N

N

A Simulation Framework for the Validation of Event-B
Specifications
Faqging Yang

» To cite this version:

Faqing Yang. A Simulation Framework for the Validation of Event-B Specifications. Formal Languages
and Automata Theory [cs.FL|. Université de Lorraine, 2013. English. NNT: 2013LORR0158 . tel-
01750224v2

HAL Id: tel-01750224
https://theses.hal.science/tel-01750224v2
Submitted on 25 Feb 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01750224v2
https://hal.archives-ouvertes.fr

UNIVERSITE
DE LORRAINE

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis a disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis a la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
I'utilisation de ce document.

D'autre part, toute contrefacon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4

Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

UNIVERSITE
DE LORRAINE

Ecole Doctorale IAEM Lorraine
DFD en informatique

Un environnement de simulation pour la
validation de spécifications B événementiel

THESE

présentée et soutenue publiquement le 29 Novembre 2013

pour I’obtention du

Doctorat de I’Université de Lorraine

Rapporteurs :
Michael LEUSCHEL
Catherine DUBOIS
Examinateurs :
Pascale LE GALL
Stephan MERZ
Directeurs de these :
Jeanine SOUQUIERES
Jean-Pierre JACQUOT

(Spécialité : informatique)

par

Faqing YANG

Composition du jury

Professeur, Université de Diisseldorf, Allemagne
Professeur, ENSIIE, Evry

Professeur, Ecole Centrale, Paris
Directeur de recherche, INRIA, Nancy

Professeur, Université de Lorraine, Nancy, LORIA
Maitre de conférences, Université de Lorraine,
Nancy, LORIA

i loria UMR7503

Laboratoire Lorrain de Recherche en Informatique et ses Applications

Acknowledgments

Foremost, I would like to express my sincere gratitude to my advisor Prof. Jeanine
Souquieres and my co-advisor Dr. Jean-Pierre Jacquot for the continuous support during
my Ph.D. study and research, for their patience, motivation, enthusiasm, and immense
knowledge. Without their guidance, I cannot imagine to successfully achieve my research
goals. I would also like to thank their helps in my life, especially in a foreign country. I

would always remember them as the best advisors and the mentors for the lifetime.

Furthermore, I would like to thank the rest of my thesis committee : Prof. Michael
Leuschel, Prof. Catherine Dubois, Prof. Pascale Le Gall, and Dr. Stephan Merz, for their

participation, insightful comments, and constructive criticism.

In addition, I am indebted to the colleagues from MAIA and TRIO teams at LORIA
with special thanks to Dr. Alexis Scheuer for his development of the 2D platooning

mathematical model.

I would like to especially dedicate this thesis to my family, for their love, support,
patience, and understanding. They allowed me to spend most of the time on this thesis.
Last, but certainly not least, I am thankful to my friends, for all the moral encouragement

and support.

Contents

1 Introduction 1
1.1 Motivation e e e e e e e e 1
1.I1.1. ResearchContext 1

1.1.2 Scientific Problem 2

1.1.3 Technical Problems 2

1.1.4 Objectives« v v v v v it e e 3

1.2 Contributions e e 3
1.3 CaseStudies. e e 4
1.4 Publications e e 4
1.5 ThesisOutline e 6
2 State of the Art 7
2.1 Introduction e e 7
2.2 Development Process 8
2.2.1 Construction Activities 9

2.2.2 Verification and Validation Activities 10

223 Other Activities v v v vt e e e 11

2.24 Some Process Models 11

2.3 FormalMethods 13
2.3.1 Formal Specification 13

2.3.2 Formal Verification 14

2.33 Code Generation, 14

24 BMethod 14
241 OVerview v v v i e e e e e e e e e e 14

2.4.2 Presentationof Event-B 15

243 RodinPlatform 18

2.5 Animation of Event-BModels 20
2.5.1 Animation Difficulties 20

2.52 Event-B Animators 20

2.5.3 Multi-level Animation of Refinement 22

2.6 Platooning Models L o 23
2.6.1 Platooning Problem 23

2.6.2 1D Platooning Models 24

2.6.3 2D PlatooningModel L oL 25

27 Summary ... e e e e e e e e 27

il

IT

Assessment of Event-B Usability

Analysis of the 1D Platooning Model

3.1 Introduction
32 Proofs
3.2.1 Imteractive Proof
32.2 FalseStatement
32.3 UnprovableGoal
3.3 Non-Collision Property
3.3.1 Machine platoon0.
3.3.2 Machine platoonl
3.3.3 Machineplatoon2.
3.3.4 Machine platoon3 and platoon4
34 Summary e e e e e e

Automatic Generation of DLF Theorems

4.1 Introduction
4.2 Deadlock-FreenessRule
4.2.1 Deadlock-Freeness of Complete Model

4.2.2 Deadlock-Freeness of a Subset of Events

4.3 ExigenceofaTool
4.4 ImplementationIssue
45 Usageo e e
4.6 Summary
Scaling Up with Event-B
5.1 Introduction
52 Model Structure oL
5.2.1 Decompositionof Events
5.2.2 Increase in Complexity
5.3 Physical and Mathematical Equations
5.3.1 1D Equation Adaptation
5.3.2 2D Equation Adaptation
5.4 Temporal Properties
5.5 AdaptationofTools,
5.5.1 Edition L.
5.5.2 Verification,
5.5.3 Validation oL,
5.6 Summary

JavaScript Simulation Framework for Event-B

JeB Design
6.1 Introduction L.
6.2 Requirements for a Simulation Generator

6.3 Architecture of the Simulation Framework

CONTENTS

CONTENTS

7

8

6.4 Implementation Choices
6.5 Translation Strategies
6.5.1 Annotations vs. SetLibrary
6.5.2 Interfaces for User Hand-coded Functions
6.5.3 Invariant, Witness and Variant
6.5.4 Quantified Formulas
6.6 Summary e e e
JeB Implementation
7.1 Introduction e e
7.2 Namespace v v v v it e e e e e e e
7.3 Translationof ConteXts it
7.3.1 SetsandConstants
732 AXIOMS v o e e e e e e
733 ConstantChecker
7.4 Translation of Machines
7.4.1 Variables
7.42 Invariantso
743 Events.
7.44 EventParameters,
745 EventGuards
7.4.6 EventActions. e
747 UserInterface
7.5 Translationof Formulas
7.5.1 Predicates
7.52 BXPressionso ou it i e e e e e e
7.5.3 AsSSIgNments e e e
7.6 Interpretation of Translated Formulas
7.7 Simulation Control
7.7.1 Simulation Scheduler
7.7.2 Parameters of a Simulation
7.73 ScenarioController
774 Animator e e e e e
7.8 Event-B Project Diagram
7.9 Summary e e e e e e e
JeB Utilization and Analysis of Simulations
8.1 Introduction e e
8.2 Simulation of the 1D Platooning
8.2.1 Minimal Simulation
8.2.2 GraphicDisplay
8.2.3 Simulation of the Refinements
8.3 Simulation of the 2D Platooning
83.1 Carrier Sets e e e
8.3.2 Functions Defined by Properties

8.3.3 Generation of Arguments and Definition of Constants

iii

61
62
62
63
63
64
64

65
66
66
67
68
68
68
68
69
70
70
71
72
73
74
75
75
76
78
79
79
79
80
80
80
81
81

iv CONTENTS
8.4 ObservationsonJeBUsage 89
8.4.1 SimulationCost. 89

8.4.2 1D PlatooningModel 89

8.4.3 2D PlatooningModel oo 90

8.4.4 Transport-domainModel 91

845 MIDASModel 91

8.4.6 Comparison between Existing Animators 92

8.5 Analysis from a Validation Pointof View 94
8.5.1 Validationof Axiomso 94

8.5.2 Validation of Properties 95

8.6 Summary e e e e 96

9 Correctness of Simulations 97
9.1 Introduction 97

9.2 Consistent Behavior 98
9.2.1 Semantics of an Event-B Machine 98

9.2.2 Operational Interpretation of an Event-B Machine 99

9.2.3 Execution of Simulators 100

9.24 Correctness of Simulation 101

9.2.5 ProofObligations 102

9.3 Discussion about the Hypotheses 104
9.3.1 Hypothesis 1 104

9.3.2 Hypothesis2 105

9.33 Hypothesis3 105

9.4 Summary e e e e e e 105

10 Conclusion and Future Work 107
10.1 Conclusion e e e e e e e 107
10.2 Future Work oo 108
10.2.1 Technique 108

10.2.2 Refinement Process forEvent-B 108

10.2.3 Methodology 110
Appendices 113
Appendix A Présentation de la these en francais 113
Appendix B Translation of Event-B Formulas 125
Appendix C JavaScript Library for Event-B 149
Appendix D 1D Platooning Model in Event-B 183
Appendix E 2D Platooning Model in Event-B 199
Bibliography 251

List of Figures

2.1 Main development activities Lo 9
2.2 1D platooningmodel, 24
2.3 2Dplatooningmodel Lo 26
3.1 The DLF theorem for the machine platoon2 35
3.2 The unprovable goals in the machine platoon2 36
4.1 Generatorof DLFtheorems 43
5.1 The structure of platooningmodels 47
6.1 JeB simulation framework 0oL 60
7.1 Constantchecker 69
7.2 A machine userinterface 74
7.3 AnEvent-B projectdiagram Lo L. 81
8.1 The definition of Pointin Event-B 87
10.1 A step of refinement forEvent-B 109
10.2 Anextended V-Model L oo 111
A.1 LarchitecturedelJeB 119

vi

LIST OF FIGURES

List of Tables

4.1 DLFtheoremsize o it i i e 41
4.2 Deadlock-Freeness in the reviewed 1D platooning model 43
5.1 Decomposition of the move eventin the IDmodel 47
5.2 Decomposition of the move eventinthe 2D model 47
5.3 Increase in complexity 48
6.1 Requirements for a simulation generator 59
7.1 Namespaces used in the simulatorcode 67
7.2 Structural mapping of acontext 67
7.3 Structural mapping of amachine 0oL L. 69
7.4 Structural mappingofanevent 70
8.1 Activities for the 1D platooning simulations 87
8.2 Simulationcost L. 89
8.3 Technical comparison between the existing animators 92
8.4 The usage of four animators on our case studies 94
9.1 Symbols and notations Lo 98

vii

viii LIST OF TABLES

Chapter 1

Introduction

Contents

1.1 Motivation v v v v v v i v it i et ettt et e 1
1.1.1 ResearchContext
1.1.2 Scientific Problem 2
1.1.3 Technical Problems 2
1.14 Objectives v v v v i it e e e e 3

1.2 Contributions i v i ittt ettt et 3

1.3 CaseStudies v vttt vt v vt oo e oonsoseeas 4

1.4 Publications ittt ittt etentoneeas 4

1.5 ThesisOutline00 it ieeenn 6

1.1 Motivation

1.1.1 Research Context

The classical approaches of developing systems are conducted through activities realized
by humans. Unfortunately, humans often make mistakes and mistakes are the most
common cause of potential safety-threatening situations. For instance, the first test
flight of the Ariane 5 rocket ' failed on 4 June 1996, because of a malfunction in the
control software. A data conversion from a 64-bit floating point value to a 16-bit signed
integer value was left unchecked by engineers; it produced an overflow which led to the
destruction of the rocket.

The quality of systems can be improved by reducing human mistakes during the devel-
opment process, €.g., by using formal methods for the whole system or some critical
subsystems. Formal methods use mathematical logic to abstractly represent systems, to
prove that the formal specifications are consistent with the requirements, to prove that
the implementations meet the specification, and to generate code from the specifications.

1. http://en.wikipedia.org/wiki/Ariane_5

2 CHAPTER 1. INTRODUCTION

In this thesis, a system is said to be correct if it satisfies two conditions:

— Verified: the system must be internally consistent and it must meet the initial speci-
fication, i.e., we are building it right. Verification activities are usually an internal
process executed by the developers.

— Validated: the system must fulfill the intended purpose of its users, i.e., we are building
the right thing. Validation activities require processes which involve people outside
developers (stakeholders).

Using formal methods, getting a verified specification is reasonably easy. However, a ver-
ified specification does not automatically result in a validated specification. Verification
and validation are independent procedures. They should be used together to assure the
correctness of a formal specification. Often, the verification activities are made through
mathematical proofs and require significant resources (time, money and experience).
This makes formal methods more adapted to the development of safety-critical systems
where the cost of faults is very high. For instance, in the railway domain or in the
aerospace domain, undetected errors may cause the loss of lives.

This thesis aims at the specification, verification and validation of safety-critical systems
with formal methods, in particular, with Event-B. Our research work started from
analyzing an existing Event-B specification which formalizes the longitudinal control by
a platooning algorithm. The safety property which must hold in the platooning model is
the absence of collisions between vehicles. Then we extended this formal specification
into two dimensions by adding the lateral control.

1.1.2 Scientific Problem

The most important scientific issue uncovered by case studies used in our research work
was:

The mathematical proof of a formal specification is not enough to ensure its
correctness: verification does not entail validation.

Proof-based and refinement-based development techniques guarantee that a development
is internally consistent, in the formal sense. In particular, those techniques guarantee that
all models written during the development meet the initial formal specification. However,
non-functional requirements are often very hard to express within standard logics; many
requirements are even outside such mathematical frameworks. Hence, they are not in the
initial specification. Furthermore, obtaining clear and complete requirements at the early
stage of the development is known to be a near-impossible task. Therefore the initial
requirements document may be incomplete, ambiguous, inconsistent. As a result, the
developers will have to “supply” missing requirements in order to take the necessary
decisions during their work. So, the validation activities should be performed on the
formal models as early as possible after they have been verified.

1.1.3 Technical Problems

Using Event-B to develop a system raises some technical issues:

1.2. CONTRIBUTIONS 3

— the absence of practical tools to support validation activities,
— the lack of a guideline to integrate formal reasoning and semi-formal reasoning into a
development process.

1.1.4 Objectives

Our work has focused on specific objectives related to the extension of the Event-B
usability:

1. The most important objective is about a framework which can simulate the Event-
B model for its validation. This framework allows us to guarantee the semantic
correctness of simulations. This framework is a complement to existing proving
and animation tools that allows to associate validation activities with verifications
activities along the chain of refinements.

2. A second objective is to help the verification for the absence of deadlocks in
Event-B models.

3. The last objective, more methodological, is to think and enlarge the core notation
of refinement used in Event-B. The state-of-the-art refinement emphasizes the
verification activities. We complement it with other activities, such as requirements
management, adaptation of the mathematical model, checking temporal properties
and validation by animation or simulation.

1.2 Contributions

In this thesis, we aim at defining two important contributions.
Contribution I: assessment of Event-B usability
The start point of our research work is to assess the Event-B usability:

— acritical analysis of the original 1D platooning specification and the explanation of
some anomalies in the behaviors,

— a Rodin plug-in (about 500 lines in Java) to automatically generate deadlock-freeness
theorems,

— an assessment of the scalability of Event-B from different aspects (mathematics,
structure, temporal properties and tools).

Contribution II: a JavaScript simulation framework for Event-B

Our key contribution is a simulation framework for Event-B, based on JavaScript. This
framework generates simulators from Event-B models and provides a lightweight graphic
execution environment. Simulators can be used to validate Event-B models at each
refinement step. They help final users, domain experts and developers to better understand
the mathematical models and the specifications.

This simulation framework includes:

4 CHAPTER 1. INTRODUCTION

— an integrated simulation environment for Event-B models, composed of two main
elements:
— atranslator (about 2800 lines in Java): a Rodin plug-in which automatically gener-
ates simulators from Event-B models, and
— aruntime environment and most notably a JavaScript library (about 2700 lines in
JavaScript) which supports all Event-B mathematical notations,
— a semantics for the correctness of simulations based on the generation of proof obliga-
tions.

1.3 Case Studies

We used four case studies in our research work. These case studies allow us to experiment
different strategies of translating Event-B models, implementing the simulator and
parameterizing the simulations. At present, all refinements of these models can be
simulated by our tool.

1D Platooning Model This model [] was developed to verify a platooning
algorithm in one dimension with Event-B. It contains 10 components and about 600 lines
of Event-B formal texts. It can be animated by the existing Event-B animators with some
strategies. Hence, we use it as a reference.

2D Platooning Model This model [] is an extension of the first model in 2
dimensions. It contains 10 components and about 1800 lines of Event-B formal texts. It
has an abstract carrier set and some uninterpreted functions which caused the failure to
the existing Event-B animators. Hence, we use it as a test bed.

Transport-domain Model This model [] formalizes the transport
domain in Event-B. It contains 23 components and about 1100 lines of Event-B formal
texts. It uses many Event-B mathematical notations, e.g., abstract carrier sets, set
comprehensions, non-deterministic assignments. We use this model to test the interface
of our Event-B library and the symbolic executions.

MIDAS Model This model [,] uses Event-B to construct
instruction set architectures. It contains 104 components and about 21800 lines of Event-
B formal texts. It has a complex structure of contexts, and the longest refinement chain
from the abstract machine composed of forty machines. We use it to test the scalability
of JeB for a large project.

1.4 Publications

The obtained results in this thesis have been published in the following papers:

1.4. PUBLICATIONS 5

International conferences

[1] Faqing Yang, Jean-Pierre Jacquot and Jeanine Souquieres. Proving the Fidelity of
Simulations of Event-B Models. In The 15th IEEE International Symposium on
High Assurance Systems Engineering (HASE), Miami, USA, forthcoming 2014.

[2] Faqing Yang, Jean-Pierre Jacquot and Jeanine Souquieres. JeB: Safe Simulation
of Event-B Models in JavaScript. In The 20th Asia-Pacific Software Engineering
Conference (APSEC), Bangkok, Thailand, 2013.

[3] Faqing Yang, Jean-Pierre Jacquot and Jeanine Souquieres. The Case for Using
Simulation to Validate Event-B Specifications. In The 19th Asia-Pacific Software
Engineering Conference (APSEC), Hong Kong, China, 2012.

[4] Faqing Yang and Jean-Pierre Jacquot. Scaling Up with Event-B: A Case Study.
In Mihaela Bobaru, Klaus Havelund, Gerard Holzmann, and Rajeev Joshi, editors,
NASA Formal Methods (NFM), volume 6617 of Lecture Notes in Computer Science,
pages 438-452. Springer Berlin / Heidelberg, 2011.

[5] Faqging Yang and Jean-Pierre Jacquot. An Event-B Plug-in for Creating Deadlock-
Freeness Theorems. In /4th Brazilian Symposium on Formal Methods (SBMF),
Sao Paulo, Brésil, 2011.

National conferences

[6] Faqing Yang and Jean-Pierre Jacquot. JeB : un environnement de simulation en
JavaScript pour B événementiel. In Approches Formelles dans [I’Assistance au
Développement de Logiciels (AFADL), Nancy, France, 2013.

[7] Faqing Yang, Jean-Pierre Jacquot and Jeanine Souquieres. Traduction de B
événementiel en C pour la validation par la simulation. In Approches Formelles
dans I’Assistance au Développement de Logiciels (AFADL), Grenoble, France,
2012.

[8] Faqging Yang and Jean-Pierre Jacquot. Prouvé ? Et apres ? In Approches Formelles
dans I’Assistance au Développement de Logiciels (AFADL), Poitiers, France, 2010.

Article abstract for workshops

[9] Faqing Yang and Jean-Pierre Jacquot. Generating Executable Simulations from
Event-B Specifications. In Rodin User and Developer Workshop, Fontainebleau,
France, 2012.

[10] Faqing Yang and Jean-Pierre Jacquot. An Event-B Plug-in for Creating Deadlock-
Freeness Theorems. In Rodin User and Developer Workshop, Fontainebleau,
France, 2012.

[11] Atif Mashkoor, Faqing Yang and Jean-Pierre Jacquot. Validation of formal
specification: The case for animation. In 3rd Workshop on Security and Reliability
(SecDay), Trier, Germany, 2011.

6 CHAPTER 1. INTRODUCTION

1.5 Thesis Outline

This thesis is organized as follows
— Chapter 2 describes some related work.
Part I: Assessment of Event-B Usability

— Chapter 3 makes a critical analysis of the 1D platooning specification.
— Chapter 4 describes a tool for generating deadlock-freeness theorems.
— Chapter 5 presents the scalability of Event-B from different aspects.

Part II: JavaScript Simulation Framework for Event-B

Chapter 6 describes the JeB design philosophy.

Chapter 7 gives the JeB translator and simulator implementation.

Chapter 8 illustrates how to realize a simulation and some analysis from a point of
view of the validation.

— Chapter 9 defines the notion of correctness of simulations and defines the proof
obligations related to that property.

— Chapter 10 gives our conclusion and future work.
Appendices

— Appendix A shortly sums up this thesis in French.

— Appendix B gives the detail translation rules for Event-B formulas into JavaScript.
— Appendix C defines the JavaScript library API for Event-B formulas.

— Appendix D presents the original 1D platooning model in Event-B.

— Appendix E presents the 2D platooning model in Event-B.

Chapter 2

State of the Art

Contents
21 Introductiont i vttt eteeenneenees 7
2.2 Development Processottt 8
2.2.1 Construction Activities 9
2.2.2 Verification and Validation Activities 10
2.2.3 Other Activities 11
2.2.4 Some ProcessModels 11
23 FormalMethods v ittt ittt nneennns 13
2.3.1 Formal Specification 13
2.3.2 Formal Verification 14
233 Code Generation v it i e 14
24 BMethod it ittt ittt i 14
241 OVeIVIEW . . . v v v v e e e e e e e e e 14
2.42 Presentationof Event-B 15
243 RodinPlatform 18
2.5 Animation of Event-BModels 20
2.5.1 Animation Difficulties 20
2.52 Event-B Animators 20
2.5.3 Multi-level Animation of Refinement 22
2.6 PlatooningModels vttt ittt e 23
2.6.1 Platooning Problem 23
2.6.2 1D PlatooningModels 24
2.6.3 2DPlatooningModel 25
0 B 1111111 | 2 27

2.1 Introduction

In this thesis, we consider a software product as an information system. We address
the process of developing software based information systems which are composed

7

8 CHAPTER 2. STATE OF THE ART

not only of software subsystems, but also of hardware subsystems. How to integrate
such subsystems and what is the realistic operational environment of a final system are
important aspects which should be accounted for at the beginning of a project. The
development process is decomposed into a few main activities. The different development
methodologies, e.g., linear, iterative, or agile, are defined by different structures and
practices of these activities.

Unlike classical development approaches, formal methods use the mathematical logic
to rigorously reason about the correctness of a construction. They provide a strong
assurance of the absence of bugs in the software. However, they are generally expensive
in resources and thus, they are currently reserved for the development of safety-critical
systems. Formal methods can be applied at various points during a development process,
in particular, at the specification and the verification stages.

Event-B is a formal method for system-level modeling. It is based on the first order logic
and set theory. It uses refinements to represent systems at different abstraction levels and
uses mathematical proofs to verify the consistency between refinements. In this thesis,
we use Event-B to formalize the platooning problem as the ground base for our research.

2.2 Development Process

Computer science and its application quickly evolved in the passed decades. When
the first digital computers appeared in the early 1940s, the computer instructions were
wired into the machine whose design was not flexible. The computer system architecture
then evolved into "hardware" and "software", with the introduction of more and more
abstractions to deal with more and more complex computations. Programming languages
appeared in the 1950s; this was also a major step to drive the usage of more abstract
notations in the software development. The key concept of modularity and information
hiding [] is used to handle the increasing complexity of software systems. In
the 1980s, software engineering emphasized the system structure and its management
with large complex specifications. In the mid 1990s, the concept of distributed computing
gained greater influence as a way to design systems, while the Java programming
language [] was introduced with its own virtual machine; both ideas were
another step toward higher abstractions. In 2001, the Agile Manifesto []
introduced the agile software development which is based on iterative and incremental
development and encourages rapid and flexible response to change.

The evolution of developing software based systems focused on two aspects: the control
of the development process and the control of the software quality. The former resolves
the management problems by adopting some development processes, such as the waterfall
model or the agile model. The latter resolves the quality problems, such as reliability
and security, which can be considerably improved by applying formal methods.

A development process is a set of activities which lead to the production of a soft-
ware product. However, there is no ideal approach [] for different types
of software products. Some fundamental activities, like requirements analysis, sys-
tems/architecture design, subsystem design, coding and testing, depicted in Figure 2.1,

2.2. DEVELOPMENT PROCESS

Requirements
Analysis

4

System/Architecture

Acceptance
Testing

«

Integration/System

Design Testing
; «
- ‘ I - -
Construction Subsystem . Unit zan?za:{on
Activities Design Testing)
) l Activities

Coding

Figure 2.1: Main development activities

are common to all process models. In the following, we give a brief description for
each activity by two main catalogs: construction activities, verification and validation
activities.

2.2.1 Construction Activities

The aim of construction activities is to produce a system which conforms to the users’
requirements. A high quality requirements document [] is then a key to suc-
cess. The classical approaches construct systems from the initial requirements document
which becomes the reference against which the system is verified and validated in later
development steps.

Requirements Analysis This activity collects the requirements of the proposed system
by analyzing the needs of the user. It establishes what the expected system has to build,
but it does not specify how the system will be designed. Usually, the needs are collected
into a document, the “User Requirements Specification,” which is the output of this
phase.

The user requirements document is used to describe the system properties expected by
the user, such as functions, interface, data security, and so on. The plan-driven process
models, like the waterfall model, emphasize that the user reviews very carefully this
document as it will serve as a guideline for following development activities. The user
acceptance testing is carried out according to this document.

10 CHAPTER 2. STATE OF THE ART

System/Architecture Design A system design analyzes and decides the business logic
of the proposed system according to the user requirements document. It looks for feasible
techniques to implement the user requirements. If some of requirements are not feasible,
an alternative solution is proposed to the user and the requirements document is modified
accordingly.

The architecture design specifies the architecture of the system and its software part in
a high-level abstract formalism. It should consist of a list of subsystems, with precise
descriptions of their functionality, their interface and relationships with other subsystems,
the dependencies between sub-systems, etc.

Usually a system design document is generated at the end of this activity. It serves as
a blueprint for the subsystem design and the coding activities. The integration/system
testing is carried out according to this document.

Subsystem Design The subsystem design is a lower-level description of the system.
The final system is broken up into smaller subsystems or units. Each of them is described
in detail and then can be coded directly.

For each subsystem, a subsystem design document is generated, which contains detailed
functional logics, such as database tables, interface details, dependency issues, complete
inputs and outputs. The unit testing is carried out according to this document.

Coding This activity results in the executable code for each subsystem. It consists of
writing, debugging and testing the source code of a subsystem according to its design
document. These codes are often written in one or more programming languages. Some
flaws in programs can be more or less easily found by debugging and testing, but certain
complex business logics are difficult to be detected in this phase.

2.2.2 Verification and Validation Activities

The verification and validation [,] activities are independent
procedures. They are used together for checking that (i) a product, service, or system
meets its requirements and specifications, and (ii) a product, service, or system meets the
intended purpose of the user. These activities are critical elements to achieve a certified
software system [].

Informally, we express the validation by the question "Are you building the right thing?"
and the verification by "Are you building it right?". The IEEE standard []
give their descriptions as follows:

The verification process provides objective evidence whether the software
and its associated products and processes: (i) conform to requirements for
all life cycle activities during each life cycle process, (ii) satisfy standards,
practices, and conventions during life cycle processes, (iii) successfully

2.2. DEVELOPMENT PROCESS 11

complete each life cycle activity and satisfy all the criteria for initiating
succeeding life cycle activities.

The validation process provides evidence whether the software and its
associated products and processes (i) satisfy system requirements allocated
to software at the end of each life cycle activity, (ii) solve the right problem,
(iii) satisfy intended use and user needs.

Unit Testing Unit testing aims at verifying the internal logic of the code by exploring
every possible branch of the control flow of a subsystem. This testing is usually white-box
while the code is directly checked for errors. Static analysis tools are used to facilitate
this process without actually executing programs. Usually, the state space explosion
prevents these tests to be exhaustive and induces high costs.

Integration/System Testing After the disjoint subsystems are assembled into a single
system, the integration testing looks for faults in the interfaces and in the interaction
between the integrated subsystems. This testing is usually conducted in a black-box
spirit: the source code is not visible to the tester and not directly checked for errors.
Once the integration testing is complete, the system testing will be executed to compare
the system specifications against the actual system and to check if the integrated system
meets the specified requirements.

Acceptance Testing This activity is used to determine whether a system satisfies the
requirements specified in the user requirements document. The customer uses the defined
acceptance criteria to determine whether to accept the system or not. Once the acceptance
testing is complete and its results approved, the developed system will be deployed and
delivered to the customer.

2.2.3 Other Activities

Other activities complement the life cycle of a system, such as the project definition
and the maintenance. The project definition finds out the organization’s objectives, the
scope of the problem to resolve, other alternative solutions, the cost and benefits, etc.
The maintenance occurs once the system is delivered and operational. The purpose of
maintenance is to correct faults, to improve performance and to enhance the system
functionality, etc. Usually it has the longest period in the system life cycle.

2.2.4 Some Process Models

A process model is an abstraction of a development process. Several models are widely
used in the current software engineering practice. Each one has its advantages and
disadvantages. The development team should adopt the most appropriate one for a

12 CHAPTER 2. STATE OF THE ART

project, ideally, within the policies of the organization. Sometimes a combination of
these models may be more suitable for a large project.

Waterfall Model The waterfall model [] is one of the first published mod-
els of the development process. This model divides a development in sequential phases.
The developers follow these phases in order: requirements analysis, system design,
implementation, integration, testing, deployment and maintenance.

This model discourages revisiting and revising any prior phase once it’s complete. It can
be adopted for a project when (1) requirements are very well known, clear and never
changed; (2) product definition is stable; (3) the project is short.

V-Model The V-model [] is considered as an extension of the waterfall
model. The development phases form a typical V shape unlike a linear way in the
waterfall model. The V-Model emphasizes the relationships between a phase in the
construction and its associated testing phase in the verification and validation. The
horizontal axis represents project completeness and the vertical axis represents the
abstraction level of the development.

This model greatly emphasizes testing activities, and in particular, the importance of
early test planning. It has evolved over time to improve its flexibility and agility for
different type of projects.

Spiral Model The spiral model [] is based on the continuous refinement
of the key products realized during requirements definition and analysis, system and
software design, and implementation. At each iteration around the cycle, the products
are extensions of earlier products. This model emphasizes iterative risk analysis and
management. Starting from the center, each turn around the spiral goes through several
tasks: 1) determine the objectives; 2) identify and resolve risks; 3) develop and test the
product; 4) plan the next iteration.

It is reasonable to use this model in projects where the business goals are unstable but
where the architecture must be strong enough to support high load and resist high stress.

Agile Software Development The Agile software development is a philosophy of
developing software based on iterative and incremental developments [1.
It is not a set of tools or a single methodology. The self-organizing teams and their
interactions play an important role in the development process. It emphasizes on rapid
iterations, frequent delivery of working software, close collaboration with customers
and business experts, quick responses to the requirements change. The face to face
communication is considered more effective than written documentation. The working
software is considered more useful than presenting documents to clients.

However, agile development is more suitable for small teams. It is often recognized as
inefficiency in large organizations and certain types of projects (e.g., mission-critical
systems). Large-scale agile software development is still in the field of active research.

2.3. FORMAL METHODS 13

2.3 Formal Methods

Formal methods [,] are mathematical techniques for specification,
design and verification of software based systems. They use mathematical logic to reason
rigorously about the software construction in order to obtain a reliable and robust system.
They enable a good warranty regarding the lack of "bug" in the software. They ensure
that the implementation of a software conforms to its specification. However, the
application of formal methods is generally costly resources and is currently reserved for
developing safety-critical systems. For example, in railway [] and aerospace
[] systems, undetected errors may cause death.

A safety-critical system is that the failure or malfunction of a system can have dramatic
consequences, such as death, serious injury, equipment damage and environmental harm.
The failure rate is generally allowed to be less than one life per billion (10°) hours of
operations in safety-critical systems. The probabilistic risk assessment, failure mode and
effects analysis (FMEA) [], fault tree analysis are usually used to evaluate
risks and failure analysis.

To develop safety-critical systems, the classical approach is to let humans make the
development while applying extra care. But humans easily make mistakes, and these
mistakes are the most common cause of safety-threatening errors. Some serious disasters
were caused only by a little human mistake. For example, the first test flight of the Ariane
5 rocket on 4 June 1996 failed by a mis-checking on a data conversion.

The quality of safety-critical systems can be improved by using formal methods to
develop their critical subsystems []. Mathematical proofs ensure that the
specifications meet the requirements. Sometimes the executable code can be generated
from the formal specifications directly. In such cases, unit testing can be removed
from the development process: the correction of the construction is guaranteed by
mathematical proofs.

There is often some misunderstanding on the role and application of formal methods
[s ,]. These ideas have overemphasized full for-
malization of a specification or design. Since a full formalization of a system is a difficult
and expensive task, various lightweight formal methods [,]
have been proposed, which emphasize partial specifications and focused applications.
Formal methods can be applied at various points through the development process, in
particular, at the specification, the verification, and the code generation.

2.3.1 Formal Specification

Formal specifications [] use mathematical techniques to give a precise
and unambiguous description of a system. They use rigorous and effective reasoning
tools to describe a system, to analyze its behavior, and to verify interest properties. They
help uncover problems and ambiguities in the system requirements. They can be used to
guide further development activities.

14 CHAPTER 2. STATE OF THE ART

2.3.2 Formal Verification

Once a formal specification has been developed, the specification should be verified
[] to prove the correctness of systems. Two main techniques are used to do
formal verification: model checking and theorem proving.

Model Checking Model checking is a technique for automatic verification of a given
model of a system: whether this model satisfies its specification. It consists of a system-
atic and, ideally, exhaustive exploration of the space defined by a mathematical model.
The specification to be verified is often formulated in terms of temporal logic, such as
linear temporal logic or computational tree logic. The advantage of model checking is
that it is mostly automatic and easily to product a counter-example; but it often does
not scale up well to large systems, especially due to the state explosion problem. Sev-
eral approaches are used to combat this problem, such as symbolic execution, abstract
interpretation, partial order reduction.

Theorem Proving Theorem proving is a deductive method. Firstly a collection of
mathematical proof obligations is generated from a system specification. The correctness
of a system is then assured by discharging these proof obligations using either theorem
provers or SMT solvers. This approach does not suffer the problem of state space
explosion and it can be applied to large systems. This approach may require some
experiences and skills to manually discharge plenty of proof obligations, in some cases,
which is not an easy task.

2.3.3 Code Generation

A formal specification may be used as a guide for the implementation of the system.
Refinement based formal methods, like B Method, support gradually add more details
about data structures and algorithms to obtain a deterministic version. This deterministic
refinement may be directly translate into source code in a target programming language,
like [].

2.4 B Method

B method is successfully deployed in many industry projects. This thesis focus on the
extension of Event-B usability.

2.4.1 Overview

B is a formal specification language invented by Jean-Raymond Abrial based on the first
order logic and set theory. It allows accurately express system properties and prove these
properties in a systematic way. Then we can take into account these properties to guide

2.4. BMETHOD 15

further development activities. The correctness of construction is fully controlled by the
discharge of many mathematical proof obligations (PO).

The B method is a mature construction approach based on the B Language. It uses
refinements, proof obligation and is fully supported by tools. A development in B starts
with writing an abstract model that includes all the requirements: the main data processed
by the system is described, as well as the fundamental properties of this data.

The B model thus obtained is a specification of what the system should do. Then the B
model is transformed by a succession of refinements into a concrete model that can be
coded into a language such as C or Ada. Each refinement can be proven, and so, the
development leads to a fault-free software. The B method has been successfully applied
in several industrial projects, such as [, ,].

The B method has two versions: classic B [] and Event-B [].
Both languages are based on first order logic and set theory.

Classic B is used in the development of computer software elements, it is supported by
tools such as Atelier B [] or B-Toolkit []. Atelier Bis a
commercial tool which includes the ability to translate the refinements into a standard
programming language.

Event-B is an evolution of Classic B. It uses only an event notation [] to
describe the state transitions; it is supported by the Rodin platform [1.
Compared to Classic B, Event-B has the capacities to model a system.

2.4.2 Presentation of Event-B

Event-B [] is a formal framework to specify complex systems. It can be
analyzed along three axis:

— Description axis: systems are modeled as a state, i.e., a mapping from names to values;
they are constrained by an invariant, i.e., a conjunction of predicates on the state, and
a collection of events. Events are discrete modifications of the state.

— Semantics axis: it is based on the notion of correctness. A model is correct if it enjoys
several demonstrable properties, mainly: well-typedness, existence of actual states and
invariant preservation. These properties are expressed as POs that can be automatically
generated.

— Development axis: Event-B embed a notion of formal refinement which allows
specifiers to use a stepwise development strategy. The correctness of refinements is
defined by POs which guarantee that the invariant of the previous machine is preserved
by the refinement.

An Event-B model has two kind of components : contexts and machines. Contexts
are used to describe the static elements of a system. Machines are used to specify the
dynamic behavior of a system. A context may be extended to many other contexts; a
context may also extend many other contexts. A machine may be refined to many other
machines; but a machine may at most refine one machine in the Rodin platform.

16 CHAPTER 2. STATE OF THE ART

Contexts Contexts describe the static properties of a model. In fact, a given model
is parameterized and can be instantiated with associated contexts. A context contains
sets, constants, axioms, and theorems. Sets are user-defined types, classified by carrier
sets and enumerated sets. Each constant must declare its type in axiom section. The
properties of sets and constants are described by axioms. Axioms are considered as
hypotheses used in proofs, they are only required be well-defined. So it is possible to
introduce a wrong axiom to a model. Axioms can be marked as theorems for derived
properties. A theorem must be proved by the axioms written before this theorem; The
proved theorems can be used later in proofs just like the other axioms.

Machines Machines describe the dynamic behavior of a model. A machine contains
variables, invariants, events, theorems, and variants. Variables constitute the system
state, whose values are determined by an initialization event and can be changed by
events. Like constants, variables can be any mathematical objects defined in Event-B
language, such as integers, sets, relations and functions, etc. Invariants specify the system
behavioral properties with variables. They are predicates that should be held for every
reachable state. Events are guarded substitutions to change the values of variables. Like
axioms, any predicate defined in invariants or event guards can be marked as theorems
which should be proved within the machine. A variant is a numeric expression or a finite
set to support proofs for event termination.

Event An event represents a transition. It is a guarded substitution. Each event is
composed of an arbitrary number of parameters, guards and actions. The guards defined
the necessary conditions when an event is enabled to execute. The actions specify how to
change the variables’ values. They may be deterministic assignments or non-deterministic
assignments. When an enabled event is executed, only the variables specified in the
actions are changed their values, the other variables keep their old values.

Events have three kind of forms. Let v be a collections of state variables in a machine, x
be a collections of parameters of an event, G(x,v) be the guards of an event, S(x,v) be
the actions of an event, the general form for an event is:

ANY x WHERE G(x, v) THEN S(x, v) END

The second form is used when there is no parameters:

WHEN G(v) THEN S(v) END

The last form is used when there is neither guards nor parameters:

BEGIN S(v) END

The initialization of the machine is a special event using the last form.

An intuitive operational interpretation of an Event-B model consists in checking if values
can be assigned to the parameters to make the guard true for an event, and then to execute
the substitution. More generally, execution is a procedure in four steps: (1) to pick (or
compute) and assign values to the parameters, (2) to compute the set of enabled events,

2.4. BMETHOD 17

(3) to choose one enabled event, and (4) to pick (or compute) and assign values to the
substituted variables.

The validation of a model can then be done by observing the evolution of the state’s
values and the sequences of events fired during executions. Technically, assigning values
to parameters, choosing an enabled event to fire and determining the substituted values
introduce non-determinism in executions.

Refinement The progress towards implementation is made by following a gradual
refinement process. A refinement is the transformation of an abstract model into a more
concrete and elaborate model. New variables can be introduced in the state, either as
addition or as reification of the abstract variables. This introduction is reflected in the
substitutions of the events. A WITH clause expresses the link between the parameters
of an abstract event, (possibly removed from the refined event) and their concretization.

New events may also be introduced. Except when specified as refining an abstract event,
new events are assumed to refine the SKIP event. These new events should not prevent
forever the old ones from being triggered. A VARIANT can be introduced to ensure this
property. It consists of a numeric expression or a finite set which must decrease each
time a new event is fired. Proof obligations ensure that the refined model is consistent,
i.e., its INVARIANT is preserved, and the VARIANT is decreased by the new events.
Furthermore, they ensure that the refinement is correct, i.e., the refined events do not
contradict their abstract counterpart.

Semantics The mathematical semantics of Event-B is defined by a set of logical
properties of the model, mostly concerned about the possibility to instantiate an actual
state and about the preservation of invariants. The syntax of Event-B and the model
structure allow tools to automatically generate Proof Obligations (POs). A model is
correct, in the B sense, when all POs have been discharged.

The most important POs can be classified as follows: WD (well-definedness), THM
(provable theorem), INV (invariant preservation), GRD (guard strengthening), SIM
(action simulation), FIS (feasibility), VAR (decreasing of variant).

WD POs ensures that formal predicates, expressions and assignments are indeed well
defined. They are mainly a form of type-checking or have special conditions for some
particular formulas. Typing in B and Event-B is based on set membership.

THM POs ensures that a theorem declared in a context or a machine is indeed provable.
In the Rodin platform, axioms, invariants and guards can be marked as theorems, so they
can be proved and used in a proof. The validity of a theorem must be proven from the
axioms, invariants or guards declared before this theorem. Theorems are important to
simplify some proofs.

FIS and INV POs express the logical consistency of the model. The state modifications
are expressed as events, which are substitutions. The guards of an event are predicates
that identify a set of pre-states. The actions of an event identify a set of post-states.
The Before-After-Predicate (BAP) of an event relates these pre-states and post-states.

18 CHAPTER 2. STATE OF THE ART

INYV proof obligations ensure that post state remains within the legal states (where the
invariant holds). FIS proof obligations ensure that all the states satisfying the guard are
related by the BAP to at least one post-state.

GRD and SIM POs express the consistency of refinements. The former set of POs
ensure that a refined event cannot be fired when its counterpart in the abstract model
could not. The latter set ensures that all substitutions performed in the abstract model are
still performed in the refined model.

VAR POs ensures that an event will terminate to execute after a finite number of times.
Events can be marked as: ordinary, convergent and anticipated. An ordinary event may
occur arbitrary times without the variant constraint. A convergent event must decrease
the variant. An anticipated event must not increase the variant.

In practice, many POs may be trivial; current tools discharge them automatically and
silently. Users are presented only with the undischarged POs.

Note that POs cannot guarantee that the behavior of the machine is correct in the user’s
sense: POs are only about verification. Validation is required to check that the machine
conforms to the users’ actual requirements.

2.4.3 Rodin Platform

The Rodin platform [] is an Eclipse-based integrated development envi-
ronment for Event-B. It provides specifiers with an effective support for editing the
specifications, refining the models, generating and discharging the POs. The platform
is an open source and extendable with external plug-ins. The architecture of the Rodin
platform is composed of three sets of tools: the Eclipse platform, the kernel plug-ins and
the external plug-ins.

2.4.3.1 Eclipse Platform

The Eclipse platform provides the basic tools for constructing an integrated development
environment. It is easily customized to support any particular development process.
Based on this feature, Rodin reuses the most notable Eclipse facilities to support the
Event-B modeling and proving processes.

2.4.3.2 Kernel Plug-ins

The kernel plug-ins provide the basic modeling and proving functionalities with Event-B.
They are developed on top of the Eclipse platform. They are composed of a set of
plug-ins for model storage, checking, proof manage and user interface.

Core This plug-in provides low-level APIs to operate Event-B models with a database
manger. All elements related to Event-B models are stored into a Rodin database bases

2.4. BMETHOD 19

on XML files. This plug-in also provide a incremental project builder to schedule the
static checker, the proof obligation generator and the prover.

Static Checker This plug-in provides APIs to check Event-B models. The static checker
is firstly called once an Event-B model is saved. The mathematical formulas are
statically checked for being meaningful. Every formula is parsed to an abstract syntax
tree (AST) representation. The proof obligations are only generated from a statically
sound model.

Proof Obligation Generator This plug-in automatically generates the POs for the
checked Event-B models without errors.

Prover This plug-in provides APIs to discharge the POs. It contains a Proof Manager
and a set of proof engines.

Modelling UI This plug-in provides the graphical user interface to write and edit Event-
B models. This interface contains fours areas for the project navigation, component
editing, outline view, and message reminding.

Proof UI This plug-in provides the graphical user interface for displaying, managing,
and discharging the interactive proofs.

2.4.3.3 External Plug-ins

The external plug-ins ! are all the other plug-ins that can be used in the Rodin Platform.
Some of them have been developed in the course of the Rodin Project (UML to B
translator, ProB model checker, etc.) while others might be developed later on. Here we
just present some useful external plug-ins. A set of published APIs allows any Rodin
user to contribute specific plug-ins.

Edition Tools The Camille Editor |] is a plain text editor for Event-
B language. Is is similar to the classical programing language editors. It complements
the standard structured editor of Rodin.

Verification Tools The AtelierB Prover |] is a powerful prover; it is recom-
mended to use it in place of the internal provers. Isabelle for Rodin []
exports POs as Isabelle/HOL theories so they can be discharge with Isabelle/HOL. The
SMT Plug-in |] provides an interface for SMT solvers.

Validation Tools ProB | , ,] is an animator
and model checker for the B Method. Brama [] and AnimB []
are animators for the Rodin platform. The UML-B-State-machine Animation |

provides an animation of UML-B State-machines by using ProB.

1. http://wiki.event-b.org/index.php/Rodin_Plug-ins

http://wiki.event-b.org/index.php/Rodin_Plug-ins

20 CHAPTER 2. STATE OF THE ART

Code Generation Tools B2C|[] automatically translates Event-B models
to C source code, while EB2ALL [] is a set of plug-ins to translate Event-B
models to several programing language, such as C, C++, Java and C#. Both B2C and
EB2ALL only support a subset Event-B notations without non-deterministic notations,
therefore they are applied to the last refinement which is enough deterministic. Tasking
Event-B [] supports multi-tasking Java, Ada and OpenMP C code genera-
tion from an extended tasking Event-B model. EventB2JML translates Event-B machines
into JML (Java Modeling Language) specifications. EventB2Dafny translates Event-B
proof-obligations into equivalent Dafny [] programs which can be discharged
with Dafny proof environment. The EHDL Plug-in enables the automatic generation of
VHDL [] code from Event-B models.

2.5 Animation of Event-B Models

Animation is a technique to execute specifications. Thus, we can play, experiment
and observe the behavior of models. Several tools support this technique [,

’ > B]'

2.5.1 Animation Difficulties

The Event-B animators are used to observe the behaviors of a given model. Brama,
AnimB and ProB are animators integrated within the Rodin platform; B2EXPRESS
[] is a standalone animator. An animator for Event-B should resolve
two issues : execution and visualization.

An Event-B model is not an executable program. The capability of an Event-B animator
depends on its level of support of Event-B mathematical notations. Furthermore, an
Event-B animator has to address some challenges during the executions:

— to find values for the constants and sets which satisfy their properties,

— to find values for the parameters of a given event,

— to decide the set of enabled events and to schedule an event to fire.

Unfortunately, the automatic solution of the above problems are undecidable. Indeed,
the set of possible values can be infinite in Event-B.

For the purpose of validation, an Event-B animator should also provide with several
user-friendly visualization features. They help users to analyze and understand the
behavior of Event-B models; e.g., the graphical representation of the system state and
the interaction controls for users.

2.5.2 Event-B Animators

Brama This tool uses a Java library to parse and interpret Event-B formulas. It requires
the version under 1.0 of Rodin; so it cannot be used with the latest versions 2.x. Brama
contains the following principal modules: an animation engine (predicate solver), an

2.5. ANIMATION OF EVENT-B MODELS 21

interface to visualize events and variables, and a communication module with Flash
animation.

Brama uses an enumeration strategy to compute values and parameters: all carrier sets
and constant functions need be instantiated by explicit set extensions. This strategy limits
Brama’s applicability to Event-B models which contain constants and sets with finite
values.

The parameter value to a given event is randomly picked from the set of values which
satisfy the event guard. If this set is empty, then the given event is not enabled. The
user can also input a special parameter value through a user interface. The input value is
verified by the event’s guard.

To schedule the enabled events, Brama use an XML file to configure events’ order of
firing. With this file, Brama can run the model in an automatic mode.

Brama uses a Flash communication module to build the external graphical animation.
The communication between the Flash interface and the Event-B model is based on the
exchanges of some observed expressions and predicates which are configured in an XML
file.

Brama partially supports the Event-B notations; many Event-B models are not directly
animatable with Brama. They need some transformations [] before
using Brama, for example:

— specify the finiteness of a quantified domain,

— generalize expressions involving complex iterations,

— explicitly provide the typing information of all sets used in an axiom,

— avoid dynamic function computation in substitutions,

— use in-line functions in machines to replace those functions defined in contexts.
Notice that the strategy of these transformations is to change a formal specification to
adapt an animator tool because of its limitations. Despite these transformations, many
specifications are still non-animatable by Brama.

AnimB AnimB is similar to Brama, but it supports the latest Rodin version 2.x. It
uses the same Java library to parse and interpret Event-B formulas, so the limitations of
AnimB are the same as those of Brama. Furthermore, AnimB does not check axioms and
invariants. So, there is no indication that an observed behavior may not be allowed in the
original model. This is main disadvantage of AnimB. Like Brama, it provides users with
an interface toward Flash for building graphical visualizations.

ProB Based on Prolog, the ProB tool supports the automated consistency checking of
B machines via model checking. Both exhaustive and non-exhaustive model checking
are supported by ProB. The exhaustive model checking requires that the checked model
only uses small finite sets and integer variables are restricted to small numeric ranges.
Otherwise, the size of carrier sets and the range of integers are bounded in the ProB
preferences. ProB is useful to find out a counter-example where a specification contains
errors. If any invariant violation or any deadlock is not found by ProB, this does not

22 CHAPTER 2. STATE OF THE ART

imply that the specification is correct. It should be understood that no error was found
within the given checking conditions.

For any particular animation, two strategies can be used to find specific values for
all constants and sets: (i) let ProB do this automatically, using the constraint-solving
technique to find proper values that satisfy all axioms, (ii) use the context extension
mechanism to explicitly set values to all constants and sets; this is useful when the
automatic solution fails or when we want an animation on a particular scenario with
specific data.

Like Brama, ProB will calculate a set of parameter values for a given event. The size
of this set is configured in the ProB preference. Users can pick the first solution for
parameters, a random solution for parameters, or open a dialog for choosing. Unlike
Brama, ProB does not provide a user interface to input a specific parameter value.

To schedule the enabled events, users can automatically execute a certain number of
steps or manually choose an enabled event. ProB does not provide an explicit scheduler
for auto run mode.

The visualization with ProB uses an animation function written in B to link the model
and some static images. These visualizations are rather simple and restricted. Also,
writing the required animation function can still be a considerable challenge.

Based on the ProB plug-in for Rodin, the B-Motion Studio [] allows
to create visualizations as using animation functions in the standalone ProB. BMotion
Studio has a graphical editor with a number of default controls and observers to facilitate
the construction of visualizations. Users use controls, like labels, images or buttons,
to construct a graphical representation of the model. Those controls are linked to the
model’s state by some observers which use Event-B predicates and expressions as gluing
code. Unlike a single animation function in the standalone ProB, observers are more
flexible to construct a complex animation with many small functions.

B2EXPRESS This tool translates Event-B models into data models expressed in
the EXPRESS [] data modeling language. The animation consists in
instantiating the different entities of the obtained data models to describe the traces
of events of an Event-B model. The interesting point is that B2ZEXPRESS offers two
animation mode: (i) the guarded mode only allows users to trigger those events whose
guard evaluates to true, (ii) the free mode may allow users trigger any event, even whose
guard evaluates to false. The first mode can be used to the validation activities, while the
second mode is useful to debug an Event-B models, e.g., to check invariants, deadlocks
or unexpected behaviors. This tool is not publicly available and is not integrated into the
Rodin platform.

2.5.3 Multi-level Animation of Refinement

For complex models, the refinement technique allows us to introduce details gradually in
order to reduce the complexity at each refinement step. The proof obligations generated

2.6. PLATOONING MODELS 23

with each refinements can guarantee the consistence between refinements, but sometimes
it is difficult to analyze a refinement relationship. Brama, AnimB and ProB provide a
multi-level animation facility to help detect refinements’ errors.

Compared to Brama and AnimB, the articles [,] present
an algorithm for the simultaneous multi-level animation of refinements according to
witnesses. This algorithm allows ProB to detect more efficiently a variety of refinement
errors in a systematical way. The witnesses in Event-B play an important role to realize
this algorithm.

2.6 Platooning Models

Our research strategy makes a heavy use of case studies. We started our work with
the analysis of an existing Event-B specification (see Appendix D) which formalizes a
platooning algorithm for the longitudinal control. We extended this specification to the
bi-dimensional space by adding the lateral control. Through these two case studies, we
have identified the following problems:

— A fully proved Event-B specification can be incorrect from the users’ point of view
because of missing validation activities, i.e., verified but not validated.

— The industrial application of Event-B lacks mature tools to support validation activities
in the current state of the art.

— We need a practical process to integrate formal reasoning and semi-formal reasoning
into the validation and verification activities.

2.6.1 Platooning Problem

Research on urban mobility systems based on fleets of small electric vehicles []
stresses the importance of a new moving mode: platooning []. A platoon is
defined as a convoy of autonomous vehicles which follow exactly the same path and
which are spaced at very close distance one from the other.

In this work, we consider platoons formed by a leader vehicle and followers. Leaders and
followers have different control laws. We specify only the follower control law. Its aim is
to keep as close as possible to the preceding vehicle while following a virtual ideal track
without colliding. We use a model of vehicle where the control can be decomposed into
longitudinal (i.e., speed and acceleration) and lateral (i.e., curve and wheel orientation)
laws. We assume operating conditions such that the two controls can be computed
independently.

There are numerous strategies to form and maintain platoons, characterized by their
degree of centralization and the volume of communication. We specify a minimal
strategy: no central control and no communication [] between vehicles
other than perception, i.e., a vehicle can sense a few information from the preceding
vehicle (distance, speed, etc.). The virtual track is set by the leader. The control is local
to each vehicle, based on current state and perceptions. This strategy may not be one of

24 CHAPTER 2. STATE OF THE ART

1D Model
Vehiclei < ISt vehicle i-1
L] —— —-_—_— L]
| T - T - T - >
L] L] —— ——— X
Xpos i Xposi
speed i speed -1

Figure 2.2: 1D platooning model

most efficient but it is very robust. In particular, it can be used as a fall-back in case of
failure in a system using more sophisticated algorithms. Hence the need to guarantee its
correctness.

Within this problem setting, platoons can be considered as situated multi-agent systems
(MAS) which evolve following the Influence/Reaction model [, 1.
The development of the specification follows a stepwise refinement process based on this
model: (i) driving systems perceive, (ii) decisions are taken, and (iii) physical vehicles
move.

We aim at modeling a pragmatic strategy known as Daviet-Parent algorithm |]
in order to prove that implementations enjoy certain properties such as: (i) the model
is sound bound-wise, (ii) no collision occurs between the vehicles, (iii) no unhooking
occurs, and (iv) no oscillation occurs.

Presently, we focus on two essential safety properties: (i) soundness is maintained and
(i1) no collision within a platoon occurs 2,

2.6.2 1D Platooning Models

In the 1D platooning model, vehicles move on a linear track depicted in Figure 2.2. It is
formalized in classic B, Event-B and CSPIIB. These models are proved to be correct.

Modeling in Classic B The specification described in [] clearly separates
the model of the physical world (environment) and the model of the vehicle behavior
(agents). These two parts can be connected to express the full model, and separated to
identify what are the specific properties that the model must verify. From the case study
of the platooning problem, it proposed a generalized pattern to help the modeling of
Influence/Reaction multi-agent systems.

Modeling in Event-B In [], the state of the i"* vehicle at time ¢ is the
pair (xpos;(t),speed;(t)), where xpos; represents its position on the track and speed;
represents its velocity. The longitudinal control consists in setting up an acceleration to

2. Collisions between platoons or between a vehicle and an obstacle should of course be considered in a
real system. First kind should be taken care by the control law of leaders, second kind is dealt with by lower
level emergency systems. Both are outside the scope of this work.

2.6. PLATOONING MODELS 25

modulate speed. The behavior law is represented by (2.1) extracted from [1,
where MaxSpeed is the maximum velocity, accel; is the acceleration, and At is the time
increment:

n_speed = speed;(t)+accel;(t).At
xpos;i(t) + MaxSpeed . At if n_speed > MaxSpeed
xpos;i(t) — ;p::il(t():) if n_speed <0
xposi(t+At) = e
xpos;(t) + speed;(t).At .
+acceli(t).mz otherwise
2
MaxSpeed if n_speed > MaxSpeed
speedi(t +At) = 0 if n_speed <0

n_speed otherwise

2.1)

The acceleration accel; is chosen according to the current state of the i/ vehicle and the
values sensed on the preceding vehicle.

This model is strongly influenced by the non-collision property. It starts from a very
abstract Event-B model. Then this first model is refined by adding the various stages
of operations (reaction, decision and perception) until it is complete with respect to the
behavior law. This stepwise refinement is properly verified at each stage, which ensures
that the initial properties remain true in the final model.

The structure of this model consists of an abstract machine and four refinements. Each
development introduces a clearly identified concept. The abstract machine platoon0
sets up the safety property. The refinement platoonl splits the movement of the
platoon into the movements of each vehicle. The refinement platoon2 implements the
physical reaction law. The refinement platoon3 introduces the decision law to compute
acceleration. The refinement platoon4 introduces the perception of the environment
and implements the decision law.

Modeling in CSPIIB This specification [] finely handles communication
issues between the components of the vehicle and between the vehicles themselves.
Indeed, the platooning model assumes that vehicles must operate at the same time. This
hypothesis may even extend to sub-components of a vehicle. This model can ensure that
the selected communication protocol does not cause blocking and the perceptions made
by the vehicles are sufficient for decisions.

2.6.3 2D Platooning Model

The 2D model [], is based on the following system hypotheses:

— we consider a set of N(> 2) vehicles forming a linear platoon,

— the motion of the vehicles is limited by fixed bounds on velocity, acceleration, curva-
ture and derivative of curvature,

26 CHAPTER 2. STATE OF THE ART

Y 2D Model
Vehicle i-1
” 7
yi-1 oi \/ 4
Vehiclei = = \
' / \ L — 8
yi i { ' disti
.
8i
»
Xi X i-1 X

Figure 2.3: 2D platooning model

— we consider forward-only motions on a track which does not intersect itself (no loops),

— we suppose that the frequency of the control algorithm is the same for all vehicles, so
they can be modeled as synchronized,

— sensors are perfect and their accuracy is such that the velocity of the previous vehicle
can be precisely known,

— actuators of the engine are perfect.

The hypotheses are strong but not that far from reality considering (1) we are not

modeling fault, fault-tolerance, or such matters, (2) near perfect abstract sensors or

actuators can be built from merging results of several concrete ones.

In the 2D model, vehicles move on a plane shown in Figure 2.3. The vehicle state n
must model its position, represented by cartesian coordinates (x,y), and its attitude,
represented by the orientation 0 of the vehicle’s axis with respect to the x-axis. The
behavior law now contains a velocity v and a trajectory’s curvature K which are controlled
by application of a linear acceleration a and a derivative of the curvature). When a
control (a,y) is applied to a state (xo,yo,00,vo,Ko) at time # for a period Az, the new state
at time ¢ 4 At becomes:

X = Xp +COS eoFc(Al, VQ,K(),a,X) — SineoFS(Al‘, VQ,K(),a,X)
y = Yo +cCo0s eoFs(At,VO,Ko,a,X) — SineoFc(At,VQ,Ko,a,x)

0 = 0y + voKoAr + (aK() + V()X) Ath + aXAth (2.2)
v = vy +alt
K = Ko + (A?

where Fe(At,vo,K0,a,%) = [& (vo + at) cos(vokot + (axo + vox)12 /2 + axs® /3)dt

and Fs(At,vo,Xo,a,%) = fOA’(vO +at) sin(vokot + (axo + vox)t2/2 +ayt® /3)dt.
One aim of the 2D model development is to analyze how the slight increase in complexity

of the mathematical model translates into the increase in complexity of the Event-B
model and of its development.

2.7. SUMMARY 27
2.7 Summary

The development of software systems needs to adopt an appropriate development process
to resolve the management problem. The quality of software systems can be improved by
applying formal methods. Formal methods can be applied at various points through the
development process. One objective of this thesis aims at formal modeling and analysis
of a platooning algorithm with the Event-B language. We are interesting in all aspects of
integrating methods, either formal or semi-formal, for the system development, covering
all engineering development phases from user requirements to verification and validation
activities.

28

CHAPTER 2. STATE OF THE ART

Part I

Assessment of Event-B Usability

29

Chapter 3

Analysis of the 1D Platooning
Model

Contents
31 Introductionc0iiiiiiitiieteennn 31
32 Proofst iie e ee e ee e e e 32
3.2.1 Imteractive Proof 32
32.2 FalseStatement 33
323 UnprovableGoal 34
3.3 Non-Collision Propertycc00vveee.. 36
3.3.1 Machineplatoon0. 36
3.3.2 Machineplatoonl 37
333 Machineplatoon2., 37
3.3.4 Machine platoon3 and platoond 38
R 2T Y 1111111 2 38

3.1 Introduction

The 1D platooning model in Event-B (see Appendix D) is the starting point of our
research work. We undertook a thorough analysis of this model in order to gain a better
understanding of the relations between the proof of a formal model and its correction in
the general sense. This leads us to uncover problems related to the presence of deadlocks
and some weaknesses of the invariants. Notices that the result of proofs depends the
capability of the state-of-the-art the verification tools. At the beginning of our research,
only the internal prover and the Atelier B prover are available to use.

31

32 CHAPTER 3. ANALYSIS OF THE 1D PLATOONING MODEL

3.2 Proofs

In the verification sense, the correctness of an Event-B model fundamentally depends on
proofs. When an automatic proof fails [], it might be:

1. the statement to prove is true, but the automatic prover is not smart enough, so we
must prove it with the interactive procedure;

2. the statement to prove is false, so the model has to be significantly modified;

3. the statement to prove cannot be proved, so the model should to be enriched.

The three situations existed in the original 1D platooning model. Case 1 was caused
by two reviewed sequents; case 2 was caused by another two reviewed sequents; and
case 3 was found by introducing the deadlock-freeness theorems. In Rodin, reviewed
sequents mean admitted without proof. Marking sequents as reviewed is convenient since
the provers will ignore them and can proceed with the general proof. This allows the
proof to be discharged interactively in a gradual way. Of course, reviewed sequents must
ultimately be proven, preferably within Rodin’s provers.

3.2.1 Interactive Proof

Two well-definedness proof obligations are marked as reviewed in context2 (see Ap-
pendix D.3): "axm12/WD" and "axm14/WD". At the time the specification was de-
veloped, Rodin’s version was 0.8, the SMT solver plug-in is not available to use. The
available provers (the Rodin internal prover and the Atelier B prover) then could not
discharge automatically the two following sequents:

—accel0 =0
l_
—2xaccel) =0

It was an instance of an “obvious” mathematical property:

VaneZN—n=0=-2xn=0 3.1

In order to prove the above sequent, we can adopt the following strategy:

1. select the hypothesis —accel0 = 0, remove the other hypothesis;
2. add a new hypothesis 2 x accel0 > 0V 2 x accel0 < 0;

3. discharge the sequent by a case analysis decomposition: 2 x accel) > 0 and 2 x
accel0 < 0.

Indeed, the new version of Atelier B prover (since the version 1.0) can automatically
discharge the above sequent. We think that a similar proof rule was added to this prover.

3.2. PROOFS 33

3.2.2 False Statement

Two GRD proof obligations are marked as reviewed in the machine platoon2 (see
Appendix D.8): "movel_max/grd3/GRD" and "move_max/grd3/GRD". They are used
to express the consistency of refinements. The guard of the refined events movel_max
and move_max must be stronger than the guard of the abstract events movel and move in
the machine platoonl (see Appendix D.7), respectively.

In the proof tree, two goals cause problems:

movel_max/grd4/GRD
Goal: new_xpos_max(xpos(1) — speed(1) — magic_accel) > xpos(1)

move_max/grd4/GRD
Goal: new_xpos_max(xpos(vehicle) — speed(vehicle) — magic_accel)
> xpos(vehicle)

They relate to the function new_xpos_max defined in context2:

axmll: new_xpos_max € Nx0..MAX_SPEED x MIN_ACCEL..MAX_ACCEL— N
axml2: Vxpos0,speed0,accel0-(
xpos0 € NAspeed0 € 0.. MAX_SPEED A accel0) € MIN_ACCEL.. MAX_ACCEL
=(
accel) = 0=
new_xpos_max(xpos0 — speed0 — accel0) = xposO+ MAX_SPEED
N
accel0 # 0=
new_xpos_max(xpos0 — speed0 — accel0) = xposO+ MAX_SPEED
—((MAX_SPEED — speed0) x (MAX_SPEED — speed0)) + (2 x accel0)

In the case when accel0 # 0, the function new_xpos_max can be defined either by:

new_xpos_max(xpos0 — speed0 — accel0) = xpos0+ MAX_SPEED
—((MAX_SPEED — speedQ) x (MAX_SPEED — speed0)) = (2 x accel0)

or by:

new_xpos_max(xpos0 — speed0 — accel0) = xpos0
+((MAX_SPEED — speed0) * (MAX_SPEED — speed0)) + (2 x accel0)
+speed0x (MAX_SPEED — speed0) + accel0)
+MAX_SPEED (1 — (MAX_SPEED — speed0) + accel0)

The two definitions are equivalent and can be easily transformed one into the other in the
domain of reals. This transformation is based on a mathematical property:

Va,b,cca€c RAbe RAce RAc#0=ax(b+c)=(axb)=+c (3.2)

Unfortunately, this equation is not true in the domain of integers which is the only
supported number type in the Event-B language. The = operator means the Integer

34 CHAPTER 3. ANALYSIS OF THE 1D PLATOONING MODEL

division in Event-B. For example, in the domain of integers:
5¢(5+8)=5+x0=0
(5%5)+8=25+8=3
We must use the second version to define the new_xpos_max in Event-B in order to

interactively discharge the reviewed goals in the POs "movel_max/grd3/GRD" and
"move_max/grd3/GRD". Hence, the correct version for axml12 is:

axml2: Vxpos0,speed0,accel0-(
xpos0 € NAspeed0 € 0.. MAX_SPEED Aaccel) € MIN_ACCEL.. MAX_ACCEL
=(
accel) = 0=
new_xpos_max(xpos0 — speed0 — accel0) = xposO+ MAX_SPEED
N
accel0 # 0=
new_xpos_max(xpos0 — speed0 — accel0) = xpos0
+((MAX_SPEED — speed0) x (MAX_SPEED — speed0)) =+ (2 x accel0)
+speed0x (MAX_SPEED — speed0) + accel0)
+MAX_SPEED % (1 — (MAX_SPEED — speed0) + accel0)

This mistake cannot be caught when proving the context. Both definitions are well-
defined in Event-B. When a machine’s formula to prove involves this complex kinematic
function, the prover must expand the “function call” by its body. The impossible equation
(ax(b+c) = (a*b)-+c)becomes a lemma which cannot be proved. The problem is that
the failure of the proof is difficult to interpret: is it a weakness of the current prover, or,
is it a genuine incorrect sequent? This raises interesting questions about the modeling
strategies to recommend.

3.2.3 Unprovable Goal

After the issues raised in Section 3.2.1 and Section 3.2.2 have been solved, the original
1D platooning model can be fully proved. We could declare it “correct” with respect
to preserving the non-collision invariant. Unfortunately, collisions were observed on
executable implementations of the same model. They were finally explained by the
occurrences of deadlocks in certain circumstances.

For each machine, we can manually construct a deadlock-freeness theorem to guarantee
that the machine should work for ever. However, the Rodin platform lacks a mean to
automatically construct it. In Chapter 4, we will present a tool to help the construction of
deadlock-freeness (DLF) theorems.

In the reviewed 1d platooning model, the deadlock-freeness theorems for the machines
platoon0 and platoonl can be easily proved. But a problem is found for the machine
platoon2. The deadlock-freeness theorem is depicted in Figure 3.1.

3.2. PROOFS

35

(
3 magic_accel ,nspeed,nxpos-(
(vehicle = 1)A
(magic_accel € MIN_ACCEL .. MAX_ACCEL)A
(nspeed = new_speed(speed(vehicle) — magic_accel))\
(nspeed € 0 — MAX_SPEED)A
(nxpos = new_xpos(xpos(vehicle) — speed(vehicle) — magic_accel)))
)V (
3 magic_accel ,nspeed,nxpos- (
(vehicle = 1)\
(magic_accel € MIN_ACCEL .. MAX_ACCEL)A
(nspeed = new_speed(speed(vehicle) — magic_accel))\
(nspeed > MAX_SPEED)A
(nxpos = new_xpos_max(xpos(vehicle) — speed(vehicle) — magic_accel)))
)V (
3 magic_accel ,nspeed,nxpos- (
(vehicle = 1)A
(magic_accel € MIN_ACCEL.. MAX_ACCEL)/\
(nspeed = new_speed(speed(vehicle) — magic_accel))
(nspeed < 0)A
(nxpos = new_xpos_min(xpos(vehicle) — speed(vehicle) — magic_accel)))
JV(
3 magic_accel ,nspeed,nxpos-(
(vehicle € 2..VEHICLES)A
(magic_accel € MIN_ACCEL .. MAX_ACCEL)A
(nspeed = new_speed(speed(vehicle) — magic_accel))\
(nspeed € 0..MAX_SPEED)A
(nxpos = new_xpos(xpos(vehicle) — speed(vehicle) — magic_accel))
(xpos(vehicle — 1) —nxpos > CRITICAL_DISTANCE))
)V (
3 magic_accel ,nspeed,nxpos- (
(vehicle € 2..VEHICLES) A
(magic_accel € MIN_ACCEL .. MAX_ACCEL)A
(nspeed = new_speed(speed(vehicle) — magic_accel))\
(nspeed > MAX_SPEED)A
(nxpos = new_xpos_max(xpos(vehicle) — speed(vehicle) — magic_accel)) N
(xpos(vehicle — 1) —nxpos > CRITICAL_DISTANCE))
JV(
3 magic_accel ,nspeed,nxpos-(
(vehicle € 2..VEHICLES)A
(magic_accel € MIN_ACCEL .. MAX_ACCEL)A
(nspeed = new_speed(speed(vehicle) — magic_accel))\
(nspeed < 0)A
(nxpos = new_xpos_min(xpos(vehicle) — speed(vehicle) — magic_accel))\
(xpos(vehicle — 1) —nxpos > CRITICAL_DISTANCE))
)V
(vehicle =VEHICLES +1)
)

Figure 3.1: The DLF theorem for the machine platoon2

36 CHAPTER 3. ANALYSIS OF THE 1D PLATOONING MODEL

Goal 1 for the event move_normal:
xpos(vehicle — 1) — xpos(vehicle)
—(speed(vehicle) + MIN_ACCEL=2) > CRITICAL_DISTANCE

Goal 2 for the event move_reduce:
xpos(vehicle — 1) — xpos(vehicle)
—speed(vehicle) x speed(vehicle) = (=2« MIN_ACCEL) > CRITICAL_DISTANCE

Figure 3.2: The unprovable goals in the machine platoon2

The two goals shown in Figure 3.2 cannot be proved in the generated THM proof
obligation under the referenced axioms and invariants. The “failed” goals uncover a
critical weakness in the invariant; it is discussed in the next section.

3.3 Non-Collision Property

Any implementation of a platooning system must guarantee the absence of collision
between vehicles from the same platoon. The non-collision property can be expressed by
a natural language sentence in a requirement document, such as:

“No collision shall occur between the vehicles in a platoon.”

The goal’s statement is correct, but not accurate enough. Let us see how it was formalized
in the 1D platooning model.

3.3.1 Machine platoon(

The Event-B machine platoon0 represents the first abstract model of the platooning
problem. The model is restricted to the longitudinal control. So, we observe only the
longitudinal position of the vehicles. All vehicles make a simultaneous move at a time.
The non-collision property is expressed by the following invariant:

Vv-(v € 2..VEHICLES = xposO(v — 1) —xposO(v) > CRITICAL_DISTANCE)

where

— VEHICLES €< N is the number of vehicles in the platoon,

— CRITICAL_DISTANCE < N is the safe minimal distance between two adjacent vehi-
cles,

— xpos0 € 1.. VEHICLES — N is the longitudinal position of the vehicles.

At this abstract view, no collision occurs between a vehicle and its predecessor. The POs
of the deadlock-freeness theorem are easily discharged, so the system can safely run
forever.

3.3. NON-COLLISION PROPERTY 37

3.3.2 Machine platoonl

The first refinement platoonl decomposed the simultaneous movement into independent
movements of each vehicle, starting from the leader. The non-collision property has to
be strengthened: no collision happens to the vehicle which has to move. The refined
invariant is expressed as:

Vv-(v € 2..vehicle — 1 = xpos(v — 1) —xpos(v) > CRITICAL_DISTANCE)

where

— vehicle € 1.. VEHICLES + 1 identifies the current vehicle which has to move,

— xpos € 1.. VEHICLES — N is the position of each vehicle during the movement.
The POs of the deadlock-freeness theorem cannot be discharged. This implies an implicit
deadlock for the initialization event which can lead to a collision position but also
preserves the invariant. For discharging the POs of the deadlock-freeness theorem, this
invariant should be strengthened as:

Yv-(v €2..VEHICLES = xpos(v— 1) —xpos(v) > CRITICAL_DISTANCE)

Therefore any initial collision position is excluded from the platooning model.

3.3.3 Machine platoon2

The machine platoon?2 refines platoonl to implement the reaction laws which are given
in the equation (2.1) (see Page 25). Each vehicle moves as if reacting to an instantaneous
acceleration. A new variable speed is introduced so the acceleration can be applied and
the new position can be computed. Thus, new elements (speed and acceleration) can be
observed, however, the invariant modeling the non-collision property is not strengthened.

As we know, deadlocks can be observed on the execution of this refinement. The unprov-
able goals in Figure 3.2 hint at the weakness of the invariant: speed and acceleration
should also be considered.

Let

a = speed(vehicle) + MIN_ACCEL =2
b = speed(vehicle) x speed(vehicle) +~ (-2« MIN_ACCEL)

brake_distance = max({a,b})

The goals in Figure 3.2 can be united into a single expression:

xpos(vehicle — 1) — xpos(vehicle) > CRITICAL_DISTANCE-+brake_distance

In order to achieve the above goal, a strengthened invariant is evidently required which
must consider the speed and the acceleration to compute an extra braking distance in
the most critical situations: if a vehicle brakes at maximal deceleration, the following
vehicle must be able to brake too and not collide its predecessor. So, the invariant must
have the following form:

38 CHAPTER 3. ANALYSIS OF THE 1D PLATOONING MODEL

Yv-(v€2..VEHICLES=
xpos(v—1) —xpos(v) > CRITICAL_DISTANCE+brake_distance
)

Indeed, the model presented in [] is a collision-free model which presents
a similar formula taking into account the speed differential:

Yv-(v€2..VEHICLES=
xpos(v—1) —xpos(v) > CRITICAL_DISTANCE
+max({0, (speed (v — 1) xspeed(v — 1) — speed(v) x speed(v))/ (2« MIN_ACCEL)})

Unfortunately, we cannot simply apply this invariant to achieve a deadlock-free platoon-
ing. A drastic rewriting of the specification context2 and platoon?2 is required. More
importantly, the 1D platooning model uses a trick, Ar = 1, to simplify the modeling,
which assumes that the time of an execution cycle is equal to a small time slice. How
this trick influences the transformation of equations and the modeling strategy is yet an
unresolved question. This work is out of the scope of this thesis.

3.3.4 Machine platoon3 and platoon4

Since the machine platoon2 has not preserved the non-collision property, the refine-
ments platoon3 and platoon4 must be modified too. The current discharged POs of
these refinements are meaningless. Indeed, we can use the animation and simulation
techniques to quickly identify the deadlock behaviors in platoon3 and platoon4. We
cannot escape a complete rework of those two refinements with all the proofs to make
again.

This is a strong call for the validation as early as possible of the formal models. It is
particularly important with behaviors like the temporal properties which are difficult to
specify in Event-B. Otherwise, we run a serious risk of losing a lot of hard work.

3.4 Summary

Event-B does not incorporate a notion of time or of temporal logic. In fact, there is not
even a notation to express that an event follows another one. Temporal properties are
often the most critical part of safety-concerned systems. Deadlock-freeness, an important
safety property, has a very limited support by the current Rodin platform.

The analysis of an existing specification is a case study on the notion of “correctness” as
applied to formal models. It shows why proofs are not sufficient. It also shows how the
technical work, i.e., the refinements, can influence the requirements and their expressions
in subtle ways. This makes a strong case for tools to help developers validate their
models.

Chapter 4

Automatic Generation of DLF
Theorems

Contents

41 Introductionot i i ittt eeeeoneonoas 39
4.2 Deadlock-FreenessRulecvv... 40

4.2.1 Deadlock-Freeness of Complete Model 40

4.2.2 Deadlock-Freeness of a Subset of Events 40
43 ExigenceofaToolc00... 41
4.4 ImplementationIssuec00.... 42
R 0 42
4.6 SUMMATY « ¢ v v v v o v o o 0 o o o s st s oo o oo oo ososease 43

4.1 Introduction

From an operational point of view, a computation modeled in Event-B starts by firing the
INITIALISATION event; it halts when no event can be fired, i.e., no event has its guard
evaluated to true. There are two opposing situations related to the halting problem.

In the first situation, we want the system to reach a terminal state. Then, we must prove
that the computation will halt. Event-B provides a notion of variant which is associated
to proof obligations and can be used to prove the termination of a chosen set of events.

In the second situation, we expect the system to cycle endlessly. We must then prove that
the computation will not halt. Event-B provide us with a DLF (Deadlock-Freeness) rule.

There are other techniques to study the halting status of a model. For instance:

— Animation with an interactive tool such as Brama [] or simulation with
JeB allows one to observe the occurrence of deadlocks within specific scenarios.

— Model checking allows one to check systematically for (an absence of) deadlocks
within a finite space or partial transitions. For the infinite or very large state space, ProB
[] uses a constraint-based approach to find deadlocks [].

39

40 CHAPTER 4. AUTOMATIC GENERATION OF DLF THEOREMS

These techniques can help us to find a deadlock, but they cannot prove that the system
is free of deadlocks. Using the theorem proving technique on DLF theorems, we can
formally assess that the system is actually free of deadlocks. The DLF rule is not
integrated into the Rodin platform. We have to manually write the DLF theorems. A tool
to replace the error-prone manual writing of ad-hoc formulas is required for enhancing
Event-B usability. This is one of our contributions.

4.2 Deadlock-Freeness Rule

Depending on the system being modeled, the deadlock-freeness can be a property of
either the whole model or of a part of the model. In our work, we use the symbols and
notations defined in Table 9.1 (Chapter 9) to describe the formal definition of this rule.

4.2.1 Deadlock-Freeness of Complete Model

The DLF rule for a model (defined in [] Section 2.4.21) states that, at all
time, one of the guards Grdgi (xg1,s,c,v), ..., Grdgn(xgn,s,c,v) is true. So, at least one
event other than INITIALISATION can always be fired. Formally, this is expressed by
the following sequent which makes explicit the set of axioms Axm(s,c) and invariants
Inv(s,c,v).

Axm(s,c)

Inv(s,c,v)

}_

VL Ixgi-Grdgi(xgi, s, c,v)

On the Rodin platform, the provers can automatically reference the axioms Axm(s,c) and
invariants Inv(s,c,v) to discharge the above sequent, so the DLF theorem for a model
can be simplified as:

\/ Ixgi-Grdgi(xgi,s,c,v) 4.1)
i=1

When this formula is constructed and inserted in the specification as a theorem, Rodin
automatically generates a WD proof obligation and a THM proof obligation. Note that
there is only one general DLF theorem for a given model.

4.2.2 Deadlock-Freeness of a Subset of Events

Some systems may be structured in such a way that some events are always enabled. For
instance, the control system of an automated vehicle may accept input from the driver
at any time. This would be modeled as an event which is always enabled, i.e., whose
guard is always true. So, the general DLF theorem stated above is trivially true. But, for
the model to be correct, the part which specifies the actions on the vehicle must be free
from deadlocks. So it is important to provide specifiers with a way to express the DLF

4.3. EXIGENCE OF A TOOL 41

Machine Events Guards DLF #lines Machine Events Guards DLF #lines

platoon0 1 2 6 platoon0 1 5 19

platoonl 3 8 16 platoonl 3 10 28

platoon2 7 34 54 platoon2 19 184 249

platoon3 9 42 68 platoon3 21 177 264

platoon4 15 79 121 platoon4 39 354 637
(a) 1D platooning model (b) 2D platooning model

Table 4.1: DLF theorem size

theorem on a subset of events. The selection of events concerned can be easily done with
a small user-interface. The theorem itself has the same form as the equation 4.1 for the
system. Note that several partial DLF theorems can be generated for the same model.

4.3 Exigence of a Tool

We can write manually the DLF theorems for a small Event-B model; however, this
becomes soon unpractical as the size of the model grows. Let us consider the two
platooning models which motivated this work. These two models are presented in
Appendixes D and E. Table 4.1 gives some figures showing the evolution of the size of
DLF theorems.

Two points should be noted. Firstly, the size of DLF theorems is roughly twice the sum
of the length of guards of all events. So, it grows as fast as the refinement does and it adds
up quickly to several tens of lines. Secondly, the deadlock-freeness is not a monotonous
property with respect to refinements: it should be established for each refinement. In
[], each machine generated from a business process model need manually write
this theorem to verify the property of deadlock-freeness.

Automating the generation of DLF theorems is needed for several reasons:

— the “copy and paste” procedure is highly unreliable. The probability to introduce an
error is high and the length of the formula makes spotting errors hard,

— any modification of the guards requires a modification of the theorems. In particular,
it should be easy to re-generate the theorems while correcting a model,

— manual generation of a theorem is not intellectually challenging (it is boring in fact)
and takes a lot of development time.

The core of the generation is a syntactic manipulation of the model: extracting the
guards, gluing them together in a single formula, and inserting it as a theorem into the
INVARIANTS part of an Event-B machine. Programming tools and techniques to cover
such tasks are well known.

A small user-interface is needed to select the subset of events in the case of partial DLF
theorems generation. This requires a small effort to construct it.

42 CHAPTER 4. AUTOMATIC GENERATION OF DLF THEOREMS

4.4 Implementation Issue

The idea of generating a DLF theorem is very simple. Rodin is an open-source platform
implemented with the Eclipse framework. We just need to develop a small external
plug-in in Java. However, we discovered a difficulty tied to the development state of a
model when the generator is used.

During Development One advantage of using Event-B to model a system is that we
construct it step by step with the refinement technique. At each refinement, POs are
generated for the newly introduced elements. Discharging these POs is the minimum
condition to start a new refinement.

If a system needs to be free of deadlock, we must discharge the POs generated for the
DLF theorems at each refinement. Our tool is easy and efficient enough to be used at
each refinement.

After Development Modifying a refinement becomes more time-consuming for an
existing Event-B model. After a modification is made on a machine, three tools (the Static
Checker, the Proof Obligation Generator and the Prover) are automatically called on the
modified machine and on all its refinements. The build time increases quickly with the
model size. Notably, many formerly discharged POs are re-marked as “Undischarged”,
thus entailing plenty of repeated re-proving works. To overcome this, the DLF theorems
must be generated on an independent machine cloned from the machine we want to
edit. Only incremental POs for the cloned machine are generated by the Rodin tools.
The status of existing POs is left untouched. Using cloned machines is a more efficient
strategy to check for the deadlock-freeness property of an existing Event-B model.

4.5 Usage

After the generator of DLF theorems is installed on Rodin, a button “DLF” is displayed
on the tool-bar. Generally, we apply this tool in four steps:

1. open a machine and click the button “DLF”, then the user interface shown in
Figure 4.1 comes out,

2. select the DLF theorem type (a list of events can be selected for the partial DLF)
and the target machine;

3. click the button “OK” to generate the concerned DLF theorem;
4. discharge the POs of the DLF theorem in the target machine with the provers.

Our tool must be seen as complementary to the execution of models to study deadlocks
and their absence. On the one hand, a DLF theorem of a thousand lines can be generated
in a few seconds, however, its proof can require a lot of resources. When a deadlock
is present, the analysis of the failure of the proof gives us a deep understanding of
the missing invariants or erroneous guards that affect the model. On the other hand,

4.6. SUMMARY 43

|£| Deadlock-Freeness Theorems Generator | ﬂ |

DLF theorem type:
) DLF of a machine ® DLF of a subset of events
Generated into:

(_) the current machine (@ a cloned machine

] perceive1
[perceive

| »

|| decide1_normal
| decide1_min

[| decide_normal

[| decide_max

[decide_min

[v| movel_normal

[v] movel_max
(] move1_reduce
[v] move_normal
[v] move_max

[v| move_reduce
[Tall moves

CH|

I 0K || Cancel |

Figure 4.1: Generator of DLF theorems

Machine Proofs of DLF Animation/Simulation Behavior

platoon0 discharged normal
platoonl discharged normal
platoon2 No deadlock
platoon3 No deadlock
platoon4 No deadlock

Table 4.2: Deadlock-Freeness in the reviewed 1D platooning model

execution techniques help us to assess quickly the presence of deadlocks. They provide
us with an intuitive perception of the causes of deadlock. Table 4.2 shows the relation
between the two approaches on the reviewed 1D platooning model.

Neither execution nor DLF theorems generation is the best and only tool to tackle the
problem of deadlock-freeness. Their respective use depends on the size of the model and
the cost in the development.

4.6 Summary

The lack of means to automatically construct the DLF theorems in Event-B is one of
the limitations to generally use this method in a software development. Our tool is a
practical attempt to provide specifiers with a simply way to express a very important

property.

44 CHAPTER 4. AUTOMATIC GENERATION OF DLF THEOREMS

A very positive aspect of our experience is the assessment of the maturity of Rodin. The
development effort we had to put into the project was reasonable. Of course, the first
use of the Rodin APIs requires an important learning effort. But this investment pays
back afterwards since the API is easy to use and quite powerful. It is then reasonable the
try to overcome limitations of Event-B by developing small assisting tools rather than
waiting major evolution of the formal framework.

Discharging the proof obligations of DLF theorems is of course the biggest time-
consuming activity. The size of the generated formulas, while not a surprise, still
raises the issue of their manageability. The problem is actually not specific to our tool but
comes from the formal core to Event-B. Assessing formal properties of large B models
[] is a very active research domain.

An experimental version of DLF theorem generator is accessible at the website
http://dedale.loria.fr/?g=en/plug-in-dlf-generator.

http://dedale.loria.fr/?q=en/plug-in-dlf-generator

Chapter 5

Scaling Up with Event-B

Contents
51 Introduction00iiiiiiititieeenennn 45
52 ModelStructure i it ittt 46
5.2.1 Decompositionof Events 46
5.2.2 Increase in Complexity 48
5.3 Physical and Mathematical Equations 48
5.3.1 1D Equation Adaptation 48
5.3.2 2D Equation Adaptation 49
54 Temporal Propertiesottt 50
5.5 AdaptationofToolsc0.. ... 51
55.1 Edition o 52
552 Verification o 52
553 Validation e 52
5.6 SUmMmAary . . . o v v v vt ittt e e e e e e e 53

5.1 Introduction

This chapter relates our experience with the modeling of a realistic platooning algorithm
[] for the control of autonomous vehicles in Event-B.

The 1D model (see Appendix D) is a simplified version of the problem. This model was
important on three respects: it allowed us to identify the “hard” parts, it prototyped the
properties of interest, and it provided us with a neat structure for the development.

The 2D model (see Appendix E) considered the platooning problem from a realistic
point of view. Going from a 1D model to a 2D model do not seem like a big change.
Instead of one value, the control law must now compute two values: linear acceleration
and derivative of the curvature. However, working on a plane introduces notions such
as trigonometric functions and curvature. While this means a modest increase in the
complexity for a mathematically literate person, those new concepts introduce genuine

45

46 CHAPTER 5. SCALING UP WITH EVENT-B

difficulties for the specifier; e.g., how to model a sine function when co-domains are
restricted to integers?

In this chapter, we discuss some scaling-up issues (model structure, equation adaptation,
temporal properties and adaptation of tools) when going from a 1D model to a 2D model.
We could solve some issues, concerning the consistency between refinements and the
adaptation of the mathematical model. Other issues can be solved but at a higher cost,
proving global temporal properties is among them. Last, the existing animators failed to
execute the 2D platooning model.

Notice that we have no intention to extend the Event-B language, the scaling-up issues
only focused on the existing available tools for the Rodin platform.

5.2 Model Structure

An important question when we started the 2D modeling was: can we keep the same
development structure as for 1D modeling? We had two reasons. First, a great deal of
effort had been put into it so it is intelligible, consistent with the general MAS (Multi-
Agent System, a system composed of multiple interacting agents within an environment)
model [], and then easy to validate. Second, we can expect proof structures
(and even whole proofs) to be similar if we keep the same development structure.

We have been able to keep the exact same structure of the development. The same
refinements with the same rationales are present in both models. In fact, we used the 1D
platooning model as a “road-map” to develop the new model.

Both models have the same structure depicted in Figure 5.1. It consists of an abstract
machine and four refinements. Each development introduces a clearly identified concept.
The abstract machine platoon0 sets the safety property. The refinement platoonl splits
the platoon’s movement into movements of each vehicle. The refinement platoon?2
implements the physical reaction laws. The refinement platoon3 introduces the decision
law to compute acceleration. The refinement platoon4 introduces the perception of the
environment and implements the decision laws.

5.2.1 Decomposition of Events

During the refinement, the number of events increased much more steeply due to the
combination of bounded parameters.

Both models implement the reaction laws in the machine platoon2 and the decision
laws in the machine platoon4. We need to decompose the abstract events movel and
move in the machine platoonl, and the abstract events decidel and decide in the
machine platoon3 into more concrete ones. Let us consider the decomposition of the
event move.

The mathematical equation in the 1D model indicates that three cases must be considered
when computing a new state. This is due to the fact that the speed (n_speed;) is bounded.

5.2. MODEL STRUCTURE 47

CONTEXT MACHINE
4—sees—
contextO platoon0
A 4
extends refines
| |
CONTEXT MACHINE .
4—sees— reaction
context1 platoon1
A A
extends refines
| |
CONTEXT MACHINE
4—sees—
context2 platoon2
A 4
extends refines
| |
CONTEXT MACHINE ..
4—sees— decision
context3 platoon3
A 4
extends refines
| |
CONTEXT | _ | MACHINE ercantion
context4 platoon4 P P

Figure 5.1: The structure of platooning models

In Event-B, conditional definitions are expressed by the use of guards. This means that
the move event must be decomposed into three events by a bounded parameter n_speed;,
one for each situation (n_speed; reaching lower bound, reaching upper bound, or within
bounds), following the template in Table 5.1.

n_speed; <0 €0.MAX_SPEED > MAX_SPEED

move move_reduce move_normal move_max

Table 5.1: Decomposition of the move event in the 1D model

In the 2D model, we have to consider two bounded parameters: a speed (n_speed;) and a
curvature (n_X;).
{ n_speed; = speed;+ accel;.At 5.1)

n_x; =K+ X At

The analysis must then take into account the combination of three cases for n_speed;
and three cases for n_x;. So, the move event is refined into nine following the template
of Table 5.2.

n_speed; \ n_x; < —MAX_x € —MAX_x..MAX_x > MAX_x
<0 move_vmin_xKmin move_vmin_x move_vmin_xKmax
€ 0..MAX_SPEED move_v_Kmin move_v_K move_v_Kmax
> MAX_SPEED move_vmax_Kmin move_vmax_x move_vmax_Kmax

Table 5.2: Decomposition of the move event in the 2D model

48 CHAPTER 5. SCALING UP WITH EVENT-B

5.2.2 Increase in Complexity

The multiplication of events depicted above happened a few times. It should be noted
that other refinement strategies for the abstract event move could have been chosen. For
instance, we could have kept the refined event unique, but at the expense of very complex
guards. Our trade-off lengthens the specification text and increases the number of proof
obligations but each proof is much simpler.

Table 5.3 shows the increase in complexity when passing from the 1D platooning model
to the 2D platooning model according to the number of model elements and POs.

1D initial model 2D model

Sets 0 1

Constants 15 50
Axioms 27 86
Variables (last refinement) 10 16
Invariants 16 29
Events (last refinement) 15 39
Guards (last refinement) 81 354
Theorems 1 46
Variants 3 3

Automatic POs 187 743
Manual POs 29 177
Reviewed POs 4 0

Undischarged POs 0 0

Total POs 220 920

Table 5.3: Increase in complexity

While the number of variables roughly doubled when going to the 2D model, all other
measures varied by a four-fold increase. Interestingly, the ratio between manually and
automatically discharged proof obligations increases just a little: most of the new proof
obligations are simple ones. The most important increase is the number of theorems. They
are used to ease the proofs by introducing only once standard mathematical properties.
This is a consequence of introducing more complex arithmetic expressions in the 2D
model.

5.3 Physical and Mathematical Equations

5.3.1 1D Equation Adaptation

The formulas in the 1D equation (2.1) (see Page 25) are basic arithmetic expressions;
they contain no special mathematical functions. The values of xpos;, speed; and accel;
can easily be modeled as integer numbers. It suffices to choose a system of units small
enough to reach the accuracy needed in practice. Hence, they can be expressed straight
away in Event-B.

5.3. PHYSICAL AND MATHEMATICAL EQUATIONS 49

5.3.2 2D Equation Adaptation

By contrast, a simple look at the 2D equation (2.2) (see Page 26) shows that we need
to transform it to be able to expressed it in Event-B. The most obvious “problems” are
the sine and cosine functions (meaningless on integers) and the integral functions in the
definition of F¢ and Fs expressions within the 2D equation.

The Discretization Issue The heart of the difficulty lies in the discretization of contin-
uous kinematic values such as position, speed or acceleration. The question is then: why
not use continuous values? We are not ready to answer positively for two reasons.

The first reason is practical. Current provers within the B world consider only integer
numbers. Even with these “simple” numbers, proofs are often complex and intricate.
It is not clear that provers doing a good job with real numbers will be available soon.
In [], some experiments have stated with the Atelier B tool which clearly
require an evolution of the B language and an extension of the tools to support real
numbers.

The second reason is deeper. Software systems are inherently discrete. Because of
numerous latencies in the autonomous car (sensing data, computing controls, driving
actuators), the control system will operate at a rather slow frequency. So, the actual
system will run as if time is discrete.

The B formal method aims at producing a code which is proven to maintain functional
invariants. So, we need to introduce the discretization at some point. In [1,
three approaches to handle the continuous action system are proposed with Event-B:
(i) discrete variables together with continuous variables, (ii) discrete systems as an
abstraction of continuous ones, and (iii) refining a discrete systems into a continuous
ones. Because the Event-B language and the Rodin platform are not support the real
numbers, these proposed approached use some “cheating” to achieve the proofs, for
example, giving some specific integer values to the constants that are normally assigned
to some real values.

Our position is that we must introduce this fundamental feature early in the models:
as soon as we need “continuous” values in the specification. Of course, we must then
develop techniques and strategies to take care of this feature.

Although reasonably simple from a mathematician point of view, the 2D equation cannot
be translated directly in Event-B. In practice, we need to “refine” it. We used three
heuristics.

(1) Free Physical Units In Event-B, the easiest representation of continuous kinematic
values such as position, velocity, acceleration are integer numbers. By keeping the
physical units unspecified but homogeneous (e.g., the unit of velocity is equal to unit of
distance divided by unit of time), we can adapt the representation to the desired accuracy
of the computations. Distances can be millimeters as well as meters, and times can be
milliseconds as well as seconds.

50 CHAPTER 5. SCALING UP WITH EVENT-B

(2) Approximate Mathematical Functions The range of sine or cosine in the domain
Z is a three value set: it is not very interesting. To solve this problem, we introduce a
special dimensionless constant u and we consider ucos 6 and usin 0 instead of cos 6 and
sin 0. We do the same with F¢ and Fs and consider uF¢ and uFs. By choosing a u with a
big value, expressions can be reasonably coded with integers.

Event-B provers know about standard rules of arithmetic but ignore trigonometric or
general calculus rules. In order to use the provers, we use Taylor series and identities to
transform expressions into arithmetic approximations.

Therefore, the vehicle state 1 = (x,y,8,v,%) is represented by a 6-tuple (x,y,y?,6%,v,%).
The values of x,y,v and K are integers; the units must be taken small enough to obtain a
good accuracy. The values of ¥° and 6 are also integers which respectively represent
pcosO and usin©. We define a carrier set Point to denote the set of all possible vehicle
states. The approximate, but accurate, reaction law of the 2D platooning is then:

X :xO+(Y8F0(At,V0,K0,a,X) —GgFS(At,Vo,Ko,a,X))/yz

y :y0+ (’YgFS(Al,VO,KO,a,X) +68FC(AI7VO7K07Q7X))/HZ

Y = (ucy) — usod) /u (5.2)
0 = (et st '

v =vo+alt

K = Ko + YA!

where

— B = vokoAt + (aKo +vox) A2 /2 + axAr® /3,

- we = u—PB*/(2u),

- ,U~S:B_53/(6:u2)v .

— Fo(At,vo,%0,a,%) and Fs(At,vg,Ko,a,y)) expanded as Taylor series which represent
uFe and uFs, respectively.

Event-B translation (see Appendix E.3) is straightforward but yields overly long expres-

sions.

(3) Check and Rewrite Mathematical Formulas for Provability Many properties
of formulas on real numbers can be safely assumed when we restrict their use to integer
numbers, but not all, e.g., the equation (3.2) (see Page 33). In the 1D platooning model,
we found four reviewed goals that concern the division operator. They may sometimes
invalidate proofs. Through the rewriting of formulas (see Section 3.2.2), the proof
obligations can be discharged.

5.4 Temporal Properties

Temporal properties can be classified into two categories []. Safety prop-
erties specify that nothing bad will happen. Liveness properties specify that something
good will eventually happen. Event-B does not support the notations of temporal logics.
Modeling the temporal properties leads to a big challenge. The thesis []

5.5. ADAPTATION OF TOOLS 51

presents some propositions of patterns to handle calendar, times etc, but it lacks a tool
to automatically apply these patterns. The paper [] proposes to extend
the classic B event systems for the verification of dynamic constraints under fairness
assumptions, this approach also lacks an implementation.

In the platooning model, let us take a look of the deadlock-freeness: a safety property
which should be guaranteed.

Huge Formula In Event-B, we can construct a DLF theorem (4.1) (see Page 40) to
guarantee that the machine should work for ever. This formula works well on small
models but does not scale up.

While the construction of this formula is straightforward, it has the drawback of leading to
a huge formula. In the 2D model, it would be around 637 lines long in the last refinement
(see Table 4.1). A manual construction may introduce a non obviously detectable error.
We have presented a DLF theorems generator in Chapter 4.

Failure of Proof The most important difficulty comes when the proof cannot be
concluded. The inability to discharge proof obligations is at first frustrating, but on
second though, it is an excellent drive toward correctness. By understanding why a
formula leads to an unprovable goal, we gain deeper insights into the model itself. Like
counter-examples provided by model-checkers, impossible goals are good indicators
toward expressing correct properties.

The application of this technique to the platooning model led us to uncover a problem with
the invariants: a constraint on the differential speed which was omitted in the definition
of the critical distance between two vehicles. It should be noted that we understood
the error through a complex reflexion which involved intuitions on the mathematical
equation, observation and reproduction of freezes of the system within the simulation,
and analysis of the formula. The big size was a real burden.

5.5 Adaptation of Tools

Formal methods depend heavily on automated support. They require long, intricate, and
generally tedious chains of reasoning to discharge or establish properties, even trivial
ones. This is the nature of formal proof systems. Effective tools are not a “nice addition’
to a formal method, but a key factor for its deployment. Event-B is supported by Rodin, a
framework which integrates gracefully tools to edit, verify and validate models. Thanks
to the rapid evolution of Rodin itself and the set of available plug-ins, larger models and
developments are now supported.

b

52 CHAPTER 5. SCALING UP WITH EVENT-B
5.5.1 Edition

Unlike most programming languages, which utilize the text-plain files to store code, the
implementation of Event-B in Rodin uses a database to store the formal texts and proofs
in an XML format. This design facilitates the proofs, but raises a problem for large
models.

The older default editor in Rodin is the Event-B Editor. It provides a structural edition
environment and a pretty-print view for formal models. The increase in size shown in
Table 5.3 did not pose any problems to this editor. We can also use a text-based editor
such as Camille [] to edit the platooning models.

However, both editors showed their weaknesses (e.g., waiting a long time for a response,
out of heap memory error) while editing larger models such as the MIDAS model
[] in which a refinement can have thousands of lines.

Since the version 2.4 of Rodin, the Rodin Editor is the new default editor to support large
models. It is based on the same principles as the historical structured Event-B Editor.
But newcomers may find it less easy to use.

5.5.2 Verification

The Rodin architecture provides an excellent environment for theorem proving activities.
Various external provers are available to use. The Atelier B Prover [] is the
unique external prover at the time the platooning specifications were developed, its
capability to deal with arithmetic proofs was improved since that moment, now the
interactive proof described in Section 3.2.1 is automatically discharged by this prover.
The external provers such as Isabelle and SMT Solvers are well integrated into the Rodin
platform.

These provers were able to deal with the increase in complexity. In fact, the general
strategy of breaking a verification proof into several smaller proof obligations as used
by B spreads the increase in complexity on much more proof obligations, but each one
remains reasonably simple. Of course, the theorem proving requires some experiences
and skills. A good Event-B specification normally has more than 80% automatic proofs.
This ratio is influenced by some factors, such as the refinement strategy, the prover used
and the auto/post tactics for proving. In the 2D platooning specification, we use many
theorems to easy proofs. This strategy increased the amount of POs, but also improved
the ratio of automatic proofs.

5.5.3 Validation

A verified platooning model preserves the non-collision invariants, however, it must also
be free from deadlocks to prevent actual collisions. We were interested in the observation
of deadlocks in the two models through the validation activities.

5.6. SUMMARY 53

We used intensively animation to understand the collision problem in the 1D platooning
model. In particular, animation helped us to understand which values lead to deadlocks.
From those, we could abstract to general configurations, and then relate to parts of the
deadlock-freeness theorem. The positive experience with the 1D model development
induced us to use animation early in the 2D model development. Unfortunately, animators
failed us even on the first abstract model.

We tried with two different animators, Brama [] and ProB [].
In both cases, the notion of Point (5.2) (see Page 50) was the first visible obstruction. We
needed to code it, either crudely as integers with Brama or more abstractedly as symbols
with ProB. Either way, a list should be provided by hand. This is not realistic and even
meaningful.

The second obstruction is that the 2D model uses several uninterpreted functions which
are only defined by some properties. The analytic definition of those functions is delayed
until the model reaches an implementable state. Although we could provide some
adequate external implementations of these functions, we have no way to link them to
the animators.

This can be explained by two important features of Event-B: non-determinism and
definition of values by their properties. Animators are then more oriented toward
“picking” values rather than “computing” values. This orientation is fine most of the
time, but it should not be exclusive. Sometimes, even in abstract models, we know some
expressions are deterministic computations: kinematic functions are a good example. In
those cases, we would appreciate to be able to tell this to the animator.

The failure of animating the 2D platooning model motivates us to develop a new simula-
tion framework, JeB, which is described in the next part. Both 1D and 2D models can be
simulated with JeB.

5.6 Summary

Our experience with a real-world model is both reassuring and worrying. This is
consistent with our findings on using Event-B for the modeling of the transportation
domain []. On the very positive side: we could model a reasonably
complex algorithm and prove its correctness. The Daviet-Parent algorithm is a good
representative of a class of problems of great practical importance: problems for which
we have empirical solutions, some prototype implementations, and a strong need to
certify it before we can use it in practice.

Event-B is a good candidate for formal modeling and development of real systems.
First, the language has sufficient power to express complex mathematical models and
algorithms. Second, the formalism embodies a sound, effective, and easy to use refine-
ment based process. Last, the tool support for edition and verification is up to the task;
new validation tools can also be easily to integrate into the Rodin platform. Of course,
stronger provers or syntactic sugar-coating to help navigate long texts would be welcome
improvements but are not mandatory to make the method usable.

54 CHAPTER 5. SCALING UP WITH EVENT-B

Another reason to be optimistic was our ability to deal with a physical and mathematical
model which incorporates complex functions and continuous time. This has required
some sweat and efforts, but was never a blocking factor. We think that there are a few
“conditioning techniques” that can be used at the mathematical level to put a continuous
model in a form suitable to Event-B. We have identified some of them.

The worrying issue lies with the checking of temporal properties, either formally through
proofs, or pragmatically through execution. On the formal side, the current situation
is not adequate. Only “coarse” properties can be expressed and even then, awkwardly.
This is clearly an area where research is needed. On the pragmatic side, we need better
execution tools. Such tools have a very important property: they act on the formal model
itself. We can be confident that the observation is based on the model’s behavior. Hence
we integrated the simulation tool JeB into the Rodin platform.

Part 11

JavaScript Simulation Framework
for Event-B

55

Chapter 6

JeB Design

Contents
6.1 Introductiont ittt eeeenneennas 57
6.2 Requirements for a Simulation Generator 58
6.3 Architecture of the Simulation Framework 60
6.4 Implementation Choices. 61
6.5 Translation Strategies vttt vttt vttt 62
6.5.1 Annotations vs. Set Library 62
6.5.2 Interfaces for User Hand-coded Functions 63
6.5.3 Invariant, Witness and Variant 63
6.5.4 Quantified Formulas 64
6.6 SUMMATY « o v v v v v v o o v o vt o o st s oo o oo s oosesease 64

6.1 Introduction

The correctness of a piece of software requires two quality insurance activities: verifica-
tion — Have we built the piece right?— and validation — Have we built the right piece?
For a long time, research in formal methods focused rightfully on formal frameworks
and their supporting tools. As the supporting tools for the verification of formal models
became mature, the tools for validation activities become an important issue. Validating
a formal specification is to assess whether it describes the right problem in a given
situation. A common opinion is that the cost to correct a mistake introduced in an early
stage of the development is much higher than the cost for a mistake in a latter stage. A
forgotten or badly specified requirement incurs the highest cost. Then, there is a clear
interest to validate formal specifications as early as possible.

We think that validation should be organized like verification: along the refinement
chain. In principle, the validation is simple: experts or potential users read a formal
specification to judge if it represents a good model of the expected system. In practice,
this does not work well since we, as humans, are not very good at reading and analyzing

57

58 CHAPTER 6. JEB DESIGN

long mathematical texts. A better way is to look at executions of a specification and to
judge whether the observed behaviors are consistent with the expected ones [,
]. The problem then becomes technical: how to execute the model?

An Event-B formal model can be executed in certain conditions. Within the Rodin
platform, several animators and translators have been developed to execute Event-B
specifications. Unfortunately, the class of directly animatable specifications is limited.
The major cause of failure is the non-determinism of abstract specifications which leads
to the same kind of combinatorial explosions faced by model-checkers.

In animators, like Brama, AnimB and ProB, the executable representation of the model
is internal to the tool; users cannot access it directly. As their main advantage, these tools
have the shortest path between the model and the observations of system behaviors. But
these tools often failed to animate a non-deterministic Event-B model which contains
abstract types, uninterpreted functions or large domains. In this case, the user has no
other choice except than modifying the original model to adapt it to the tool. We can
do some safe transformations [] to extend this class. However, many
specifications are still non-animatable.

To extend the class of executable specifications, we can generate a prototype of the model
in a programming language. Translators, like B2C and B2ALL, transform Event-B
models into programs written in a mainstream language such as C or Java. The automatic
generation of code brings more flexibility to the users. For some complex formulas, users
can find executable solutions by modifying some part of the generated code in order to
execute it. But these translators have two main limitations: a) the translation is limited
to a subset of the Event-B notations, restricted on the last deterministic models; b) they
have no default graphic execution environment to display the evolution of states and to
interact with users.

JeB' , A JavaScript simulation framework for Event-B, is based on an observation
and a simple idea. We observed that while some specifications are hard to animate,
we could easily write programs to emulate them. The explanation is that using non-
animatable features such as non-determinism and high abstraction in early refinements
is recommended, even when we know how they will be reified. The idea was then
to associate developers, domain experts and final users in the process of constructing
simulations, so their intelligence would overcome the difficulties in the few cases where
automatic solutions could not be applied.

6.2 Requirements for a Simulation Generator

The analysis of the limits of the existing tools discussed above leads to a set of require-
ments for a new technique and its supporting tool: simulation. They are summarized in
Table 6.1.

REQ-1 captures the idea that we want some validation activities along the refinement
chain, in parallel with the verification activities.

1. The latest version of JeB is accessible at http://dedale.loria.fr/?gq=en/JeB

http://dedale.loria.fr/?q=en/JeB

6.2. REQUIREMENTS FOR A SIMULATION GENERATOR 59

Requirement Description

REQ-1 The simulation can be applied all along the refinement chain, from the
abstract machine to the last refinement.

REQ-2 The construction of a simulation must be a reasonably easy and low-cost
activity.

REQ-3 All Event-B mathematical notations should be supported.

REQ-4 The simulation must be consistent with an operational interpretation of an

Event-B model; it must allow users to observe as many behaviors as possible
on the simulated model.

REQ-5 An interface for integrating user hand-coded functions should be provided.

REQ-6 Users should have full control over the simulation, in particular, they should
be able to provide the non-deterministic values when needed.

REQ-7 An easy-to-use graphic user interface should be provided.

REQ-8 Users should be able to create their own graphic presentation of the state

and its evolution.

Table 6.1: Requirements for a simulation generator

REQ-2 is for cost-effectiveness. The cost of using a validation tool for each (or most)
refinement must be balanced against the cost and the risk of limiting the validation to the
last step of the development. Decreasing the cost of using a validation tool is increasing
its use.

REQ-3 is about the completeness of the tool. Brama and AnimB do not support some
Event-B mathematical notations, B2C and B2ALL only support a subset of Event
notations. These tools often require that the specification has to be modified before they
can be used. Our strategy is to let the automatic tool work with the actual specification
and push the adaptation to the generated operational model.

REQ-4 is concerned with the correction of the simulation. The purpose of validation is
to check that certain behaviors are possible and that certain others are impossible. So, to
be useful as a validation tool, a simulation should guarantee that if a behavior is observed
then, it is allowed in the model.

REQ-5 is the extensibility of the translated mathematical model. The uninterpreted
functions defined in an early context need an implementation by a human in the generated
simulators. Some complex Event-B mathematical formulas, like nested quantifications
and non-deterministic assignments, require users to provide their own implementations
to override the default generated functions for better efficiency.

REQ-6 is about the control of simulations. The users should have the capability to decide
which event among the enabled events can be fired. The users should have the capability
to input values for the parameterized events in a simulation cycle.

REQ-7 is about the interaction between the simulators and the users. The user interface
should be graphic and simple to use.

REQ-8 is about the visualization of the model’s state. For complex systems, it is often
necessary to provide users with a specific and ad-hoc graphical representation so they
can analyze the behaviors.

60 CHAPTER 6. JEB DESIGN

Model
browser
Event-B library . Parameters of
JavaScript files simulation
—» (Event-B model) |
; . h 4 -
Event-B) Parameters of
specification —» Translate —» Simulate <« events
HTML pages ¥ -
» (User interface) Hand-coded
Scheduler functions
Translator Simulators
Constant
checker

Figure 6.1: JeB simulation framework

6.3 Architecture of the Simulation Framework

Running a simulation of an Event-B model is a process which goes through several steps.
First, the machines and contexts are translated into the executable target language. Then,
the users complete the generated program by providing some implementations for the
elements that could not be treated by the translator. Last, the users set-up and drive each
simulation run by providing values for the constants in the contexts, choosing values for
the non-deterministic traits, and picking the event to fire at each cycle. The last two steps
are highly dependent on the runtime environment used for the simulations.

The architecture of JeB reflects this process. An important decision was to use Web
browsers as the runtime environment. The rational will be discussed in the next section.
An obvious consequence is that HTML and JavaScript become the target languages.

JeB’s framework is schematized in Figure 6.1.

The most important part of JeB is the translator and the simulators.
— The translator is installed as a Rodin plug-in. It automatically generates an executable
model in JavaScript and an HTML interface for each Event-B machine.
— The simulators:
— Each simulator includes an HTML page for the graphic interface and a JavaScript
model for the machine specification.
— The Event-B library is a JavaScript library which provides procedures allowing the
execution of Event-B set constructs and first order predicates. It supports all the

6.4. IMPLEMENTATION CHOICES 61

Event-B mathematical notations.

— The scheduler controls the user interactions and schedules the execution of all
enabled events.

— The different parameters concern the instantiation of the simulations. Some are
about the whole simulation, some about the events and some about the user’s
hand-coded functions.

The major advantages of this framework are its openness and its extensibility. All
generated simulators are stored as plain text files and we can use common text editors
to customize them. The graphic interface uses the HTML language, which is easily
customized to special graphic displays as users demand. The existing JavaScript graphic
libraries can also be used. The users can provide their own implementations to override
the default generated functions; it is mandatory in some cases in particular when non-
determinism occurs. Although this strategy imposes some burden on the users, it should
be compared with the problems posed by animators and translators. When those tools
fail, users are required to modify the Event-B model itself, typically by introducing a
more deterministic refinement. Even when possible, this kind of work is quite complex.

To validate an Event-B model with the JeB simulation framework, we follow a four-step
process:

1. generate the simulators from a given Event-B model (automatic),

2. define the values of all constants and implement some user hand-coded functions
(manual),

3. set up the graphic display of states (optional), and
4. run the simulators, observe and analyze the behaviors during the simulations.

During the implementation of JeB, it appeared that unplanned, but very useful, tools

could be realized as by-products:

— a model browser which allows users to navigate complex models made of numerous
refinements,

— a constant checker which allows users to assess the validity of the values bound to the
constants defined in contexts.

6.4 Implementation Choices

The challenge of the JeB simulation framework is to provide a practical tool which
is cheap and powerful enough to be used on all refinements. Our first version of the
translator [] used C as a target language. The generated simulators needed
to be compiled and executed in a text console with many interventions. To achieve a
graphic execution environment, we used a server/client model. Each simulator ran in
a server mode, an extra graphic client got data from the simulator then displayed them.
This was not a practical and efficient solution.

Inspired by the capabilities of JavaScript/HTML when using them to create the graphic
clients, we finally switched to JavaScript/HTML as the target language for simulators.
Their major qualities satisfied our purpose:

62 CHAPTER 6. JEB DESIGN

— First, JavaScript is embedded in a Web browser and interpreted directly. There is
no need of an extra compilation step before an execution. With HTML, it is easy to
generate a lightweight and efficient user interface as a standard web page which can
be modified and extended as user requires. The quality of the simulation interface is
essential to observe and analyze detailed behaviors.

— Second, JavaScript is an object-oriented language which allows us to use sophisticated
object programming techniques. This helps to solve two issues. One, technical,
concerns name conflicts which are a common plague in an automatic translation.
The other, practical, concerns the relation between the Event-B specification and the
generated JavaScript programs. Using objects allows the JeB translator to produce a
code whose structure is close to the Event-B text structure. It facilitates the navigation
in the code when there is a need to inspect it for specific observations.

— Third, JavaScript uses dynamic interpretation that allows users to provide their own
functions to override the generated ones. We use this feature to separate the user
hand-coded functions from the main simulator code. Users only need to modify some
configuration files in which they replace a function by their own implementation.

— Fourth, JavaScript has first-class functions, which provide us the capability to translate
nested quantified predicates and expressions in a systematic way.

The raison d’étre of refinement-based methods is to allow developers to master the
correctness of complex systems by introducing slowly the implementation constraints.
Determinism or actual data-structures are not likely to be found in early refinements.
Nevertheless, when specifiers introduce some abstraction, they have generally a clear
conception of how it could be implemented. The architecture of the JeB framework
integrates our philosophy that a simulation is a collaborative process between automated
tools and humans. Developers, domain experts and final users are involved at three
levels:

— developers provide hand-coded functions for some uninterpreted functions and an
efficient implementation of some generated code,

— domain experts provide the values of constants, event parameters in different scenarios,
and give the suggestion to set up extra graphic visualizations of states,

— final users run the simulations, observe and analyze the behaviors to validate an
Event-B model according to their expectations.

6.5 Translation Strategies
This part gives the main translation principles.

6.5.1 Annotations vs. Set Library

In the early development of the translator, we used some annotations > as hints to the
translator in order to generate the concrete data types of the target language. But we

2. They are marked as comments in a formal text.

6.5. TRANSLATION STRATEGIES 63

quickly found out that this is not a good solution: the native Event-B mathematical objects
are based on set theory, therefore we cannot construct a simple mapping between Event-
B and a classical programming target language. This limitation of using annotations
motivated us to develop a set library which supports the Event-B set notations. Eventually
this set library has evolved into a complete JavaScript library which supports all Event-B
mathematical notations, such as predicates. With this design, the translator just maps an
Event-B concrete syntax tree node to an API defined in that library. So annotations are
not needed anymore for the current translator.

6.5.2 Interfaces for User Hand-coded Functions

JavaScript has first-class functions that can be assigned to variables and manipulated
like any other object. It uses a dynamic interpretation, so only the last definition of a
function will be considered. These features facilitate us in providing an interface for
the user hand-coded functions. JeB provides interfaces for predicate formulas (axioms,
invariants, guards) and assignment formulas (actions). These elements are translated into
calls to specific functions. Users can easily find a translated function according their
labels in an Event-B model and the namespace structure, then use a function with the
same name to override the generated one in the user configuration files.

6.5.3 Invariant, Witness and Variant

When the abstract variables are replaced by concrete variables in a refinement, Event-B
uses a gluing invariant to link two successive models. This is needed to to ensure that a
refinement is consistent with the machine that it refines. For the same reason, when an
event parameter disappears in the refined events, Event-B uses a witness statement to tell
the machine how the abstract parameter should be refined. The variant is an expression
which imposes the non-divergence of the new events, it is a tool to prove the termination
of a chosen set of events. The role of gluing invariants, witnesses and variants is to derive
proof obligations to ensure the consistency between refinements.

Unlike the multi-level animation of refinements in Section 2.5.3, we focus on the behav-
iors of the current refinement, the consistency of refinements should be well guaranteed
by the associated proof obligations. This decision simplifies the design of the JeB
translator. Therefore in JeB, each machine is translated to an independent simulator
which is executed in a standalone environment. There is no links between them. But
the abstract variables in the gluing invariants and the abstract parameters in witnesses
become undeclared identifiers in the concrete translated simulators which raise errors
when running the simulation. Notice that the gluing invariant, witness and variant have
no influence on the behaviors. So the JeB translator does not translate them.

64 CHAPTER 6. JEB DESIGN

6.5.4 Quantified Formulas

The major difficulty of translating Event-B formulas is connected with quantified for-
mulas. In Event-B, the quantified formulas exist in quantified predicated (universal
quantification and existential quantification), quantified expressions (set comprehension,
lambda, quantified union and quantified intersection), and non-deterministic assignment
“becomes such that”. They can also be nested. Our first idea was to use pattern matching
to identify typical cases for which an efficient translation is available. However, it failed
for most cases. Then we choose to include quantified notations in APIs in the JavaScript
library for Event-B. So the difficulties to deal with quantified formulas are transfered to
the implementation of that library. According to their defined APIs, the JeB translator
outputs some wrapped functions for the quantified formulas, and outputs an enumerated
domain set for each quantified identifier (see Appendix B.8.1). With this strategy, we
can translate all nested quantified formulas in a systematic way. Of course, users can
provide their own implementation using the interface for user hand-coded functions.

6.6 Summary

The application of formal methods deeply depends on the development of tools. While
tool support for the verification of formal models is becoming mature, the validation
becomes an important question. One method for validating formal models is to execute
the model and observe its behavior. Current execution tools for Event-B, translators are
used to generated the executable code from the last deterministic refinement; animators
provide users with automatic execution mechanisms of the models, but their use is
limited to certain type of models. So, we propose a practical tool, JeB, which allows us
to simulate any Event-B model for the activities of visualization and validation.

Its design philosophy is that the construction of the simulation can be designed as a
collaborative work between the tool and the user. While the translator automatically
produces the main bulk of the work, the user provides the ad-hoc solutions on the few
elements which block the simulations.

Four Event-B models served as guidelines or testbeds to develop the JeB tool. Through
these models, we experimented different design and implementation strategies. As a
result, there is no need to adapt or modify an Event-B model in order to execute it. This
is a major progress comparing to the existed animation and translation tools for Event-B
models.

Chapter 7

JeB Implementation

Contents
701 Introductionttt ittt etoneeneas 66
72 NamMeESPACE . + v v v v v v v v v v e vt o v oo oot e 66
7.3 Translationof Contextst ennns 67
7.3.1 SetsandConstants 68
732 AXIOMS e e e e e 68
733 ConstantChecker 68
7.4 Translationof Machines. 68
7.4.1 Variables 69
742 InvariantS e e e e e e e 70
743 EBvents. e e 70
744 EventParameters 71
745 EventGuards 72
7.4.6 EventActions. 73
747 Userlnterface 74
7.5 Translationof Formulas.0000.... 75
7.5.1 Predicates 75
7.5.2 EXpressionso e 76
7.53 ASSIZNMENtS e e e e e e 78
7.6 Interpretation of Translated Formulas 79
7.7 SimulationControl 79
7.7.1 Simulation Scheduler 79
7.7.2 Parameters of a Simulation 80
7.7.3 ScenarioController, 80
774 Animator e e e 80
7.8 Event-BProjectDiagram00ttt 81
7.9 SUMMArY . . ¢ v v v vttt et e e e e 81

66 CHAPTER 7. JEB IMPLEMENTATION

7.1 Introduction

One of design goals of the JeB framework is to facilitate the analysis of Event-B models
by the specifiers. So, we implemented three tools:

— aproject browser which displays the general structure of an Event-B project and helps
to navigate it,

— a constant checker which allows users to verify that the entered values for constants
are consistent with the axioms,

— a machine simulator which allows users to execute the model.

The three tools are generated directly from the RODIN internal representation of the
models, which is done by straight traversing of the structure and the formulas of the
machines and contexts. The generation process produces JavaScript and HTML code.

The execution mechanism relies on a specific JavaScript library. This library provides an
interface which mimics most of the logic and set operators found in Event-B expression.
This is consistent with the JeB design philosophy: the implementation of the JeB
translator is independent to the implementation of the JeB simulator. Here, we gave
a default implementation of this library which is composed of two JavaScript files: a
set. js file for the Event-B language and a jeb. js file for the simulation controller.
These two files are copied to each simulated Event-B project which can be found in the
directory jeb created in the project’s workspace. Users can modify them to provide their
own simulator implementation which will override the default one.

The generated code is structured so that users can easily insert their own code. This
facility is provided so that non-executable and non-deterministic traits can be replaced
by more deterministic and executable instances.

In the following sections, we give technical details about our implementation. This
implementation is only a prototype. We focus on the feasibility of JeB implementation
by some simple algorithms, the performance and efficiency are not considered in this
thesis.

7.2 Namespace

Managing names is always a tricky part when translating toward high-level languages.
We must avoid name conflicts among the translated names and with the names already
used in the environment. Furthermore, we want users to be able to trace back a JavaScript
name to its counterpart in Event-B. While JavaScript does not have a notion of namespace
in the strict sense, identical benefits can be obtained by creating a global object and
adding all objects and functions to this object. A short prefix is associated with the
common “namespaces’ listed in Table 7.1.

The following examples show how to access elements using our namespace scheme;
let i1, el and g1 be the internal references for the translated invariant, event and guard
object instances:

7.3. TRANSLATION OF CONTEXTS

Namespace Prefix Description

jeb jeb the top namespace
jeb.constant $est constant identifiers
jeb.axiom $axm axioms
jeb.variable $var variable identifiers
jeb.invariant $inv invariants
jeb.event $evt machine events
$evt.<eventld>.arg $arg event parameters

$evt.<eventld>.guard
$evt.<eventld>.action

jeb.util

jeb.ui
jeb.animator
jeb.scenario
jeb.scheduler
jeb.lang

$B

$anim

event guards

event actions

utility

user interface control
animator for state
simulation scenario
simulation scheduler

Event-B structure mapping
JavaScript library for Event-B

animator canvas

Table 7.1: Namespaces used in the simulator code

$var.xpos //
$inv.il.predicate //
Sevt.el.quard.gl //
Sarg.magic_xpos //

access
access
access
access

the variable "xpos"

the predicate of the invariant "il"
the guard "gl" of the event "el"

the parameter "magic_xpos"

7.3 Translation of Contexts

67

For each Event-B context, the JeB translator generates a JavaScript file that contains a
translation of the axioms, and an HTML page (which is a constant checker). Using a
web browser, users can then check the consistency of the values provided for the sets and
the constants by the constant checker. The structural mapping of a context from Event-B
to JavaScript/HTML is shown in Table 7.2.

Event-B

JavaScript/HTML

CONTEXT name

EXTENDS context_names
SETS identifiers
CONSTANTS identifiers
AXIOMS predicates

END

(1) name. js (context model)
(2) name .html (user interface)

list of context_name in the web page for navigation

list of $cst.identifier
list of $cst.identifier
list of jeb.lang.Axiom instances

Table 7.2: Structural mapping of a context

68 CHAPTER 7. JEB IMPLEMENTATION

7.3.1 Sets and Constants

The sets and constants are translated as standard identifiers prefixed by $cst. Users can
instantiate them in the global configuration file jeb_user. js (used for a project) or in
the particular configuration file of a given machine, machineName_user. js.

Contexts in Event-B reference two kinds of sets: enumerated sets and carrier sets. Users
can instantiate enumerated sets by collecting elements already defined in the CONSTANTS
clause. For carrier sets, the JavaScript library for Event-B provides the capability to
instantiate them either as a collection of integers, symbolic strings or as a class in the
object-oriented sense.

7.3.2 Axioms

JeB translates each axiom as an instance of jeb.lang.Axiom, prefixed by $axm. This
structure has several properties: id is a unique reference to the axiom, label contains the
axiom’s name written in the context, domNode links the axiom’s instance to the HTML
page to display its evaluation. The most important property is predicate which is a
method to evaluate the translated predicate. In JavaScript, this structure looks like:

jeb.lang.Axiom = function(id, label) {

this.id = id; // axiom id

this.label = label; // axiom label

this.domNode = jeb.ui.$(id); // axiom DOM node

this.predicate = function(){} // overridden by the JeB translator

7.3.3 Constant Checker

For each context, a page presenting like in Figure7.1 is generated. After sets and
constants have been instantiated, users can utilize this page to ensure that the actual
values satisfy the axioms. The page will alert users when a referenced constant has not
been instantiated with an actual value.

7.4 Translation of Machines

The output of a machine translation consists of three files: a JavaScript file which contains
the executable version of the model, an HTML file to control the simulations, and a
JavaScript machine-configuration file. To be executed, the translated model requires
a JavaScript library. The machine configuration file contains the functions used to
generate random values for the events’ parameters or stubs when no automatic generation
is possible. Users use this file to construct a particular simulator by replacing some
argument generator functions and implementing the stubs.

7.4. TRANSLATION OF MACHINES 69

Context: context3

Extends: context0 contextl context2 o ch}‘[li;w Home
Constant Value
initial accel {1r@, 220, 3r0, 4s0}
I Check Axiom][Clear Result J
£ Axiom Predicate Value
4 axml initial_accelel . VEHICLES — MIN_ACCEL . MAX ACCEL true

Yvehi®-vehilel .. VEHICLES=(3Jaccell-accel@eMIN ACCEL
. MAX_ACCELAinitial accel(vehiB)=accell)

¢ axm2 true

Figure 7.1: Constant checker

The structural mapping of a machine from Event-B to JavaScript/HTML is summarized
in Table 7.3

Event-B JavaScript/HTML

MACHINE name (1) name. js (machine model)
(2) name .html (user interface)
(3) name_user. js (configuration file)

REFINES machine_names list of machine_name in the project diagram page

SEES context_names list of <script type='text/javascript’
src='context_name. js’></script>

VARIABLES identifiers list of $var.identifier

INVARIANTS predicates list of jeb.lang.Invariant instances

VARIANT expression not (yet) translated

EVENTS labels list of jeb.lang.Event instances

END

Table 7.3: Structural mapping of a machine

7.4.1 Variables

Each variable is translated as an instance of jeb.lang.Variable, prefixed by $var.
The JavaScript structure jeb.lang.Variable is defined as:

jeb.lang.Variable = function(id) {

this.id = id; // variable id
this.value = undefined; // variable value
this._value = undefined; // variable primed value
this.domNode = jeb.ui.$(id); // variable DOM node

bi
jeb.lang.Variable.prototype.updateView = function() {
this.domNode.innerHTML = this.value;

i

70 CHAPTER 7. JEB IMPLEMENTATION

where id is a unique reference, value is assigned the current value, _value is assigned
the previous value as defined by the prime symbol (') in the before-after-predicates,
domNode binds to an element in the HTML page to display the value, and updateView
is the method used for updating the user interface.

The value of a variable can be any Event-B mathematical object. It is checked against
the preservation of the invariant after each simulation cycle.

7.4.2 Invariants

Invariants are translated as instances of jeb.lang.Invariant with a prefix $inv. The
JavaScript structure jeb.lang.Invariant is defined as:

jeb.lang.Invariant = function(id, label) {

this.id = id; // invariant id

this.label = label; // invariant label

this.domNode = jeb.ui.$(id); // invariant DOM node
this.predicate = function(){} // overridden by the JeB translator

bi

where id is a unique reference, label is a label given by the specifier in the machine,
domNode binds to an element in the HTML page to display the invariant, predicate is a
method to evaluate the translated Event-B predicate.

7.4.3 Events

Events are the core elements of Event-B. Essentially, they are guarded substitutions. The
structural mapping of an event from Event-B to JavaScript/HTML is summarized in
Table 7.4.

Event-B JavaScript/HTML
label (1) a jeb.lang.Event instance

(2) an event view in the HTML page
REFINES event_labels not translated
ANY identifiers list of jeb.lang.Parameter instances
WHERE predicates list of jeb.lang.Guard instances
WITH witnesses not translated
THEN actions list of jeb.lang.Action instances
END

Table 7.4: Structural mapping of an event

In the translated model, each event is an instance of jeb.lang.Event prefixed by Sevt.
The structure of jeb.lang.Event is defined as:

jeb.lang.Event = function(id, label) {
this.id = id; // event id
this.label = label; // event label

7.4. TRANSLATION OF MACHINES 71

this.domNode = jeb.ui.$(id); // event DOM node

this.enabled = true; // activation condition
this.parameter = {}; // parameters namespace

this.guard = {}; // gquards namespace

this.action = {}; // actions namespace
this.bindArguments = function(){} // overridden by the JeB translator

bi

jeb.Event.prototype.updateParametersView = function() {...}
jeb.Event.prototype.evaluateGuards = function() {...}
jeb.Event .prototype.doActions = function() {...}
jeb.Event.prototype.testGuards = function() {...}

where id, label, and domNode have the same role as for invariants. The property
enabled contains the result of the evaluation of the guards. The properties parameter,
guard, action are namespaces for the event’s parameters, guards and actions, respec-
tively.

The dynamic part of the event consists in five methods:

— bindArguments: binds the input values to the event parameters;

— updateParametersView: updates the parameter view in the user interface;

— evaluateGuards: evaluates this event’s guards and sets the property enabled to the
result of the evaluation;

— doActions: executes this event’s actions, updates the view of variables in the user
interface, and saves the system state to the scenario;

— testGuards: repeatedly calls the bindArguments and evaluateGuards methods
until this event property enabled is true or it is decided that no value can be found.

7.4.4 Event Parameters

The so-called “event parameters” in Event-B are the variables introduced in the ANY
clause of events. However, they are used for two different purposes. Deterministic
variables are actually local variables. Non deterministic variables are true parameters in
the programming sense. Before evaluating its guards and executing its actions, the event
instance calls its method bindArguments to bind its parameters to the input values in
the user interface and to compute the values of local variables. The binding operation
allows us to translate the guards and actions into independent functions. When executed,
the action method will get the parameter values from the event property parameter.

JeB uses a simple algorithm to decide whether an event parameter is a local variable or a
true parameter:

1. let ident be an identifier declared in the ANY clause of an event Evt, and expr be
an Event-B expression;

2. if there exists an equality such as ident = expr or expr = ident in the guards,
ident is a local variable;

3. otherwise, ident is a true parameter.

72 CHAPTER 7. JEB IMPLEMENTATION

Each true parameter par; is associated with an argument generator function, get_par;. For
highly non-deterministic parameters, the JeB translator only generates empty functions
that should be replaced in the configuration files.

Another issue of the translation of parameters is the order of their declaration. The
Event-B language is designed for theorem proving, therefore the order of parameter
declarations has no effect. However, in the MIDAS case study, we often found that
local variables reference some parameter values before these parameters are declared.
A naive translation would cause errors when bindArguments is called. In such cases,
the JeB translator will adjust parameters’ order in the user input interface and in the
bindArguments function according to their occurrence order in an event guard.

Each identifier (true parameter or local variable) declared in an ANY clause is translated
as an instance of jeb.lang.Parameter whose structure is defined as:

jeb.lang.Parameter = function(id, type, eventId) {

this.id = id; // parameter id
this.type = type; // 1: parameter,

// 2: local variable
this.domNode = jeb.ui.$(id); // parameter DOM node
this.domNodeInput = jeb.ui.$(id + ’.input’); // input DOM node
this.eventId = eventId; // reference to its

// event parent

bi
jeb.lang.Parameter.prototype.updateView = function() {
this.domNode.innerHTML = this.value;

i

where id is a unique reference, type indicates whether the parameter is local variable or a
true parameter, domNode binds to an element in the HTML page to display the parameter
value, domNodeInput binds to an input HTML element so users can enter values during
the simulations, event Id references the event, and updateView is a method for updating
the display on the HTML page.

7.4.5 Event Guards

An event guard is a predicate formula. The enabled status of an event is the result of
computing all its guards. The JeB translator translates each guard to an instance of
jeb.lang.Guard. The structure of jeb.lang.Guard is defined as:

jeb.lang.Guard = function(id, label, eventId) {

this.id = id; // guard id

this.label = label; // guard label

this.domNode = jeb.ui.$(id); // guard DOM node

this.eventId = eventId; // reference to its event parent

this.predicate = function() {} // overridden by the JeB translator

7.4. TRANSLATION OF MACHINES 73

where id, label, domNode have the same meaning as for invariants. The property
eventId refers to the event and predicate is a method for evaluating the translated
formula.

7.4.6 Event Actions

An event action is an assignment. All actions of an event compose its substitution which
changes the model’s state. The translation of actions raises two issues. The first one is
the ordering of assignments. The semantics of Event-B requires the assignments to be
simultaneous. The second is the nature of the assignment. Event-B proposes three kinds
of assignments: “becomes equal to” (actl and act2 below), “becomes member of” (act3)
and “becomes such that” (act4). The first kind of assignments is deterministic, the other
kinds of assignments are non-deterministic.

Let a,b,c,x,y,z be variables declared in a machine, S be a set declared in a context. The
following actions ! are defined in an event:

actl : a:=b
act2: b:=a
act3: c:eS
act4: Xy x'>yAy <x'+z

The ordering of the actions act/ and act2 is a classical difficulty when using a sequential
language. Notice that := and :€ are special cases of the general :| assignment. The
above actions can be rewritten by the unified non-deterministic form:

actl : a:la'=b
act2: b:|b'=a
act3: c:lc’es

actd : Xy X! >yAy <x'+z

With the above transformation, the primed variables act as intermediate variables, so the
ordering issue disappears. The JeB translator uses this implicit unified non-deterministic
form. During the execution of actions, the assignments are always made to the primed
value (_value) of a variable. After all actions have been realized, a copy from the
property _value to the property value is executed for each assigned variable.

For the non-deterministic assignments, we defined an interface for each kind of assign-
ments in the JavaScript library for Event-B which provides a default implementation.
Users can override the default implementation with their own.

With the above strategies, each action is translated as an instance of jeb.lang.Action.
The structure of jeb.lang.Action is defined as:

jeb.lang.Action = function(id, label, eventId) ({

this.id = id; // action id
this.label = label; // action label
this.eventlId = eventId; // reference to its event parent

1. The primed variables denote the after-values in a before-after predicate

74 CHAPTER 7. JEB IMPLEMENTATION

L [= =] 55]
platoond)
[€« C' @ filey///Difbino/rodin-2.5/runtime-jeb/Platooning-1D-20120606-2.5/jeb/platoon0.html bk d A, |
|
®® @ ® Animation view ‘
J] Show code tip | [7 Show parameters | [¥] Show guards | [7] Show actions | [7] Enable scenario | Tner interval 100 ||Max Toolbar view Humg}
Variable Value [TestAll Guards || AutoRun | Stop Scenario
xpos0 214,172.121.93 SR | Parameters | | Guards | [7] Actions gt HOny |2
e] all_ moves
[Fiter | Variable view il el il apos all moves
i [¥| Parameters | [¥| Guards | [¥| Actions
Invariant Predicate Value magic_xpos . |get_magic_xpos(Sevt.el) object]
platoon() grdl - n;ﬂgicizwsféﬁﬁ;’f;};[CLES.ﬂ N — tme || o anario, view
5 - vvel.. 'V =magic_xpos(v—1)—
inv1 T’;‘O ST VEHICLES: g ord2: gic_xpos()>CRITICAL_DISTANCE s
actl - xpos0 := magic_xpos
Vv - (v € 2. VEHICLES
. = ((xposO(v—1)—
] f .
- xposO@)) > e Event view
CRITICAL_DISTANCE))
[Filter Invariant view L

Figure 7.2: A machine user interface

this.assignment = function() {} // overridden by the JeB translator
bi

where id is a unique reference, l1abel is the label given by the user, event Id references
the event, and assignment is the method to realize the assignment which will be
generated by the JeB translator.

7.4.7 User Interface

The JeB translator automatically generates a user interface like an HTML page shown in
Figure 7.2. There is one page per machine. When the page is opened for the first time,
the user is alerted if any referenced constant has not been instantiated.

The user interface consists of five views:

Animation view: the top-most area is a graphic view of the state.

— Toolbar view: the toolbar is used to set up general parameters of simulations. Users
can customize the page display informations by toggling on or off the check-boxes.

— Variable and invariant views: the left column shows the variables and the invariant >
and displays their current values.

— Event view: the middle column is the event view which shows all events, their
activation status, their parameters, their guards and their actions.

— Scenario view: the right column is the scenario view. The sequence of fired events,

with their parameter values, is kept so that the analysis of behaviors can “backtrack”

to previous states and explore other choices.

2. The invariant view is useful when simulations are used to “fix” tricky invariant formulas.

7.5. TRANSLATION OF FORMULAS 75

7.5 Translation of Formulas

The presentation given in Sections 7.3 and 7.4 is an overview of the structural translation
of Event-B components. Axioms, invariants and guards are, by essence, predicate
formulas; actions are, by essence, assignment formulas. Such formulas are wrapped
into independent JavaScript functions by the JeB translator. Each Event-B formula
in Rodin has a concrete syntax tree representation; each node of this tree is marked
by a unique tag (an integer constant). To simplify the task of the JeB translator, we
developed a complete JavaScript library for Event-B (see Appendix C), hence every
Event-B mathematical notation has a unique API definition in that library. The JeB
translator recursively traverses the syntax tree, maps each node of this tree to the library
API, and finally outputs a JavaScript expression for each formula.

In this section, we give a concise description of the translation for each node, organized
by topic. The superscript (T®) denotes a traversal of a child node. The superscript (7 %*)
denotes a special treatment of a translation. The symbol $B denotes the namespace for
the JavaScript library for Event-B.

The following tables show that the JeB translator completely supported the Event-B
notations. Informally, the hypothesis 3 in Chapter 9 is reasonable. A complete list of
translation rules and symbols definitions can be found in Appendix B.

7.5.1 Predicates

Logical primitives

Event-B Notation Event-B Syntax Translation

True predicate T $B.bTrue()

False predicate 1 $B.bFalse()
Logical Predicates

Event-B Notation Event-B Syntax Translation

Implication

Equivalence
Conjunction
Disjunction

Negation

Quantified Predicates

Event-B Notation

P=0

P&0

PIN...AP, (n>2)
PV...VP, (n>2)
—P

Event-B Syntax

$B.implication(PTR QTR)
$B.equivalence(PTR QTR)
$B.and(PIR, ... PIR)
$B.or(PIR,... PIR)
$B.not (PTR)

Translation

Universal
Existential

Equality

VX1, sXn P (n>1)
Ixp,.cxy P (n>1)

$B.forAll(PTR [xIR+ xI'R+])

ceegdp

$B.exists(PTR*, [xlTR*,)

76

Event-B Notation

Event-B Syntax

CHAPTER 7. JEB IMPLEMENTATION

Translation

Equality
Inequality

Set Predicates

Event-B Notation

E=F
E#F

Event-B Syntax

$B.equal (ETR FTR)
$B.notEqual(E™R FTR)

Translation

Set membership

Not a set membership
Proper subset

Not a proper subset
Subset

Not a subset

Finite set

Partition of a set

Number Predicates

Event-B Notation

EecS
E¢S
SCT
S¢T
SCT
SZT
finite(S)

partition(Sy,...,Sy)

(n=1)

Event-B Syntax

$B.belong(ETR, STR)
$B.notBelong(ETR STR)
$B.properSubset(STR TTR)
$B.notProperSubset (STR TTR)
$B.subset (STR TTR)
$B.notSubset (STR, TTR)

$B. finite(STR)
$B.partition(STR, ... STR)

Translation

Less than
Less equal
Greater than
Greater equal

7.5.2 Expressions

Identifiers

Event-B Notation

m<n
m<n
m>n
m>n

Event-B Syntax

$B.lessThan(m™® nTR)
$B.lessEqual (m"R n™R)
$B.greaterThan(m™R nTk)

$B.greaterEqual (m'® nTR)

Translation

Free identifier

Bound identifier

X

1) $est.y if x is a constant

2) $var.y.value if i is a variable

3) $arg.y.value if y is a parameter
1) x if ¢ is not a primed identifier
2) $var.y._value if 7 is a primed
identifier

Boolean
Event-B Notation Event-B Syntax Translation
Boolean TRUE TRUE $B.TRUE
Boolean FALSE FALSE $B.FALSE
Bool expression bool(P) $B.bool (PTR)

Arithmetic

Set union
Set intersection
Generalized union

Generalized intersection

Quantified union

Quantified intersection

Cardinality
Minimum
Maximum

Relations

S1U...US, (n>2)
Si1N...NS, (n22)
union(U)

inter(U)
Uxt,...,xp-P|E (n>1)
UE | P (short form)
NX1,---xp-P|E (n>1)
NE | P (short form)
card(S)

min(S)

max(S)

$B.setUnion(STR, ... STR)

$B.setInter(STR ... SIR)

$B.union(UTR)

$B.inter(UTR)

$B.quantifiedUnion(PTR* ETR*,
TR)

$B.quantifiedInter(PTR* ETR*,
(R TR))

$B.card(STR)

$B.min(STR)

$B.max(STR)

7.5. TRANSLATION OF FORMULAS 77

Event-B Notation Event-B Syntax Translation

Integer literal o $B('a)

Subtraction m—n $B.minus(m'R nTR)

Quotient m-=n $B.divide(m™® nTR)

Reminder m mod n $B.mod(m"R,n"k)

Exponentiation m™n $B.pow(m'R nTR)

Addition m+...+my (n>2) $B.plus(ml®, ... ;mIR)

Multiplication my*...xmy (n>2) $B.multiply(mIR ... mIF)

Predecessor pred(m) $B.pred(m™R)

Successor succ(m) $B.succ(m™®)

Unary minus —m $B.unminus(m’®)

Sets

Event-B Notation Event-B Syntax Translation

Set extension {Ei,...,E,} (n>1) $B.SetExtension(ETR, ... | EIF)

Set comprehension {x1,...,x,-P|E} (n>1) $B.SetComprehension(PT®* ETR*
{E | P} (short form) TR xR

Power set P(S) $B.PowerSet(STF)

Non-empty subsets Py (S) $B.PowerSet1(STR)

Cartesian product SxT $B.CartesianProduct (STR, TTR)

Empty set o $B.EmptySet

Boolean set BOOL $B.BOOL

Interval m..n $B.UpTo(m™R nTR)

Integer numbers Z $B.INTEGER

Natural numbers N $B.NATURAL

Positive numbers Ny $B.NATURALI1

Set difference S\T $B.setMinus(STR TTK)

78 CHAPTER 7. JEB IMPLEMENTATION

Event-B Notation Event-B Syntax Translation
Ordered pair E—F $B.Pair(ETR FTR)
Relations ST $B.Relations(STR TTR)
Total relations S«>T $B.TotalRelations(STR, TTR)
Surjective relations S«»T $B.Sur jectiveRelations(STR, TTR)
Total surjective relations S «» T $B.TotalSur jectiveRelations(STR TTR)
Domain dom(r) $B.dom(r™R)
Range ran(r) $B.ran(r'R)
Relation image r[S] $B.relationlmage(r' R STR)
Domain restriction S<ar $B.domainRestriction(STR, rTF)
Domain subtraction S<r $B.domainSubtraction(STR, rTR)
Range restriction r>T $B.rangeRestriction(r’ R TTK)
Range subtraction r>T $B.rangeSubtraction(r’® TTR)
Forward composition Fis...sry (n>2) $B.forwardComposition(rI X, ... rIR)
Backward composition rjo...or, (n>2) $B.backwardComposition(rI R, ... rIK)
Overriding <. n>2) $B.override(rIR, ... rIR)
Direct product 1 ®r $B.directProduct (rIR rIR)
Parallel product ri || $B.parallel Product (r® rIR)
Inverse relation r $B.converse(r’'R)

Functions
Event-B Notation Event-B Syntax Translation
Partial functions ST $B.Partial Functions(STR TTR)
Total functions S—T $B.TotalFunctions(STR, TTR)
Partial injections ST $B.Partialln jections(STR, TTR)
Total injections S—T $B.Totalln jections(STR TTR)
Partial surjections ST $B.PartialSur jections(STR, TTR)
Total surjections S—T $B.TotalSur jections(STR TTR)
Total bijections S—»T $B.TotalBijections(STR TTR)
Lambda AL-P|E $B.Lambda(PTR* ETR*

LE | P (short form) TR xTR])

Identity id $B.id
First projection PLj; $B.prjl
Second projection prjs $B.pr;j2
Function image f(E) $B. functionlmage(fTR ETR)

7.5.3 Assignments
Event-B Notation Event-B Syntax Translation
Becomes equal to XlyeorXn = E,. .. Ey $B.becomesEqualTo([x1 X, ... xIK],

(n>1) [E{R""vEZR])

Becomes member of x:€E $B.becomesMemberOf(x™R ETR)
Becomes such that X1yeooyXnt| QX105 x0!) $B.becomesSuchThat (xR ... xIR],

(}’l > 1) QTR*,[)C]/TR*,...,)C"/TR*])

7.6. INTERPRETATION OF TRANSLATED FORMULAS 79

7.6 Interpretation of Translated Formulas

The interpretation of translated Event-B formulas is realized by the JavaScript library
described in Appendix C. Informally, we carefully define the detailed implementation
rules for each API according to its semantics in the Event-B mathematical language.
The hypothesis 2 in Chapter 9 assumes that the interpretation of the translated Event-B
formulas in JavaScript is correct. Therefore, we can obtain an observational equivalence
between an Event-B formula interpretation and its JavaScript formula interpretation.

7.7 Simulation Control

7.7.1 Simulation Scheduler

The non-deterministic operational model of Event-B requires that execution cycles are
composed of three steps: the evaluation of the guards of all events, the choice among
the set of enabled events, and the execution of the substitutions of the chosen event. The
generic cycle runs as:

1. setup contexts, prompt user if some constants have no values;
2. execute the INITIALISATION event;
3. do forever

(a) save the state of variables;

(b) update the variable view;

(c) compute the invariants;

(d) if one invariant is false then stop;

(e) while no event is enabled do

— build the set of enabled events by computing the guards of all events with
arguments from the Web browser;

(f) randomly pick an event to trigger from the set of enabled events;
(g) save the state of arguments;

(h) execute the actions part of the selected event.

Note that the step 3.(d) is useless when executing a fully proven model. However, our
experience has instructed us that it is a very useful feature when preparing and “fixing”
complex refinements. The step 3.(f) uses a random choice strategy to pick an enabled
event while users can implement their own strategy.

This cycle is implemented in a simulation scheduler which is executed in an auto mode
or in a manual mode. The most important functions of the scheduler are:

80 CHAPTER 7. JEB IMPLEMENTATION

Function Description

jeb.scheduler.init starts a simulation cycle

Jjeb.scheduler.onEventClick manually executes an enabled event
Jjeb.scheduler.autoRun runs a simulation in auto mode

Jjeb.scheduler.stop stops a simulation in auto mode
jeb.scheduler.testAllGuards computes the guards of all events

Jjeb.scheduler.pickEvent picks an enabled event; a random choice function is pro-

vided by default, users can override it to implement their
own strategy

Jjeb.scheduler.execute executes an enabled event

Jjeb.scheduler.checkInvariants checks all invariants

7.7.2 Parameters of a Simulation

The user configuration files can also be used to finely tune simulations. It is possible
to run several different kinds of simulations from the same generated core. The global
parameters can be easily set or reset in the user configuration files, some of them can be
directly set in the Web browser. For example:

jeb.ui.TIMER_INTERVAL = 100; // set timer interval to 100 milliseconds
jeb.ui.MAX_TRY_ARGUMENTS = 10; // set the maximum number of try arguments
// for probabilistic generation of parameters
jeb.ui.CODE_TIP_DISPLAY = true; // show code tips
jeb.ui.PARAMETERS_DISPLAY = true;// show event parameters in the event view
jeb.ui.GURADS_DISPLAY = true; // show event guards in the event view
jeb.ui.ACTIONS_DISPLAY = true; // show event actions in the event view
jeb.ui.SCENARIO_ENABLED = true; // enable the scenario functionality

7.7.3 Scenario Controller

The simulator keeps a history of the execution sequence of events. The system state
is saved at every simulation cycle in a scenario object. A state is composed by the
values of all variables and all event parameters. Users can click on an event label in
the scenario view to restore a historical state. It is then possible to explore alternative
behaviors. The scenario functionality can be enabled or disabled in the user interface.
The implementation of the scenario controller is realized by two functions:

Function Description

Jjeb.scenario.save saves a state to the scenario object
jeb.scenario.restore restores a state from the scenario object

7.7.4 Animator

Users can observe the simulations through the variable view in the user interface. How-
ever, an extra graphic display of system state will facilitate the observations and analysis.
The JeB simulator includes an HTMLS canvas to implement a graphic display of the
system’s states. Two functions implement the display:

7.8. EVENT-B PROJECT DIAGRAM 81

Function Description

Jjeb.animator.init initializes the display area
jeb.animatordraw draws an image of the system state

The first function is called once at the start of a simulation, the second is called at each
simulation cycle. Optionally, if users realize these two functions and run the simulation in
the auto mode, then a graphical animation is shown on the top area in the user interface.

7.8 Event-B Project Diagram

When traversing an Event-B project, the JeB translator generates an index page in HTML
as shown on Figure7.3. This page provides users with a diagrammatic view of the
specification ®. This facility helps users to understand more easily complex models and
to navigate the generated simulators. We found it quite useful when experimenting with
the MIDAS model [,] which goes through 39 refinements of
the abstract machine and 21 refinements (extensions) of the contexts.

Event-B project: Platooning-1D-20120606-2.5

Abstract machine 1st refinement 2nd refinement 3rd refinement 4th refinement

platoon0 platoonl platoon2 platoon3 platoon4d

Abstract context 1st extension 2nd extension 3rd extension 4th extension
context(contextl context? context3 contextd

Generated by JeB translator version 0.6.5
JavaScript simulation framework for Event-B
http://dedale.lora.fr

Figure 7.3: An Event-B project diagram

7.9 Summary

Combining the ideas behind existing animators and translators, the JeB translator outputs
a JavaScript model and generates an HTML user interface for each Event-B context and
machine. The generated models and the web-based user interface provide users with
an integrated execution environment for the simulations. However, the JeB translator
produces only one part of a complete simulation. The generated simulators require a
runtime library to execute them. This library is implemented in JavaScript and composed
of two main parts: one part supports all Event-B mathematical notations, the other part

3. This idea is the same as the one exposed in http://wiki.event-b.org/index.php/Project_Diagram

82 CHAPTER 7. JEB IMPLEMENTATION

provides auxiliary utilities, such as the scheduler, the scenario controller and the animator.
With this library, all type formulas in Event-B can be translated in a systematic way.
However, users still retain the ability to provide their own implementations. Furthermore,
the generated Event-B project diagram is useful to better understand complex models

and to navigate the simulators.

Chapter 8

JeB Utilization and Analysis of
Simulations

Contents
81 Introductionc0o0iiiiieeiiiineneenn 83
8.2 Simulation of the 1D Platooning 84
8.2.1 Minimal Simulation 84
82.2 GraphicDisplay 86
8.2.3 Simulation of the Refinements 86
8.3 Simulation of the 2D Platooning 86
83.1 CarrierSets e 87
8.3.2 Functions Defined by Properties 88
8.3.3 Generation of Arguments and Definition of Constants 89
8.4 ObservationsonJeBUsaget vveeenn 89
84.1 SimulationCost. 89
8.4.2 1D PlatooningModel 89
8.4.3 2D PlatooningModel, 90
8.4.4 Transport-domain Model 91
845 MIDASModel 91
8.4.6 Comparison between Existing Animators 92
8.5 Analysis from a Validation Pointof View 94
8.5.1 Validationof Axioms 94
8.5.2 Validation of Properties 95
8.6 Summary ittt ittt et e 96

8.1 Introduction

Using JeB to simulate Event-B models is a collaborative process between automated
tools and humans. After the simulators are automatically generated from a given Event-B
model by the JeB translator, we still need do three things to run them:

83

84 CHAPTER 8. JEB UTILIZATION AND ANALYSIS OF SIMULATIONS

1. provide the values of all constants,
2. provide parameter functions for auto-run mode,

3. set up the graphic display of states (optional).

In this chapter, we describe the usage of JeB to create simulations for the 1D and 2D
platooning models. To use JeB, the users must be familiar with the JavaScript and the
APIs (the JavaScript library for Event-B) defined in Appendix C. The code shown in this
chapter is more technical. These simulation examples demonstrated the feasibility of our
approach to overcome the difficulties of animating the Event-B specifications. Then we
give some observations for models used in our development and some analysis from the
validation point of view.

8.2 Simulation of the 1D Platooning

The 1D Platooning (see Appendix D) case study is used as a reference. It can be animated
with the existing animators by some strategies.

When launched from the Rodin interface, the JeB translator considers all the Event-B
components in the project and generates one simulator per machine, either abstract or
refined. The generated simulators is located in a “jeb” directory under each Event-B
project workspace. A simple naming scheme allows us to manage independently the
different simulators. Let us detail the effort needed to simulate the abstract machine
platoon0 (see Appendix D.6).

8.2.1 Minimal Simulation

When the simulator page platoon(.html for the abstract machine platoon0 is opened
in a Web browser, an alert reminds us that some constants have no values. Abstract
constants in contexts need to be instantiated for the model to be executed. This can be
done in one of: three ways:

1. set the value in the file jeb_user. js after running the JeB translator,
2. set the value in the file <context>. js,
3. set the value in the file <machine>_user. js.

In the first case, the values of constants are permanently kept. In the second and third
cases, the values need to be set again after each run of the translator since new instances
of the files <context>. js and <machine>_user. js are then created. The values are
available to all machines in the first and second cases, but they are restricted to one
particular machine in the third case.

Using the first technique, we add the following lines in the file jeb_user. js (the prefix
$cst denotes constants):

8.2. SIMULATION OF THE 1D PLATOONING 85

Scst.VEHICLES = SB('4');
$cst.CRITICAL_DISTANCE = $B('207);
Scst.initial_xpos = $B.TotalFunctions(
$B.UpTo (SB(’1"), $cst.VEHICLES),
$B.NATURAL) .makeSetExtension(function(v) {
return $B.multiply ($SB.minus (Scst.VEHICLES ,v),
$B.plus ($cst.CRITICAL_DISTANCE, $B('1')));

i

The constant function $cst.initial_xpos utilizes some APIs from the JavaScript
library for Event-B in Appendix C.

After refreshing the page platoon(.html, the button INITIALISATION turns green
and becomes enabled. Firing the INITIALISATION event leads to the next alert about
the function get_magic_xpos not being defined for the event all_moves. Among the
parameters of an Event-B event, some can be considered as true parameters, while the
others are akin to local variables, in the usual programming sense. The JeB translator
associates each true parameter par; with a function ger_par;. By default, those functions
are called at the beginning of each simulation cycle. If the range of a parameter can
be detected, the JeB translator will generated a random choice function from the range,
otherwise, only a function stub will be generated in the file <machine>_user. js. In our
example, JeB generates the following lines in the file platoon0.user. js:

// RAuto-generated function: argument generator
/*
var get_magic_xpos = function(eventId) {
if (eventId == Sevt.el) {
// QTODO

i
*/

We implemented this function using the following code in jeb_user. js file, so it can
be reused in successive refinements.

var get_magic_xpos = function() {
var __magic_xpos = $B.TotalFunctions (
$B.UpTo ($B(’1"), Scst.VEHICLES),
$B.NATURAL) .makeSetExtension(function(v) {
return $B.plus ($var.xposO.value.getImage (v),
SB.UpTo ($B('-5"), SB(’10’)).anyMember ());
b i

return __magic_xpos;

i

After implementing this function, we refresh the page platoon0.html and then click
the Auto Run button. The simulation will execute until the St op button is clicked or the
system reaches a state where no events are enabled. Instead of using the auto-run feature,
we could activate the events manually, one at a time. Parameter values are given through
the fields in the event view. Users can provide literal values or call other argument
generator functions instead of the default ones.

86 CHAPTER 8. JEB UTILIZATION AND ANALYSIS OF SIMULATIONS

8.2.2 Graphic Display

The JeB simulator includes an HTMLS canvas to implement a graphic display of the
system’s states. Optionally, we need to implement two functions to construct a graphic
display: jeb.animator.init which initializes the display, and jeb.animator.draw
which draws an image of the system state and is called at each simulation cycle.

For the machine platoon0, the following code is written in the jeb_users. js file. The
first function defines a 100x500 pixels canvas. The second function uses circles to
schematize the vehicles’ positions.

jeb.animator.init = function() {
$anim.canvas.width = 500;
Sanim.canvas.height = 100;
$anim.canvas.style.display = '’;

jeb.animator.draw = function() {

var i, x,
pos = $var.xpos || $var.xposO,
data = pos.value,
coord_x = -Math.floor (data[0]/$anim.canvas.width)

* Sanim.canvas.width;
Sanim.clearRect (0, 0, $anim.canvas.width, $anim.canvas.height);
Sanim.beginPath();
for (i=0; i<data.length; i++) {
x = data[i].right % S$Sanim.canvas.width;
Sanim.moveTo (x, 50);
Sanim.arc(x, 50, 10, 0, Math.PI*2, true);
Sanim.strokeText (i+1, x-5, 53);

}

Sanim.closePath();

Sanim.stroke () ;

8.2.3 Simulation of the Refinements

All refinements in the 1D model can be executed with JeB. The work required on each
refinement is similar to what is presented above. Table 8.1 lists all the names in the
specification on which an action is required to set up a running simulation. This gives
a rough idea of the effort needed to use JeB. It should be noted that the functions for
the graphic display are defined only once for all simulations: it can be used on all
refinements.

8.3 Simulation of the 2D Platooning

The 2D Platooning (see Appendix E) case study extends the previous one by adding the
lateral control. The 2D specification is created by a sequence of requirements which

8.3. SIMULATION OF THE 2D PLATOONING

Machine Activity

platoon0 constants: VEHICLES, CRITICAL_DISTANCE, initial_xpos
parameters: get_magic_xpos

platoonl parameters: get_magic_xpos_vehicle

platoon2 constants: MAX_SPEED, MIN_ACCEL, MAX_ACCEL, initial_speed,
new_speed, new_xpos, New_xpos_Mmax, New_xpos_min
parameters: get_magic_accel

platoon3 constants: initial_accel

platoon4 constants: IDEAL_SPEED, ideal_distance, new_accel

Table 8.1: Activities for the 1D platooning simulations

87

follows exactly the same structure as for the 1D specification. The most important
features are the presence of an abstract carrier set and some uninterpreted functions.
Brama, AnimB and ProB fail to execute the models because they cannot setup the

contexts in the first step of animations. This case study acts our main test-bed.

8.3.1 Carrier Sets

In the 2D specification, the vehicles move in a space modeled by an abstract carrier
set: Point. This is an abstraction of the kinematic space which has six dimensions:
(x,5,7?,6% v, k) representing the geometric position, the orientation, the velocity and the
trajectory’s curvature. Context0 introduces the carrier set Point whose constructor and

access functions are introduced in context?2 shown in Figure 8.1.

CONTEXT contextO
SETS Point

CONTEXT context2
CONSTANTS
new_point, x, y, V9,060, v, K
AXIOMS
axm_new_point: new_point € ZX L X L X Z x0..MAX_SPEED
x —MAX_x..MAX_x— Point
axm_x: x € Point —7Z
axm_y: y € Point—7Z
axm_Y0: Y0 € Point =7
axm_oc0: 60 € Point — 7
axm_v2: v € Point —0..MAX_SPEED
axm_x2: x € Point —»—-MAX_x..MAX ¥

Figure 8.1: The definition of Point in Event-B

Brama, AnimB and ProB fail with such a carrier set because we cannot provide a concrete
and meaningful representation which can be efficiently enumerated. Yet, specifiers often
know about sensible instantiations. Taking an object-oriented point of view, Point can

88 CHAPTER 8. JEB UTILIZATION AND ANALYSIS OF SIMULATIONS

be implemented as a JavaScript object as follows:

$Scst.Point = function(x, y, v, o8, v, k) {
var obj = {};
obj.x = x;

obj.y = y;i
obj.v® = v6;
obj.o0 = o0;

obj.v = v;

obj.x = x;

obj._ _proto__ = $cst.Point.prototype;
return obj;

i

Scst.new_point = $B.SetExtension();

Scst.new_point.functionImage = function(x, y, v8, o6, v, %) {
return new $cst.Point(x, y, y0, 08, Vv, x);

bi

Scst.new_point.concrete = false;

Scst.x = $B.SetExtension();
Scst.x.functionImage = function(point) {
if (point instanceof $cst.Point) {
return point.x;

i

Scst.x.dom = $cst.Point;
Scst.x.T = S$B.INTEGER;
Scst.x.concrete = false;

The constant functions, such as new_point, x, y, ¥9, 60, v, ¥ are implemented in an ab-
stract way with a mapping function functionImage and setting their property concrete
to false. We will compute a function image on demand by the function functionImage,
so we don’t need to enumerate all the possible pairs as is required for animators Brama
and AnimB.

8.3.2 Functions Defined by Properties

The 2D specification uses several functions which are only defined by some properties:
— dist: the longitudinal distance between two points,

— y_dist: the lateral distance between two points,

— nearest: the nearest point belonging to a trajectory to a given point.

These functions are in interface to link external implementation. Here we only give their
main constraint properties, how to compute them depends the user decision. Usually, they
are complicated; we cannot simply abstract them in the Event-B model. For example,
the vehicles’ geometry must be taken into account for the computation of the distances;

8.4. OBSERVATIONS ON JEB USAGE &9

different definitions of the nearest will produce subtly different control algorithms.
Again, Brama, AnimB and ProB cannot be used to link external implementation.

Implementing the dist function in JavaScript by using the canonical euclidean defini-
tions is straightforward. The y_dist and nearest functions are slightly trickier: their
implementations depend on the implementation of the trajectories.

8.3.3 Generation of Arguments and Definition of Constants

Simulating the 2D platooning model requires the definition of arguments generator
functions similar to the ones used in 1D. Since the control algorithm computes two
quantities (acceleration and wheel angle), we need one more generator function in the
machine platoon2. The 2D model contains more constants and so induces a little more
work to set up the simulations.

8.4 Observations on JeB Usage

8.4.1 Simulation Cost

It is interesting to note that the cost of using JeB is reasonable (about 2% of the simulation
code must be provided by humans on four case studies) and can be used as a tool for
the development process. Table 8.2 is the result of our observations on the cost of using
JeB. It give the size of the specifications (number of components and number of lines
of Event-B), the size of the complete simulation code (number of lines of JavaScript
and HTML), the size of the manual code that the user must provide (number of lines
in JavaScript) and the ratio that describes the percent of manual code compared to the
complete simulation code.

Event-B Number of Event-B Simulation Manual Ratio
Model Components Texts Code Code (%)
1D Platooning 10 600 13 000 160 1.2
2D Platooning 10 1 800 28 300 460 1.6
Transport-domain 23 1100 22 400 470 2.1
MIDAS 104 21 800 542 300 1300 0.2

Table 8.2: Simulation cost

8.4.2 1D Platooning Model

During its development, the 1D specification went through several stages containing
erroneous behaviors. We must insist on the fact that each stage is formally correct: all
POs are discharged.

In an early version, vehicles could move backward which is an unexpected behavior.
This behavior was introduced in the abstract machine platoon0 (see Appendix D.6).

90 CHAPTER 8. JEB UTILIZATION AND ANALYSIS OF SIMULATIONS

Strengthening the guard of the event all_moves with
Vv-v € 1..VEHICLES = magic_xpos(v) > xpos0(v)

corrects the problem. The anomalous behavior is highly visible on the graphic display in
auto-run mode.

Another problem, much more bothering, concerns the deadlocks present in the published
version []. In Event-B, the deadlock in some systems is the absence of
any enabled event. The execution then comes to a halt. Since all refinements of the
specification are executable with JeB, we can pin down the observation of the deadlock
in the second refinement. Playing with the history and manual setting of arguments, we
can analyze the precise conditions which provoke deadlocks.

A third problem in the last refinement, still present, concerns an emergent behavior:
oscillations. Oscillations occur when the platoon reaches a constant speed while, inside,
the vehicles engage in a cycle of accelerations and braking around the platoon’s average
speed. This is an emerging behavior: nothing in the specification addresses it explicitly.
In practice, such a behavior should be avoided for several reasons, among which energy
consumption or passengers comfort for instance. Oscillations are visible and their
apparition can be finely analyzed.

8.4.3 2D Platooning Model

The 2D specification (see Appendix E) can be executed with JeB. We concentrated our
observations on a few questions.

First, we looked for deadlocks as for the 1D case study. We reused the knowledge gained
from the simple specification to check thoroughly the second refinement. The deadlocks
can be observed since the second refinement.

The second question is the apparition of oscillations, both lateral and longitudinal.

The third question is specific to the 2D model: how close to the reference trajectory
do the vehicles actually stay? Interestingly, setting up the simulation and making the
observations raised important issues about the practical definition of the notions of
“closest point of” and “distance from” a trajectory.

The last question is the representation of trajectory which is formalized as:

inv_temp: temp € N
inv_traj : trajectory € 0..temp — (1..VEHICLES — Point)

In fact, trajectory may represent an very large list. This raises no problem in the
Event-B language, but cannot be implemented naively as memory would be exhausted
during a long simulation. An acceptable representation is to use a fixed size array: we just
need the most recent points to compute the lateral control in reality. The 2D platooning
specification needs be improved.

8.4. OBSERVATIONS ON JEB USAGE 91
8.4.4 Transport-domain Model

In Event-B, axioms are used as hypotheses when discharging POs, theorems and, more
generally, predicates. Only well-definedness POs are generated for axioms. A conse-
quence is the absence of inherent checks for the consistency of the set of axioms. There
is an urgent need for assessing the consistency of contexts as inconsistent axioms make
all formula provable, and the (formal) correctness of the models is defined as the proof
of all POs.

Axioms can also be “wrong” in a less dramatic way: they can just specify another set
of values than what was intended. The JeB constant checker can help to find mistakes
in axioms. For the transport-domain model, we have found such an error in the context
Netl. The axiom axml0 is defined as:

axml10: Vsl,s2-s1 € stations A\ s2 € stations=
(netHubs[{s1}] UnetHubs[{s2}] # @ = areConnected(sl — s2) = TRUE)

The mistake is caused by missing a precondition s1 # 52, because the relations based on
stations in this model are not reflexive. The correct version is:

axml0: Vsl,s2-s1 € stations A\ s2 € stations/\s1 # s2=
(netHubs[{s1}] UnetHubs[{s2}] # @ = areConnected(sl — s2) = TRUE)

8.4.5 MIDAS Model

Using the JeB constant checker, a mistake is found in the context InstructionConFlagMchl.
There are four axioms in this context:

axml: Null3Inst C Null2Inst

axm2: ConFlagWritelnst C Null2Inst

axm5: Null2Inst = Null3Inst U ConFlagWritelnst
axm6: Null2Inst N ConFlagWritelnst = &

Evidently, they are easily corrected by a condition:

Null2Inst = & A\ Null3Inst = & N\ ConFlagWritelnst = &

But, they are meaningless. In fact, the sets of Null3Inst and ConFlagWritelnst are not
empty as is specified in []. So, we think that the axiom axm6 is a spelling
error. The correct version is:

axm6: Null3Inst N ConFlagWritelnst = &

In fact, these four axioms can be expressed by one axiom with the partition notation:

axml: partition(Null2Inst, Null3Inst, ConFlagWritelnst)

92 CHAPTER 8. JEB UTILIZATION AND ANALYSIS OF SIMULATIONS
8.4.6 Comparison between Existing Animators
8.4.6.1 Technical Comparison

Table 8.3 is a concise technical comparison between the existing animators which are
integrated to the Rodin platform.

Brama AnimB ProB JeB

Interpretation language Java Java Prolog JavaScript

Event-B notation supporting partial partial total total

Rodin version supporting under 1.0 2.x 2.x 2.x

Axioms/Invariant checking yes no yes yes

Treatment of carrier sets set of integers set of symbols set of symbols set of integers
or symbols, JS
objects

Treatment of functions set of pairs set of pairs set of pairs, set of pairs, JS

lambda functions

Constant input interface yes yes no yes

Visualization Flash Flash BMotion Studio HTML/JavaScript

Multi-level animation yes yes yes no

Table 8.3: Technical comparison between the existing animators

Interpretation language Brama and AnimB use the same Java library to interpret
Event-B formulas. ProB is based on Prolog to interpret Event-B formulas. JeB uses a
JavaScript interpretation. All these languages can do an adequate job.

The Event-B notation supporting Unlike ProB and JeB, the implementation of
Brama and AnimB partially supports the Event-B notations. Therefore, some models are
not directly animatable with Brama and AnimB, they must undergo some transformations
to be adapted to the tools.

Rodin version supporting AnimB, ProB and JeB support the latest Rodin version
2.x at this moment. In contrast, Brama only supports the Rodin version under 1.0. The
models used in different Rodin versions are not compatible, so, to use Brama, we must
downgrade the model version.

Axioms/Invariant checking To validate an Event-B model, we must guarantee that
the observed behaviors would not be prevented in the original model. AnimB does not
check the axioms and invariants, so it cannot be trusted for validation activities.

8.4. OBSERVATIONS ON JEB USAGE 93

Treatment of carrier sets Unlike enumerated sets, carrier sets are a difficult point to
execute Event-B models, they are very abstract or infinite. Animators can use tricks to
instantiate them if they are finite. To do that, Brama represents them by set of integers;
AnimB represents them by set of symbols, these symbols are not needed to be defined as
constants; ProB automatically either represents them by sets of symbols whose size is
decided in its preferences, or explicitly defines them as enumerated sets whose elements
must be defined as constants in an extended context. JeB is more flexible, it can use
JavaScript objects to represent infinite carrier sets.

Treatment of functions To give values to functions, Brama and AnimB define them
as enumerated sets of pairs. This representation is not convenient to users and prevents
the use of functions with an infinite domain. ProB can compute a function image by a
lambda abstraction; JeB does the same by a JavaScript function.

Input interface for constants Both Brama, AnimB and JeB provide an interface to
setup an animation with specific constants and set values. ProB has no such facility,
it will automatically decide their values based on the constraint-solving technique. To
setup a specific animation with ProB, we must use the context extension mechanism.

Visualization A good visualization is important for the successful deployment of
formal methods. Brama and AnimB can create sophisticated visualizations using Flash.
The BMotion Studio based on ProB uses a graphical editor with a number of default
controls and observers to create visualizations, it is sufficient for most cases. JeB
provides a lightweight graphical environment based on HTML/JavaScript which allows
us to create any sophisticated visualization.

Multi-level animation Sometimes it is difficult to analyze a refinement relationship
for complex models. Brama, AnimB and ProB provide a multi-level animation facility
to help detecting the refinement errors. To simplify the design and the implementation,
JeB does not provide this facility; the consistency of refinements should be guaranteed
by the associated proof obligations.

8.4.6.2 Usage Comparison

Table 8.4 summarizes the usage of the four tools on our case studies.

Animating the 1D Platooning model To animate the 1D Platooning model, Brama
and AnimB need some transformations [] to the original model, this is
time consuming. ProB can automatically animate it with a limit on observable behaviors,
this is useful to find deadlocks or a counter-example. To enlarge the observation scope
with ProB, the context extension mechanism can be used. Using JeB, the effort to build

94 CHAPTER 8. JEB UTILIZATION AND ANALYSIS OF SIMULATIONS

Brama AnimB ProB JeB
1D Platooning animation yes yes yes yes
2D Platooning animation no no no yes
Transport-domain animation yes yes yes yes
MIDAS animation partial partial partial yes

Table 8.4: The usage of four animators on our case studies

the simulations is small; a large parts of user’s code can be reused through the different
refinements.

Animating the 2D Platooning model Brama, AnimB and ProB cannot execute this
model because they cannot setup the contexts in the first step of animations: an infinite
carrier set and some uninterpreted functions are their main obstacles. The simulations
realized with JeB are our only way to analyze its behaviors.

Animating the Transport-domain model This model uses many carrier sets. To
animate it, Brama needs an instantiation of them by enumerated sets of integers; AnimB
needs an instantiation of them by enumerated sets of symbols; JeB needs an instantiation
of them by enumerated sets of integers or symbols. ProB cannot directly animate it;
we must use the context extension to define these carrier sets by enumerated sets of
constants, this will introduce plenty of constants to the extended context.

Animating of MIDAS model This model is very large and complex. Brama and
AnimB can partially animate it after some transformations. ProB can directly animate
some refinements with a careful setting of its preferences (e.g., the size of integers,
the size of unspecified differed sets). The main difficulties to these animators are the
large state space and some uninterpreted functions which cannot be given an efficient
definition with the Event-B language. JeB can animate all refinements of this model, but
its performance needs to be improved.

8.5 Analysis from a Validation Point of View

8.5.1 Validation of Axioms

Event-B models use axioms in the contexts to specify the static properties of systems.
These axioms are just hypotheses, i.e., we assume they are correct, so we can use them to
discharge the generated proof obligations. The Well-definedness POs are automatically
generated for axioms, which only guaranteed their types. For a complex context, some
mistakes can be found by the JeB constant checker, such as in the transport-domain
model and in the MIDAS model. A wrong axiom can discharge any goal in a sequent
if we reference it as a hypothesis, which will cause a serious problem in the theorem

8.5. ANALYSIS FROM A VALIDATION POINT OF VIEW 95

proving system. So it is necessary to verify the correctness of axioms by semi-formal
reasoning, i.e., we evaluate them by providing constant values.

8.5.2 Validation of Properties

The 1D specification looks simple. The last refinement consists of 15 events and around
140 individual logical formulas which form the invariants and the guards. Many of
those formulas are very simple as they do not express more than types. Yet, getting the
specification right was a difficult task. In this section, we discuss how JeB would have
helped in this task.

The backward movement problem was found by a picky human reader. In fact, it could
have stayed unnoticed for a long time as the forward-only move is an hypothesis of
the whole system rather than a necessary condition. Platooning systems with backward
moves may be designed but at the probable expense of higher complexity. Since both
hypotheses can lead to correct systems, the verification procedure (the proofs) cannot
detect the problem in the model.

The deadlock problem of the 1D model was first identified and understood by using
animations realized with Brama and ProB. But both tools failed on the 2D model because
of the difficulties of setting up the contexts illustrated in Section 8.3.1 and 8.3.2. By
contrast, it is easy to set up and implement contexts to study the apparition and reasons
for the deadlocks which appear for both 1D and 2D models.

The issue of deadlock-freeness in Event-B specifications is a complex one. The standard
POs do not protect from deadlocks. It is possible to automatically build a theorem and
POs which ensure the absence of deadlock (see Chapter 4). However, the size of the
formula to prove grows very fast with the number of events and guards. While it is
possible to prove this theorem with time consuming effort, one interesting possibility lies
in using simulations to identify the deadlocks and their prevention, before attempting the
proofs.

In the case of the 1D model, the improvement offered by JeB is mostly about cost
and practicality. To use Brama and AnimB, we must apply some transformation
[] to the original model, it is time consuming. ProB can automati-
cally animate the 1D model and detect deadlocks, but the observable behaviors are very
limit; to enlarge the observations, we must use context extension to explicitly set realistic
data to constants. Using JeB, the effort to build simulations of the different machines
is small. Furthermore, it is spread over all the refinements since large parts of user’s
code can be reused. Because JeB is based on the Web standards, we could build a simple
informative display with a few lines of code.

As the 2D model is failed to be animated, the simulations realized with JeB are our only
way to analyze the system behaviors. The issue raised in the observations about the
distance functions is actually a crucial one for the direction of a concrete refinement. In
practice, trajectories are not continuous lines, but sequences of points perceived through
imperfect sensors. We can expect that the tracking behavior of the vehicles is dependent

96 CHAPTER 8. JEB UTILIZATION AND ANALYSIS OF SIMULATIONS

of the actual computations of the distances. JeB allows us to experiment with several
practical algorithms before we commit them to a formal refinement.

8.6 Summary

Using JeB to validate models has a cost. The effort is measured as a number of actions
and the percentage of code of the simulations. Our graphics are simple and, of course,
more sophisticated graphics would require more code. It is worth noting that the amount
of user-provided code is small: around 2%. It is also interesting to note that, although
the simulations of the refinements are independent, user-provided codes can often be
shared. This is particularly true of the argument generator functions.

Chapter 9

Correctness of Simulations

Contents
9.1 Introduction vt it teneneneeneeoesos
9.2 ConsistentBehavior00ttt

9.2.1 Semantics of an Event-B Machine

9.2.2 Operational Interpretation of an Event-B Machine

9.2.3 Execution of Simulators

9.24 Correctness of Simulation
9.2.5 Proof Obligations
9.3 Discussion about the Hypotheses
9.3.1 Hypothesis 1,
9.3.2 Hypothesis2
9.33 Hypothesis3 L
94 SUMMATY « ¢ v v v v o v o o o o v o o st o oo o oo s oo soooose

9.1 Introduction

The definition of the correctness of simulations is based on a simple property: only
behaviors allowed in the original Event-B models can be observed during the simulations.

Table 9.1 summarizes the symbols and notations that we used. M is an Event-B machine
and P is a translated JavaScript simulator of M. The prime () notation denotes the state
after the substitution. The value of a predicate ¥ after the application of a substitution
G is noted as [6]W. The superscript (*) notation denotes the translated expressions. The
dot (.) notation is used to access JavaScript object properties. The semicolon (;) notation

represents the sequential execution of JavaScript statements.

In the following, we assume two hypotheses.

Hypothesis 1 There exists a function f mapping all JavaScript simulation values V' to

Event-B values V, where f € V! =V

97

98 CHAPTER 9. CORRECTNESS OF SIMULATIONS

Elements Event-B JavaScript

machine M P

sets s st

constants c c

axioms Axm(s,c) Saxm()

variables v v

invariants Inv(s,c,v) S ()

events Evts ={E' E* .. E"} Seves = {f1, fg2, - fEm}

initialization event E, E ¢ Evts fE0, fro & fEws
actions Actgo(s,c,v) Sro-fac ()
before-after predicate ~ BAPgo(s,c,v’)

a particular event E',E' € Evts Jei> f5i € fEws
parameters Xgi X
guards Grdgi(xgi,s,c,v) Tei-fora(xX};:)
actions Actgi(xgi,s,c,v) Jei-Sfae (x:)
before-after predicate ~ BAPgi(xgi,s,c,v,v/)

interpretation function bool eval

boolean values TRUE FALSE true false

equal operator = ==

substitution xX:i=y X =y

event occurrences ej,ej € {E"} UEvts Jejs Je; € {feo} U fEus

Table 9.1: Symbols and notations

Hypothesis 1 is the statement that the domain of values in Event-B can be interpreted on
the domain of values in JavaScript.

Hypothesis 2 Let x be the collection of all free identifiers for a predicate P; x' and fy()
are the translated identifiers and a predicate function respectively and xy be the given
values of xX'. There exists an interpretation function eval in JavaScript, where

eval (X' = xo);eval (fg()) ==true; < bool([x:= f(xy)]¥) = TRUE
eval (X' = xo);eval (fy()) == false; < bool(|x:= f(xo)]¥) = FALSE

In the left hand side of the equivalence, it is JavaScript view; and in the right hand,
it is Event-B view. Hypothesis 2 states that Event-B predicates can be interpreted as
JavaScript predicates. It assumes that Event-B and JavaScript are based on the same
logic.

9.2 Consistent Behavior

9.2.1 Semantics of an Event-B Machine

The standard semantics of Event-B is defined as a set of proof obligations (POs). The
POs expressing the correctness of an individual machine are of three kinds: preservation
of invariants, feasibility, and, for some models, absence of deadlock.

9.2. CONSISTENT BEHAVIOR 99

Let M be an Event-B machine with sets s, constants ¢ and variables v; the semantics of
M must satisfy invariant and feasibility POs.

The invariant POs for M are defined as

Axm(s,c) ABAPgo(s,c,v') = Inv(s,c,v’)

m
/\Axm(s, c) NInv(s,c,v) A Grdgi(xgi,s,c,v) N BAPgi(xgi,s,c,v,v') = Inv(s,c,v’)
i=1

Using the generalized substitution notation, the above formulas are equivalent:

Axm(s,c) = [Actgo(s,c,v)|[Inv(s,c,v)

m
/\Axm(s, c) Nnv(s,c,v) AGrdgi(xgi,s,c,v) = [Actgi(xgi,s,c,v)|[Inv(s,c,v)

i=1
The feasibility POs for M are defined as

Axm(s,c) = 3v/-BAPgo(s,c,v’)

m
/\Axm(s, ¢) Nnv(s,c,v) AGrdgi(xgi,s,c,v) = v/-BAPgi(xgi,s,c,v,v/)
i=1

For some system models, the Deadlock-freeness PO can be expressed as

m
Axm(s,c) ANnv(s,c,v) = \/ Ixgi-Grdgi(xgi,s,c,v)

i=1

9.2.2 Operational Interpretation of an Event-B Machine

An Event-B machine constitutes a kind of state transition system. We can give a simple
operational interpretation to a machine. We assume two hypotheses: the execution of an
event is considered to be instantaneous and two events cannot occur simultaneously. The
execution following then the steps:

1. execute the initialization event,

2. evaluate all events’ guards,

3. if no event has its guards true, then the model execution stops,
4.

if the guards of some events are true, then one of the corresponding events neces-
sarily occurs and the state is modified accordingly; continue with step 2.

This behavior clearly shows a form of non-determinism as several guards might be true
simultaneously. Event-B makes no assumption concerning the specific event which is
executed among those whose guards are true. There are other forms of non-determinism:
the assignment of values to the events’ parameters, and the “such-that” substitutions in
actions.

100 CHAPTER 9. CORRECTNESS OF SIMULATIONS

Definition 1 (Traces of an Event-B Machine) A finite sequence of event occurrences
epeé1ér...€,

is a trace of an Event-B machine M if and only if
eo is the initialization of M and

{e1,e2,...,en} CEvts

and .
/\ fis(ej)
j=0

where fis is the feasibility predicate of the sequence which is the point-wise extension of

the feasibility PO defined in [J

The set of all finite traces of a machine M is called Traces(M). The following property
characterizes traces by the existence of intermediary states v; in which the guard of e;
holds and where the pair (v;_1,v;) is in the before-after predicate of event e;:

Property 1 (Trace characterization) Let v be the variables in a machine M, then:

eg.e1.€3...e, € Traces(M)
=
W0, ooy Vn- [V = V0| BAPyy (5,¢,v") A [v i= vo|Inv(s,c,v)A

n
/\ ([vi=v;j1]Grde,(xe;,5,¢,v) N[V, v := v 1,V;|BAP, (x,;,5,¢,v,v/) A[v:i=v;]Inv(s,c,v))
j=1

9.2.3 Execution of Simulators

Let P be a translated JavaScript simulator of an Event-B machine M with translated
sets §', translated constants ¢’ and translated variables V'. Let s,,c, be the values of
s', ' for the instantiated P. For P to be correct, the following properties, derived from
the semantics of M, must hold. The numbers refer to the simulation cycle description
presented in Section 7.7.1.

1 Setup context:
Let s, and ¢, be the actual values given to carrier sets and constants,
Condition 1 (Correct Context Setup)

eval(s' = s,);

eval(c' = ¢,);

eval (faxm()) == true;

=

bool([s,c := f(sy), f(cy)]Axm(s,c)) = TRUE

9.2. CONSISTENT BEHAVIOR 101

2 Execute the initialization event:
Let vg be the value of variables V' after initialization,
Condition 2 (Correct Initialization)

eval (vo = fgo.faci());

eval (fin()) ==true

=

bool([s,c,v’:= f(sy), f(cy), f(vo)|BAPgo(s,c,v’")) = TRUEN
bool([s,c,v:= f(sy), f(cy), f(vo)[Inv(s,c,v)) = TRUE

3 Evaluate events’ guards:
Let v; be the current value of variables V', xi; be the current value of parameters
xt Ei°

Condition 3 (Events’ Enabledness) For some events,

eval(fgi.fcra(xgi;)) == true
=

bool([s,c,v,xgi := f(sy), f(cv), f(v}), f(xgi;)|Grdgi(xgi,s,¢,v)) = TRUE

4 Random choice of an event to execute:

Let vj4; be the next value of variables V', fri be a random choice event which
satisfies Condition 3,

Condition 4 (Reachable state)

eval(vji1 = fgi-fac(XEij));
eval(fim()) == true
=

bool([s,c,v,v/,xgi := f(sy), f(cv), f(vj), f(Vjs1), f(xgi ;) |BAPEi (xgi,s,¢,v,v')) = TRUEN
bool([s,c,v:= f(sy), f(cv), f(vj1)Inv(s,c,v)) = TRUE

9.2.4 Correctness of Simulation

Definition 2 (Traces of Execution Simulator) A simulation trace is a finite sequence
fe() ()’fel ('xfel);fez ('xfez)’ e ;fen (xfen) Ofeventﬁrings SuCh that

/\ eval(fe;-fora(xy,) == true

i=1

TraceExecution(P) denotes the set of all simulation traces of the simulator P.

102 CHAPTER 9. CORRECTNESS OF SIMULATIONS

Definition 3 (Simulation Correctness) Let fr.uc. € frws — EVts the function which
relates JavaScript events with their Event-B counterparts and map the function which
applies its functional argument to all elements in a sequence. The simulator P is a
correct simulation of the model M if

Vt-t € TraceExecutions(P) = map(frrace,t) € Traces(M)

Theorem 1 If the execution of the simulator P satisfies the conditions 1, 2, 3, and 4,
then the simulation is correct.

Proof Let ¢ be a trace of the simulator P which satisfies the four conditions 1, 2, 3, and
4.

1= foo O for (X1,)i fer (X1)53 feu (X1,

Let v;(j € 0..n) be the value of the state after executing the event f,,. We construct
a trace with event occurrences eg;eg;es;...;e, and intermediate values (preserved the
invariant)

Fo)s fvi), f(xp, s f(v2), fxp,)55 f(va)s £,
that satisfies property 1.

9.2.5 Proof Obligations

The production of a simulation involves automated parts and human interactions. Proving
the correctness of the former parts is the classical problem of compilers’ correctness. We
will not deal with this issue in this thesis; we assume it as hypothesis 3.

Hypothesis 3 There exists a complete and correct syntactical translation mechanism
from all elements in an Event-B model toward a JavaScript program.

Human actions are more interesting as they touch a critical issue: how to introduce safely
informal actions into a formal method? For each identified informal action, we propose
a definition of correctness in the form of a specific PO. Assessing the correctness of a
given simulator amounts to discharge a series of POs generated from the user-provided
values and code. Some of those POs can be expressed and discharged in Event-B, but
others cannot and need to be discharged by a classical semantic reasoning on JavaScript
programs.

Considering a trace of a simulation t = f,(); fe, (X1,); fer (X1,)3 - - -3 fe, (X,); We con-
struct a trace eq;ej;ea;...; e, for the translated Event-B machine with

— values of sets and constants f (s), f(cy)

— intermediate state values f(vo), f(vi),f(v2),..., f(vn)

— parameter values f (xﬁj)(j>=1) forevente;

From Definition 3, we can derive the following POs to establish the correction of the
simulation.

PO 1 (Valuation of Constants — Event-B)

bool([s,c := f(sy), f(cy)]Axm(s,c)) = TRUE

9.2. CONSISTENT BEHAVIOR 103

PO 2 (Valuation of Events Parameters — Event-B)

n
/\ bool([s,c,v,x,; := f(sv),f(cv),f(vj),f(Xfej)]Grdej(xej,s,c,v)) = TRUE
j=1
The POs associated with the hand-coded functions provided by the users depend on their
role and place. There are four cases.

1. Parameter value generators: this kind of function is just a facility to run the
simulation. The produced values are actually fed to the guard-functions of the
event; so, since we assume the translation is correct, only legal parameter values
will make the guard true. So, the only requirement on parameter generators is that
they produce fairly consistent and reasonable values efficiently.

2. Predicate in an invariant or a guard: let fy be a user implementation of a particular
predicate W. The basis of the PO is to show that fy is equivalent to a naive
translation of W. Discharging such PO requires to reason at the level of the
JavaScript programs:

PO 3 (Invariant and Guard — JavaScript)

eval(fg()) ==true < bool(¥)=TRUE

3. Value returned by an action: let f,. be the user implementation of a particular
action act. The PO ensures that the set of computed values are admissible values:
PO 4 (Action — Event-B)

{f(v()) ’ Vo = fact()} g {vl ‘ BAPac’I(-in:Sacvv?v,)}

4. Function defined by properties in a context: this situation requires to transform
each property into a program whose correction must be established. A property
defining the functional constant g has the form

Y1,y Vntype(vi) A .. Atype(vy) =P (g, Vi, ..., Vi)

where W may contain several application of g, and type(vy) is a typing predicate for
V. Let guser be the user implementation of g, m € Ny be the number of occurrences
of gin W, I € N; be the number of parameters of g, the transformation is sketched
in the following algorithm:

Program Prog =
for each call to g (i call, 1 < i < m)
for each argument of the call (jy parameter, 1 < j < 1)
generate a fresh variable g;;
generate instruction a;; = translation of j; argument expression
generate a fresh variable for result r;
generate i = Guser (Qily .., aif)
translate the typing expressions to f,ype(vk)
translate the predicate W to fy, replacing each call of g
by their corresponding immediate evaluation result r;

The following PO ensures the correction of g,
PO 5 (Uninterpreted Function — JavaScript)

wp(Prog, fu) = |\ fiype(vi)
k=1

104 CHAPTER 9. CORRECTNESS OF SIMULATIONS

9.3 Discussion about the Hypotheses

The correctness of simulations is based on three hypotheses which focus on the correct
implementation of JeB itself. These hypotheses must be correct. In following, we give
some reasonable explications of our hypotheses. We are confident that these hypotheses
can be proven. In practice, such proofs would use the well established techniques, for
examples: unit and integration tests, runtime checking, code coverage, comparison with
mathematical laws, comparison with other tools ProB/Brama/AnimB. This work is out
of scope of this thesis.

9.3.1 Hypothesis 1

Hypothesis 1 assumes we can find a mapping function f from all values V' used in
JavaScript simulations to the Event-B value spaces V. First, we list the Event-B types
from which all Event-B mathematical objects are constructed.

In Event-B, there are three kinds of basic data types:

— IntegerType: Z is the set of all integers.

— BooleanType: BOOL is the set of booleans, which has two elements TRUE and
FALSE.

— GivenType: Carrier sets are user defined types.

Furthermore, two other kinds of data types can be constructed from any type o and 3:

— PowerSetType: P(o) contains the sets of elements of o.
— ProductType: o x [is the set of pairs where the first element is of type o and the
second element is of type [3.

In JavaScript, we use objects to construct the concrete types used in simulations.

— Object $B.Integer: The JavaScript Integer object is an implementation of arbitrary
precision integers; the mapping function is defined as {i-i € Z | $B.Integer("i") — i}.

— Object Boolean: the JavaScript Boolean type represents a logical entity having
two values, called true and false, the mapping function is defined as {true —
TRUE, false — FALSE}.

— Object $cst.S: we construct an object $cst.S for each carrier set S, the detailed data
structure of $csz.S is specified by users, for every instance object S; of $csz.S, we have:
S; instanceof $cst.S= f(S;) € S.

Let Sets, Setp be two concrete set objects. We can recursively construct Event-B power
set values and product values from the following JavaScript objects:

— Object $B.PowerSet: $B.PowerSet(Sety) represents the power set of P(f(Set4)).
— Object $B.CartesianProduct: $B.CartesianProduct(Sets,Setg) represents the con-
crete Cartesian product f(Sets) x f(Setp).

9.4. SUMMARY 105

9.3.2 Hypothesis 2

Hypothesis 2 assumes that the interpretation of the translated Event-B formulas in
JavaScript is correct. Therefore, there exists a relation which defines the observational
equivalence between the Event-B formula interpretation and the JavaScript formula
interpretation. With this hypothesis, we can get the semantic correctness for the translated
Event-B formulas.

The Event-B modeling language is based on very classic forms of set-theory and logic.
As SETL [] has shown, we know how to implement correctly operational
interpretations of those theories. So, our hypothesis is sound.

In our case, the critical point, with respect to the hypothesis, is the correctness of the
implementation of the library detailed in Appendix C. Although we did not conduct a
formal proof, the careful definition of the implementation rules of each API makes us
confident about the correctness.

9.3.3 Hypothesis 3

Unlike Hypothesis 2 which expresses a property at the semantic level, Hypothesis 3 just
requires a form of correctness at the syntactical level. As above, the critical issue is the
library and its APIs. Each node in a concrete Event-B syntax tree should be automatically
mapped to an API defined in JavaScript. The structure of an Event-B syntax tree should
be the same with the generated JavaScript expression. The Appendix B defines the details
of such mappings to assure the syntactical correctness.

9.4 Summary

JeB allows one to easily build simulators. Once a simulation is set up, the issue becomes
whether it is “safe” to use it as an observation tool of the model. This, of course, depends
on the kind of usage we want to put simulation in.

To be used for the validation of models, simulations must guarantee that any behavior of
the simulation is a behavior specified in the model. Casting this intuition into a formal
frame requires to define behaviors, observations and the relation between the Event-B
code and the JavaScript code.

This chapter defined proof obligations to guarantee the correctness of using simulation
for the validation. Some POs must be discharged in the JavaScript world, others are
expressed in the Event-B world. How to automatically generate them, how to integrate
them into the Rodin platform, will be an interesting research field in future.

106 CHAPTER 9. CORRECTNESS OF SIMULATIONS

Chapter 10

Conclusion and Future Work

Contents
10.1 Conclusion v v v v v it v vt v vttt et oo s oneeas 107
102 Future Work . . . v v v v v it vt it et e ettt ot oo o nan 108
10.2.1 Technique e 108
10.2.2 Refinement Process forEvent-B 108
10.2.3 Methodology 110

10.1 Conclusion

The starting point of our work was an assessment of the usability of Even-B. We studied
the development of platooning control algorithms, and more specially how it scaled up
when we move from a simplified 1D version to a more realistic 2D version. The critical
analysis of the 1D platooning model uncovered some anomalous behaviors which we
traced down to a deadlock problem. The difficulty of expressing the deadlock-freeness
theorems in Event-B motivated us to develop a tool, the generator of DLF theorems, to
automatically construct these theorems.

Our assessment confirmed that the mathematical proofs are not sufficient to assure the
correctness of a formal specification. A formal specification should also be validated. We
believe that the validation activities, like the verification activities, should be associated
with each refinement during the development. To do that, we need better validation tools.
The state-of-the-art tools which can execute Event-B models failed in the 2D platooning
model: there is too much non-determinism in the early refinements. Therefore we
designed and implemented a new execution tool, JeB, which is a JavaScript simulation
framework for Event-B. JeB provides developers with a Rodin translator plug-in which
translates Event-B to JavaScript, with a runtime which supports the mathematical nota-
tions of Event-B and the execution model, and with interfaces to add hand-coded pieces
of code to reduce the non-determinism. The generated simulators run inside common
Web browsers. They can be used to validate all machines in a chain of refinements.

107

108 CHAPTER 10. CONCLUSION AND FUTURE WORK

The generated part of the simulators and the runtime environment are straight interpre-
tations of the formal operational semantics of Event-B. They can be safely used for
simulation. The hand-coded additions, which are necessary to execute the simulations,
introduce a risk of implementing an incorrect model. To be useful as validation tools,
simulations must ensure that any observed behavior of the simulation is a behavior
specified in the model. Therefore, we have defined a set of proof-obligations which,
when discharged, guarantee the correctness of the simulations with respect to the model.

10.2 Future Work

10.2.1 Technique

The current implementation of the JeB framework can be seen as a prototype. To reach
an industrial-strength level, work is needed on two main areas.

The default implementation of the JavaScript library for Event-B used in the JeB tool
focused on two points : 1) the full support of Event-B mathematical notations; 2) the
interpretation to satisfy the Event-B language semantic. So efficiency was not our main
goal in the first step. In the future, we must improve its efficiency so that the JeB tool
can be adopted by industrial projects.

At present, the proof obligations to guarantee the safe usage of simulations (see Chapter
9) must be manually generated. They are not integrated into the Rodin platform. We
need a tool to automatically generate and manage them.

Those two technical points open interesting and difficult research questions which
concern the proofs of properties mixing JavaScript and Event-B objects. The library,
implemented in JavaScript, should be proved against its specification, written in Event-B.
Some proof obligations on the simulator require users to work with expressions on both
languages. There is a strong need for a theory and the associated provers.

10.2.2 Refinement Process for Event-B

Like any complex artifact, good formal models need a precise and definite construction
process. A good formal model should have the following properties: (a) it is logically
consistent, (b) it has proven functional properties, (c) it meets non-functional properties,
and (d) it is a reasonable model of the problem.

A formal refinement is the keystone around which the B method is designed. Its embodi-
ment into the language and the support tools allows one to develop pieces of software
where an implementation is proven against its specification. Refinements break down the
verification process into discharging many, but small, proof obligations. So issues (a)
and (b) are well taken care of by Event-B. To deal with the issues (c) and (d), i.e., the
validation of the specification, we propose an extended refinement process depicted in
Figure 10.1.

10.2. FUTURE WORK

An initial idea

109

| Optional

A physical/ .
| or an Event-B Requirements r)
mathematical model e | Obligatory
| = ﬂ_/‘ - o T~
(1) l
. / . . y
The refined ‘
i r
Refine the physicalf ‘ physical/ ‘ Refine the ! E;r::l-;ﬁr:ggel
mathematical model| "‘maﬂwemaﬂcal m-mj Event-B model “‘|
(2) |
v r v L 4
Try simulation Check temporal
Try model checking S AR lAEah properties Try theorem proving
| |
v{ff Succeeded? NO
|
YES
|
| !
A refined physicall . :Zﬁg:f;""
mathematical model| Event.B model
e = — ~— //-I-—%-\'

Figure 10.1: A step of refinement for Event-B

110 CHAPTER 10. CONCLUSION AND FUTURE WORK

The core idea is to associate the validation activities with the refinement chain to in-
crementally construct a system. The mathematical proofs can guarantee the coherence
within successive refinements, while the validation activities ensure that the system satis-
fies the user purpose at each level of refinements. A development step is then composed
of different activities:

— Refinement of the physical/mathematical model. This activity is optional. It depends
on the complexity of the developed system. The mathematical expressions are refined
so that they can be translated into Event-B and lead to provable properties. In Section
5.3, we gave some examples extracted from the platooning case study.

— Refinement of the Event-B model. This activity is obligatory. It is recommended to
make small refinements at each step. The requirements are then gradually introduced
into the formal model. Different refinement strategies can be applied: for instance
first, the functional and then, the safety requirements. The choice of the strategy relies
on the experience of the developer and of the kind of system to develop.

— Simultaneous verification and validation. The order of verification and validation
activities is not important, our final goal is to achieve a verified and validated formal
specification. We can simultaneously carry out the verification and validation activities,
but it is common sense to begin with the cheapest ones. In our experience, the ProB can
be applied first to quickly check Event-B models, e.g., deadlocks, invariant violations.
JeB (see Part II) can be used after to make “quick and dirty” simulations to help
“fix” the expression of complex invariants and guards. Once the refinements seem
reasonable, we must discharge all proof obligations. When needed, the generator of
DLF theorems (see Chapter 4) can be used to prove the deadlock-freeness property.
Last, a complete validation with JeB could be realized.

Event-B was designed around the idea of mastering verification; it encourages a linear
waterfall-like development process. Our propositions, both at the process level and at the
tool level (JeB), open up some possibilities such as intermediate deliveries. We believe
that some of the best ideas of the current process practice could be incorporated to make
an Agile-like formal refinement process. Of course, this raises many research issues.

10.2.3 Methodology

Historically, formal methods have been viewed as an exclusive alternative to traditional
development methods. The whole software system needed to be developed from scratch.
The development process should start with an abstract model of the whole system and
proceed by formal refinements and proofs of correctness towards a final implementation.
This is not a realistic way to introduce formal methods into the practice in industry. A
better approach is to integrate formal methods into the traditional development process
and focus on the critical parts of a system. Formal methods complement and improve
existing development practices in an evolutionary way.

We think that there is no “one true way” that can be adopted for all kinds of system
developments. We must consider the total costs, the time constraint, the experience
of developers, the acceptance of final users, and then use different approaches for the
development of different system parts. For non-critical system components, we can use

10.2. FUTURE WORK 111

Requirements Acceptance
Analysis Testing
! 4
Safety-Critical
Y Subsystems
Requirements g
System/Architecture Integration/System
Design . Testing
Formal A
Modeling
<4
Subsystem Unit
Design Testing
: Code s
Generation
4
Coding
. Verification
Construction S
R &Validation
Activities I
Activities

Figure 10.2: An extended V-Model

standard approaches to develop them. For critical system components, we should use the
formal methods to gain a high reliability and robustness of the system components.

We propose an extended V-Model depicted in Figure 10.2 to use formal methods to
develop the safety-critical subsystems. First, we need to extract the requirements of
the safety-critical subsystems so they can be cast as an initial formal model of the
critical properties. Then we refine this initial model into more and more concrete
specifications. If the last formal specification contains enough implementable elements,
it may be directly translated into executable code. Otherwise it can be used as the precise
specification against which the code should be assessed. Last, some integration and
system testings are necessary to assure the validity and compatibility of the formally
developed part within the whole system.

The extended V-Model mixes informal methods and formal methods to develop complete
systems. We must also consider the formal development itself to address its weaknesses.
[] discusses two of them and we believe that there is a third weakness.

The first weakness is the quality of the requirements document. Formal methods are not
meant to obviate the need of strong requirement analysis. A complete, unambiguous and
consistent requirement document is of utmost importance for formal methods. But the
requirements document is usually written as a semi-formal text mixing natural language,
diagrams, drawings, and mathematical formulas. Such texts are notoriously difficult
to analyze for properties such as completeness and consistency. Therefore errors or

112 CHAPTER 10. CONCLUSION AND FUTURE WORK

omissions may affect the initial abstract model.

The second weakness is the code generation. The last refinement may be translated
into executable code in two steps: 1) the concrete model is translated into a classical
programming language code; 2) the code of the first translation is then translated into an
executable code by a usual compiler. Very few compilers [,]
such as the CompCert project have actually be proven to make correct translations .

The third weakness is that we have a fixed and complete set of requirements at the
beginning of the development. We know that for most projects, new requirements are
discovered and formulated as the development proceeds. The maturation of the require-
ments has several sources: decisions are needed to orient the refinements, emergent
behaviors appear and must be controlled, users may prompt for new requirements as they
understand better the impact of the future system, etc.

Proponents of formal methods must acknowledge those weaknesses which, from an
industrial perspective, are risks to be managed. There is strong need of research on these
questions [].

Appendix A

Présentation de la theése en francais

A.1 Motivation

Contexte de la recherche Les approches classiques de développement de systemes
sont principalement basées sur des activités humaines. Malheureusement, errare huma-
num est (I’erreur est humaine), ce qui est source de problémes relatifs a la sécurité.

La qualité des systemes peut étre améliorée en controlant les erreurs humaines pendant
le processus de développement, par exemple, en appliquant des méthodes formelles lors
du développement de sous-systémes critiques. Les méthodes formelles permettent de
raisonner rigoureusement sur des logiciels et sur leur construction a 1’aide de la logique
mathématique. Elles permettent d’obtenir une bonne garantie relativement & I’absence
de « bug » dans les logiciels. Elles permettent aussi d’assurer qu’une implantation d’un
logiciel est conforme a sa spécification.

Dans cette these, un systeme est dit étre correct s’il satisfait a deux conditions :

— Le systeme est vérifié : le systeme doit étre cohérent et son implantation doit étre
conforme a sa spécification initiale. La vérification peut s’effectuer grdce a des tech-
niques de preuves lorsqu’une méthode formelle est utilisée. Les activités de vérification
font généralement partie des processus exécutés par les développeurs.

— Le systeme est validé : le systeme doit remplir I’ objectif que les utilisateurs en attendent.
Les activités de validation exigent des processus qui impliquent des personnes externes
a l’équipe de développement.

La vérification et la validation sont des procédures indépendantes. L utilisation des
méthodes de spécification formelle permet de garantir plus facilement qu’une spécifi-
cation est vérifiée. Toutefois, une spécification vérifiée n’est pas automatiquement une
spécification validée.

Les vérifications les plus rigoureuses relevent de démonstrations mathématiques ; elles
exigent des ressources importantes (en temps, en cofit et en expérience). Ainsi, les
méthodes formelles paraissent réservées au développement de systemes critiques pour
la sécurité, ou le colit de la recherche des défauts est tres élevé. Par exemple, dans

113

114 APPENDIX A. PRESENTATION DE LA THESE EN FRANCAIS

le domaine des chemins de fer ou dans le domaine de I’aérospatiale, des erreurs non
détectées peuvent causer la perte de vies humaines.

Cette these vise a étendre le domaine d’utilisabilité des méthodes formelles en général
et B événementiel en particulier. Pour cela, en partant d’études de cas réalistes (la
modélisation et le développement formel d’un algorithme de platooning), nous avons
identifié un certain nombre de freins a I’'usage de B événementiel et nous proposons deux
outils permettant de faciliter I’'usage de cette technique formelle.

Probleme scientifique Le frein principal découvert a partir des études de cas concerne
la validation :

La preuve mathématique d’une spécification formelle ne suffit pas a garantir
sa correction : la vérification n’entraine pas sa validation.

Scientifiquement, le probléme revient alors a comprendre les activités qui relevent de
la validation, a concevoir et réaliser les outils qui assistent les utilisateurs dans ces
activités et a intégrer la validation dans la démarche générale associée a B, ¢’est-a-dire,
le développement par raffinement formel.

Les techniques de développement basées sur la preuve et le raffinement sont congues
autour des activités de vérification. En particulier, ces techniques garantissent que tous
les modeles construits pendant le développement répondent a la spécification initiale.
Cependant, les exigences non-fonctionnelles sont souvent tres difficiles a exprimer dans
les logiques classiques ; certaines exigences sont en dehors du cadre mathématique. En
conséquence, elles ne sont pas exprimées dans le cahier des charges initial. De plus,
I’obtention d’exigences claires et completes a la phase initiale du développement est
connue pour une tiche quasi-impossible. En conséquence, le cahier des charges initial
peut étre incomplet, ambigu et incohérent. Les développeurs auront a compléter les
exigences absentes afin de prendre les décisions nécessaires a leur réalisation. Naturelle-
ment, comme ces « exigences complémentaires » sont absentes de la spécification initiale,
les preuves liées a la vérification ne peuvent que s’assurer de leur cohérence vis-a-vis
du reste du modele ; les preuves ne peuvent pas assurer que les nouvelles exigences
sont compatibles avec ce que souhaitent les utilisateurs. Il est essentiel qu’elles soient
validées, de préférence le plus tot possible apres leur vérification.

Problémes techniques L’amélioration de I'utilisabilité de B événementiel nécessite

de répondre a deux problemes relatifs a la mise en ceuvre de la méthode :

— Dlabsence d’outils pratiques pour aider les activités de validation,

— D’absence d’un guide pour intégrer le raisonnement formel et le raisonnement semi-
formel dans un processus de développement.

L’usage d’une méthode formelle est directement li€ a la qualité des outils disponibles

pour sa mise en ceuvre. Nous avons donc consacré une part importante de notre réflexion

et de notre travail a la conception et a la réalisation d’outils concrets qui s’integrent

efficacement dans une démarche rigoureuse.

A.2. CONTRIBUTION 115

Objectifs Notre travail concerne les objectifs liés a I’extension de 1’utilisabilité de B
événementiel :

1. L’objectif le plus important concerne un environnement qui permet de simuler
le modele B événementiel pour la validation et permet de garantir la correction
sémantique de simulations. Cet environnement est un complément aux outils
existants qui permet d’associer plus étroitement la validation avec la vérification
dans le cadre des raffinements.

2. Un second objectif concerne I’assistance a la vérification de I’absence de deadlock
dans les spécifications.

3. Le dernier objectif, plus méthodologique, vise a penser et étendre la notion de
raffinement utilisant dans B événementiel. Le raffinement d’état de I’art souligne
les activités de vérification. Nous le complétons avec d’autres activités, telles que
I’évolution des exigences, 1’adaptation d’équations, la validation par I’animation
ou la simulation notamment.

A.2 Contribution

Dans ma these, nous avons défini deux contributions importantes :
Contribution I : évaluation de I’utilisabilité de B événementiel
Le point de départ de notre recherche est d’évaluer I’ utilisabilité de B événementiel :

— une analyse critique de la spécification du platooning en 1D et une explication de
certaines anomalies dans le comportement,

— un plug-in Rodin (environ 500 lignes en Java) qui génére automatiquement des théo-
rémes de Deadlock-freeness,

— une évaluation de quelques aspects du passage d’un modele en 1D a un modele en 2D
qui étudie la question de la « montée en charge » de B événementiel.

Contribution II : un outil de simulation en JavaScript pour B événementiel

Notre contribution principale est un cadre de simulation pour B événementiel, basé sur
JavaScript. Cet outil permet de construire a peu de frais des simulateurs du modele B
événementiel grice a I’utilisation d’un traducteur de B événementiel vers JavaScript, un
environnement graphique d’exécution, et la possibilité de compléter ce que la traduction
n’a pas été en mesure de traiter. Les simulateurs peuvent étre utilisés pour valider le
modele B événementiel a chaque étape de raffinement. Ils aident les utilisateurs finaux,
les experts du domaine et les développeurs afin de mieux comprendre les modeles
mathématiques et les spécifications réalisées.

Cette contribution a deux aspects :

— un environnement intégré de simulation pour les modeles B événementiel, réalisé a
I’aide de deux composants principaux :
— un traducteur (environ 2800 lignes en Java) implanté comme un plug-in Rodin qui
génere automatiquement des simulateurs du modele B événementiel et

116 APPENDIX A. PRESENTATION DE LA THESE EN FRANCAIS

— un environnement d’exécution et une bibliotheque (environ 2700 lignes en JavaS-

cript) qui prend en charge toutes les notations mathématiques du B événementiel ;

— une sémantique pour s’assurer de la correction des simulations utilisant une notion

d’obligations de preuve. Grice a cette sémantique, nous pouvons rendre exécutables
des modeles trés abstraits en les simulant de maniere siire sur des sous-domaines.

A.3 Etudes de cas

Les études de cas sont un élément crucial de notre démarche scientifique. Plusieurs ont
été utilisées dans ce travail ; quatre ont une importance plus particuliere.

— Modele du platooning en 1D : il développe un algorithme de contrdle longitudinal
du platooning ; il contient 10 composants et environ 600 lignes de code B événe-
mentiel. Nous avons analysé ligne a ligne et proposé plusieurs corrections pour cette
spécification développée dans de 1’équipe.

— Modele du platooning en 2D : il étend le modele du platooning en 1D précédant en
ajoutant le contrdle latéral ; il contient 10 composants et environ 1800 lignes de code B
événementiel. L’écriture, la vérification et la validation de cette spécification que nous
avons complément réalisées ont mis a jour des questions scientifiques et techniques.

— Modele du domaine de transport : il modélise les propriétés du domaine du transport
terrestre ; il contient 23 composants et environ 1100 lignes de code B événementiel.
Ce modele a été développé dans 1’équipe, et nous a permis de tester notre outil de
validation.

— Modele du MIDAS : il modélise un systéme de microprocesseurs avec I’abstraction de
données ; il contient 104 composants et environ 21800 lignes de code B événementiel.
Cette étude de cas développée dans une autre équipe de recherche présente deux
intéréts principaux : sa taille qui permet de contrdler que nos outils peuvent traiter de
cas réalistes, ainsi que son « externalité » qui permet de controler que nos outils sont
utilisables hors de notre contexte immédiat.

A.4 Publications

Conférences internationales

[1] Faqing Yang, Jean-Pierre Jacquot and Jeanine Souquieres. Proving the Fidelity of
Simulations of Event-B Models. In The 15th IEEE International Symposium on
High Assurance Systems Engineering (HASE), Miami, USA, forthcoming 2014.

[2] Faqing Yang, Jean-Pierre Jacquot and Jeanine Souquieres. JeB : Safe Simulation
of Event-B Models in JavaScript. In The 20th Asia-Pacific Software Engineering
Conference (APSEC), Bangkok, Thailand, 2013.

[3] Faqing Yang, Jean-Pierre Jacquot and Jeanine Souquieres. The Case for Using
Simulation to Validate Event-B Specifications. In The 19th Asia-Pacific Software
Engineering Conference (APSEC), Hong Kong, China, 2012.

A.5. APERCU DE L’ENSEMBLE DES CHAPITRES 117

[4] Faqing Yang and Jean-Pierre Jacquot. Scaling Up with Event-B : A Case Study.
In Mihaela Bobaru, Klaus Havelund, Gerard Holzmann, and Rajeev Joshi, editors,
NASA Formal Methods (NFM), volume 6617 of Lecture Notes in Computer Science,
pages 438-452. Springer Berlin / Heidelberg, 2011.

[5] Faqing Yang and Jean-Pierre Jacquot. An Event-B Plug-in for Creating Deadlock-
Freeness Theorems. In /4th Brazilian Symposium on Formal Methods (SBMF),
Sao Paulo, Brésil, 2011.

Conférences nationales

[6] Faqing Yang and Jean-Pierre Jacquot. JeB : un environnement de simulation en
JavaScript pour B événementiel. In Approches Formelles dans I’Assistance au
Développement de Logiciels (AFADL), Nancy, France, 2013.

[7] Faqing Yang, Jean-Pierre Jacquot and Jeanine Souquieres. Traduction de B
événementiel en C pour la validation par la simulation. In Approches Formelles
dans I’Assistance au Développement de Logiciels (AFADL), Grenoble, France,
2012.

[8] Faqing Yang and Jean-Pierre Jacquot. Prouvé ? Et apres ? In Approches Formelles
dans I’Assistance au Développement de Logiciels (AFADL), Poitiers, France, 2010.

Résumés d’article pour ateliers

[9] Faqing Yang and Jean-Pierre Jacquot. Generating Executable Simulations from
Event-B Specifications. In Rodin User and Developer Workshop, Fontainebleau,
France, 2012.

[10] Faqing Yang and Jean-Pierre Jacquot. An Event-B Plug-in for Creating Deadlock-
Freeness Theorems. In Rodin User and Developer Workshop, Fontainebleau,
France, 2012.

[11] Atif Mashkoor, Faging Yang and Jean-Pierre Jacquot. Validation of formal spe-
cification : The case for animation. In 3rd Workshop on Security and Reliability
(SecDay), Trier, Germany, 2011.

A.5 Apercu de ’ensemble des chapitres

Etat de art Dans ce chapitre, nous présentons un état de I’art sur les processus de
développement, les méthodes formelles, la méthode B et des modeles formels du platoo-
ning existants. Le processus de développement est présenté avec ses activités principales.
Les différents processus sont définis par la structure et la pratique de leurs activités. Les
méthodes formelles utilisent la logique mathématique pour raisonner rigoureusement
sur des logiciels et sur leur construction. La mise en ceuvre des méthodes formelles
est généralement cofiteuse en ressources et ces méthodes sont actuellement réservées
pour les logiciels critiques. La méthode B est une méthode formelle de développement
de logiciels et de systemes. Elle permet d’écrire les spécifications de fagon abstraite et
mathématique avec le langage B. Elle permet d’obtenir une implantation concrete par
I’application d’une suite de raffinements.

118 APPENDIX A. PRESENTATION DE LA THESE EN FRANCAIS

Analyse de la spécification du platooning en 1D Le modéle du platooning en 1D est
le point de départ de nos travaux de recherche. Nous avons fait une analyse approfondie
de ce modele afin d’acquérir une meilleure compréhension de la relation entre la preuve
d’un modele formel et sa correction au sens général. Nous avons découvert la présence
de deadlock liés a une faiblesse des invariants. Linvariant pour exprimer la propriété de
non-collision doit avoir la forme suivante :

Vv-(ve€2..VEHICLES=
xpos(v—1) —xpos(v) > CRITICAL_DISTANCE+brake_distance
)

ou brake_distance est une fonction basée sur la vitesse de véhicule et la décélération
maximale.

Générateur de théoremes de Deadlock-Freeness L’ absence de blocage est une pro-
priété essentielle pour certains modeles. Les théoremes de Deadlock-freeness sont connus
mais ils ne sont pas pris en compte actuellement pas les environnements supports de B
événementiel. Nous avons développé un outil pour la plate-forme Rodin qui génere auto-
matiquement des théorémes de Deadlock-freeness pour un sous-ensemble d’événements
dans un modele B événementiel.

Passage a I’échelle avec B événementiel Ce chapitre concerne notre expérience avec
la modélisation d’un algorithme réaliste pour le contrdle des véhicules autonomes en
B événementiel. Le passage d’'un modele en 1D a un modele en 2D ne semble pas
introduire un grand changement : on ajoute le controle latéral. Mais celui-ci requiert
I’introduction de notions telles que les fonctions trigonométriques et les courbes sur le
plan qui posent une vraie difficulté en B événementiel. Ce chapitre analyse plusieurs
aspects du passage de 1D a 2D : la structure du modele, 1’adaptation d’équations, les
propriétés temporelles et 1’adaptation des outils. Nous avons résolu certains problemes
concernant la cohérence entre les raffinements et 1I’adaptation d’équations. Le langage
B événementiel ne comporte pas les notions de temps ou de logique temporelle. Nous
analysons les problemes et leurs solutions pour notre étude de cas. Enfin, nous analysons
pourquoi les animateurs actuels n’ont pas réussi a exécuter le modele du platooning en
2D.

Conception de JeB JeB est un cadre d’assistance a la validation de modeles écrits en B
événementiel. Ce formalisme possede une sémantique opérationnelle bien définie et la va-
lidation consiste a observer I’exécution du modele. Dans la pratique, le non-déterminisme
et le haut niveau d’abstraction qu’il est conseillé d’utiliser dans les spécifications et leurs
premiers raffinements, empéchent d’automatiser totalement 1’exécution.

L’idée principale proposée par JeB est que la construction et I’exploitation de simulations
sont un processus de collaboration entre les outils et les humains : la traducteur de
JeB génere le code principal et les humains surmontent les difficultés liées au non-
déterminisme. L’architecture présentée dans la Figure A.1 est le reflet de cette idée.

A.5. APERCU DE L’ENSEMBLE DES CHAPITRES 119

Model
browser
Event-B library Parameters of
JavaScript files | simulation
—» (Event-B model) |
: i v i
Event-B) Parameters of
specification —» Translate —» Simulate <« events
HTML pages ¥ -
» (User interface) Hand-coded
Scheduler functions
Translator Simulators
Constant
checker

FIGURE A.1 — L’ architecture de JeB

JeB est composé de deux parties :

1.

Le traducteur est défini comme un plug-in Rodin; il est activé par ’utilisateur.
Le traducteur parcourt les machines et les contextes B événementiel ; il génere le
code JavaScript permettant d’exécuter le modele ainsi qu’une interface HTML
permettant de visualiser I’exécution. Des outils annexes comme le navigateur de
projets B événementiel et le vérificateur de constantes sont également générés.

. Les simulations nécessitent I’utilisation de quatre éléments :

Les programmes générés pas le traducteur forment 1’essentiel du code qui sera
exécuté. Chaque simulateur inclut une page HTML pour 'interface graphique
et une fichier JavaScript pour la spécification de la machine.

La bibliotheque B événementiel est une bibliotheque en JavaScript basée sur le
langage de la théorie des ensembles et de la logique du premier ordre. Elle prend
en charge toutes les notations mathématiques de B événementiel et interprete
les formules pendant I’exécution.

L’ ordonnanceur gere les interactions de 1’ utilisateur et ordonnance 1’exécution
des événements déclenchables.

Les fichiers de configuration définissent les parameétres globaux des simulations,
les parametres des événements particuliers et les fonctions codées a la main.

Cette conception permet d’isoler les parties qu’on sait traiter automatiquement de celles
qui requierent I’intervention de I’ utilisateur. En particulier, la résolution des difficultés

120 APPENDIX A. PRESENTATION DE LA THESE EN FRANCAIS

liées au non-déterminisme par I’insertion de solutions ad-hoc programmée par 1’utilisa-
teur est bien controlée.

Implantation de JeB Ce chapitre présente les détails techniques de notre implantation :
la traduction de contextes (constantes, axiomes), la traduction de machines (variables,
invariants, événements), la traduction de formules (prédicats, expressions, assignements),
I’interprétation de formules (bibliotheque) et le contrdleur de la simulation (exécution).

Le non-déterminisme intrinseéque de B événementiel fait qu’a chaque pas de I’exécution,

il y a en général plusieurs choix & effectuer. Nous avons donc adopté une stratégie

similaire a celle des animateurs qui passe par trois étapes :

— détermination de 1’ensemble des événements déclenchables (toutes les gardes sont
évaluées),

— choix d’un événement a déclencher,

— réalisation de I’action de 1’événement choisi.

Cette stratégie impose une traduction de 1’événement qui doit séparer les gardes et les

actions en deux parties. Le choix de I’événement est soit contr6lé par un ordonnanceur,

soit fixé par I’utilisateur. Un ordonnanceur qui choisit aléatoirement 1’événement est

fourni par défaut ; I’utilisateur peut le remplacer pour implanter d’autres stratégies.

Utilisation de JeB Nous décrivons la création de simulations en détail pour les modeles
du platooning en 1D et 2D. Nous donnons quelques observations pour les modeles utilisés
dans notre développement et une analyse du point de vue de la validation. Le processus
de simulation passe par quatre étapes :

— la génération des simulateurs par 1’activation du traducteur de JeB (automatique),

— la valuation des constantes et la programmation des fonctions qui permettent d’auto-
matiser les exécutions (manuelle),

— la mise en place de I’affichage graphique des états (optionnel) et

— D’observation et I’analyse des exécutions.

Concretement, I’ utilisateur doit compléter les squelettes fournis par le traducteur dans le

fichier de configuration. Ceux-ci concernent :
— la valuation de constantes :

$cst.CRITICAL_DISTANCE = $B('20");
— la définition un ensemble totalement abstrait, tel un carrier set, par un objet :

Scst.Point = function(x, y, v8, o8, v, k) {

var obj = {};

obj.x = x;

obj.y = y;

obj.ve = 18;

obj.o0 = o8;

obj.v = v;

obj.x = x;

obj.__proto__ = S$cst.Point.prototype;

return obj;

A.5. APERCU DE L’ENSEMBLE DES CHAPITRES 121

— les générateurs d’arguments :

get_magic_xpos_vehicle = function() {
return $B.plus(Svar.xpos.value.getImage ($Svar.vehicle.value), S$B(’10")
bi

— D’affichage graphique :

jeb.animator.draw = function() {

Sanim.clearRect (0, 0, S$anim.canvas.width, $anim.canvas.height);
Sanim.beginPath();
for (i=0; i<data.length; i++) {
x = data[i].right % Sanim.canvas.width;
Sanim.moveTo (x, 50);
Sanim.arc(x, 50, 10, 0, Math.PI*2, true);
Sanim.strokeText (i+1, x-5, 53);
}

Sanim.closePath();
Sanim.stroke();

i

Il est intéressant de noter que le colit d’utilisation de JeB reste raisonnable et qu’il peut
étre utilisé en tant qu’outil de routine pendant tout le développement. Le tableau suivant
résulte de nos observations sur ’'usage de JeB. Il met en relation la taille des spécifi-
cations (nombre de composants et de lignes B événementiel), la taille des simulateurs
permettant de les exécuter (nombre de lignes de JavaScript et HTML), la taille du code
que I'utilisateur doit fournir apres les générations (nombre de lignes de JavaScript), et le
taux qui décrit le pourcentage du code manuel par rapport a du code total de simulation.

Modele Nombre de Code Code de Code Taux
B événementiel Composants B événementiel simulation manuel (%)
1D Platooning 10 600 13 000 160 1.2
2D Platooning 10 1 800 28 300 460 1.6
Domaine de transport 23 1100 22 400 470 2.1
MIDAS 104 21 800 542 300 1300 0.2

L utilisation de JeB met en évidence tres rapidement les deadlocks dans les modeles
du platooning. Par rapport a d’autres techniques, JeB facilite la compréhension des
conditions et situations dans lesquelles apparaissent les deadlocks. 1l est ainsi plus facile
de corriger le modele. Dans le cadre de MIDAS et du modele des transports, nous avons
observé des comportements « suspects » qui, apres analyse, ont permis de découvrir des
axiomes « incorrects ». Il faut noter que les axiomes sont logiquement cohérents et que
les preuves se déroulent normalement ; 1’incorrection concerne la sémantique exprimée
par les axiomes.

Correction des simulations JeB permet de créer facilement des simulateurs en com-
posant des éléments automatiquement générés et des éléments fournis par un utilisateur.
Sachant que les interventions des utilisateurs sont une source majeure d’erreur, il est
crucial, dans le cadre d’'une méthode formelle, d’évaluer la confiance qu’on peut avoir
dans I’observation des simulations.

)i

122 APPENDIX A. PRESENTATION DE LA THESE EN FRANCAIS

Le comportement observé est-il effectivement spécifié par le texte formel ? Pour répondre
a cette question, nous avons défini formellement la notion de « fidélité » par la preuve.
Celle-ci utilise la notion de frace.

— Le comportement d’'une machine M est une suite finie d’événements

EO;€1;€2;...€n

tel que
Vj.j€l.n=e;€Evts

et
ﬁs(EO;el;ez; ...ep) S true

ou fis est le prédicat de faisabilité d’une suite d’événements. Traces(M) dénote
I’ensemble de tous les comportements de la machine M.
— Une trace de simulations est une suite finie

Teo Qs fer (xp,,)5 fer (x5,)35 feu (X1,

d’événements déclenchables tels que :
n
/\ eval(fe;-fGra (x.fej)) ==true
j=1

TraceExecutions(P) dénote 1’ensemble de toutes les traces de simulation d’un simu-
lateur P.

— Soit frrace € fEvns — EVts, la fonction qui associe aux méthodes JavaScript les évé-
nements B événementiel qu’elles implantent et map, la fonction qui applique ses
arguments fonctionnels a tout élément dans une suite. La fidélité d’un simulateur P
par rapport a une machine M est définie par

Vt-t € TraceExecutions(P)=>map(t, frrace) € Traces(M)

En pratique, la démonstration de la propriété de fidélité s’effectue a travers la démonstra-
tion d’obligations de preuves qui sont associées a chaque élément introduit par 1’utilisa-
teur. Il y a six situations, qui produisent cinq obligations de preuve :

1. Valuation d’une constante :
bool([s,c := f(sy), f(cy)|Axm(s,c)) = TRUE

2. Valuation d’un parametre :
n
/\ bOOl([S,C,V,xej Z:f(Sv),f(Cv),f(Vj),f(ngf)]Grdej(xej,s,C,V)) =TRUE
Jj=1 '

3. Générateur d’arguments : les valeurs générées sont vérifiées par les gardes d’un
événement ; il n’y a donc pas de preuve spécifique a réaliser.

A.6. CONCLUSION ET PERSPECTIVES 123

4. Instantiation d’un prédicat non calculable dans un invariant ou une garde :
eval(fg()) ==true < bool(¥)=TRUE
5. Valeur affectée lors d’une substitution non déterministe :

{f(V()) ’ Vo = fact()} g {V/ | BAPaCt(-in7S7C7V7V/)}

6. Fonction définie par des propriétés :

wp(Prog, fu) = N\ fiype(vi)
k=1

ol Prog est le programme JavaScript construit mécaniquement qui évalue 1’axiome
définissant la propriété.

A.6 Conclusion et Perspectives

Conclusion Dans cette theése, nous avons évalué 1’utilisabilité de B événementiel avec
I’étude de cas du probleme du platooning. L’ analyse critique du modele du platooning
en 1D découvre les comportements anormaux dans le modele original. La difficulté
d’exprimer des théoremes de Deadlock-freeness dans le B événementiel nous a motivé a
développer un outil pour construire automatiquement ces théoremes.

Le point important de ma thése est que les preuves mathématiques ne sont pas suffisantes
pour assurer la correction, au sens de ’'utilisateur, d’une spécification formelle. Une
spécification formelle doit étre validée tout au long de la chalne de raffinement au
méme titre qu’elle est vérifiée a chaque étape. Pour ce faire, nous avons besoin d’outils
de validation qui couvrent les modeles les plus abstraits. Les outils d’exécution de B
événementiel existants ont échoué sur le modele du platooning en 2D a cause de trop
de caractéristiques non déterministes dans les premiers niveaux de raffinement. C’est
pourquoi nous avons défini un nouvel outil d’exécution, JeB, qui est un environnement de
simulation en JavaScript pour B événementiel. JeB utilise un plug-in Rodin pour générer
automatiquement des simulateurs a partir de modeles B événementiel. Les simulateurs
générés peuvent Etre utilisés pour valider le modele B événementiel a chaque étape de
raffinement. Les simulateurs générés par JeB sont basés sur le modele B événementiel,
mais le code introduit par I’utilisateur peut introduire des erreurs dans le comportement
de la simulation. Pour la validation d’un modele B événementiel, la simulation doit
garantir que tout comportement de la simulation est un comportement spécifié dans
le modele formel. Nous avons défini certaines obligations de preuves pour garantir la
correction de I’ utilisation de la simulation.

Perspectives Cette these pourrait étre poursuivie dans trois directions :

— Technique : il s’agit d’améliorer I’efficacité de la bibliotheque pour B événementiel et
d’intégrer les obligations de preuves qui garantissent la correction d’utilisation de la
simulation a I’environnement (génération automatique et prouveurs adaptés) afin que
I’outil de JeB puisse étre adopté par les projets industriels.

124 APPENDIX A. PRESENTATION DE LA THESE EN FRANCAIS

— Processus de raffinement pour B événementiel : il s’agit d’associer les activités de
validation dans la chaine de raffinement. Chaque raffinement doit étre vérifié et validé
pour assurer sa correction. Le processus doit étre utilisable sur des projets complexes.

— Méthodologie : il s’agit d’intégrer les méthodes formelles dans le processus du déve-
loppement. Nous proposons un Modele du cycle en V étendu qui integre des techniques
informelles et des techniques formelles pour développer un systeéme complet. Les
faiblesses des méthodes formelles doivent étre reconnues a partir d’un point de vue
industriel.

Appendix B

Translation of Event-B Formulas

Contents
Bl SyntaxTree.o vttt v ittt oo oneeneas 125
B.2 Relational Predicate Nodes 127
B.3 Binary Predicate Nodest eennns 129
B.4 Associative Predicate Nodeso v v v v v v v 129
B.5 Literal PredicateNodes, 130
B.6 Simple Predicate Node0 0. 130
B.7 UnaryPredicateNode vttt vttt vt v 131
B.8 Quantified Predicate Nodes 131
B.9 Multiple Predicate Node v vt vt v v v vt v oo 132
B.10 Identifier ExpressionNodes 132
B.11 Integer Literal and Set Extension Expression Nodes 133
B.12 Binary ExpressionNodes0 ... 133
B.13 Associative ExpressionNodes 139
B.14 Atomic ExpressionNodes v v i v 140
B.15 Bool ExpressionNode, 143
B.16 Unary ExpressionNodes 143
B.17 Quantified ExpressionNodes 145
B.18 AssignmentNodes v v v vt vttt it 146

B.1 Syntax Tree

Each Event-B formula has a syntax tree representation. The JeB translator uses the
concrete syntax tree implemented in the Rodin platform. In this tree, each node has an
unique tag (an integer constant) that can be used to identify any Event-B mathematical
notation. To simplify the translator task, we developed a complete JavaScript library for
Event-B (see appendix C), hence every Event-B mathematical notation has an unique
interface definition in that library. The JeB translator recursively traverses the syntax

125

126 APPENDIX B. TRANSLATION OF EVENT-B FORMULAS

tree, maps each node of this tree to a defined interface, and finally outputs the parsed
result for each formula.

In Rodin, the syntax tree is an n-ary tree where a node can have between 0 and » children.
We traverse a given tree in preorder and perform the following operations recursively at
each node:

1. visit the root, add the mapping interface to the parsed result
2. fori=0tondo

(a) visit childrenli], if present

(b) add the mapping interface to the parameters of its parent interface
3. return the parsed result

We use the following pattern to represent the translation rule from a concrete syntax tree
node to its JavaScript output.

Event-B formula
Rodin tag name
Node type

Node children
Translation

the mathematical formula

the node tag name in the Rodin syntax tree implementation
leaf node (terminal node), unary node, binary node or n-ary
node (7 is specified in that node)

the children of a node, empty for a leaf node

the JavaScript parsed result

The used symbols are described below:

Symbols Meaning

E F,E,....E, denote expressions in Event-B

L denote a pattern of variables in Event-B, possibly including
— and parentheses

P,O, P,....P, denote predicates in Event-B

S, T,S81,...,8, denote set expressions in Event-B

U denote a set of sets in Event-B

f denote functions in Event-B

m, n, my,...,m, denote integer expressions in Event-B

FyFlye.osty denote relations in Event-B

Xy X1ynonyXn denote single variables in Event-B

o denote a literal integer in Event-B

X denote an identifier (free or bound) in Event-B

!/

superscript ()
superscript (77)
$B

$cst, $var, $arg

. (dot)
[...]

!/ !

denote a primed identifier in Event-B

denote a traversal of a child node

denote a special treatment of a translation

denote the namespace for the JavaScript library for Event-B
denote the namespaces for the translated constants, variables
and parameters, respectively

use to access the properties and methods of a JavaScript object
denote a JavaScript array

denote a JavaScript string

B.2. RELATIONAL PREDICATE NODES

B.2 Relational Predicate Nodes

B.2.1 Equality Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

E=F

EQUAL

binary node

E,F
$B.equal(E™ FTR)

B.2.2 Inequality Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

E#F

NOTEQUAL

binary node

E,F
$B.notEqual(E™® FTR)

B.2.3 Arithmetic Less Than Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

m<n

LT

binary node

m, n
$B.lessThan(m™® n™R)

B.2.4 Arithmetic Less Equal Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

m<n

LE

binary node

m, n
$B.lessEqual(m™® n™R)

B.2.5 Arithmetic Greater Than Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

m>n

GT

binary node
m, n

$B.greaterThan(m™® nR)

127

128 APPENDIX B. TRANSLATION OF EVENT-B FORMULAS
B.2.6 Arithmetic Greater Equal Node

Event-B formula m>n
Rodin tagname GE

Node type binary node
Node children m, n
Translation $B.greaterEqual(m™® nR)

B.2.7 Set Membership Node

Event-B formula E €S
Rodin tag name IN

Node type binary node
Node children E,S
Translation $B.belong(E™R STR)

B.2.8 Not a Set Membership Node

Event-B formula FE ¢S
Rodin tagname NOTIN

Node type binary node
Node children E.S
Translation $B.notBelong(E™® STR)

B.2.9 Proper Subset Node

Event-B formula SCT
Rodin tag name SUBSET

Node type binary node
Node children S, T
Translation $B.properSubset(S™R TTR)

B.2.10 Not a Proper Subset Node

Event-B formula S¢ T

Rodin tag name = NOTSUBSET

Node type binary node

Node children S, T

Translation $B.notProperSubset(S™R, TTR)

B.3. BINARY PREDICATE NODES

B.2.11 Subset Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

SCT

SUBSETEQ

binary node

S, T

$B.subset(S™R TTR)

B.2.12 Not a Subset Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

SZT
NOTSUBSETEQ
binary node

S, T

$B.notSubset(S™®, TTR)

B.3 Binary Predicate Nodes

B.3.1 Implication Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

P=0Q
LIMP
binary node

P,.Q

$B.implication(P™® , Q™)

B.3.2 [Equivalence Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

P&0Q
LEQV
binary node

P, Q

$B.equivalence(P™® Q™)

B.4 Associative Predicate Nodes

B.4.1 Conjunction Node (Left Associative)

Event-B formula
Rodin tag name
Node type

Node children
Translation

PIN...AP, (n>2)
LAND

n-ary node

P, ... P,
$B.and(PIR, ..., PIR)

129

130 APPENDIX B. TRANSLATION OF EVENT-B FORMULAS

B.4.2 Disjunction Node (Left Associative)

Event-B formula P, V...VP, (n>2)
Rodin tag name LOR

Node type n-ary node

Node children P,...,P,

Translation $B.or(PIR, ... PIR)

B.5 Literal Predicate Nodes

B.5.1 True Predicate Node

Event-B formula T

Rodin tagname = BTRUE
Node type leaf node
Node children -
Translation $B.bTrue()

B.5.2 False Predicate Node

Event-B formula L

Rodin tag name BFALSE
Node type leaf node
Node children -
Translation $B.bFalse()

B.6 Simple Predicate Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

B.6.1 Finite Set Node

finite(S)
KFINITE
unary node

S
$B.finite(S™R)

B.7. UNARY PREDICATE NODE 131
B.7 Unary Predicate Node

B.7.1 Negation Node

Event-B formula —P
Rodin tag name NOT

Node type unary node
Node children P
Translation $B.not(PTR)

B.8 Quantified Predicate Nodes

B.8.1 Universal Quantification Node

Event-B formula Vxp,...,x,-P (n>1)
Rodin tagname = FORALL

Node type n-ary node
Node children X1yeeeyXp, P
Translation $B forAll(PTR* [xTR . xIR+])

The special treatment of P"®* is defined by a wrapped function:

PTR* = function(xlTR, ... ,ng) |
return PTR;
}
The algorithm for the treatment of [x1®*, ... xI®*] is defined by:

1. let array =[]

2. fori=1tondo
(a) try to find an explicit domain constraint set using the € operator in P for x;
(b) if found, add the translation of that set to array

(c) else add the translation of the basic type set associated by the static checker
to array

3. return array

For example, given a predicate Vxi,xp-x; € SAx; € T = Q, the result of translation
[xTR* xIR*] is defined as: [xTR* xIR*] = [STR TTR],

B.8.2 Existential Quantification Node

Event-B formula 3Jxi,...,x,-P (n>1)

Rodin tag name EXISTS

Node type n-ary node

Node children X1yeenyXp, P

Translation $B.exists(PTR* [xTR . xIR+)

132 APPENDIX B. TRANSLATION OF EVENT-B FORMULAS

The special treatments of PTR* and [xTR* ... xIR*

node in Sect. B.8.1.

| are same to the universal quantification

B.9 Multiple Predicate Node

B.9.1 Partition of a Set Node

Event-B formula partition(Sy,...,S,) (n>1)
Rodin tag name KPARTITION

Node type n-ary node
Node children Sty ... 8
Translation $B.partition(STR, ... STR)

B.10 Identifier Expression Nodes

B.10.1 Free Identifier Node

Event-B formula 7
Rodin tagname FREE_IDENT

Node type leaf node
Node children -
Translation 1) output $esz.y if ¢ is a constant defined in a context

2) output $var.y.value if is a variable defined in a machine
3) output $arg.x.value if ¥ is a parameter defined in an event

B.10.2 Bound Identifier Node

Event-B formula
Rodin tagname = BOUND_IDENT

Node type leaf node
Node children -
Translation 1) output if is not a primed identifier

2) output $var.y._value if ¥ is a primed identifier

The second case occurs at the non-deterministic assignment with a before-after predicate
node in Sect. B.18.3.

B.10.3 Bound Identifier Declaration Node

Event-B formula -

Rodin tag name BOUND_IDENT_DECL
Node type leaf node

Node children -

Translation -

B.11. INTEGER LITERAL AND SET EXTENSION EXPRESSION NODES 133

This kind of node is just internal used by the JeB translator to get the name of bound
identifiers in a formula, e.g., in the formula

Vxi,x-x1 ENAxp EN=x1+x, >0

the first occurrences of x; and x; are the nodes of bound identifier declarations, the other
occurrences are the nodes of bound identifiers.

B.11 Integer Literal and Set Extension Expression Nodes

B.11.1 Integer Literal Node

Event-B formula o
Rodin tag name INTLIT

Node type leaf node
Node children -
Translation $B('o)

For example,

Event-B Translation

1000 $B('1000)
123456789012345678901234567890 $B('123456789012345678901234567890')

B.11.2 Set Extension Node

Event-B formula {Ei,...,E,} (n>1)
Rodin tag name SETEXT

Node type n-ary node
Node children Ei, ... E,
Translation $B.SetExtension(ETR, ... EIR)

B.12 Binary Expression Nodes

B.12.1 Ordered Pair Node

Event-B formula FE — F

Rodin tag name = MAPSTO

Node type binary node

Node children E,F

Translation $B.Pair(E™R FR)

134 APPENDIX B. TRANSLATION OF EVENT-B FORMULAS

B.12.2 Relations Node

Event-B formula ST
Rodin tagname REL

Node type binary node
Node children S, T
Translation $B.Relations(S™ TTR)

B.12.3 Total Relations Node

Event-B formula S« T
Rodin tagname TREL

Node type binary node
Node children S, T
Translation $B.TotalRelations(S™ TTR)

B.12.4 Surjective Relations Node

Event-B formula S<»T
Rodin tag name SREL

Node type binary node
Node children S, T
Translation $B.SurjectiveRelations(S™R TTR)

B.12.5 Total Surjective Relations Node

Event-B formula S«»T
Rodin tag name STREL

Node type binary node
Node children S, T
Translation $B.TotalSurjectiveRelations(STR, TTR)

B.12.6 Partial Functions Node

Event-B formula S-~»T

Rodin tag name PFUN

Node type binary node

Node children S, T

Translation $B.PartialFunctions(ST™®, TTR)

B.12. BINARY EXPRESSION NODES 135

B.12.7 Total Functions Node

Event-B formula S—T
Rodin tagname TFUN

Node type binary node
Node children S, T
Translation $B.TotalFunctions(S™®, TTR)

B.12.8 Partial Injections Node

Event-B formula S»+T
Rodin tag name PINJ

Node type binary node
Node children S, T
Translation $B.Partiallnjections(STR, TTR)

B.12.9 Total Injections Node

Event-B formula S—T
Rodin tag name TINJ

Node type binary node
Node children S, T
Translation $B.Totallnjections(S™R, TTR)

B.12.10 Partial Surjections Node

Event-B formula S-»T
Rodin tag name PSUR

Node type binary node
Node children S, T
Translation $B.PartialSurjections(S™®, TTR)

B.12.11 Total Surjections Node

Event-B formula S—T

Rodin tag name TSUR

Node type binary node

Node children S, T

Translation $B.TotalSurjections(S™®, T™R)

136 APPENDIX B. TRANSLATION OF EVENT-B FORMULAS

B.12.12 Total Bijections Node

Event-B formula S—»T
Rodin tagname TBIJ

Node type binary node
Node children S, T
Translation $B.TotalBijections(S™, TTR)

B.12.13 Set Difference Node

Event-B formula S\ T
Rodin tag name SETMINUS

Node type binary node
Node children S, T
Translation $B.setMinus(S™®, TTR)

B.12.14 Cartesian Product Node

Event-B formula SxT
Rodin tagname = CPROD

Node type binary node
Node children S, T
Translation $B.CartesianProduct(S™® T™F)

B.12.15 Direct Product Node

Event-B formula ri®nr
Rodin tagname = DPROD

Node type binary node
Node children ri,
Translation $B.directProduct(ri® rIR)

B.12.16 Parallel Product Node

Event-B formula r; ||

Rodin tag name = PPROD

Node type binary node

Node children r,

Translation $B.parallelProduct(r® rIR)

B.12. BINARY EXPRESSION NODES

B.12.17 Domain Restriction Node

Event-B formula S<r
Rodin tag name = DOMRES

Node type binary node

Node children S, r

Translation $B.domainRestriction(S™R r'R)
B.12.18 Domain Subtraction Node

Event-B formula S<4r

Rodin tag name = DOMSUB

Node type binary node

Node children S, r

Translation $B.domainSubtraction(S™R, r’R)
B.12.19 Range Restriction Node

Event-B formula r>T

Rodin tagname RANRES

Node type binary node

Node children r, T

Translation $B.rangeRestriction(r™® TTK)
B.12.20 Range Subtraction Node

Event-B formula r>T

Rodin tag name = RANSUB

Node type binary node

Node children r, T

Translation $B.rangeSubtraction(r’™® TTR)

B.12.21 Interval Node

Event-B formula m..n

Rodin tag name UPTO

Node type binary node

Node children m,n

Translation $B.UpTo(m™R nR)

137

138

APPENDIX B. TRANSLATION OF EVENT-B FORMULAS

B.12.22 Arithmetic Subtraction Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

B.12.23

Event-B formula
Rodin tag name
Node type

Node children
Translation

B.12.24

Event-B formula
Rodin tag name
Node type

Node children
Translation

m—n
MINUS

binary node

m, n
$B.minus(m™® n™R)

Arithmetic Quotient Node

m-=n

DIV

binary node

m, n
$B.divide(m™ n'F)

Arithmetic Reminder Node

m mod n

MOD

binary node

m, n
$B.mod(m™® n'R)

B.12.25 Arithmetic Exponentiation Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

m-n

EXPN

binary node

m, n
$B.pow(m!R n™R)

B.12.26 Function Image Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

f(E)
FUNIMAGE
binary node
f, E
$B.functionlmage(R ETR)

B.13. ASSOCIATIVE EXPRESSION NODES

B.12.27 Relation Image Node

Event-B formula r[S]
Rodin tagname RELIMAGE

Node type binary node
Node children r,S
Translation $B.relationlmage(r'®, S™F)

B.13 Associative Expression Nodes

B.13.1 Set Union Node

Event-B formula Sy U...US, (n>2)
Rodin tag name = BUNION

Node type n-ary node
Node children Sty ... 8,
Translation $B.setUnion(STR, ... STR)

B.13.2 Set Intersection Node

Event-B formula S1N...NS, (n>2)
Rodin tag name BINTER

Node type n-ary node
Node children Sty ... 8,
Translation $B.setinter(STR, ... SIR)

B.13.3 Relational Forward Composition Node

Event-B formula r;;...;r, (n>2)

Rodin tag name = FCOMP

Node type n-ary node

Node children Fly oo T

Translation $B.forwardComposition(riX, ... rIR)

B.13.4 Relational Backward Composition Node

Event-B formula rjo...or, (n>2)
Rodin tag name = BCOMP

Node type n-ary node

Node children Fly .o Iy

Translation $B.backwardComposition(riX, ... rI¥)

139

140 APPENDIX B. TRANSLATION OF EVENT-B FORMULAS

B.13.5 Relational Overriding Node

Event-B formula ri<...<r, (n>2)
Rodin tag name OVR

Node type n-ary node
Node children Flyoou Iy
Translation $B.override(rlk, ... rIR)

B.13.6 Arithmetic Addition Node

Event-B formula my+...+m, (n>2)
Rodin tag name PLUS

Node type n-ary node
Node children my, ..., My
Translation $B.plus(mi®, ... mIF)

B.13.7 Arithmetic Multiplication Node

Event-B formula mj*...xm, (n>2)
Rodin tagname MUL

Node type n-ary node
Node children mi, ..., My
Translation $B.multiply(mi®, ... mIF)

B.14 Atomic Expression Nodes

B.14.1 Integer Numbers Node

Event-B formula 7Z
Rodin tag name = INTEGER

Node type leaf node
Node children -
Translation $B.INTEGER

B.14.2 Natural Numbers Node

Event-B formula N

Rodin tag name = NATURAL
Node type leaf node
Node children -

Translation $B.NATURAL

B.14. ATOMIC EXPRESSION NODES 141

B.14.3 Positive Natural Numbers Node

Event-B formula N
Rodin tagname = NATURALI

Node type leaf node
Node children -
Translation $B.NATURALI

B.14.4 Boolean Values Set Node

Event-B formula BOOL
Rodin tag name BOOL

Node type leaf node
Node children -
Translation $B.BOOL

B.14.5 Boolean TRUE Node

Event-B formula TRUE
Rodin tag name TRUE

Node type leaf node
Node children -
Translation $B.TRUE

B.14.6 Boolean FALSE Node

Event-B formula FALSE
Rodin tag name FALSE

Node type leaf node
Node children -
Translation $B.FALSE

B.14.7 Empty Set Node

Event-B formula o

Rodin tag name EMPTYSET
Node type leaf node
Node children -

Translation $B.EmptySet

142

B.14.8 Arithmetic Predecessor Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

APPENDIX B. TRANSLATION OF EVENT-B FORMULAS

pred(m)
KPRED
unary node

m
$B.pred(m™®)

B.14.9 Arithmetic Successor Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

succ(m)
Ksucc
unary node

m
$B.succ(m®)

B.14.10 First Projection Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

prj;
KPRJ1_GEN
leaf node

$B.prjl

B.14.11 Second Projection Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

pri;
KPRJ2 GEN
leaf node

$B.prj2

B.14.12 Identity Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

id
KID GEN
leaf node

$B.id

B.15. BOOL EXPRESSION NODE

B.15 Bool Expression Node

B.15.1 Bool Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

bool(P)
KBOOL
unary node
P
$B.bool(P™)

B.16 Unary Expression Nodes

B.16.1 Cardinality Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

card(S)
KCARD
unary node

S
$B.card(S™)

B.16.2 Power Set Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

P(S)

POW

unary node

S
$B.PowerSet(S™R)

B.16.3 Non-empty Subsets Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

Py (S)

POWI

unary node

S
$B.PowerSetl(STR)

B.16.4 Generalized Union Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

union(U)
KUNION
unary node

U
$B.union(U™F)

143

144

B.16.5 Generalized Intersection Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

APPENDIX B. TRANSLATION OF EVENT-B FORMULAS

inter(U)
KINTER
unary node

U
$B.inter(UTR)

B.16.6 Domain Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

dom(r)
KDOM
unary node
r

$B.dom(r™®)

B.16.7 Range Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

ran(r)
KRAN
unary node
;

$B.ran(r'®)

B.16.8 Arithmetic Minimum Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

min(S)
KMIN
unary node
S
$B.min(STR)

B.16.9 Arithmetic Maximum Node

Event-B formula
Rodin tag name
Node type

Node children
Translation

max(S)
KMAX
unary node
S
$B.max(S™®)

B.17. QUANTIFIED EXPRESSION NODES 145

B.16.10 Inverse Relation Node

Event-B formula r~
Rodin tag name = CONVERSE

Node type unary node
Node children r
Translation $B.converse(r'®)

B.16.11 Arithmetic Unary Minus Node

Event-B formula —m

Rodin tag name UNMINUS

Node type unary node

Node children m

Translation $B.unminus(m'™®)

B.17 Quantified Expression Nodes

B.17.1 Set Comprehension Node

Event-B formula {x;,...,x,-P|E} (n>1)
{E | P} (short form)

Rodin tag name CSET

Node children Xly-eoyXn, PE

Translation $B.SetComprehension(PTR* [ETR* [xTR* | xIR+])

The special treatments of P7%* and [xR* ... xI®*] are same to the universal quantification
node in Sect. B.8.1. The treatment of E’®* is defined by:

ETR* TR TR)

= function(x1",...,x,
return ETR;

B.17.2 Lambda Node

Event-B formula AL-P|E

AE | P (short form)
Rodin tagname CSET
Node children X1yeeosXn, PE

where x1,...,x, (n > 1) are the identifiers in L
Translation $B.Lambda(P™R* ETR* [xTR+ . xIR+])

In Rodin, the lambda expression is special form of the set comprehension, it uses the

same tag with the set comprehension node. The treatments of PT®* and [xT®*, ... xI®¥]

146 APPENDIX B. TRANSLATION OF EVENT-B FORMULAS

are same to the universal quantification node in Sect. B.8.1. The treatments of ETR* is
same to the set comprehension node in Sect. B.17.1.

B.17.3 Quantified Union Node

Event-B formula Jxj,...,x,-P|E (n>1)
UE |P (short form)

Rodin tag name = QUNION

Node children X1y.eoyXn, PE

Translation $B.quantifiedUnion(PTR* | ETR* [xTRx xIR])

The treatments of P7%* and [xTR*, ... xI®*] are same to the universal quantification node

in Sect. B.8.1. The treatments of E’®* is same to the set comprehension node in Sect.
B.17.1.

B.17.4 Quantified Intersection Node

Event-B formula (xj,...,x,-P|E (n>1)
NE |P (short form)

Rodin tagname QINTER

Node children Xly-eoyXn, PE

Translation $B.quantifiedInter(PTR* ETR* [xIR* xIR+])
The treatments of P7%* and [xTR*, ... xI®*] are same to the universal quantification node

in Sect. B.8.1. The treatments of E’®* is same to the set comprehension node in Sect.
B.17.1.

B.18 Assignment Nodes

B.18.1 Deterministic Assignment Node

Event-B formula xi,...,x,:=E,...,E, (n>1)
Rodin tag name = BECOMES_EQUAL_TO

Node type n-ary node
Node children X1, X, Ep, .. Ey
Translation $B.becomesEqualTo([xTR, ... xIR] [ETR . .. EIR])

There exists a special assignment which uses a relational overriding: x(E) := F. In fact,
this is just a shorthand for x := x < {E — F'}, therefore this form is unified to the above
node.

B.18. ASSIGNMENT NODES 147

B.18.2 Non-deterministic Assignment of a Set Member Node

Event-B formula x:€ E
Rodin tag name BECOMES MEMBER OF

Node type binary node
Node children x, E
Translation $B.becomesMemberOf (xR ETR)

B.18.3 Non-deterministic Assignment with a Before-after-predicate Node

Event-B formula xj,...,x,:| Q(x},...,x},) (n>1)

<A

Rodin tagname =~ BECOMES_SUCH_THAT

Node type n-ary node
Node children XlyeoosXny Xy X, O
Translation $B.becomesSuchThat([xTX,... xTR], QTR [x|™* ... x ™)

In Rodin, Q is a before-after predicate quantified by the bounded identifiers x|, .. ., x, that
reference the primed value of identifiers x1, ..., x,, respectively. The special treatment of
QTR* is defined by a wrapped function:

Q™ = function() ({
return Q'R;

}

: TR TR¥] . . e .
The special treatment of [x}""",...,x, " | is same to the universal quantification node in

Sect. B.8.1.

148 APPENDIX B. TRANSLATION OF EVENT-B FORMULAS

Appendix C

JavaScript Library for Event-B

Contents
Cd Booleansttt ittt eeennennos 150
C2 Arithmetic ittt i ittt ittt neenneenas 150
C3 Predicates. v v it it i ittt ittt 155
L S 159
CS Relations0 v i i ittt ittt ittt e ettt 169
C6 Functions v v v i i i i it it ittt ie s e s 175
C7 Assignmentso ovv vt v tneeeossoseenas 180

We use the following pattern to represent each API:

Notation
Syntax
Parameter
Return
Description
Example

the corresponding Event-B mathematical notation
the API syntax in JavaScript

parameters, if present

the returned value, if present

the role

some examples

The symbols and notations that we uses are described below:

Symbols
$B

$B()

. (dot)
[...]

4 4

true, false

undefined

Meaning

the namespace of the JavaScript library for Event-B

an alias of the integer constructor $B. Integer ()

uses to access the properties and methods of a JavaScript object
1) denotes a JavaScript array

2) denotes optional parameters in the syntax grammar

denotes a JavaScript string

denotes the JavaScript primitive boolean values

denotes the JavaScript primitive undefined value

149

150 APPENDIX C. JAVASCRIPT LIBRARY FOR EVENT-B

C.1 Booleans

C.1.1 $B.TRUE

Notation boolean TRUE

Syntax $B.TRUE

Description This constant has the JavaScript primitive boolean true value.
Example $B.TRUE returns true

C.1.2 $B.FALSE

Notation boolean FALSE

Syntax $B.FALSE

Description This constant has the JavaScript primitive boolean false value.
Example $B.FALSE returns false

C.1.3 $B.bool

Notation bool expression

Syntax SB.bool(P)

Parameter P - a predicate

Return 1) true if the evaluation of P is true

2) false if the evaluation of P is false
Description This function converts a predicate to a boolean value.
Example $B.bool ($B.bTrue ()) returns true

S$B.bool (SB.bFalse()) returns false

C.2 Arithmetic

C.2.1 $B.Integer

Notation integer literal

Syntax $B.Integer(value)

Parameter value - a decimal string enclosed in single quotes, it consists of an
optional minus sign followed by a sequence of one or more decimal
digits, i.e., it matches the regular expression /" [-]?[0-9]+5/

Return an instance of $B.Integer

Description This function is the integer object constructor which represents an
arbitrary precision integer. $B. Integer objects should be considered
immutable.

Example $B.Integer ('-1000")
SB.Integer(’123456789012345678901234567890")

C.2. ARITHMETIC

151

Remark: The namespace $B also references to $B.Integer, we can use $B as the
integer object constructor, the above examples are equal to $B (' -1000'),
$B('123456789012345678901234567890"), respectively.

To achieve a context-free lexical analysis, Event-B considers that integer literals are
unsigned. For instance, the string —1 is thought as an unary minus operator followed by
a number. To facilitate user input, we design that integer literals are signed in the library
implementation.

C.2.2 $B.minus

Notation
Syntax
Parameter
Return

Description
Example

arithmetic subtraction

$B.minus(m, n)

m, n -two instances of $B.Integer

1) an instance of $B.Integer if both parameters are instances of
$B.Integer

2) undefined if any parameter is not an instance of $B. Integer
This function computes the subtraction of two input integers.
SB.minus (SB('8’), S$B(’5')) returns $B(’3")

S$SB.minus ($B(’8’), undefined) returns undefined

C.2.3 $B.divide

Notation
Syntax
Parameter
Return

Description
Example

arithmetic quotient

$B.divide(m, n)

m, n -two instances of $B.Integer

1) an instance of $B.Integer if both parameters are instances of
$B.Integer and n is not equal to zero

2) undefined if any parameter is not an instance of $B.Integer orn
is equal to zero

This function computes the quotient of two input integers.
$B.divide ($B('8"), S$B(’5')) returns SB('1")

$B.divide ($B('8"), $B(’0’)) returns undefined

$B.divide ($B(’8’), undefined) returns undefined

152

C.24 $B.mod

Notation
Syntax
Parameter
Return

Description
Example

APPENDIX C. JAVASCRIPT LIBRARY FOR EVENT-B

arithmetic reminder

$SB.mod (m,

n)

m, n -two instances of $B.Integer

1) an instance of $B.Integer if both parameters are instances of
S$B.Integerandm >=0An > 0

2) undefined if any parameter is not an instance of $B.Integer or
m< Oorn <=0

This function computes the reminder of two input integers.

$B.mod ($B('8"),
$B.mod (SB('8"),

SB.mod ($B (

C.2.5 $B.pow

Notation
Syntax
Parameter
Return

Description
Example

SB('5’)) returns SB (' 3')
SB(’0")) returns undefined
"8"), undefined) returns undefined

arithmetic exponentiation

$B.pow (m,

n)

m, n -two instances of $B.Integer

1) an instance of $B.Integer if both parameters are instances of
$B.Integerandm >=0 An >= 0

2) undefined if any parameter is not an instance of $B.Integer or
m< Qorn < 0

This function computes the exponentiation of two input integers.

SB.pow ($B (
$B.pow ($B (

C.2.6 $B.plus

Notation
Syntax
Parameter
Return

Description
Example

787), $B('5")) returns $B(’32768")
"8"), undefined) returns undefined

arithmetic addition

$B.plus(ml, m2[,

ml, m2,

[, mNJT)
., mN - instances of $B.Integer

1) an instance of $B.Integer if all parameters are instances of

$B.Integer

2) undefined if any parameter is not an instance of $B.Integer
This function computes the addition of two or more input integers.

$B.plus ($B
S$B.plus ($B

("1"), SB('2"), SB(’'5’)) returns $SB(’8")
("1"), undefined) returns undefined

C.2. ARITHMETIC 153

C.2.7 $B.multiply

Notation
Syntax
Parameter
Return

Description
Example

arithmetic multiplication

$B.multiply(ml, m2[, ...[, mN]])

ml, m2, ..., mN-instances of $B.Integer

1) an instance of $B.Integer if all parameters are instances of
$B.Integer

2) undefined if any parameter is not an instance of $B. Integer
This function computes the multiplication of two or more input integers.
SB.multiply (SB('1"), SB('2"), $B(’5')) returns $SB('10")
S$B.multiply ($B(’1’), undefined) returns undefined

C.2.8 $B.pred

Notation
Syntax
Parameter
Return

Description
Example

arithmetic predecessor

$B.pred(m)

m - an instance of $B. Integer

1) an instance of $B.Integer if mis an instance of $B. Integer
2) undefined if mis not an instance of $B. Integer

This function computes the predecessor of an input integer.
$B.pred ($B(’100")) returns SB(’99")

$B.pred (undefined) returns undefined

C.2.9 $B.succ

Notation
Syntax
Parameter
Return

Description
Example

arithmetic successor

$B.succ(m)

m - an instance of $B. Integer

1) an instance of $B.Integer if mis an instance of $B. Integer
2) undefined if mis not an instance of $B. Integer

This function computes the successor of an input integer.
$B.succ ($B(’100")) returns SB(’101")

$B.succ (undefined) returns undefined

C.2.10 $B.unminus

Notation
Syntax
Parameter
Return

Description
Example

arithmetic unary minus

S$SB.unminus (m)

m - an instance of $B. Integer

1) an instance of $B.Integer if mis an instance of $B. Integer
2) undefined if mis not an instance of $B. Integer

This function computes the negation of an input integer.
$B.unminus ($B(’100’)) returns $B(’-100")

$B.unminus (undefined) returns undefined

154

APPENDIX C. JAVASCRIPT LIBRARY FOR EVENT-B

C.2.11 $B.lessThan

Notation
Syntax
Parameter
Return

Description
Example

arithmetic less predicate

$B.lessThan(m, n)

m, n -two instances of $B.Integer

true if both parameters are instances of $B. Integer and m is less than
n, otherwise false

This function compares two input integers.

S$B.lessThan ($B(’57), SB(’'8’)) returns true

$B.lessThan (SB('5"), SB(’5’)) returns false

$B.lessThan ($B(’5’), undefined) returns false

C.2.12 $B.lessEqual

Notation
Syntax
Parameter
Return

Description
Example

arithmetic less or equal predicate

$B.lessEqual(m, n)

m, n -two instances of $B.Integer

true if both parameters are instances of $B. Integer and m is less than
or equal to n, otherwise false

This function compares two input integers.

$B.lessEqual (SB('5"), $B(’8')) returns true

$B.lessEqual (SB('5"), $B(’5")) returns true

$B.lessEqual ($B(’5’), undefined) returns false

C.2.13 $B.greaterThan

Notation
Syntax
Parameter
Return

Description
Example

arithmetic greater predicate

$B.greaterThan(m, n)

m, n -two instances of $B.Integer

true if both parameters are instances of $B.Integer and m is greater
than n, otherwise false

This function compares two input integers.
S$B.greaterThan(SB('8’), S$B(’5')) returns true
$B.greaterThan ($B(’5"), $B(’5’)) returns false
S$B.greaterThan (SB(’5’), undefined) returns false

C.3. PREDICATES 155

C.2.14 $B.greaterEqual

Notation
Syntax
Parameter
Return

Description
Example

arithmetic greater or equal predicate

$B.greaterEqual (m, n)

m, n -two instances of $B.Integer

true if both parameters are instances of $B.Integer and m is greater
than or equal to n, otherwise false

This function compares two input integers.

SB.greaterEqual (SB(’8"), S$B(’5')) returns true
$B.greaterEqual (SB('5"), $B(’5’)) returns true
$B.greaterEqual (SB(’5’), undefined) returns false

C.3 Predicates

C.3.1 $B.bTrue

Notation
Syntax
Parameter
Return
Description
Example

primitive true predicate
SB.bTrue ()

true
This function represents the primitive true predicate.
$B.bTrue () returns true

C.3.2 $B.bFalse

Notation
Syntax
Parameter
Return
Description
Example

primitive false predicate

$B.bFalse ()

false

This function represents the primitive false predicate.
$B.bFalse () returns false

C.3.3 $B.implication

Notation
Syntax
Parameter
Return

Description
Example

implication predicate

$B.implication(P, Q)

P, Q- two predicates

if the evaluation of P is true, returns the evaluation of Q, if the evalua-
tion of P is false, returns true

This function evaluates two input predicates.
$B.implication($B.bTrue(), $B.bTrue()) returns true
S$B.implication($B.bTrue(), S$B.bFalse()) returns false
$B.implication($B.bFalse(), $B.bTrue()) returns true
$B.implication($B.bFalse(), S$B.bFalse()) returns true

156

APPENDIX C. JAVASCRIPT LIBRARY FOR EVENT-B

C.3.4 $B.equivalence

Notation
Syntax
Parameter
Return

Description
Example

equivalence predicate

$B.equivalence(P, Q)

P, Q- two predicates

1) true if the evaluation of P is equal to the evaluation of Q

2) false if the evaluation of P is not equal to the evaluation of Q
This function evaluates two input predicates.

$B.equivalence ($B.bTrue (), $B.bTrue()) returns true
$B.equivalence ($B.bTrue (), $B.bFalse()) returns false
$B.equivalence ($B.bFalse (), S$B.bTrue()) returns false
$B.equivalence ($B.bFalse (), S$B.bFalse()) returns true

C.3.5 $B.and

Notation
Syntax
Parameter
Return

Description
Example

C.3.6 $B.or

Notation
Syntax
Parameter
Return

Description
Example

conjunction predicate

$B.and(P1, P2[, ...[, Pn]])

P1, P2, ..., Pn-predicates

if the evaluation (from left to right) of any predicate is false, immedi-
ately returns false, otherwise returns the evaluation of Pn

This function evaluates two or more input predicates.

S$B.and ($B.bTrue (), $B.bTrue()) returns true

$B.and ($B.bTrue (), $B.bFalse()) returns false

S$B.and ($SB.bFalse (), S$B.bTrue()) returns false

$B.and ($B.bFalse (), S$B.bFalse()) returns false

disjunction predicate

$B.or(P1, P2[, ...[, Pn]l)

P1, P2, ..., Pn-predicates

if the evaluation (from left to right) of any predicate is t rue, immedi-
ately returns true, otherwise returns the evaluation of Pn

This function evaluates two or more input predicates.

S$SB.or ($SB.bTrue (), S$B.bTrue()) returns true

S$B.or ($B.bTrue (), $B.bFalse()) returns true

S$SB.or ($SB.bFalse (), $B.bTrue()) returns true

S$B.or ($B.bFalse(), S$B.bFalse()) returns false

C.3. PREDICATES 157

C.3.7 $B.not

Notation negation predicate

Syntax SB.not (P)

Parameter P - a predicate

Return 1) true if the evaluation of P is false

2) false if the evaluation of P is true
Description This function evaluates an input predicate.
Example $B.not ($B.bTrue ()) returns false

SB.not ($SB.bFalse ()) returns true

C.3.8 $B.forAll

Notation universal quantified predicate

Syntax $B.forAll(predicateFunction, domainArray)

Parameter predicateFunction - a function with the quantifiers as its parameters
and the quantified predicate as its function body
domainArray - an array, it contains the enumerated sets for each pa-
rameter in the function predicateFunction

Return for each value of each set in domainArray, constructs a new array
argArray, evaluates predicateFunction with argArray as its argu-
ments until it returns false, otherwise finally returns true

Description This function evaluates the universal quantification.

Example sees below

Evaluating the universal quantification Vx,y-x € 1..2Ay € 3..4=x+y >=4 yields
true, where

predicateFunction = function(x, y) {
return $B.implication($B.and(
$B.belong(x, $B.UpTo($B('1’'), S$B('2"))),
$B.belong (y, $B.UpTo($B('3'), $B('47)))),
$B.greaterEqual ($SB.plus(x, y), $B('4')));
}

domainArray = [$B.UpTo(S$B('1’), $B(’2')), SB.UpTo($B('3’), $B('4'))]

Remark: If there exists an infinite set for any quantifiers, users should consider the
range of enumerated values or their own implementation, by default, the enumerated
values for Z,N,Nj are constrained by two configurable simulation parameters:

$B.MAX_ENUMERATED_VALUE
$B.MIN_ENUMERATED_VALUE

158 APPENDIX C. JAVASCRIPT LIBRARY FOR EVENT-B

C.3.9 $B.exists

Notation existential quantified predicate

Syntax $B.exists(predicateFunction, domainArray)

Parameter predicateFunction - a function with the quantifiers as its parameters
and the quantified predicate as its function body
domainArray - an array, it contains the enumerated sets for each pa-
rameter in the function predicateFunction

Return for each value of each set in domainArray, constructs a new array
argArray, evaluates predicateFunction with argArray as its argu-
ments until it returns true, otherwise finally returns false

Description This function evaluates the existential quantification.

Example sees below

Evaluating the existential quantification Ix,y-x € 1..2Ay € 3..4=x+y >= 15 yields
true, where

predicateFunction = function(x, y) {
return $B.implication($B.and(
$B.belong(x, $B.UpTo($B('17), $B('27))),
$B.belong(y, $B.UpTo($B('3"), $B('4')))),
$B.greaterEqual ($B.plus(x, y), $B('5')));
}

domainArray = [$B.UpTo(S$B('1’), $B(’2’)), S$B.UpTo($B('3"), $B("4'))]

Enumerating an infinite set in domainArray sees the remark in Sect. C.3.8.

C.3.10 $B.equal

Notation equality predicate

Syntax $B.equal(E, F)

Parameter E, F - two expressions, they should have the same type but can be any
Event-B mathematical objects

Return 1) true if the evaluation of E is equal to the evaluation of F
2) false if the evaluation of E is not equal to the evaluation of F

Description This function evaluates the equality of two input expressions.

Example $B.equal ($B('1'), SB('1’)) returns true
$B.equal ($B('1'), undefined) returns false
$B.equal ($B.Pair(SB('17), $B('2')), SB.Pair($B('1’), S$SB('2')))
returns true
$B.equal ($B.UpTo($B('1"), $B('2")), $B.UpTo(SB('1’), SB('2")))
returns true

C4. SETS 159

C.3.11 $B.notEqual

Notation inequality predicate

Syntax $B.notEqual(E, F)

Parameter E, F - two expressions, they should have the same type but can be any
Event-B mathematical objects

Return !SB.equal(E, F)

Description This function evaluates the inequality of two input expressions.

Example $B.notEqual (SB('1"), $B(’2")) returns true
$B.notEqual ($B('1’'), undefined) returns true

C4 Sets

C.4.1 $B.SetExtension

Notation set extension

Syntax $B.SetExtension([El1 [, ...[, En]l])

Parameter E1, ..., En -the same type expressions

Return an instance of $B.SetExtension object which contains elements
El, ..., En

Description This function is the set object constructor with the extension form.
Calling this function without parameters will return the empty set.
Example S$B.SetExtension ($B.TRUE, S$B.FALSE)
$B.SetExtension(SB('17), $B('2'), $B('5"))
$B.SetExtension ($B.Pair (S$B('1'), S$B('2")),
$B.Pair (SB('3"), $B('5")))

C.4.2 $B.EmptySet

Notation empty set

Syntax S$B.EmptySet

Description This represents the empty set. Indeed, it can be obtained by calling the
function $B. SetExtension without any parameters.

Example S$B.belong ($B('1"), S$B.EmptySet) returns false

C4.3 $B.BOOL

Notation boolean values set

Syntax $B.BOOL

Description This represents the boolean values set that can be obtained by calling
the function $B. SetExtension with arguments $B.TRUE, $B.FALSE.

Example $B.belong ($B.TRUE, $B.BOOL) returns true

160 APPENDIX C. JAVASCRIPT LIBRARY FOR EVENT-B

C.44 $B.UpTo

Notation arithmetic interval

Syntax $B.UpTo(low, high)

Parameter low, high - two instances of $B.Integer
Return an instance of $B.UpTo object

Description This function is the arithmetic interval object constructor. The instance
of $B.UpTo has two properties 1ow and high.

Example $B.UpTo (S$B('1"), $B(’3’)) represents the set {1,2,3}
$B.UpTo ($B("3"), $B(’'1')) isequal to the empty set

C.4.5 S$B.INTEGER

Notation integer numbers

Syntax $B.INTEGER

Description This object represents the set of integer numbers.

Example $B.belong ($B('1'), $B.INTEGER) returns true
$B.belong ($SB('-1"), $B.INTEGER) returns true

C.4.6 $B.NATURAL

Notation natural numbers

Syntax $B.NATURAL

Description This object represents the set of natural numbers.

Example $B.belong ($SB('0’), SB.NATURAL) returns true
S$B.belong ($B('-1'), S$B.NATURAL) returns false

C.4.7 $B.NATURALI1

Notation positive natural numbers

Syntax $B.NATURALL

Description This object represents the set of positive natural numbers.

Example $B.belong ($B('0’), SB.NATURALI) returns false
$B.belong ($B(’1’), $B.NATURALL) returns true

C4. SETS 161

C.4.8 $B.SetComprehension

Notation set comprehension

Syntax $B.SetComprehension(predicateFunction,

expressionFunction, domainArray)

Parameter predicateFunction - a function with the quantifiers as its parameters
and the quantified predicate as its function body
expressionFunction - a function with the quantifiers as its parame-
ters and the quantified expression as its function body
domainArray - an array, it contains the enumerated sets for each quan-
tifier

Return an instance of $B.SetComprehension object

Description This function is the set object constructor with the comprehension form.
The instance of $B.SetComprehension first exists in an abstract form,
it should be computed and transformed as a concrete set extension
on-demand, e.g., in the set union operation.

Example sees below

Evaluating the set comprehension {x,y-x € 1..2Ay € 3..4 | x+y} yields the set {4,5,6},
where

predicateFunction = function(x, y) {

return $B.and($B.belong(x, $B.UpTo($B('17), $B('27))),
$B.belong(y, SB.UpTo(S$B('3"), $B('4'))));
}
expressionFunction = function(x, y) {
return $B.plus(x, Vy);
}
domainArray = [$B.UpTo($B('1’), $B(’2')), S$B.UpTo($B('3’), $B('4'))]

Enumerating an infinite set in domainArray sees the remark in Sect. C.3.8.

C.4.9 $B.PowerSet

Notation power set

Syntax SB.PowerSet (S)

Parameter S - aset

Return an instance of $B.PowerSet object

Description This function is designed as a constructor. The instance of
$B.PowerSet first exists in an abstract form, it should be computed
and transformed as a concrete set extension on-demand, e.g., in the set
union operation.

Example SB.PowerSet ($B.BOOL)

S$B.PowerSet ($B.UpTo ($B('1"), S$B('2")))

162 APPENDIX C. JAVASCRIPT LIBRARY FOR EVENT-B

C.4.10 $B.PowerSetl

Notation non-empty subsets

Syntax $B.PowerSetl(S)

Parameter S - aset

Return an instance of $B.PowerSet1 object

Description This function is designed as a constructor. The instance of
$B.PowerSetl first exists in an abstract form, it should be computed
and transformed as a concrete set extension on-demand, e.g., in the set
union operation.

Example SB.PowerSetl ($B.BOOL)
$B.PowerSetl (SB.UpTo ($B("17), S$B('2')))

C.4.11 $B.setMinus

Notation set difference

Syntax $B.setMinus(S, T)

Parameter S, T -two sets

Return an instance of $B.SetExtension object

Description This function computes the difference of two input sets. The result
is defined as {x | x € SAx ¢ T}. The computation should consider
different forms of input sets.

Example $B.setMinus ($B.SetExtension ($B('17), SB('2')),
SB.SetExtension ($SB(’1")))
returns $B.SetExtension (SB('2'))

C.4.12 $B.setUnion

Notation set union

Syntax $B.setUnion(S1, S2[, ...[, Sn]])
Parameter S1, S2, ..., Sn-sets

Return an instance of $B.SetExtension object

Description This function computes the union of two or more input sets. The
result is defined as {x | x € S1V...Vx € Sn}. The computation should
consider different forms of input sets.

Example $B.setUnion(S$B.SetExtension(SB('1’), S$SB('2")),
SB.SetExtension (SB(’5")))
returns $B.SetExtension ($B('17), $B('2"), $B('5"))

C4. SETS

163

C.4.13 $B.setInter

Notation
Syntax
Parameter
Return
Description

Example

set intersection

$B.setInter(S1, S2[, ...I[,
S1, S2, ..., Sn-sets

an instance of $B. SetExtension object

This function computes the intersection of two or more input sets. The
result is defined as {x | x € S1V...Vx € Sn}. The computation should
consider different forms of input sets.
$B.setInter($B.SetExtension($SB('1'"),
SB.SetExtension ($SB('2")))

returns $B.SetExtension (SB('27))

Snll)

SB("2")),

C.4.14 $B.union

Notation
Syntax
Parameter
Return
Description

Example

generalized union

S$SB.union(U)

U - a set of sets

an instance of $B.SetExtension object
This function computes the union of all elements of a set. The result is
defined as {x | 3s-s € U Ax € s}.

S$SB.union ($B.SetExtension($B.SetExtension($SB('17),
$B.SetExtension($SB('5'))))
returns $B.SetExtension($B('1'),

$SB("2")),

SB("2"), $B('5"))

C.4.15 $B.inter

Notation
Syntax
Parameter
Return
Description

Example

generalized intersection

S$B.inter(U)

U - a set of sets

an instance of $B.SetExtension object

This function computes the intersection of all elements of a set. The
result is defined as {x | Vs-s € U =x € s}.

S$B.inter ($B.SetExtension($B.SetExtension($SB(’1'),
S$B.SetExtension (S$SB('17))))

returns $B.SetExtension (SB('17))

SB("2")),

164 APPENDIX C. JAVASCRIPT LIBRARY FOR EVENT-B

C.4.16 $B.quantifiedUnion

Notation quantified union
Syntax $B.quantifiedUnion(predicateFunction,
expressionFunction, domainArray)

Parameter = The parameters definition is same to the set comprehension interface
in Sect. C.4.8.

Return an instance of $B.SetExtension object

Description This function computes the quantified union. The result is defined as
Uxi,..., %, P | E = union({xy,...,x,-P | E}).

Example sees below

Evaluating the quantified union Jx-x € 2..4 | {5%xz|z€ 1..4 Az < x} yields the set
{5,10,15,20}, where

predicateFunction = function(x) {
return $B.belong(x, S$B.SetExtension ($B('2'), $B('4')));
}

expressionFunction = function(x) {
return $B.SetComprehension (
function(z) {
return $B.and($B.belong(z, S$B.UpTo(SB('1"), $B('4'))),
$B.lessEqual (z, x));
}l
function(z) {
return $B.multiply ($B('5"), z);
}I
[$B.UpTo(SB("1"), $B("4"))]
)i
}

domainArray = [$B.UpTo(S$B('2"), $B(’4'))]

Enumerating an infinite set in domainArray sees the remark in Sect. C.3.8.

C4. SETS

165

C.4.17 $B.quantifiedInter

Notation
Syntax

Parameter

Return
Description

Example

quantified intersection

$B.quantifiedInter(predicateFunction,
expressionFunction, domainArray)

The parameters definition is same to the set comprehension interface

in Sect. C.4.8.

an instance of $B.SetExtension object

This function computes the quantified intersection. The result is defined

as (\x1,...,x,-P | E =inter({xi,...,x,-P| E}).

sees below

Evaluating the quantified intersection (x-x € 2..4 | {5%z|z€ 1..4 Nz < x} yields the
set {5,10}, where the definitions of predicateFunction, expressionFunction and
domainArray are same to the example in Sect. C.4.16.

Enumerating an infinite set in domainArray sees the remark in Sect. C.3.8.

C.4.18 $B.card

Notation
Syntax
Parameter
Return

Description
Example

cardinality

$B.card(S)

S -aset

1) an instance of $SB. Integer if S is finite

2) undefined if S is infinite

This function returns the cardinality of an input set.
S$B.card ($B.SetExtension ($B('2'), SB('1'"),
turns $SB (' 3")

$B.card ($B.EmptySet) returns $B(’0')

SB.card ($B.INTEGER) returns undefined

SB("3"))) re-

C.4.19 $B.min

Notation
Syntax
Parameter
Return

Description
Example

arithmetic minimum

SB.min(S)

S - a set of integers

1) an instance of $B.Integer if all member of S are instances of
$B.Integer

2) undefined if S is not a set or S is an empty set or any member of S
is not an instance of $B. Integer

This function returns the smallest integer of an input set.

SB.min (S$B.SetExtension (SB('2’), SB('17), SB('3")))
returns $B(’17)

$B.min ($B.EmptySet) returns undefined

$B.min (undefined) returns undefined

166

APPENDIX C. JAVASCRIPT LIBRARY FOR EVENT-B

C.4.20 $B.max

Notation
Syntax
Parameter
Return

Description
Example

arithmetic maximum

$B.max(S)

S - a set of integers

1) an instance of $B.Integer if all member of S are instances of
$B.Integer

2) undefined if Sis not a set or S is an empty set or any member of S
is not an instance of $B.Integer

This function returns the largest integer of an input set.

$B.max ($B.SetExtension (S$B('2'), S$B('1"), SB('3")))
returns $B(’37)

$B.max ($B.EmptySet) returns undefined

SB.max (undefined) returns undefined

C.4.21 $B.belong

Notation
Syntax
Parameter

Return
Description
Example

set membership predicate

$B.belong(E, S)

E - an expression

S -aset

true if E is a member of S, otherwise false

This function checks if an expression denotes an element of a set.
$B.belong ($SB('5"), S$B.INTEGER) returns true

$B.belong ($B('5"), S$B.EmptySet) returns false

C.4.22 $B.notBelong

Notation
Syntax
Parameter

Return
Description

Example

not a set membership predicate

$B.notBelong(E, S)

E - an expression

S -aset

true if E is not a member of S, otherwise false

This function checks if an expression does not denote an element of a
set.
$B.notBelong (SB(’
S$B.notBelong (SB ('

"), S$B.INTEGER) returns false

5
5"), SB.EmptySet) returns true

C4. SETS

167

C.4.23 $B.properSubset

Notation
Syntax
Parameter
Return
Description
Example

proper subset predicate
$B.properSubset (S, T)
S, T-two sets
true if S is a proper subset of T, otherwise false
This function checks if a set denotes a proper subset of another set.
$B.properSubset (SB.UpTo (SB('17), $B('3")), $B.INTEGER)
returns true
$B.properSubset (SB.UpTo (S$SB("1"), SB('3")),
S$B.UpTo ($B("1'), SB('3"))) returns false

C.4.24 $B.notProperSubset

Notation
Syntax
Parameter
Return
Description

Example

not a proper subset predicate
$B.notProperSubset (S, T)
S, T-two sets
true if S is not a proper subset of T, otherwise false
This function checks if a set does not denotes a proper subset of another
set.
$B.notProperSubset ($B.UpTo ($SB('1’'), S$B(’3')), S$SB.INTEGER)
returns false
S$B.notProperSubset ($B.UpTo (SB('1’), $B('3')),
S$B.UpTo ($B("1'), SB('3"))) returns true

C.4.25 $B.subset

Notation
Syntax
Parameter
Return
Description
Example

subset predicate
$B.subset (S, T)
S, T -two sets
true if S is a subset of T, otherwise false
This function checks if a set denotes a subset of another set.
$B.subset ($B.UpTo (SB('1"), S$B('3’)), SB.INTEGER) returns
true
$B.subset ($SB.UpTo (SB('17), S$B('3")),
S$B.UpTo ($B("1"), S$B(’3"))) returns true

168 APPENDIX C. JAVASCRIPT LIBRARY FOR EVENT-B

C.4.26 $B.notSubset

Notation not a subset predicate

Syntax SB.notSubset (S, T)

Parameter S, T -two sets

Return true if S is not a subset of T, otherwise false

Description This function checks if a set does not denotes a subset of another set.
Example $B.notSubset (SB.UpTo ($B(’1"), $B(’3")), SB.INTEGER) re-
turns false
$B.notSubset ($B.UpTo ($
SB.UpTo ($B("1"), $

("1"), $B("3")),

B('"1"),
B("3"))) returns false

C.4.27 $B.finite

Notation finite set predicate

Syntax $B.finite(S)

Parameter S - a set

Return true if S is finite, otherwise false

Description This function checks if an input set denotes a finite set.

Example S$B.finite ($B.SetExtension($B('2"), S$B(’1'))) returns true
$B.finite ($B.EmptySet) returns true
SB.finite ($B.INTEGER) returns false

C.4.28 $B.partition

Notation partition predicate

Syntax S$B.partition(S1[, ...[, Sn]])

Parameter S1, ..., Sn-sets

Return true if the sets S2, ..., Sn constitute a partition of S1, otherwise
false

Description This function checks if some sets are a partition of a set. The partition
is defined as (S1=S2U...USn)A
(Vi,jri€2..nNjE2..nNi# j=SiNSj=0).

Example $B.partition(S$B.SetExtension ($B(’10’), SB('20")),
S$B.SetExtension($B('107)), SB.SetExtension(SB('207)))
returns true

In Event-B, there are two special cases, the partition(S1) is equivalent to S1 = & and
the partition(S1,82) is equivalent to S1 = S2.

C.5. RELATIONS 169

C.5 Relations

C.5.1 $B.Pair

Notation ordered pair

Syntax $B.Pair(left, right)
Parameter left, right - two expressions
Return an instance of $B.Pair object

Description This function is the pair object constructor. The instance of $B.pair
has two properties left and right.

Example $B.Pair ($B('1"), $B('3"))
S$B.Pair ($B(’5"), SB.TRUE)

C.5.2 $B.CartesianProduct

Notation Cartesian product

Syntax S$B.CartesianProduct(S, T)

Parameter S, T -two sets

Return an instance of $B.CartesianProduct object

Description This function is the Cartesian product object constructor. The instance
of $B.CartesianProduct has two properties S and T. It normally
exists in an abstract form, but has the capability to be transformed as a
concrete set extension on-demand.

Example $B.CartesianProduct ($B.INTEGER, S$B.BOOL)
$B.CartesianProduct ($B.INTEGER, $B.INTEGER)

C.5.3 $B.Relations

Notation relations

Syntax S$B.Relations(S, T)

Parameter S, T -two sets

Return an instance of $B.Relations object

Description This function is the set of relations constructor. The instance of
$B.Relations has two properties S and T. It normally exists in an
abstract form, but has the capability to be transformed as a concrete set
extension on-demand.

Example $B.Relations ($B.INTEGER, $B.BOOL)

S$B.Relations (SB.INTEGER, S$B.INTEGER)

170

APPENDIX C. JAVASCRIPT LIBRARY FOR EVENT-B

C.5.4 $B.TotalRelations

Notation
Syntax
Parameter
Return
Description

Example

total relations

S$SB.TotalRelations(S, T)

S, T-two sets

an instance of $B.TotalRelations object

This function is the set of total relations constructor. The instance of
$B.TotalRelations has two properties S and T. It normally exists in
an abstract form, but has the capability to be transformed as a concrete
set extension on-demand.

$B.TotalRelations ($B.INTEGER, $B.BOOL)

$B.TotalRelations (SB.INTEGER, $B.INTEGER)

C.5.5 $B.SurjectiveRelations

Notation
Syntax
Parameter
Return
Description

Example

surjective relations

$B.SurjectiveRelations(S, T)

S, T-two sets

an instance of $B.SurjectiveRelations object

This function is the set of surjective relations constructor. The instance
of $B.SurjectiveRelations has two properties S and T. It normally
exists in an abstract form, but has the capability to be transformed as a
concrete set extension on-demand.

$B.SurjectiveRelations ($B.INTEGER, S$B.BOOL)
$B.SurjectiveRelations ($B.INTEGER, $B.INTEGER)

C.5.6 $B.TotalSurjectiveRelations

Notation
Syntax
Parameter
Return
Description

Example

total surjective relations

$B.TotalSurjectiveRelations(S, T)

S, T -two sets

an instance of $B.TotalSurjectiveRelations object

This function is the set of total surjective relations constructor. The
instance of $B. TotalSurjectiveRelations has two properties S and
T. It normally exists in an abstract form, but has the capability to be
transformed as a concrete set extension on-demand.
$B.TotalSurjectiveRelations ($B.INTEGER, $B.BOOL)
S$B.TotalSurjectiveRelations (SB.INTEGER, S$B.INTEGER)

C.5. RELATIONS 171

C.5.7 $B.dom

Notation
Syntax
Parameter
Return
Description

Example

domain

$B.dom(r)

r - arelation

an instance of $B.SetExtension object

This function returns the domain of an input relation. The result is de-
fined as {x | Jy-x > y € r}. The computation should consider different
forms of the input relation.

S$B.dom($B.SetExtension ($B.Pair (SB('1'), S$B('2")),
$B.Pair (SB('3"), $B('4"))))

returns $B.SetExtension ($B('1"), S$B('3'))

C.5.8 $B.ran

Notation
Syntax
Parameter
Return
Description

Example

range

SB.ran(r)

r - arelation

an instance of $B.SetExtension object

This function returns the range of an input relation. The result is defined
as {y| 3x-x—y € r}. The computation should consider different forms
of the input relation.

SB.ran($B.SetExtension ($B.Pair (SB('1'), S$B('2")),
$B.Pair (SB('3"), $B('4"))))

returns $B.SetExtension($B(’2"), $B(’4'))

C.5.9 $B.domainRestriction

Notation
Syntax
Parameter

Return
Description

Example

domain restriction

$B.domainRestriction(S, r)

S - aset

r - arelation

an instance of $B.SetExtension object

This function computes a subset of an input relation that is defined as
{x—=y|x—yerAxe S} The computation should consider different
forms of the input relation.

S$B.domainRestriction($B.SetExtension($B(’1")),
$B.SetExtension ($SB.Pair (S$B('1'), $B('2")),

$B.Pair ($B(’3"), $B('47))))

returns $B.SetExtension ($B.Pair ($B('1"), S$B('2")))

172

APPENDIX C. JAVASCRIPT LIBRARY FOR EVENT-B

C.5.10 $B.domainSubtraction

Notation
Syntax
Parameter

Return
Description

Example

domain subtraction

$B.domainSubtraction(S, r)

S - aset

r - arelation

an instance of $B. SetExtension object

This function computes a subset of an input relation that is defined as
{x—=y|x—yerAx¢S}. The computation should consider different
forms of the input relation.

S$SB.domainSubtraction($B.SetExtension($B('17)),
SB.SetExtension ($B.Pair (SB('1’), $B('2')),

SB.Pair ($B('3"), $B("4"))))

returns $B.SetExtension ($B.Pair (SB("37), SB('4')))

C.5.11 $B.rangeRestriction

Notation
Syntax
Parameter

Return
Description

Example

range restriction

$B.rangeRestriction(r, T)

r - arelation

T - aset

an instance of $B.SetExtension object

This function computes a subset of an input relation that is defined as
{x—y|x+—yerAyeT}. The computation should consider different
forms of the input relation.

$B.rangeRestriction($B.SetExtension (

$B.Pair ($B('1"), $B('2")), $B.Pair(s$B('3’), SB('4"))),
SB.SetExtension ($SB('2")))
returns $B.SetExtension ($B.Pair ($B('1"), SB('2')))

C.5.12 $B.rangeSubtraction

Notation
Syntax
Parameter

Return
Description

Example

range subtraction

$B.rangeSubtraction(r, T)

r - arelation

T - aset

an instance of $B.SetExtension object

This function computes a subset of an input relation that is defined as
{x—y|x—y€erAy¢T}. The computation should consider different
forms of the input relation.

$B.rangeSubtraction($B.SetExtension (

$B.Pair ($B('1"), $B('2')), $B.Pair(S$B('3"), $B('47))),
SB.SetExtension (SB('27)))
returns SB.SetExtension ($B.Pair (SB('3"), SB('4')))

C.5. RELATIONS 173

C.5.13 $B.forwardComposition

Notation
Syntax
Parameter
Return
Description

Example

relational forward composition

$B.forwardComposition(rl, r2[, ...[, rN]])

rl, r2, ..., rN-relations

an instance of $B. SetExtension object

This function computes the forward composition of input relations that
is defined as {x; — xp41 | o, ..., Xy X1 X2 EFTA L AXy = Xy €
rn}. The computation should consider different forms of the input
relation.

$B.forwardComposition($B.SetExtension (
SB.Pair(SB('17), S$B('2"))), S$B.SetExtension

$B.Pair ($B('27), $B('47))))

returns $SB.SetExtension ($B.Pair (S$SB('1"), S$B('4')))

C.5.14 $B.backwardComposition

Notation
Syntax
Parameter
Return
Description

Example

relational backward composition

$B.backwardComposition(rl, r2[, ...[, rN]])

rl, r2, ..., rN-relations

an instance of $B.SetExtension object

This function computes the backward composition of input relations
that is defined as $B. forwardComposition(rN, ..., rl).
$B.backwardComposition($B.SetExtension (

SB.Pair (SB('2'), $B('4"))), S$B.SetExtension

$B.Pair (SB('1"), $B('2"))))

returns $B.SetExtension ($B.Pair (SB('17), SB('4')))

C.5.15 $B.override

Notation
Syntax
Parameter
Return
Description

Example

relational overriding

$B.override(rl, r2[, ...[, rN]])

rl, r2, ..., rN-relations

an instance of $B.SetExtension object

This function computes the overriding of input relations from left to
right. The overriding operation is defined as:

ri << rip) =rip1 U (dom(ri+1) S| r,‘).

SB.override($B.SetExtension (

SB.Pair (SB(’'1’), S$B('2"))), S$B.SetExtension(
$B.Pair ($B('17), $B('5"))))

returns $B.SetExtension ($B.Pair ($B('1"), S$B('5")))

174 APPENDIX C. JAVASCRIPT LIBRARY FOR EVENT-B

C.5.16 $B.directProduct

Notation direct product

Syntax S$B.directProduct (rl, r2)
Parameter rl, r2 -two relations

Return an instance of $B.SetExtension object

Description This function computes the direct product of two input relations that is
defined as: {x] — (xp = x3) |x] = X2 ErfAX] = X3 €}
Example SB.directProduct ($B.SetExtension (
SB.Pair($B('17), S$B('2"))), S$B.SetExtension
S$B.Pair (SB(’'1’"), S$B('4")))) returns
SB.SetExtension ($B.Pair (SB('1’), SB.Pair(SB(’2"), S$B('4')))

C.5.17 $B.parallelProduct

Notation parallel product

Syntax S$B.parallelProduct (rl, r2)
Parameter rl, r2 -two relations

Return an instance of $B.SetExtension object

Description This function computes the direct product of two input relations that is
defined as: {(x; = x3) — (X2 > x4) | X1 = X2 Erf AX3 = X4 €12}
Example $B.parallelProduct ($B.SetExtension(
SB.Pair(SB('17), S$B('2"))), S$B.SetExtension
SB.Pair ($SB(’3’), $B('4’)))) returns
SB.SetExtension($B.Pair ($B.Pair($B('17), S$B('3")),
$B.Pair ($B('2"), $B("4"))))

C.5.18 $B.converse

Notation inverse relation

Syntax SB.converse(r)

Parameter r - arelation

Return an instance of $B.SetExtension object

Description This function computes the inverse of an input relation that is defined
as{y—x|x—yer}

Example S$B.converse ($B.SetExtension ($B.Pair($B('1'), SB('2')),
$B.Pair (SB('3"), $B('4"))))
returns $B.SetExtension (SB.Pair ($SB('2"), S$B('1")),
$B.Pair (SB('4"), $B('3"))))

C.6. FUNCTIONS 175

C.5.19 $B.relationImage

Notation relation image
Syntax S$B.relationImage(r, S)
Parameter r - arelation
S - aset
Return an instance of $B. SetExtension object

Description This function computes the relational image of an input relation that is
defined as {y | Ix-x e SAx—yer}

Example S$B.relationImage ($B.SetExtension (
$B.Pair($B(’2"), $B(’'5")), S$B.Pair($B(’2’), $B('6"))),
S$B.SetExtension ($SB('27)))
returns $B.SetExtension ($B('5"), $B('6'))

C.6 Functions

C.6.1 $B.PartialFunctions

Notation partial functions

Syntax $B.PartialFunctions(S, T)

Parameter S, T -two sets

Return an instance of $B.PartialFunctions object

Description This function is the set of partial functions constructor. The instance
of $B.PartialFunctions has two properties S and T. It normally
exists in an abstract form, but has the capability to be transformed as a
concrete set extension on-demand.

Example S$B.PartialFunctions ($B.INTEGER, S$B.BOOL)
$B.PartialFunctions ($B.INTEGER, S$B.INTEGER)

C.6.2 $B.TotalFunctions

Notation total functions

Syntax $B.TotalFunctions(S, T)

Parameter S, T -two sets

Return an instance of $B.TotalFunctions object

Description This function is the set of total functions constructor. The instance of
$B.TotalFunctions has two properties S and T. It normally exists in
an abstract form, but has the capability to be transformed as a concrete
set extension on-demand.

Example $B.TotalFunctions ($B.INTEGER, $B.BOOL)
$B.TotalFunctions ($B.INTEGER, $B.INTEGER)

176 APPENDIX C. JAVASCRIPT LIBRARY FOR EVENT-B

C.6.3 $B.Partiallnjections

Notation partial injections

Syntax $B.PartialInjections(S, T)

Parameter S, T -two sets

Return an instance of $B.PartialInjections object

Description This function is the set of partial injections constructor. The instance
of $B.PartialInjections has two properties S and T. It normally
exists in an abstract form, but has the capability to be transformed as a
concrete set extension on-demand.

Example $B.PartialInjections ($B.INTEGER, $B.BOOL)
$B.PartialInjections ($B.INTEGER, S$B.INTEGER)

C.6.4 $B.Totallnjections

Notation total injections

Syntax $B.TotalInjections(S, T)

Parameter S, T -two sets

Return an instance of $B.TotalInjections object

Description This function is the set of total injections constructor. The instance of
$B.TotallInjections hastwo properties S and T. It normally exists in
an abstract form, but has the capability to be transformed as a concrete
set extension on-demand.

Example $B.TotalInjections ($B.INTEGER, S$B.BOOL)
$B.TotalInjections ($B.INTEGER, $B.INTEGER)

C.6.5 $B.PartialSurjections

Notation partial surjections

Syntax $B.PartialSurjections(S, T)

Parameter S, T -two sets

Return an instance of $B.PartialSurjections object

Description This function is the set of partial surjections constructor. The instance
of $B.PartialSurjections has two properties S and T. It normally
exists in an abstract form, but has the capability to be transformed as a
concrete set extension on-demand.

Example $B.PartialSurjections ($B.INTEGER, S$B.BOOL)
$B.PartialSurjections ($B.INTEGER, $B.INTEGER)

C.6. FUNCTIONS 177

C.6.6 $B.TotalSurjections

Notation total surjections

Syntax $B.TotalSurjections(S, T)

Parameter S, T -two sets

Return an instance of $B.TotalSurjections object

Description This function is the set of total surjections constructor. The instance
of $B.TotalSurjections has two properties S and T. It normally
exists in an abstract form, but has the capability to be transformed as a
concrete set extension on-demand.

Example $B.TotalSurjections ($B.INTEGER, $B.BOOL)
$B.TotalSurjections ($B.INTEGER, $B.INTEGER)

C.6.7 $B.TotalBijections

Notation total bijections

Syntax $B.TotalBijections(S, T)

Parameter S, T -two sets

Return an instance of $B.TotalBijections object

Description This function is the set of total surjections constructor. The instance of
$B.TotalBijections has two properties S and T. It normally exists in
an abstract form, but has the capability to be transformed as a concrete
set extension on-demand.

Example $B.TotalBijections ($B.INTEGER, $B.BOOL)
$B.TotalBijections ($B.INTEGER, S$B.INTEGER)

C.6.8 $B.Lambda

Notation lambda
Syntax $B.Lambda (predicateFunction,
expressionFunction, domainArray)

Parameter = The parameters definition is same to the set comprehension interface
in Sect. C.4.8.

Return an instance of $B.Lambda object

Description This function is the lambda constructor. It normally exists in an ab-
stract form, but has the capability to be transformed as a concrete set
extension on-demand.

Example sees below

Invoking the lambda Ax-x € 1..10 | x+ 10 with 5 yields 15, with 11 yields undefined,
where

predicateFunction = function(x) {
return $B.belong(x, S$B.SetExtension ($B('1'), S$B('107)));
}

178 APPENDIX C. JAVASCRIPT LIBRARY FOR EVENT-B

expressionFunction = function(x) {
return $B.Pair(x, $B.plus(x, SB('107));
}

domainArray = [$B.UpTo($B('1’), SB('107))]

C.6.9 $B.functionImage

Notation function image

Syntax $B.functionImage(f, E)

Parameter £ - a function
E - a expression

Return 1) Fif Eisin the domainof f and E — F € f
2) undefined if E is not in the domain of £

Description £ can denote a set extension of ordered pairs, a set comprehension or a
lambda expression, hence the implementation must consider all above
situations.

Example $B.functionImage ($B.SetExtension (
$B.Pair (S$B('2"), $B('5")), S$B.Pair(SB(’3"), S$B('6'))),
$B(’3’)) returns $B(’'6')

C.6.10 $B.prjl

Notation first projection

Syntax $B.prjl

Parameter -

Return an instance of B. SetComprehension

Description The first projection maps a pair to its first element. Its definition is
generic by {(x — y) — x| T} which type is inferred from the environ-
ment.

Example $B.functionImage($B.prjl, S$B.Pair($B('2'), S$B('5")))
returns $B(’27)

SB.setInter($B.SetExtension (

$B.Pair ($B.Pair($B('1"), $B('2")), $B('1')),
$B.Pair ($B.Pair (SB('27), SB('4’)), SB('3'))),
$B.prijl)

returns $B.Pair ($B.Pair ($B('1"), $B('2")), $B('1'))

When $B.prjl is used in the function application, the following definition can be used
directly:

$B.prjl = $B.SetComprehension (
function(x, y) { return true; },
function(%, y) { return $B.Pair($B.Pair(x, v), X); },
[$B.EmptySet, S$B.EmptySet]

C.6. FUNCTIONS 179

)

But when $B.prjl is used in the set operations, users should replace the $B.EmptySet
by a concrete set.

C.6.11 $B.prj2

Notation second projection

Syntax $B.prij2

Parameter -

Return an instance of B. SetComprehension

Description The second projection maps a pair to its second element. Its defini-
tion is generic by {(x — y) — y| T} which type is inferred from the
environment.

Example $B.functionImage($B.prj2, S$B.Pair(SB('2'), $B('5")))
returns $B('5")

SB.setInter($B.SetExtension(

$B.Pair ($B.Pair ($B('1"), $B('2")), $B(’
$B.Pair ($B.Pair ($B('2"), $B('4")), S$B(’
$B.prj2)

returns $B.Pair ($B.Pair (SB('1"), $B('2')), SB('2'))

When $B.prj2 is used in the function application, the following definition can be used
directly:

$B.prj2 = $B.SetComprehension (
function(x, y) { return true; },
function(x, y) { return $B.Pair($B.Pair(x, v), Vv); },
[$B.EmptySet, S$B.EmptySet]

)

But when $B.prj2 is used in the set operations, users should replace the $B.EmptySet
by a concrete set.

C.6.12 $B.id

Notation identity

Syntax $B.id
Parameter -
Return an instance of B. SetComprehension

Description The identity function maps every element to itself. Its definition is
generic by {x +— x| T} which type is inferred from the environment.
Example $B.functionImage($B.id, S$B(’2’)) returns $B('2')
S$B.setInter($B.SetExtension($B.Pair (SB('1'), S$B('1"))
$B.Pair($B(’2"), $B('3"))), $B.id)
returns SB.SetExtension ($B.Pair (S$B('17), SB('1')))

180 APPENDIX C. JAVASCRIPT LIBRARY FOR EVENT-B

When $B.id is used in the function application, the following definition can be used
directly:

$B.id = $B.SetComprehension (
function(x) { return true; },
function(x) { return $B.Pair(x, x); },
[$B.EmptySet]

)

But when $B. id is used in the set operations, users should replace the $B.EmptySet by
a concrete set.

C.7 Assignments

C.7.1 $B.becomesEqualTo

Notation deterministic assignment

Syntax $B.becomesEqualTo(identifierArray, expressionArray)

Parameter identifierArray - an array, it contains assigned identifiers
expressionArray - an array, it contains expressions

Return -

Description This function does the deterministic assignment. Let n be the
length of the array identifierArray, for each identifier x; in
identifierArray and each expression E; in expressionArray, it
assigns the expression E; to the identifier x; primed value, with
i€e0.n—1.

Example $B.becomesEqualTo([x], [$B("100")])
$B.becomesEqualTo([x, y], [$SB.TRUE, SB('107)])

There is a special assignment which uses a relational overriding: x(E) := F. In fact, this
is just a shorthand for x := x < {E — F}, therefore this form is unified to the above
form.

C.7.2 $B.becomesMemberOf

Notation non-deterministic assignment of a set member

Syntax $B.becomesMemberOf (x, E)

Parameter x - an assigned identifier
E - a set expression

Return -

Description This function assigns any value of the set expression E to the identifier
% primed value.

Example S$B.becomesMemberOf (x, $B.BOOL)
$B.becomesMemberOf (x, $B.INTEGER)

C.7. ASSIGNMENTS 181

C.7.3 $B.becomesSuchThat

Notation
Syntax

Parameter

Return
Description

Example

non-deterministic assignment with a before-after-predicate
$B.becomesSuchThat (identifierArray,

predicateFunction, domainArray)
identifierArray - an array, it contains assigned identifiers
predicateFunction - a function with the before-after-predicate as its
function body
domainArray - an array, it contains the enumerated sets for each
primed identifier in the before-after-predicate
This function does the non-deterministic assignment. Let n be
the length of the array identifierArray, for each identifier x; in
identifierArray and each expression E; in domainArray, with
i €0..n—1, it assigns any value of the set expression E; to the identifier
x; primed value and evaluates the function predicateFunction un-
til predicateFunction returns true, otherwise throws a message to
remind that no enumerated values can satisfy the before-after predicate.
sees below

Let x._value, y._value be the primed value of identifiers x, y, respectively, execut-
ing the assignment x,y :| x’ € 1..100 Ay’ € 1..100 Ax’+y’ > 100 yields x._value has

avalue 1 and y._value has a value 100, where

identifierArray = [x, Y]

predicateFunction = function() ({
return $B.and(
$B.belong(x._value, $B.UpTo(SB(’1’), SB('1007))),
$B.belong(y._value, $B.UpTo(SB(’1’), SB('1007))),

$B.greaterThan ($B.plus (x._value, y._value), $B(’100"))

)i
}

domainArray = [$B.UpTo($B(’1’), S$B(’100")), $B.UpTo(SB('1’), $B('100"))]

182 APPENDIX C. JAVASCRIPT LIBRARY FOR EVENT-B

Appendix D

1D Platooning Model in Event-B

Contents
D Contextdo v ittt ittt o teeeesonssoneees 183
D2 Contextlttt it tteennsoneensss 184
D3 Context2 v it ittt toeeeessossoses 184
D4 Context3 i v i ittt ittt ottt eesontoneeas 185
D.S Contextd i ittt it ittt 185
D6 Platoon0 it ittt ittt teeas 185
D.7 Platoonl it ittt et e e e 186
D8 Platoon2ttt ittt 187
D9 Platoon3 ittt ittt e e e 190
DI0Platoond ¢ i it it e e e e 193

A platoon is defined as a convoy of autonomous vehicles which follow exactly the same
path and keep a very close distance between each other. We use a model of vehicle
where the control can be decomposed into longitudinal (i.e, speed and acceleration) and
lateral (i.e., curve and wheel orientation) laws. The 1D platooning model focuses on the
longitudinal control.

Note: we have made small modifications to the labels of the original specification. The labels
start with a prefix and are followed by an ordinal number.

D.1 Context(

CONTEXT contextO
CONSTANTS
VEHICLES
CRITICAL_DISTANCE
initial_xpos
AXIOMS
axml: VEHICLES € N;
axm2: VEHICLES >?2
axm3: CRITICAL_DISTANCE € N,
axmé : initial_xpos € 1..VEHICLES — N

183

184 APPENDIX D. 1D PLATOONING MODEL IN EVENT-B

axmb: Vv-(v € 1..VEHICLES = initial_xpos(v) = (VEHICLES —v) « (CRITICAL_DISTANCE + 1))
END

D.2 Contextl

CONTEXT contextl
EXTENDS context0
END

D.3 Context2

CONTEXT context2
EXTENDS contextl
CONSTANTS
MAX_SPEED
MIN_ACCEL
MAX_ACCEL
initial_speed
new_speed
new_xpos
new_xpos_max
new_xpos_min
AXIOMS
axml: MAX_SPEED € N;
axm?2: MAX_ACCEL € N;
axm3: MIN_ACCEL € Z
axm4: MIN_ACCEL <0
axmb : initial_speed € 1..VEHICLES —0.. MAX_SPEED

axm6 : VvehiO-(vehiO € 1..VEHICLES = (3speed0-(speed0 € 0.. MAX_SPEED A\
initial_speed(vehi0) = speed0)))
axm7 : new_speed € (0..MAX_SPEED x MIN_ACCEL..MAX_ACCEL)—7Z
axm8: Vspeedl,accell-(
speedl € 0..MAX_SPEED Naccell € MIN_ACCEL..MAX_ACCEL=
new_speed(speedl — accell) = speed1 + accell
)

axm9 : new_xpos € (Nx0..MAX_SPEED x MIN_ACCEL .. MAX_ACCEL) —N

axml0: Vxpos0,speed0,accelO-(
xpos0 € NAspeed0 € 0.. MAX_SPEED Aaccel0 € MIN_ACCEL .. MAX_ACCEL=
new_xpos(xpos0 — speed0 — accel0) = xpos0+ speed0 + (accel0/2)

axmll: new_xpos_max € Nx 0. .MAX_SPEED x MIN_ACCEL..MAX_ACCEL—N

axml2: Vxpos0,speed0,accelO-(
xposO € NAspeed0 € 0..MAX_SPEED Naccel0 € MIN_ACCEL .. MAX_ACCEL =
(
(accel0 = 0= new_xpos_max(xpos0 > speed0 — accel0) = xposO0 + MAX_SPEED)
A
(accel0 # 0= new_xpos_max(xpos0 — speed0 — accel0) = xpos0
+MAX_SPEED — (((MAX_SPEED — speed0) x (MAX_SPEED — speed0))/(2 x accel0)))
)
)

axml13: new_xpos_min € Nx0..MAX_SPEED x MIN_ACCEL .. MAX_ACCEL—N

D.4. CONTEXT3 185

axml4 : Vxpos0,speed0,accelO-(
xposO € NAspeed0 € 0.. MAX_SPEED Naccel0 € MIN_ACCEL .. MAX_ACCEL=

(

(accel0 = 0= new_xpos_min(xpos0 — speed0 — accel0) = xpos0)
A

(accel0 # 0= new_xpos_min(xpos0 — speed0 — accel0) =

xpos0 — ((speed0 x speed0) /(2 x accel0)))
)

END

D.4 Context3

CONTEXT context3
EXTENDS context2
CONSTANTS

initial _accel
AXIOMS

axml : initial_accel € 1..VEHICLES —MIN_ACCEL..MAX_ACCEL

axm2: VvehiO-(vehi0 € 1..VEHICLES =

JaccelO-(accel0 € MIN_ACCEL .. MAX_ACCEL A initial_accel (vehi0) = accel0)
)

END

D.5 Context4

CONTEXT context4
EXTENDS context3
CONSTANTS
IDEAL_SPEED
ideal_distance
new_accel
AXIOMS
axml: IDEAL_SPEED €0..MAX_SPEED
axm2: IDEAL_SPEED < MAX_SPEED
axm3: ideal_distance € 0.. MAX_SPEED — N
axmé : VspeedQ-(speed0 € 0..MAX_SPEED =>ideal_distance(speed0) = CRITICAL_DISTANCE + speed0)
axmb: new_accel € (Zx0..MAX_SPEED x0..MAX_SPEED)—Z
axm6 : Vp_distl, p_speedl, p_pre_speedl-(
p_distl € ZNp_speedl € 0..MAX_SPEED A p_pre_speedl € 0.. MAX_SPEED =
new_accel(p_dist1 — p_speedl — p_pre_speedl) = p_dist1 —
ideal_distance(p_speedl)+ p_pre_speedl — p_speed1

)

thml : Vspeed-(speed € 0..MAX_SPEED = ideal_distance(speed) > CRITICAL_DISTANCE)
END

D.6 Platoon(

MACHINE platoon0
SEES context0
VARIABLES
xpos0
INVARIANTS
invl: xposO€ 1..VEHICLES —+N

186 APPENDIX D. 1D PLATOONING MODEL IN EVENT-B

inv2: VYv-(v€2..VEHICLES = ((xposO(v — 1) —xposO(v)) > CRITICAL_DISTANCE))
EVENTS
Initialisation
begin
actl: xpos0:=initial_xpos
end

Event all_moves =
any
magic_xpos
where
grdl: magic_xpos € 1..VEHICLES —N
grd2: Vv-(v€2..VEHICLES = ((magic_xpos(v — 1) —magic_xpos(v)) > CRITICAL_DISTANCE))
then
actl: xposO:=magic_xpos
end
END

D.7 Platoonl

MACHINE platoonl
REFINES platoon0
SEES contextl
VARIABLES
xpos0
vehicle
Xpos
INVARIANTS
invl: xpos€ 1..VEHICLES —N
inv2: vehicle€ 1..VEHICLES +1
inv3: Vv-(v €2..vehicle— 1= (xpos(v—1) —xpos(v)) > CRITICAL_DISTANCE)
EVENTS
Initialisation
begin
actl: xposO:=initial_xpos
act2: vehicle:=1
act3: xpos:=initial_xpos
end

Event movel =
Status convergent
any
magic_xpos_vehicle
where
grdl: vehicle =1
grd2: magic_xpos_vehicle € N
grd3: magic_xpos_vehicle > xpos(vehicle)
then
actl: xpos(vehicle) := magic_xpos_vehicle
act2: vehicle :=vehicle+ 1
end

Event move =
Status convergent

any

D.8. PLATOONZ2 187

magic_xpos_vehicle
where

grdl: vehicle €2..VEHICLES

grd2: magic_xpos_vehicle € N

grd3: magic_xpos_vehicle > xpos(vehicle)

grd4 : xpos(vehicle — 1) — magic_xpos_vehicle > CRITICAL_DISTANCE
then

actl: xpos(vehicle) := magic_xpos_vehicle

act2: vehicle :=vehicle+ 1
end

Event all_moves =
refines all_moves

when

grdl: vehicle=VEHICLES+1
with

magic_xpos: magic_xpos = xpos
then

actl: xposO:=xpos
act2: vehicle:=1
end
VARIANT
(VEHICLES + 1) — vehicle
END

D.§ Platoon2

MACHINE platoon2
REFINES platoonl
SEES context2
VARIABLES
xpos0
vehicle
Xpos
speed
INVARIANTS
invl: speed € 1..VEHICLES —0..MAX_SPEED
EVENTS
Initialisation
begin
actl: xpos0:=initial_xpos
act2: xpos:=initial_xpos
act3: vehicle:=1
actéd: speed := initial_speed
end

Event movel_normal =
refines movel
any
magic_accel
nspeed
nxpos
where
grdl: vehicle =1
grd2: magic_accel € MIN_ACCEL..MAX_ACCEL
grd3: nspeed = new_speed(speed(vehicle) — magic_accel)

188 APPENDIX D. 1D PLATOONING MODEL IN EVENT-B

grd4 : nspeed € 0..MAX_SPEED

grd5 : nxpos = new_xpos(xpos(vehicle) — speed(vehicle) — magic_accel)
with

magic_xpos_vehicle: magic_xpos_vehicle = nxpos
then

actl: vehicle := vehicle+1

act2: xpos(vehicle) := nxpos

act3: speed(vehicle) .= nspeed
end

Event movel_max =
refines movel
any
magic_accel
nspeed
nxpos
where
grdl: vehicle =1
grd2: magic_accel € MIN_ACCEL..MAX_ACCEL
grd3: nspeed = new_speed(speed(vehicle) — magic_accel)
grd4: nspeed > MAX_SPEED
grd5: nxpos = new_xpos_max(xpos(vehicle) — speed(vehicle) — magic_accel)
with
magic_xpos_vehicle: magic_xpos_vehicle = nxpos
then
actl: vehicle :=vehicle+1
act2: xpos(vehicle) := nxpos
act3: speed(vehicle) := MAX_SPEED
end

Event movel_reduce =
refines movel

any
magic_accel
nspeed
nxpos
where
grdl: vehicle =1
grd2: magic_accel € MIN_ACCEL..MAX_ACCEL
grd3: nspeed = new_speed(speed(vehicle) — magic_accel)
grd4: nspeed <0
grd5: nxpos = new_xpos_min(xpos(vehicle) — speed(vehicle) — magic_accel)
with
magic_xpos_vehicle: magic_xpos_vehicle = nxpos
then
actl: vehicle :=vehicle+1
act2: xpos(vehicle) := nxpos
act3: speed(vehicle) :=0
end

Event move_normal =
refines move
any
magic_accel
nspeed
nxpos
where

D.8. PLATOONZ2 189

grdl: vehicle€2..VEHICLES
grd2: magic_accel € MIN_ACCEL..MAX_ACCEL
grd3: nspeed = new_speed(speed(vehicle) — magic_accel)
grd4 : nspeed € 0..MAX_SPEED
grd5 : nxpos = new_xpos(xpos(vehicle) — speed(vehicle) — magic_accel)
grd6 : xpos(vehicle—1) —nxpos > CRITICAL_DISTANCE
with
magic_xpos_vehicle: magic_xpos_vehicle = nxpos
then
actl: vehicle :=vehicle+1
act2: xpos(vehicle) := nxpos
act3: speed(vehicle) := nspeed
end

Event move_max =
refines move

any
magic_accel
nspeed
nxpos
where
grdl: vehiclec?2..VEHICLES
grd2: magic_accel € MIN_ACCEL..MAX_ACCEL
grd3: nspeed = new_speed(speed(vehicle) — magic_accel)
grd4 : nspeed > MAX_SPEED
grd5: nxpos = new_xpos_max(xpos(vehicle) — speed(vehicle) — magic_accel)
grd6 : xpos(vehicle—1) —nxpos > CRITICAL_DISTANCE
with
magic_xpos_vehicle: magic_xpos_vehicle = nxpos
then
actl: vehicle :=vehicle+ 1
act2: xpos(vehicle) := nxpos
act3: speed(vehicle) := MAX_SPEED
end

Event move_reduce =
refines move

any
magic_accel
nspeed
nxpos

where
grdl: vehiclec?2..VEHICLES
grd2: magic_accel € MIN_ACCEL..MAX_ACCEL
grd3: nspeed = new_speed(speed(vehicle) — magic_accel)
grd4: nspeed <0
grd5: nxpos = new_xpos_min(xpos(vehicle) — speed(vehicle) — magic_accel)
grd6 : xpos(vehicle — 1) —nxpos > CRITICAL_DISTANCE

with
magic_xpos_vehicle: magic_xpos_vehicle = nxpos

then
actl: vehicle :=vehicle+1
act2: xpos(vehicle) := nxpos
act3: speed(vehicle) =0

end

Event all_moves =

190 APPENDIX D. 1D PLATOONING MODEL IN EVENT-B

refines all_moves
when
grdl: vehicle=VEHICLES+1
then
actl: xposO:=xpos
act2: vehicle:=1
end
END

D.9 Platoon3

MACHINE platoon3
REFINES platoon2
SEES context3
VARIABLES
xposO
vehicle
xpos
speed
d_vehicle
accel
INVARIANTS
invl: d_vehiclec 1..VEHICLES+ 1
inv2: accel € 1..VEHICLES — MIN_ACCEL..MAX_ACCEL
inv3: (d_vehicle=VEHICLES+1)V
Vv-(v € 2..d_vehicle— 1=
311, f2-(f1 € {new_xpos,new_xpos_max,new_xpos_min} N\
2 € {new_xpos,new_xpos_max,new_xpos_min} N\
fl(xpos(v—1) — speed(v — 1) — accel(v — 1)) — f2(xpos(v) — speed(v) — accel (v)) >
CRITICAL_DISTANCE

)

EVENTS
Initialisation
begin
actl: xposO:=initial_xpos
act2: xpos:=initial_xpos
act3: vehicle:=1
act4d: speed := initial_speed
act5: d_vehicle:=1
act6: accel :=initial_accel
end

Event decidel =
Status convergent
any
magic_accel
where
grdl: vehicle =1
grd2: d_vehicle =1
grd3: magic_accel € MIN_ACCEL..MAX_ACCEL
then
actl: d_vehicle:=d_vehicle+1
act2: accel(d_vehicle) := magic_accel
end

Event decide =

D.9. PLATOON3 191

Status convergent

any
magic_accel
where
grdl: vehicle =1
grd2: d_vehiclec?2..VEHICLES
grd3: magic_accel € MIN_ACCEL..MAX_ACCEL
grdd: Jgl,g2-(
gl € {new_xpos,new_xpos_max,new_xpos_min} \
g2 € {new_xpos,new_xpos_max,new_xpos_min} N
g1 (xpos(d_vehicle — 1) + speed(d_vehicle — 1) — accel(d_vehicle — 1))
— 82(xpos(d_vehicle) — speed(d_vehicle) — magic_accel) > CRITICAL_DISTANCE
then
actl: d_vehicle :=d_vehicle+ 1
act2: accel(d_vehicle) := magic_accel
end

Event movel_normal =
refines movel_normal

any
nspeed
nxpos
where
grdl: vehicle =1
grd2: d_vehicle=VEHICLES+1
grd3: nspeed = new_speed(speed(vehicle) — accel(vehicle))
grd4: nspeed € 0..MAX_SPEED
grd5: nxpos = new_xpos(xpos(vehicle) — speed(vehicle) — accel(vehicle))
with
magic_accel: magic_accel = accel(vehicle)
then

actl: vehicle :=vehicle+1

act2: xpos(vehicle) := nxpos

act3: speed(vehicle) := nspeed
end

Event movel_max =
refines movel_max
any
nspeed
nxpos
where
grdl: vehicle =1
grd2: d_vehicle=VEHICLES+1
grd3: nspeed = new_speed(speed(vehicle) — accel(vehicle))
grd4: nspeed > MAX_SPEED
grd5: nxpos = new_xpos_max(xpos(vehicle) — speed(vehicle) — accel(vehicle))
with
magic_accel: magic_accel = accel(vehicle)
then
actl: vehicle :=vehicle+1
act2: xpos(vehicle) := nxpos
act3: speed(vehicle) :== MAX_SPEED
end

Event movel_reduce =
refines movel_reduce

192 APPENDIX D. 1D PLATOONING MODEL IN EVENT-B

any
nspeed
nxpos
where
grdl: vehicle =1
grd2: d_vehicle=VEHICLES+1
grd3: nspeed = new_speed(speed(vehicle) — accel(vehicle))
grd4 : nspeed <0
grd5: nxpos = new_xpos_min(xpos(vehicle) — speed(vehicle) — accel(vehicle))
with
magic_accel: magic_accel = accel(vehicle)
then
actl: vehicle :=vehicle+ 1
act2: xpos(vehicle) := nxpos
act3: speed(vehicle) =0
end

Event move_normal =
refines move_normal

any
nspeed
nxpos
where
grdl: vehiclec€2..VEHICLES
grd2: d_vehicle=VEHICLES+1
grd3: nspeed = new_speed(speed(vehicle) — accel(vehicle))
grd4 : nspeed € 0..MAX_SPEED
grd5: nxpos = new_xpos(xpos(vehicle) — speed(vehicle) — accel(vehicle))
grd6 : xpos(vehicle—1) —nxpos > CRITICAL_DISTANCE
with
magic_accel: magic_accel = accel(vehicle)
then
actl: vehicle :=vehicle+1
act2: xpos(vehicle) := nxpos
act3: speed(vehicle) .= nspeed
end

Event move_max =
refines move_max
any
nspeed
nxpos
where
grdl: vehicle€2..VEHICLES
grd2: d_vehicle=VEHICLES+1
grd3: nspeed = new_speed(speed(vehicle) — accel(vehicle))
grd4 : nspeed > MAX_SPEED
grd5: nxpos = new_xpos_max(xpos(vehicle) — speed(vehicle) — accel(vehicle))
grd6 : xpos(vehicle — 1) —nxpos > CRITICAL_DISTANCE
with
magic_accel: magic_accel = accel(vehicle)
then
actl: vehicle :=vehicle+1
act2: xpos(vehicle) := nxpos
act3: speed(vehicle) :== MAX_SPEED
end

D.10. PLATOON4

Event move_reduce =

refines move_reduce

any

nspeed

nxpos
where

grdl:

grd2:

grd3:

grd4 :

grd5:

grd6 :
with

vehicle € 2..VEHICLES

d_vehicle=VEHICLES + 1

nspeed = new_speed(speed(vehicle) — accel (vehicle))

nspeed < 0

nxpos = new_xpos_min(xpos(vehicle) — speed(vehicle) — accel(vehicle))
xpos(vehicle — 1) —nxpos > CRITICAL_DISTANCE

magic_accel: magic_accel = accel(vehicle)

then
actl:
act2:
act3:
end

vehicle := vehicle + 1
xpos(vehicle) ;= nxpos
speed (vehicle) :=0

Event all_moves =
refines all_moves

when
grdl:
grd2:
then
actl:
act2:
act3:
end

VARIANT

vehicle =VEHICLES + 1
d_vehicle=VEHICLES + 1

xpos0 := xpos
vehicle :== 1
d_vehicle :==1

(VEHICLES + 1) — d_vehicle

END

D.10 Platoond

MACHINE platoon4
REFINES platoon3
SEES context4

VARIABLES
xposO
vehicle
xpos
speed
d_vehicle
accel
p_vehicle
p_speed

p_pre_speed

p_dist

INVARIANTS

invl: p_vehicle € 1..VEHICLES+1
inv2: p_speed € 1..VEHICLES —0..MAX_SPEED
inv3: (p_vehicle=VEHICLES+1)V

Vv-(v € 1..p_vehicle— 1= p_speed(v) = speed(v))
invd: p_dist €2..VEHICLES —7Z

193

194 APPENDIX D. 1D PLATOONING MODEL IN EVENT-B

inv6: (p_vehicle=VEHICLES+1)V
Vv (v €2.. p_vehicle— 1= p_dist(v) = xpos(v — 1) —xpos(v))
inv6: p_pre_speed € 2..VEHICLES —0..MAX_SPEED
inv7: (p_vehicle=VEHICLES+1)V
Vv-(v € 2.. p_vehicle — 1 = p_pre_speed(v) = speed(v— 1))
EVENTS
Initialisation
begin
actl: xposO:=initial_xpos
act2: xpos:=initial_xpos
act3: vehicle:=1
actd: speed := initial_speed
act5: d_vehicle :=1
act6: accel :=initial_accel
act7: p_vehicle:=1
act8: p_speed := initial_speed
act9: p_pre_speed := {1} <initial_speed
actl10: p_dist := {1} Qinitial_xpos
end

Event perceivel =
Status convergent
when
grdl: vehicle =1
grd2: d_vehicle =1
grd3: p_vehicle =1
then
actl: p_speed(p_vehicle) := speed(p_vehicle)
act2: p_vehicle := p_vehicle+ 1
end

Event perceive =
Status convergent
when
grdl: vehicle =1
grd2: d_vehicle =1
grd3: p_vehiclec2..VEHICLES
then
actl: p_speed(p_vehicle) := speed(p_vehicle)
act2: p_dist(p_vehicle) := xpos(p_vehicle — 1) — xpos(p_vehicle)
act3: p_pre_speed(p_vehicle) := speed(p_vehicle — 1)
act4: p_vehicle := p_vehicle+ 1
end

Event decidel _normal =
refines decidel
any
naccel
where
grdl: vehicle =1
grd2: d_vehicle =1
grd3: p_vehicle=VEHICLES+1
grd4 : naccel = IDEAL_SPEED — p_speed(d_vehicle)
grd5: naccel € MIN_ACCEL..MAX_ACCEL
with
magic_accel: magic_accel = naccel
then

D.10. PLATOON4 195

actl: d_vehicle :=d_vehicle+ 1
act2: accel(d_vehicle) := naccel
end

Event decidel_max =
refines decidel
any
naccel
where
grdl: vehicle =1
grd2: d_vehicle =1
grd3: p_vehicle=VEHICLES+1
grd4 : naccel = IDEAL_SPEED — p_speed(d_vehicle)
grd5: naccel > MAX_ACCEL
with
magic_accel: magic_accel = MAX_ACCEL
then
actl: d_vehicle :=d_vehicle+1
act2: accel(d_vehicle) == MAX_ACCEL
end

Event decidel_min =
refines decidel
any

naccel
where

grdl: vehicle =1

grd2: d_vehicle =1

grd3: p_vehicle=VEHICLES+1

grd4 : naccel = IDEAL_SPEED — p_speed(d_vehicle)

grd5: naccel < MIN_ACCEL
with

magic_accel: magic_accel = MIN_ACCEL
then

actl: d_vehicle :=d_vehicle+ 1

act2: accel(d_vehicle) := MIN_ACCEL
end

Event decide_normal =
refines decide
any
naccel
where
grdl: vehicle =1
grd2: d_vehiclec2..VEHICLES
grd3: p_vehicle=VEHICLES+ 1
grd4 : naccel = new_accel(p_dist(d_vehicle) — p_speed(d_vehicle) — p_pre_speed(d_vehicle))
grd5: naccel € MIN_ACCEL..MAX_ACCEL
grd6: dgl,g2-
(g1 € {new_xpos,new_xpos_max,new_xpos_min} N\ g2 € {new_xpos,new_xpos_max,new_xpos_min} \
(g1(xpos(d_vehicle — 1) — speed(d_vehicle — 1) — accel(d_vehicle — 1))
— g2(xpos(d_vehicle) — speed(d_vehicle) — naccel) > CRITICAL_DISTANCE)

with
magic_accel: magic_accel = naccel
then
actl: d_vehicle:=d_vehicle+1
act2: accel(d_vehicle) := naccel

196 APPENDIX D. 1D PLATOONING MODEL IN EVENT-B

end

Event decide_max =
refines decide
any
naccel
where
grdl: vehicle =1
grd2: d_vehiclec2..VEHICLES
grd3: p_vehicle=VEHICLES+1
grd4 : naccel = new_accel(p_dist(d_vehicle) — p_speed(d_vehicle) — p_pre_speed(d_vehicle))
grd5: naccel > MAX_ACCEL
grd6: dgl,g2-
(g1 € {new_xpos,new_xpos_max,new_xpos_min} N\ g2 € {new_xpos,new_xpos_max,new_xpos_min} N\
(g1(xpos(d_vehicle — 1) — speed(d_vehicle — 1) — accel(d_vehicle — 1))
— 82(xpos(d_vehicle) — speed(d_vehicle) — MAX_ACCEL) > CRITICAL_DISTANCE)

with

magic_accel: magic_accel = MAX_ACCEL
then

actl: d_vehicle :=d_vehicle+1

act2: accel(d_vehicle) == MAX_ACCEL
end

Event decide_min =
refines decide
any
naccel
where
grdl: vehicle =1
grd2: d_vehiclec?2..VEHICLES
grd3: p_vehicle=VEHICLES+1
grd4 : naccel = new_accel(p_dist(d_vehicle) — p_speed(d_vehicle) — p_pre_speed(d_vehicle))
grd5: naccel < MIN_ACCEL
grd6: dgl,g2-
(g1 € {new_xpos,new_xpos_max,new_xpos_min} A\ g2 € {new_xpos,new_xpos_max,new_xpos_min} N\
(g1(xpos(d_vehicle — 1) + speed(d_vehicle — 1) — accel(d_vehicle — 1))
— g2(xpos(d_vehicle) — speed(d_vehicle) — MIN_ACCEL) > CRITICAL_DISTANCE)

with

magic_accel: magic_accel = MIN_ACCEL
then

actl: d_vehicle:=d_vehicle+1

act2: accel(d_vehicle) := MIN_ACCEL
end

Event movel_normal =
refines movel_normal
any
nspeed
nxpos
where
grdl: vehicle =1
grd2: d_vehicle=VEHICLES+1
grd3: p_vehicle=VEHICLES+1
grd4 : nspeed = new_speed(speed(vehicle) — accel(vehicle))
grd5: nspeed € 0..MAX_SPEED
grd6 : nxpos = new_xpos(xpos(vehicle) — speed(vehicle) — accel(vehicle))
then

D.10. PLATOON4 197

actl: vehicle := vehicle+ 1

act2: xpos(vehicle) := nxpos

act3: speed(vehicle) ;= nspeed
end

Event movel_max =
refines movel_max
any
nspeed
nxpos
where
grdl: vehicle =1
grd2: d_vehicle=VEHICLES+1
grd3: p_vehicle=VEHICLES+1
grd4: nspeed = new_speed(speed(vehicle) — accel(vehicle))
grd5: nspeed > MAX_SPEED
grd6 : nxpos = new_xpos_max(xpos(vehicle) — speed(vehicle) — accel(vehicle))
then
actl: vehicle :=vehicle+1
act2: xpos(vehicle) := nxpos
act3: speed(vehicle) :== MAX_SPEED
end

Event movel_reduce =
refines movel_reduce
any
nspeed
nxpos
where
grdl: vehicle =1
grd2: d_vehicle=VEHICLES+1
grd3: p_vehicle=VEHICLES+1
grd4 : nspeed = new_speed(speed(vehicle) — accel (vehicle))
grd5: nspeed <0
grd6 : nxpos = new_xpos_min(xpos(vehicle) — speed(vehicle) — accel(vehicle))
then
actl: vehicle :=vehicle+1
act2: xpos(vehicle) := nxpos
act3: speed(vehicle) =0
end

Event move_normal =
refines move_normal
any
nspeed
nxpos
where
grdl: vehiclec€?2..VEHICLES
grd2: d_vehicle=VEHICLES+1
grd3: p_vehicle=VEHICLES+1
grd4 : nspeed = new_speed(speed(vehicle) — accel(vehicle))
grd5: nspeed € 0..MAX_SPEED
grd6 : nxpos = new_xpos(xpos(vehicle) — speed(vehicle) — accel(vehicle))
grd7: xpos(vehicle — 1) —nxpos > CRITICAL_DISTANCE
then
actl: vehicle :=vehicle+ 1

act2: xpos(vehicle) := nxpos

198

act3:

end

APPENDIX D. 1D PLATOONING MODEL IN EVENT-B

speed (vehicle) := nspeed

Event move_max =

refines move_max

any

nspeed

nxpos
where

grdl:
grd2:
grd3:
grd4:
grdb:
grd6 :
grd7:

then

actl:
act2:
act3:

end

vehicle €2..VEHICLES

d_vehicle =VEHICLES +1

p_vehicle=VEHICLES + 1

nspeed = new_speed(speed(vehicle) — accel (vehicle))

nspeed > MAX_SPEED

nxpos = new_xpos_max(xpos(vehicle) — speed(vehicle) — accel (vehicle))
xpos(vehicle — 1) — nxpos > CRITICAL_DISTANCE

vehicle := vehicle + 1
xpos(vehicle) := nxpos
speed(vehicle) == MAX_SPEED

Event move_reduce =

refines move_reduce

any

nspeed

nxpos
where

grdl:
grd2:
grd3:
grd4:
grd5:
grde6 :
grd7:

then

actl:
act2:
act3:

end

vehicle € 2..VEHICLES

d_vehicle =VEHICLES + 1

p_vehicle=VEHICLES + 1

nspeed = new_speed(speed(vehicle) — accel (vehicle))

nspeed < 0

nxpos = new_xpos_min(xpos(vehicle) — speed(vehicle) — accel(vehicle))
xpos(vehicle — 1) —nxpos > CRITICAL_DISTANCE

vehicle := vehicle + 1
xpos(vehicle) := nxpos
speed (vehicle) :=0

Event all_moves =

refines all_moves

when

grdl:
grd2:
grd3:

then

actl:
act2:
act3:
actéd:

end
VARIANT

vehicle =VEHICLES + 1
d_vehicle =VEHICLES + 1
p_vehicle=VEHICLES + 1

xpos0 := xpos
vehicle :== 1

d_vehicle := 1
p_vehicle :=1

(VEHICLES + 1) — p_vehicle

END

Appendix E

2D Platooning Model in Event-B

Contents
Ed Context)ottt teeeenesoseones 199
E2 Contextlttt ieeeeneesoneenas 200
E3 Context2ttt titeeeeesoneonsss 200
Ed4 Context3ttt ittt teeeeneeness 205
ES Contextd ittt teteneenesnnssonees 205
E.6 Platoon0ottt i teeennsnseenes 207
E7 Platoonlttt it i teeeneenneoneas 208
E8 Platoon2 ittt it ittt eeroneones 209
E9 Platoon3ttt ittt ittt 218
EJdO0 Platoond it ittt ittt et e 229

The 2D platooning model kept the same structure as the 1D model, but added the lateral
control, so autonomous vehicles are now moving on a plane (2D).

E.1 Context(

CONTEXT context0
SETS
Point
CONSTANTS
VEHICLES
CRITICAL_DISTANCE
Y_DISTANCE
initial _pos
initial_trajectory
dist
y_dist
nearest
AXIOMS
axm_VEHI1: VEHICLES € N;
axm_VEHI2: VEHICLES >?2
axm_distl: dist € Point X Point —N
axm_dist2: Vx0-(x0 € Point = dist(x0 — x0) = 0)
axm_dist3: Vx0,y0-(x0 € Point Ay0 € Point = dist(x0 — y0) = dist(y0 — x0))

199

200 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

axm_dist4: Vx0,y0,z0-(x0 € Point Ay0 € Point \z0 € Point = dist(x0 — y0) + dist (y0 — z0) > dist (x0 — 20))
axm_init_pos: initial_pos € 1..VEHICLES — Point
axm_CRIT_DIST1: CRITICAL_DISTANCE €N,
axm_CRIT DIST2: W0-(vO€2..VEHICLES =
dist(initial_pos(v0 — 1) — initial_pos(v0)) > CRITICAL_DISTANCE
)

axm_y_distl: y_dist € Point X Point —N
axm_y_dist2: Vx0-(x0 € Point =y_dist(x0 — x0) = 0)
axm_y_dist3: Vx0,y0-(x0 € Point Ay0 € Point = y_dist(x0 — y0) = y_dist(y0 — x0))
axm_y_dist4: Vx0,y0,z0-(x0 € Point Ay0 € Point A\z0 € Point =
y_dist(x0 — y0) + y_dist(y0 — z0) > y_dist(x0 — z0))
axm_nearest : nearest € Point X (N— (1..VEHICLES — Point)) — Point
axm_init_traj: initial_trajectory €0..0— (1..VEHICLES — Point)
axm_Y DIST1: Y_DISTANCE € N;
axm_Y_DIST2: Wv0-(vO€2..VEHICLES =
y_dist(initial_pos(v0) + nearest (initial_pos(v0) —
initial_trajectory)) <Y_DISTANCE
)

END

E.2 Contextl

CONTEXT contextl
EXTENDS contextQ
END

E.3 Context2

CONTEXT context2
EXTENDS contextl
CONSTANTS
MAX_SPEED
MAX_ACCEL
MIN_ACCEL
MAX_x
MAX_x,

Fs

new_point
new_pos_v_x
new_pos_v_Kmax
new_pos_v_xmin
new_pos_vmax_x
new_pos_vmax_xmax

new_pos_vmax_xXmin

E.3. CONTEXT?2

new_pos_
new_pos_
new_pos_

AXIOMS

vmin_x
vmin_xKmax
vmin_xmin

axm_ACCEL1: MAX_ACCEL € N;
axm_ACCEL2: MIN_ACCELc Z
axm_ACCEL3: MIN_ACCEL <0

axm_Y :

axm_x:

axm_y:

axm_7Y0 :
axm_o0 :
axm_vi:
axm v2:
axm_K1:
axm_K2 :
axm_f31:
axm_[32:

axm_ul:
axm_u2:
axm_u3:
axm_pué4 :
axm_ub :
axm_u6 :
axm_u7 :

axm_ucl:

axm_uc2:

axm_usl:
axm_us2:

axm Fcl:

axm_Fc2:

MAX _y eN;
x € Point =7
y € Point -7
Y0 € Point — 7
60 € Point -7
MAX_SPEED € N;
v € Point —0..MAX_SPEED
MAX_x e N
K € Point - —MAX_x..MAX_X
B € Point x MIN_ACCEL .. MAX_ACCEL x —MAX_y, .. MAX 3 — 7.
VPMLX‘(
p € Point A
a€ MIN_ACCEL..MAX_ACCELN
X € —~MAX_y..MAX
=
B) =))+) lp) 02
HeEN;
2xu##0
6xuxu#0
5040 u # 0
3991680 u*u#0
pxu#0
H#0
uc € Point x MIN_ACCEL .. MAX_ACCEL x —MAX_y,.. MAX _x—7
Vpaa-,X'(
p € Point \
a€ MIN_ACCEL..MAX_ACCELA
X E—MAX_y..MAX_Y
=
pc(prramy)=p—B(p—a—x)«Blp—arx))/(2+p)

us € Point x MIN_ACCEL .. MAX_ACCEL x —MAX _y,..MAX _x—Z
VPu aJ('(
p € Point \
ac MIN_ACCEL .. MAX_ACCEL N
X € —MAX_Yx. MAX_y
=

201

us(pr=ra—=y)=B(prra—=x)—Bprra=x)*B(p—arr x)xB(pr—=>a—x))/(6*u*p)

Fc € Point x MIN_ACCEL..MAX_ACCEL x —MAX_y,..MAX _x—1Z
vpa“v%'(

p € Point \

ae€ MIN_ACCEL..MAX_ACCELA

X € —MAX_x .. MAX_Y

=
Fe(p—arx) =v(p)xu+(axu)/2
— (840%v(p) # v(p) *v(p) *(p) * k(p)
+630+v(p) xv(p) xk(p) * (2 a*xxk(p) + (173

x)
+42xv(p)* (15xa*xaxx(p) «k(p) +3*v(p)*v

*
*

(P) X * X +26%v(p) K(p) *axX)

+35xax*x(3xaxaxk(p)xK(p)+Txv(p)xv(p)xyx*x+ 18 v(p) *K(p)*axy)

+40xaxaxy*(3xaxx(p)+4*v(p)*y)
+35%axaxaxyxy,
)/ (5040)

202 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

axm_Fs1: Fs & Point x MIN_ACCEL.. MAX_ACCEL x —MAX_y,.. MAX_x—Z

axm_Fs2: Vp,a,x(
p € Point \
a€ MIN_ACCEL..MAX_ACCELA
X € —MAX_y .. MAX_Y
=
Fs(p—a—y) = (60xv(p)+v(p) *k(p) +20xv(p) * (3xa*Kk(p) +v(p) *X)
+5xa*x(3xaxx(p)+5«v(p)*x)+8xaxaxy)/120
— (166320 v(p) xv(p) *v(p) *v(p) * k(p) *x(p) * k(p)
+ 66528 v(p) #v(p) xv(p) xk(p) * k(p) * (5 * axK(p) +3+v(p) *X)
+27720%v(p) *v(p) *K(p) * (I*xaxaxKk(p)*K(p)
+16xv(p) xx(p) xaxx +3xv(p)*v(p) * X *X)
+ 11880+ v(p) * (7xaxa*axk(p) xk(p) xk(p) +31xv(p) xk(p) x K(p) *axaxy
+ 17 xv(p) *v(p) * k(p) *ax Y+ X +v(p) xv(p) *v(p) * X * X *X)
+3465xax (3xaxaxaxk(p)*K(p)*K(p)+39*v(p)*xK(p)*xK(p)*xaxaxy
+53xv(p) #v(p) #K(p) xaxxx Y +9xv(p) #v(p) *v(p) * X * X *X)
+6160xa*axy*(3xaxaxx(p)«K(p)+5xv(p)xv(p)xx*+x+ 12xaxv(p)*x(p)*y)
+1232xaxaxaxyxy* (9xa*xx(p)+11xv(p)*y)
42240 axaxaxaxyxx*Y
)/ (3991680 s 11)

)

axm_new_point: new_point € ZX L XL X7 x0..MAX_SPEED x —MAX_x.. MAX_x — Point
axm_new_pos_v_K1: new_pos_v_K € Point x MIN_ACCEL .. MAX_ACCEL x —MAX_Y,.. MAX _x,— Point

axm_new_pos_v_K2: Vp,a,x-(

p € Point \

a€ MIN_ACCEL..MAX_ACCELN

X € —MAX_x..MAX_Y A

v(p)+a €0.. MAX_SPEED A

K(p) +x € —~MAX_x..MAX_x

=

new. pos v_x(p — a —) = new_point(
)+ (O(p)xFe(pr— ar) —00(p)+ Fs(p—>ar—rx))/(uxp) —
)+ (¥0(p)* Fs(p s arr) +00(p)+Fe(p—ars 1))/ (uxp)) —
(p = ar %)+ 0(p) —ps(p = ar>x) x60(p)) /u) —
(HGHX)*GG() +us(p = ax)*0(p))/u) =

)
)

axm_new_pos_v_kmaxl: new_pos_v_kmax € Point x MIN_ACCEL..MAX_ACCEL x —MAX _y, .. MAX _y,— Point

axm_new_pos_v_kmax2: Vp,a,x-(

p € Point \

a€ MIN_ACCEL..MAX_ACCELN

X E—MAX_yx..MAX_Y N

v(p)+a €0.. MAX_SPEED A

K(p) +x > MAX _x

=

new_pos_v_xmax(p — a —) = new_point(
(x(p) + (1(p) + Fe(prs ars (MAX _K—K(p))) —8(p) * Fs(p — ars (MAX_K—(p)))), (1)
(v(p) + (10(p) Fs(p > a s (MAX K~ K(p)))+08(p) « Fe(p —+ ar—s (MAX_k—K(p))))/ (1) -
(el 0 (AT~ K Tlp) a2 (A~ ()00
(v(p)
(

~
\

u)
(uc(p = a—> (MAX_k —(p))) *60(p) +us(p — a — (MAX_x—x(p))) =¥8(p)) /1) —
v(p)+a)—
MAX_x)
:)

axm_new_pos_v_kminl: new_pos_v_kmin € Point x MIN_ACCEL .. MAX_ACCEL x —MAX_y,.. MAX_y,— Point

E.3. CONTEXT2 203

axm_new_pos_v_kmin2: Vp,a,x-(
p € Point \
a € MIN_ACCEL..MAX_ACCELN
X € —MAX_ .. MAX_Y A
v(p)+a€0..MAX_SPEED A\
K(p) +x < —MAX_x
=
new_pos_v_xmin(p — a —) = new_point(

(x(p)+ (()*FC(pHaH(—MAX_x—¥(p))) —08(p) # Fs(p — ars (~MAX_x—x(p))))/(uxp)) —
(p)+(1®(p) * Fs(p— a— (—MAX_x—x(p))) +60(p) xFc(p > a— (~MAX_x—x(p))))/(u*u)) —
((ue(p HaH(—MAX_x—x(p))) *¥8(p) —ps(p — a > (~MAX_x —x(p))) *60(p))/u)
E(?LSPH)aH(MAX_x—x(p)))*0o8(p)+uS(pHaH(MAX_x—x(p)))*v8(p))/u) —

v(p)+

(~MAX x)

)
)

axm_new_pos_vmax_kK1: new_pos_vmax_K € Point x MIN_ACCEL .. MAX_ACCEL x —MAX _y, .. MAX _y,— Point

axm_new_pos_vmax_K2: Vp,a,y-(
p € Point \
a€ MIN_ACCEL..MAX_ACCELN
X € —MAX_y..MAX_Y A
v(p) +a > MAX_SPEED A
K(p) +x € —~MAX_x..MAX_x
=
new_pos_vmax_x(p — a —) = new_point(
(x(p)+ (0(p) Fe(p s (MAX_SPEED —v(p)) — 1) — 68(p) *
Fs(p+— (MAX_SPEED —v(p)) — %))/ (u*u)) —
() + (¥(p) « Fs(p — (MAX_SPEED —v(p)) - ¥) +66(p) *
Fe(p (MAX_SPEED —v(p)) > 1)) (1)) >
((ue(pr—+ (MAX_SPEED —v(p)) > %) ¥40(p) — ss(p— (MAX_SPEED —v(p)) %) *08(p)) /0
(el X SPEED —v(p)-+5)+00(p) s (4AX_SPEED (7)) 1) 18
(x

11

AX_SPEED)

(P)+%)
)
)

axm_new_pos_vmax_Kmaxl : new_pos_vmax_xmax € Point x MIN_ACCEL .. MAX_ACCEL x —MAX_Y, ..
MAX _y, — Point

axm_new_pos_vmax_kmax2: Vp,a,)(
p € Point \
ac€ MIN_ACCEL..MAX_ACCELA
X € —MAX_y .. MAX_Y A
v(p) +a > MAX_SPEED A
K(p) +x > MAX_x
=
new_pos_vmax_xmax(p — a) = new_point(
(x(p) + (1(p) * Fe(p — (MAX_SPEED — v(p)) > (MAX_x— (p))) — 68(p)
Fs(pr-s (MAX_SPEED —v(p)) s (MAX x —(p))) ()
((p)+ (W(p) * Fs(p — (MAX_SPEED —v(p)) — (MAX_x—x(
Folpr (AX_SPEED (7)) (4AX x—s(p)
(tclp — (MAX_SPEED —v(p)) = (MAX_x— (p))) +10(p) —
ps(p— (MAX_SPEED —v(p)) — (MAX _x —x(p))
(uelp -+ (MAX_SPEED —v(p)) -+ (MAX_x— (p)))
us(p— (MAX_SPEED —v(p)) — (MAX_x—x(p))
(MAX_SPEED)
(MAX_x)

—
K
—

)
)

axm_new_pos_vmax_kminl: new_pos_vmax_xmin € Point x MIN_ACCEL.. MAX_ACCEL x —MAX_x. . MAX _x—
Point

204 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

axm_new_pos_vmax_Kmin2 : Vp.,a,x-(
p € Point \
a€ MIN_ACCEL..MAX_ACCELA
X € —MAX .. MAX_Y A
v(p)+a>MAX_SPEED A
K(p) +x < —MAX_x
=
new_pos_vmax_xmin(p — a v x) = new_point (
() - lp)s Felp s (A SPEED-—1(p) > (- MAX-x—X(5) o)+
Fs(p+— (MAX_SPEED —v(p)) — (—MAX_x—x(p))))/(u*u)) —
()£ OB+ Filprr (MAX SPEED v(p)) o (MAX e o) +(5)
Fe(p - (MAX_SPEED —v(p)) > (—MAX_x —(p)))) (s 1)) -
(te(pr— (MAX_SPEED —v(p)) - (—MAX_x— k(p))) *10(p) —
us(p - (MAX_SPEED —v(p)) > (—MAX_x —k(p))) + G8(p))) -
((uc(p — (MAX_SPEED —v(p)) — (—MAX_x —x(p))) *08(p) +
us(p - (MAX_SPEED —v(p)) - (—MAX_x —K(p))) +10(p)) /1) -
(MAX_SPEED) —
(—MAX _x)
:)

axm_new_pos_vmin_k1: new_pos_vmin_x € Point x MIN_ACCEL .. MAX_ACCEL x —MAX_y,.. MAX _y,— Point

axm_new_pos_vmin k2: Vp,a,x-(
p € Point \
a€ MIN_ACCEL..MAX_ACCELN
X € —MAX_x .. MAX_x A
v(p)+a<OA
K(p)+x € —MAX_x..MAX_x
=
new_pos_vmin_x(p — a —) = new_point(

(x(p) + (v0(p) * Fe(p = (—v(p)) =) —00(p) x Fs(p > (—v(p)) = %))/ (u*p)) —
((p) +(¥8(p) * Fs(p = (—v(p)) = X) +60(p) * Fe(p = (—v(p)) = %))/ (u*u)) —
((ue(p = (=v(p)) = x) *Y0(p) — us(p = (—v(p)) = %) *00(p)) /1) —

((ue(p = (=v(p)) = x) x08(p) +us(p = (=v(p)) = %) *¥8(p)) /1) —

(0) =~

(x(p)+x)

)
)

axm_new_pos_vmin_kmax1: new_pos_vmin_xmax € Point x MIN_ACCEL..MAX_ACCEL x —MAX_x..MAX _x—
Point

axm_new_pos_vmin_kKmax2 : Vp,a,x-(
p € Point \
a€ MIN_ACCEL..MAX_ACCELA
X € —MAX_y .. MAX_Y A
v(p)+a<OA
K(p)+x > MAX _x
=
new_pos_vimin_xmax(p — a v x) = new_point (
(x(p) + (W(p) * Fe(p = (—v(p)) = (MAX_k—(p))) —c0(p) *
Fs(p— (=v(p)) = (MAX_x—x(p))))/ (u*p)) —
(p) + (WO(p) * Fs(p — (—v(p)) = (MAX_k —x(p))) +06(p) *
Fe(p = (—v(p)) = (MAX_k—«(p))))/(u*p)) —
(ue(p = (—v(p)) = (MAX_x —k(p))) *¥8(p) — us(p — (—v(p)) = (MAX_k —k(p))) *0(p))/u)
(ue(p = (—v(p)) — (MAX_x —x(p)))*09(17)+HS(= (—v(p)) = (MAX_x —x(p))) *¥8(p)) /1) —

)
)

axm_new_pos_vmin_kminl: new_pos_vmin_xmin € Point x MIN_ACCEL. MAX_ACCELx —MAX_y,..MAX_x—
Point

E.4. CONTEXT3 205

axm_new_pos_vmin_Kmin2 : Vp.,a,x-(
p € Point A
a€ MIN_ACCEL..MAX_ACCELN
X € —MAX_Y .. MAX_X N\
v(p)+a<OA
K(p)+x < —MAX_x
=
new_pos_vmin_xmin(p — a —) = new_point(
(x(p) + (0(p) x Fe(pr— (—v(p)) > (—MAX_x—(p))) —08(p) #
Fs(p = (—v(p)) = (~MAX_x —(p))))/ (u4))
() + (40(p) * Fs(p = (—(p)) - (~MAX_x— K(p))) +06(p)
Fe(p (—v(p)) = (-MAX_x—x(p))))/(uxp)) -
((ue(p = (—v(p)) = (—MAX_x—x(p))) «¥0(p) —us(p — (—v(p)) = (—~MAX_x—K(p))) x60(p))/u)
E(l)lC(PH(v(p)) — (~MAX_x—x(p))) 08(p)ﬂ”(ﬁ (=v(p)) = (~MAX_x—x(p)))*¥0(p))/1) =
(=

I

)
)
axm_init_pos: Vvehi-(vehi € 1..VEHICLES =
240, 0, Y90, 680, 10, KO- (
xX0€ZANy0 € ZNYO0 € ZAcSO0 € ZAv0 € 0..MAX_SPEED N0 € —MAX_x..MAX_x A
initial_pos(vehi) = new_point(x0 — y0 — Y00 — 660 — v0 — K0)

END

E.4 Context3

CONTEXT context3
EXTENDS context2
CONSTANTS
initial _accel
initial _chi
AXIOMS
axm_init_accell: initial_accel € 1..VEHICLES —MIN_ACCEL..MAX_ACCEL
axm_init_accel2: WvO0-(
v0e€1..VEHICLES
=
(3a0-(a0 € MIN_ACCEL .. MAX_ACCEL A initial_accel(v0) = a0))
)

axm_init_chil: initial_chi€ 1..VEHICLES — —MAX_yx..MAX Y
axm_init_chi2: Wv0-(
v0 e 1..VEHICLES
=
(3c0-(c0 € —MAX _y .. MAX _y, N initial_chi(v0) = c0))
)
END

E.5 Context4

CONTEXT context4

EXTENDS context3

CONSTANTS
IDEAL_SPEED
IDEAL_x
initial_v
initial_x
initial_pre_v
h

206

k
initial_Ax
initial_Ay
initial _Ay
initial_Ac
new_accel
new_chi

AXIOMS
axm_IDEAL_SPEED1
axm_IDEAL_SPEED2
axm_IDEAL_SPEED3

APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

IDEAL_SPEED € 0..MAX_SPEED
IDEAL_SPEED >0
IDEAL_SPEED < MAX_SPEED

axm_IDEAL k1: IDEAL_x € —MAX_x..MAX_x
axm_IDEAL _k2: IDEAL x < MAX_Xx
axm_IDEAL k3: IDEAL x> —MAX_x

axm_initial_vl:

initial_ v € 1..VEHICLES —0..MAX_SPEED

axm_initial v2: Vvehi-(

axm_initial_x1:

vehi € 1..VEHICLES = initial_v(vehi) = v(initial_pos(vehi))

)

initial_x € 1..VEHICLES — —MAX_x..MAX_x

axm_initial k2: Vvehi-(

vehi € 1..VEHICLES = initial_x(vehi) = x(initial _pos(vehi))

)

axm_initial pre v: initial_pre_v€?2..VEHICLES —0..MAX_SPEED
axm_initial pre v2: Vvehi-(

axm_initial_Ax1:

axm_initial_Ax2:

axm_initial_Ay1l:
axm_initial_Ay2:

axm_initial_Ayl:

axm_initial_ Ay2:

axm_initial_Ac1l:
axm_initial_Ac2:

axm_h: heN;

vehi € 2..VEHICLES = initial_pre_v(vehi) = v(initial_pos(vehi — 1))
)
initial_Ax €2..VEHICLES —7Z
Vvehi-(
vehi € 2..VEHICLES
=
initial_Ax(vehi) =
(x(initial_pos(vehi — 1)) — x(initial_pos(vehi))) x¥0(initial_pos(vehi)) +
(y(initial_pos(vehi — 1)) — y(initial_pos(vehi))) = 68 (initial_pos(vehi))

initial_Ay € 2..VEHICLES —7Z
Vvehi-(
vehi € 2..VEHICLES
=
initial_Ay(vehi) =
— (x(initial_pos(vehi — 1)) — x(initial_pos(vehi))) * 60 (initial_pos(vehi)) +
(y(initial_pos(vehi — 1)) — y(initial_pos(vehi))) = Y0 (initial_pos(vehi))
)
initial_Ay€?2..VEHICLES—7
Vvehi- (
vehi € 2..VEHICLES
=
initial_Ay(vehi) = Y8(initial_pos(vehi — 1)) x ¥ (initial_pos(vehi))
+008(initial_pos(vehi — 1)) x 68 (initial _pos(vehi))

initial_ Ac € 2..VEHICLES —7Z
Vvehi-(
vehi € 2..VEHICLES
=
initial_Ac(vehi) = ¥0(initial_pos(vehi — 1)) * 60(initial_pos(vehi))
— o0(initial_pos(vehi — 1)) * Y0 (initial_pos(vehi))

)

axm k1: ke€0..MAX_SPEED—Z

axm_k2: Wvl-(

vl €0..MAX_SPEED = k(v1) = max({h,v1/MAX_ACCEL})

)

axm_new_accell:

new_accel € 0..MAX_SPEED x0..MAX_SPEED X Z— 7

E.6. PLATOONO 207

axm_new_accel2: Vpre_vl,vl,Ax-(
pre_vl €0..MAX_SPEEDAv1 € 0..MAX_SPEEDNAx€Z
=
new_accel(pre_vl — vl — Ax) =
(pre_vl —v1+k(vl)*(Ax/u—h*vl —CRITICAL_DISTANCE))/h
)

axm_new_chil: new_chi € 0..MAX_SPEED x —MAX_X..MAX _ KXXZXZLXLXL—ZL
axm_new_chi2: Vvl kl,Ax,Ay,Ay,Ac-(
vl €0..MAX_SPEEDAx1] € —MAX_x..MAX_KANAx € ZNAy € ZAAYE ZNAC € ZNAxxAxxAxx Ay #0
=
new_chi(vl = x1 — Ax — Ay — Ay~ Ac) =
65 V1 (4% ps s Ay s Ay — po s Ax sk AG — K1 % Axx s Ax s AY) /(A x Ax s Ax « AY))

END

E.6 Platoon(

MACHINE platoon0
SEES context0
VARIABLES
posO
temp
trajectory
INVARIANTS
inv_posO: posO € 1..VEHICLES — Point
inv_temp: temp € N
inv_traj: trajectory €0..temp— (1..VEHICLES — Point)
inv_CRIT_DIST: Vv0-(
v0€2..VEHICLES =
dist(posO(vO — 1) — posO(v0)) > CRITICAL_DISTANCE

inv_Y DIST: WvO-(
v0€2..VEHICLES =
y_dist(pos0(v0) — nearest(posO(v0) — trajectory)) < Y_DISTANCE

thm_temp: temp+1€N
EVENTS
Initialisation
begin
act_pos0: pos0:= initial_pos
act_temp: temp:=0
act_traj: trajectory:= initial_trajectory
end

Event all_moves =
any
magic_pos
where
grd_magic_pos: magic_pos € 1..VEHICLES — Point
grd_CRIT_DIST: Wv0-(
v0€2..VEHICLES =
dist(magic_pos(v0— 1) — magic_pos(v0)) > CRITICAL_DISTANCE

grd_Y DIST: Wv0-(
v0€2..VEHICLES =
y_dist(magic_pos(v0) — nearest(magic_pos(v0) —
trajectory < {temp+ 1+ magic_pos})) <Y_DISTANCE

then

208 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

act_pos0: pos0:=magic_pos
act_temp: temp:=temp+1
act_traj: trajectory:=trajectory < {temp+ 1+— magic_pos}
end
END

E.7 Platoonl

MACHINE platoonl
REFINES platoon0
SEES contextl
VARIABLES

posO

temp

trajectory

vehicle

pos
INVARIANTS

inv_vehicle: vehiclec 1..VEHICLES+ 1
inv_pos: pos € 1..VEHICLES — Point
inv_CRIT_DIST: Y10-(
v0 € 2..vehicle— 1=
dist(pos(vO— 1) — pos(v0)) > CRITICAL_DISTANCE

inv_Y _DIST: WvO0-(
v0 € 2..vehicle — 1=
y_dist(pos(v0) — nearest(pos(v0) — trajectory)) <Y_DISTANCE

thm_vehi: VEHICLES + 1—vehicle ¢ N
EVENTS
Initialisation
begin
act_pos0: pos0:= initial_pos
act_temp: temp:=0
act_traj: trajectory:=initial_trajectory
act_vehi: vehicle:=1
act_pos: pos:=initial_pos
end

Event movel =
Status convergent
any
magic_pos_vehicle
where
grd_vehi: vehicle =1
grd_magic_pos: magic_pos_vehicle € Point
then
act_pos: pos(vehicle) := magic_pos_vehicle
act_vehi : vehicle := vehicle + 1
end

Event move =
Status convergent
any
magic_pos_vehicle
where
grd_vehi: vehiclec?2..VEHICLES

E.8. PLATOON?2 209

grd_magic_pos: magic_pos_vehicle € Point
grd_CRIT_DIST: dist(pos(vehicle — 1) magic_pos_vehicle) > CRITICAL_DISTANCE
grd_Y DIST: y_dist(magic_pos_vehicle — nearest(magic_pos_vehicle —
trajectory)) <Y_DISTANCE
then
act_pos: pos(vehicle) := magic_pos_vehicle
act_vehi : vehicle := vehicle + 1
end

Event all_moves =
refines all_moves
when
grd_vehi: vehicle=VEHICLES+1
grd_Y DIST: Wv0-(
v0€2..VEHICLES =
y_dist(pos(v0) — nearest(pos(v0) —
trajectory < {temp+ 1+ pos})) <Y_DISTANCE

with
magic_pos: magic_pos = pos
then
act_pos0: pos0:= pos
act_temp: temp:=temp+1
act_traj: trajectory:=trajectory < {temp+ 1+ pos}
act_vehi: vehicle =1
end
VARIANT
(VEHICLES + 1) — vehicle
END

E.8 Platoon2

MACHINE platoon2
REFINES platoonl
SEES context2
VARIABLES
posO
temp
trajectory
vehicle
pos
INVARIANTS
thm_dom_pos1l: 1€ dom(pos)
thm_dom_pos2: vehicle € 2..VEHICLES = vehicle € dom(pos)
thm_dom_pos3: vehicle € 2..VEHICLES = vehicle — 1 € dom(pos)
thm_dom_v1: pos(l) € dom(v)
thm_dom_v2: vehicle € 2..VEHICLES = pos(vehicle) € dom(v)
thm_dom_k1: pos(1) € dom(k)
thm_dom_k2: vehicle € 2..VEHICLES = pos(vehicle) € dom(K)
EVENTS
Initialisation
begin
act_pos0: posO:= initial_pos
act_temp: temp:=0
act_traj: trajectory:= initial_trajectory
act_vehi: vehicle:=1
act_pos: pos:=initial_pos

210 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

end

Event movel v x =
Status convergent
refines movel

any
magic_accel
magic_chi
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd_magic_accel: magic_accel € MIN_ACCEL..MAX_ACCEL
grd_nspeedl: nspeed =v(pos(vehicle))-+magic_accel
grd_nspeed2: nspeed € 0..MAX_SPEED
grd_magic_chi: magic_chi € —MAX_y ..MAX_Y,
grd_nkappal: nkappa = K(pos(vehicle))+ magic_chi
grd_nkappa2: nkappa € —MAX_x..MAX_x
grd_dom_new_pos : pos(vehicle) — magic_accel — magic_chi € dom(new_pos_v_x)
grd_npos: npos = new_pos_v_K(pos(vehicle) — magic_accel — magic_chi)
with
magic_pos_vehicle: magic_pos_vehicle = npos
then
act_pos: pos(vehicle) := npos
act_vehi: vehicle :=vehicle+1
end

Event movel_v_xmax =
Status convergent
refines movel
any
magic_accel
magic_chi
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd_magic_accel: magic_accel € MIN_ACCEL..MAX_ACCEL
grd_nspeedl: nspeed = v(pos(vehicle))+magic_accel
grd_nspeed2: nspeed € 0..MAX_SPEED
grd_magic_chi: magic_chi € —MAX_x .. MAX ¥,
grd_nkappal : nkappa = K(pos(vehicle)) + magic_chi
grd_nkappa2: nkappa > MAX_K
grd_dom_new_pos : pos(vehicle) — magic_accel — magic_chi € dom(new_pos_v_xmax)
grd_npos: npos = new_pos_v_kmax(pos(vehicle) — magic_accel — magic_chi)
with
magic_pos_vehicle: magic_pos_vehicle = npos
then
act_pos: pos(vehicle) :=npos
act_vehi: vehicle := vehicle + 1
end

Event movel_v_xmin =
Status convergent
refines movel

any

E.8. PLATOON?2 211

magic_accel
magic_chi
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd_magic_accel: magic_accel € MIN_ACCEL..MAX_ACCEL
grd_nspeedl: nspeed =v(pos(vehicle))-+magic_accel
grd_nspeed2: nspeed € 0..MAX_SPEED
grd_magic_chi: magic_chi € —MAX_y ..MAX_Y,
grd_nkappal: nkappa = k(pos(vehicle))+ magic_chi
grd_nkappa2: nkappa < —MAX_x
grd_dom_new_pos : pos(vehicle) — magic_accel — magic_chi € dom(new_pos_v_Kmin)
grd_npos: npos = new_pos_v_xmin(pos(vehicle) — magic_accel — magic_chi)
with
magic_pos_vehicle: magic_pos_vehicle = npos
then
act_pos: pos(vehicle) :=npos
act_vehi: vehicle := vehicle+ 1
end

Event movel_vmax_x =
Status convergent
refines movel
any
magic_accel
magic_chi
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd_magic_accel: magic_accel € MIN_ACCEL..MAX_ACCEL
grd nspeedl: nspeed =v(pos(vehicle)) -+ magic_accel
grd_nspeed2: nspeed > MAX_SPEED
grd_magic_chi: magic_chi € —MAX_Yx..MAX_y
grd_nkappal: nkappa = K(pos(vehicle))+ magic_chi
grd_nkappa2: nkappa € —MAX_x..MAX_x
grd_dom new_pos: pos(vehicle) — magic_accel — magic_chi € dom(new_pos_vmax_x)
grd_npos: npos = new_pos_vmax_K(pos(vehicle) — magic_accel — magic_chi)
with
magic_pos_vehicle: magic_pos_vehicle = npos
then
act_pos: pos(vehicle) := npos
act_vehi: vehicle := vehicle+ 1
end

Event movel_vmax_xmax =
Status convergent
refines movel
any
magic_accel
magic_chi
nspeed

nkappa
npos
where

212 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

grd_vehi: vehicle =1
grd_magic_accel: magic_accel € MIN_ACCEL..MAX_ACCEL
grd_nspeedl: nspeed = v(pos(vehicle))+magic_accel
grd_nspeed2: nspeed > MAX_SPEED
grd_magic_chi: magic_chi € —MAX_y,..MAX Y,
grd_nkappal : nkappa = K(pos(vehicle)) + magic_chi
grd_nkappa2: nkappa > MAX_x
grd_dom_new_pos : pos(vehicle) — magic_accel — magic_chi € dom(new_pos_vmax_xkmax)
grd_npos: npos = new_pos_vmax_xkmax(pos(vehicle) — magic_accel — magic_chi)
with
magic_pos_vehicle: magic_pos_vehicle = npos
then
act_pos: pos(vehicle) :=npos
act_vehi : vehicle := vehicle + 1
end

Event movel_vmax_xmin =
Status convergent
refines movel
any
magic_accel
magic_chi
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd_magic_accel: magic_accel € MIN_ACCEL..MAX_ACCEL
grd_nspeedl: nspeed = v(pos(vehicle))+magic_accel
grd_nspeed2: nspeed > MAX_SPEED
grd_magic_chi: magic_chi € —MAX_x .. MAX
grd_nkappal : nkappa = K(pos(vehicle)) + magic_chi
grd_nkappa2: nkappa < —MAX_x
grd_dom_new_pos : pos(vehicle) — magic_accel — magic_chi € dom(new_pos_vmax_xmin)
grd_npos: npos = new_pos_vmax_xmin(pos(vehicle) — magic_accel — magic_chi)
with
magic_pos_vehicle: magic_pos_vehicle = npos
then
act_pos: pos(vehicle) :=npos
act_vehi : vehicle := vehicle + 1
end

Event movel _vmin_x =
Status convergent
refines movel
any
magic_accel
magic_chi
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd _magic_accel: magic_accel € MIN_ACCEL..MAX_ACCEL
grd_nspeedl: nspeed = v(pos(vehicle)) -+ magic_accel
grd_nspeed2: nspeed <0
grd_magic_chi: magic_chi € —MAX_x .. MAX
grd_nkappal: nkappa = k(pos(vehicle))+ magic_chi

E.8. PLATOON?2

grd_nkappa2: nkappa € —MAX_x..MAX_x

grd_dom_new_pos : pos(vehicle) — magic_accel — magic_chi € dom(new_pos_vmin_x)
grd_npos: npos = new_pos_vmin_X(pos(vehicle) — magic_accel — magic_chi)

with

magic_pos_vehicle: magic_pos_vehicle = npos

then

end

Event
Status
refines

any

act_pos: pos(vehicle) :=npos
act_vehi: vehicle := vehicle+1

movel_vmin_xmax =
convergent
movel

magic_accel
magic_chi
nspeed

nkappa
npos

where

with

then

end

Event
Status
refines

any

grd_vehi: vehicle =1

grd_magic_accel: magic_accel € MIN_ACCEL..MAX_ACCEL
grd_nspeedl: nspeed =v(pos(vehicle)) -+ magic_accel

grd_nspeed2: nspeed <0
grd_magic_chi: magic_chi € —MAX_x .. MAX

grd_nkappal : nkappa = K(pos(vehicle)) + magic_chi

grd_nkappa2: nkappa > MAX_x

grd_dom_new_pos: pos(vehicle) — magic_accel — magic_chi € dom(new_pos_vmin_xmax)
grd_npos: npos = new_pos_vmin_kmax(pos(vehicle) — magic_accel — magic_chi)

magic_pos_vehicle: magic_pos_vehicle = npos

act_pos: pos(vehicle) :=npos
act_vehi : vehicle := vehicle + 1

movel _vmin_xmin =
convergent
movel

magic_accel
magic_chi
nspeed

nkappa
npos

where

with

then

grd_vehi: vehicle =1

grd magic_accel: magic_accel € MIN_ACCEL..MAX_ACCEL
grd_nspeedl: nspeed = v(pos(vehicle))+ magic_accel

grd_nspeed2: nspeed <0
grd_magic_chi: magic_chi € —MAX_Yx..MAX_y

grd_nkappal: nkappa = x(pos(vehicle))+magic_chi

grd_nkappa2: nkappa < —MAX_x

grd_dom_new_pos : pos(vehicle) — magic_accel — magic_chi € dom(new_pos_vmin_xmin)
grd_npos: npos = new_pos_vmin_xmin(pos(vehicle) — magic_accel — magic_chi)

magic_pos_vehicle: magic_pos_vehicle = npos

213

214 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

act_pos: pos(vehicle) := npos
act_vehi: vehicle := vehicle+ 1
end

Event move_v_Kk =
Status convergent
refines move

any
magic_accel
magic_chi
nspeed
nkappa
npos
where
grd_vehi: vehicle€2..VEHICLES
grd_magic_accel: magic_accel € MIN_ACCEL. MAX_ACCEL
grd_nspeedl: nspeed = v(pos(vehicle))+magic_accel
grd_nspeed2: nspeed €0..MAX_SPEED
grd_magic_chi: magic_chi € —MAX_y..MAX_},
grd_nkappal: nkappa = x(pos(vehicle))+magic_chi
grd_nkappa2: nkappa € —MAX_x..MAX_x
grd_dom_new_pos : pos(vehicle) — magic_accel — magic_chi € dom(new_pos_v_x)
grd_npos: npos = new_pos_v_K(pos(vehicle) — magic_accel — magic_chi)
grd_CRIT_DIST: dist(pos(vehicle— 1)+~ npos) > CRITICAL_DISTANCE
grd_Y_DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE
with
magic_pos_vehicle: magic_pos_vehicle = npos
then

act_pos: pos(vehicle) := npos
act_vehi: vehicle := vehicle+1
end

Event move_v_xmax =
Status convergent
refines move
any
magic_accel
magic_chi
nspeed
nkappa
npos
where
grd_vehi: vehicle €2..VEHICLES
grd magic_accel: magic_accel € MIN_ACCEL. . MAX_ACCEL
grd_nspeedl: nspeed = v(pos(vehicle))+magic_accel
grd_nspeed2: nspeed € 0..MAX_SPEED
grd_magic_chi: magic_chi € —MAX_y,..MAX Y,
grd_nkappal : nkappa = K(pos(vehicle)) + magic_chi
grd_nkappa2: nkappa > MAX_x
grd_dom new_pos: pos(vehicle) — magic_accel — magic_chi € dom(new_pos_v_xmax)
grd_npos: npos = new_pos_v_kmax(pos(vehicle) — magic_accel — magic_chi)
grd_CRIT_DIST: dist(pos(vehicle — 1) npos) > CRITICAL_DISTANCE
grd Y DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE
with
magic_pos_vehicle: magic_pos_vehicle = npos
then
act_pos: pos(vehicle) :=npos
act_vehi: vehicle := vehicle + 1

E.8. PLATOON?2

end

Event
Status
refines

any

move_v_Kmin =
convergent

move

magic_accel
magic_chi
nspeed

nkappa
npos

where

with

then

end

Event
Status
refines

any

grd_vehi: vehiclec?2..VEHICLES

grd_magic_accel: magic_accel € MIN_ACCEL..MAX_ACCEL
grd_nspeedl: nspeed =v(pos(vehicle)) -+ magic_accel

grd_nspeed2: nspeed € 0..MAX_SPEED
grd_magic_chi: magic_chi € —MAX_x .. MAX

grd_nkappal : nkappa = K(pos(vehicle)) + magic_chi

grd_nkappa2: nkappa < —MAX_x

grd_dom_new_pos : pos(vehicle) — magic_accel — magic_chi € dom(new_pos_v_Kmin)
grd_npos: npos = new_pos_v_xmin(pos(vehicle) — magic_accel — magic_chi)
grd_CRIT_DIST: dist(pos(vehicle — 1)~ npos) > CRITICAL_DISTANCE

grd_Y DIST: y_dist(npos s nearest(npos — trajectory)) <Y_DISTANCE

magic_pos_vehicle: magic_pos_vehicle = npos

act_pos: pos(vehicle) := npos
act_vehi: vehicle := vehicle+ 1

move_vmax_K =
convergent
move

magic_accel
magic_chi
nspeed

nkappa
npos

where

with

then

end

grd_vehi: vehicle€2..VEHICLES

grd_magic_accel: magic_accel € MIN_ACCEL..MAX_ACCEL
grd_nspeedl: nspeed = v(pos(vehicle))+magic_accel

grd_nspeed2: nspeed > MAX_SPEED
grd_magic_chi: magic_chi € —MAX_x .. MAX

grd_nkappal: nkappa = k(pos(vehicle))+ magic_chi

grd_nkappa2: nkappa € —MAX_x..MAX_x

grd_dom_new_pos : pos(vehicle) — magic_accel — magic_chi € dom(new_pos_vmax_x)
grd_npos: npos = new_pos_vmax_K(pos(vehicle) — magic_accel — magic_chi)
grd_CRIT_DIST: dist(pos(vehicle— 1)+~ npos) > CRITICAL_DISTANCE
grd_Y_DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE

magic_pos_vehicle: magic_pos_vehicle = npos

act_pos: pos(vehicle) :=npos
act_vehi: vehicle := vehicle + 1

215

216 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

Event move_vmax_xmax =
Status convergent
refines move
any
magic_accel
magic_chi
nspeed
nkappa
npos
where
grd_vehi: vehiclec2..VEHICLES
grd_magic_accel: magic_accel € MIN_ACCEL..MAX_ACCEL
grd_nspeedl: nspeed = v(pos(vehicle))+magic_accel
grd_nspeed2: nspeed > MAX_SPEED
grd_magic_chi: magic_chi € —MAX_x .. MAX
grd_nkappal: nkappa = K(pos(vehicle))+ magic_chi
grd_nkappa2: nkappa > MAX_x
grd_dom_new_pos : pos(vehicle) — magic_accel — magic_chi € dom(new_pos_vmax_xmax)
grd_npos: npos = new_pos_vmax_xkmax(pos(vehicle) — magic_accel — magic_chi)
grd_CRIT_DIST: dist(pos(vehicle— 1)~ npos) > CRITICAL_DISTANCE
grd Y DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE
with
magic_pos_vehicle: magic_pos_vehicle = npos
then
act_pos: pos(vehicle) := npos
act_vehi: vehicle := vehicle+ 1
end

Event move_vmax_xmin =
Status convergent
refines move
any
magic_accel
magic_chi
nspeed
nkappa
npos
where
grd_vehi: vehiclec?2..VEHICLES
grd_magic_accel: magic_accel € MIN_ACCEL..MAX_ACCEL
grd_nspeedl: nspeed = v(pos(vehicle))+ magic_accel
grd_nspeed2: nspeed > MAX_SPEED
grd_magic_chi: magic_chi € —MAX_y ..MAX_Y,
grd_nkappal: nkappa = K(pos(vehicle))+magic_chi
grd_nkappa2: nkappa < —MAX_K
grd_dom_new_pos : pos(vehicle) — magic_accel — magic_chi € dom(new_pos_vmax_xmin)
grd_npos: npos = new_pos_vmax_xmin(pos(vehicle) — magic_accel — magic_chi)
grd_CRIT_DIST: dist(pos(vehicle— 1)+ npos) > CRITICAL_DISTANCE
grd_Y DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE
with
magic_pos_vehicle: magic_pos_vehicle = npos
then
act_pos: pos(vehicle) :=npos
act_vehi: vehicle := vehicle + 1
end

Event move_vmin_x =
Status convergent

E.8. PLATOON?2

refines

any

move

magic_accel
magic_chi
nspeed

nkappa
npos

where

grd_vehi: vehiclec?2..VEHICLES

grd_magic_accel: magic_accel € MIN_ACCEL..MAX_ACCEL
grd_nspeedl: nspeed = v(pos(vehicle))+magic_accel

grd_nspeed2: nspeed <0
grd_magic_chi: magic_chi € —MAX_x .. MAX %,

grd_nkappal : nkappa = K(pos(vehicle)) + magic_chi

grd_nkappa2: nkappa € —MAX_x..MAX_x

grd_dom_new_pos : pos(vehicle) — magic_accel — magic_chi € dom(new_pos_vmin_x)
grd_npos: npos = new_pos_vmin_X(pos(vehicle) — magic_accel — magic_chi)
grd_CRIT_DIST: dist(pos(vehicle— 1)+ npos) > CRITICAL_DISTANCE
grd_Y_DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE

with

magic_pos_vehicle: magic_pos_vehicle = npos

then

end

Event
Status
refines

any

act_pos: pos(vehicle) :=npos
act_vehi : vehicle := vehicle + 1

move_vmin_Kmax =
convergent
move

magic_accel
magic_chi
nspeed

nkappa
npos

where

with

then

end

Event
Status
refines

any

grd_vehi: vehiclec?2..VEHICLES

grd_magic_accel: magic_accel € MIN_ACCEL. . MAX_ACCEL
grd_nspeedl: nspeed = v(pos(vehicle))+ magic_accel

grd_nspeed2: nspeed <0
grd_magic_chi: magic_chi € —MAX_x .. MAX

grd_nkappal : nkappa = K(pos(vehicle)) + magic_chi

grd_nkappa2: nkappa > MAX_K

grd_dom_new_pos : pos(vehicle) — magic_accel — magic_chi € dom(new_pos_vmin_xmax)
grd_npos: npos = new_pos_vmin_kmax(pos(vehicle) — magic_accel — magic_chi)

grd CRIT DIST: dist(pos(vehicle — 1)+ npos) > CRITICAL_DISTANCE

grd_Y_DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE

magic_pos_vehicle: magic_pos_vehicle = npos

act_pos: pos(vehicle) := npos
act_vehi : vehicle := vehicle + 1

move_vmin_xmin =
convergent
move

217

218 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

magic_accel
magic_chi
nspeed
nkappa
npos
where
grd_vehi: vehicle €2..VEHICLES
grd_magic_accel: magic_accel € MIN_ACCEL..MAX_ACCEL
grd_nspeedl: nspeed = v(pos(vehicle))+magic_accel
grd_nspeed2: nspeed <0
grd_magic_chi: magic_chi € —MAX_x .. MAX ¥,
grd_nkappal : nkappa = K(pos(vehicle)) + magic_chi
grd_nkappa2: nkappa < —MAX_K
grd_dom_new_pos : pos(vehicle) — magic_accel — magic_chi € dom(new_pos_vmin_xmin)
grd_npos: npos = new_pos_vmin_xmin(pos(vehicle) — magic_accel — magic_chi)
grd_CRIT_DIST: dist(pos(vehicle— 1) npos) > CRITICAL_DISTANCE
grd Y DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE
with
magic_pos_vehicle: magic_pos_vehicle = npos
then
act_pos: pos(vehicle) := npos
act_vehi : vehicle := vehicle + 1
end

Event all_moves =
refines all_moves
when
grd_vehi: vehicle=VEHICLES+ 1
grd_Y _DIST: Vvehi-(
vehi €2..VEHICLES =
y_dist(pos(vehi) — nearest(pos(vehi) —
trajectory < {temp+ 1+ pos})) <Y_DISTANCE

then
act_pos0: pos0:= pos
act_temp: temp:=temp+1
act_traj: frajectory:=trajectory < {temp+ 1+ pos}
act_vehi: vehicle:=1
end
END

E.9 Platoon3

MACHINE platoon3
REFINES platoon2
SEES context3
VARIABLES

posO

temp

trajectory

vehicle

pos

d_vehicle

accel

chi
INVARIANTS

inv_d_vehi: d_vehiclec 1..VEHICLES + 1

E.9. PLATOON3 219

inv_accel: accel € 1..VEHICLES — MIN_ACCEL. MAX_ACCEL
inv_chi: chi€ 1..VEHICLES — —MAX_y..MAX_,
inv_CRIT DIST: (d_vehicle=VEHICLES+1)

\Y
(Vvehi-(
vehi € 2..d_vehicle — 1
=
(Hg 1,82 (
gl € {new_pos_v_x,new_pos_v_xmax,new_pos_v_Kmin,
new_pos_vmax_X,new_pos_vmax_Kmax, new_pos_vmax_Kmin,
new_pos_vmin_X,new_pos_vmin_Kmax, new_pos_vmin_l(min} A
82 € {new_pos_v_x,new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_X,new_pos_vmax_Kmax,new_pos_vmax_KXmin,
new_pos_vmin_xX,new_pos_vmin_Kmax, new_pos_vmin_lcmin} A
(dist(g1(pos(vehi— 1) + accel(vehi — 1) + chi(vehi — 1)) —
82(pos(vehi) — accel(vehi) — chi(vehi))) > CRITICAL_DISTANCE)
)
)
)
)
inv_Y DIST: (d_vehicle=VEHICLES+1)
\Y
(Wvehi-(
vehi € 2..d_vehicle — 1
=
(Fg1(
gl € {new_pos_v_x,new_pos_v_xmax,new_pos_v_xmin,
new_pos_vmax_X,new_pos_vmax_Kmax, new_pos_vmax_xXmin,
new_pos_vmin_X,new_pos_vmin_Kmax, new_pos_vmin_Kmin} A
(y_dist(g1(pos(vehi) — accel(vehi) — chi(vehi)) —
nearest(g1(pos(vehi) — accel(vehi) — chi(vehi)) — trajectory)) <Y_DISTANCE)
)
)
)

)

thm_dom_accell: 1 & dom(accel)
thm_dom_accel2: vehicle €2..VEHICLES = vehicle € dom(accel)
thm_dom_chil: 1 & dom(chi)
thm_dom_chi2: vehicle € 2..VEHICLES = vehicle € dom(chi)
thm_accell: accel(1) € MIN_ACCEL..MAX_ACCEL
thm_accel2: vehicle € 2..VEHICLES = accel(vehicle) € MIN_ACCEL .. MAX_ACCEL
thm_chil: chi(l) € —MAX_y..MAX_Y,
thm_chi2: vehicle € 2..VEHICLES = chi(vehicle) € —MAX _y,.. MAX _Y,
thm_d_vehi: VEHICLES+1—d_vehiclec N
EVENTS
Initialisation
begin
act_pos0: pos0:= initial_pos
act_temp: temp:=0
act_traj: trajectory:= initial_trajectory
act_vehi: vehicle:=1
act_pos: pos:=initial_pos
act_d_vehi: d_vehicle =1
act_accel : accel := initial_accel
act_chi : chi:= initial_chi
end

Event decidel =
Status convergent

any
magic_accel

220 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

magic_chi
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle =1
grd _magic_accel: magic_accel € MIN_ACCEL..MAX_ACCEL
grd_magic_chi: magic_chi € —MAX_y ..MAX_Y,
then
act_accel: accel(d_vehicle) := magic_accel
act_chi: chi(d_vehicle) := magic_chi
act_d_vehi: d_vehicle :=d_vehicle+ 1
end

Event decide =
Status convergent
any
magic_accel
magic_chi
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle€?2..VEHICLES
grd _magic_accel: magic_accel € MIN_ACCEL..MAX_ACCEL
grd_magic_chi: magic_chi € —MAX_y ..MAX_Y,
grd_CRIT_DIST: 3f1,f2-(
fle {new_pos_v_l(, new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_X,new_pos_vmax_Kmax,new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_Kmax,new_pos_vmin_xmin} \
f2 € {new_pos_v_x,new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_X,new_pos_vmax_Kmax,new_pos_vmax_xmin,
new_pos_vmin_X,new_pos_vmin_Kmax, new_pos_vmin_lcmin} A
(dist(f1(pos(d_vehicle — 1) v accel(d_vehicle — 1) v+ chi(d_vehicle — 1)) —
f2(pos(d_vehicle) — magic_accel — magic_chi)) > CRITICAL_DISTANCE)

grd _Y_DIST: 3fl-(
f1 € {new_pos_v_x,new_pos_v_xmax,new_pos_v_Kmin,
new_pos_vmax_K,new_pos_VImax_Kmax,new_pos_vmax_Kmin,
new_pos_vmin_X,new_pos_vmin_xKmax, new_pos_vmin_Kmin} A
(y_dist(f1(pos(d_vehicle) — magic_accel — magic_chi) —
nearest(f1(pos(d_vehicle) — magic_accel — magic_chi) — trajectory)) <Y_DISTANCE)

then
act_accel: accel(d_vehicle) := magic_accel
act_chi: chi(d_vehicle) := magic_chi
act_d_vehi: d_vehicle:=d_vehicle+1

end

Event movel v_x=
Status convergent
refines movel_v_x
any
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle=VEHICLES+1
grd_nspeedl: nspeed =v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed € 0..MAX_SPEED
grd_nkappal: nkappa = x(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa € —MAX_x..MAX_x

E.9. PLATOON3 221

grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_v_x)
grd_npos: npos = new_pos_v_K(pos(vehicle) — accel(vehicle) — chi(vehicle))
with
magic_accel: magic_accel = accel(vehicle)
magic_chi: magic_chi = chi(vehicle)
then
act_pos: pos(vehicle) := npos
act_vehi : vehicle := vehicle + 1
end

Event movel_v_xmax =
Status convergent
refines movel_v_xmax
any
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle=VEHICLES+1
grd_nspeedl: nspeed = v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed € 0..MAX_SPEED
grd_nkappal : nkappa = K(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa > MAX_x
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_v_xmax)
grd_npos: npos = new_pos_v_xmax(pos(vehicle) — accel(vehicle) — chi(vehicle))
with
magic_accel: magic_accel = accel(vehicle)
magic_chi: magic_chi = chi(vehicle)
then
act_pos: pos(vehicle) := npos
act_vehi : vehicle := vehicle + 1
end

Event movel_v_xmin =
Status convergent
refines movel_v_xmin
any
nspeed
nkappa
npos
where
grd_vehi: vehicle=1
grd_d_vehi: d_vehicle=VEHICLES+1
grd_nspeedl: nspeed = v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed € 0..MAX_SPEED
grd_nkappal : nkappa = K(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa < —MAX_x
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_v_xmin)
grd_npos: npos = new_pos_v_xmin(pos(vehicle) — accel(vehicle) — chi(vehicle))
with
magic_accel: magic_accel = accel(vehicle)
magic_chi: magic_chi = chi(vehicle)
then
act_pos: pos(vehicle) := npos
act_vehi : vehicle := vehicle + 1
end

222 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

Event movel_vmax_x =
Status convergent
refines movel_vmax_x
any
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle=VEHICLES+1
grd_nspeedl: nspeed =v(pos(vehicle)) + accel(vehicle)
grd_nspeed2: nspeed > MAX_SPEED
grd_nkappal : nkappa = K(pos(vehicle)) + chi(vehicle)
grd_nkappa2: nkappa € —MAX_x..MAX_x
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmax_x)
grd_npos: npos = new_pos_vmax_K(pos(vehicle) — accel(vehicle) — chi(vehicle))
with
magic_accel: magic_accel = accel(vehicle)
magic_chi: magic_chi = chi(vehicle)
then
act_pos: pos(vehicle) := npos
act_vehi: vehicle := vehicle + 1
end

Event movel_vmax_xmax =
Status convergent
refines movel _vmax_xmax
any
nspeed

nkappa
npos

where
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle=VEHICLES+ 1
grd_nspeedl: nspeed =v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed > MAX_SPEED
grd_nkappal: nkappa = K(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa > MAX_K
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmax_xmax)
grd_npos: npos = new_pos_vmax_xkmax(pos(vehicle) — accel(vehicle) — chi(vehicle))
with
magic_accel: magic_accel = accel(vehicle)
magic_chi: magic_chi = chi(vehicle)
then
act_pos: pos(vehicle) := npos
act_vehi: vehicle := vehicle + 1
end

Event movel _vmax_xmin =
Status convergent
refines movel_vmax_xmin
any
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle=VEHICLES+ 1

E.9. PLATOON3 223

grd_nspeedl: nspeed = v(pos(vehicle))+accel(vehicle)
grd_nspeed2: nspeed > MAX_SPEED
grd_nkappal: nkappa = k(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa < —MAX_x
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmax_kmin)
grd_npos: npos = new_pos_vmax_xmin(pos(vehicle) — accel(vehicle) — chi(vehicle))
with
magic_accel: magic_accel = accel(vehicle)
magic_chi: magic_chi = chi(vehicle)
then
act_pos: pos(vehicle) :=npos
act_vehi : vehicle := vehicle + 1
end

Event movel_vmin_x =
Status convergent
refines movel_vmin_x
any
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd_d vehi: d_vehicle=VEHICLES+1
grd_nspeedl: nspeed = v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed <0
grd_nkappal : nkappa = K(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa € —MAX_x..MAX_x
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmin_x)
grd_npos: npos = new_pos_vmin_X(pos(vehicle) — accel(vehicle) — chi(vehicle))
with
magic_accel: magic_accel = accel(vehicle)
magic_chi: magic_chi = chi(vehicle)
then
act_pos: pos(vehicle) := npos
act_vehi: vehicle := vehicle+ 1
end

Event movel _vmin_xmax =
Status convergent
refines movel_vmin_xmax
any
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle=VEHICLES+ 1
grd_nspeedl: nspeed =v(pos(vehicle)) + accel(vehicle)
grd_nspeed2: nspeed <0
grd_nkappal: nkappa = K(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa > MAX_X
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmin_xmax)
grd_npos : npos = new_pos_vmin_kmax(pos(vehicle) — accel(vehicle) — chi(vehicle))
with
magic_accel: magic_accel = accel(vehicle)
magic_chi: magic_chi = chi(vehicle)
then

224 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

act_pos: pos(vehicle) := npos
act_vehi: vehicle :=vehicle+1
end

Event movel_vmin_xmin =
Status convergent
refines movel_vmin_xmin
any
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle=VEHICLES+ 1
grd_nspeedl : nspeed = v(pos(vehicle)) + accel(vehicle)
grd_nspeed2: nspeed <0
grd_nkappal: nkappa = k(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa < —MAX_x
grd_dom_new_pos: pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmin_xmin)
grd_npos: npos = new_pos_vmin_kmin(pos(vehicle) — accel(vehicle) — chi(vehicle))
with
magic_accel: magic_accel = accel(vehicle)
magic_chi: magic_chi = chi(vehicle)
then
act_pos: pos(vehicle) := npos
act_vehi: vehicle := vehicle+ 1
end

Event move_v_x =
Status convergent
refines move_v_x
any
nspeed
nkappa
npos
where
grd_vehi: vehiclec?2..VEHICLES
grd_d_vehi: d_vehicle=VEHICLES+ 1
grd_nspeedl: nspeed = v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed €0..MAX_SPEED
grd_nkappal : nkappa = K(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa € —MAX_x..MAX_x
grd_dom_new_pos: pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_v_K)
grd_npos: npos = new_pos_v_x(pos(vehicle) — accel(vehicle) — chi(vehicle))
grd_CRIT_DIST: dist(pos(vehicle — 1)~ npos) > CRITICAL_DISTANCE
grd_Y DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE
with
magic_accel: magic_accel = accel(vehicle)
magic_chi: magic_chi = chi(vehicle)
then
act_pos: pos(vehicle) :=npos
act_vehi: vehicle := vehicle + 1
end

Event move_v_xmax =
Status convergent
refines move_v_xmax

any

E.9. PLATOON3 225

nspeed
nkappa
npos
where
grd_vehi: vehiclec?2..VEHICLES
grd_d_vehi: d_vehicle=VEHICLES+ 1
grd_nspeedl: nspeed = v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed € 0..MAX_SPEED
grd_nkappal: nkappa = K(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa > MAX_X
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_v_xmax)
grd_npos: npos = new_pos_v_xmax(pos(vehicle) — accel(vehicle) — chi(vehicle))
grd_CRIT_DIST: dist(pos(vehicle— 1)+ npos) > CRITICAL_DISTANCE
grd_Y_DIST: y_dist(npos > nearest(npos — trajectory)) <Y_DISTANCE
with
magic_accel: magic_accel = accel(vehicle)
magic_chi: magic_chi = chi(vehicle)
then
act_pos: pos(vehicle) := npos
act_vehi: vehicle :=vehicle+1
end

Event move_v_xmin =
Status convergent
refines move_v_xmin
any
nspeed
nkappa
npos
where
grd_vehi: vehicle€?2..VEHICLES
grd_d vehi: d_vehicle=VEHICLES+1
grd_nspeedl: nspeed = v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed € 0..MAX_SPEED
grd_nkappal: nkappa = x(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa < —MAX_x
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_v_xmin)
grd_npos: npos = new_pos_v_xmin(pos(vehicle) — accel(vehicle) — chi(vehicle))
grd_CRIT_DIST: dist(pos(vehicle — 1)~ npos) > CRITICAL_DISTANCE
grd_Y _DIST: y_dist(npos s nearest(npos — trajectory)) <Y_DISTANCE
with
magic_accel: magic_accel = accel(vehicle)
magic_chi: magic_chi = chi(vehicle)
then
act_pos: pos(vehicle) :=npos
act_vehi : vehicle := vehicle + 1
end

Event move_vmax_x =
Status convergent
refines move_vmax_x
any
nspeed
nkappa
npos
where
grd_vehi: vehiclec?2..VEHICLES
grd_d_vehi: d_vehicle=VEHICLES+ 1

226 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

grd_nspeedl: nspeed = v(pos(vehicle))+accel(vehicle)
grd_nspeed2: nspeed > MAX_SPEED
grd_nkappal: nkappa = k(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa € —MAX_x..MAX_x
grd_dom_new_pos: pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmax_x)
grd_npos: npos = new_pos_vmax_K(pos(vehicle) — accel(vehicle) — chi(vehicle))
grd_CRIT_DIST: dist(pos(vehicle — 1)~ npos) > CRITICAL_DISTANCE
grd_Y_DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE
with
magic_accel: magic_accel = accel(vehicle)
magic_chi: magic_chi = chi(vehicle)
then
act_pos: pos(vehicle) := npos
act_vehi : vehicle := vehicle + 1
end

Event move_vmax_xmax =
Status convergent
refines move_vmax_xmax
any
nspeed
nkappa
npos
where
grd_vehi: vehiclec?2..VEHICLES
grd_d_vehi: d_vehicle=VEHICLES+ 1
grd_nspeedl: nspeed =v(pos(vehicle)) + accel(vehicle)
grd_nspeed2: nspeed > MAX_SPEED
grd_nkappal: nkappa = K(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa > MAX_x
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmax_xmax)
grd_npos: npos = new_pos_vmax_xkmax(pos(vehicle) — accel(vehicle) — chi(vehicle))
grd CRIT DIST: dist(pos(vehicle — 1)+ npos) > CRITICAL_DISTANCE
grd_Y_DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE
with
magic_accel: magic_accel = accel(vehicle)
magic_chi: magic_chi = chi(vehicle)
then
act_pos: pos(vehicle) := npos
act_vehi : vehicle := vehicle + 1
end

Event move_vmax_xmin =
Status convergent
refines move_vmax_xmin
any
nspeed
nkappa
npos
where
grd_vehi: vehiclec?2..VEHICLES
grd_d_vehi: d_vehicle=VEHICLES+1
grd_nspeedl: nspeed =v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed > MAX_SPEED
grd_nkappal: nkappa = K(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa < —MAX_x

grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmax_xmin)

E.9. PLATOON3 227

grd_npos: npos = new_pos_vmax_xmin(pos(vehicle) — accel(vehicle) — chi(vehicle))
grd_CRIT_DIST: dist(pos(vehicle— 1)~ npos) > CRITICAL_DISTANCE
grd_Y DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE
with
magic_accel: magic_accel = accel(vehicle)
magic_chi: magic_chi = chi(vehicle)
then
act_pos: pos(vehicle) := npos
act_vehi : vehicle := vehicle + 1
end

Event move_vmin_x =
Status convergent
refines move_vmin_x
any
nspeed
nkappa
npos
where
grd_vehi: vehicle €2..VEHICLES
grd_d_vehi: d_vehicle=VEHICLES+ 1
grd_nspeedl: nspeed =v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed <0
grd_nkappal: nkappa = K(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa € —MAX_x..MAX_x
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmin_x)
grd_npos: npos = new_pos_vmin_X(pos(vehicle) — accel(vehicle) — chi(vehicle))
grd_CRIT_DIST: dist(pos(vehicle— 1)+~ npos) > CRITICAL_DISTANCE
grd_Y_DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE
with
magic_accel: magic_accel = accel(vehicle)
magic_chi: magic_chi = chi(vehicle)
then
act_pos: pos(vehicle) :=npos
act_vehi: vehicle :=vehicle+1
end

Event move_vmin_xmax =
Status convergent
refines move_vmin_xmax
any
nspeed
nkappa
npos
where
grd_vehi: vehiclec?2..VEHICLES
grd_d vehi: d_vehicle=VEHICLES+1
grd_nspeedl: nspeed = v(pos(vehicle))+accel(vehicle)
grd_nspeed2: nspeed <0
grd_nkappal: nkappa = k(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa > MAX_X
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmin_xmax)
grd_npos: npos = new_pos_vmin_kmax(pos(vehicle) — accel(vehicle) — chi(vehicle))
grd_CRIT_DIST: dist(pos(vehicle— 1)+~ npos) > CRITICAL_DISTANCE
grd Y DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE
with

magic_accel: magic_accel = accel(vehicle)

228 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

magic_chi: magic_chi = chi(vehicle)
then
act_pos: pos(vehicle) :=npos
act_vehi : vehicle := vehicle + 1
end

Event move_vmin_xmin =
Status convergent

refines move_vmin_xmin

any
nspeed
nkappa
npos
where
grd_vehi: vehiclec?2..VEHICLES
grd_d_vehi: d_vehicle=VEHICLES+1
grd_nspeedl: nspeed = v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed <0
grd_nkappal: nkappa = k(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa < —MAX_x
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmin_xmin)
grd_npos: npos = new_pos_vmin_kmin(pos(vehicle) — accel(vehicle) — chi(vehicle))
grd_CRIT_DIST: dist(pos(vehicle — 1) npos) > CRITICAL_DISTANCE
grd_Y_DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE
with
magic_accel: magic_accel = accel(vehicle)
magic_chi: magic_chi = chi(vehicle)
then
act_pos: pos(vehicle) := npos
act_vehi: vehicle:= vehicle+1
end

Event all_moves =
refines all_moves
when
grd_vehi: vehicle=VEHICLES+ 1
grd_d _vehi: d_vehicle=VEHICLES+ 1

grd_Y DIST: Vvehi-(
vehi € 2..VEHICLES =
y_dist(pos(vehi) — nearest(pos(vehi) —
trajectory < {temp+ 1+ pos})) <Y_DISTANCE

then
act_pos0: pos0:= pos
act_temp: temp:=temp+1
act_traj: trajectory:=trajectory < {temp+ 1+ pos}
act_vehi: vehicle:=1
act_d_vehi: d_vehicle =1
end
VARIANT
(VEHICLES + 1) —d_vehicle
END

E.10. PLATOON4 229

E.10 Platoond4

MACHINE platoon4
REFINES platoon3
SEES context4
VARIABLES

posO
temp

trajectory

vehicle
pos

d_vehicle
accel
chi
p_vehicle
p_v
p_X
p_pre_v
p_Ax

_Ay
P_AY
p_Ac

INVARIANTS

inv_p_vehi: p_vehiclec 1..VEHICLES+1
inv.p vl: pvel..VEHICLES—0..MAX_SPEED

inv_p v2: (p_vehicle=VEHICLES+1)
Y
(Vvehi-(
vehi € 1.. p_vehicle — 1 = p_v(vehi) = v(pos(vehi))
)
)

inv._p x1: p_x€1..VEHICLES ——-MAX_x..MAX_x

inv_p_k2: (p_vehicle=VEHICLES+1)
\
(Vvehi-(
vehi € 1.. p_vehicle — 1 = p_x(vehi) = x(pos(vehi))
)
)

inv_p_pre vl: p_pre ve?2..VEHICLES —0. MAX_SPEED

inv_p pre v2: (p_vehicle=VEHICLES+1)
\Y
(Vvehi-(
vehi € 2.. p_vehicle — 1 = p_pre_v(vehi) = v(pos(vehi — 1))
)
)

inv_p Axl: p_ Ax€2..VEHICLES—Z

inv_p Ax2: (p_vehicle=VEHICLES+1)

\Y

(Vvehi-(
vehi € 2.. p_vehicle — 1

=
p_Ax(vehi) = (x(pos(vehi — 1)) — x(pos(vehi))) = y0(pos(vehi))

+ (y(pos(vehi— 1)) — y(pos(vehi))) « 68 (pos(vehi))

)

)

inv_p Ayl: p_Aye€2..VEHICLES —Z

230 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

inv_p_Ay2: (p_vehicle=VEHICLES+1)

\%

(Vvehi-(
vehi € 2.. p_vehicle—1

=
p_Ay(vehi) = —(x(pos(vehi — 1)) — x(pos(vehi))) * 60(pos(vehi))

+ (3(pos(vehi — 1)) — y(pos(vehi))) 5 Y8(pos(vehi))

)

inv_p Ayl: p_ Aye2..VEHICLES—Z
inv_p Ay2: (p_vehicle=VEHICLES+1)
\Y
(Vvehi-(
vehi € 2.. p_vehicle — 1
=

p_AY(vehi) = y0(pos(vehi — 1)) Y8 (pos(vehi))
: +00(pos(vehi— 1)) x60(pos(vehi))

inv._p AGl: p_Ac€2..VEHICLES —Z
inv_p AG2: (p_vehicle=VEHICLES+1)
\Y
(Vvehi-(
vehi € 2.. p_vehicle — 1
=
p_Ac(vehi) =Y0(pos(vehi — 1)) x 68 (pos(vehi))
—60(pos(vehi — 1)) x¥8(pos(vehi))
)
)

thm_p_vehi: VEHICLES+1— p_vehicle e N
thm_dom_posl: p_vehicle € 2..VEHICLES = p_vehicle —1 € dom(pos)
thm_dom_pos2: p_vehicle € 2..VEHICLES = p_vehicle € dom(pos)
thm_dom_x1: p_vehicle €2..VEHICLES=> pos(p_vehicle — 1) € dom(x)
thm_dom_x2: p_vehicle € 2..VEHICLES = pos(p_vehicle) € dom(x)
thm_dom_y1: p_vehicle €2..VEHICLES = pos(p_vehicle — 1) € dom(y)
thm_dom_y2: p_vehicle € 2..VEHICLES = pos(p_vehicle) € dom(y)
thm_dom_Y01: p_vehicle € 2..VEHICLES = pos(p_vehicle — 1) € dom(Y0)
thm_dom_Y02: p_vehicle € 2..VEHICLES = pos(p_vehicle) € dom(Y0)
thm_dom_601: p_vehicle € 2..VEHICLES = pos(p_vehicle — 1) € dom(c0)
thm_dom_002: p_vehicle € 2..VEHICLES = pos(p_vehicle) € dom(c0)
thm MAX y1: MAX_y € —MAX_yx..MAX_Y
thm MAX x2: —MAX_y € —MAX_y. MAX_x
thm MAX_ACCEL: MAX_ACCEL € MIN_ACCEL..MAX_ACCEL
thm MIN_ACCE: MIN_ACCEL € MIN_ACCEL..MAX_ACCEL
thm_dom_p_v: 1€&dom(p_v)
thm_dom_p_v2: d_vehicle € 2..VEHICLES=>d_vehicle € dom(p_v)
thm_dom_p_pre_v: d_vehicle €2..VEHICLES=d_vehicle € dom(p_pre_v)
thm_dom_p_k: 1€ dom(p_x)
thm_dom_p_Kk2: d_vehicle € 2..VEHICLES = d_vehicle € dom(p_x)
thm_dom_p_Ax: d_vehicle €2..VEHICLES = d_vehicle € dom(p_Ax)
thm_dom_p_Ay: d_vehicle € 2..VEHICLES = d_vehicle € dom(p_Ay)
thm_dom_p_Ay: d_vehicle € 2..VEHICLES = d_vehicle € dom(p_AY)
thm_dom_p_AG: d_vehicle € 2..VEHICLES = d_vehicle € dom(p_AG)
thm_dom_pos3: d_vehicle €2..VEHICLES=>d_vehicle — 1 € dom(pos)
thm_dom_pos4 : d_vehicle €2..VEHICLES = d_vehicle € dom(pos)
thm_dom_accel: d_vehicle € 2..VEHICLES = d_vehicle — 1 € dom(accel)
thm_dom_chi: d_vehicle €2..VEHICLES = d_vehicle — 1 € dom(chi)
EVENTS
Initialisation
begin
act_pos0: pos0:= initial_pos

E.10. PLATOON4 231

act_temp: temp:=0
act_traj: trajectory:= initial_trajectory
act_vehi: vehicle:=1
act_pos: pos:=initial_pos
act_d_vehi: d_vehicle =1
act_accel: accel ;= initial_accel
act_chi: chi:=initial_chi
act_p_vehi: p_vehicle:=1
act_p_v: p_v:=initial_y
act_p_pre v: p_pre_v:=initial_pre_y
act_p_K: p_K:=initial_X
act_p_Ax: p_Ax:=initial_Ax
act_p_Ay: p_Ay:=initial_Ay
act_p Ay: p_Ay:=initial_Ay
act_p Ac: p_Ac :=initial_AcG

end

Event perceivel =
Status convergent
when
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle =1
grd_p_vehi: p_vehicle =1
then
act_p v: p_v(p_vehicle) := v(pos(p_vehicle))
act_p_k: p_x(p_vehicle) :=x(pos(p_vehicle))
act_p_vehi: p_vehicle:= p_vehicle+1
end

Event perceive =
Status convergent
when
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle =1
grd_p_vehi: p_vehiclec?2..VEHICLES
then
act_p v: p_v(p_vehicle) := v(pos(p_vehicle))
act_p_k: p_x(p_vehicle) := x(pos(p_vehicle))
act_p_pre_v: p_pre_v(p_vehicle):=v(pos(p_vehicle —1))
_Ax(p_vehicle) := (x(pos(p_vehicle — 1)) — x(pos(p_vehicle))) xy0(pos(p_vehicle))
+ (y(pos(p_vehicle — 1)) — y(pos(p_vehicle))) * 60(pos(p_vehicle))
act_p Ay: p_Ay(p_vehicle) :== —(x(pos(p_vehicle — 1)) — x(pos(p_vehicle))) * 60(pos(p_vehicle))
+ (y(pos(p_vehicle — 1)) — y(pos(p_vehicle))) = 8(pos(p_vehicle))
act_p_Ay: p_Ay(p_vehicle) :=v8(pos(p_vehicle — 1)) xy0(pos(p_vehicle))
+00(pos(p_vehicle — 1)) x 60(pos(p_vehicle))
act_p AG: p_Ac(p_vehicle) :=Y0(pos(p_vehicle — 1)) * 60(pos(p_vehicle))
— 60(pos(p_vehicle — 1)) xy0(pos(p_vehicle))

act_p_Ax:

act_p_vehi: p_vehicle := p_vehicle+ 1
end

Event decidel_a_y =
Status convergent
refines decidel
any
naccel
nchi
where
grd_vehi: vehicle =1

232 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

grd_d_vehi: d_vehicle =1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_naccell: naccel = IDEAL SPEED — p_v(d_vehicle)
grd_naccel2: naccel € MIN_ACCEL. . MAX_ACCEL
grd nchil: nchi =IDEAL_x— p_x(d_vehicle)
grd_nchi2: nchie€ —MAX_yx..MAX_¥,

with
magic_accel: magic_accel = naccel
magic_chi: magic_chi = nchi

then
act_accel: accel(d_vehicle) := naccel
act_chi: chi(d_vehicle) := nchi
act_d_vehi: d_vehicle :=d_vehicle+ 1

end

Event decidel_a_ymax =
Status convergent
refines decidel
any
naccel

nchi
where

grd_vehi: vehicle =1
grd_d_vehi: d_vehicle =1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_naccell: naccel = IDEAL_SPEED — p_v(d_vehicle)
grd_naccel2: naccel € MIN_ACCEL..MAX_ACCEL
grd_nchil: nchi =IDEAL_x— p_x(d_vehicle)
grd_nchi2: nchi > MAX_y

with
magic_accel: magic_accel = naccel
magic_chi: magic_chi=MAX_Y

then
act_accel: accel(d_vehicle) := naccel
act_chi: chi(d_vehicle) := MAX_y,
act_d_vehi: d_vehicle :=d_vehicle+ 1

end

Event decidel_a_ymin =
Status convergent
refines decidel
any
naccel

nchi
where

grd_vehi: vehicle =1
grd_d_vehi: d_vehicle=1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_naccell: naccel = IDEAL_SPEED — p_v(d_vehicle)
grd_naccel2: naccel € MIN_ACCEL..MAX_ACCEL
grd_nchil: nchi =IDEAL_x— p_x(d_vehicle)
grd_nchi2: nchi < —-MAX_Y,

with
magic_accel: magic_accel = naccel
magic_chi: magic_chi=—MAX_}

then
act_accel: accel(d_vehicle) := naccel
act_chi: chi(d_vehicle) .= —MAX_¥,

E.10. PLATOON4 233

act_d_vehi: d_vehicle :=d_vehicle+ 1
end

Event decidel_amax_y, =
Status convergent
refines decidel
any
naccel
nchi
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle =1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_naccell: naccel =IDEAL_SPEED — p_v(d_vehicle)
grd_naccel2: naccel > MAX_ACCEL
grd_nchil: nchi=IDEAL_x— p_x(d_vehicle)
grd_nchi2: nchi€ —MAX_x..MAX_y
with
magic_accel: magic_accel = MAX_ACCEL
magic_chi: magic_chi = nchi
then
act_accel: accel(d_vehicle) :== MAX_ACCEL
act_chi: chi(d_vehicle) := nchi
act_d_vehi: d_vehicle :=d_vehicle+ 1
end

Event decidel_amax_ymax =
Status convergent
refines decidel
any
naccel
nchi
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle =1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_naccell: naccel = IDEAL_SPEED — p_v(d_vehicle)
grd_naccel2: naccel > MAX_ACCEL
grd_nchil: nchi =IDEAL_x— p_x(d_vehicle)
grd_nchi2: nchi > MAX_y
with
magic_accel: magic_accel = MAX_ACCEL
magic_chi: magic_chi=MAX_Y
then
act_accel: accel(d_vehicle) :== MAX_ACCEL
act_chi: chi(d_vehicle) := MAX_y,
act_d_vehi: d_vehicle :=d_vehicle+ 1
end

Event decidel_amax_ymin =
Status convergent
refines decidel
any
naccel
nchi
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle =1

234 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_naccell: naccel =IDEAL_SPEED — p_v(d_vehicle)
grd_naccel2: naccel > MAX_ACCEL
grd_nchil: nchi=IDEAL_x— p_x(d_vehicle)
grd_nchi2: nchi < —-MAX_Y,

with
magic_accel: magic_accel = MAX_ACCEL
magic_chi: magic_chi=—MAX_y

then
act_accel: accel(d_vehicle) := MAX_ACCEL
act_chi: chi(d_vehicle) .= —MAX ¥,
act_d_vehi: d_vehicle :=d_vehicle+1

end

Event decidel_amin_y =
Status convergent
refines decidel
any
naccel

nchi
where

grd_vehi: vehicle =1
grd_d_vehi: d_vehicle=1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd naccell: naccel = IDEAL_SPEED — p_v(d_vehicle)
grd_naccel2: naccel < MIN_ACCEL
grd_nchil: nchi =IDEAL_x— p_x(d_vehicle)
grd_nchi2: nchie —MAX_yx..MAX ¥,

with
magic_accel: magic_accel = MIN_ACCEL
magic_chi: magic_chi = nchi

then
act_accel: accel(d_vehicle) := MIN_ACCEL
act_chi: chi(d_vehicle) := nchi
act_d_vehi: d_vehicle :=d_vehicle+ 1

end

Event decidel_amin_ymax =
Status convergent
refines decidel
any
naccel
nchi
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle =1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_naccell: naccel = IDEAL SPEED — p_v(d_vehicle)
grd_naccel2: naccel < MIN_ACCEL
grd_nchil: nchi=IDEAL_x— p_x(d_vehicle)
grd_nchi2: nchi > MAX_Y
with
magic_accel: magic_accel = MIN_ACCEL
magic_chi: magic_chi=MAX_Y
then
act_accel: accel(d_vehicle) := MIN_ACCEL
act_chi: chi(d_vehicle) .= MAX_y,
act_d_vehi: d_vehicle :=d_vehicle+ 1

E.10. PLATOON4 235

end

Event decidel_amin_ymin =
Status convergent
refines decidel
any
naccel
nchi
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle =1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd naccell: naccel =IDEAL_SPEED — p_v(d_vehicle)
grd_naccel2: naccel < MIN_ACCEL
grd_nchil: nchi =IDEAL_x— p_x(d_vehicle)
grd_nchi2: nchi < —MAX_Y,
with
magic_accel: magic_accel = MIN_ACCEL
magic_chi: magic_chi=—MAX_Y
then
act_accel: accel(d_vehicle) := MIN_ACCEL
act_chi: chi(d_vehicle) = —MAX_¥,
act_d_vehi: d_vehicle :=d_vehicle+ 1
end

Event decide_a_y =
Status convergent
refines decide

any
naccel
nchi
where
grd_vehi: vehicle =1
grd_d _vehi: d_vehiclec?2..VEHICLES
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_dom_new_accel: p_pre_v(d_vehicle) — p_v(d_vehicle) — p_Ax(d_vehicle) € dom(new_accel)
grd_naccell: naccel =new_accel(p_pre_v(d_vehicle) — p_v(d_vehicle) — p_Ax(d_vehicle))
grd_naccel2: naccel € MIN_ACCEL..MAX_ACCEL
grd_dom_new_chi: p_v(d_vehicle) — p_x(d_vehicle) — p_Ax(d_vehicle) — p_Ay(d_vehicle)
— p_Ay(d_vehicle) — p_Ac(d_vehicle) € dom(new_chi)
grd_nchil: nchi =new_chi(p_v(d_vehicle) — p_x(d_vehicle) — p_Ax(d_vehicle) — p_Ay(d_vehicle)
— p_Ay(d_vehicle) — p_Ac(d_vehicle))
grd_nchi2: nchi € —MAX_y .. MAX_,
grd_CRIT_DIST: 3f1,f2(
f1 € {new_pos_v_x,new_pos_v_xmax,new_pos_v_Kmin,
new_pos_vmax_K, new_pos_vmax_Kmax, new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_Kmax, new_pos_vmin_lcmin} A
f2 € {new_pos_v_x,new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_K,new_pos_vimax_Kmax,new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_xmax, new_pos_vmin_Kmin} A
(dist(f1(pos(d_vehicle — 1) v accel(d_vehicle — 1) + chi(d_vehicle — 1)) —
f2(pos(d_vehicle) — naccel — nchi)) > CRITICAL_DISTANCE)
)
grd_Y DIST: 3f1-(
f1 € {new_pos_v_x,new_pos_v_xmax,new_pos_v_xmin,
new_pos_vmax_K, new_pos_vimax_Kmax,new_pos_vmax_Kmin,
new_pos_vmin_X,new_pos_vmin_Kmax, new_pos_vmin_Kmin} \
(y_dist(f1(pos(d_vehicle) — naccel — nchi) —
nearest(f1(pos(d_vehicle) — naccel — nchi) — trajectory)) <Y_DISTANCE)

with

236 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

magic_accel: magic_accel = naccel
magic_chi: magic_chi = nchi
then
act_accel: accel(d_vehicle) := naccel
act_chi: chi(d_vehicle) := nchi
act_d_vehi: d_vehicle :=d_vehicle+1
end

Event decide_a_ymax =
Status convergent
refines decide

any
naccel
nchi
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehiclec?2..VEHICLES
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_dom_new_accel: p_pre_v(d_vehicle) — p_v(d_vehicle) — p_Ax(d_vehicle) € dom(new_accel)
grd_naccell: naccel =new_accel(p_pre_v(d_vehicle) — p_v(d_vehicle) — p_Ax(d_vehicle))
grd_naccel2: naccel € MIN_ACCEL..MAX_ACCEL
grd_dom_new_chi: p_v(d_vehicle) — p_x(d_vehicle) — p_Ax(d_vehicle) — p_Ay(d_vehicle)
— p_Ay(d_vehicle) — p_Ac(d_vehicle) € dom(new_chi)
grd_nchil: nchi =new_chi(p_v(d_vehicle) — p_x(d_vehicle) — p_Ax(d_vehicle) — p_Ay(d_vehicle)
— p_AY(d_vehicle) — p_Ac(d_vehicle))
grd_nchi2: nchi > MAX_Y
grd_CRIT DIST: 3f1,f2-(
f1 € {new_pos_v_x,new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_K,new_pos_vimax_Kmax,new_pos_vmax_Kmin,
new_pos_vmin_X,new_pos_vmin_Kmax, new_pos_vmin_lcmin} A
f2 € {new_pos_v_x,new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_K,new_pos_vimax_Kmax, new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_Kmax, new_pos_vmin_Kmin} A
(dist(f1(pos(d_vehicle — 1) — accel (d_vehicle — 1) — chi(d_vehicle — 1)) —
f2(pos(d_vehicle) — naccel — MAX_y)) > CRITICAL_DISTANCE)
)
grd_Y DIST: 3f1-(
f1 € {new_pos_v_x,new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_K, new_pos_vmax_Kmax, new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_Kmax, new_pos_vmin_Kmin} A
(y_dist(f1(pos(d_vehicle) — naccel — MAX_y)
nearest (f1(pos(d_vehicle) — naccel — MAX_Y) — trajectory)) < Y_DISTANCE)
)
with

magic_accel: magic_accel = naccel
magic_chi: magic_chi =MAX_Y
then
act_accel: accel(d_vehicle) := naccel
act_chi: chi(d_vehicle) :=MAX_y,
act_d_vehi: d_vehicle :=d_vehicle+ 1
end

Event decide_a_ymin =
Status convergent
refines decide
any
naccel
nchi
where
grd_vehi: vehicle =1

E.10. PLATOON4 237

grd_d_vehi: d_vehiclec€?2..VEHICLES
grd_p_vehi: p_vehicle=VEHICLES+1
grd_dom_new_accel: p_pre_v(d_vehicle) — p_v(d_vehicle) — p_Ax(d_vehicle) € dom(new_accel)
grd_naccell: naccel =new_accel(p_pre_v(d_vehicle) — p_v(d_vehicle) — p_Ax(d_vehicle))
grd_naccel2: naccel € MIN_ACCEL. . MAX_ACCEL
grd_dom_new_chi: p_v(d_vehicle) — p_x(d_vehicle) — p_Ax(d_vehicle) — p_Ay(d_vehicle)
— p_Ay(d_vehicle) — p_Ac(d_vehicle) € dom(new_chi)
grd_nchil: nchi = new_chi(p_v(d_vehicle) — p_x(d_vehicle) — p_Ax(d_vehicle) — p_Ay(d_vehicle)
— p_Ay(d_vehicle) — p_Ac(d_vehicle))
grd_nchi2: nchi < —-MAX_Y,
grd_CRIT_DIST: 3f1,f2(
f1 € {new_pos_v_x,new_pos_v_xmax,new_pos_v_xmin,
new_pos_vimax_K, new_pos_vinax_Kmax,new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_Kmax, new_pos_vmin_Kmin} \
f2 € {new_pos_v_x,new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_K, new_pos_vmax_Kmax, new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_Kmax, new_pos_vmin_lcmin} A
(dist(f1(pos(d_vehicle — 1) + accel(d_vehicle — 1) + chi(d_vehicle — 1)) —
f2(pos(d_vehicle) — naccel — —MAX_y)) > CRITICAL_DISTANCE)

grd_Y_DIST: 3f1-(
f1 € {new_pos_v_x,new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_K,new_pos_vimax_Kmax,new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_Kmax, new_pos_vmin_Kmin} A
(y_dist(f1(pos(d_vehicle) — naccel — —MAX_Y) —
nearest(f1(pos(d_vehicle) — naccel — —MAX_Y) — trajectory)) < Y_DISTANCE)
)
with
magic_accel: magic_accel = naccel
magic_chi: magic_chi=—MAX_y
then
act_accel: accel(d_vehicle) := naccel
act_chi: chi(d_vehicle) = —MAX_¥,
act_d_vehi: d_vehicle :=d_vehicle+ 1
end

Event decide_amax_y, =
Status convergent
refines decide
any
naccel
nchi
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehiclec€?2..VEHICLES
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_dom_new_accel: p_pre_v(d_vehicle) — p_v(d_vehicle) — p_Ax(d_vehicle) € dom(new_accel)
grd_naccell: naccel =new_accel(p_pre_v(d_vehicle) — p_v(d_vehicle) — p_Ax(d_vehicle))
grd_naccel2: naccel > MAX_ACCEL
grd_dom_new_chi: p_v(d_vehicle) — p_x(d_vehicle) — p_Ax(d_vehicle) — p_Ay(d_vehicle)
— p_Ay(d_vehicle) — p_Ac(d_vehicle) € dom(new_chi)
grd_nchil: nchi =new_chi(p_v(d_vehicle) — p_x(d_vehicle) — p_Ax(d_vehicle) — p_Ay(d_vehicle)
— p_Ay(d_vehicle) — p_Ac(d_vehicle))
grd_nchi2: nchi € —MAX_y..MAX_Y,
grd_CRIT_DIST: 3fI1,f2(
f1 € {new_pos_v_x,new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_X, new_pos_Vimax_Kmax,new_pos_vimax_Kmin,
new_pos_vmin_K,new_pos_vmin_xKmax, new_pos_vmin_Kmin} A
f2e {new_pos_v_l(, new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_K, new_pos_vmax_Kmax, new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_Kmax,new_pos_vmin_xmin} \
(dist(f1(pos(d_vehicle — 1) + accel(d_vehicle — 1) + chi(d_vehicle — 1)) —
F2(pos(d_vehicle) — MAX_ACCEL + nchi)) > CRITICAL_DISTANCE)

238 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

grd_Y _DIST: 3f1-(
f1 € {new_pos_v_x,new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_X,new_pos_vmax_Kmax, new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_xmax, new_pos_vmin_l(min} A
(y_dist(f1(pos(d_vehicle) — MAX_ACCEL — nchi) —
nearest(f1(pos(d_vehicle) = MAX_ACCEL s nchi) — trajectory)) <Y_DISTANCE)

with
magic_accel: magic_accel = MAX_ACCEL
magic_chi: magic_chi = nchi

then
act_accel: accel(d_vehicle) := MAX_ACCEL
act_chi: chi(d_vehicle) := nchi
act_d_vehi: d_vehicle :=d_vehicle+ 1

end

Event decide_amax_ymax =
Status convergent
refines decide
any
naccel
nchi
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehiclec?2..VEHICLES
grd_p_vehi: p_vehicle=VEHICLES+1
grd_dom_new_accel: p_pre_v(d_vehicle) — p_v(d_vehicle) — p_Ax(d_vehicle) € dom(new_accel)
grd_naccell: naccel = new_accel(p_pre_v(d_vehicle) — p_v(d_vehicle) — p_Ax(d_vehicle))
grd_naccel2: naccel > MAX_ACCEL
grd_dom_new_chi: p_v(d_vehicle) — p_x(d_vehicle) — p_Ax(d_vehicle) — p_Ay(d_vehicle)
— p_Ay(d_vehicle) — p_Ac(d_vehicle) € dom(new_chi)
grd_nchil: nchi = new_chi(p_v(d_vehicle) — p_x(d_vehicle) — p_Ax(d_vehicle) — p_Ay(d_vehicle)
— p_Ay(d_vehicle) — p_Ac(d_vehicle))
grd_nchi2: nchi > MAX_Y
grd _CRIT_DIST: 3f1,f2-(
fle {new_pos_v_K,new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_K,new_pos_vimax_Kmax, new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_xmax, new_pos_vmin_l(min} A
2 € {new_pos_v_x,new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vimax_K, new_pos_vinax_Kmax,new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_Kmax, new_pos_vmin_Kmin} \
(dist(f1(pos(d_vehicle — 1) v+ accel(d_vehicle — 1) > chi(d_vehicle — 1)) —
f2(pos(d_vehicle) — MAX_ACCEL — MAX_y)) > CRITICAL_DISTANCE)

grd_Y DIST: 3f1-(
f1 € {new_pos_v_x,new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_X,new_pos_vmax_Kmax, new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_xmax, new_pos_vmin_Kmin} A
(y_dist(f1(pos(d_vehicle) — MAX_ACCEL — MAX_Y) —
nearest(f1(pos(d_vehicle) — MAX_ACCEL — MAX_x) > trajectory)) <Y _DISTANCE)

with
magic_accel: magic_accel = MAX_ACCEL
magic_chi: magic_chi=MAX_Y

then
act_accel: accel(d_vehicle) := MAX_ACCEL
act_chi: chi(d_vehicle) :=MAX_y,
act_d_vehi: d_vehicle :=d_vehicle+ 1

end

E.10. PLATOON4 239

Event decide_amax_ymin =
Status convergent
refines decide
any
naccel
nchi
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehiclec?2..VEHICLES
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_dom_new_accel: p_pre_v(d_vehicle) — p_v(d_vehicle) — p_Ax(d_vehicle) € dom(new_accel)
grd_naccell: naccel =new_accel(p_pre_v(d_vehicle) — p_v(d_vehicle) — p_Ax(d_vehicle))
grd_naccel2: naccel > MAX_ACCEL
grd_dom_new_chi: p_v(d_vehicle) — p_x(d_vehicle) — p_Ax(d_vehicle) — p_Ay(d_vehicle)
— p_Ay(d_vehicle) — p_Ac(d_vehicle) € dom(new_chi)
grd_nchil: nchi =new_chi(p_v(d_vehicle) — p_x(d_vehicle) — p_Ax(d_vehicle) — p_Ay(d_vehicle)
— p_AY(d_vehicle) — p_Ac(d_vehicle))
grd_nchi2: nchi < —MAX_Y,
grd_CRIT_DIST: 3f1,f2-(
f1 € {new_pos_v_x,new_pos_v_xmax,new_pos_v_xmin,
new_pos_vmax_K, new_pos_vimax_Kmax,new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_Kmax, newﬁposﬁvminﬁkmin} N
f2 € {new_pos_v_x,new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_K,new_pos_vmax_Kmax, new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_Kmax, new_pos_vmin_lcmin} A
(dist(f1(pos(d_vehicle — 1) v+ accel(d_vehicle — 1) + chi(d_vehicle — 1)) —
f2(pos(d_vehicle) — MAX_ACCEL — —MAX_Y)) > CRITICAL_DISTANCE)

)
grd_Y DIST: 3fI1-(
fle {new_pos_v_K, new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_X,new_pos_vmax_Kmax, new_pos_vmax_xmin,
new_pos_vmin_K,new_pos_vmin_xmax, new_pos_vmin_Kmin} A
(y_dist(f1(pos(d_vehicle) — MAX_ACCEL — —MAX_¥) —
nearest(f1(pos(d_vehicle) = MAX_ACCEL — —MAX_Y) — trajectory)) <Y_DISTANCE)

with
magic_accel: magic_accel = MAX_ACCEL
magic_chi: magic_chi=—-MAX_}

then
act_accel: accel(d_vehicle) :== MAX_ACCEL
act_chi: chi(d_vehicle) .= —MAX ¥,
act_d_vehi: d_vehicle :=d_vehicle+ 1

end

Event decide_amin_y, =
Status convergent
refines decide
any
naccel
nchi
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehiclec?2..VEHICLES
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_dom_new_accel: p_pre_v(d_vehicle) — p_v(d_vehicle) — p_Ax(d_vehicle) € dom(new_accel)
grd naccell: naccel =new_accel(p_pre_v(d_vehicle) — p_v(d_vehicle) — p_Ax(d_vehicle))
grd_naccel2: naccel < MIN_ACCEL
grd_dom_new_chi: p_v(d_vehicle) — p_x(d_vehicle) — p_Ax(d_vehicle) — p_Ay(d_vehicle)
— p_Ay(d_vehicle) — p_Ac(d_vehicle) € dom(new_chi)
grd nchil: nchi =new_chi(p_v(d_vehicle) — p_x(d_vehicle) — p_Ax(d_vehicle) — p_Ay(d_vehicle)
— p_Ay(d_vehicle) — p_Ac(d_vehicle))

240 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

grd_nchi2: nchi € —MAX_y..MAX_Y,
grd_CRIT_DIST: 3f1,f2-(
f1 € {new_pos_v_x,new_pos_v_xmax,new_pos_v_Kmin,
new_pos_vmax_X,new_pos_vmax_Kmax,new_pos_vmax_xmin,
new_pos_vmin_X,new_pos_vmin_Kmax, new_pos_vmin_lcmin} A
fle { new_pos_v_K,new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_K,new_pos_vmax_Kmax,new_pos_vmax_Kmin,
new_pos_vmin_xK,new_pos_vmin_xKmax, new_pos_vmin_Kmin} N
(dist(f1(pos(d_vehicle — 1) — accel(d_vehicle — 1) — chi(d_vehicle — 1)) —
f2(pos(d_vehicle) — MIN_ACCEL — nchi)) > CRITICAL_DISTANCE)
)
grd_Y DIST: 3f1 (
f1 € {new_pos_v_x,new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_K,new_pos_vmax_Kmax, new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_Kmax, new_pos_vmin_Kmin} A
(y_dist(f1(pos(d_vehicle) — MIN_ACCEL — nchi)
nearest(f1(pos(d_vehicle) — MIN_ACCEL — nchi) — trajectory)) <Y_DISTANCE)

with
magic_accel: magic_accel = MIN_ACCEL
magic_chi: magic_chi = nchi

then
act_accel: accel(d_vehicle) := MIN_ACCEL
act_chi: chi(d_vehicle) := nchi
act_d_vehi: d_vehicle:=d_vehicle+1

end

Event decide_amin_ymax =
Status convergent
refines decide
any
naccel
nchi
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehiclec€?2..VEHICLES
grd_p_vehi: p_vehicle=VEHICLES+1
grd_dom new_accel: p_pre_v(d_vehicle) — p_v(d_vehicle) — p_Ax(d_vehicle) € dom(new_accel)
grd naccell: naccel =new_accel(p_pre_v(d_vehicle) — p_v(d_vehicle) — p_Ax(d_vehicle))
grd_naccel2: naccel < MIN_ACCEL
grd_dom_new_chi: p_v(d_vehicle) — p_x(d_vehicle) — p_Ax(d_vehicle) — p_Ay(d_vehicle)
— p_Ay(d_vehicle) — p_Ac(d_vehicle) € dom(new_chi)
grd_nchil: nchi =new_chi(p_v(d_vehicle) — p_x(d_vehicle) — p_Ax(d_vehicle) — p_Ay(d_vehicle)
— p_Ay(d_vehicle) — p_Ac(d_vehicle))
grd_nchi2: nchi > MAX_Y
grd_CRIT_DIST: 3f1,f2-(
f1 € {new_pos_v_x,new_pos_v_xmax,new_pos_v_Kmin,
new_pos_vmax_K,new_pos_vmax_Kmax, new_pos_vmax_Kmin,
new_pos_vmin_X,new_pos_vmin_Kmax, new_pos_vmin_Kmin} A
f2 € {new_pos_v_x,new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_K,new_pos_vimax_Kmax, new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_Kmax, new_pos_vmin_Kmin} A
(dist(f1(pos(d_vehicle — 1) — accel(d_vehicle — 1) — chi(d_vehicle — 1)) —
f2(pos(d_vehicle) — MIN_ACCEL — MAX_y)) > CRITICAL_DISTANCE)

grd Y DIST: 3f1-(
fle {new_pos_v_K7 new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_X,new_pos_vmax_Kmax,new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_Kmax,new_pos_vmin_xmin} \
(y_dist(f1(pos(d_vehicle) — MIN_ACCEL — MAX_y,) —
nearest(f1(pos(d_vehicle) — MIN_ACCEL — MAX_y) — trajectory)) <Y_DISTANCE)

E.10. PLATOON4 241

with
magic_accel: magic_accel = MIN_ACCEL
magic_chi: magic_chi=MAX_Y

then
act_accel: accel(d_vehicle) := MIN_ACCEL
act_chi: chi(d_vehicle) .= MAX_y,
act_d_vehi: d_vehicle :=d_vehicle+1

end

Event decide_amin_ymin =
Status convergent
refines decide

any
naccel
nchi
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehiclec€2..VEHICLES
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_dom_new_accel: p_pre_v(d_vehicle) — p_v(d_vehicle) — p_Ax(d_vehicle) € dom(new_accel)
grd_naccell: naccel = new_accel(p_pre_v(d_vehicle) — p_v(d_vehicle) — p_Ax(d_vehicle))
grd_naccel2: naccel < MIN_ACCEL
grd_dom_new_chi: p_v(d_vehicle) — p_x(d_vehicle) — p_Ax(d_vehicle) — p_Ay(d_vehicle)
— p_Ay(d_vehicle) — p_Ac(d_vehicle) € dom(new_chi)
grd_nchil: nchi =new_chi(p_v(d_vehicle) — p_x(d_vehicle) — p_Ax(d_vehicle) — p_Ay(d_vehicle)
— p_Ay(d_vehicle) — p_Ac(d_vehicle))
grd_nchi2: nchi < —MAX_¥,
grd_CRIT_DIST: 3f1,f2-(
f1 € {new_pos_v_x,new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_K,new_pos_vmax_Kmax, new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_Kmax, new_pos_vmin_lcmin} A
f2 € {new_pos_v_x,new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_K,new_pos_vimax_Kmax,new_pos_vmax_Kmin,
new_pos_vmin_xX,new_pos_vmin_Xmax, new_pos_vmin_l(min} A
(dist(f1(pos(d_vehicle — 1) v accel(d_vehicle — 1) + chi(d_vehicle — 1)) —
f2(pos(d_vehicle) — MIN_ACCEL — —MAX _)) > CRITICAL_DISTANCE)
)
grd_Y DIST: 3f1-(
fle {new_pos_v_lc7 new_pos_v_Kmax,new_pos_v_Kmin,
new_pos_vmax_K,new_pos_vimax_Kmax, new_pos_vmax_Kmin,
new_pos_vmin_K,new_pos_vmin_Kmax,new_pos_vmin_xmin} \
(y_dist(f1(pos(d_vehicle) — MIN_ACCEL — —MAX_x,) —
nearest(f1(pos(d_vehicle) — MIN_ACCEL — —MAX_Y) — trajectory)) <Y_DISTANCE)
)
with

magic_accel: magic_accel = MIN_ACCEL
magic_chi: magic_chi=—-MAX_Y

then
act_accel: accel(d_vehicle) := MIN_ACCEL
act_chi: chi(d_vehicle) = —MAX_¥,
act_d_vehi: d_vehicle :=d_vehicle+ 1

end

Event movel_v_k=
Status convergent
refines movel_v_x
any
nspeed
nkappa
npos
where

242 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

grd_vehi: vehicle =1

grd_d_vehi: d_vehicle=VEHICLES+1

grd_p_vehi: p_vehicle=VEHICLES+1

grd_nspeedl: nspeed = v(pos(vehicle))+ accel(vehicle)

grd_nspeed2: nspeed € 0..MAX_SPEED

grd_nkappal: nkappa = k(pos(vehicle))+ chi(vehicle)

grd_nkappa2: nkappa € —MAX_x..MAX_x

grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_v_x)

grd_npos: npos = new_pos_v_K(pos(vehicle) — accel(vehicle) — chi(vehicle))
then

act_pos: pos(vehicle) := npos

act_vehi: vehicle := vehicle + 1
end

Event movel_v_xmax =
Status convergent
refines movel v_xmax
any
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle=VEHICLES+1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_nspeedl: nspeed =v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed € 0..MAX_SPEED
grd_nkappal: nkappa = k(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa > MAX_K
grd_dom_new_pos: pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_v_xmax)
grd_npos: npos = new_pos_v_xmax(pos(vehicle) — accel(vehicle) — chi(vehicle))
then
act_pos: pos(vehicle) :=npos
act_vehi: vehicle := vehicle + 1
end

Event movel _v_xmin =
Status convergent
refines movel_v_xmin
any
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd_d _vehi: d_vehicle=VEHICLES+ 1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_nspeedl: nspeed =v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed € 0..MAX_SPEED
grd_nkappal : nkappa = K(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa < —MAX_x
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_v_xmin)
grd_npos: npos = new_pos_v_xmin(pos(vehicle) — accel(vehicle) — chi(vehicle))
then
act_pos: pos(vehicle) :=npos
act_vehi: vehicle :=vehicle+1
end

E.10. PLATOON4 243

Event movel_vmax_x =
Status convergent
refines movel_vmax_x
any
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle=VEHICLES+ 1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_nspeedl: nspeed =v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed > MAX_SPEED
grd_nkappal: nkappa = k(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa € —MAX_x..MAX_x
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmax_x)
grd_npos: npos = new_pos_vmax_x(pos(vehicle) — accel(vehicle) — chi(vehicle))
then
act_pos: pos(vehicle) :=npos
act_vehi: vehicle := vehicle+1
end

Event movel_vmax_xmax =
Status convergent
refines movel _vmax_xmax
any
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle=VEHICLES+1
grd_p_vehi: p_vehicle=VEHICLES+1
grd_nspeedl: nspeed = v(pos(vehicle))+accel(vehicle)
grd_nspeed2: nspeed > MAX_SPEED
grd_nkappal : nkappa = K(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa > MAX_K
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmax_xmax)
grd_npos: npos = new_pos_vmax_xkmax(pos(vehicle) — accel(vehicle) — chi(vehicle))
then
act_pos: pos(vehicle) :=npos
act_vehi: vehicle := vehicle + 1
end

Event movel vmax_xmin =
Status convergent
refines movel_vmax_xmin
any
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle=VEHICLES+ 1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_nspeedl: nspeed = v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed > MAX_SPEED
grd_nkappal: nkappa = k(pos(vehicle))+ chi(vehicle)

244 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

grd_nkappa2: nkappa < —MAX_x
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmax_xmin)
grd_npos : npos = new_pos_vmax_kmin(pos(vehicle) — accel(vehicle) — chi(vehicle))
then
act_pos: pos(vehicle) :=npos
act_vehi : vehicle := vehicle + 1
end

Event movel _vmin_x =
Status convergent
refines movel_vmin_x
any
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd_d_vehi: d_vehicle=VEHICLES+ 1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_nspeedl: nspeed = v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed <0
grd_nkappal: nkappa = k(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa € —MAX_x..MAX_x
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmin_x)
grd_npos: npos = new_pos_vmin_X(pos(vehicle) — accel(vehicle) — chi(vehicle))
then
act_pos: pos(vehicle) := npos
act_vehi: vehicle := vehicle + 1
end

Event movel _vmin_xmax =
Status convergent
refines movel_vmin_Xmax
any
nspeed
nkappa
npos
where
grd_vehi: vehicle =1
grd_d vehi: d_vehicle=VEHICLES+1
grd_p_vehi: p_vehicle=VEHICLES+1
grd nspeedl: nspeed =v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed <0
grd_nkappal : nkappa = K(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa > MAX_K
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmin_xmax)
grd_npos: npos = new_pos_vmin_xkmax(pos(vehicle) — accel(vehicle) — chi(vehicle))
then
act_pos: pos(vehicle) :=npos
act_vehi: vehicle := vehicle+ 1
end

Event movel_vmin_xmin =
Status convergent
refines movel_vmin_xmin
any
nspeed

E.10. PLATOON4 245

nkappa
npos
where
grd_vehi: vehicle =1
grd_d _vehi: d_vehicle=VEHICLES+ 1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_nspeedl: nspeed = v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed <0
grd_nkappal: nkappa = K(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa < —MAX_x
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmin_xmin)
grd_npos : npos = new_pos_vmin_xmin(pos(vehicle) — accel(vehicle) — chi(vehicle))
then
act_pos: pos(vehicle) := npos
act_vehi: vehicle := vehicle+ 1
end

Event move_v_x =
Status convergent
refines move_v_x
any
nspeed
nkappa
npos
where
grd_vehi: vehicle €2..VEHICLES
grd_d_vehi: d_vehicle=VEHICLES+ 1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_nspeedl: nspeed = v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed € 0..MAX_SPEED
grd_nkappal: nkappa = K(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa € —MAX_x..MAX_x
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_v_x)
grd_npos: npos = new_pos_v_x(pos(vehicle) — accel(vehicle) — chi(vehicle))
grd_CRIT_DIST: dist(pos(vehicle — 1)+ npos) > CRITICAL_DISTANCE

grd_Y_DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE
then

act_pos: pos(vehicle) :=npos

act_vehi: vehicle := vehicle+ 1
end

Event move_v_xmax =
Status convergent
refines move_v_xmax
any
nspeed
nkappa
npos
where
grd_vehi: vehiclec?2..VEHICLES
grd_d_vehi: d_vehicle=VEHICLES+1
grd_p_vehi: p_vehicle=VEHICLES+1
grd_nspeedl: nspeed = v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed € 0..MAX_SPEED
grd_nkappal: nkappa = k(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa > MAX_K
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_v_xmax)

246 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

grd_npos: npos = new_pos_v_xmax(pos(vehicle) — accel(vehicle) — chi(vehicle))
grd_CRIT_DIST: dist(pos(vehicle— 1)+ npos) > CRITICAL_DISTANCE
grd_Y DIST: y_dist(npos s nearest(npos — trajectory)) <Y_DISTANCE
then
act_pos: pos(vehicle) := npos
act_vehi : vehicle := vehicle + 1
end

Event move_v_xmin =
Status convergent
refines move_v_xmin
any
nspeed
nkappa
npos
where
grd_vehi: vehiclec?2..VEHICLES
grd_d _vehi: d_vehicle=VEHICLES+ 1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_nspeedl: nspeed =v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed € 0..MAX_SPEED
grd_nkappal: nkappa = K(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa < —MAX_x
grd_dom_new_pos: pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_v_xmin)
grd_npos: npos = new_pos_v_xmin(pos(vehicle) — accel(vehicle) — chi(vehicle))
grd_CRIT_DIST: dist(pos(vehicle— 1) npos) > CRITICAL_DISTANCE
grd_Y DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE
then
act_pos: pos(vehicle) := npos
act_vehi : vehicle := vehicle + 1
end

Event move_vmax_x =
Status convergent
refines move_vmax_x
any
nspeed
nkappa
npos
where
grd_vehi: vehiclec?2..VEHICLES
grd_d_vehi: d_vehicle=VEHICLES+1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_nspeedl: nspeed = v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed > MAX_SPEED
grd_nkappal: nkappa = K(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa € —MAX_x..MAX_x
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmax_x)
grd_npos: npos = new_pos_vmax_x(pos(vehicle) — accel(vehicle) — chi(vehicle))
grd_CRIT_DIST: dist(pos(vehicle— 1)~ npos) > CRITICAL_DISTANCE
grd_Y DIST: y_dist(npos s nearest(npos — trajectory)) <Y_DISTANCE
then
act_pos: pos(vehicle) := npos
act_vehi : vehicle := vehicle + 1
end

Event move_vmax_xmax =

E.10. PLATOON4 247

Status convergent
refines move_vmax_xmax

any
nspeed
nkappa
npos

where
grd_vehi: vehiclec?2..VEHICLES
grd_d_vehi: d_vehicle=VEHICLES+1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_nspeedl: nspeed =v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed > MAX_SPEED
grd_nkappal: nkappa = K(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa > MAX_x
grd_dom_new_pos: pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmax_xmax)
grd_npos: npos = new_pos_vmax_xkmax(pos(vehicle) — accel(vehicle) — chi(vehicle))
grd_CRIT_DIST: dist(pos(vehicle— 1)+ npos) > CRITICAL_DISTANCE
grd_Y DIST: y_dist(npos s nearest(npos — trajectory)) <Y_DISTANCE

then
act_pos: pos(vehicle) := npos
act_vehi: vehicle := vehicle+ 1

end

Event move_vmax_xmin =
Status convergent
refines move_vmax_xmin
any
nspeed
nkappa
npos
where
grd_vehi: vehiclec2..VEHICLES
grd_d_vehi: d_vehicle=VEHICLES+1
grd_p_vehi: p_vehicle=VEHICLES+1
grd_nspeedl: nspeed = v(pos(vehicle))+accel(vehicle)
grd_nspeed2: nspeed > MAX_SPEED
grd_nkappal: nkappa = x(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa < —MAX_K
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmax_xmin)
grd_npos: npos = new_pos_vmax_xmin(pos(vehicle) — accel(vehicle) — chi(vehicle))
grd CRIT DIST: dist(pos(vehicle — 1)+ npos) > CRITICAL_DISTANCE
grd_Y_DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE
then
act_pos: pos(vehicle) := npos
act_vehi: vehicle := vehicle + 1
end

Event move_vmin_x =
Status convergent
refines move_vmin_x
any
nspeed
nkappa
npos
where
grd_vehi: vehiclec?2..VEHICLES
grd_d_vehi: d_vehicle=VEHICLES+1
grd_p_vehi: p_vehicle=VEHICLES+ 1

248 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

grd_nspeedl: nspeed = v(pos(vehicle))+accel(vehicle)
grd_nspeed2: nspeed <0
grd_nkappal : nkappa = K(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa € —MAX_x..MAX_x
grd_dom_new_pos: pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmin_x)
grd_npos: npos = new_pos_vmin_X(pos(vehicle) — accel(vehicle) — chi(vehicle))
grd_CRIT_DIST: dist(pos(vehicle— 1)+ npos) > CRITICAL_DISTANCE
grd_Y _DIST: y_dist(npos— nearest(npos — trajectory)) <Y_DISTANCE
then
act_pos: pos(vehicle) := npos
act_vehi: vehicle := vehicle + 1
end

Event move_vmin_xmax =
Status convergent
refines move_vmin_xmax
any
nspeed
nkappa
npos
where
grd_vehi: vehiclec?2..VEHICLES
grd_d_vehi: d_vehicle=VEHICLES+1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_nspeedl: nspeed =v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed <0
grd_nkappal: nkappa = x(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa > MAX_x
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmin_xmax)
grd_npos: npos = new_pos_vmin_kmax(pos(vehicle) — accel(vehicle) — chi(vehicle))
grd_CRIT_DIST: dist(pos(vehicle— 1)~ npos) > CRITICAL_DISTANCE
grd_Y_DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE
then
act_pos: pos(vehicle) := npos
act_vehi: vehicle := vehicle + 1
end

Event move_vmin_xmin =
Status convergent
refines move_vmin_xmin
any
nspeed
nkappa
npos
where
grd_vehi: vehiclec?2..VEHICLES
grd_d_vehi: d_vehicle=VEHICLES+1
grd_p_vehi: p_vehicle=VEHICLES+1
grd_nspeedl: nspeed =v(pos(vehicle))+ accel(vehicle)
grd_nspeed2: nspeed <0
grd_nkappal: nkappa = k(pos(vehicle))+ chi(vehicle)
grd_nkappa2: nkappa < —MAX_x
grd_dom_new_pos : pos(vehicle) — accel(vehicle) — chi(vehicle) € dom(new_pos_vmin_xmin)
grd_npos: npos = new_pos_vmin_kmin(pos(vehicle) — accel(vehicle) — chi(vehicle))
grd_CRIT_DIST: dist(pos(vehicle — 1) npos) > CRITICAL_DISTANCE
grd_Y DIST: y_dist(npos+— nearest(npos — trajectory)) <Y_DISTANCE
then

E.10. PLATOON4 249

act_pos: pos(vehicle) := npos
act_vehi : vehicle := vehicle + 1
end

Event all_moves =
refines all_moves
when
grd_vehi: vehicle=VEHICLES+ 1
grd_d_vehi: d_vehicle=VEHICLES+1
grd_p_vehi: p_vehicle=VEHICLES+ 1
grd_Y DIST: Vvehi-(
vehi € 2..VEHICLES =
y_dist(pos(vehi) — nearest(pos(vehi) —
trajectory < {temp+ 1+ pos})) <Y_DISTANCE

then
act_pos0: pos0:= pos
act_temp: temp:=temp+1
act_traj: trajectory:=trajectory < {temp+ 1+ pos}
act_vehi: vehicle .= 1
act_d_vehi: d_vehicle =1
act_p_vehi: p_vehicle:=1
end
VARIANT
(VEHICLES + 1) — p_vehicle
END

250 APPENDIX E. 2D PLATOONING MODEL IN EVENT-B

Bibliography

[Abrial 1996] J.-R. Abrial. The B book. Cambridge University Press, 1996. 15, 100

[Abrial 1999] J.-R. Abrial. Event Driven System Construction. Rapport technique,
Clearsy, 1999. 15

[Abrial 2006] Jean-Raymond Abrial. Formal methods in industry: achievements, prob-
lems, future. In Proceedings of the 28th international conference on Software
engineering, pages 761-768. ACM, 2006. 111

[Abrial 2010] J.-R. Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010. 15, 32, 40

[Abrial 2012] Jean-Raymond Abrial, Wen Su and Huibiao Zhu. Formalizing Hybrid
Systems with Event-B. In John Derrick, John Fitzgerald, Stefania Gnesi, Sarfraz
Khurshid, Michael Leuschel, Steve Reeves and Elvinia Riccobene, editeurs,
Abstract State Machines, Alloy, B, VDM, and Z, volume 7316 of Lecture Notes
in Computer Science, pages 178-193. Springer Berlin Heidelberg, 2012. 49

[Adrion 1982] W. Richards Adrion, Martha A. Branstad and John C. Cherniavsky. Vali-
dation, Verification, and Testing of Computer Software. ACM Comput. Surv.,
vol. 14, no. 2, pages 159-192, 1982. 10

[Ait Ameur 2010] Yamine Ait Ameur, Frédéric Boniol and Virginie Wiels. Toward
a wider use of formal methods for aerospace systems design and verification.

International Journal on Software Tools for Technology Transfer, vol. 12, no. 1,
pages 1-7, 2010. 13

[Ait-Sadoune 2009] Idir Ait-Sadoune and Yamine Ait-Ameur. Animating Event B Mod-
els by Formal Data Models. In Tiziana Margaria and Bernhard Steffen, editeurs,
Leveraging Applications of Formal Methods, Verification and Validation, vol-
ume 17 of Communications in Computer and Information Science, pages 37-55.
Springer Berlin Heidelberg, 2009. 20

[Andriole 1986] Stephen J. Andriole. Software Validation, Verification, Testing and
Documentation: A Source Book. Petrocelli Books, Inc., Princeton, NJ, USA,
1986. 10

[Ashenden 2002] PJ. Ashenden. The designer’s guide to vhdl. Electronics & Electrical.
Morgan Kaufmann, 2002. 20

[B-Core(UK) Ltd 1996] B-Core(UK) Ltd. B-Toolkit User’s Manual, Release 3.2, 1996.
15

251

252 BIBLIOGRAPHY

[Baille 1999] Gérard Baille, Philippe Garnier, Hervé Mathieu and Pissard-Gibollet
Roger. Le cycab de I’INRIA Rhones-Alpes. Technical Report RT-0229, INRIA —
Rhones-Alpes, 1999. 23

[Balzer 1981] Robert M. Balzer and Neil M. Goldman. Principles of Good Software
Specification and their Implications for Specification Languages. In Proceedings
of AFIPS ’81, National Computer Conference, pages 393—400, New York, USA,
1981. ACM. 9

[Balzer 1982] Robert M. Balzer, Neil M. Goldman and David S. Wile. Operational
Specification as the Basis for Rapid Prototyping. SIGSOFT Softw. Eng. Notes,
vol. 7, no. 5, pages 3—16, 1982. 58

[Barner 2005] Jorg Barner. A Lightweight Formal Method for the Prediction of Non-
Functional System Properties. PhD thesis, Friedrich-Alexander-Universitit,
Arbeitsberichte des Instituts fiir Informatik Bd. 38, Nr. 4, 2005. 13

[Beck 2001] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt,
Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken
Schwaber, Jeff Sutherland and Dave Thomas. Manifesto for Agile Software
Development, 2001. http://agilemanifesto.org/. 8

[Behm 1999] P. Behm, P. Benoit and J. M. Meynadier. METEOR: A Successful Appli-
cation of B in a Large Project. In FM, volume 1708 of LNCS, pages 369-387.
Springer Verlag, 1999. 15

[Bellegarde 2002] Francoise Bellegarde, Samir Chouali and Jacques Julliand. Verifica-
tion of Dynamic Constraints for B Event Systems under Fairness Assumptions.
In Didier Bert, JonathanP. Bowen, MartinC. Henson and Ken Robinson, editeurs,
ZB 2002:Formal Specification and Development in Z and B, volume 2272 of
Lecture Notes in Computer Science, pages 477—496. Springer Berlin Heidelberg,
2002. 51

[Bendisposto 2008] J. Bendisposto, M. Leuschel, O. Ligot and M. Samia. La validation
de modeles Event-B avec le plug-in ProB pour RODIN. Technique et Science
Informatiques, vol. 27, no. 8, pages 1065-1084, 2008. 20

[Bendisposto 2010] Jens Bendisposto, Fabian Fritz and Michael Leuschel. Developing
Camille, a Text Editor for Rodin. In Proc. Workshop on Tool Building in Formal
Methods, colocated with ABZ Conference — Orford — Canada, 2010. 19, 52

[Bert 2003] D. Bert, S. Boulmé, M.-L. Potet, A. Requet and L. Voisin. Adaptable
Translator of B Specifications to Embedded C Programs. In Integrated Formal
Method, IFM’03, volume 2805 of LNCS, pages 94—113. Springer Verlag, 2003.
14

[Bjesse 2005] Per Bjesse. What is formal verification? SIGDA Newsletter, vol. 35,
no. 24, 2005. 14

[Boehm 1988] Barry W. Boehm. A spiral model of software development and enhance-
ment. Computer, vol. 21, no. 5, pages 61-72, 1988. 12

[Bom 2005] J. Bom, B. Thuilot, F. Marmoiton and P. Martinet. Nonlinar Control
for Urban Vehicle Platooning, Relying upon a Unique Kinematic GPS. In
International Conference on Robotics and Automation. IEEE, 2005. 23

BIBLIOGRAPHY 253

[Bowen 1995a] Jonathan P. Bowen and Michael G. Hinchey. Seven More Myths of
Formal Methods. 1IEEE Softw., vol. 12, no. 4, pages 34—41, 1995. 13

[Bowen 1995b] Jonathan P. Bowen and Michael G. Hinchey. Ten Commandments of
Formal Methods. Computer, vol. 28, pages 56-63, 1995. 13

[Bowen 2006] Jonathan P. Bowen and Michael G. Hinchey. Ten Commandments of
Formal Methods ... Ten Years Later. Computer, vol. 39, pages 4048, 2006. 13

[Brooks 1987] Jr. Frederick P. Brooks. No Silver Bullet Essence and Accidents of
Software Engineering. Computer, vol. 20, no. 4, pages 10-19, 1987. 8

[Burdy 2012] Lilian Burdy, Jean-Louis Dufour and Thierry Lecomtel. The B method
takes up floating-point numbers. In Embedded Real Time Software and Systems,
2012. 49

[Butler 2002] Michael Butler. A System-Based Approach to the Formal Development
of Embedded Controllers for a Railway. Design Automation for Embedded
Systems, vol. 6, pages 355-366, 2002. 13

[Clarke 1996] Edmund M. Clarke and Jeannette M. Wing. Formal methods: state of the
art and future directions. ACM Comput. Surv., vol. 28, no. 4, pages 626—643,
1996. 13

[Cle 2009a] Clearsy. Atelier B—Interactive Prover Reference Manual, version 4.0, 2009.
19, 52

[Cle 2009b] Clearsy. Atelier B 4.0 User manual, 2009. 15

[Colin 2008] S. Colin, A. Lanoix, O. Kouchnarenko and J. Souquieres. Towards Vali-
dating a Platoon of Cristal Vehicles using CSP||B. In J. Meseguer and G. Rosu,
editeurs, 12th International Conference on Algebraic Methodology and Software
Technology (AMAST 2008), numéro 5140 de LNCS, pages 139-144. Springer-
Verlag, July 2008. 25

[Daviet 1996] P. Daviet and M. Parent. Longitudinal and Lateral Servoing of Vehicles
in a Platoon. In Proceeding of the IEEE Intelligent Vehicles Symposium, pages
41-46, 1996. 24, 45

[Déharbe 2012] David Déharbe, Pascal Fontaine, Yoann Guyot and Laurent Voisin. SMT
Solvers for Rodin. In John Derrick, John Fitzgerald, Stefania Gnesi, Sarfraz
Khurshid, Michael Leuschel, Steve Reeves and Elvinia Riccobene, editeurs,
Abstract State Machines, Alloy, B, VDM, and Z, volume 7316 of Lecture Notes
in Computer Science, pages 194-207. Springer Berlin Heidelberg, 2012. 19

[Edmunds 2012] Andrew Edmunds, Abdolbaghi Rezazadeh and Michael Butler. Formal
Modelling for Ada Implementations: Tasking Event-B. In Mats Brorsson and
LuisMiguel Pinho, editeurs, Reliable Software Technologies — Ada-Europe 2012,
volume 7308 of Lecture Notes in Computer Science, pages 119-132. Springer
Berlin Heidelberg, 2012. 20

[Ferber 1996] J. Ferber and J. P. Muller. Influences and Reaction : a Model of Situated
Multiagent Systems. In 2nd Int. Conf. on Multi-agent Systems, pages 72-79,
1996. 24, 46

[Ferber 1999] J. Ferber. Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. Addison-Wesley Professional, 1999. 24

254 BIBLIOGRAPHY

[Forsberg 1995] Kevin Forsberg and Harold Mooz. The relationship of system engineer-
ing to the project cycle. Center for Systems Management, 1995. 12

[Fuchs 1992] Norbert E. Fuchs. Specifications are (preferably) executable. Software
Engineering Journal, vol. 7, pages 323-334, September 1992. 58

[Gerhart 1994] S. Gerhart, D. Craigen and T. Ralston. Case study: Paris Metro Signaling
System. IEEE Software, vol. 11, no. 1, pages 28-32, 1994. 15

[Gosling 2005] James Gosling, Bill Joy, Guy Steele and Gilad Bracha. Java language
specification, the 3rd edition. Addison-Wesley Professional, 2005. 8

[Hallerstede 2010] Stefan Hallerstede, Michael Leuschel and Daniel Plagge. Refinement-
Animation for Event-B - Towards a Method of Validation. In Proceedings
ABZ’2010, volume 5977 of Lecture Notes in Computer Science, pages 287—
301. Springer-Verlag, 2010. 23

[Hallerstede 2011] Stefan Hallerstede and Michael Leuschel. Constraint-Based Dead-
lock Checking of High-Level Specifications. Theory and Practice of Logic
Programming, vol. 11, no. 4-5, pages 767-782, 2011. 39

[Hallerstede 2013] Stefan Hallerstede, Michael Leuschel and Daniel Plagge. Validation
of Formal Models by Refinement Animation. Science of Computer Programming,
vol. 78, no. 3, pages 272-292, 2013. 23

[Idir 2010] Ait-Sadoune Idir. Modélisation et Vérification Formelles de Compositions
de Services. Une Approche Fondée sur le Raffinement et la Preuve. PhD thesis,
Ecole Nationale Supérieure de Mécanique et Aérotechnique (ENSMA), Poitiers,
Décembre 2010. 41

[IEEE 2004] Institute of Electrical IEEE and Electronics Engineers. IEEE Standard for
Software Verification and Validation, 2004. 10

[Jackson 2001] Daniel Jackson. Lightweight Formal Methods. In Proceedings of the
International Symposium of Formal Methods Europe on Formal Methods for
Increasing Software Productivity, FME *01, pages 1—, London, UK, UK, 2001.
Springer-Verlag. 13

[Ladenberger 2009] Lukas Ladenberger, Jens Bendisposto and Michael Leuschel. Visu-
alising Event-B Models with B-Motion Studio. In Marfa Alpuente, Byron Cook
and Christophe Joubert, editeurs, Formal Methods for Industrial Critical Systems,
volume 5825 of Lecture Notes in Computer Science, pages 202—-204. Springer
Berlin Heidelberg, 2009. 22

[Lamport 1977] L. Lamport. Proving the Correctness of Multiprocess Programs. IEEE
Transactions on Software Engineering, vol. 3, no. 2, pages 125-143, 1977. 50

[Lamsweerde 2000] Axel van Lamsweerde. Formal specification: a roadmap. In
ICSE’00: Proceedings of the Conference on The Future of Software Engineering,
pages 147-159, New York, USA, 2000. ACM. 13

[Lanoix 2008] Arnaud Lanoix. Event-B Specification of a Situated Multi-Agent System:
Study of a Platoon of Vehicles. In 2nd IFIP/IEEE International Symposium
on Theoretical Aspects of Software Engineering (TASE 2008), pages 297-304,
France, 2008. 4, 24, 90

BIBLIOGRAPHY 255

[Larman 2003] Craig Larman and Victor R Basili. Iterative and incremental develop-
ments. A brief history. Computer, vol. 36, no. 6, pages 47-56, 2003. 12

[Leino 2010] K.RustanM. Leino. Dafny: An Automatic Program Verifier for Functional
Correctness. In EdmundM. Clarke and Andrei Voronkov, editeurs, Logic for
Programming, Artificial Intelligence, and Reasoning, volume 6355 of Lecture
Notes in Computer Science, pages 348-370. Springer Berlin Heidelberg, 2010.
20

[Leroy 2009a] Xavier Leroy. Formal verification of a realistic compiler. Commun.
ACM, vol. 52, no. 7, pages 107-115, July 2009. 112

[Leroy 2009b] Xavier Leroy. A Formally Verified Compiler Back-end. J. Autom. Rea-
son., vol. 43, no. 4, pages 363-446, December 2009. 112

[Leuschel 2001] M. Leuschel, L. Adhianto, M. Butler, C. Ferreira and L. Mikhailov.
Animation and Model Checking of CSP and B using Prolog Technology. In
Proceedings of the ACM Sigplan Workshop on Verification and Computational
Logic VCL’2001, pages 97-109, 2001. 20

[Leuschel 2003] M. Leuschel and M. Butler. ProB: A Model Checker for B. In Keijiro
Araki, Stefania Gnesi and Dino Mandrioli, editeurs, FME 2003: Formal Methods,
LNCS 2805, pages 855—-874. Springer-Verlag, 2003. 19

[Leuschel 2008] M. Leuschel and M. Butler. ProB: An Automated Analysis Toolset for
the B Method. Journal Software Tools for Technology Transfer, vol. 10, no. 2,
pages 185-203, 2008. 19, 39, 53

[Leuschel 2011] Michael Leuschel, Jérome Falampin, Fabian Fritz and Daniel Plagge.
Automated property verification for large scale B models with ProB. Formal
Aspects of Computing, pages 1-27, 2011. 10.1007/s00165-010-0172-1. 44

[Ligot 2007] Olivier Ligot, Jens Bendisposto and Michael Leuschel. Debug Event-
B Models using the ProB Disprover Plugin. In Approches Formelles dans
I’ Assistance au Développement de Logiciels(AFADL’07), Namur, Belgium,
2007. 19

[Maibaum 2007] Tom Maibaum. Challenges in software certification. In ICFEM’07:
Proceedings of the 9th international conference on Formal methods and software
engineering, pages 4—18. Springer-Verlag, 2007. 10

[Mashkoor 2009a] Atif Mashkoor, Jean-Pierre Jacquot and Jeanine Souquieres. B
Evénementiel pour la Modélisation du Domaine: Application au Transport.
In Approches Formelles dans I’ Assistance au Développement de Logiciels
(AFADL’09), Toulouse, France, 2009. 4

[Mashkoor 2009b] Atif Mashkoor, Jean-Pierre Jacquot and Jeanine Souquiéres. Trans-
formation Heuristics for Formal Requirements Validation by Animation. In
2nd International Workshop on the Certification of Safety-Critical Software
Controlled Systems (SafeCert’09), York, UK, 2009. 21, 58, 93, 95

[Mashkoor 2010] Atif Mashkoor and Jean-Pierre Jacquot. Domain Engineering with
Event-B: Some Lessons We Learned. In 18th International Requirements En-
gineering Conference - RE’10, pages 252-261, Sydney Australie, 2010. IEEE.
53

256 BIBLIOGRAPHY

[Méry 2011] D. Méry and N.K. Singh. Automatic Code Generation from Event-B
Models. In Proc. Symposium on Information and Communication Technology,
Hanoi, Vietnam, 2011. ACM. 20

[Métayer 2012] C. Métayer. B model animator. Website, 2012. http://www.animb.
org. 19

[Parnas 1972] David Lorge Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, vol. 15, no. 12, pages 1053-1058,
1972. 8

[Patin 2006] F. Patin, G. Pouzancre, D. Sabatier, S. Hauvespre and P. Sauvage. Utilisa-
tion de la méthode formelle B pour un systeme SIL3 : la commande des portes
paliere sur la ligne 13 du métro Parisien. In Conférence Lamda MU 15, 2006.
15

[Rehm 2009] Joris Rehm. Gestion du temps par le raffinement. PhD thesis, Université
Henri Poincaré, Nancy 1, 2009. 50

[RODIN 2012] RODIN. Rigorous Open Development Environment for Complex Systems.
Website, consulted November 2012. http://www.event-b.org. 15, 18

[Romanovsky 2013] Alexander Romanovsky. Industrial deployment of system engi-
neering methods. Springer, 2013. 112

[Royce 1970] Winston W. Royce. Managing the development of large software systems.
In proceedings of IEEE WESCON, volume 26. Los Angeles, 1970. 12

[Rushby 1993] J. Rushby. Formal Methods and the Certification of Critical Systems.
Technical Report CLS-93-7, Computer Science Laboratory — SRI International,
December 1993. 13

[Savicks 2009] Vitaly Savicks, Colin Snook and Michael Butler. Animation of UML-B
State-machines. Rapport technique, University of Southampton, 2009. 19

[Schenck 1994] Douglas A. Schenck and Peter R. Wilson. Information Modeling the
EXPRESS Way. Oxford University Press, USA, 1994. 22

[Scheuer 2009] Alexis Scheuer, Olivier Simonin and Frangois Charpillet. Safe longitu-
dinal platoons of vehicles without communication. In ICRA’09: Proceedings of
IEEE international conference on Robotics and Automation, pages 2835-2840,
Piscataway, NJ, USA, 2009. IEEE Press. 23, 38

[Schmalz 2011] Matthias Schmalz. Term Rewriting in Logics of Partial Functions.
In Shengchao Qin and Zongyan Qiu, editeurs, Formal Methods and Software
Engineering, volume 6991 of Lecture Notes in Computer Science, pages 633—650.
Springer Berlin Heidelberg, 2011. 19

[Schmid 2000] Reto Schmid, Johannes Ryser, Stefan Berner, Martin Glinz, Ralf Reute-
mann and Erwin Fahr. A Survey of Simulation Tools for Requirements Engineer-
ing. Rapport technique 2000.06, University of Zurich, 2000. 20

[Schwartz 1986] J. T. Schwartz, R. B. Dewar, E. Schonberg and E. Dubinsky. Program-
ming with sets; an introduction to SETL. Springer-Verlag, New York, USA,
1986. 105

http://www.animb.org
http://www.animb.org
http://www.event-b.org

BIBLIOGRAPHY 257

[Servat 2007] Thierry Servat. BRAMA: A New Graphic Animation Tool for B Models. In
B 2007: Formal Specification and Development in B, pages 274-276. Springer-
Verlag, 2007. 19, 39, 53

[Siddigi 1997] Jawed I. Siddiqi, Ian C. Morrey, Chris R. Roast and Mehmet B. Ozcan.
Towards quality requirements via animated formal specifications. Ann. Softw.
Eng., vol. 3, pages 131-155, 1997. 20

[Simonin 2007] O. Simonin, A. Lanoix, S. Colin, A. Scheuer and F. Charpillet. Generic
Expression in B of the Influence/Reaction Model: Specifying and Verifying
Situated Multi-Agent Systems. INRIA Research Report 6304, INRIA, September
2007. 24, 25

[Stamatis 2003] D.H. Stamatis. Failure mode and effect analysis: Fmea from theory to
execution. American Society for Quality, 2003. 13

[Van 2004] Hung Tran Van, Axel van Lamsweerde, Philippe Massonet and Christophe
Ponsard. Goal-Oriented Requirements Animation. In RE *04: Proceedings of the
Requirements Engineering Conference, 12th IEEE International, pages 218-228,
Washington, DC, USA, 2004. IEEE Computer Society. 20

[Wing 1990] Jeannette M. Wing. A Specifier’s Introduction to Formal Methods. Com-
puter, vol. 23, no. 9, pages 8-23, 1990. 13

[Wright 2009a] Steve Wright. Automatic Generation of C from Event-B. In IM_FMT,
Workshop on Integration of Model-based Formal Methods and Tools, Dusseldorf,
Germany, 2009. 20

[Wright 2009b] Steve Wright. MIDAS Machine Specification. Rapport technique,
Department of Computer Science, University of Bristol, March 2009. 4, 52, 81,
91

[Wright 2010] Steve Wright and Kerstin Eder. Using Event-B to construct Instruction
Set Architectures. Formal Aspects of Computing, vol. 23, no. 1, pages 73-89,
January 2010. 4, 81

[Yang 2011] Faqing Yang and Jean-Pierre Jacquot. Scaling Up with Event-B: A Case
Study. In The 3rd NASA Formal Methods Symposium (NFM’11), volume 6617
of LNCS, pages 438-452, California, USA, 2011. Springer Berlin / Heidelberg.
4,25

[Yang 2012] Faqing Yang, Jean-Pierre Jacquot and Jeanine Souquieres. Traduction de B
événementiel en C pour la validation par la simulation. In Approches Formelles
dans I’ Assistance au Développement de Logiciels - AFADL, Grenoble, France,
janvier 2012. 61

258 BIBLIOGRAPHY

Abstract

This thesis aims at the specification, verification and validation of safety-critical systems
with formal methods, in particular, with Event-B. We assessed the usability of Event-B
by the development of platooning control algorithms, specially how it scaled up from
a simplified 1D version to a more realistic 2D version. The critical analysis of the 1D
platooning model uncovered some anomalous behaviors. The difficulty of expressing the
deadlock-freeness theorems in Event-B motivated us to develop a tool, the generator of
deadlock-freeness theorems, to automatically construct these theorems. Our assessment
confirmed that the mathematical proofs are not sufficient to assure the correctness of a
formal specification: a formal specification should also be validated. We believe that
the validation activities, like the verification activities, should be associated with each
refinement during the development. To do that, we need better validation tools. The state-
of-the-art tools which can execute Event-B models failed in highly non-deterministic
models. Therefore we designed and implemented a new execution tool, JeB, which
is a JavaScript simulation framework for Event-B. JeB allows users to safely insert
hand-coded pieces of code to supply deterministic computations where the automatic
translation fails. To achieve this goal, we have defined a set of proof-obligations which,
when discharged, guarantee the correctness of the simulations with respect to the model.

Keywords: Specification, Verification, Validation, Formal methods, Event-B, Simula-
tion, JavaScript

Résumé

Cette these porte sur la spécification, la vérification et la validation de systémes critiques
a I’aide de méthodes formelles, en particulier, B événementiel. Nous avons travaillé sur
I’utilisation de B événementiel pour étudier des algorithmes de controle du platooning, a
partir d’une version 1D simplifiée vers une version 2D plus réaliste. L’ analyse critique du
modele du platooning en 1D a découvert certaines anomalies. La difficulté d’exprimer les
théoremes de deadlock-freeness dans B événementiel nous a motivé pour développer un
outil, le générateur de théoremes de deadlock-freeness, pour construire automatiquement
ces théorémes. Notre évaluation a confirmé que les preuves mathématiques ne sont pas
suffisantes pour vérifier la correction d’une spécification formelle : une spécification
formelle doit aussi étre validée. Nous pensons que les activités de validation, comme
les activités de vérification, doivent étre associées a chaque raffinement. Pour ce faire,
nous avons besoin de meilleurs outils de validation. Certains outils d’exécution existants
échouent pour certains modeles non-déterministes exprimés en B événementiel. Nous
avons donc congu et implanté un nouvel outil d’exécution, JeB, un environnement de
simulation en JavaScript pour B événementiel. JeB permet aux utilisateurs d’insérer
du code stir a la main pour fournir des calculs déterministes lorsque la traduction
automatique échoue. Pour atteindre cet objectif, nous avons défini des obligations de
preuve qui garantissent la correction de simulations par rapport au modele formel.

Mots-clés : Spécification, Vérification, Validation, Méthodes formelles, B événementiel,
Simulation, JavaScript

	1 Introduction
	1.1 Motivation
	1.1.1 Research Context
	1.1.2 Scientific Problem
	1.1.3 Technical Problems
	1.1.4 Objectives

	1.2 Contributions
	1.3 Case Studies
	1.4 Publications
	1.5 Thesis Outline

	2 State of the Art
	2.1 Introduction
	2.2 Development Process
	2.2.1 Construction Activities
	2.2.2 Verification and Validation Activities
	2.2.3 Other Activities
	2.2.4 Some Process Models

	2.3 Formal Methods
	2.3.1 Formal Specification
	2.3.2 Formal Verification
	2.3.3 Code Generation

	2.4 B Method
	2.4.1 Overview
	2.4.2 Presentation of Event-B
	2.4.3 Rodin Platform

	2.5 Animation of Event-B Models
	2.5.1 Animation Difficulties
	2.5.2 Event-B Animators
	2.5.3 Multi-level Animation of Refinement

	2.6 Platooning Models
	2.6.1 Platooning Problem
	2.6.2 1D Platooning Models
	2.6.3 2D Platooning Model

	2.7 Summary

	I Assessment of Event-B Usability
	3 Analysis of the 1D Platooning Model
	3.1 Introduction
	3.2 Proofs
	3.2.1 Interactive Proof
	3.2.2 False Statement
	3.2.3 Unprovable Goal

	3.3 Non-Collision Property
	3.3.1 Machine platoon0
	3.3.2 Machine platoon1
	3.3.3 Machine platoon2
	3.3.4 Machine platoon3 and platoon4

	3.4 Summary

	4 Automatic Generation of DLF Theorems
	4.1 Introduction
	4.2 Deadlock-Freeness Rule
	4.2.1 Deadlock-Freeness of Complete Model
	4.2.2 Deadlock-Freeness of a Subset of Events

	4.3 Exigence of a Tool
	4.4 Implementation Issue
	4.5 Usage
	4.6 Summary

	5 Scaling Up with Event-B
	5.1 Introduction
	5.2 Model Structure
	5.2.1 Decomposition of Events
	5.2.2 Increase in Complexity

	5.3 Physical and Mathematical Equations
	5.3.1 1D Equation Adaptation
	5.3.2 2D Equation Adaptation

	5.4 Temporal Properties
	5.5 Adaptation of Tools
	5.5.1 Edition
	5.5.2 Verification
	5.5.3 Validation

	5.6 Summary

	II JavaScript Simulation Framework for Event-B
	6 JeB Design
	6.1 Introduction
	6.2 Requirements for a Simulation Generator
	6.3 Architecture of the Simulation Framework
	6.4 Implementation Choices
	6.5 Translation Strategies
	6.5.1 Annotations vs. Set Library
	6.5.2 Interfaces for User Hand-coded Functions
	6.5.3 Invariant, Witness and Variant
	6.5.4 Quantified Formulas

	6.6 Summary

	7 JeB Implementation
	7.1 Introduction
	7.2 Namespace
	7.3 Translation of Contexts
	7.3.1 Sets and Constants
	7.3.2 Axioms
	7.3.3 Constant Checker

	7.4 Translation of Machines
	7.4.1 Variables
	7.4.2 Invariants
	7.4.3 Events
	7.4.4 Event Parameters
	7.4.5 Event Guards
	7.4.6 Event Actions
	7.4.7 User Interface

	7.5 Translation of Formulas
	7.5.1 Predicates
	7.5.2 Expressions
	7.5.3 Assignments

	7.6 Interpretation of Translated Formulas
	7.7 Simulation Control
	7.7.1 Simulation Scheduler
	7.7.2 Parameters of a Simulation
	7.7.3 Scenario Controller
	7.7.4 Animator

	7.8 Event-B Project Diagram
	7.9 Summary

	8 JeB Utilization and Analysis of Simulations
	8.1 Introduction
	8.2 Simulation of the 1D Platooning
	8.2.1 Minimal Simulation
	8.2.2 Graphic Display
	8.2.3 Simulation of the Refinements

	8.3 Simulation of the 2D Platooning
	8.3.1 Carrier Sets
	8.3.2 Functions Defined by Properties
	8.3.3 Generation of Arguments and Definition of Constants

	8.4 Observations on JeB Usage
	8.4.1 Simulation Cost
	8.4.2 1D Platooning Model
	8.4.3 2D Platooning Model
	8.4.4 Transport-domain Model
	8.4.5 MIDAS Model
	8.4.6 Comparison between Existing Animators

	8.5 Analysis from a Validation Point of View
	8.5.1 Validation of Axioms
	8.5.2 Validation of Properties

	8.6 Summary

	9 Correctness of Simulations
	9.1 Introduction
	9.2 Consistent Behavior
	9.2.1 Semantics of an Event-B Machine
	9.2.2 Operational Interpretation of an Event-B Machine
	9.2.3 Execution of Simulators
	9.2.4 Correctness of Simulation
	9.2.5 Proof Obligations

	9.3 Discussion about the Hypotheses
	9.3.1 Hypothesis 1
	9.3.2 Hypothesis 2
	9.3.3 Hypothesis 3

	9.4 Summary

	10 Conclusion and Future Work
	10.1 Conclusion
	10.2 Future Work
	10.2.1 Technique
	10.2.2 Refinement Process for Event-B
	10.2.3 Methodology

	Appendices
	Appendix A Présentation de la thèse en français
	A.1 Motivation
	A.2 Contribution
	A.3 Études de cas
	A.4 Publications
	A.5 Aperçu de l'ensemble des chapitres
	A.6 Conclusion et Perspectives

	Appendix B Translation of Event-B Formulas
	B.1 Syntax Tree
	B.2 Relational Predicate Nodes
	B.2.1 Equality Node
	B.2.2 Inequality Node
	B.2.3 Arithmetic Less Than Node
	B.2.4 Arithmetic Less Equal Node
	B.2.5 Arithmetic Greater Than Node
	B.2.6 Arithmetic Greater Equal Node
	B.2.7 Set Membership Node
	B.2.8 Not a Set Membership Node
	B.2.9 Proper Subset Node
	B.2.10 Not a Proper Subset Node
	B.2.11 Subset Node
	B.2.12 Not a Subset Node

	B.3 Binary Predicate Nodes
	B.3.1 Implication Node
	B.3.2 Equivalence Node

	B.4 Associative Predicate Nodes
	B.4.1 Conjunction Node (Left Associative)
	B.4.2 Disjunction Node (Left Associative)

	B.5 Literal Predicate Nodes
	B.5.1 True Predicate Node
	B.5.2 False Predicate Node

	B.6 Simple Predicate Node
	B.6.1 Finite Set Node

	B.7 Unary Predicate Node
	B.7.1 Negation Node

	B.8 Quantified Predicate Nodes
	B.8.1 Universal Quantification Node
	B.8.2 Existential Quantification Node

	B.9 Multiple Predicate Node
	B.9.1 Partition of a Set Node

	B.10 Identifier Expression Nodes
	B.10.1 Free Identifier Node
	B.10.2 Bound Identifier Node
	B.10.3 Bound Identifier Declaration Node

	B.11 Integer Literal and Set Extension Expression Nodes
	B.11.1 Integer Literal Node
	B.11.2 Set Extension Node

	B.12 Binary Expression Nodes
	B.12.1 Ordered Pair Node
	B.12.2 Relations Node
	B.12.3 Total Relations Node
	B.12.4 Surjective Relations Node
	B.12.5 Total Surjective Relations Node
	B.12.6 Partial Functions Node
	B.12.7 Total Functions Node
	B.12.8 Partial Injections Node
	B.12.9 Total Injections Node
	B.12.10 Partial Surjections Node
	B.12.11 Total Surjections Node
	B.12.12 Total Bijections Node
	B.12.13 Set Difference Node
	B.12.14 Cartesian Product Node
	B.12.15 Direct Product Node
	B.12.16 Parallel Product Node
	B.12.17 Domain Restriction Node
	B.12.18 Domain Subtraction Node
	B.12.19 Range Restriction Node
	B.12.20 Range Subtraction Node
	B.12.21 Interval Node
	B.12.22 Arithmetic Subtraction Node
	B.12.23 Arithmetic Quotient Node
	B.12.24 Arithmetic Reminder Node
	B.12.25 Arithmetic Exponentiation Node
	B.12.26 Function Image Node
	B.12.27 Relation Image Node

	B.13 Associative Expression Nodes
	B.13.1 Set Union Node
	B.13.2 Set Intersection Node
	B.13.3 Relational Forward Composition Node
	B.13.4 Relational Backward Composition Node
	B.13.5 Relational Overriding Node
	B.13.6 Arithmetic Addition Node
	B.13.7 Arithmetic Multiplication Node

	B.14 Atomic Expression Nodes
	B.14.1 Integer Numbers Node
	B.14.2 Natural Numbers Node
	B.14.3 Positive Natural Numbers Node
	B.14.4 Boolean Values Set Node
	B.14.5 Boolean TRUE Node
	B.14.6 Boolean FALSE Node
	B.14.7 Empty Set Node
	B.14.8 Arithmetic Predecessor Node
	B.14.9 Arithmetic Successor Node
	B.14.10 First Projection Node
	B.14.11 Second Projection Node
	B.14.12 Identity Node

	B.15 Bool Expression Node
	B.15.1 Bool Node

	B.16 Unary Expression Nodes
	B.16.1 Cardinality Node
	B.16.2 Power Set Node
	B.16.3 Non-empty Subsets Node
	B.16.4 Generalized Union Node
	B.16.5 Generalized Intersection Node
	B.16.6 Domain Node
	B.16.7 Range Node
	B.16.8 Arithmetic Minimum Node
	B.16.9 Arithmetic Maximum Node
	B.16.10 Inverse Relation Node
	B.16.11 Arithmetic Unary Minus Node

	B.17 Quantified Expression Nodes
	B.17.1 Set Comprehension Node
	B.17.2 Lambda Node
	B.17.3 Quantified Union Node
	B.17.4 Quantified Intersection Node

	B.18 Assignment Nodes
	B.18.1 Deterministic Assignment Node
	B.18.2 Non-deterministic Assignment of a Set Member Node
	B.18.3 Non-deterministic Assignment with a Before-after-predicate Node

	Appendix C JavaScript Library for Event-B
	C.1 Booleans
	C.1.1 $B.TRUE
	C.1.2 $B.FALSE
	C.1.3 $B.bool

	C.2 Arithmetic
	C.2.1 $B.Integer
	C.2.2 $B.minus
	C.2.3 $B.divide
	C.2.4 $B.mod
	C.2.5 $B.pow
	C.2.6 $B.plus
	C.2.7 $B.multiply
	C.2.8 $B.pred
	C.2.9 $B.succ
	C.2.10 $B.unminus
	C.2.11 $B.lessThan
	C.2.12 $B.lessEqual
	C.2.13 $B.greaterThan
	C.2.14 $B.greaterEqual

	C.3 Predicates
	C.3.1 $B.bTrue
	C.3.2 $B.bFalse
	C.3.3 $B.implication
	C.3.4 $B.equivalence
	C.3.5 $B.and
	C.3.6 $B.or
	C.3.7 $B.not
	C.3.8 $B.forAll
	C.3.9 $B.exists
	C.3.10 $B.equal
	C.3.11 $B.notEqual

	C.4 Sets
	C.4.1 $B.SetExtension
	C.4.2 $B.EmptySet
	C.4.3 $B.BOOL
	C.4.4 $B.UpTo
	C.4.5 $B.INTEGER
	C.4.6 $B.NATURAL
	C.4.7 $B.NATURAL1
	C.4.8 $B.SetComprehension
	C.4.9 $B.PowerSet
	C.4.10 $B.PowerSet1
	C.4.11 $B.setMinus
	C.4.12 $B.setUnion
	C.4.13 $B.setInter
	C.4.14 $B.union
	C.4.15 $B.inter
	C.4.16 $B.quantifiedUnion
	C.4.17 $B.quantifiedInter
	C.4.18 $B.card
	C.4.19 $B.min
	C.4.20 $B.max
	C.4.21 $B.belong
	C.4.22 $B.notBelong
	C.4.23 $B.properSubset
	C.4.24 $B.notProperSubset
	C.4.25 $B.subset
	C.4.26 $B.notSubset
	C.4.27 $B.finite
	C.4.28 $B.partition

	C.5 Relations
	C.5.1 $B.Pair
	C.5.2 $B.CartesianProduct
	C.5.3 $B.Relations
	C.5.4 $B.TotalRelations
	C.5.5 $B.SurjectiveRelations
	C.5.6 $B.TotalSurjectiveRelations
	C.5.7 $B.dom
	C.5.8 $B.ran
	C.5.9 $B.domainRestriction
	C.5.10 $B.domainSubtraction
	C.5.11 $B.rangeRestriction
	C.5.12 $B.rangeSubtraction
	C.5.13 $B.forwardComposition
	C.5.14 $B.backwardComposition
	C.5.15 $B.override
	C.5.16 $B.directProduct
	C.5.17 $B.parallelProduct
	C.5.18 $B.converse
	C.5.19 $B.relationImage

	C.6 Functions
	C.6.1 $B.PartialFunctions
	C.6.2 $B.TotalFunctions
	C.6.3 $B.PartialInjections
	C.6.4 $B.TotalInjections
	C.6.5 $B.PartialSurjections
	C.6.6 $B.TotalSurjections
	C.6.7 $B.TotalBijections
	C.6.8 $B.Lambda
	C.6.9 $B.functionImage
	C.6.10 $B.prj1
	C.6.11 $B.prj2
	C.6.12 $B.id

	C.7 Assignments
	C.7.1 $B.becomesEqualTo
	C.7.2 $B.becomesMemberOf
	C.7.3 $B.becomesSuchThat

	Appendix D 1D Platooning Model in Event-B
	D.1 Context0
	D.2 Context1
	D.3 Context2
	D.4 Context3
	D.5 Context4
	D.6 Platoon0
	D.7 Platoon1
	D.8 Platoon2
	D.9 Platoon3
	D.10 Platoon4

	Appendix E 2D Platooning Model in Event-B
	E.1 Context0
	E.2 Context1
	E.3 Context2
	E.4 Context3
	E.5 Context4
	E.6 Platoon0
	E.7 Platoon1
	E.8 Platoon2
	E.9 Platoon3
	E.10 Platoon4

	Bibliography

