T. Starner, Human-powered wearable computing, Human-powered wearable computing, pp.618-629, 1996.
DOI : 10.1147/sj.353.0618

M. Toivola, M. Ferenets, P. Lund, and E. A. Harlin, Photovoltaic fiber, Photovoltaic fiber, pp.2799-2802, 2009.
DOI : 10.1016/j.tsf.2008.11.057

M. B. Schubert and J. H. Werner, Flexible solar cells for clothing, Materials Today, vol.9, issue.6, pp.42-50, 2006.
DOI : 10.1016/S1369-7021(06)71542-5

E. M. Yeatman, Advances In Power Sources For Wireless Sensor Nodes, Proceedings of 1st International Workshop on Body Sensor Networks, 2004.

H. Yan, L. Hu-jianyun, M. Qiang, and . Hao, « Design of low-power baseband-processor for RFID tag, International Symposium on Applications and the Internet Workshops, pp.4-63, 2006.

R. Venkatasubramanian, E. Siivola, T. Colpitts, and E. B. O-'quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, vol.78, issue.6856, pp.597-602, 2001.
DOI : 10.1038/35098012

N. Kong, T. Cochran, D. S. Ha, H. Lin, and E. D. Inman, A self-powered power management circuit for energy harvested by a piezoelectric cantilever, 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp.2154-2160, 2010.
DOI : 10.1109/APEC.2010.5433535

J. M. Brownjohn, A. Pavic, and E. P. Omenzetter, A spectral density approach for modelling continuous vertical forces on pedestrian structures due to walking, Canadian Journal of Civil Engineering, vol.31, issue.1, pp.65-77, 2004.
DOI : 10.1139/l03-072

N. S. Shenck and J. A. Paradiso, Energy scavenging with shoe-mounted piezoelectrics, IEEE Micro, vol.21, issue.3, pp.30-42, 2001.
DOI : 10.1109/40.928763

C. Jean, « Récupération d'énergie mécanique par polymères électroactifs pour microsystèmes autonomes communicants, 2008.

J. A. Paradiso, M. Feldmeier, «. Compact, G. D. Abowd, B. Brumitt et al., A Compact, Wireless, Self-Powered Pushbutton Controller, Ubiquitous Computing, vol.2201, pp.299-304, 2001.
DOI : 10.1007/3-540-45427-6_25

Y. Qi, J. Kim, T. D. Nguyen, B. Lisko, P. K. Purohit et al., Enhanced Piezoelectricity and Stretchability in Energy Harvesting Devices Fabricated from Buckled PZT Ribbons, Enhanced Piezoelectricity and Stretchability in Energy Harvesting Devices Fabricated from Buckled PZT Ribbons, pp.1331-1336, 2011.
DOI : 10.1021/nl104412b

H. Sato, Y. Shimojo, and E. T. Sekiya, Development of the smart board using metal core piezoelectric complex fibers, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664), pp.512-515, 2003.
DOI : 10.1109/SENSOR.2003.1215366

R. Thapliyal, P. Schwaller, M. Amberg, F. J. Haug, G. Fortunato et al., PZT thin film deposition on Si wafers and optical fibers prepared by reactive DC pulsed magnetron sputtering from a single metallic target, Surface and Coatings Technology, vol.200, issue.1-4, pp.1-4, 2005.
DOI : 10.1016/j.surfcoat.2005.03.014

J. Curie, P. Curie, and . Développement, par pression, de l'électricité polaire dans les cristaux hémièdres à faces inclinées, pp.6-9, 1908.

G. A. Lesieutre and C. L. Davis, Can a Coupling Coefficient of a Piezoelectric Device be Higher Than Those of Its Active Material?, Journal of Intelligent Material Systems and Structures, vol.8, issue.10, pp.859-867, 1997.
DOI : 10.1177/1045389X9700801005

B. Jaffe, Piezoelectric Properties of Lead Zirconate???Lead Titanate Solid???Solution Ceramics, Journal of Applied Physics, vol.25, issue.6, p.809, 1954.
DOI : 10.1063/1.1721741

G. M. Sessler and . Piezoelectricity, Piezoelectricity in polyvinylidenefluoride, The Journal of the Acoustical Society of America, vol.70, issue.6, p.1596, 1981.
DOI : 10.1121/1.387225

E. Fukada and I. Yasuda, On the Piezoelectric Effect of Bone, Journal of the Physical Society of Japan, vol.12, issue.10, pp.1158-1162, 1957.
DOI : 10.1143/JPSJ.12.1158

A. R. Liboff, M. H. Shamos, and . Piezoelectric, Piezoelectric Effect in Dentin, Journal of Dental Research, vol.50, issue.2, p.516, 1971.
DOI : 10.1177/00220345710500027901

H. A. Wriedt, The O???Zn (Oxygen-Zinc) system, Journal of Phase Equilibria, vol.511, issue.Suppl. 2, pp.166-176, 1987.
DOI : 10.1007/BF02873202

K. Takahashi, A. Yoshikawa, and E. A. Sandhu, Wide bandgap semiconductors: fundamental properties and modern photonic and electronic devices, 2007.
DOI : 10.1007/978-3-540-47235-3

D. F. Crisler, J. J. Cupal, A. R. Moore, and . Dielectric, Dielectric, piezoelectric, and electromechanical coupling constants of zinc oxide crystals, Proceedings of the IEEE, pp.225-226, 1968.
DOI : 10.1109/PROC.1968.6246

J. L. Ruglovsky, J. Li, K. Bhattacharya, and H. A. Atwater, The effect of biaxial texture on the effective electromechanical constants of polycrystalline barium titanate and lead titanate thin films, Acta Materialia, vol.54, issue.14, pp.3657-3663, 2006.
DOI : 10.1016/j.actamat.2006.03.023

G. Mantini, Y. Gao, A. D-'amico, C. Falconi, and E. Z. Wang, Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire, Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire, pp.624-629, 2009.
DOI : 10.1007/s12274-009-9063-2

G. B. Haycock, G. J. Schwartz, and D. H. Wisotsky, Geometric method for measuring body surface area: A height-weight formula validated in infants, children, and adults, The Journal of Pediatrics, vol.93, issue.1, pp.62-66, 1978.
DOI : 10.1016/S0022-3476(78)80601-5

C. Chouquet, G. Gerbaud, M. Bardet, S. Barrat, A. Billard et al., Ducros, « Structural and mechanical properties of a-C:H and Si doped a-C:H thin films grown by LF- PECVD, Surface and Coatings Technology, vol.204, pp.9-10, 2010.

T. Scharf and H. U. Krebs, Influence of inert gas pressure on deposition rate during pulsed laser deposition, Applied Physics A: Materials Science & Processing, pp.551-554, 2002.
DOI : 10.1007/s00339-002-1442-4

A. Anders, Energetic deposition using filtered cathodic arc plasmas, Vacuum, vol.67, issue.3-4, pp.673-686, 2002.
DOI : 10.1016/S0042-207X(02)00260-9

M. Lattemann, A. P. Ehiasarian, J. Bohlmark, P. Ã. Persson, and E. U. Helmersson, Investigation of high power impulse magnetron sputtering pretreated interfaces for adhesion enhancement of hard coatings on steel, Surface and Coatings Technology, vol.200, issue.22-23, pp.22-23, 2006.
DOI : 10.1016/j.surfcoat.2005.11.082

V. Kouznetsov, K. Macák, J. M. Schneider, and U. , Helmersson, et I. Petrov, « A novel pulsed magnetron sputter technique utilizing very high target power densities, Surface and Coatings Technology, vol.122, pp.2-3, 1999.

P. E. Hovsepian, A. P. Ehiasarian, E. U. Ratayski, and . Cralycn, CrAlYCN/CrCN nanoscale multilayer PVD coatings deposited by the combined High Power Impulse Magnetron Sputtering/Unbalanced Magnetron Sputtering (HIPIMS/UBM) technology, Surface and Coatings Technology, vol.203, issue.9, pp.1237-1243, 2009.
DOI : 10.1016/j.surfcoat.2008.10.033

M. G. Haines, P. D. Lepell, C. A. Coverdale, B. Jones, C. Deeney et al., Kelvin, Ion Viscous Heating in a Magnetohydrodynamically Unstable Z Pinch at Over 2 x 10^{9} Kelvin, p.75003, 2006.
DOI : 10.1103/PhysRevLett.96.075003

W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Toth, K. Nakamura et al., GeV electron beams from a centimetre-scale accelerator, GeV electron beams from a centimetre-scale accelerator, pp.696-699, 2006.
DOI : 10.1103/PhysRevLett.91.074802

J. P. Rayner, A. P. Whichello, and A. D. Cheetham, Physical Characteristics of Plasma Antennas, IEEE Transactions on Plasma Science, vol.32, issue.1, pp.269-281, 2004.
DOI : 10.1109/TPS.2004.826019

B. Chaudhury and S. Chaturvedi, Study and Optimization of Plasma-Based Radar Cross Section Reduction Using Three-Dimensional Computations, IEEE Transactions on Plasma Science, vol.37, issue.11, pp.2116-2127, 2009.
DOI : 10.1109/TPS.2009.2032331

C. L. Enloe, M. G. Mcharg, and T. E. Mclaughlin, Time-correlated force production measurements of the dielectric barrier discharge plasma aerodynamic actuator, Journal of Applied Physics, vol.103, issue.7, p.73302, 2008.
DOI : 10.1063/1.2896590

M. Keidar, I. D. Boyd, and I. I. , Plasma flow and plasma???wall transition in Hall thruster channel, Physics of Plasmas, vol.8, issue.12, p.5315, 2001.
DOI : 10.1063/1.1421370

J. Goldhar and M. A. , Electro-optical switches with plasma electrodes, Optics Letters, vol.9, issue.3, pp.73-75, 1984.
DOI : 10.1364/OL.9.000073

A. Hershcovitch, « Method and apparatus for charged particle propagation, 1996.

W. R. Grove, On the Electro-Chemical Polarity of Gases, On the Electro-Chemical Polarity of Gases, pp.87-101
DOI : 10.1098/rstl.1852.0008

P. Sigmund, Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets, Physical Review, vol.184, issue.2, pp.383-416, 1969.
DOI : 10.1103/PhysRev.184.383

K. Tominaga and I. Mori, Relation between the flux of energetic oxygen ions and the sputtered metal atoms in oxide film deposition by reactive sputtering, Vacuum, vol.59, issue.2-3, pp.574-580, 2000.
DOI : 10.1016/S0042-207X(00)00318-3

J. Emmerlich, S. Mráz, R. Snyders, K. Jiang, and J. M. Schneider, The physical reason for the apparently low deposition rate during high-power pulsed magnetron sputtering, Vacuum, vol.82, issue.8, pp.867-870, 2008.
DOI : 10.1016/j.vacuum.2007.10.011

A. Anders, Discharge physics of high power impulse magnetron sputtering, Surface and Coatings Technology, vol.205, issue.2, pp.1-9, 2011.
DOI : 10.1016/j.surfcoat.2011.03.081

D. S. Bodas, A. B. Mandale, and S. A. Gangal, Deposition of PTFE thin films by RF plasma sputtering on ???100??? silicon substrates, Applied Surface Science, vol.245, issue.1-4, pp.1-4, 2005.
DOI : 10.1016/j.apsusc.2004.10.023

M. Scherer, J. Schmitt, R. Latz, and E. M. Schanz, Reactive alternating current magnetron sputtering of dielectric layers, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.10, issue.4, pp.1772-1776, 1992.
DOI : 10.1116/1.577745

J. T. Gudmundsson, P. Sigurjonsson, P. Larsson, and D. Lundin, On the electron energy in the high power impulse magnetron sputtering discharge, Journal of Applied Physics, vol.105, issue.12, pp.123302-123302, 2009.
DOI : 10.1063/1.3151953

D. Horwat and A. , Ion acceleration and cooling in gasless self-sputtering, Applied Physics Letters, vol.97, issue.22, p.221501, 2010.
DOI : 10.1063/1.3521264

S. Konstantinidis, J. P. Dauchot, M. Ganciu, and A. Ricard, Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges, Journal of Applied Physics, vol.99, issue.1, p.13307, 2006.
DOI : 10.1063/1.2159555

J. Andersson and A. P. Ehiasarian, Observation of Ti4+ ions in a high power impulse magnetron sputtering plasma, Applied Physics Letters, vol.93, issue.7, p.71504, 2008.
DOI : 10.1063/1.2973179

L. D. Poucques, C. Vitelaru, T. M. Minea, J. Bretagne, and E. G. Popa, On the anisotropy and thermalization of the metal sputtered atoms in a low-pressure magnetron discharge, EPL (Europhysics Letters), vol.82, issue.1, 2008.
DOI : 10.1209/0295-5075/82/15002

M. Hala, N. Viau, O. Zabeida, J. E. Klemberg-sapieha, and E. L. Martinu, Dynamics of reactive high-power impulse magnetron sputtering discharge studied by time- and space-resolved optical emission spectroscopy and fast imaging, Journal of Applied Physics, vol.107, issue.4, pp.43305-043305, 2010.
DOI : 10.1063/1.3305319.3

D. Horwat and A. Anders, Compression and strong rarefaction in high power impulse magnetron sputtering discharges, Journal of Applied Physics, vol.108, issue.12, p.123306, 2010.
DOI : 10.1063/1.3525986

J. Alami, J. T. Gudmundsson, J. Bohlmark, and J. Birch, Plasma dynamics in a highly ionized pulsed magnetron discharge, Plasma Sources Science and Technology, vol.14, issue.3, pp.525-531, 2005.
DOI : 10.1088/0963-0252/14/3/015

J. Andersson and A. Anders, Gasless sputtering: Opportunities for ultraclean metallization, coatings in space, and propulsion, Applied Physics Letters, vol.92, issue.22, p.221503, 2008.
DOI : 10.1063/1.2938414

W. M. Posadowski and Z. J. Radzimski, Sustained self???sputtering using a direct current magnetron source, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.11, issue.6, pp.2980-2984, 1993.
DOI : 10.1116/1.578679

A. Anders, J. Andersson, and E. A. Ehiasarian, High power impulse magnetron sputtering: Current-voltage-time characteristics indicate the onset of sustained self-sputtering, Journal of Applied Physics, vol.102, issue.11, p.113303, 2007.
DOI : 10.1063/1.2817812

A. Anders, Self-sputtering runaway in high power impulse magnetron sputtering: The role of secondary electrons and multiply charged metal ions, Applied Physics Letters, vol.92, issue.20, pp.201501-201501, 2008.
DOI : 10.1063/1.2936307

A. Anders, P. Ni, and E. A. Rauch, Drifting localization of ionization runaway: Unraveling the nature of anomalous transport in high power impulse magnetron sputtering, Journal of Applied Physics, vol.111, issue.5, pp.53304-053304, 2012.
DOI : 10.1063/1.3692978

S. Mahieu and D. Depla, Correlation between electron and negative O??? ion emission during reactive sputtering of oxides, Applied Physics Letters, vol.90, issue.12, 2007.
DOI : 10.1063/1.2715113

K. Tominaga, T. Murayama, Y. Sato, and E. I. Mori, Energetic oxygen particles in the reactive sputtering of Zn targets in Ar/O2 atmospheres, Thin Solid Films, vol.343, issue.344, pp.81-84, 1999.
DOI : 10.1016/S0040-6090(98)01579-X

D. Depla, X. Y. Li, S. Mahieu, and R. De-gryse, Determination of the effective electron emission yields of compound materials, Journal of Physics D: Applied Physics, vol.41, issue.20, p.202003, 2008.
DOI : 10.1088/0022-3727/41/20/202003

C. G. Walker, M. M. Elgomati, and A. M. , The secondary electron emission yield for 24 solid elements excited by primary electrons in the range 250-5000???ev: a theory/experiment comparison, Scanning, vol.99, issue.2, pp.365-380, 2008.
DOI : 10.1002/sca.20124

Q. Wan, K. Yu, T. H. Wang, and C. L. Lin, Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation, Applied Physics Letters, vol.83, issue.11, p.2253, 2003.
DOI : 10.1063/1.1612899

E. Wallin and U. Helmersson, Hysteresis-free reactive high power impulse magnetron sputtering, Thin Solid Films, vol.516, issue.18, pp.6398-6401, 2008.
DOI : 10.1016/j.tsf.2007.08.123

M. Aiempanakit, T. Kubart, P. Larsson, K. Sarakinos, and J. Jensen, Hysteresis and process stability in reactive high power impulse magnetron sputtering of metal oxides, Thin Solid Films, vol.519, issue.22, pp.7779-7784, 2011.
DOI : 10.1016/j.tsf.2011.06.021

K. Sarakinos, J. Alami, and C. Klever, Process stabilization and enhancement of deposition rate during reactive high power pulsed magnetron sputtering of zirconium oxide, Surface and Coatings Technology, vol.202, issue.20, pp.5033-5035, 2008.
DOI : 10.1016/j.surfcoat.2008.05.009

M. Audronis and V. Bellido-gonzalez, Hysteresis behaviour of reactive high power impulse magnetron sputtering, Thin Solid Films, vol.518, issue.8, pp.1962-1965, 2010.
DOI : 10.1016/j.tsf.2009.12.011

F. Magnus, O. B. Sveinsson, S. Olafsson, and J. T. Gudmundsson, high power impulse magnetron sputtering discharge, Journal of Applied Physics, vol.110, issue.8, p.83306, 2011.
DOI : 10.1063/1.3653233

T. Kubart, M. Aiempanakit, J. Andersson, T. Nyberg, and S. Berg, Helmersson, « Studies of hysteresis effect in reactive HiPIMS deposition of oxides, Surface and Coatings Technology PSE 2010 Special Issue, vol.205, pp.303-306, 2011.

K. Sarakinos, J. Alami, and E. S. Konstantinidis, High power pulsed magnetron sputtering: A review on scientific and engineering state of the art, Surface and Coatings Technology, vol.204, issue.11, pp.1661-1684, 2010.
DOI : 10.1016/j.surfcoat.2009.11.013

D. J. Christie, Fundamentals of high power pulsed magnetron sputtering: Visualization of mechanisms for rate reduction and increased ion fraction, Czechoslovak Journal of Physics, vol.23, issue.2, pp.93-97, 2006.
DOI : 10.1007/s10582-006-0183-6

D. Horwat and A. Anders, Spatial distribution of average charge state and deposition rate in high power impulse magnetron sputtering of copper, Journal of Physics D: Applied Physics, vol.41, issue.13, 2008.
DOI : 10.1088/0022-3727/41/13/135210

A. Anders, Deposition rates of high power impulse magnetron sputtering: Physics and economics, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.28, issue.4, p.783, 2010.
DOI : 10.1116/1.3299267

K. Sarakinos, J. Alami, J. Dukwen, and J. Woerdenweber, A semi-quantitative model for the deposition rate in non-reactive high power pulsed magnetron sputtering, Journal of Physics D: Applied Physics, vol.41, issue.21, p.215301, 2008.
DOI : 10.1088/0022-3727/41/21/215301

I. V. Markov, Crytal Growth For Begginers: Fundamentals of Nucleation, Crystal Growth and Epitaxy, 2 e éd, 2004.

B. A. Movchan and A. V. , Demchishin, « Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide, PHYS METALS METALLOGR (USSR), vol.28, issue.4, pp.83-90, 1969.

J. A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, Journal of Vacuum Science and Technology, vol.11, issue.4, p.666, 1974.
DOI : 10.1116/1.1312732

S. Mahieu, P. Ghekiere, D. Depla, and R. De-gryse, Biaxial alignment in sputter deposited thin films, Thin Solid Films, vol.515, issue.4, pp.1229-1249, 2006.
DOI : 10.1016/j.tsf.2006.06.027

S. Mahieu and D. Depla, Reactive sputter deposition of TiN layers: modelling the growth by characterization of particle fluxes towards the substrate, Journal of Physics D: Applied Physics, vol.42, issue.5, p.53002, 2009.
DOI : 10.1088/0022-3727/42/5/053002

A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films, vol.518, issue.15, pp.4087-4090, 2010.
DOI : 10.1016/j.tsf.2009.10.145

C. V. Thompson and R. Carel, Stress and grain growth in thin films, Journal of the Mechanics and Physics of Solids, vol.44, issue.5, pp.657-673, 1996.
DOI : 10.1016/0022-5096(96)00022-1

P. Barna and M. Adamik, Fundamental structure forming phenomena of polycrystalline films and the structure zone models, Thin Solid Films, vol.317, issue.1-2, pp.1-2, 1998.
DOI : 10.1016/S0040-6090(97)00503-8

V. Brien, P. Miska, B. Bolle, and E. P. Pigeat, Columnar growth of ALN by r.f. magnetron sputtering: Role of the {101??3} planes, Journal of Crystal Growth, vol.307, issue.1, pp.245-252, 2007.
DOI : 10.1016/j.jcrysgro.2007.06.013

URL : https://hal.archives-ouvertes.fr/hal-00168922

N. Yamaguchi, K. Wada, K. Kimura, and E. H. Matsubara, « Microstructure modification of yttria-stabilized zirconia layers prepared by EB-PVD », Nippon seramikkusu kyokai gakujutsu ronbunshi, pp.883-889

G. Soyez, J. A. Eastman, L. J. Thompson, G. Bai, P. M. Baldo et al., Grain-size-dependent thermal conductivity of nanocrystalline yttria-stabilized zirconia films grown by metal-organic chemical vapor deposition, Applied Physics Letters, vol.77, issue.8, pp.1155-1157, 2000.
DOI : 10.1063/1.1289803

A. Azzopardi, R. Mévrel, B. Saint-ramond, and E. Olson, Stiller, « Influence of aging on structure and thermal conductivity of Y-PSZ and Y-FSZ EB-PVD coatings, Surface and Coatings Technology, pp.177-178, 2004.

T. Goto and T. Kimura, High-speed oxide coating by laser chemical vapor deposition and their nano-structure, Thin Solid Films, vol.515, issue.1, pp.46-52, 2006.
DOI : 10.1016/j.tsf.2005.12.022

G. Knuyt, C. Quaeyhaegens, J. D-'haen, and L. M. , Stals, « A quantitative model for the evolution from random orientation to a unique texture in PVD thin film growth, Thin Solid Films, vol.258, pp.1-2, 1995.

J. G. Gardeniers, Z. M. Rittersma, and G. J. Burger, Preferred orientation and piezoelectricity in sputtered ZnO films, Preferred orientation and piezoelectricity in sputtered ZnO films, p.7844, 1998.
DOI : 10.1063/1.367959

G. Abadias, Stress and preferred orientation in nitride-based PVD coatings, Surface and Coatings Technology, vol.202, issue.11, pp.2223-2235, 2008.
DOI : 10.1016/j.surfcoat.2007.08.029

C. H. Liu, M. Yan, X. Liu, E. Seelig, and R. P. Chang, Effect of electric field upon the ZnO growth on sapphire (0 0 0 1) by atomic layer epitaxy method, Chemical Physics Letters, vol.355, pp.1-2, 2002.

S. Na and C. Park, « First-Principles Study of the Surface Energy and Atom Cohesion of Wurtzite ZnO and ZnS -Implications for Nanostructure Formation, Journal of the Korean Physical Society, vol.56, issue.12, p.498, 2010.

F. Claeyssens, C. L. Freeman, N. L. Allan, Y. Sun, M. N. Ashfold et al., Growth of ZnO thin films???experiment and theory, Growth of ZnO thin films?experiment and theory, pp.139-148, 2004.
DOI : 10.1039/B414111C

G. Weirum, G. Barcaro, A. Fortunelli, F. Weber, R. Schennach et al., Growth and Surface Structure of Zinc Oxide Layers on a Pd(111) Surface, Growth and Surface Structure of Zinc Oxide Layers on a Pd(1l1) Surface », pp.15432-15439, 2009.
DOI : 10.1021/jp104620n

Y. E. Lee, J. B. Lee, Y. J. Kim, H. K. Yang, J. C. Park et al., Microstructural evolution and preferred orientation change of radio???frequency???magnetron sputtered ZnO thin films, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.14, issue.3, pp.1943-1948, 1996.
DOI : 10.1116/1.580365

D. Gall, S. Kodambaka, M. A. Wall, I. Petrov, and J. E. Greene, study, Journal of Applied Physics, vol.93, issue.11, pp.9086-9094, 2003.
DOI : 10.1063/1.1567797

URL : https://hal.archives-ouvertes.fr/in2p3-00016129

W. Yang, Z. Liu, D. Peng, F. Zhang, H. Huang et al., Room-temperature deposition of transparent conducting Al-doped ZnO films by RF magnetron sputtering method, Applied Surface Science, vol.255, issue.11, pp.5669-5673, 2009.
DOI : 10.1016/j.apsusc.2008.12.021

Y. M. Lu, W. S. Hwang, W. Y. Liu, and J. S. Yang, Effect of RF power on optical and electrical properties of ZnO thin film by magnetron sputtering, Materials Chemistry and Physics, vol.72, issue.2, pp.269-272, 2001.
DOI : 10.1016/S0254-0584(01)00450-3

O. Lupan, T. Pauporté, L. Chow, B. Viana, F. Pellé et al., Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium, Applied Surface Science, vol.256, issue.6, pp.1895-1907, 2010.
DOI : 10.1016/j.apsusc.2009.10.032

S. Konstantinidis, A. Hemberg, and J. P. Dauchot, Deposition of zinc oxide layers by high-power impulse magnetron sputtering, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.25, issue.3, p.19, 2007.
DOI : 10.1116/1.2735968

Y. C. Yang, C. Song, X. H. Wang, F. Zeng, and E. F. Pan, Giant piezoelectric d[sub 33] coefficient in ferroelectric vanadium doped ZnO films, Giant piezoelectric d33 coefficient in ferroelectric vanadium doped ZnO films, pp.12907-012907, 2008.
DOI : 10.1063/1.2830663

M. Birkholz, P. F. Fewster, and C. Genzel, Thin film analysis by X-ray scattering, 2006.
DOI : 10.1002/3527607595

R. Kumar, N. Khare, V. Kumar, and G. L. Bhalla, Effect of intrinsic stress on the optical properties of nanostructured ZnO thin films grown by rf magnetron sputtering, Applied Surface Science, vol.254, issue.20, pp.6509-6513, 2008.
DOI : 10.1016/j.apsusc.2008.04.012

I. G. Petrov, J. S. Kourtev, and V. I. Orlinov, « An Estimation of the Possibilities of the Cylindrical Magnetron Sputtering Systems for Coating of Wires », Bulg, J. Phys, vol.13, issue.3, pp.273-279, 1986.

T. Kaneko and O. Nittono, Improved design of inverted magnetrons used for deposition of thin films on wires, Surface and Coatings Technology, vol.90, issue.3, pp.268-274, 1997.
DOI : 10.1016/S0257-8972(96)03151-9

M. Amberg, J. Geerk, M. Keller, E. A. Fischer, and . Design, Design, characterisation and operation of an inverted cylindrical magnetron for metal deposition, Plasma Devices and Operations, pp.175-186, 2004.
DOI : 10.1116/1.569451

. Ii, M. Avci, and . Tepe, Abukay, « Effect of deposition conditions on YBa2Cu3O7-d thin films by inverted cylindrical magnetron sputtering and substrate effects, Solid State Communications, vol.130, issue.5, pp.357-361, 2004.

V. Lindberg, A. Woodard, and E. D. Glocker, Reactive deposition of nitrides and oxides using a twin-cathode inverted cylindrical magnetron, Surface and Coatings Technology, vol.133, issue.134, pp.133-134, 2000.
DOI : 10.1016/S0257-8972(00)00920-8

F. Paschen, Ueber die zum Funken??bergang in Luft, Wasserstoff und Kohlens??ure bei verschiedenen Drucken erforderliche Potentialdifferenz, Annalen der Physik, vol.29, issue.5, pp.69-96
DOI : 10.1002/andp.18892730505

G. Y. Yushkov and A. Anders, Origin of the Delayed Current Onset in High-Power Impulse Magnetron Sputtering, IEEE Transactions on Plasma Science, vol.38, issue.11, pp.3028-3034, 2010.
DOI : 10.1109/TPS.2010.2063041

P. J. Kelly, A. A. Onifade, Y. Zhou, G. C. Clarke, M. Audronis et al., The Influence of Pulse Frequency and Duty on the Deposition Rate in Pulsed Magnetron Sputtering, Plasma Processes and Polymers, vol.16, issue.175, pp.246-252, 2007.
DOI : 10.1002/ppap.200600159

M. Yuste, R. Escobar-galindo, I. Caretti, and R. Torres, Influence of the oxygen partial pressure and post-deposition annealing on the structure and optical properties of ZnO films grown by dc magnetron sputtering at room temperature, Journal of Physics D: Applied Physics, vol.45, issue.2, p.25303, 2012.
DOI : 10.1088/0022-3727/45/2/025303

J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee et al., Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications, Nanotechnology, vol.17, issue.19, pp.4995-4998, 2006.
DOI : 10.1088/0957-4484/17/19/037

A. Hecimovic, K. Burcalova, and A. P. Ehiasarian, Origins of ion energy distribution function (IEDF) in high power impulse magnetron sputtering (HIPIMS) plasma discharge, Journal of Physics D: Applied Physics, vol.41, issue.9, p.95203, 2008.
DOI : 10.1088/0022-3727/41/9/095203

H. Fredriksson and U. Akerlind, Solidification and Crystallization Processing in Metals and Alloys, 2012.
DOI : 10.1002/9781119975540

Y. Yoshino, K. Inoue, M. Takeuchi, T. Makino, Y. Katayama et al., Effect of substrate surface morphology and interface microstructure in ZnO thin films formed on various substrates, Vacuum, vol.59, issue.2-3, pp.2-3, 2000.
DOI : 10.1016/S0042-207X(00)00294-3

A. Lejars, D. Manova, S. Mändl, D. Duday, and E. T. Wirtz, Simulated plasma immersion ion implantation processing of thin wires, Journal of Applied Physics, vol.108, issue.6, p.63308, 2010.
DOI : 10.1063/1.3485812

A. Ferri, S. Saitzek, A. Da-costa, R. Desfeux, G. Leclerc et al., Thickness dependence of the nanoscale piezoelectric properties measured by piezoresponse force microscopy on (111)-oriented PLZT 10/40/60 thin films, Surface Science, vol.602, issue.11, pp.1987-1992, 2008.
DOI : 10.1016/j.susc.2008.04.001

J. F. Gu and S. Gorgutsa, Skorobogatiy, « Soft capacitor fibers using conductive polymers for electronic textiles, Smart Materials and Structures, p.115006, 2010.