELECTRICITY PRICES, International Journal of Theoretical and Applied Finance, vol.10, issue.05, pp.503-528, 2008.
DOI : 10.1080/10485250211388

URL : https://hal.archives-ouvertes.fr/hal-00705978

M. Moreno, P. Serrano, and W. Stute, Statistical properties and economic implications of jump-diffusion processes with shot-noise effects, European Journal of Operational Research, vol.214, issue.3, pp.656-664, 2011.
DOI : 10.1016/j.ejor.2011.05.011

G. Peccati, S. Murad, and . Taqqu, Central limit theorems for double Poisson integrals, Bernoulli, vol.14, issue.3, pp.791-821, 2008.
DOI : 10.3150/08-BEJ123

URL : http://doi.org/10.3150/08-bej123

P. Protter, K. Thomas, and G. Kurtz, No arbitrage and general semimartingales In Markov processes and related topics: a Festschrift for, pp.267-283, 2008.

T. Schmidt, Modelling Energy Markets with Extreme Spikes, Mathematical Control Theory and Finance, pp.359-375, 2008.
DOI : 10.1007/978-3-540-69532-5_20

URL : http://www.tu-chemnitz.de/mathematik/fima/publikationen/TSchmidt_ElectricitySN.pdf

M. Schweizer, Handbooks in mathematical finance: Option pricing, interest rates and risk management, chapter A guided tour through quadratic hedging approaches, pp.538-574, 2001.

A. Elisabeth and D. Veraart, Inference for the jump part of quadratic variation of Itô semimartingales, Econometric Theory, vol.26, issue.2, pp.331-368, 2010.

O. Aalen, Nonparametric inference for a family of counting processes. The Annals of Statistics, pp.701-726, 1978.

Y. Ait-sahalia, Testing Continuous-Time Models of the Spot Interest Rate, Review of Financial Studies, vol.XVI, issue.2, pp.385-426, 1996.
DOI : 10.1090/psapm/016/0161375

Y. Aït-sahalia, J. Cacho-diaz, J. Roger, and . Laeven, Modeling financial contagion using mutually exciting jump processes, Journal of Financial Economics, vol.117, issue.3, pp.585-606, 2015.
DOI : 10.1016/j.jfineco.2015.03.002

T. Martin, M. Barlow, and . Yor, Semi-martingale inequalities via the garsia-rodemich-rumsey lemma, and applications to local times, Journal of functional Analysis, vol.49, issue.2, pp.198-229, 1982.

F. Espen-benth, R. Kiesel, and A. Nazarova, A critical empirical study of three electricity spot price models, Energy Economics, vol.34, issue.5, pp.1589-1616, 2012.
DOI : 10.1016/j.eneco.2011.11.012

F. Espen-benth, N. Lange, and T. Myklebust, Pricing and hedging quanto options in energy markets, The Journal of Energy Markets, vol.8, issue.1, 2015.
DOI : 10.21314/JEM.2015.130

F. Espen-benth and J. Urat?-e-?altyt?-e-benth, Weather derivatives and stochastic modelling of temperature, International Journal of Stochastic Analysis, 2011.

M. Mori, B. , and J. Stephen-marron, Asymptotic optimality of the least-squares crossvalidation bandwidth for kernel estimates of intensity functions, Stochastic Processes and their Applications, pp.157-165, 1991.

A. Cartea, G. Marcelo, and . Figueroa, Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality, Applied Mathematical Finance, vol.12, issue.4, pp.313-335, 2005.
DOI : 10.1287/mnsc.46.7.893.12034

F. Chen, S. Paul, K. Yip, and . Lam, On the Local Polynomial Estimators of the Counting Process Intensity Function and its Derivatives, Scandinavian Journal of Statistics, vol.30, issue.4, pp.631-649, 2011.
DOI : 10.1214/aos/1176325632

F. Comte, S. Gaïffas, and A. Guilloux, Adaptive estimation of the conditional intensity of marker-dependent counting processes, Annales de l'institut Henri Poincaré, pp.1171-1196, 2011.
DOI : 10.1214/10-AIHP386

URL : https://hal.archives-ouvertes.fr/hal-00333356

R. Cont and P. Tankov, Financial modelling with jump processes, 2003.
DOI : 10.1201/9780203485217

URL : https://hal.archives-ouvertes.fr/hal-00002693

R. David and . Cox, Regression models and life-tables, Breakthroughs in statistics, pp.527-541, 1992.

. Sylvain-delattre, Y. Christian, M. Robert, and . Rosenbaum, Estimating the efficient price from the order flow: a brownian cox process approach, Stochastic Processes and their Applications, pp.2603-2619, 2013.

P. Diggle, A Kernel Method for Smoothing Point Process Data, Applied Statistics, vol.34, issue.2, pp.138-147, 1985.
DOI : 10.2307/2347366

A. Goldenshluger and O. Lepski, Bandwidth selection in kernel density estimation: Oracle inequalities and adaptive minimax optimality, The Annals of Statistics, vol.39, issue.3, pp.1608-1632, 2011.
DOI : 10.1214/11-AOS883

URL : https://hal.archives-ouvertes.fr/hal-01265258

M. Hoffmann, On estimating the diffusion coefficient: parametric versus nonparametric, Annales de l'IHP Probabilités et statistiques, pp.339-372, 2001.
DOI : 10.1016/S0246-0203(00)01070-0

C. Houdré and P. , Exponential Inequalities, with Constants, for U-statistics of Order Two, Stochastic inequalities and applications, pp.55-69, 2003.
DOI : 10.1007/978-3-0348-8069-5_5

A. Karr, Point Processes and Their Statistical Inference., Biometrics, vol.50, issue.2, 1991.
DOI : 10.2307/2533425

C. Lacour, P. Massart, and V. Rivoirard, Estimator Selection: a New Method with Applications to Kernel Density Estimation, Sankhya A, vol.58, issue.2, pp.1-38, 2016.
DOI : 10.1007/978-1-4899-3324-9

URL : https://hal.archives-ouvertes.fr/hal-01346081

M. Lerasle, N. Molter-magalhães, and P. , Optimal Kernel Selection for Density Estimation, High Dimensional Probability VII, pp.425-460, 2016.
DOI : 10.1007/b13794

URL : https://hal.archives-ouvertes.fr/hal-01224097

T. Meyer-brandis and P. Tankov, MULTI-FACTOR JUMP-DIFFUSION MODELS OF ELECTRICITY PRICES, International Journal of Theoretical and Applied Finance, vol.10, issue.05, pp.503-528, 2008.
DOI : 10.1080/10485250211388

URL : https://hal.archives-ouvertes.fr/hal-00705978

S. A. , M. , and P. Kumar-sen, Time-dependent coefficients in a cox-type regression model, Stochastic Processes and their Applications, pp.153-180, 1991.

Y. Ogata and K. Katsura, Point-process models with linearly parametrized intensity for application to earthquake data, Journal of Applied Probability, vol.50, issue.A, pp.291-310, 1986.
DOI : 10.1007/BF02481022

G. Peccati, S. Murad, and . Taqqu, Central limit theorems for double Poisson integrals, Bernoulli, vol.14, issue.3, pp.791-821, 2008.
DOI : 10.3150/08-BEJ123

D. Revuz and M. Yor, Continuous martingales and Brownian motion, 2013.

P. Reynaud and . Bouret, Adaptive estimation of the intensity of inhomogeneous poisson processes via concentration inequalities. Probability Theory and Related Fields, pp.103-153, 2003.

P. Reynaud and . Bouret, Concentration inequalities, counting processes and adaptive statistics, ESAIM: Proceedings, pp.79-98, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00866826

W. Truccolo, T. Uri, . Eden, R. Matthew, . Fellows et al., A Point Process Framework for Relating Neural Spiking Activity to Spiking History, Neural Ensemble, and Extrinsic Covariate Effects, Journal of Neurophysiology, vol.93, issue.2, pp.1074-1089, 2005.
DOI : 10.1126/science.8351520

B. Alexandre and . Tsybakov, Introduction to nonparametric estimation, 2009.

J. Klaus and . Utikal, Nonparametric inference for a doubly stochastic poisson process. Stochastic processes and their applications, pp.331-349, 1993.

M. Ju-yi-yen and . Yor, Local times and excursion theory for brownian motion a tale of wiener and ito measures preface, 2013.

T. Zhang and S. Kou, Nonparametric inference of doubly stochastic poisson process data via the kernel method. The annals of applied statistics, p.1913, 2010.

Y. Aït-sahalia and J. Jacod, Testing for jumps in a discretely observed process. The Annals of Statistics, pp.184-222, 2009.

Y. Aït-sahalia and J. Jacod, High-frequency financial econometrics, 2014.

O. Eiler-barndorff-nielsen, N. Shephard, and M. Winkel, Limit theorems for multipower variation in the presence of jumps. Stochastic processes and their applications, pp.796-806, 2006.

F. Espen-benth and J. Urat?-e-?altyt?-e-benth, Modeling and pricing in financial markets for weather derivatives, World Scientific, vol.17, 2012.

S. Forrest and I. Macgill, Assessing the impact of wind generation on wholesale prices and generator dispatch in the Australian National Electricity Market, Energy Policy, vol.59, pp.120-132, 2013.
DOI : 10.1016/j.enpol.2013.02.026

A. Goldenshluger and O. Lepski, Bandwidth selection in kernel density estimation: Oracle inequalities and adaptive minimax optimality, The Annals of Statistics, vol.39, issue.3, pp.1608-1632, 2011.
DOI : 10.1214/11-AOS883

URL : https://hal.archives-ouvertes.fr/hal-01265258

N. Haldrup and M. Ø. Nielsen, A regime switching long memory model for electricity prices, Journal of Econometrics, vol.135, issue.1-2, pp.349-376, 2006.
DOI : 10.1016/j.jeconom.2005.07.021

R. Huisman, C. Huurman, and R. Mahieu, Hourly electricity prices in day-ahead markets, Energy Economics, vol.29, issue.2, pp.240-248, 2007.
DOI : 10.1016/j.eneco.2006.08.005

T. Jónsson, P. Pinson, and H. Madsen, On the market impact of wind energy forecasts, Energy Economics, vol.32, issue.2, pp.313-320, 2010.
DOI : 10.1016/j.eneco.2009.10.018

T. Jónsson, P. Pinson, H. A. Nielsen, H. Madsen, and T. Nielsen, Forecasting Electricity Spot Prices Accounting for Wind Power Predictions, IEEE Transactions on Sustainable Energy, vol.4, issue.1, pp.210-218, 2013.
DOI : 10.1109/TSTE.2012.2212731

J. C. Ketterer, The impact of wind power generation on the electricity price in Germany, Energy Economics, vol.44, pp.270-280, 2014.
DOI : 10.1016/j.eneco.2014.04.003

C. Klüppelberg, T. Meyer-brandis, and A. Schmidt, Electricity spot price modelling with a view towards extreme spike risk, Quantitative Finance, vol.10, issue.9, pp.963-974, 2010.
DOI : 10.1023/A:1013846631785

C. Lacour, P. Massart, and V. Rivoirard, Estimator Selection: a New Method with Applications to Kernel Density Estimation, Sankhya A, vol.58, issue.2, pp.1-38, 2016.
DOI : 10.1007/978-1-4899-3324-9

URL : https://hal.archives-ouvertes.fr/hal-01346081

J. Li, V. Todorov, and G. Tauchen, Volatility occupation times. The Annals of Statistics, pp.1865-1891, 2013.
DOI : 10.1214/13-aos1135

URL : http://doi.org/10.1214/13-aos1135

J. Li, V. Todorov, and G. Tauchen, Jump Regressions, Econometrica, vol.85, issue.1, pp.173-195, 2017.
DOI : 10.3982/ECTA12962

URL : https://www.econometricsociety.org/sites/default/files/ecta1653-sup-0001-Supplement.pdf

W. Aad, . Van, and . Vaart, Asymptotic statistics, 1998.

A. Elisabeth and D. Veraart, Inference for the jump part of quadratic variation of Itô semimartingales, Econometric Theory, vol.26, issue.2, pp.331-368, 2010.

A. Elisabeth and D. Veraart, Modelling the impact of wind power production on electricity prices by regime-switching Lévy semistationary processes, Stochastics of Environmental and Financial Economics, pp.321-340, 2016.

A. Elisabeth, D. Veraart, and L. Veraart, Modelling electricity day-ahead prices by multivariate Lévy semi-stationary processes, Wolfgang Pauli Proceedings, pp.157-188, 2014.