
HAL Id: tel-01749330
https://theses.hal.science/tel-01749330v2

Submitted on 26 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visual words for pose computation
Srikrishna Bhat

To cite this version:
Srikrishna Bhat. Visual words for pose computation. Signal and Image processing. Université de
Lorraine, 2013. English. �NNT : 2013LORR0001�. �tel-01749330v2�

https://theses.hal.science/tel-01749330v2
https://hal.archives-ouvertes.fr
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Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503



Mis en page avec la classe thloria.



1

Dedicated to Mankuthimmana Kagga

and the quote

"O naive one, just be one among all"



2



Contents

Introduction 7

Introduction 17

Chapter 1 Mathematical tools and softwares for solving geometry problems 25

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 Homogeneous coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Pose of a pinhole camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.1 Camera coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.2 Projection in world coordinates . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4 RANSAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5 Geometry from 2D-to-2D point matches . . . . . . . . . . . . . . . . . . . . . . . 29

1.5.1 Epipolar geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5.2 Well conditioned two-view triangulation . . . . . . . . . . . . . . . . . . . 30

1.5.3 Structure from Motion (SfM) through Bundler . . . . . . . . . . . . . . . 31

1.6 Pose from 2D-to-3D point matches . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.6.1 E�cient PnP (EPnP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6.2 Direct Least-Squares PnP (DLSPnP) . . . . . . . . . . . . . . . . . . . . . 34

Chapter 2 Feature correspondence for pose estimation: Literature survey 35

2.1 SIFT : Interest point detection and description . . . . . . . . . . . . . . . . . . . 36

2.1.1 SIFT descriptor computation . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.2 Standard SIFT keypoint matching . . . . . . . . . . . . . . . . . . . . . . 36

2.1.3 Other keypoint detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Feature tracking without a learning stage . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 Tracking using edge-based features . . . . . . . . . . . . . . . . . . . . . . 37

2.2.2 Using texture information for tracking . . . . . . . . . . . . . . . . . . . . 38

2.2.3 Need for o�ine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Recognition based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3



4 Contents

2.3.1 Global appearance based representation . . . . . . . . . . . . . . . . . . . 40

2.3.2 Local appearance based representation . . . . . . . . . . . . . . . . . . . . 40

2.3.3 Combining di�erent 2D tracking features and recognition . . . . . . . . . 43

2.4 Visual word framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.1 Types of visual words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.2 Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 3 Building sparse 3D map from training images 47

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 2D-to-2D correspondences for SfM from clusters . . . . . . . . . . . . . . . . . . . 47

3.3 Pruning clusters for SfM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Adaptive transitive closure (ATC) based clustering . . . . . . . . . . . . . . . . . 48

3.4.1 Transitive closure (TC) under smooth variation of pose . . . . . . . . . . . 51

3.4.2 Choosing a threshold for TC cluster computation . . . . . . . . . . . . . . 53

3.4.3 Adaptive transitive closure (ATC) . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Data for experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 MAGRIT Pose Gradation Data (MPG) . . . . . . . . . . . . . . . . . . . 57

3.5.2 RoboImage and IDOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Experimental Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6.2 Evaluation of clustering methods for SfM . . . . . . . . . . . . . . . . . . 64

3.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7.1 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7.2 Fundamental matrix constraint on 2D-to-2D matches in RoboImage data 66

3.7.3 Descriptor participation, track length on MPG data . . . . . . . . . . . . 69

3.7.4 Planarity of planar 3D points . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.7.5 Computational E�ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Chapter 4 3D point recognition and pose estimation 79

4.1 Experimental framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1.1 Pose estimation on MPG . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.2 Successive elimination of reconstruction/recognition strategies . . . . . . . 81

4.1.3 Organization of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Recognition in SIFT descriptor space . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 Results on TD3, TD5 and TD6 . . . . . . . . . . . . . . . . . . . . . . . . 83



5

4.2.2 Eliminating combination of clustering and recognition schemes from avail-

able result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.3 Pose estimation using TD1, TD2 and TD4 . . . . . . . . . . . . . . . . . . 91

4.3 Recognition using statistical learning techniques . . . . . . . . . . . . . . . . . . . 96

4.3.1 Labelling test descriptors in RoboImage data . . . . . . . . . . . . . . . . 96

4.3.2 Brief description of PCA, LDA and SVM . . . . . . . . . . . . . . . . . . 97

4.3.3 Classi�cation accuracy on RoboImage data . . . . . . . . . . . . . . . . . 99

4.3.4 Pose accuracy of SVM based recognition on MPG data . . . . . . . . . . . 104

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Chapter 5 Accelerating Mean-Shift Clustering 107

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Mean-Shift update as bounded convex combination . . . . . . . . . . . . . . . . . 109

5.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.2 Illustration in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Reachability relation on elements of D . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.1 Partitioning through transitive closure on reachability relation . . . . . . . 111

5.4 Bounds on reachability threshold R . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.1 Upper bound on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.2 Lower bound on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5.1 Experiments with gaussian MSC on MPG data . . . . . . . . . . . . . . . 118

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Chapter 6 Features from simulated views through ASIFT 121

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 SIFT vs Ferns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.1 View simulation in Random Ferns[89] . . . . . . . . . . . . . . . . . . . . 122

6.2.2 View simulation in ASIFT[78] . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 Incorporating features from simulated views into 3D map . . . . . . . . . . . . . 123

6.3.1 Method1 : Using ASIFT features during SfM . . . . . . . . . . . . . . . . 125

6.3.2 Post-SfM addition of simulated features to 3D map . . . . . . . . . . . . . 125

6.4 Experimental framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



6 Contents

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Chapter 7 Conclusion 141

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Bibliography 143



Introduction

Les progrès récents dans le domaine de la vision par ordinateur ont accru la capacité des ma-
chines à inférer la structure 3D de l'environnement à partir d'images. La diminution du coût et
l'augmentation des capacités des caméras et des ordinateurs ont conduit à l'émergence de nou-
velles applications qui o�rent une expérience visuelle plus riche à l'utilisateur �nal. Dans cette
thèse, nous traitons le problème de l'estimation de la pose de la caméra (position et orientation)
à partir d'une image de l'environnement capturé dans cette pose. L'estimation de la pose de
la caméra est souvent une brique de base des applications de la Réalité Augmentée. La Réalité
Augmentée a de nombreuses applications [10] dans les domaines de la médecine, de la défense,
du divertissement, de la navigation, etc.

Pour calculer la pose de la caméra dans une image donnée (que nous appelons image de test), il
est nécessaire d'identi�er dans les images l'emplacement de caractéristiques 2D (des points par
exemple, des lignes, des courbes, etc) correspondant aux objets de l'environnement 3D dont la
position est connue par rapport à un système de coordonnées 3D �xe. La méthode Perspective-
n-Point (PnP) [63, 45] permet d'estimer la pose, en utilisant l'association entre les coordonnées
3D de quelques-uns des points dans l'environnement et leur localisation 2D dans l'image. A�n
d'appliquer PnP nous avons besoin de connaître une information géométrique (les coordonnées
3D) et des propriétés photométriques de quelques-uns des points dans l'environnement. Les pro-
priétés photométriques d'un point 3D sont sa représentation visuelle, qui permet l'appariement
dans une image de test donnée a�n d'identi�er son emplacement dans l'image 2D. L'information
géométrique, c'est-à-dire les coordonnées 3D des points qui sont identi�és dans une image de
test, est utilisée pour obtenir les contraintes géométriques nécessaires dans PnP.

Sur la base des besoins de l'application visée et de la technologie disponible, di�érentes tech-
niques d'estimation de la pose peuvent adopter di�érentes approches pour obtenir des infor-
mations géométriques de l'environnement. Dans certaines applications [112], un modèle 3D de
l'environnement cible est supposé connu. Dans certains cas, le modèle 3D est construit en util-
isant un ensemble d'images d'apprentissage au cours d'une étape de formation � hors-ligne �
[93]. Les méthodes basées sur SLAM (Simultaneous Localization And Mapping [11]) calculent
le modèle 3D de l'environnement � en ligne � [27], lors de l'exécution de l'application. La con-
struction du modèle 3D (à la fois en ligne et hors ligne) à partir d'images nécessite d'identi�er
les emplacements 2D de certains points de l'environnement dans plusieurs images, sur la base de
la similarité photométrique. Nous appelons l'association entre les positions 2D d'un seul point
3D dans deux images une correspondance 2D-2D, et l'association entre un point 2D dans une
image et ses coordonnées 3D dans l'environnement une correspondance 2D-3D. Les correspon-
dances de points 2D-3D sont utilisées pour e�ectuer l'estimation de la pose pour une image
donnée. Les correspondances de points 2D-2D sont utilisées pour construire le modèle 3D de
l'environnement. En raison du bruit dans le processus de formation d'image et la quanti�cation
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8 Introduction

des propriétés photométriques, quelques correspondances incorrectes sont susceptibles de se pro-
duire dans la plupart des situations. Pour traiter ces cas, les calculs sont e�ectués à travers le
processus RANSAC [32] qui peut éliminer les correspondances aberrantes.

Dé�s et approches possibles

Pour les raisons suivantes, il est di�cile d'identi�er un nombre su�sant de points 3D dans une im-
age de test pour estimer la pose de manière robuste en utilisant leurs propriétés photométriques.
Les variations de la pose de la caméra donnent des changements signi�catifs dans les intensités
des pixels au voisinage d'un point 3D. Elles peuvent aussi entraîner des occultations partielles ou
totales des régions autour de certains des points dans l'environnement. Plusieurs points ayant
les mêmes propriétés visuelles peuvent aussi entraîner des ambiguïtés. En outre, la recherche
des correspondances dans toute l'image de test peut être extrêmement coûteux en temps pour
les applications qui nécessitent une exécution temps-réel sur des images vidéo. Par conséquent,
l'une des tâches les plus di�ciles dans l'estimation de la pose est d'obtenir une représentation
visuelle qui est e�cace et �able pour identi�er un nombre su�sant de points d'une image de
test sous di�érentes poses de la caméra. Une approche simple consiste à ajouter des marqueurs
physiques qui produisent des motifs d'image facile à détecter dans l'environnement [47, 57]. Mais
placer de tels marqueurs dans des positions appropriées est di�cile, surtout lorsque la taille de
de l'environnement croît. Par conséquent, de nombreuses approches ont été développées pour
réduire le besoin d'interventions manuelles.

Suivi de caractéristiques lors de variations régulières de la pose

A�n d'éviter l'utilisation de marqueurs physiques, certaines techniques d'estimation de la pose
utilisent des points 3D dans l'environnement qui produisent des caractéristiques génériques dans
les images (comme les bords ou les points d'intérêt [26]), qui peuvent être détectés de manière
�able. Le modèle 3D, c'est-à-dire les coordonnées des points 3D correspondant aux caractéris-
tiques de l'image, doit être fourni ou calculé en-ligne au moyen de méthodes comme SLAM. Les
caractéristiques initialisées dans la première image sont suivies dans les images successives en
supposant que la variation de pose est régulière dans une vidéo. Les bords peuvent être utilisés
pour obtenir des candidats pour les projections de points 3D qui produisent des gradients bien
marqués. En raison du problème de l'ouverture, les bords ne peuvent pas être utilisés pour iden-
ti�er la position exacte d'un point dans une image. Des contraintes géométriques di�érentes de
celles utilisées dans PnP doivent être utilisées a�n de calculer la pose [42]. En plus du problème
de l'ouverture, les méthodes basées sur le gradient sont sensibles au fouillis créé par l'arrière-
plan. Au lieu d'utiliser simplement le gradient de l'intensité des pixels, les techniques de points
d'intérêt choisissent un sous-ensemble des emplacements des images qui remplissent certaines
conditions comme des extrema de certains �ltres. Restreindre l'appariement à quelques points
réduit la complexité de calcul et les contraintes utilisées pour les choisir augmentent la �abil-
ité. Les points d'intérêt peuvent être appariés dans des images successives à l'aide de procédés
simples comme la corrélation croisée [26].

Inconvénients

Les méthodes basées sur le suivi de caractéristiques qui utilisent SLAM pour la construction
du modèle 3D sou�rent d'une dérive. Elles ont besoin de ra�nements réguliers de la carte
3D [86] ou des équipements supplémentaires comme une caméra stéréo [113]. Même pour des
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environnements de petite taille, un procédé parallèle de construction d'une carte 3D précise
est recommandé [55]. A�n d'éviter d'utiliser SLAM, le modèle 3D de l'environnement devrait
être fourni préalablement. Il est di�cile d'avoir des modèles 3D pour les environnements de
grande taille. Même si le modèle 3D est disponible, les caractéristiques correspondant aux
points 3D doivent être initialisées dans la première image. Les techniques de suivi qui utilisent
une simple corrélation entre pixels dans des trames successives ne sont pas assez robustes pour
traiter le cas de grandes variations de pose. Par conséquent, dans ces procédés il est di�cile
de récupérer les caractéristiques qui réapparaissent après une occultation intermédiaire. Des
méthodes d'apprentissage en-ligne en temps réel ont été proposées [90, 39, 46] pour l'obtention
de détecteurs robustes. Mais les résultats sont principalement obtenus sur de petits objets
planaires. Une phase d'apprentissage hors-ligne peut être utilisée pour surmonter ces limitations
en construisant un modèle 3D et en calculant une représentation visuelle robuste des points 3D
à partir d'un ensemble d'images d'apprentissage.

Apprentissage de la représentation de points 3D à partir d'images d'apprentissage

Le but de la reconnaissance de points 3D est de calculer une représentation visuelle qui peut
être utilisée pour identi�er les points 3D dans une image donnée sans utiliser aucune information
préalable sur leur emplacement dans l'image, et sans exiger une image avec une vue très proche
des points au moment de l'exécution. La représentation visuelle d'un point 3D se compose d'un
ensemble de valeurs calculées à partir d'une ou plusieurs images du point 3D. La représentation
doit permettre d'identi�er le point 3D correspondant dans les images à partir de points de vue
très changeants. De grandes variations du point de vue entraînent un changement énorme dans
l'aspect des objets. Ceci est plus di�cile par rapport au suivi de caractéristiques 2D, dans lequel
l'aspect de l'image autour d'un point varie régulièrement dans les trames successives. Le coût
de calcul augmente pour deux raisons. A�n d'assurer la robustesse du processus, l'obtention des
descripteurs d'apparence peut impliquer des calculs qui sont plus coûteux que la simple corréla-
tion ou la détection de contours utilisée dans le suivi des caractéristiques 2D. Deuxièmement, le
processus d'appariement doit être e�ectuée sur l'image complète, à la di�érence du suivi de car-
actéristiques 2D dans lequel la connaissance de la pose de l'image précédente réduit de manière
signi�cative la zone de recherche.

Des vecteurs de descripteurs de points d'intérêt [69] qui quanti�ent les caractéristiques visuelles
d'un point d'intérêt en utilisant les pixels dans son voisinage, peuvent fournir des correspon-
dances 2D-2D plus �ables que les approches simples comme la corrélation entre les pixels. Ces
descripteurs ont des propriétés invariantes sous certaines transformations qui sont susceptibles
de se produire en raison de la variation de pose. Cependant, dans la pratique, la plupart des de-
scripteurs intègrent seulement des modèles approximatifs des transformations réelles. Plusieurs
descripteurs d'un point 3D peuvent être extraits à partir d'images sous di�érentes poses a�n
d'améliorer encore les performances de la représentation visuelle [108].

Approche proposée

Les descripteurs de points d'intérêt extraits d'un ensemble d'images d'apprentissage ont été util-
isés dans le passé pour construire un modèle 3D et obtenir sa représentation visuelle [93, 38, 51].
Nous suivons une approche similaire et employons un cadre à deux étapes constitué d'une phase
d'apprentissage et d'une phase de test. Dans l'étape d'apprentissage, nous apparions les descrip-
teurs SIFT [69] extraits d'images d'apprentissage et calculons la structure à partir du mouvement
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(SfM, Structure from Motion [107]) sur les appariements 2D-2D ainsi calculés pour obtenir un
ensemble de points 3D dans l'environnement. Après l'obtention de points 3D, nous utilisons les
descripteurs SIFT associés aux positions 2D dans les images d'apprentissage d'un point 3D pour
représenter ses propriétés photométriques. Pendant la phase de test, nous utilisons la représen-
tation visuelle dérivée des descripteurs SIFT associés aux points 3D a�n de les détecter dans une
image test et e�ectuer l'estimation de la pose.

Notre étude met l'accent sur l'expérimentation de di�érentes manières d'apparier les descrip-
teurs SIFT pour les correspondances 2D-2D au cours de l'apprentissage et de di�érentes manières
d'obtenir une description visuelle des points 3D pour calculer les appariements 2D-3D pendant
la phase de test. Nous utilisons des outils logiciels accessibles publiquement pour e�ectuer
l'extraction de caractéristiques (c'est-à-dire SIFT) et les calculs géométriques (c'est-à-dire SfM
et PnP). L'ensemble du processus peut se résumer comme suit:

• Étape d'apprentissage:

1. Extraction des descripteurs SIFT (vecteurs d'apprentissage) à partir d'images et ap-
pariement pour obtenir des correspondances 2D-2D.

2. SfM pour calculer les points 3D correspondant à certains des appariements 2D-2D.

3. Association de chaque point 3D aux descripteurs SIFT correspondant aux positions
2D dans les images utilisées pour les calculer.

À ce stade, chaque point 3D est associé de manière unique à un ensemble de vecteurs
d'apprentissage. Cet ensemble permet d'obtenir une représentation visuelle du point 3D
qui dé�nit la règle pour faire correspondre un vecteur descripteur SIFT avec le point 3D.

• Étape de test:

1. Extraction des descripteurs SIFT (vecteurs de test) de l'image de test donnée.

2. Mise en correspondance des vecteurs de test avec des points 3D en utilisant la représen-
tation visuelle obtenue à partir des vecteurs d'apprentissage associés. La position 2D
de chaque vecteur de test qui correspond à un point 3D fournit une correspondance
2D-3D.

3. Estimation de la pose à partir de l'ensemble des correspondances 2D-3D en utilisant
PnP.

Dans les deux étapes, nous pouvons rencontrer des correspondances entre points incorrects (2D-
2D ou 2D-3D). Pour traiter ces cas, RANSAC [32] est utilisé et peut, jusqu'à un certain point,
rejeter des mauvaises correspondances.

Contribution

Notre contribution dans cette approche basée sur deux étapes est la suivante:
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1 : Établissement de correspondances 2D-2D pendant l'apprentissage

Comme mentionné précédemment, nous utilisons des descripteurs SIFT extraits des images
d'apprentissage (vecteurs d'apprentissage) pour obtenir des correspondance 2D-2D. Les auteurs
de la méthode SIFT ont présenté une technique standard de mise en correspondance de points-
clés [38] Par la suite, la popularité des descripteurs SIFT a conduit à l'application de di�érentes
techniques de clustering pour regrouper les descripteurs SIFT à partir de plusieurs images et pas
seulement deux. Ces approches de clustering, désignées comme mots visuels [105, 87], traitent
une image comme un document de mots dans laquelle chaque mot est représenté par les descrip-
teurs d'apprentissage appartenant à un seul cluster. Un mot visuel peut être considéré comme la
caractérisation de régions d'images à partir desquelles les descripteurs sont extraits. Nous util-
isons le cadre des mots visuels pour représenter le modèle 3D de telle sorte que chaque point 3D
est représenté par un mot visuel unique. Certains des groupes obtenus à partir des descripteurs
SIFT d'apprentissage peuvent contenir plusieurs vecteurs de descripteurs SIFT provenant d'une
unique image d'apprentissage, par exemple les groupes contenant des descripteurs correspondant
à des motifs répétés dans l'environnement. Nous les éliminons, car ils ne sont pas adaptés pour
représenter de manière unique un point 3D. Chaque groupe retenu peut être traité comme un
ensemble de descripteurs extraits des di�érentes projections 2D d'un point 3D unique et peut
donc être utilisé pour obtenir des correspondances 2D-2D pour SfM.

La plupart des mots visuels développés dans le passé utilisent le clustering par k-moyennes ou par
mean-shift. Nous construisons des cartes 3D en utilisant les appariements 2D-2D obtenus par ces
deux types de clustering et la mise en correspondance de points SIFT standard. Nous proposons
également une nouvelle façon de former des mots visuels (que nous appelons aussi la clôture tran-
sitive adaptative - ATC) qui e�ectue l'appariement de descripteurs SIFT basé sur la recherche
par intervalle (c'est-à-dire deux descripteurs SIFT sont appariés si leur distance est inférieure à
un seuil). La valeur de seuil utilisée pour l'appariement est adaptée en fonction de la distribution
des vecteurs d'apprentissage dans l'espace des descripteurs SIFT. Nous commençons avec une
grande valeur du seuil, et apparions les vecteurs d'apprentissage en utilisant cette valeur. Ces
appariements établissent une relation sur l'ensemble des vecteurs d'apprentissage qui est ré�exive
et symétrique. Nous appliquons une clôture transitive sur ces appariements pour obtenir une
relation d'équivalence dans lequel chaque partition est traitée comme un cluster. Les clusters
qui ont de multiples instances dans la même image (et donc ne conviennent pas pour représenter
un point 3D) sont l'objet d'un nouveau clustering, de la même manière mais avec un seuil de
distance réduit. Nous répétons ce processus pour un ensemble �xe de seuils en ordre décroissant.
Il en résulte un ensemble de clusters, dans lequel les vecteurs de descripteurs dans un cluster
sont appariés les uns aux autre avec une valeur de seuil qui est adaptée à la zone de l'espace des
descripteurs dans lequel le cluster est situé.

Nous évaluons la performance des di�érentes techniques d'appariement à l'aide de certaines
mesures de la précision des appariements 2D-2D et de la qualité du modèle 3D construit à partir
de ces appariements. Ces mesures sont énumérées ci-dessous:

1. Proportion de correspondances 2D-2D conformes aux contraintes épipolaires:
La précision d'une correspondance 2D-2D est mesurée à l'aide des contraintes épipo-
laires entre paires d'images. Les contraintes épipolaires sont obtenues à partir de la po-
sition des caméras connues d'après la � vérité terrain � disponible pour certaines images
d'apprentissage.
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2. Proportion des vecteurs d'apprentissage associés aux points 3D: Les appariements
qui ne respectent pas les contraintes géométriques sont supprimés en cours de SfM. Par
conséquent, une grande proportion de vecteurs d'apprentissage passant SfM sans se faire
rejeter indique une meilleure qualité d'appariement.

3. Nombre moyen de vecteurs d'apprentissage associés à un point 3D: Une bonne
proportion de points 3D calculés à partir d'un grand nombre de points 2D indique la
capacité de la méthode d'appariement à grouper en un même cluster les descripteurs de
points 3D obtenus à partir de points de vue di�érents.

4. Planarité des points 3D appartenant à un plan: Nous marquons manuellement les
parties des images d'apprentissage contenant une seule surface plane de l'environnement.
Tous les points 3D calculés à partir des descripteurs SIFT appartenant à ces parties doivent
se situer dans le plan. Nous mesurons à quel point ces points 3D s'adaptent à un plan.

5. E�cacité algorithmique: Le processus d'apprentissage hors-ligne n'est pas prévu pour
fonctionner à la cadence vidéo. Néanmoins, les méthodes de clustering impliquent des cal-
culs intensifs qui peuvent devenir prohibitifs lorsque le nombre de vecteurs d'apprentissage
augmente. Nous comparons le temps CPU nécessaire pour di�érentes approches utilisées
dans nos expériences.

2 : Représentation visuelle pour les correspondances 2D-3D pendant l'étape
de test

À la �n de l'étape d'apprentissage, nous obtenons des points 3D dans l'environnement et un
ensemble de descripteurs SIFT appartenant au cluster (ou mot visuel) associé à chaque point
3D. Étant donné un ensemble de descripteurs SIFT d'une image de test (vecteurs de test), nous
avons besoin de faire correspondre chaque vecteur de test avec ces clusters. Il s'agit d'un prob-
lème de classi�cation supervisée [30]. On peut donc utiliser diverses techniques d'apprentissage
statistique pour reconnaître les points 3D dans une image test. Apparier un vecteur de test
avec l'ensemble des vecteurs de formation peut être coûteux algorithmiquement. Nous essayons
de réduire le coût de la mise en correspondance en testant deux autres ensembles de vecteurs
d'apprentissage provenant de l'ensemble des vecteurs extraits à partir des images d'apprentissage.
Le premier est obtenu en ne retenant que les vecteurs d'apprentissage qui sont associés à des
points 3D, c'est-à-dire ceux qui sont utilisés pour obtenir des correspondances 2D-2D pour SfM
et au moins une de ces correspondances est conservée et utilisée pour générer un point 3D par le
processus de SfM. Le second est obtenu en utilisant uniquement les centres des clusters associés
aux points 3D, c'est-à-dire chaque mot visuel associé à un point 3D est représenté par un vecteur
unique.

Nous pouvons évaluer les résultats de la phase de test à deux niveaux: (i) la précision de la
reconnaissance de points 3D et (ii) la précision de l'estimation de la pose. La précision de
l'estimation de la pose dépend de la précision de la classi�cation lors de la reconnaissance de
points 3D. Mais, en raison de l'étape RANSAC qui peut tolérer quelques correspondances aber-
rantes, il est possible de ne pas constater beaucoup de di�érence dans l'estimation de la pose,
même si certains des descripteurs SIFT test sont mal classés. En outre, la qualité des points 3D
appariés peut in�uer la précision de l'estimation de la pose. Dans les deux cas (reconnaissance
et estimation de la pose), nous avons besoin d'une vérité terrain pour évaluer la performance.
Il est relativement plus facile d'obtenir des positions de caméra � vérité terrain � pour évaluer
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l'exactitude de la pose que de connaître les points 3D réellement associés aux vecteurs de test.
Dans nos expériences, nous avons surtout évalué l'exactitude de l'estimation de la pose. Quand
nous avons besoin d'évaluer la précision de la reconnaissance de points 3D, on obtient le label
de la classe pour les descripteurs des images de test en exécutant l'étape d'apprentissage dans
laquelle les vecteurs de test sont inclus avec les vecteurs d'apprentissage tout en e�ectuant le
clustering et SfM.

Nous avons d'abord expérimenté deux stratégies di�érentes de reconnaissance sur la base de
la classi�cation au plus proche voisin (i) seuil sur la distance avec le plus proche voisin, (ii)
seuil sur le rapport des distances entre les deux vecteurs d'apprentissage les plus proches ap-
partenant à deux di�érents points 3D. Dans les deux cas, l'appariement est e�ectué en utilisant
di�érentes valeurs de seuil séparément, avec l'ensemble d'apprentissage en entier et les deux
autres ensembles d'apprentissage mentionnés plus haut. Pour des modèles 3D basés sur MS
(mean-shift) et ATC, nous e�ectuons une technique de reconnaissance supplémentaire. Pour
MS, nous e�ectuons une itération de mean-shift (avec les mêmes paramètres que ceux utilisés
lors de l'apprentissage) pour chaque vecteur de test. Pour ATC nous apparions un vecteur de
test avec di�érents groupes en utilisant le seuil adaptatif des groupes avec lequel les clusters
respectifs sont formés au cours de l'apprentissage. Nous faisons l'estimation de la pose sur les
correspondances 2D-3D obtenues grâce à ces di�érents schémas d'appariement au plus proche
voisin sur di�érents ensembles d'apprentissage appartenant à di�érents modèles 3D. La pose es-
timée est comparée avec la vérité-terrain pour l'évaluation. Chaque évaluation de la pose estimée
des images de test mesure la performance de la combinaison de l'appariement 2D-2D et des sché-
mas de reconnaissance de points 3D utilisés respectivement lors des étapes d'apprentissage et de
test.

Nous menons d'autres expériences avec des classi�cateurs linéaires et non linéaires qui appliquent
une transformation optimale à l'espace des descripteurs avant de procéder à la classi�cation. Pour
les techniques basées sur une transformation linéaire nous procédons à la reconnaissance de points
3D en utilisant des stratégies de plus proches voisins dans le domaine transformé, comme décrit
dans le paragraphe précédent. Pour la classi�cation non-linéaire, nous utilisons des SVM avec
noyau gaussien. Nous faisons l'apprentissage d'un classi�cateur SVM pour chaque point 3D.
Nous expérimentons avec des valeurs di�érentes pour le paramètre du noyau σ. Nous essayons
aussi la technique décrite dans [64] pour calculer automatiquement le paramètre de noyau pour
chaque SVM à partir des échantillons de d'apprentissage disponibles.

3 : Stratégies d'accélération pour le clustering mean-shift

Le clustering mean-shift déplace itérativement chaque vecteur d'apprentissage vers les maxima
locaux de la fonction de densité de probabilité estimée à partir de l'ensemble d'apprentissage
[23]. Le coût de calcul de MSC devient prohibitif grand que la dimension de l'espace des carac-
téristiques augmente. La principale source de ces coûts est le processus de recherche par inter-
valle [36] qui implique le calcul, à chaque itération, de l'ensemble des vecteurs d'apprentissage
dans un intervalle de largeur de w autour du vecteur moyen courant. Nous avons conçu une
stratégie pour accélérer le calcul en divisant l'ensemble des vecteurs d'apprentissage en groupes
tels que les vecteurs dans un groupe n'in�ueront jamais le calcul des clusters dans un autre
groupe. Cette stratégie e�ectue des calculs exacts contrairement aux méthodes qui utilisent des
sous-échantillonages [34] ou des approximations [20]. Néanmoins, nous obtenons une accéléra-
tion modérée par rapport à ces méthodes inexactes, pour une gamme spéci�que de valeurs de
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paramètres utilisés pour e�ectuer le mean-shift. Notre technique est applicable à tous les types
de noyaux qui sont à support compact et de largeur de bande �xe.

Notre méthode d'accélération est basée sur l'observation que, pendant le mean-shift, si un vecteur
d'apprentissage x est au-delà de

√
2 w de tous les vecteurs qui sont à une distance de w du vecteur

moyen courant, alors x sera au-delà de la distance de w du vecteur moyen suivant. C'est pourquoi
nous n'avons pas besoin de comparer le vecteur suivant avec de tels vecteurs d'apprentissage. Si
nous divisons les vecteurs d'apprentissage dans des groupes en appliquant la clôture transitive de
la relation obtenue en les appariant avec un seuil de distance

√
2w, alors chacun de ces groupes

n'interférera jamais avec aucun autre groupe au cours du calcul du mean-shift. Nous ne savons
pas si cette propriété sera valable pour toute valeur de seuil inférieure à

√
2w. Néanmoins nous

prouvons que le seuil ne peut pas être inférieur à π√
6
w.

La stratégie d'accélération n'est utile que lorsque la taille de chaque groupe obtenu par l'opération
de clôture transitive est nettement inférieure à la taille de l'ensemble d'apprentissage entier. Elle
exige que les vecteurs d'apprentissage sont bien séparés les uns des autres en groupes tels que
l'opération de clôture transitive sur l'appariement basé sur la distance peut fournir un nombre
raisonnable de partitions. Lorsque les données sont bien séparées, les techniques de recherche
rapides peuvent également augmenter l'e�cacité de mean-shift en liant les régions séparées par
une étape de pré-traitement et d'e�ectuer la recherche uniquement dans des régions délimitées
au voisinage du vecteur requête. Dans nos expériences, nous aimerions voir si les partitions
données par la clôture transitive peuvent accélérer le mean-shift, qui utilise déjà une technique
de recherche rapide. Nous utilisons [79] pour la recherche rapide. Nous e�ectuons la recherche
exacte sans utiliser l'option d'approximation disponible dans [79].

4 : Caractéristiques provenant de vues simulées par ASIFT

Si l'environnement peut être supposé localement plan, alors de nouvelles vues de l'environnement
peuvent être générées en appliquant des transformations a�nes à une de ses vues [78, 89]. Nous
utilisons ASIFT [78], qui calcule des descripteurs SIFT supplémentaires à partir de vues simulées
de l'image originale. Ces descripteurs supplémentaires peuvent être utilisés pour obtenir des cor-
respondances lorsque la variation de pose entre les images d'apprentissage et de test est grande.

Nous explorons di�érentes façons d'incorporer dans la carte 3D les descripteurs SIFT obtenus
à partir de vues simulées. La première approche consiste à utiliser des descripteurs extraits à
l'aide d'ASIFT pour réaliser le SfM. Nous constatons que cela se traduit par la génération de
nouveaux points 3D plutôt que par l'ajout de nouveaux descripteurs aux points 3D calculés à
partir des descripteurs de l'image originale. C'est pourquoi nous concevons des méthodes qui
ajoutent des descripteurs à une carte 3D à partir de vues nouvelles. Nous essayons d'ajouter
les descripteurs ASIFT proches dans l'image à ceux qui sont associés à la carte 3D. Nous avons
aussi essayé d'utiliser seulement la partie de calcul du descripteur dans l'algorithme SIFT pour
obtenir des descripteurs à partir d'emplacements d'image dans l'image simulée qui correspondent
aux emplacements des descripteurs de l'image originale associés à la carte en 3D.

Nous concevons un cadre expérimental pour comparer la qualité des appariements 2D-3D obtenus
par ces di�érents schémas. En utilisant les informations vérité-terrain disponibles pour l'un des
jeux de données utilisés dans nos expériences, nous réduisons l'in�uence des facteurs sans rap-
ports (par exemple: la qualité de la carte 3D estimée par l'intermédiaire d'un processus RANSAC
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qui n'est pas lié à la simulation de vues), qui a�ecte la mesure de performance.

Organisation

Notre travail consiste principalement à établir des correspondances de points (2D-2D et 2D-3D).
Les contraintes géométriques découlant de ces correspondances sont utilisées pour résoudre le
problème du calcul de pose. Dans le chapitre 1, nous décrivons brièvement les outils que nous
utilisons pour e�ectuer des calculs géométriques sur les correspondances de points. Il s'agit prin-
cipalement de concepts de la géométrie projective et RANSAC.

Dans le chapitre 2, nous présentons di�érentes stratégies dans la littérature utilisées pour établir
des correspondances ponctuelles pour l'estimation de la pose. Nous donnons un bref résumé de la
méthode d'extraction des descripteurs SIFT qui est largement utilisé dans nos expériences (ainsi
que dans les travaux connexes). Nous organisons la littérature à l'instar de [60] et nous motivons
le choix de notre méthode à deux étapes décrite ci-dessus sur la base des travaux antérieurs.
A la �n du chapitre, nous présentons le cadre des mots visuels utilisé dans notre travail pour
représenter les points 3D.

Dans le chapitre 3, nous présentons l'étape d'apprentissage de notre méthode d'estimation de la
pose. Il s'agit principalement de la description des schémas d'appariement utilisés pour établir
les correspondances 2D-2D avec les paramètres que nous utilisons dans nos expériences pour
construire la carte 3D. Nous décrivons les bases de donnée et la méthode d'évaluation que nous
utilisons pour mesurer la qualité des di�érents schémas d'appariement. Nous présentons les ré-
sultats expérimentaux et concluons avec les observations que nous tirons des résultats.

Dans le chapitre 4, nous présentons l'étape de test dans laquelle nous présentons des expéri-
ences avec di�érentes règles de mise en correspondance pour reconnaître les points 3D dans une
image test. L'évaluation est e�ectuée sur di�érentes combinaisons de schémas d'appariement
2D-2D utilisés dans l'étape d'apprentissage et des stratégies de reconnaissance des points 3D
utilisée dans l'étape de test.

Dans le chapitre 5, nous décrivons notre technique d'accélération de mean-shift et la preuve
mathématique soutenant que notre modi�cation n'a aucune incidence sur le résultat �nal de
l'algorithme. Nous présentons les résultats que nous obtenons sur les descripteurs SIFT extraits
des images que nous avons utilisées dans nos expériences.

Dans le chapitre 6, nous présentons les expériences conduites avec les vues simulées. Nous
justi�ons le choix d'utiliser ASIFT et décrivons les di�érentes approches adoptées pour améliorer
la robustesse du calcul des appariements 2D-3D.

En�n, nous concluons la thèse dans le chapitre 7 en résumant les di�érents résultats obtenus.
Nous mentionnons aussi quelques perspectives possibles.



16 Introduction



Introduction

Recent advances in the area of computer vision have increased the ability of machines to infer
3D structure of the surrounding environment from images. Decrease in the cost and increase in
the capabilities of the cameras and computers have led to emergence of new applications which
provide richer visual experience to the end user. In this thesis we deal with the problem of es-
timating camera pose (position and orientation) from an image of the surrounding environment
captured in that pose. Camera pose estimation is an integral part of Augmented Reality. It has
many applications [10] in the areas of medicine, military, entertainment, navigation etc.

In order to compute pose of the camera in a given image (which we refer to as test image)
we need to identify the 2D location of image features (e.g. points, lines, curves etc) correspond-
ing to the objects in the environment whose 3D position is known with respect to a �xed 3D
coordinates system. Perspective-n-Point (PnP) algorithm [63, 45] which is the most popular
class of methods for pose estimation, uses association between 3D coordinates of some of the
points in the environment and their 2D location in the image to obtain the necessary geometric
constraints to determine pose. In order to apply PnP we need to know geometric information
(i.e. 3D coordinates) and photometric properties of some of the points in the environment.
Photometric property of a 3D point is used to obtain its quanti�ed visual representation which
can be matched with a given test image to identify its 2D location in the image. Geometric
information i.e. 3D coordinates of the points which are identi�ed in a test image are used to
obtain the geometric constraints needed in PnP.

Based on the requirement of the target application and available technology, di�erent pose estima-
tion techniques adopt di�erent approaches to obtain geometric information of the environment.
In some applications[112] 3D model of the target environment is assumed to be known. In some
cases, the 3D model of the environment is built using a set of training images during an o�ine
training step[93]. SLAM (Simultaneous Localization and Mapping [11]) based methods compute
the 3D model of the environment online [27] while running the application. Building the 3D
model (both o�ine and online) from images, involves the task of identifying 2D locations of
some of the points in the environment in multiple images based on photometric similarity. We
refer to the association between 2D locations of a single 3D point in two images as 2D-to-2D
point match and the association between a 2D point in an image and its 3D coordinates in
the environment as 2D-to-3D point match. 2D-to-3D point matches are used to perform pose
estimation for a given image. 2D-to-2D point matches are used to build the 3D model of the
environment. Due to the noise in the process of image formation and quanti�cation of photo-
metric properties, few incorrect point matches are likely to occur in most of the situations. To
handle such cases computations are performed through RANSAC process [32] which can discard
outliers while �tting a hypothesis on a set of samples.

17
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Challenges and Approaches

Identifying su�cient number of 3D points in a test image for robust pose estimation using their
photometric properties re�ected in the images is a di�cult task due to the following reasons.
Variation in camera pose imparts signi�cant change in pixel intensity pattern in the image of a
3D point. It also may result in partial or complete occlusion of regions surrounding some of the
points in the environment. Multiple points with similar visual properties in the environment may
lead to ambiguity. Moreover, searching the whole test image to match the visual representation
of various points may be prohibitively time consuming for applications which require real-time
execution on video frames. Hence, one of the most challenging task in pose estimation is to obtain
visual representation which can e�ciently and robustly identify su�cient number of points in a
test image under varying camera pose. One simple approach is to add �ducial markers which
produce easy-to-detect image patterns to the environment [47, 57]. But placing distinguishable
markers at appropriate positions is di�cult especially when the size of environment increases.
Hence, many approaches to reduce the need for manual interventions have been developed.

Feature tracking under smooth variation of pose

In order to avoid the need to use �ducial markers, some pose estimation techniques use 3D points
in the environment that produce generic image features (like edges or interest points[26]) which
can be reliably detected. 3D model i.e. the coordinates of the 3D points corresponding to the
image features either should be provided or computed online through methods like SLAM. The
features once initialized in the �rst frame are tracked in the successive frames assuming smooth
variation of pose in a video. Edge features can be used to obtain candidate image locations for
3D points which produce sharp image gradients. Due to aperture problem, edges cannot be used
to identify the exact location of a point in an image. Di�erent geometric constraints than those
in PnP need to be used in order to compute pose[42]. In addition to aperture problem, gradient
based methods are sensitive to background clutter. Instead of using gradient of pixel intensity,
interest point techniques choose a subset of image locations which satisfy certain conditions like
extrema of output of some �lter operation. Matching only at few selected locations reduces
the computational complexity and the conditions used to choose them increase the reliability.
Interest points can be matched across successive images using simple process like cross correlation
[26].

Drawbacks

Feature tracking based methods which use SLAM for 3D model construction su�er from drift.
They need regular re�nement of the 3D map[86] or additional equipments like stereo camera[113].
Even for small sized environments a parallel batch method to build accurate 3D map[55] is
recommended. In order to avoid using SLAM, 3D model of the environment should be provided.
It is di�cult to have 3D models for large environments. Even if the 3D model is available, the
features corresponding to the 3D points should be initialized in the �rst frame. The tracking
techniques which use simple correlation between pixels in successive frames for matching are not
robust enough for handling large pose variations. Hence, it is di�cult to recover the features
which reappear after intermediate occlusion in such methods. Online realtime learning methods
[90, 39, 46] have been proposed for obtaining robust detectors. But the results are mainly
obtained on small planar objects. An o�ine learning stage can be used to overcome these
limitations by building a 3D model and computing robust visual representation for 3D points
from a set of training images.
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Learning 3D point representation from training images

The aim of 3D point recognition technique is to compute visual representation which can be
used to identify 3D points in a given image without using any prior information about their
image location and without requiring an image with closely related view of the points at run
time. Visual representation of a 3D point consists of a set of values computed from one or more
images of the 3D point. The representation should enable identi�cation of the corresponding 3D
point in the images from widely varying views. Wide variation in viewpoint causes huge change
in the image of the objects. This is more challenging when compared to 2D feature tracking in
which the image pattern around a point vary smoothly in successive frames. Computationally
the cost increases due to two reasons. In order to achieve robustness the process of obtaining
appearance descriptors may involve computations which are costlier than simple correlation or
edge detection used in 2D feature tracking. Secondly, the matching process should be performed
over the full image, unlike 2D feature tracking in which the knowledge of pose from the previous
image reduces the search region signi�cantly.

Interest point descriptor vectors[69] which quantify the visual characteristics of an interest point
using the pixels in its neighborhood, can provide more reliable 2D-to-2D matches between images
than simple approaches like correlation between pixels. These descriptors have invariant proper-
ties under some of the transformations which are likely to occur due to pose variation. However,
in practice, most descriptors incorporate only approximate model of the real transformations.
Multiple descriptors of a 3D point extracted from training images containing its view under
di�erent pose can be used to further improve the performance of the visual representation[108].

Our approach

Interest point descriptors extracted from a set of training images have been used in the past
to build 3D model and obtain its visual representation [93, 38, 51]. We also follow a similar
approach and employ a 2-stage framework consisting of a training stage and a test stage. In
the training stage we match SIFT [69] descriptors extracted from training images and perform
SfM (Structure from Motion [107]) on the 2D-to-2D matches thus computed to obtain a sparse
set of 3D points in the environment. After obtaining 3D points, we use the SIFT descriptors
associated with the 2D locations in the training images of a 3D point to represent its photomet-
ric properties. During test stage we use the visual representation derived from SIFT features
associated with the 3D points in order to detect them in a test image and perform pose estimation.

Our investigation focuses on experimenting with di�erent ways of matching SIFT descriptors
for establishing 2D-to-2D matches during training and various ways of obtaining visual descrip-
tion for the 3D points to compute 2D-to-3D matches during test stage. We use publicly available
software tools to perform feature extraction (i.e. SIFT) and geometric computations (i.e. SfM
and PnP). The whole process can be summarized as follows:

• Training Stage:

1. Extract SIFT descriptors (training vectors) from training images and match them to
obtain 2D-to-2D matches.

2. Perform SfM to compute 3D points corresponding to some of the 2D-to-2D matches.
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3. Associate each 3D point with the SIFT descriptors corresponding to the 2D image
locations used to compute it.

At this point each 3D point is uniquely associated with a set of training vectors. This set
is used to obtain visual representation of the 3D point which de�nes the rule for matching
a SIFT descriptor vector with the 3D point.

• Test Stage:

1. Extract SIFT descriptors (test vectors) from the given test image.

2. Match the test vectors with 3D points using the visual representation obtained from
the associated training vectors. The 2D location of each test vector which matches
with a 3D point provides a 2D-to-3D correspondence.

3. Estimate pose from the set of 2D-to-3D correspondences through PnP.

In both stages we may encounter incorrect point correspondences (2D-to-2D or 2D-to-3D). To
handle such cases RANSAC [32] is employed which up to some extent can discard the outliers.

Contribution

Our contribution during the course of our investigation while following the above mentioned
2-stage framework is as follows:

1 : Establishing 2D-to-2D matches during training

As mentioned earlier, we use SIFT descriptors extracted from training images (training vectors)
to obtain 2D-to-2D matches. The author of the SIFT method presented a standard keypoint
matching technique [38] to match the SIFT descriptors extracted from two images. Subsequently,
the popularity of the SIFT descriptors has lead to application of di�erent clustering techniques
to group SIFT descriptors from several images instead of just two. These clustering approaches,
collectively named as visual word framework[105, 87], treat an image as a document of words in
which each word is represented by the training descriptors belonging to a single cluster. Visual
word can be considered as characterization of the image pattern common to the image regions
from which its member descriptors are extracted. We use visual word framework to represent
3D model in such a way that each 3D point is uniquely represented by a visual word. Some of
the clusters obtained from the training SIFT descriptors may contain multiple SIFT descriptor
vectors from a single training image, for example clusters containing descriptors corresponding
to repeated patterns in the environment. We discard them, as they are not suitable to uniquely
represent a 3D point. Each retained cluster can be treated as set of descriptors extracted from
di�erent 2D projections of a single 3D point and hence can be used to obtain 2D-to-2D matches
for SfM.

Most of the visual words developed in the past use either k-means or mean-shift clustering.
We build 3D map using 2D-to-2D matches obtained through these two types of clustering and
standard SIFT keypoint matching. We also propose a novel way of forming visual words (which
we call as Adaptive Transitive Closure - ATC) which performs range based matching on SIFT
descriptors (i.e. two SIFT descriptors are matched if they are within a distance threshold). The
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threshold value used for matching is adapted based on the distribution of training vectors in
SIFT descriptor space. We start with a large distance threshold, match the training vectors
based on this threshold. These matches establish a relation on the set of training vectors which
is re�exive and symmetric. We apply transitive closure on these matches to obtain an equiva-
lence relation in which each partition is treated as a cluster. The clusters which have multiple
instances in a single training image (and hence not suitable for representing a 3D point) are
clustered again in a similar way with a reduced distance threshold. We repeat this process for
a �xed set of thresholds in the decreasing order. This results in a set of clusters in which the
descriptor vectors in a cluster are matched to each to each other with a threshold value which is
adapted to the region of the descriptor space in which the cluster is situated.

We evaluate the performance of various matching techniques using some aspects of the accu-
racy of 2D-to-2D matches and the quality of 3D model built from those matches. These aspects
are listed below:

1. Portion of 2D-to-2D matches complying with epipolar constraints: Accuracy
of a 2D-to-2D match is measured using epipolar constraints between the pair of matches
images. Epipolar constraints are obtained from the ground truth camera positions available
for some of the training images used in our experiments.

2. Portion of the training vectors getting associated with the 3D points: The
matches which do not comply with the geometric constraints are discarded during SfM.
Hence, large portion of training vectors successfully passing through SfM without getting
rejected, indicates a better quality of matches.

3. Average number of training vectors associated with a 3D point: A good portion of
3D points computed from large number of 2D points indicates the ability of the matching
method to group descriptors of the 3D point from di�erent views into a single cluster.

4. Planarity of 3D points belonging to a plane: We manually mark the portions in the
training images containing a single planar surface of the environment. All the 3D points
computed from the SIFT descriptors belonging to these portions should lie in plane. We
measure how well these 3D points �t to a plane.

5. Computational e�ciency: The o�ine training process is not expected to run at video
frame rate. But, clustering methods involving computationally intensive operations may
become prohibitively expensive when the number of training vectors increase. We compare
the CPU time required to complete various matching schemes applied in our experiments.

2 : Visual representation for 2D-to-3D matching during test stage

At the end of training stage we obtain 3D points in the environment and a set of SIFT de-
scriptors belonging to the cluster (or visual word) associated with each 3D point. Given a set
of SIFT descriptors from a test image (test vectors), we need to match each test vector with
these clusters. This is a supervised pattern classi�cation problem [30]. Hence we can use various
statistical learning techniques to recognize 3D points in a test image. Matching a test vector
with the whole set of training vectors may be computationally expensive. We try to reduce the
cost of matching by experimenting with two additional sets of training vectors derived from the
whole set of vectors extracted from training images. The �rst one is derived by retaining only
those training vectors which are associated with 3D points i.e. those which are used to establish
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2D-to-2D matches for SfM and at least one of such matches is retained and used to generate a
3D point by the SfM process. The second one is derived using only the centers of the clusters
associated with the 3D points i.e. each visual word associated with a 3D point is represented by
a single vector.

We can assess the outcome of the test stage at two levels, (i)accuracy of 3D point recogni-
tion and (ii)accuracy of pose estimation. Accuracy of pose estimation is dependent on the
classi�cation accuracy during 3D point recognition. But, due to the RANSAC step which can
tolerate few outliers, we may not �nd much di�erence in the estimated pose even if some of the
test SIFT descriptors are misclassi�ed. In addition, the quality of the matched 3D points may
in�uence the accuracy of estimated pose. In both cases (i.e. recognition and pose estimation)
we need ground truth information in order to evaluate the performance. It is relatively easier
to obtain the ground truth camera positions for evaluating the accuracy of pose estimation than
to know the actual 3D points associated with the test vectors. In our experiments we mainly
evaluate the accuracy of pose estimation. When we need to evaluate accuracy of 3D point recog-
nition, we obtain the class label for the descriptors in test images by running the training stage in
which test vectors are included along with the train vectors while performing clustering and SfM.

First we experiment with two di�erent recognition strategies based on nearest neighbor clas-
si�cation (i) threshold on the distance with nearest neighbor, (ii)threshold on the ratio of dis-
tances to the two nearest training vectors belonging to two di�erent 3D points. In both cases
the matching is performed using di�erent threshold values separately with the whole training set
and the two additional derived training sets. For MS (mean-shift) and ATC based 3D models
we perform an additional recognition technique. For MS, we perform mean-shift iteration (with
the same parameters used during training) for each test vector. For ATC we match a test vector
with di�erent clusters using the adaptive threshold with which the respective clusters are formed
during training. We run pose estimation on 2D-to-3D matches obtained through these various
nearest neighbor based matching schemes on di�erent training sets belonging to di�erent 3D
models. The estimated pose is compared with the ground truth for evaluation. Each evalua-
tion of the estimated pose of the test images measures the performance of the combination of
2D-to-2D matching and 3D point recognition schemes employed during training and test stages
respectively.

We further experiment with linear and non-linear classi�ers which apply an optimal transfor-
mation on descriptor space before performing classi�cation. For linear transformation based
techniques we perform 3D point recognition using nearest neighbor strategies in the transformed
domain as described in the previous paragraph. For non-linear classi�cation, we use SVM with
gaussian kernel. We learn one SVM classi�er for each 3D point. We experiment with di�erent
values for kernel parameter σ. We also try the technique described in [64] to automatically
compute the kernel parameter for each SVM from the available training samples.

3 : Acceleration strategy for mean-shift clustering

Mean-shift clustering iteratively moves each training vector towards the local maxima of the
probability density function estimated from the training set[23]. The computational cost of MSC
becomes prohibitively huge as the dimension of the feature space increases. The major source
of this cost is the range search process [36] which involves computing, in each iteration, the set
of training vectors within a range w from the current mean vector. While experimenting with
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mean-shift clustering we conceived a strategy to accelerate its computation by dividing the set of
training vectors into groups such that vectors in one group will never in�uence the computation
of clusters in another group. The strategy performs exact computations unlike methods which
use subsampling [34] or approximation [20]. But, we obtain moderate acceleration compared to
these inexact methods, for a speci�c range of parameter values used to perform mean-shift. Our
technique is applicable to all type of kernels which have compact support and �xed bandwidth.

Our acceleration method is based on the observation that, during mean-shift, if a training vector
x is beyond

√
2w from all the vectors which are within the range w from the current mean vec-

tor, then x will be beyond the range w from the next mean vector. Hence we need not compare
the next mean vector with any of such training vectors. If we divide the training vectors into
groups by applying transitive closure on the relation obtained by matching them with a distance
threshold

√
2w, then each such group will never interfere with any other group during mean-shift

computation. We do not know whether this property will hold for any threshold value less than√
2w. But we prove that the threshold cannot be less than π√

6
w.

Our acceleration strategy is useful only when the size of each group obtained through transitive
closure operation is signi�cantly less than the size of the whole training set. It requires that
the training vectors are well separated from each other in groups so that the transitive closure
operation on range based matching can provide reasonable number of partitions. When the data
is well separated, fast range searching techniques can also increase the e�ciency of mean-shift
operation by arranging the data vectors beloging to separate regions in a tree structure through
a pre-processing step. When a query vector is given, the tree structure is used to con�ne the
range search to a limited region around the query vector. In our experiments we would like to
see whether TC partitions can accelerate mean-shift operation which already utilizes a fast range
searching technique. We use [79] for fast range search. We perform exact range search without
using approximation option available in [79].

4 : Features from simulated views through ASIFT

If the 3D shape of the environment can be assumed to be locally planar, then new views of the
environment can be generated by applying a�ne transformations to one of its views[78, 89]. We
use ASIFT [78] technique, which computes additional SIFT descriptors from simulated views
of the original image. These additional descriptors can be used to obtain matches when pose
variation between training and test images is large.

We explore di�erent ways of incorporating SIFT features obtained from simulated views into
the 3D map. The �rst approach is to use descriptors extracted using ASIFT for performing SfM.
We observe that this results in generation of new 3D points rather than addition of new features
to the 3D points computed from descriptors from the original image. Hence we design methods
which add descriptors to a 3D map from new views. We try adding the ASIFT descriptors closely
located in the image to those associated with the 3D map. We also try using only the descriptor
computation part of the SIFT technique in order to obtain descriptors from image locations in
the simulated image which correspond to the locations of the descriptors in the original image
which are associated with 3D map.

We design an experimental framework to compare the quality of 2D-to-3D matches obtained
through these various schemes. Using the ground truth information available for one of the
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datasets used in our experiments, we reduce the in�uence of unrelated factors (eg: quality of
estimated 3D map through a RANSAC process which is not related to view simulation) which
e�ect the performance measure.

Organization

Our work mainly involves establishing point correspondences (2D-to-2D and 2D-to-3D). The ge-
ometric constraints arising from these correspondences are used to solve the pose computation
problem. In chapter 1, we brie�y describe the tools we use to perform geometric calculations on
point correspondences. It mainly involves concepts of projective geometry and RANSAC.

In chapter 2, we present di�erent strategies in the available literature used for establishing point
correspondences for pose estimation. We give a short summary of SIFT descriptor extraction
method which is extensively used in our experiments (as well as in the past related works). We
organize the literature along the lines of [60] and motivate the choice of our two stage framework
described above based on the past works. At the end of the chapter we present the visual word
framework used in our work to represent 3D points.

In chapter 3, we present the training stage of our pose estimation framework. It mainly in-
volves the description of various matching schemes used to establish 2D-to-2D matches along
with the parameters we use in our experiments to build 3D map. We describe the datasets and
evaluation method we employ to measure the quality of di�erent matching schemes. We present
the experimental results and conclude with our observations based on the results we obtain.

In chapter 4, we present the test stage in which we experiment with various matching rules
for recognizing the 3D points in a test image. The evaluation is performed on di�erent combi-
nations of 2D-to-2D matching schemes used in the training stage and the 3D point recognition
strategy used in the test stage.

In chapter 5, we describe our mean-shift acceleration technique and the mathematical proof
supporting the claim that our modi�cation does not e�ect the �nal outcome of the algorithm.
We present the moderate results we obtain on the SIFT descriptors extracted from the images
we used in our experiments.

In chapter 6, we present our experiments with using features from simulated views. We justify
the choice of using ASIFT and describe various approaches adopted for improving the robustness
of 2D-to-3D match computation.

Finally, we conclude the thesis in chapter 7 by summarizing the various results we obtain in
our work. We also mention di�erent directions in which we would like to carry forward the
investigation in future.



Chapter 1

Mathematical tools and softwares for

solving geometry problems

1.1 Overview

As mentioned in the introduction of this thesis, in our work we mainly deal with establishing two
types of point matches (aka point correspondences) which we refer as 2D-to-2D and 2D-to-3D
respectively. Each 2D-to-2D point match (or simply 2D match) consists of a pair of 2D image
coordinates of a single 3D point of the environment in two di�erent images. A 2D-to-3D point
match consists of a 2D coordinate in an image and the 3D coordinate of the corresponding 3D
point in the environment. We use the geometric constraints arising from point matches to solve
two problems in 3D geometry, namely Structure from Motion and Pose Estimation. In Structure
from Motion (SfM) problem, given a set of 2D-to-2D matches in a set of images, we need to
compute the pose of the cameras in the images and 3D coordinates of the points corresponding
to the 2D-to-2D matches. In pose estimation problem, given a set of 2D-to-3D correspondences
in an image we need to compute the pose of the camera in that image. This chapter describes
the publicly available softwares we use to solve the two geometric problems from point matches.
For SfM, we use Bundler[106] which is based on the widely referred work by Snavely et. al[107]
(we use 2D-to-2D matches which we compute instead of the output of image matching process
integrated with the Bundler package). For pose estimation we use EPnP[63] and DLSPnP[45]
methods. EPnP provides fast solution to the problem through a non-iterative optimization pro-
cess, but the currently available implementation cannot be used for 2D-to-3D matches in which
all the 3D points lie in a plane. For planar 3D points, we use DLSPnP which provides solution
for general case.

First we introduce in section 1.2, few notions of homogeneous coordinate system which are
used to express the geometric relations in projective geometry. More details about the mathe-
matical and computational concepts of projective geometry can be found in the excellent book
by Hartley and Zisserman[43]. We follow the pinhole camera model to establish the relationship
between the 3D points in the environment and their projection in an image. This projection
model, introduced in section 1.3, sets the basis for formulating the geometrical framework of
pose estimation problem. In the subsequent sections we describe how point correspondences can
be used to recover geometric information from images obtained through pinhole camera. As
already discussed above the �rst task (SfM) is to recover scene geometry using 2D-to-2D cor-
respondence between a set of images. The second problem is to compute the pose of a camera
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using 2D-to-3D correspondences. The methods to perform these tasks are presented in sections
1.5 and 1.6 respectively. Before that in section 1.4 we present RANSAC algorithm which is used
to robustly perform the computations related to these two main tasks in the presence of incorrect
point correspondences.

1.2 Homogeneous coordinates

In multiple view geometry we often encounter operations on vectors belonging to Rn (usually
n ∈ {2, 3}) in which it is convenient to represent the vectors in homogeneous coordinates. Homo-
geneous coordinate system enables us to express many mathematical formulae in multiple view
geometry in linear form. The homogeneous coordinates of a vector x = (a1, a2, ..., an)T ∈ Rn,
denoted by x̃, is represented by (sa1, sa2, ..., san, s)

T ∈ Rn+1 where s ∈ R\{0}. Any two vectors
x̃, ỹ in this homogeneous coordinates are said to be equivalent i.e. x̃ ∼ ỹ if x̃ = sỹ for some
s ∈ R\{0}. The set Rn+1\{0} with such an equivalence relation ∼ is called a projective space
and denoted by Pn.

In this chapter we mainly use two notions in order to facilitate the description of the geometric
methods used in our work. The �rst one is the function π which maps a vector x̃ ∈ Pn with
non-zero value for the last coordinate to the inhomogeneous coordinates x ∈ Rn as follows:

π(a1, a2, ..., an, an+1)
T = (a1/an+1, a2/an+1, ..., an/an+1)

T (1.1)

If x̃ ∼ ỹ then π(x̃) = π(ỹ).

The second one is related to the representation of points and lines in P2. A point q = (qx, qy)
T

in 2D plane lies on the line l = (a, b, c)T if and only if aqx + bqy + c = 0. This expression can be
represented in P2 using innerproduct between l and q̃ ∼ (qx, qy, 1)T as follows:

lT q̃ = 0 (1.2)

Since the representation of l is also homogeneous, the points are lines are equivalent to each
other in many aspects in P2.

1.3 Pose of a pinhole camera

Image is formed when the light rays re�ected from the environment intersect the image plane of
the camera. In our work we assume that all the images are captured through a pinhole camera
in which the light rays forming the image converge to a single point called camera center as
illustrated in �gure 1.1. In addition we assume that the two adjacent sides of the image plane
are orthogonal i.e. the image plane is a perfect rectangle without any skew. The line from camera
center perpendicular to the image plane is called principal axis. The point where the principal
axis meets the image plane is called principal point.

In practice, the real cameras may have radial distortion due to which the camera center, the
image point q and the world point Q in the �gure 1.1 cannot be assumed to be collinear. Hence,
we estimate the distortion parameters of the camera using a calibration target in a separate
process before conducting the experiments. Using these parameters we perform undistortion in
order to �t each image into pinhole camera model.
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Figure 1.1: Pinhole camera model : For the sake of readability we show image plane between
the camera center and the 3D point Q

1.3.1 Camera coordinate system

The 3D camera coordinate system for a given camera pose is de�ned by treating camera center as
origin and principal axis as Z-axis. TheX and Y axes are aligned respectively with the horizontal
and vertical directions of the rectangular image plane. Similarly the 2D image coordinate system
also de�ned by treating the horizontal and vertical lines aligned with the rectangular image plane
as its x and y axes. Let (cx, cy) be the image coordinates of the principal point. If the distance
f between the camera center and the image plane is expressed as f1 and f2 in terms of the pixel
units of x and y axes of the image, then the image coordinates q = (qx, qy)

T of the projection of
a 3D point with camera coordinates Qc = (Qcx, Q

c
y, Q

c
z)
T can be expressed as:

[
qx
qy

]
= π

 f1Q
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f2Q
c
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Qcz
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(f1Q
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(f2Q
c
y + cy)/Q

c
z

]
(1.3)

We de�ne intrinsic parameter matrix K as

K =

 f1 0 cx
0 f2 cy
0 0 1

 (1.4)

Then the equation 1.3 can be expressed as

q = π (KQc) i.e. q̃ ∼ KQc (1.5)

The normalized image coordinates q̂ of an image point q is de�ned as:

q̂ = K−1q̃ (1.6)

1.3.2 Projection in world coordinates

In practice the 3D points are represented in the world coordinate system which is di�erent
from camera coordinate system. Hence, the coordinates of a 3D point should be transformed
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to camera coordinates before applying equation 1.5. Let us assume that the camera center
is situated at C and its orientation is represented by a 3 × 3 rotation matrix R in the world
coordinate system. Then the transformation from world coordinates Q = (Qx, Qy, Qz)

T to
camera coordinates Qc = (Qcx, Q

c
y, Q

c
z)
T can be obtained by Qc = R(Q − C). Substituting this

value in the equation 1.5 we get q = π(KR(Q− C)). If we use homogeneous coordinates (i.e. q̃
instead of q and Q̃ instead of Q) and de�ne P = K[R |−RC], then, we obtain a linear expression
:

q̃ ∼ PQ̃ i.e. q = π
(
PQ̃
)

(1.7)

We can see in equation 1.7 that the camera matrix P is a homogeneous matrix i.e. only ratio
of the matrix elements is signi�cant. If we use normalized image coordinates, then, equation
1.7 can be expressed in terms of P̂ = [R | − RC] which transforms world coordinates to view
coordinates as follows:

q̂ ∼ P̂ Q̃ (1.8)

If we know K, R and C then for any image point q we can determine the set of 3D points in the
environment that map to q under this camera projection. All such points fall on a ray centered
at C with a direction R−1K−1q̃. Any point on this back-projected ray corresponding to q can be
expressed as

C + a.R−1K−1q̃ or C + a.R−1q̂ (1.9)

where a is a scalar.

The position C and orientation R, also referred as extrinsic parameters, represent the pose
of a camera. Pose computation, which is the main goal of our work, is achieved by relating the
image coordinates with the world coordinates. Rest of the chapter is dedicated to describing the
mathematical and computational techniques used in Bundler[106] to establish world coordinates
(with 3D points in it) and EPnP[63] to compute pose from point-to-point correspondences in
images.

1.4 RANSAC

RANdom Sample And Consensus (RANSAC) algorithm [32] is a process used when we want to
�t a mathematical model on a dataset containing gross errors (Eg: Incorrectly matched image
points in a set of point correspondences). Suppose the mathematical model we want to �t is Fθ
which is determined by the set of parameters θ whose value can be estimated from a set of points
S by minimizing the error:

θS = argmin
θ

∑
x∈S

Error(Fθ(x)) (1.10)

Let nr be the least number of data points needed in a set S in order to compute θS and the
given dataset D contains n > nr number of points in which some of the points may be outliers.
Outlying points are expected to have large deviation from the model that �ts the rest of the
points in D. Due to the presence of such outliers, the parameter estimation process for equation
1.10 may produce incorrect result while trying to minimize the overall error by �tting the model
onto grossly erroneous points. RANSAC is an iterative process which can be used to remove
outliers from D before estimating θ.

In jth iteration of RANSAC, a subset Sj ⊂ D is chosen randomly and θSj (as de�ned in equation
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1.10) is computed. Let S∗j ⊂ D be the set of inliers i.e. points which are in agreement with
the model FθSj corresponding to the value of θSj . The loop is terminated after a �xed number

of iterations (other criteria for termination are possible [32]). Let S∗best be the S
∗
j with highest

number of elements computed over the di�erent iterations. Finally, θ is computed using S∗best.

Formally, the RANSAC algorithm we use takes two arguments: (1)the error tolerance ET used
to determine whether a point is inlier or outlier w.r.t. a model and, (2) number of RANSAC
iterations NR. Initially S∗best = ∅. In each iteration, the following operations are performed:

1. Select a random subset Sj ⊂ D with nr elements.

2. Compute θSj using Sj .

3. Compute the consensus set S∗j = {x ∈ D : Error(FθSj (x)) ≤ ET }.

4. If cardinality of S∗j is greater than S∗best then assign S∗best ← S∗j .

In the context of our work D is the set of point matches. The methods which perform geometric
computation from point matches are used in step (2). S∗best is the retained set of inlying point
matches which is used to compute the �nal output at the end of RANSAC.

1.5 Geometry from 2D-to-2D point matches

The task of extracting geometric information from multiple views is initiated from two views.
Section 1.5.1 provides brief description about fundamental and essential matrices which are used
to represent the epipolar constraints in two views. Section 1.5.2 presents triangulation method
used to compute the coordinates of a 3D point from its projection in images with known poses. It
also describes homography based technique to verify whether a pair of images are well conditioned
for triangulation. In section 1.5.3 we describe how these geometric concepts (presented in section
1.5.1 and 1.5.2) in conjunction with a technique called bundle adjustment can be used to perform
Structure from Motion i.e. to compute the 3D points and camera positions from 2D matches on
a set of images I.

1.5.1 Epipolar geometry

Figure 1.2: Epipolar constraints through 2D-to-2D match
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The geometric information based on 2D-to-2D correspondences between two images is de-
scribed through epipolar constraints. Figure 1.2 shows two images I and I

′
captured from two

di�erent poses. Given an image coordinate q in I the corresponding 3D point Q should lie on
the line joining C and q. Hence the corresponding point q

′
in I

′
, if visible, should lie on the

projection of this line l
′
in I

′
. If the 2D points are expressed in homogeneous coordinates then

this constraint can be expressed using a 3× 3 fundamental matrix F as follows:

l
′ ∼ F q̃ (1.11)

Since q
′
lies on this line we have

q̃
′TF q̃ = 0 (1.12)

If we know the intrinsic parametersK andK
′
then we can obtain a similar relation as in equation

1.12 for normalized image coordinates using essential matrix E = K
′TFK expressed as follows:

q̂
′TEq̂ = 0 (1.13)

1.5.1.1 Computing F and E

Both F and E can be computed from 2D-to-2D correspondences. F is a rank 2 matrix with 7
degrees of freedom which can be computed without knowing the intrinsic parameter matrices K
and K

′
(de�ned in equation 1.4) of images I and I

′
. It usually requires 8 2D-to-2D correspon-

dences. The computation can be based on algebraic error or geometric error. Algebraic error
based computation minimizes the sum of the left hand side of equation 1.12 over the given 2D-
to-2D correspondences[44]. Minimizing algebraic error for equation 1.12 mainly involves solving
linear equations, hence, it is quick and easy to implement. Geometric error based methods try
to minimize the geometric image distances, like distance between a 2D point and the epipolar
line on which it should lie according to the computed F . These methods are computationally
expensive but provide more accurate estimation.

Essential matrix E has only 5 degrees of freedom. Once we compute E for two images I and
I
′
we can determine the relative rotation and direction of translation between the cameras in

the images(section 9.6.2 of [43]). Hence, using E we can determine the relative pose of two
images up to a scale. E can be computed either from F in which case we need eight 2D-to-2D
correspondences or using 5-point algorithm[85] on normalized coordinates which needs only �ve
2D-to-2D correspondences but involves solving various non-linear equations. Hence, when there
are many pairs of images, 8-point algorithm[44] to compute fundamental matrix is used for a
RANSAC based process to discard incorrect 2D-to-2D correspondences (i.e. outliers). RANSAC
based 5-point algorithm is used to compute E from the set of inlier matches obtained through
RANSAC. As we see in section 1.5.3, the relative pose (up to a scale) computed from E is used
to initialize the poses of two images chosen from I. Once we know the poses of some of the
images, we can compute the coordinates of the 3D points whose projection is known in at least
two such images through triangulation as explained in the next subsection.

1.5.2 Well conditioned two-view triangulation

Suppose we have computed the relative pose of I and I
′
in �gure 1.2 through E. For a given

2D match q ↔ q
′
, we can obtain its 3D coordinates Q by computing the intersection of back-

projected rays from q and q
′
as in equation 1.9. This process is known as triangulation. It
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can be extended to multiple views in which case we have to �nd the 3D point close to multiple
back-projected lines.

In practice the values of q and q
′
contain noise. When camera centers in two images (C and C

′
in

�gure 1.2) are very close i.e. when they have short baseline, the back-projected rays lie at a very
short angle from each other. Under such a condition the 3D coordinates of Q obtained through
triangulation is highly sensitive to noise in the values of q and q

′
. Hence it is preferable to avoid

initializing SfM with such image pairs. It turns out that the 2D matches q ↔ q
′
in image pairs

with identical camera centers can be mapped through a 3× 3 homography matrix H such that:

q̃
′ ∼ Hq̃ (1.14)

If a signi�cant portion of 2D matches between an image pair are outliers with respect to the
homography estimated through a RANSAC process, then we can say that the baseline between
the image pair is signi�cantly wide for reliable triangulation.

1.5.3 Structure from Motion (SfM) through Bundler

In this section we brie�y describe the Bundler package[106] which we use for the task of computing
3D points and camera poses for a given set of 2D-MatchesM in a set of images I = {I1, I2, ..., IM}
of an environment. RANSAC process is incorporated in Bundler and we use the same parameters
for RANSAC as in its code without any modi�cation. Each element of M is a pair of 2D
coordinates (q, q

′
) belonging to two di�erent images in I. SfM process in Bundler has three

stages. In the �rst stage the outliers in 2D-to-2D correspondences between each image pair are
discarded based on geometric constraints obtained through RANSAC based fundamental matrix.
In the second stage world coordinates are established by computing the relative pose through
essential matrix corresponding to an image pair chosen from I. Initial set of 3D points are
obtained from this image pair through triangulation. In the third stage, additional images from
I are added successively in an iterative process by computing their pose through the projection
of 3D points computed till previous iteration. After adding new images bundle adjustment[67]
process is applied to re�ne the values of camera pose and the coordinates of the 3D points.
Additional 3D points are computed based on the 2D matches in the newly added images through
triangulation. This iterative process in the third stage is continued till all the images in I are
added. These three stages are explained in the following subsections.

1.5.3.1 RANSAC based epipolar constraints

In this stage the Bundler algorithm prunes the set of 2D-to-2D matches {(qi, q
′
i)} between each

pair of images (Ik, Il). As mentioned in the beginning of the chapter, we mainly deal with
establishing these matches (presented in the next chapter) and use the matches we compute
instead of using the matching process integrated with the Bundler package. RANSAC based
linear 8-point algorithm[44] is used to compute an initial set of inliers in {(qi, q

′
i)}. In each

RANSAC iteration j, fundamental matrix Fj is computed using 8 randomly chosen elements in
{(qi, q

′
i)}. Following error function is used to compute the inliers:

dist(q
′
i, Fj q̃i)

2 + dist(qi, F
T
j q̃

′
i)
2 (1.15)

This error function is the sum of the squared distances of the points in a 2D-to-2D match from
the corresponding epipolar line determined by Fj . At the end of RANSAC, the fundamental
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matrix F is recomputed through a non-linear process which minimizes the sum of the function
in equation 1.15 over the set of inliers returned by the RANSAC process. Using the F obtained
through non-linear minimization, inliers are recomputed. The outliers are discarded from M.
The retained inlier 2D-matches in M are chained to obtain 2D-tracks. Essentially, a 2D-track is
a set of 2D points in di�erent images which are connected to each other through the retained
2D-to-2D matches in M. Each 2D-track is treated as 2D projections of a single 3D point.

1.5.3.2 Setting up initial image pair

SfM process is initialized on a pair of images in I. This �rst pair of images are chosen so that
we can compute its relative pose (through essential matrix E as explained in section 1.5.1.1)
and an initial set of 3D points (through triangulation as explained in section 1.5.2). Hence
the chosen pair should have su�cient number of 2D matches and should be well conditioned
for triangulation. This initial pair is chosen as follows. For each image pair RANSAC based
homography is estimated using the set of 2D matches which are inliers with respect to the
corresponding fundamental matrix. The ratio of outliers w.r.t. this homography is computed.
For an image pair (Ik, Il), let akl and bkl be the number of inliers w.r.t. fundamental matrix
and the ratio of outliers w.r.t. homography matrix respectively. If there are image pairs with bkl
greater than a �xed threshold, then the image pair having highest akl among those is chosen. If
no such image pair exists, then the image pair with highest bkl among those having akl above a
�xed count is chosen. If the second condition also fails (we never faced such a situation in our
experiments) then SfM process is aborted. In the next subsection we describe how to grow this
initial reconstruction from two images to include all the images and the 2D tracks in I.

1.5.3.3 Bundle Adjustment

Bundle adjustment algorithm[67] uses the 2D projections of a set of 3D points in a set of images
to re�ne the values of camera pose of the images and coordinates of the 3D points from an
initial estimate by reducing the reprojection error through a non-linear least squares optimization
process. Bundler starts with the estimate of camera pose and 3D coordinates for two images
in I (as described above) and adds new images from I iteratively. In each iteration it re�nes
the initial estimate by invoking bundle adjustment. The initial estimate of camera pose for the
images and coordinates of 3D points to be added are obtained as follows. In each iteration the
images in I which contain su�cient number of 2D-tracks of the already estimated 3D points are
added to the bundle adjustment process. Their camera poses are initialized by Direct Linear
Transformation (section 7.1 of [43]) using the 2D-to-3D correspondences obtained from those
tracks. New coordinates of the 3D points corresponding to the additional 2D-tracks introduced
by the newly added images are computed using multiple view triangulation. Finally, the process
is terminated when all the images in I are processed or the number of 2D-tracks of the already
computed 3D points in any unprocessed image is insu�cient to estimate its initial pose.

1.6 Pose from 2D-to-3D point matches

In this section we brie�y describe two algorithms we use to solve perspective-n-point (PnP)
camera pose computation. RANSAC is not incorporated in the available implementaions of the
two algorithms. Hence, we implement the RANSAC wrapper for both. Given a set of n 2D-to-3D
correspondences {qi ↔ Qi}ni=1 in an image I we need to determine its position and orientation
(C,R) where C is a 3× 1 position vector and R is a 3× 3 rotation matrix.
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1.6.1 E�cient PnP (EPnP)

EPnP algorithm computes the camera coordinates {Qci}ni=1 of the given 3D points. The values
of (C,R) can be obtained by using the closed form solution[49] which computes the Euclidean
transformation between {Qi}ni=1 and {Qci}ni=1.

The core of EPnP is a non-iterative method for computing the camera coordinates of four 3D
points {Q′

i}4i=1 called as control points. In the publicly available implementation of EPnP, which
we use, these control points are obtained from {qi ↔ Qi}ni=1 as follows. Q

′
1 is the centroid of the

3D points {Qi}ni=1. The rest of the three control points are chosen so that the set {Q′
2, Q

′
3, Q

′
4}

forms a basis aligned with the principal directions of {Qi}ni=1. Now, each Qi can be uniquely
expressed as follows:

Qi =

4∑
j=1

αijQ
′
j such that

4∑
j=1

αij = 1 (1.16)

Let {Q′c
i }4i=1 be the camera coordinates of the control points. The same combination in the above

equation can be used to express camera coordinates as Qci =
∑4

j=1 αijQ
′c
j . Hence, to compute

(C,R), all one needs to obtain is {Q′c
i }4i=1.

From equation 1.5 we obtain q̃i ∼ KQci = K
∑4

j=1 αijQ
′c
j . Expressing this relation with x,

y and z subscripts indicating the coordinates in the respective axes we get qix
qiy
1

 ∼
 f1 0 cx

0 f2 cy
0 0 1

 4∑
j=1

αij

 Q
′c
jx

Q
′c
jy

Q
′c
jz

 (1.17)

With a little algebraic manipulation on equation 1.17 we can obtain the following:∑4
j=1 αijf1Q

′c
jx + αij(cx − qix)Q

′c
jz = 0∑4

j=1 αijf2Q
′c
jy + αij(cy − qiy)Q

′c
jz = 0

(1.18)

Writing the above equations in a matrix form with Q
′c
i s as unknowns we get

MY = 0 (1.19)

where M is 2n × 12 sized matrix and Y = [Q
′c
1x, Q

′c
1y, Q

′c
1z, Q

′c
2x, ..., Q

′c
4z, ]

T is 12 × 1 vector of
unknown camera coordinates of the 3D points which we want to compute. From this equation
it is clear that Y is a linear combination of the singular vectors {Yi} corresponding to right null
space of M .

Y =
∑

βiYi (1.20)

These singular vectors are the eigen vectors of 12× 12 matrix MTM . Hence, in order to obtain
the camera coordinates Qci , all we have to compute is the values for βi. As explained in [63],
if we enforce the constraint that the distance between any two of the 3D points in the camera
coordinates Q

′c
i should be same as in world coordinates Q

′
i, then the task of computing the

coe�cients βi of this linear combination can be performed by solving a small constant number
of quadratic equations. Thus EPnP method provides a solution without involving iterative
minimization of the reprojection error. When all the 3D points lie in a plane, it is not possible
to compute the control points {Q′

i}4i=1 in the way it is done in the current implementation of
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EPnP. For such cases we use the software described in next section which is slower than EPnP
but provides solution for general con�guration of 3D points.

1.6.2 Direct Least-Squares PnP (DLSPnP)

The unit vector from camera center towards a 3D pointQi in camera coordinates can be expressed
as

q̄i =
q̂i
‖q̂i‖

(1.21)

where q̂i is the normalized image coordinates (equation 1.6) of the projection qi of Qi in the
image. For a camera with pose (C,R) this value in equation 1.21 can be expressed as

r̄i =
RQi −RC
‖RQi −RC‖

=
RQi + t

αi
(1.22)

where t = −RC and αi = ‖RQi + t‖.

DLSEPnP[45] computes (C,R) by minimizing
∑n

i=1‖q̄i− r̄i‖2. Formally the optimization process
can be expressed as follows:

minimize
αi,R,t

n∑
i=1

‖q̄i −
RQi + t

αi
‖2

subject to RTR = I3, det(R) = 1, αi = ‖RQi + t‖
(1.23)

In [45] C and αi's are expressed in terms of R and R is expressed using 3 Cayley-Gibbs-Rodrigues
(CGR) parameters. This removes all the constraints in equation 1.23 and transforms the whole
optimization process into minimization of a polynomial function with respect to CGR parameters.
Di�erent roots of the optimality condition of this polynomial function provide di�erent solutions.
Out of these multiple solutions we choose the one having minimum reprojection error on the given
set of n 2D-to-3D correspondences {qi ↔ Qi}ni=1.



Chapter 2

Feature correspondence for pose

estimation: Literature survey

In the previous chapter we described the available software tools we use to obtain geometrical
information from point correspondences. The main topic of our investigation is to establish
point correspondences in images. In this chapter we discuss various methods available in liter-
ature related to establishing feature correspondences in images for pose estimation. A feature
correspondence is the 2D location of an image feature (eg: points, lines, curves or any image
region with a speci�ed pixel pattern) associated with an object in the environment. Similar to
the notion of point correspondence (de�ned in the previous chapter) we refer to 2D-to-2D and
2D-to-3D feature correspondences as follows. A 2D-to-2D feature correspondence associates the
image features of an object in two images. A 2D-to-3D feature correspondence associates an
image feature with the 3D coordinates of the corresponding object. Feature correspondences are
established in images by detecting image features of the environmental objects in images by using
their visual characteristics i.e. measurements based on the pixel patterns in their images. We
classify the methods for establishing feature correspondences in video frames into two categories:

1. Feature tracking without learning
Smooth variation of pose in consecutive frames of the video is assumed. Feature locations,
once initialized in a frame, are searched locally in a neighborhood of their previous position.

2. Feature recognition through o�ine learning stage
Visual characteristics of some of the objects in the environment is learned from their ex-
ample images during an o�ine training stage to obtain their visual representation. The
visual representation of an object is used to recognize it in the current video frame without
any prior assumptions on its location in the image.

In section 2.1, we present one of the popular techniques used to identify reliably detectable points
in images which are suitable for matching. In sections 2.2 and 2.3 we present existing techniques
in tracking and recognition respectively (more detailed survey is available in [60] which is the
inspiration for the categorization in these two sections). Methods which use a combination of
these two techniques are presented in the subsection 2.3.3. In section 2.4 we describe visual word
framework which can be used to incorporate some aspects of the text matching techniques for
matching images. Finally, in section 2.5, we conclude by motivating our course of investigation
based on the past works described in this chapter.

35
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2.1 SIFT : Interest point detection and description

Interest point detection techniques locate points in an image with properties which are stable[33]
under some of the transformations which are likely to occur in the conditions in which they are
used. They are distinctive from their immediate neighbors and surrounded by textured regions.
Interest point techniques choose a subset of image locations which satisfy certain conditions like
extrema of output of some �lter operation. Matching only at few selected locations reduces the
computational complexity and the conditions used to choose them increase the reliability. Interest
point descriptors are used to quantify the visual characteristics of an image point using the local
pixel patterns around it. A combination of interest point detector and descriptor can be used
to automatically detect suitable locations in images and match them by comparing their visual
characteristics represented by the descriptors. However, in practice, most descriptors incorporate
only approximate model of the real transformations. The robustness of matching can be further
improved by using descriptors from training images[108]. In this section we brie�y describe
SIFT feature computation [69] method which we use extensively in our experiments. This 128
dimensional descriptor vector has invariance properties w.r.t. scale and in-plane rotation of the
camera.

2.1.1 SIFT descriptor computation

Gaussian and DoG (Di�erence of Gaussian) pyramids of the original image are constructed
through scale-space computation. The image locations corresponding to extrema in di�erent
scales (or levels) of DoG pyramid are used as keypoints. The extrema locations are computed
through interpolated DoG function to obtain subpixel resolution. Descriptor for a keypoint is de-
rived from pixels in its �xed size neighborhood in the level of the gaussian pyramid corresponding
to the level of DoG in which the keypoint is detected. This selection of neighborhood pixels from
gaussian pyramid based on the scale achieves scale invariance. Magnitude and orientation of
the local image gradient is computed for each pixel in the neighborhood. Dominant direction of
image gradient in the neighborhood is assigned as orientation of the keypoint. Histograms of the
image gradients from sub-patches of the neighborhood (typically 8 bins from each of 16 di�erent
4×4 patches of 16×16 neighborhood) are concatenated to obtain 128 dimensional descriptor. In
order to achieve orientation invariance, the entries in the descriptor and the gradient orientations
are rotated relative to the keypoint orientation before computing the histogram.

2.1.2 Standard SIFT keypoint matching

In [69] a technique for matching two sets of SIFT descriptors A and B extracted from images IA
and IB is mentioned. We refer to it as Standard SIFT keypoint matching. For each element xA
in A, its �rst and second nearest neighbors xB1, xB2 are computed in B. Let d1 and d2 denote
the distance of xB1 and xB2 from xA. We say that xA matches its �rst nearest neighbor xB1 if
the second nearest neighbor xB2 is signi�cantly farther from xA when compared to xB1 i.e. d1

d2
is below a �xed threshold.

2.1.3 Other keypoint detectors

In the past decade many interest point methods have been proposed [92, 13, 89]. SIFT method is
one of the best candidate for computing descriptors around interest points in terms of matching
accuracy [74, 25]. But it is computationally expensive for real-time applications. Many alterna-
tive faster methods have been proposed for this purpose. FAST keypoint detector[92] learns the
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rules for detecting interest points (corners) from a set of training images. Random Ferns[89],
BRIEF[19] use simple binary tests for feature matching to achieve faster computations. But
experimental evaluation [65] suggests that SIFT performs better than Random Ferns in terms of
matching accuracy. FAST and BRIEF need additional modi�cations [95] to achieve robustness
against scale and in-plane rotation. Hence, we chose SIFT method for our experiments despite
the computational cost of comparing its high dimensional descriptors. In order to achieve real-
time processing we may have to explore, in future, parallelizing the computations or mapping
descriptors to metric space in which computations can be faster[108].

2.2 Feature tracking without a learning stage

Methods which establish feature correspondences in video frames without a learning stage rely
on the objects of the environment which produce automatically detectable generic features (like
edges or interest points) in their images or use the pixel patterns around the detected object
features in the adjacent previous frames in order to detect them in the current frame. In both
cases it is desirable to have a prior guess about the pose of the camera in the current frame.
These features can only provide candidate positions for some of the objects of the environment
in an image. A prior guess about their 2D-projection in the current image is needed to identify
which is which. Similarly, it is di�cult to perform a robust real-time exhaustive search in the
entire current image for the object features detected in the previous frames. Hence, in feature
tracking, features of the objects of the environment (once initialized in one of the frames) are
searched locally in the subsequent frames around their previous image positions.

Some of the pose estimation methods based on feature tracking do not need the 3D model
(i.e. the 3D coordinates of the objects corresponding to the image features being detected in
images) of the environment. For example in [103] pose is obtained from the homography be-
tween a planar structure of the scene and the current image. For the cases in which the 3D
model is required, it is assumed to be known or computed online[27] using SLAM (Simultaneous
Localization and Mapping)[11] based techniques.

2.2.1 Tracking using edge-based features

Gradient and edge information can be computed e�ciently from images using simple linear �lters.
Due to their dependence on variation of image intensity rather than actual value of intensity,
edge-based methods are inherently less sensitive to changes in illumination. But, due to the
aperture problem it is not possible to compute the exact location of a point within the edge
contour.

The strategy of using a robust technique to initialize the pose (and thereby the projection of the
3D model) in an image and then using a fast 2D tracking technique in the successive frames of
a smoothly varying video is employed in one of the earliest experiments by Bray[18]. Line based
3D model is initialized in the �rst image by using an improved version of the discretized view-

sphere search [37] around the model. To cope with change of scale (or distance from the camera),
the author of [18] uses angle constraints and direction constraints [40] on the reprojected lines
while searching the view-sphere. The pose is re�ned using the line correspondences based on the
method in[68]. To side-step the problem of aperture and partial occlusion, the reprojected 3D
lines are extended over the entire image in the successive frames while tracking through disparity

analysis[12]. But the iterative nature of the disparity analysis process prevents it from achieving
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realtime speed.

In [42](RAPiD) 3D object points that fall on high contrast edges are chosen as control points.
The perpendicular distance between the positions of the control points in the previous frame
and the corresponding high contrast edges in the current frame is expressed as a linear function
of the parameters representing the change of pose. Use of perpendicular distance from the edge
feature avoids the aperture problem. The linear relation reduces the pose computation process
to �nding the pseudo-inverse of a matrix to achieve realtime speed.

[101] uses piecewise curved contour tracker[14] in which the contour is represented as a chain of
3D points. This permits the use of features other than just points and lines for tracking. The
set of contours S is manually initialized in the �rst frame. Subsequently S is updated to re�ect
disappearance or re-appearance of features in the current frame based on reprojection error and
the presence of edges along their projection. In [56], multiple edge correspondence hypotheses are
maintained using condensation algorithm[53] to robustly track the edges of complex 3D objects
with self-occlusions under abrupt motions.

Edge detection process needs carefully chosen threshold values. It is di�cult to come up with a
universally applicable set of threshold values. Aligning the reprojected edges of the 3D model
to the image regions with high gradient norms can obtain better results in such cases. In [58], a
2D line sketch of the polyhedral 3D model (used for representing a vehicle like car) is generated
by projecting the visible segments on to a blank image based on the previous pose. This line
image is smoothened by a Gaussian �lter to obtain gradient of the view sketch. 3D pose of the
model is estimated by reducing the di�erence between this synthetic gradient and the gradients
of the current frame. [72] exploits additional information that the expected direction of the
projected model contour, ideally, should be perpendicular to the direction of the gradient. Here,
the gradient �tting algorithm tries to minimize the sum of the dot products of the gradient and
the contour direction over the whole reprojected contour of the model.

Apart from aperture problem, edge-based tracking has two additional drawbacks. It restricts
the set of 3D models to those having sharp edge features. It is sensitive to background clutter
which may create confusion in associating the 3D objects with image features. To overcome
these drawbacks the features should exploit the local texture information in the images.

2.2.2 Using texture information for tracking

Optical �ow [50] provides dense correspondences between two images by matching the pixels
with similar intensity values under smoothness condition on the variation of pixel velocity in the
neighborhood. But it quickly results in drift. Additional veri�cations are needed to prevent it.
In [82], after computing optical �ow, di�erent regions in the image are warped using a�ne de-
formation models estimated from the motion vectors in the respective regions. Normalized SSD
di�erence of a region with the corresponding warped image is used as con�dence measure for the
motion vectors in the region. Only piece-wise planar regions with correctly estimated motion
vectors will pass the con�dence measure. In [77] graph-cut based cost constraint is applied when
the pixels enclosed inside an edge contour in the previous frame are mapped to opposite sides of
the edge through motion vector.

Interest points combine the advantage of edge and texture based methods. They are detected at
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stable image locations of textured regions. They can be matched across di�erent images using
simple process like cross correlation of the image patches around them. In [26], interest points
from the saliency operator of Shi and Tomasi [98] are matched in successive frames using nor-
malised sum-of-squared di�erence correlation to compute pose through a SLAM based 3D model.
In [102] planar structures of the world scene are tracked (after manual initialization in the �rst
frame) using minimum intensity change detector[111]. Pose is computed from frame to frame
homographies.

2.2.3 Need for o�ine learning

Feature tracking based methods which use SLAM for 3D model construction su�er from drift.
They need regular re�nement of the 3D map[86] or additional equipments like stereo camera[113].
Even for small sized environments a parallel batch method to build accurate 3D map is recommended[55].
As we see in section 2.3.3, even for the task of robot navigation in which a robot for most of
the time moves in a �xed orientation, it is preferable to build the 3D model of the environment
through an o�ine process and apply strategies of recognition or keyframe selection methods to
obtain robust matching[94].

In order to avoid using SLAM, 3D model of the environment should be provided. It is di�-
cult to have 3D models for large environments. Even if the 3D model is available, the features
corresponding to the 3D points should be initialized in the �rst frame. The tracking methods
which use simple correlation between pixels in successive frames for matching are not robust to
recover the features which reappear after intermediate occlusion. Online realtime learning meth-
ods [90, 39, 46] have been proposed for obtaining robust detectors. But the results are mainly
obtained on small planar objects. An o�ine learning stage can be used to overcome these limi-
tations by building a 3D model and computing robust visual representation for 3D points from
a set of training images.

2.3 Recognition based methods

Recognition based methods use visual representation to establish 3D feature correspondences in
a given image. In our work we focus on visual representation of 3D points. Visual representation
of a 3D point consists of a set of values computed from one or more images of the 3D point.
The representation should enable identi�cation of the corresponding 3D point in the images from
widely varying views. Wide variation in viewpoint causes huge change in the image of the ob-
jects. This is more challenging when compared to 2D feature tracking in which the image pattern
around a point vary smoothly in successive frames. Computationally the cost increases due to
two reasons. In order to achieve robustness the process of obtaining appearance descriptors may
involve computations which are costlier than simple correlation or edge detection used in 2D
feature tracking. Secondly, the matching process should be performed over the full image, unlike
2D feature tracking in which the pose of the previous image reduces the search region signi�cantly.

We classify the types of appearance descriptors into two categories, global and local, which
we present in next two subsections. In our work we use local descriptors which, over the time,
have become immensely popular compared to the former for the reasons we mention at the end
of section 2.3.1.
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2.3.1 Global appearance based representation

The challenge of identifying 3D points from arbitrary pose is similar to those tackled by object
recognition techniques which use supervised pattern classi�cation[30] to obtain a robust rep-
resentation of a given object from training images captured from di�erent viewpoints. These
techniques[80, 116] learn global appearance of a speci�c homogeneous class of objects (here the
class can be human faces or a particular kind of fruit, furniture etc) from a set of normalized
training images in which each image contains one instance of the whole object with a little or no
scale variation.

In [59] global appearance of the objects is used to obtain initial approximation of the pose.
Training images of the object to be tracked are captured by evenly varying viewpoint around
it while simultaneously recording the camera pose in each image. Training images are normal-
ized by resizing the sub-image containing the segmented object to a �xed size. Discrete Cosine
Transform (DCT) based encoding after truncating higher frequencies of each image is used to
represent global appearance. While tracking, DCT co-e�cients of the object (which is segmented
and resized to the size of training images) are directly compared with those in the training set
to obtain initial estimate of the pose which is re�ned further by matches obtained through edge
based local features.

It is di�cult to adapt global appearance based methods to scale changes and occlusion. Training
process involves meticulous task in which images need to be captured and normalized for each
object we want to detect. Moreover, the discrete valued labelling cannot be used directly to
infer continuous values like position and orientation. Hence it is more appropriate to use interest
points based methods which automatically identify reliably detectable points in an image using
local image characteristics. Subpixel level information provided by interest points can help to
compute accurate pose. Even during partial occlusion, the local features from the visible portion
of the environment can provide necessary information for identi�cation. Next we present pose
estimation techniques based on local appearance.

2.3.2 Local appearance based representation

Attempts to perform recognition based pose estimation through local interest points goes back
to late 90's. Even though interest points based on simple computational steps (termed as char-
acteristic points) have been used to detect stable landmarks of the environment [48] even earlier,
they are rather used for deciding navigation instructions (like turn left or right etc) for the robot
than exact localization. In [99, 100], a set of training images were captured from known locations
within a planar grid of 2.0m by 2.0m. Interest points (termed as landmarks) detected at local
maxima of edge density in training images are grouped based on the Euclidean distance be-
tween the PCA (Principal Component Analysis) representation of the image subwindow around
the points. For online-localization, similar landmarks are detected in the image captured from
current unknown location and matched with the landmarks that are grouped during training.
Linear variation of the landmark characteristics w.r.t. camera pose is assumed. Pose is com-
puted iteratively as a linear combination of the poses of the training images corresponding to the
matched tracks. Here the pose is computed without building the 3D map of the environment.
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2.3.2.1 Recognition using known 3D models

In [62] the rules of point matching are learned from training images in order to compute the pose
of an object in a given image. The object is either assumed to be planar or the 3D model and
the pose of the object in the training images are assumed to be known. New views of the object
are synthesized from the available views in the training images. If the object is locally planar
then new views are generated by applying simple a�ne transformations to the training images.
Otherwise, standard computer graphics texture mapping techniques are used to generate new
views of the 3D model. Harris interest points [41] are detected in the original training images.
Each interest point de�nes a point class. For each detected interest point 100 synthetic views are
generated. Image patches of size 32× 32 are selected around each interest point in the training
images and the simulated views. The patch is half-sized and 20 dimensional PCA transform
is learned from the set of patches. The set of patches are transformed to this PCA space to
obtain a set of training vectors with class labels. 20 mean vectors are computed for each class
using k-means clustering. Nearest Neighbor classi�er with the set of means is used to classify a
new vector. To reduce incorrect matches, the training vectors which get wrongly classi�ed are
identi�ed during the training stage. A point class having more than 10% of misclassi�ed training
vectors is discarded. In [61, 89] the run time complexity is further reduced by using randomized
trees and random ferns respectively instead of Nearest Neighbor classi�er. In these methods
di�erent views of a 3D point are obtained during training either by planar assumption or by
mapping the texture of the training images captured from known viewpoints onto the known 3D
model. They cannot learn the di�erent views of 3D points from training images without these
assumptions.

2.3.2.2 Recognition without a given 3D model

Interest point descriptors [69, 13] can be used to obtain 2D matches when no prior guess about
their location in the training images is available. These 2D matches can serve two purposes.
First, they can be used to obtain 3D points in the environment and camera positions in the
training images by imposing geometric constraints (section 1.5). Secondly, the descriptors asso-
ciated with a 3D point can be used to obtain its visual representation.

In [93], 3D information extracted from training images is used to perform object recognition
in heavily cluttered pictures taken from arbitrary viewpoints. A set of training images of each
individual target object is separately captured (without any clutter) by systematically selecting
viewing angles in order to cover its various views. 2D matches are computed between manually
selected pairs of training images. For each pair of images 2D matches are established in multiple
stages. A�ne invariant regions [75] based on Harris interest point[41] and DoG (Di�erence of
Gaussian) operator are computed. A SIFT[69] descriptor and a parallelogram shaped image
patch based on dominant gradient orientation are used to describe each interest point. Under
locally planar assumption on the object surface, a rectifying transformation which transforms
the parallelogram to a unit square is associated with each interest point. The initial list of po-
tential 2D matches between each manually selected training image pair is found by choosing for
each patch in the �rst image a �xed number of top patches in the second image as ranked by
SIFT descriptor. The potential matches which satisfy neighborhood consistency in the respec-
tive images and normalized correlation criteria between the corresponding recti�ed image patches
subjected to RANSAC based geometric consistency test. 3D model of the object in the training
images is computed from the 2D matches through bundle adjustment. During the test stage
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similar matching strategy is adopted to match the patches from a test image with those associ-
ated with 3D point. The over all matching process for this technique is computationally intensive.

The need for manual selection of image pairs and computationally complex representation of
interest points for matching limits the applicability of [93]. In [38], the 3D map of the target
environment is computed from a set of training images for pose computation. 2D matches are es-
tablished between each pair of training images by matching the SIFT descriptors extracted from
respective images and subjected to epipolar constraints in order to remove outliers. In order to
avoid computing epipolar constraints between each pairs a selective approach is followed. Image
pairs are sorted in the decreasing order of the number of 2D matches. Epipolar constraints are
computed between the pairs in this order while skipping the pairs which do not add any new
member to the set of images already participated in this process. This process imposes epipolar
constraints in a linear time over the number of images. The set of image pairs with geometri-
cally consistent matches is a tree structure free of cycles. Multi-view 2D correspondences (2D
tracks) are computed by traversing the tree and stitching together pairwise matches. 3D points
corresponding to the 2D tracks are computed through bundle adjustment. This establishes the
association between a computed 3D point and the SIFT descriptors corresponding to its 2D
track. At run time SIFT descriptors extracted from the current frame are matched with the
descriptors associated with 3D points. The 2D-to-3D correspondences thus established is used
to compute pose of the camera through a RANSAC based process which minimizes the reprojec-
tion error of the 3D points identi�ed in the current frame. The main drawback here is that the
number of descriptors associated with the 3D map grows linearly with the number of training
images. Hence it is di�cult to obtain real-time performance for large environment. In [29] 3D
map is built in a similar way. But the SIFT descriptors from the test image are matched only
with selected training images. For each test image a small set of training images are selected
using loop closure detection technique[8]. Loop closure detection is accelerated by arranging the
training SIFT descriptors in a hierarchical data structure[87].

Recently, clustering methods are increasingly becoming popular to group descriptors computed
from all the training images instead of pairwise image matching. Clustering techniques provide
scope to use the information in the overall distribution of the descriptors. In [120] object recogni-
tion involving multiple objects is performed by building 3D model of each object (as in [93]) from
a training set of its images. SIFT descriptors extracted from the training images taken around
an object are clustered using k-means clustering. The SIFT descriptors in di�erent images that
belong to the same cluster are associated with each other to obtain 2D matches across the train-
ing images. The 3D points obtained through structure from motion on these 2D matches are
associated with the corresponding clusters. When a test image is given, the SIFT descriptors
extracted from it are matched with each 3D model using threshold on the distance to the nearest
k-means cluster centers associated with 3D points of the model. Over-segmentation is performed
on the test image to obtain di�erent image regions, hoping that no region thus obtained is part
of more than one object. Pose hypothesis is obtained for each pair of region and 3D model by
using regionwise 2D-to-3D matching. The 3D points in di�erent models are reprojected on to the
test image using each hypotheses. Voting based on the reprojected points on di�erent segmented
regions is used to select the right hypothesis.

In [51] mean-shift clustering[22, 23] with multiple bandwidth parameter is used instead of k-
means. Mean-shift method automatically decides the number of clusters to be formed based on
the bandwidth parameter which is a rough indication of intra-cluster variation. SIFT descrip-
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tors from a test image are matched with clusters at each bandwidth level separately. A test
descriptor is matched based on the ratio of the �rst and second nearest neighbor cluster center.
Matching at multiple bandwidth levels provides more matches since a test descriptor rejected
at one level may get accepted in another level. But it also signi�cantly increases outliers which
may drastically increase the number of RANSAC (presented in section 1.4) iterations needed
to guarantee a consistent set of inliers corresponding to correct matching. Hence the authors
present view-constrained RANSAC which exploits constraints based co-visibility of the model
features to reduce the required number of RANSAC trials.

In [31] mean-shift clustering is applied on the image locations of the features extracted from
the test image to spatially isolate di�erent objects. Multiple instances of the same object within
a spatial cluster are identi�ed by the number of inlier sets of matches between the descriptor
vectors of the points within the spatial cluster. 3D models of the di�erent objects in the database
are matched with the features of each isolated spatial cluster. Pose of the object is computed
through a RANSAC process in which the sample selection (i.e. choosing elements of Sj in the
description provided in section 1.4) is prioritized based on the visibility, co-visibility of the 3D
points.

In [17], training stage is used for improving 2D matches during test stage without building
any 3D model. Visual word vocabulary tree [87] is constructed during o�ine training stage from
training images. During test stage, this visual dictionary is used to establish 2D matches for the
current frame with the previous frames. Using the 2D matches, the pose of the camera in the
current frame is computed relative to the previous frames.

2.3.3 Combining di�erent 2D tracking features and recognition

While the robustness of recognition methods can solve the problem of gradual drift and need for
manual initialization, they introduce jitter due to the independently computed pose in successive
frames. They are computationally expensive when compared to simple SSD based correlation
techniques used for matching points in consecutive frames of a video. In this section we describe
the methods which combine tracking and recognition techniques in order to achieve robustness
and speed without jitter.

In [94], 3D map built from a set of training images through the 2D-to-2D matches obtained
by zero normalized cross correlation around Harris corners[41] is used for autonomous robot
navigation. At run time, 2D-to-3D correspondence for a test image is obtained by matching the
Harris corners in the test image with those associated with 3D points in a selected keyframe
from the set of training images. The keyframe for the �rst test image is chosen by selecting
the training image with highest number of inlying matches. For each subsequent test image,
the keyframe closest to the camera center of the previous image is selected for matching. This
simple strategy for keyframe selection and matching is possible since the path followed by the
robot during test and train are very close.

2D-to-2D matches with an image of known pose can provide geometric constraints which can be
used in combination with the 2D-to-3D geometric constraints to improve robustness when the
available 2D-to-3D correspondences are insu�cient or concentrated in a particular portion of the
current image. A basic framework for such a combination is presented in [104]. Pose is estimated
by minimizing the weighted sum of reprojection error corresponding to 2D-to-3D matches and
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the average distance of 2D-to-2D matches with the previous frame from their epipolar lines. In
[112] 2D-to-2D matches with the previous frame is used to reduce jitter and improve robustness
of pose estimation. Its formulation involves computation of a transfer function which uses the
CAD model of the environment to compute the error of the 2D-to-2D matches without explicitly
computing their 3D coordinates. Interframe jitter can also be reduced by adding a cost function
which penalizes large change in pose between successive frames[90]. In [109] the 3D structure
obtained through an o�ine SfM process is used to obtain additional geometric constraints on the
matches compute during online. It does not use any photometric information from the o�ine
stage.

2.4 Visual word framework

In the visual word framework[105, 87], a dictionary of visual words {D1, D2, ..., Dk} is built in
such a way that a feature descriptor x extracted from 2D location of an image can be matched
with any Di to decide whether x belongs to the word Di or not. Thus, an image can be con-
sidered as a document containing a set of visual words obtained by matching each descriptor
extracted from the image with the dictionary. This enables us to apply the text search techniques
to perform image retrieval[105], location recognition[97], loop-closure detection[8] etc.

In practice visual words are formed from the set of training vectors D = {x1, x2 . . . xn} (i.e.
the set of descriptor vectors extracted from training images) in two steps:

1. Visual word formation: Perform clustering on D to obtain a set of clusters Dc =
{D1, D2, ..., Dk} such that Di ⊂ D and Di ∩ Dj = ∅ for i 6= j. Each cluster Di forms a
visual word.

2. Visual word recognition: Using the elements of visual word Di, obtain the rule for
matching a test descriptor vector x with it.

There are multiple options in both steps. In step (1), di�erent clustering techniques will lead
to di�erent Dc. After clustering, we can use various rules in step (2) for matching a test vector
with the clusters in Dc. Each matching rule de�nes a visual word region vi for cluster Di in the
descriptor space F , which consists of all the vectors in F that match with Di. That is, descriptor
vector x is said be matching with Di if x ∈ vi. We use visual word framework to represent 3D
model in such a way that each 3D point is represented by a visual word. Ideally, we would like
each 3D point in the 3D map of the environment to be associated with one visual word region v
such that the local descriptor extracted from any view of the 3D point belongs to v and a local
descriptor of any other 3D point in the environment lies outside v.

2.4.1 Types of visual words
In this subsection we classify the visual word computation techniques based on the way in which
the training vectors are clustered. Each clustering technique is characterized by the parameters
need to be provided, the �exibility of shape of clusters it can form and the computational cost. In
our experiments, we have applied visual words from each category on SIFT[69] features extracted
from training images.

2.4.1.1 Type1 : k-means based clustering

In the training step, the set of training vectors is divided into a pre-determined k number of groups
by clustering [105, 87]. Training vectors within the Voronoi region corresponding to the cluster
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center of a group form a visual word. K-means algorithm may turn out to be computationally
slow during training due to range search operation in each iteration till convergence. Another
drawback of this method in this context is the need to �x the value for k i.e. the number of visual
words. Since we use visual words for representing 3D points in the environment, this condition
requires a rough estimation of the number of di�erent 3D points associated with the training
vectors.

2.4.1.2 Type2 : Range based matching

The training vectors within a distance range r from each other are grouped into the same visual
word. In this framework we need not provide the parameter k i.e. the number of clusters. The
cluster formation is faster when compared to k-means because it does not invove any iterative
computation of means. In [8], online visual dictionary is built while performing loop closure
detection. The region associated with a visual word is de�ned as the spherical region of radius
r around a SIFT descriptor. Visual dictionary which is initally empty is built incrementally as
follows. For each SIFT descriptor x extracted from the current image, the dictionary is searched
for a visual word centered within a distance of r from x. If x does not match any of the existing
words, then a new visual word centered at x is added to the dictionary. If a match is found then
no update is performed to the dictionary. The set of SIFT descriptors which match with the
exisiting words in the dictionary provide necessary information to detect loop closure.

2.4.1.3 Type3 : Mean-shift (MS) based clustering

Mean-shift algorithm provides a method to form free shape clusters based on the distribution of
the training vectors in D. It automatically decides the number of clusters to be formed based
on the bandwidth parameter h of the kernel function K involved in the computation. We have
to provide the value of h, which is a rough indication of intra-cluster variation. Given a set of
training vectors we can �t a probability function on it[30]. Usually these functions are multi-
modal in nature which attain peak values in the regions where the distribution of the training
vectors is dense. A gradient-ascent algorithm initialized at a training vector will iteratively
converge to the associated peak. Mean-shift clustering technique computes this peak associated
with each training vector and groups all the training vectors converging to the same peak into a
single cluster[22, 23]. For each training vector xj ∈ D, mean-shift algorithm iteratively searches
for peaks of the density function. Starting with the initial estimate µ0j = xj , the mean vector is
updated in each iteration as follows:

µl+1
j =

∑
xi∈DK(xi − µlj)xi∑
xi∈DK(xi − µlj)

(2.1)

As we can see from equation (2.1), for each vector xj ∈ D, in each iteration l, we need to compute
the distance of µlj with all the vectors of D. Hence this algorithm has high computational
complexity.

2.4.1.4 Type4 : Visual words from SfM

Instead of clustering the whole set of training features, in this method, initial matches between
each pair of training images is established by matching the local descriptors extracted from
respective images. In [38] standard SIFT keypoint matching (presented in section 2.1.2) is used
to obtain 2D-to-2D matches between images. In [52], mutual nearest neighbor matching is used.
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These matches are provided to a Bundle Adjustment process (explained in section 1.5) to obtain
3D point corresponding to these 2D matches. The features in the 2D track of a 3D point form
the visual word. In this framework the number of clusters is automatically decided based on the
number of 3D points. The clusters can be of free shape and computation time depends upon
the way 2D-to-2D matches are established. The matching techniques in [38, 52] are fast when
compared to k-means and mean-shift because the distance comparison need to be performed only
once.

2.4.2 Recognition

The method used to form the visual word inherently provides a way for classifying a test vector
x. For k-means based visual word x can be classi�ed to the class of the nearest cluster center.
For range based clusters (Type2), x can be matched based on the threshold on the distance
of the nearest training vector of the cluster and so on. But a strategy di�erent from the one
that is used for clustering can be used as in [51] where x is matched with mean-shift clusters
through ratio of distance with the �rst and second nearest cluster center. Various supervised
methods like metric learning on whole descriptor space[73], learning individual metric for each
visual word[84], learning a supervised classi�er[24], fuzzy classi�cation[114] have been employed
for visual word recognition. The choice of recognition rule in�uences the accuracy and e�ciency
of the recognition process. For example, if we chose to represent the visual word Di using the
cluster center (as in k-means), then we need to compare a test descriptor only with one vector
(i.e. the cluster center) per visual word. But a single vector per visual word cannot represent
clusters with complex boundaries. In our experiments we use threshold on the distance to nearest
neighbor, threshold on the ratio of distances to the two nearest neighbors, matching based on
mean-shift operation and some of the popular representations based on linear and non-linear
statistical learning techniques.

2.5 Conclusion

In this chapter we presented di�erent techniques for establishing feature correspondence to com-
pute pose of the camera in an image. For the reasons mentioned in section 2.2.3, the recognition
based methods having an o�ine learning stage for 3D point detection are well suited for robust
pose estimation. For wider applicability it is desirable to use a framework which can automat-
ically build the necessary 3D information of the environment from the training images. As we
see in section 2.3.2.2, such a framework should be able to establish 2D matches across training
images during the training stage and obtain a robust representation for the 3D points in the envi-
ronment. These requirements motivate our work presented in the next two chapters in which we
experiment and evaluate di�erent visual word formation and recognition techniques to compute
and represent 3D points of the target environment for pose estimation.



Chapter 3

Building sparse 3D map from training

images

This chapter presents the training stage of our pose estimation framework. We experiment
with various ways of establishing 2D correspondences using training vectors (SIFT descriptors
extracted from training images). After SfM, some of these SIFT descriptors get associated with
3D points. We assess some aspects of the quality of the matches and the resulting 3D map.

3.1 Overview

We use di�erent clustering schemes and standard SIFT keypoint matching to obtain 2D-to-2D
matches across training images. In the next two sections (section 3.2 and 3.3) we describe the way
in which we build 2D-to-2D correspondences using the clusters in the set of training vectors. We
design a novel way of clustering SIFT descriptors which can overcome some of the drawbacks in
range based matching scheme for SIFT descriptors. This is one of our main contributions in this
thesis. Section 3.4 motivates and presents this method. We build sparse 3D map from each set of
2D-to-2D matches obtained through di�erent methods by running SfM. In section 3.5 we describe
di�erent data sets on which we run these experiments. In section 3.6 we describe framework for
experiments presented in this chapter. It mainly deals with the implementation details along
with the range of various parameters used to compute each type of clustering scheme. We also
mention the di�erent aspects we use to measure the quality of matches provided by the various
matching schemes. The actual results of these assessments and their analysis are presented in
section 3.7. Finally, in section 3.8, we end this chapter with the conclusions we derive from
analysis of the results.

3.2 2D-to-2D correspondences for SfM from clusters

LetD = {x1.....xN} be the set of SIFT descriptors extracted from the training images {I1, I2, ..., IM}.
There are two di�erent ways in which we can obtain 2D-to-2D matches across training images, (i)
we can directly match the SIFT descriptors between each pair of training images (for example,
using standard SIFT keypoint matching) or (ii) we can perform clustering on D and use the
SIFT descriptors belonging to same cluster to establish matches across images. These matches
are based on just photometric similarity on which geometric constraints are applied during SfM.
In the �rst case, we obtain 2D-to-2D matches which can be directly used to perform SfM. In
the second case we use the 2D locations of each pair of training vectors in a cluster to establish
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a 2D-to-2D correspondence. While doing so, the 2D locations of the training vectors belonging
to a cluster is treated as 2D-track of a single 3D point. In the next subsection, we present our
pruning step to discard clusters not suitable to represent a single 3D point.

3.3 Pruning clusters for SfM

A clustering technique partitions D into several clusters. Some of the clusters obtained from D
(for e.g. clusters containing descriptors corresponding to repeated patterns in the environment)
may contain multiple SIFT descriptor vectors from a single training image. They are not suitable
to uniquely identify 3D points. In [96], patterns occurring more than 5 times in the same image
are a priori discarded, in order to handle burstiness [54] of visual elements. We also apply a
similar strategy in a stricter sense. We discard such clusters. Later in section 3.7.1, we show
that we get rid of spurious matches due to repeated patterns in the environment by discarding
such clusters. After this step, we expect to retain only those clusters having SIFT descriptors of
a physical 3D point. The 2D locations corresponding to each descriptor of such a cluster forms
the 2D-track of the physical 3D point across respective training images.

Using the clusters retained after pruning, we establish 2D-to-2D matches in the following way.
For each training image pair (k, l), we �nd the set of clusters containing training vectors from
both Ik and Il. Such a cluster is guaranteed to contain exactly one vector in Ik and Il, since we
have already removed, during pruning step, all the clusters containing multiple training vectors in
a single image. Each such cluster provides a 2D-to-2D match between Ik and Il. We then obtain
Structure from Motion (SfM) by running Bundler on these 2D matches. Bundler discards the
2D matches which do not satisfy epipolar constraint and rebuilds the 2D-tracks by chaining the
retained 2D matches (section 1.5.3.1). This may split some of the original 2D-tracks produced
by the clusters into multiple 2D-tracks. Bundler tries to compute 3D points corresponding to the
rebuilt 2D-tracks by minimizing the reprojection error. The 2D-tracks with high reprojection
error will be discarded by SfM and will not produce any 3D points. At the end of SfM, we obtain
camera pose for the training images and a set of 3D points in the environment. Each such 3D
point is uniquely associated with the cluster which was used to obtain the corresponding 2D
matches. Some clusters may be associated with multiple 3D points due to the splitting of their
2D-tracks. Such clusters cannot be used to describe a unique 3D point. We discard those 3D
points and clusters. In our experiments, the number of such 2D-tracks is negligible. At this
stage, the set of 3D points and the set of retained clusters are in one-to-one correspondence.

3.4 Adaptive transitive closure (ATC) based clustering

We design a novel clustering technique using range based matching. Range based matching is
performed using a �xed threshold on the chosen type of distance measure between two descrip-
tors. Our method evolves through two observations in Euclidean distance based matching of
SIFT descriptors.

First, the Euclidean distance threshold is not suitable when distribution of vectors in a clus-
ter is heteroscedastic. For illustrating this we use a 2D diagram in �gure 3.1. It shows the
distribution of vectors belonging to 3 clusters in three colors. The distance threshold r needed to
match x and x

′
, both belonging to red cluster, will match x with some of the vectors belonging to

green and blue clusters. In section 3.4.1, we show this phenomena in SIFT vectors and propose
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a transitive closure based approach to improve descriptor matching in video images.

Second, the threshold cannot be uniform throughout the descriptor space i.e. in some re-

Figure 3.1: Heteroscedastic distribution vectors within clusters

gions we may have to use relatively larger thresholds to establish matches which in other regions
may lead to wrong matches. Figure 3.2 illustrates this problem. There are three clusters whose
vectors are marked in three di�erent colors. The nearest neighbor distance for some of the vec-
tors in blue cluster is large enough to generate incorrect matches between vectors belonging to
green and red clusters. In section 3.4.2 we show this phenomenon on an example pair of images
and propose a technique to adaptively choose di�erent thresholds in section 3.4.3. These two
proposed modi�cations outline our ATC clustering method which are published in [15] and [16]
respectively. The process of computing ATC clusters is formally presented in procedure 1.

r
r

Figure 3.2: Non-uniform intra-class distance



50 Chapter 3. Building sparse 3D map from training images

Thresh 150. 1 and 45. 19 number of matches. 

1 1

2
23

3

4
4

5 56 6
7 7

8 8

9 910
10

11
11

12
12

13
13

14
1415

15

16 16

17
17

18
18

19
19

(a)
Thresh 150. 45 and 90. 12 number of matches. 

1 1

2

2
3

3

4 45 56 6
7 7

8 8
9 910 1011 11

12 12

(b)
Thresh 150. 1 and 90. 2 number of matches. 

1 1
2 2

(c)

Figure 3.3: Matching with �xed threshold 150 under di�erent pose variation (a)19 matches
between 1 and 45 (b)12 matches between 45 and 90 (c)2 matches between 1 and 90
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3.4.1 Transitive closure (TC) under smooth variation of pose

To demonstrate the problem of heteroscedasticity, we capture a short video of 90 frames num-
bered 1 to 90. Figure 3.3 shows the result of matching SIFT features with a threshold value
r = 150. The �gure contains 3 frames numbered 1, 45 and 90 from the video, each of which
contain image of an o�ce scene from three di�erent view points. The �rst row shows image 1
and 45, second row shows image 45 and 90, and �nally third row shows image 1 and 90. It can
be observed that the pose di�erence between image pair (1, 90) is more than the pose di�erence
between (1, 45) and (45, 90). In each row, we have marked the location of the SIFT features
with '+' sign in the left image which has a matching SIFT feature in the right image, which is
also marked similarly. These correspondences are identi�ed by numbers near to the '+' mark.
For example, in the �rst row ( �gure 3.3(a) ), point numbered 7 (located at the top-left portion )
in the left image is extracted from the location marked by + near to the number and found to be
within a distance r = 150 with the SIFT feature extracted from the location numbered 7 in the
right image. By visually examining the matches we can see that in the �rst row all the points out
of 19 matches only the point number 9 is matched incorrectly according to the geometry of the
scene. In the second row, the point number 2 is an incorrect match out of 12 correspondences.
But there are only two matches for (1, 90) in the third row. A closer observation of the �rst
two rows of the �gure can reveal that there is at least one common point between (1, 90) which
are detected by SIFT algorithm, but the feature descriptors extracted from those points did
not match in the third row of the �gure 3.3 because the distance between them is more than
150. For example point number 8 in the �rst and second row belong to the same location of the
environment. But they do not match between frame 1 and 90 because the distance between the
corresponding SIFT features is more than 150.

To overcome this problem we propose to use transitive closure operation on matches obtained
by strict matching radius in a set of images with smoothly varying pose. Let D be the set of
SIFT descriptors {x1, x2 . . . xn} extracted from the training images. Let d(x, y) be the Euclidean
distance measure between two descriptors x and y. As in range based cluster formation methods,
we use a distance threshold r to match SIFT features. Two SIFT features x1, x2 are said to be
similar if d(x1, x2) < r. This similarity relation is re�exive and symmetric on D. We perform
transitive closure operation on this similarity relation. Each equivalence class in D obtained in
this way represents a cluster. Hence our cluster v is represented by a set of feature descriptor
{xv1 , .., xvn}.

3.4.1.1 Algorithm of transitive closure based clustering

Our algorithm to compute clusters is as follows: Let V be the set of clusters which is initially
empty. Eventually it will contain mutually exclusive subsets of D, each one of which represents
one cluster. The algorithm will loop over each element of D. In each iteration i = 1..n it will
execute following 3 steps :

1. Find the clusters in V which have at least one element x such that d(x, xi) < r.
2. If any such words found in V , then merge all those sets together by union operation to

form a single cluster and add vector xi to it.
3. If no such set is found in V then a new element {xi} is added to V .

In iteration i of the algorithm described above, i − 1 vector comparisons are needed in step
1. To complete n iterations it needs

∑n
i=1(i− 1) = n(n−1)

2 vector comparisons. This algorithm,
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which is an adaptation of Tarjan's algorithm [88] for connected components in graphs, exactly
computes the transitive closure of interest. Our transitive closure based clustering can also be
considered as a variation of Single-Link clustering [1] in which nodes are merged using a �xed
distance threshold instead of shortest distance between two clusters.

Figure 3.4 shows the matches between image frames 1 and 90 the clusters obtained through

Trans 1 and 90. 22 number of matches. 
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Figure 3.4: 22 points are matched between frame 1 and 90 using transitive closure on a relation
established for r = 75

transitive closure operation on matches established for r = 75. This value for r is much stricter
when compared to 150 which is used in �gure 3.3. Due to the smoothness of the pose variation
in video images, TC based clusters provides 22 matches out of which all the points except points
numbered 10 and 13 seem to be correctly matched. It is interesting to note that the matches
are spread across the region of the environment which is visible to both the views in image 1
and 90. It turns out that we cannot just relax the threshold value r in order to obtain more
2D-to-2D correspondences while directly matching frames 1 and 90. Figure 3.5 shows the result
of matching frames 1 and 90 directly using r = 250. If we carefully examine the matches we can
see that 7 correspondences (numbered 2, 7, 8, 9, 10, 11 and 12) of the 13 are incorrect.

It is not possible to obtain as many matches as in �gure 3.4 even if we use standard SIFT
keypoint matching technique (described in section 2.1.2) on image pair (1, 90). The matches
with threshold values 0.7, 0.8 and 0.9 on the ratio of the distance of �rst and second near-
est neighbors is shown in �gure 3.6(a), (b), (c) respectively. We can see that the number of
matches obtained through thresholds 0.7 and 0.8 are less compared to what we obtain through
TC clusters. If we relax the threshold to 0.9 (last row of the �gure), then we obtain many incor-
rect matches. The illustrations in this subsection show that under the assumption of smoothly
varying pose we can obtain reliable 2D-to-2D matches between images using a strict threshold
matching threshold on Euclidean distance between SIFT descriptors. But it is still di�cult to
determine the right threshold for obtaining TC clusters. As mentioned in the beginning of the
section 3.4, a single threshold value cannot be applied on the whole descriptor space. In the next
subsection we illustrate this problem and propose a solution.
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Thresh 250. 1 and 90. 13 number of matches. 

1 1

2

2

3

3

4 4
5 5

6 6

7
78

8
9

9
10 10

11

11

12

12

13 13

Figure 3.5: Points matched between frame 1 and 90 for r=250. Total 13 matches. Matches
numbered 2, 7, 8, 9, 10, 11 and 12 are incorrect.

3.4.2 Choosing a threshold for TC cluster computation

It is preferable to have all the SIFT descriptors corresponding to a single 3D point in a single
cluster. It provides 2D coordinates of a 3D point from more number of views. Wider views
provide more accurate coordinate estimation for a 3D point during SfM. Descriptors from more
views can also help obtaining better visual representation of the 3D point. As we increase the
threshold value r, we obtained more matches due to the relaxed matching condition. This may
add incorrect matches. Just a single incorrect match between members of two dissimilar clusters
results in a merge.

This problem is illustrated in �gure 3.7. It shows portions of two training images and posi-
tions of 5 training SIFT features (marked by green '+' and numbered from 1 to 5). By closely
observing the local image pattern around these points, we can see that locations 3 and 2 in image
(a) match with 4 and 5 in image (b) respectively. Apparently there is no other match among
these points. When we compute TC clusters with r = 100, it combines 2 and 5 correctly, but 3
and 4 belong to di�erent clusters. If it is increased to r = 150, then we obtain both the matches,
but the feature vector at location 1 gets wrongly merged with the cluster of the feature vector
at location 2. The pruning step (section 3.3) will reject the cluster containing 1 and 2 due to
its repetition in the same image. Hence, TC cluster with matching range �xed to one of the
above values will de�nitely loose one of the matches. This can be prevented if we can adaptively
compute the clusters for locations 3 and 4 with r = 150 and for 2 and 5 with r = 100. Essentially,
what we do is to compute clusters for both the values of r and perform pruning on clusters with
higher range value r = 150. If a cluster is rejected, then we look for its sub-words in the set of
clusters with r = 100 and perform pruning again. This adaptive strategy can retain both the
matches shown in the image.

3.4.3 Adaptive transitive closure (ATC)

Our strategy relies on the assumption that if a matching range value r is signi�cantly high for a
particular kind of visual pattern p in the training set of features, in a sense that it will match p
with regions which are dissimilar to p, then the cluster containing p along with wrongly matched
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Thresh NNR .7  1 and 90. 7 number of matches. 
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Thresh NNR .9  1 and 90. 69 number of matches. 
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Figure 3.6: Matching frame 1 and 90 with standard SIFT keypoint matching method
(a)Threshold of 0.7 provides 7 matches (b)0.8 provides 13 matches (c)A threshold of 0.9 provides
69 matches with many incorrect correspondences
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Figure 3.7: Range selection for matching in TC.

patterns will repeat in at least one of the training images and will be rejected by pruning pro-
cess. We can detect such clusters and recompute the matches between its members using a more
stricter range r

′
< r. TC algorithm will partition this cluster into one or more sub clusters. By

applying this strategy recursively we obtain clusters in which the matching threshold is adapted
to the characteristics of the visual patterns represented by them.

We implement the above strategy for a �xed set of values of r and design a recursive top down
approach for obtaining clusters. We obtain TC clusters for multiple values of r = {a1, a2, ..., ak}
where a1 > a2 ... > ak. This does not add much computational overhead because the range search
for the highest value r = a1 retrieves all the required candidates for computing TC clusters with
other lesser range values. Let V1, V2, ..., Vk be the corresponding set of clusters. Since ai > aj
for i < j, the matches in Vi contains all the matches in Vj . Figure 3.8(a) shows TC clusters for
three di�erent radii a1 > a2 > a3. For r = a3 four clusters w1, w2, w3, w4 are formed (plotted in
color green, red, blue and black respectively). When the value of r is increased to a2 it merges
w2, w3, w4 into a single TC cluster. When r = a1 all four clusters are merged together. The
corresponding hierarchical structure is shown in �gure 3.8b. For any i < j, that is ai > aj , we
can say that each cluster in Vi is obtained by merging one or more clusters in Vj . Equivalently,
each cluster in Vj is a subset of a single cluster in Vi.

The process of obtaining the set of ATC (Adaptive TC) clusters V from hierarchy of set
of TC clusters V1, V2, ..., Vk is as follows. V is initialized empty. Starting with the set of clusters
having highest matching range value, that is V1, we recursively select candidate clusters which
are accepted by the pruning process (presented in section 3.3) and add them to V . If a cluster
vi ∈ Vi is rejected while pruning due to repeated occurrence in some images, then we look for
its sub-clusters in Vi+1. Pruning is applied on each sub-cluster. Clusters which successfully pass
the pruning step are added to V and will be used for building 2D-tracks. Unsuccessful ones will
in turn lead to pruning of their sub-clusters in the next level, till we reach Vk. This process is
formally described in procedure 1
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(a) (b)

Figure 3.8: Hierarchy of TC clusters

Procedure 1 Computing ATC clusters

Input: TC clusters V1, V2, ..., Vk
Output: V the set of ATC clusters

V ← ∅
Push all the clusters in V1 into a stack of clusters ClSt
while ClSt is not empty do
v

pop←−− ClSt /*Pop out the top element of the stack to v */
Prune v as described in section 3.3.
if Pruning accepts v then
V ← V ∪ {v} /*Add the cluster to V

else
if v ∈ Vi where i < k then
Push all the sub-clusters of v in Vi+1

end if
end if

end while



3.5. Data for experiments 57

3.5 Data for experiments

Our aim is to test the ability of various cluster formation techniques to provide 2D/3D matches
for a test image under di�erent types of pose variation between test and train data. To speci�cally
suit our requirements we capture a single test sequence and multiple train sequences each having
a di�erent degree of pose variation with the test sequence. This data set is extensively used in
our experiments. We describe this data set in detail in section 3.5.1. In addition we perform few
experiments on two of the publicly available data sets which we describe in section 3.5.2.

3.5.1 MAGRIT Pose Gradation Data (MPG)

For our experiments we capture data inside a room using a camera whose intrinsic and distortion
parameters are known. Immediately after obtaining the images we undistort them once and for
all for our experiments. We have 7 di�erent short video sequences, out of which 6 training
sequences (TD1 to TD6) are captured while manually moving the camera and the last one is a
Test sequence captured by �xing the camera at a particular orientation on a robotic table which
is instructed to move in a circular path. The radius of the circular path is 42.5 centimeters.
Using the robotic measurements we obtain relative positions of the camera in each test image.
A rough sketch of the tracks are shown in �gure 3.9. The camera tracks of the sequences are
marked with curves in various colors. The track corresponding to each training sequence TDi is
tagged with TDi- -N where i ∈ {1, 2, 3, 4, 5, 6} and N is the number of images in the sequence.
The arrows indicate camera orientation at subsampled positions on the track. TD1 and TD4
have maximum pose variation w.r.t the test sequence. TD5 encircles the test sequence, but the
orientations at closest camera positions are such that there is less than 50% view overlap with
the test sequence in each image. There are three planar surfaces (marked as P1, P2 and P3)
in the room on which we have pasted pictures which contain texture information. Some of the
pictures are repeated in order to introduce ambiguity. The distance between the center of the
circular robotic trajectory and the angular meeting point of the planar surfaces P2 and P3 is
approximately 275 centimeters.

3.5.1.1 Comparing pose variation of training sets

In this section we illustrate the pose variation between test set and each training set in MPG.
For each training set we try to show the extent to which it covers the regions captured by the
test images and the di�erence in the viewing angles at which the training and test images are
oriented while capturing a common region of the environment. We also indicate few possible
ambiguities while matching features between test and training images due to the repetition of
the pictures.

TD1, TD2: Figure 3.10(a) contains four images in two rows. At the top left we have placed
one of the training images and the other 3 adjacent images belong to TD1. The yellow shaded
portions in the four images show the same region of the environment in the surface P2. TD1
covers only P1 and P2, while test image contains P2 and P3. Hence P2 is the only common
region between images in TD1 and most of the images in test set. There is a signi�cant di�erence
in angle and scale at which P2 is viewed by TD1 and test image. The red lines show some of
the repeated pictures which may lead to incorrect matches. Figure 3.10(b) shows a test image at
left and a training image from TD2 at right. Similar to TD1, the common region between test
and the training images is P2, but the di�erence is the viewing angle is slightly reduced.
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Figure 3.9: Camera tracks in the sequences captured for experiments.
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TD3, TD4, TD5: Figure 3.11(a), (b), (c) illustrate the pose variation for TD3, TD4 and TD5
respectively. TD3 contains training images at similar viewing angle as in test set, but there
is a signi�cant di�erence in scale. For TD4 the predominant common visible region is the left
portion of P3 with signi�cant scale variation. For TD5, as we can see from �gure 3.9, the camera
positions in the training set surround those in test set. Figure 3.11.c shows a pair of test and
training images in which the camera positions are very close. We can see that there is a signi�-
cant di�erence in the viewing angle between the training and test images.
TD6: In TD6 (�gure 3.12), training images cover the visible regions of the test image in parts
at huge scale variation. The green lines between test and training images connect the matching
regions. For Train Image 1 (top right) and Train Image 2 (bottom left), the scale variation can
be 4 to 5 times. For plane P3, there are some training images (like Train Image3 at bottom
right) in which the scale di�erence slightly less.

3.5.2 RoboImage and IDOL

RoboImage repository [7] contains 119 images of 60 di�erent scenarios under di�erent lighting
conditions. Each set is captured from a �xed set of known camera poses in a plane as shown
in �gure 3.13. The camera positions are arranged in 3 arches and a line dividing each of them
into half. We choose the set corresponding to scenario 2 of the repository. Figure 3.14 shows 6
images of this set corresponding to left most, middle and right most camera positions of the two
arcs at the extreme. In this chapter we use these images to assess the accuracy of the 2D-to-2D
matches provided by various matching techniques.

IDOL dataset [71] contains images captured inside a building through a camera mounted
on a robot whose position can be measured through sensors. The robot rapidly moves in various
rooms and the corridor situated in a single �oor of the building while capturing the image. We
have chosen 87 images of the kitchen area which contains su�cient texture information for SIFT
descriptor matching. The path traced by the camera inside the selected portion is shown in
�gure 3.19(a). For this set we do not have ground truth information or another set of images
which can be used as a test set for pose computation. Hence, we use this set of images only once
to assess the quality of SfM on 2D-to-2D matches obtained from various matching techniques.

3.6 Experimental Framework

For experiments in this chapter we use 8 di�erent training sets, namely TD1, ..., TD6 and the two
selected set of images from RoboImage and IDOL repository described above. From each set of
training images we extract SIFT descriptors. We compute di�erent types of clusters (presented
in section 2.4.1) from the training vectors. In the next subsection we provide implementation
details and range of parameters we use for each type of cluster. Then in section 3.6.2 we present
the way we assess the quality of the 2D-to-2D correspondences provided various clusters.

3.6.1 Implementation details

Parameters for Type1 : k-means
The value of k in k-means clustering corresponds to the number of 3D points associated with
the 2D locations of the training images at which SIFT descriptors are computed. We choose
di�erent values for k between 100 and dN/4e, where N is the number of training vectors ex-
tracted from training images. We sample this range of values and run k-means for the values
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Figure 3.10: Illustrating pose variation in MPG for TD1 and TD2: The yellow rectangles marked
with plane IDs indicate the portion of the environment common to train and test images.
(a)Test vs TD1 : Contains one test image at the left top and three training images. Red lines
indicate some of the possible ambiguities in matches due to repeated pictures on di�erent planes
P1, P2 and P3.
(b)Test vs TD2 : The di�erence in viewing angle between test and train images is slightly less
when compared to TD1.
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Figure 3.11: Illustrating pose variation in MPG for TD3, TD4 and TD5: The yellow rectangles
marked with plane IDs indicate the portion of the environment common to train and test images.
(a)Test vs TD3 (b)Test vs TD4 (c)Test vs TD5
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Train Image 2 Train Image 3

P2
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Figure 3.12: Illustrating pose variation in MPG for TD6 : Green lines connect the matching
regions of test and training images. We can see that the training images cover the visible regions
of the test image in parts at high scale variation. For the planar region P3 scale variation reduces
for some of the training images.

Figure 3.13: Camera positions in RoboImageData
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(a) (b) (c)

(d) (e) (f)

Figure 3.14: Sample images from 6 key camera positions of RoboImage data.

{100, 200, 300, 500, 1000, 1500, 2000, ..., dN/4e}. We use integer k-means software [115] to per-
form clustering.

Parameters for Type2 : TC and ATC
The range values we use for TC are r = {75, 100, 125, ..., 300}. We use the same TC clusters to
perform ATC i.e. the values of {a1 > a2 ... > ak} for our ATC technique proposed in section
3.4.3 are {300, 275, ..., 75} in all experiments.

Parameters for Type3 : gaussian and uniform mean-shift
In mean-shift algorithm (explained in section 2.4.1.3), starting from each training vector new
mean is computed iteratively using the weighted combination of neighbors. We stop the mean-
shift iteration when the updated vector lies within a distance ε1 from the previous position.
After performing mean-shift iterations on all the training vectors, the modes within a distance
ε2 are merged and represented by their mean (as in the implementation of [36]). We experiment
with two types of kernels: (1)Uniform i.e. K(x) = 1 for ‖x‖ ≤ w and K(x) = 0 for ‖x‖ > w
and (2)Gaussian i.e. K(x) = e−(‖x‖

2/σ2). Uniform kernel has compact support i.e. we have to
explicitly provide a bandwidth parameter w, beyond which the kernel has zero value. Gaussian
kernel has in�nite support, but for practical reasons, we derive w, beyond which the value of the
kernel is negligible[23]. For variance σ of the Gaussian kernel, our w is such that, if ‖x‖ > w,
then e−(‖x‖

2/σ2) < ε1
128 , where 128 is the dimension of SIFT features. We use kd-tree based exact

range search (i.e. without any approximation for range search) algorithm [79], for speeding up
mean-shift iterations. For Gaussian and uniform mean-shift we use σ = {30, 40, 50, 60, ..., 130}
and w = {75, 100, ..., 300} respectively. We use values ε1 = .1 and ε2 = 1.

Parameters for Type4 : Standard SIFT keypoint matching
We run standard SIFT keypoint matching with 4 threshold values on the ratio of distances of
�rst and second nearest neighbor. They are {0.6, 0.7, 0.8, 0.9}. Here also we use fast range search
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algorithm [79] without any approximation to match the SIFT descriptors in each pair of training
images.

3.6.2 Evaluation of clustering methods for SfM

In this section we outline some of the assessments which measure the quality of the 2D-to-2D
matches. Since we do not have the ground truth information of the SIFT descriptor correspon-
dences between the training images, we cannot compute the accuracy of a given set of 2D-to-2D
matches. Hence, we evaluate the quality through di�erent aspects listed in the following subsec-
tions. The actual results and analysis are presented in section 3.7.

3.6.2.1 Fundamental matrix constraint on 2D-to-2D matches

In RoboImage dataset, we know the ground truth camera positions for all the images. Hence,
we can obtain fundamental matrix between any image pair. We use these fundamental matrices
assess the quality of 2D matches produced by a matching scheme. On the error function de�ned
in the equation 1.15 we use the same threshold as in Bundler (in which the threshold value is
9) to decide whether a 2D match is acceptable or not. We recall that during SfM, incorrect 2D
matches are discarded based on the same error function before performing Bundle Adjustment.
In our experiments we assess the total number and percentage of 2D matches produced by a
matching scheme on RoboImage data which satisfy this constraint.

3.6.2.2 Descriptor participation and track length in 3D map

The SfM process computes 3D points corresponding to a subset of the 2D matches which satisfy
geometric constraints. The rest of the matches are discarded. Hence, the portion of training vec-
tors getting associated with the 3D map indicates the ability of a matching scheme to produce
correct 2D matches. The 2D locations of the SIFT descriptors used to generate the 2D matches
corresponding to a 3D point forms its 2D-track in the images. The 2D-tracks provide informa-
tion necessary to compute the coordinates of the corresponding 3D point through triangulation
(section 1.5.2). The descriptors associated with the 2D-track of a 3D point is used to obtain its
coordinates and visual representation. With a longer 2D-track we are hoping to cover wider view
of the corresponding 3D point. Hence, for a 3D point, it is preferable to have longer 2D-track
in order to obtain better estimate of its 3D coordinate and visual description. We measure the
percentage of descriptors participating to build the 3D map and lengths of 2D-tracks associated
with the 3D points to assess the quality of 2D matching scheme.

3.6.2.3 Planarity of planar 3D points

The environment captured by the images in our MPG dataset contains 3 planar surfaces P1, P2
and P3 (�gure 3.9). We manually mask the planar regions in all training images. Using these
masks we can identify the SIFT features extracted from the 2D locations belonging to these
surfaces. We say that a 3D point Q belongs to plane Pi if any one of the SIFT descriptor in
its 2D-track is extracted from a 2D location inside the mask of Pi in a training image. All the
3D points associated with features extracted from the image of a plane should lie in a plane.
Hence the planarity of those 3D points can be used to measure the quality of the 2D matches.
We �t a plane on these 3D points using RANSAC based least square �t. The goodness measure
can be the root mean square distance of the 3D points from the plane. But we cannot apply
this measure across di�erent 3D models, unless they are represented in the same scale. To
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normalize the scale, we manually mark few 2D correspondences in the training images. Since
SfM computes the camera positions for the training images, we can compute the 3D positions
of these manually marked locations by triangulation. Then we manually measure the ground
truth distances between those manually marked points in the environment. Using the ratio of
the ground truth distance to the corresponding distance in the 3D model for these points, we
can normalize the scale. Using the scale normalized 3D models we can compare the root mean
square distance of the 3D points from the best �t plane.

3.6.2.4 E�ciency

The time complexity of a 2D matching scheme is essential to determine its scalability. Even
though, we compute 2D matches in an o�ine training stage, a matching scheme requiring many
iterations over the training vectors in D may restrict the size of the environment it can cover.
In our experiments we evaluate the time complexity of each matching scheme we use and also
compare the actual time taken to execute them on the training data.

3.7 Experimental Results

Eight training sets i.e. TD1 to TD6, RoboImage and IDOL data sets provide 59713, 75707,
41512, 27782, 52811, 50556, 73097 and 27489 number of SIFT descriptors respectively. This
amounts to an average of 500, 600 and 300 features per image for MPG, RoboImage and IDOL
respectively. This number is signi�cantly low for IDOL when compared to MPG and RoboImage.

Labelling matching schemes:After computing SIFT features from each training set we match
them in di�erent ways with parameters mentioned in section 3.6.1. In tables and plots we rep-
resent the method used for matching SIFT features and the corresponding parameter as follows.
We use labels G, U, T, A, B, K to represent Gaussian mean-shift, Uniform mean-shift, range
based TC, ATC, standard SIFT keypoint matching and k-means based clusters respectively.
'L p' represents matching scheme labelled 'L' with p as its parameter. For eg: B 0.7 represents
standard SIFT keypoint matching with a threshold of .7 on the ratio of distances of �rst and
second nearest neighbors, K 5500 represents k-means clustering with k=5500, G 100 represents
mean-shift clustering with Gaussian kernel of σ = 100 and so on. ATC has �xed parameter for
all the cases. Hence, the value p corresponding to the label A is left blank.

3.7.1 Pruning

The 2D matches derived through clustering D undergo a pruning process (section 3.3) which
discards clusters corresponding to repeated patterns. Figure 3.15 shows the 2D locations of the
descriptors belonging to the three largest of T 125 in one of the training images in TD1. We can
get rid of many possible ambiguous matches by discarding such clusters. In the next subsection
we illustrate the clear advantage of pruning by visually comparing the 2D matches in a training
image pair provided by our ATC clustering and the direct image to image matching through
standard SIFT keypoint matching.
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Figure 3.15: SIFT features belonging to the three largest clusters (marked by '+' in green, blue
and red). Clusters are computed by range based transitive closure method on TD1 with T 125.

3.7.2 Fundamental matrix constraint on 2D-to-2D matches in RoboImage
data

For describing results in this subsection, we refer to image pairs having at least 45◦ di�erence in
viewing direction in RoboImage dataset as wide pairs. 2D matches between image pairs which
comply with the epipolar constraint based on ground truth fundamental matrix are referred as
acceptable matches. A wide pair having at least 10 acceptable matches is called acceptable wide
pair. The result of assessing the 2D matches using fundamental matrix based constraint on
RoboImage data is shown in table 3.1 and �gure 3.16. The �rst column of the table shows the
number to identify the matching scheme. This number is used to tag the points of the plots
in the �gure 3.16. The second column indicates the matching scheme which is labelled as de-
scribed in the beginning of section 3.7. RoboImage data which consists of 119 images produces
73097 SIFT descriptors. The third column shows the number of total acceptable 2D matches (in
thousands) established between these descriptors. We have shown only the rows corresponding
to matching schemes which produce at least 300 thousand acceptable 2D matches. The fourth
column shows the percentage of acceptable 2D matches out of total number of matches. Fifth
and sixth columns assess the 2D matches per image pairs. Fifth column shows the percentage of
acceptable wide pairs in total number of wide pairs. Sixth column shows the mean percentage
of acceptable 2D matches out of total matches in acceptable wide pairs. The seventh column
shows the average number of acceptable 2D matches in an acceptable wide pair. All the measures
in the column numbers 3 to 7 in the table 3.1 are such that we expect the quality of the 2D
matches with a higher value in these columns to be better. Hence, a plot with any two of those
columns in x and y directions will contain the best quality matches at the right top portion. The
last column shows the CPU time utilized to perform clustering. This value is used in section 3.7.5.

In �gure 3.16, the values of the table 3.1 are displayed graphically. Figure 3.16(a) shows
the values in third and fourth columnn in x and y axes respectively. Values in the third column
are converted to percentage of highest value in that column before plotting. The point numbered
39 (corresponding to ATC) has the highest value in x-axis (hence highest number of 2D matches
that comply with epipolar constraint). If we want a better value in y-axis (i.e. the percentage
of 2D matches which comply with epipolar constraint) even by 1% from that corresponding to
ATC, we have to sacri�ce more than 25% (to reach point number 35 corresponding to TC 100)
of the value in x-axis. Figure 3.16(b) plots the values in �fth and sixth column in its respective
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Total % of Average % of Average
Scheme acceptable % of acceptable acceptable acceptable Time

matches acceptable wide pairs matches per matches per in
×1000 matches acceptable acceptable hours

wide pair wide pair

1 B 0.6 799 94.44 67.37 96.37 22.24 0.15
2 B 0.7 1033 90.77 78.85 86.17 29.11 0.16
3 B 0.8 1274 83.77 99.09 60.20 35.16 0.16

4 K 1500 394 84.22 81.27 62.49 17.93 0.20
5 K 2000 537 86.62 85.20 64.28 24.25 0.19
6 K 2500 565 88.67 77.04 57.46 19.37 0.27
7 K 3000 586 88.28 69.18 59.68 19.79 0.30
8 K 3500 571 89.54 69.49 59.26 19.94 0.34
9 K 4000 550 89.82 57.70 60.69 18.57 0.30
10 K 4500 506 90.44 47.43 59.99 14.97 0.33
11 K 5000 487 92.37 45.32 66.17 15.52 0.34
12 K 5500 463 91.93 41.99 60.40 13.37 0.50
13 K 6000 439 92.54 15.71 67.72 13.33 0.41
14 K 6500 421 92.59 17.52 70.73 11.97 0.43
15 K 7000 389 92.99 8.76 76.91 12.24 0.45
16 K 7500 369 93.49 5.74 79.57 12.95 0.54
17 K 8000 357 94.07 4.23 78.67 12.43 0.63
18 K 8500 337 94.16 0.91 94.97 17.0 0.55
19 K 9000 320 94.49 3.63 83.90 11.75 0.59
20 K 9500 305 94.43 1.81 86.60 12.50 0.72

21 G 50 390 98.17 52.57 99.86 22.86 1.54
22 G 60 500 97.25 54.38 99.0 26.34 3.06
23 G 70 589 95.74 63.44 97.38 28.16 4.81
24 G 80 640 94.72 84.29 91.56 25.23 6.62
25 G 90 618 93.56 90.03 87.0 24.50 8.26
26 G 100 563 92.46 88.52 84.93 24.11 9.88
27 G 110 494 91.22 86.10 86.16 26.54 11.53
28 G 120 384 89.01 72.51 79.76 18.85 15.47

29 U 125 376 96.37 37.46 98.02 14.37 0.38
30 U 150 482 94.71 68.88 91.40 18.38 0.83
31 U 175 540 93.44 90.94 89.82 21.65 1.42
32 U 200 519 90.22 91.54 80.47 21.80 2.35
33 U 225 424 88.88 85.50 81.12 19.98 3.81

34 T 75 750 95.04 100.0 92.75 27.90 0.02
35 T 100 947 92.63 100.0 87.91 36.49 0.03
36 T 125 797 91.22 100.0 83.83 37.08 0.05
37 T 150 567 90.93 99.09 83.23 28.16 0.07
38 T 175 397 89.36 91.84 81.47 20.68 0.10

39 A 1328 90.61 100.0 84.73 67.32 0.34

Table 3.1: Evaluating 2D matches on RoboImage data using fundamental matrix constraint
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Figure 3.16: Quality of 2D matches on RoboImage data. Both (a) and (b) plot the values in
di�erent columns of table 3.1 as indicated in the description of their axes.
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axes. We focus on the points at the right top i.e. 24, 25, 31, 34, 35, 36, 37 and 39. 24, 25 and
31 correspond to G 80, G 90 and U 175. 39 belongs to ATC and the rest belong to TC. If we
compare the values in the seventh column of the table 3.1 (i.e. average number of 2D matches per
wide pair which comply with epipolar constraint) corresponding to these points at right top of
�gure 3.16(b), we can say that ATC provides nearly twice the number of acceptable 2D matches
when compared to the rest. Hence, among the schemes which perform signi�cantly better over
others in �fth and sixth columns, ATC has a huge advantage in the seventh column.

We observe similar results when we manually inspect the 2D matches in MPG dataset. Fig-
ure 3.17 shows 2D matches obtained for a training image pair in TD1. The �rst row corresponds
to standard SIFT keypoint matching with threshold 0.6 (B 0.6). There are 18 matches in which
the 6 matches numbered 1, 2, 3, 4, 8 and 9 are incorrect. The second row shows the matches
when we increase the threshold to 0.7. It provides 44 number of matches in which the 13 matches
numbered 1, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16, 17, 23 are incorrect. The last row shows the 2D matches
provided by ATC clustering method. It has 28 matches in which only 2 matches numbered 2
and 28 appear to be incorrect. Figure 3.18 shows the matches obtained through G 80 and U 175.
For G 80 (top row of the �gure) there are 15 matches in which the matches numbered 1, 2, 6
are incorrect. For U 175 (bottom row of the �gure) there are 18 matches in which the matches
numbered 1, 2, 11 are incorrect. These examples illustrate that the ATC clusters provide large
number of good 2D matches for SfM.

The ability to obtain most of the available 2D-to-2D correspondences with high ratio of in-
liers is crucial for SfM when the number of available features are less. On IDOL only ATC
succeeds to compute all the camera positions through SfM (there are 87 images in the portion
of IDOL image set selected for our experiments). Figure 3.19 shows the results. There are 6
plots each showing the track of camera positions. The plot 3.19(a) at the top left shows the
ground truth path (in blue color) followed by the robot moving inside the kitchen area. Figure
3.19(b) shows the camera path computed through SfM on ATC. In this case SfM successfully
computes all the camera positions and the path looks similar to the ground truth. For other
matching schemes, which are labelled as B, K, G, and U, we display the result corresponding to
the parameter which succeeds in performing SfM for highest number of camera positions. They
are B 0.6, K 3500, G 110 and U 200, for which the camera paths are shown in plots (c) to (f) of
�gure 3.19. They manage to compute positions of only 71, 56, 30 and 25 cameras respectively.
Moreover, the track connecting these positions do not resemble the ground truth.

3.7.3 Descriptor participation, track length on MPG data

In �gure 3.20 we plot the percentage of descriptor participation and average 2D-track length of
3D points. The 2D-track length in y-axis is transformed to percentage of the largest value for
plotting. We tag the points with the label of the clustering scheme. Due to the lack of space we
do not include the parameter with the label. The subplots (a), (b), (c), (d) of the �gure 3.20
show the result on TD1, TD3, TD4, TD6 of MPG respectively. The result on TD2 and TD5 are
similar to that of TD1 and TD6 respectively. We can see that ATC lies in the right top portion
in each plot indicating high descriptor participation and long 2D-tracks.
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Figure 3.17: Comparing 2D-to-2D matches : The �rst two rows show the matches through
standard SIFT keypoint matching with threshold 0.6 and 0.7 respectively. The last row shows
the matches produced through ATC.
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(a) Ground Truth

(b) ATC
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Figure 3.19: Result of SfM on a selected portion of IDOL video sequence. (a) Ground truth
camera path. Each plot from (b) to (f) shows camera path computed through SfM on 2D-
to-2D matches obtained through a clustering scheme. (b)ATC, all 87 camera positions are
computed and camera path resembles ground truth. (c)Standard SIFT matching with threshold
0.6. Positions of 71 images are computed. (d)K-means with k=3500. Positions of 56 images
are computed. (e)Gaussian mean-shift with σ = 110. Positions of 30 images are computed.
(f)Uniform mean-shift with range = 200. Positions of 25 images are computed.
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Figure 3.20: Descriptor participation and 2D-track length : (a)TD1 (b)TD3 (c)TD4 (d)TD6
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3.7.4 Planarity of planar 3D points

We take multiple length measurements in the environment between the points which are man-
ually marked in the training images to obtain multiple estimates of the scale for each 3D map.
We use the average of these scale values to convert the unit of measurement of the 3D maps
to centimeters. The result of �tting a plane on planar points is shown in �gure 3.21. We treat
the planar 3D points within 5 centimeters from the best �t plane as inliers. The result of this
assessment for TD1 is shown in table 3.2. For TD1 we have used 6 di�erent length measurements
for estimating the scale. In order to �t within a page the table displays only the values corre-
sponding to 3D maps in which the coe�cient of variation[2] of the multiple scale estimates (from
di�erent length measurements) is less than 10% and the ratio of inliers in the two planes (P1
and P2) is above 85%. Ratio of inliers and root-mean-squared distance (RMSD) of the inlying
3D points in the two planes P1 and P2 are shown in the last four columns respectively. Results
indicate that di�erent matching schemes provide 3D map with similar quality. The RMSD of
the inlying 3D points is less than 2 centimeters. This value is less than 1% of the distance of the
planes from the camera (distance from camera to planes is more than two meters as mentioned
in section 3.5.1). In section 3.7.3 we have observed that for ATC, the descriptor participation in
the 3D map is high. From table 3.2, we can see that the increased descriptor participation did
not decrease the quality of the 3D points of ATC.
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Figure 3.21: Fitting planes on planar 3D points in ATC based SfM on TD2. The blue and green
points show inliers in the planes P1 and P2. Points in magenta are outliers.

3.7.5 Computational E�ciency

The last column of the table 3.1 shows the CPU time utilized in hours to compute the clusters
for various matching schemes. The values of the column are plotted in �gure 3.22. Each bar in
the diagram is tagged with the number in the �rst column of the table. Height of a bar indicates
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Scheme Inlier ratio RMSD
P1 P2 P1 P2

B 0.7 0.91 0.95 1.78 1.50
B 0.8 0.90 0.95 1.89 1.48

K 1500 0.91 0.96 1.79 1.36
K 2000 0.94 0.96 1.69 1.51
K 2500 0.92 0.89 1.81 1.92
K 3000 0.91 0.95 1.74 1.55
K 3500 0.91 0.93 1.76 1.61
K 4000 0.91 0.93 1.75 1.56
K 4500 0.92 0.93 1.71 1.65
K 5000 0.91 0.93 1.80 1.62
K 5500 0.90 0.92 1.81 1.64
K 6000 0.91 0.93 1.85 1.67
K 7000 0.90 0.91 1.94 1.72
K 7500 0.91 0.91 1.82 1.68
K 8000 0.90 0.91 1.89 1.75
K 8500 0.91 0.91 1.81 1.70
K 9000 0.89 0.90 1.92 1.81
K 10000 0.91 0.90 1.95 1.74
K 10500 0.88 0.90 1.93 1.80
K 12000 0.89 0.90 1.98 1.77
K 12500 0.88 0.90 1.99 1.75
K 13000 0.87 0.88 2.00 1.85
K 13500 0.87 0.88 2.05 1.83
K 14500 0.87 0.89 2.02 1.79

G 60 0.90 0.91 2.04 1.69
G 70 0.92 0.92 1.94 1.65
G 80 0.93 0.94 1.87 1.65
G 90 0.91 0.94 1.84 1.62
G 110 0.90 0.97 1.76 1.53
G 120 0.91 0.96 1.78 1.55
G 130 0.92 0.96 1.77 1.53

U 125 0.92 0.91 1.99 1.71
U 150 0.90 0.90 1.99 1.90
U 175 0.91 0.95 1.79 1.56
U 200 0.91 0.95 1.79 1.57
U 225 0.90 0.95 1.75 1.55
U 275 0.88 0.92 1.79 1.71

T 100 0.89 0.90 2.07 1.68
T 125 0.90 0.91 2.01 1.68
T 150 0.90 0.94 1.98 1.75
T 175 0.88 0.92 1.92 1.57

A 0.92 0.93 1.91 1.65

Table 3.2: Planarity of the 3D points in TD1. The �rst column shows the clustering scheme.
Columns 2 and 3 show the ratio of inlying 3D points i.e. ratio of 3D points which are within 5
centimeters from the planes P1 and P2 respectively. The last two columns show the root-mean-
squared distance (RMSD) of the inlying 3D points in the two planes P1 and P2 respectively.
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the time taken to complete clustering. Results indicate that standard SIFT keypoint matching
(numbered 1 to 3) and transitive closure based schemes (numbered 34 to 39) are the fastest
followed by k-means based techniques (numbered 4 to 20). Mean-shift (numbered 21 to 33) is
the slowest clustering scheme in which some (eg: 24 corresponding to G 80) take nearly 10 times
the duration for ATC.
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Figure 3.22: Time taken in hours for various clustering schemes presented in table 3.1

3.8 Conclusion

Our experimental results show that ATC based matching is better suited for SfM in many ways.
The pruning stage removes many of the repetitive patterns (section 3.7.1) due to which the 2D
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matches between images contains few outliers (�gure 3.17). Due to the adaptive nature of the
matching range, ATC is able to provide large number of acceptable matches for image pairs with
wide baseline (table 3.1). This enables us to perform SfM under challenging conditions (�gure
3.19) and provides a 3D map with large descriptor participation and long 2D-tracks (�gure 3.20).
The quality of 3D map did not decrease with the increased feature participation (table 3.2). It is
relatively fast, especially, when compared to mean-shift (�gure 3.22) clustering. Unlike k-means
we need not know the number of clusters apriori to apply ATC. Due to the adaptation using
multiple matching thresholds, ATC is less sensitive to the clustering parameter unlike mean-shift
and TC. This reduces the task of choosing the right parameter values suitable for a particular
situation.
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Chapter 4

3D point recognition and pose

estimation

In the previous chapter we described di�erent ways of visual word formation through clustering
the training vectors. We then associated 3D points with some of the clusters through SfM. In
this chapter we present the test stage of the two stage framework i.e. we experiment with di�er-
ent ways to recognize visual words in order to identify the associated 3D points in a given test
image. After performing SfM we have a set of N training SIFT descriptors D = {x1, x2, ..., xN}
and a set of n 3D points Q = {Q1, Q2, ..., Qn} in which each 3D point Qi is associated with an
exclusive set of SIFT descriptors DQi ⊂ D. For each vector xt in the set of test SIFT descriptors
Dt extracted from 2D locations of a test image, we use the elements of D to match xt with the
3D points in Q. The 2D-to-3D matches thus obtained are used to compute pose using RANSAC
based PnP algorithms described in chapter 1.

We can de�ne a class label function ω which associates each element in the training set D
with the ID of the corresponding 3D point. That is, for a training vector x ∈ D, ω(x) = i if x is
associated with 3D point Qi ∈ Q. If x is not associated with any 3D point then ω(x) = −1. Now,
visual word recognition can be considered as a supervised pattern classi�cation (SPC) problem
[30] in which we have to decide whether a new test SIFT vector xt belongs to any of the class in
the training set. Using SPC framework we experiment with dimensionality reduction and learn-
ing discriminant functions for 3D point recognition. Matching with all the training vectors in D
is computationally expensive. Hence, in addition to D we experiment with two di�erent training
sets derived from D, (i) the set of training vectors associated with 3D points D3D is obtained
by union ∪Q∈QDQ (ii) the set of centers of visual words associated with 3D points Dcc. The
elements of D3D and Dcc are also labelled in the same way as D. The elements of D3D and Dcc

are dependent on the association of training SIFT descriptors with the 3D points. Depending
on the clustering scheme used during training stage, this association may di�er from each other.
Hence, even for the same training set, we may obtain di�erent D3D and Dcc for di�erent clus-
tering schemes. Descriptors in D is same for a training set irrespective of the clustering scheme
used during training stage.

4.1 Experimental framework

We can assess the outcome of the test stage at two levels, (i)accuracy of 3D point recognition and
(ii)accuracy of pose estimation. Accuracy of pose estimation is dependent on the classi�cation
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accuracy during 3D point recognition. But, due to the RANSAC step which can tolerate few
outliers, we may not �nd much di�erence in the estimated pose even if some of the test SIFT
descriptors in Dt are misclassi�ed. In addition, the accuracy of the estimated coordinates of the
matched 3D points may in�uence the accuracy of estimated pose. In both cases (i.e. recognition
and pose estimation) we need ground truth information in order to evaluate the performance.
It is relatively easier to obtain the ground truth camera positions for evaluating the accuracy of
pose estimation than to obtain actual value of ω on the test descriptor vectors in Dt. In our
experiments we mainly evaluate the accuracy of pose estimation. When we need to evaluate
accuracy of 3D point recognition, we obtain the class label for the descriptors in test images by
running the training stage in which test vectors are included along with the train vectors while
performing clustering and SfM.

Our MPG data set (described in section 3.5.1, camera tracks are shown in this chapter once
again in �gure 4.2), in which we know the path traced by the camera in the set of test images,
is very much suitable for evaluating the quality of pose estimation. In MPG, the images in
di�erent training sets have di�erent degree of scene overlap and pose variation with the test
images. It is di�cult to produce a suitable train-test pair for pose estimation from IDOL[71] and
RoboImage[7] data sets (described in section 3.5.2). There are very few portions in the IDOL
environment which contain texture information for extracting su�cient point features. As we
can see in the SfM results in �gure 3.19, within such textured portions only ATC based match-
ing succeeded in producing reasonable reconstruction through SfM. In RoboImage dataset every
image covers almost the whole scene (please refer the �gure 3.14) and it results in large number
of inlying 2D-to-3D matches for all clustering schemes. It is di�cult to produce test cases to
di�erentiate various matching schemes based on the accuracy of pose estimation.

4.1.1 Pose estimation on MPG

From each test image in MPG, we extract SIFT descriptors by doubling the size of the image.
From �gure 4.2 it is clear that in most of the cases the test camera positions are relatively
far from the objects in the scene when compared to the train images. By doubling the size
we add an additional octave to the DoG pyramid while extracting SIFT descriptors (section
2.1.1) through which we hope to compensate for the scale di�erence between test and train
images. After obtaining the purported 2D-to-3D matches we compute pose through RANSAC
based PnP using the threshold of 1 pixel on reprojection error for determining the consensus
set. This threshold value is chosen based on the reprojection errors of 3D points on the training
images, which were generally less than 1 pixel. We run 500 RANSAC iterations for TD2, TD3,
TD5 and TD6. For TD1 and TD4 the overlap with test data is very less. We obtain many
incorrect matches from non-overlapping regions due to the repetitive patterns. Hence we use
2500 RANSAC iterations. In our experience, increasing the number of RANSAC iterations did
not yield further improvement in the accuracy of the pose. For training sets TD1, TD2 and
TD4 the predominant common visible portion of the environment with the test data is planar.
Hence we use DLSPnP (section 1.6.2) to compute pose. DLSPnP is slow because the currently
available implementation is in MATLAB. For the rest of the training sets i.e. TD3, TD5 and TD6
we use EPnP (section 1.6.1). In [51], in each RANSAC iteration, after randomly choosing the
�rst sample from the set of candidate matches, the subsequent samples are chosen considering
only the candidate matches in which the 3D point is co-visible with the 3D point in the �rst
sample in at least one of the training images. In [31], additional strategies like prioritizing the 3D
points with longer 2D-track and those which were detected in the temporally close test images
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in the past are used while selecting the sample set. We do not employ any such strategy while
randomly sampling the candidate matches. While using TD1 and TD4 for training we employ
an additional condition for choosing the optimal set of inliers at the end of each iteration. We
provide preference to the set containing candidate matches whose 2D locations are widely spread
over the test image as will be explained in section 4.2.3.1.

4.1.1.1 Evaluating the accuracy of pose estimation on MPG

We use the ground truth information of the camera positions in the MPG test set to evaluate
the pose accuracy as follows. Let CGT = {C1, C2...Cnt} and CEst = {C ′

1, C
′
2...C

′
nt} are ground

truth and estimated 3D camera positions respectively where nt is the number of images in the
test data (which is 32 for MPG). Using the closed form solution in [49], we �nd the optimal
similarity transformation (translation, rotation and scale) of points in CEst which minimizes the
sum of distances between the respective elements of CGT and CEst. After applying this similarity
transformation on CEst, we measure the error as∑nt

i ||Ci − C
′
i ||

ntrt
(4.1)

where rt is the radius of the circular trajectory of the camera positions in the test sequence.
Figure 4.1 shows examples of estimated camera poses and the error values with respect to the
ground truth.

4.1.2 Successive elimination of reconstruction/recognition strategies

Each 3D point recognition strategy we employ in our experiments should be applied on each
clustering scheme used to build 3D map during training stage. The number of di�erent combina-
tions of recognition strategies at test stage and clustering schemes at training stage is very huge.
It is di�cult to perform recognition and pose computation for all those combinations. Hence, we
run our experiments in multiple stages, reducing the combination of parameters at each stage
based on the performance in the previous stages. From �gure 4.2 we can see that performing
pose computation using 3D maps from datasets TD3, TD5 and TD6 is less challenging when
compared to that with TD1, TD2 and TD4. Besides, with TD3, TD5 and TD6 we can compute
pose quickly using RANSAC based EPnP where as we have to use slow DLSPnP with TD1, TD2
and TD4 due to the predominant planar shape of the 3D map. Hence, we �rst evaluate pose
estimated using 3D point recognition in SIFT descriptor space by applying various matching
rules on 3D maps built from datasets TD3, TD5 and TD6. We discard those combinations of
clustering schemes and 3D point recognition rules whose pose accuracy is not close enough to the
best performing combination. We execute the slow RANSAC based DLSPnP for pose estimation
using TD1, TD2 and TD4 for only the retained set of combination of parameters. Using the
outcome of these experiments we choose one of the clustering schemes for experimenting with
statistical learning methods. We evaluate the performance of 3D point recognition on RoboImage
dataset. Based on the recognition performance we choose one of the statistical learning methods
to learn 3D point recognition on MPG dataset and evaluate its pose accuracy.

4.1.3 Organization of the chapter

In the �rst set of experiments presented in section 4.2, we apply recognition techniques on test
descriptors in the SIFT descriptor space. In section 4.3 we employ statistical learning techniques
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Figure 4.1: Illustration of pose error computed through equation 4.1: The black track is obtained
by connecting the ground truth camera positions. Track in magenta shows the estimated camera
positions for test images numbered 1 to 32. The estimated camera positions are �t to the ground
truth using [49]. The error values are indicated below each image. Sub�gure (a) and (b) show
the con�gurations corresponding to pose error of 2.4% and 22% respectively. Sub�gure (c) shows
the case when accuracy of pose estimation is poor and gross errors occur for some test images
(image number 28).
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for classi�cation. As mentioned above, we successively narrow down di�erent clustering schemes
and matching rules in each stage by using the results of the previous stages. Hence the overview
of the �ow of our experiments are described at the respective stages in this chapter. Finally in
section 4.4 we present conclusions we derive from these experiments.

4.2 Recognition in SIFT descriptor space

In the SIFT descriptor space we mainly use two recognition techniques to classify xt:

1. NNT (Nearest Neighbor and Threshold) : Let xnn1 be the closest training vector to xt in
the training set. If ||xt−xnn1||2 is less than a threshold and ω(xnn1) 6= −1, then we assign
class label ω(xnn1) to xt. We use threshold values {175, 200, 225, 250, 275, 300}.

2. NNR: (Ratio of distances from two nearest neighbors) : Let xnn1 be the closest training
vector to xt in the training set. Let xnn2 be the closest training vector such that ω(xnn2) 6=
ω(xnn1). If ω(xnn1) 6= −1 and the ratio ||xt−xnn1||2||xt−xnn2||2 is less than a threshold then we assign
class label ω(xnn1) to xt. We use threshold values {.6, .7, .8}.

For MS (mean-shift) and ATC based 3D maps we perform an additional recognition technique.
For MS, we perform mean-shift iteration (with the same parameters used during training) for
each xt and classify it to the label of the closest training mode if it lies at a distance of ε2 (section
3.6.1) from the mode of xt. For ATC we match xt with xnn1 in a similar way as in NNT. But,
instead of using a �xed threshold we use the adative threshold used while performing ATC during
training to obtain the cluster to which xnn1 belongs.

We use the above recognition strategies with each of the three training sets namely D, D3D

and Dcc. Hence, each pose estimation result on the test images of MPG dataset are associated
with one set of training images (TD1 to TD6), visual word formation scheme (identi�ed by the
label described in section 3.7), training set for recognition (D, D3D or Dcc) and one of the recog-
nition methods described in this section. For example, a scheme [TD1 G 100 Dcc NNR .8] refers
to the scheme in which visual words computed using G 100 on training images in TD1 are used
to obtain matches for test images using NNR method with threshold .8 on Dcc.

In the next section (4.2.1) we present the result of pose estimation by using TD3, TD5 and
TD6 as training images. We evaluate the accuracy of pose estimation for various combinations
of parameters in visual word formation and recognition. Using these results we choose a signif-
icantly smaller subset of these parameters based on the observation described in section 4.2.2.
Then we evaluate pose computation on training images TD1, TD2 and TD4 (for which we have
to use slow DSLPnP method for computing pose) using only the reduced set of parameters.

4.2.1 Results on TD3, TD5 and TD6

The result of pose computation using TD3, TD5 and TD6 are shown in tables 4.2, 4.3 and 4.4
respectively. The table entries show the error (in percentage) computed using equation 4.1. Since
the radius rt of the circular trajectory of camera positions in the set of test images of MPG is
42.5 centimeters, 2 to 3 percent of error corresponds to nearly 1 centimeter of shift in estimated
test camera positions on average. In tables 4.2, 4.3 and 4.4 columns 3 to 5 show the results
corresponding to recognition of test SIFT descriptor vectors through NNT with D, D3D and Dcc

respectively. The columns 6 to 8 show the corresponding values for NNR. The last column shows
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Figure 4.2: Camera tracks in the sequences captured for experiments.
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the pose estimation error for the additional recognition technique on MS and ATC (described in
the beginning of section 4.2). For rows corresponding to visual word formation schemes other
than MS and ATC the last column is left blank. We show only the values corresponding to those
visual word formation techniques which manage to provide less than 10% error in at least one of
the recognition strategies. In order to �t all the columns of the table in a single page, for NNT
and NNR, we show only the values corresponding to the threshold parameter which gives the
least error within a recognition method. For example in table 4.2 the cell corresponding to 5th
column of row number 17 (with value 6.1/225) corresponds to test vector recognition using the
Dcc of SfM obtained through G 100 (gaussian mean-shift based visual word with sigma = 100).
The recognition strategy corresponding to the cell is NNT (which uses 6 di�erent thresholds
{175, 200, 225, 250, 275, 300}) in which 6.1 is the minimum pose estimation error obtained by the
threshold value 225. In the three tables (4.2, 4.3 and 4.4), value in bold letters indicate the best
(i.e. least error) in each row. The gray shaded cells indicate the best value in the column. Cell
in the red shade indicate the best value in the table. Based on the results in these tables we
make following observations.

No advantage in mean-shift or adaptive thresholding : The values in the last column
of each table indicate that there is no signi�cant advantage in running mean-shift iteration or
using adaptive threshold strategies for recognition. The entries in the last column rarely contain
the best of the respective rows and even when they do the di�erence with the second best is less
than 1%.

No scheme is absolutely better : The results indicate that none of the methods are absolutely
better over the rest in rows or columns (i.e. in di�erent visual word formation or recognition
schemes). For example in table 4.3, the accuracy of NNR on Dcc using K 7500 clustering scheme
(value 2.7/0.8 in row number 17, column 8) is better than that of T 175 (value 3.9/0.7 in row
number 58, column 8). But in table 4.4, T 175 performs (value 3.5/0.8 in row numbered 58,
column 8) better than K 7500 (value 8.1/0.8 in row 17, column 8). Still, we can see that ATC
based clustering scheme provides either the best or very close to the best performance. We will
discuss about this further in section 4.2.2.

Using Dcc we can perform matching much faster without signi�cant loss in accu-
racy: If we compare the values corresponding to the columns using Dcc (columns 5 and 8)
with rest, we can see that there is no signi�cant loss in accuracy by retaining only the center
of clusters corresponding to the visual words. Sometimes (eg: Row number 56 corresponding to
T 125 of table 4.2) they provide slightly better accuracy than matching with D and D3D . But
performing matching with Dcc is much faster when compared to that with D and D3D . Table
4.1 shows the average CPU time taken per test image for matching the test descriptors with the
training descriptors in TD5 using fast nearest neighbor search [79]. For all the rows except the
last one, the matching is performed with whole training set of descriptors D. Last row shows the
time needed for computing two nearest ATC cluster centers in Dcc. The �rst two rows show the
time needed for computing �rst nearest neighbor and 101 nearest neighbors respectively. Subse-
quently each row indicates the time needed for matching the descriptors in a test image through
Gaussian (indicated with label G) and Uniform (indicated with label U) mean-shift operation.
For performing NNT we need only the �rst nearest neighbor for each test descriptor. For D
it takes 17.9 seconds as indicated by the �rst row 'NN 1' of the table. We have observed that
computing the �rst nearest neighbor from D3D also takes similar amount of time (14 seconds for
D3D from ATC). For performing NNR based matching we need two nearest neighbors belonging
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to di�erent clusters. Hence we cannot use fast nearest neighbor search directly by computing
�rst two nearest neighbors as they may belong to the same cluster. We compute 101 nearest
neighbors using fast nearest neighbor search. We found this to be faster than performing linear
search to �nd the second nearest neighbor from a di�erent cluster. For example, it took 95 sec-
onds for computing two nearest neighbors from two di�erent clusters of D3D obtained from ATC
on TD5 through linear search. If all of the 101 nearest neighbors obtained through fast nearest
neighbor search belong to the same cluster then we label the test vector with the class of the �rst
nearest neighbor. Otherwise we apply the NNR matching threshold using the closest neighbor
among the 101 neighbors which belongs to a di�erent cluster than the �rst nearest neighbor. In
our experiments we did not encounter a case in which this alternative strategy gives a di�erent
classi�cation. Based on the cost of �nding the �rst nearest neighbor, we can say that performing
NNT and NNR on D and D3D takes at least 14 seconds per image. From the table 4.1, we can
see that mean-shift is even more costlier in all the cases. The last row indicates that the time
taken for computing two nearest neighbors from Dcc is just 1.3 seconds per image. Hence, we
can say that matching with Dcc is at least 10 times faster than the rest of the matching rules.

4.2.2 Eliminating combination of clustering and recognition schemes from
available result

We have nearly 50 to 60 di�erent clustering schemes for each training data during training stage.
For each clustering scheme we experimented with 27 di�erent recognition rules ( 6 NNT thresh-
olds and 3 NNR thresholds on D, D3D and Dcc). Hence for each training set we perform pose
estimation nearly 1500 times. The speed of EPnP (3 to 4 images per second) enables us to �nish
these experiments in reasonable time. But the currently available implementation of DLSPnP
takes nearly a minute per test image to perform pose estimation with 2500 trials per RANSAC.
Hence we use the available results on TD3, TD5 and TD6 to reduce the number of methods.

Due to the huge advantage in recognition speed without losing signi�cant accuracy, we use
only Dcc in our experiments on TD1,TD2 and TD4. We also discard the clustering schemes
which did not perform well in on TD3, TD5 and TD6 and for each retained clustering scheme
we use an optimal recognition strategy based on the following assessment. We �nd the best
accuracy for each training data (TD3, TD5 and TD6) using Dcc. For example in table 4.2, this
value is is 4.6 (row number 56, column 8 corresponding to T 125). Then for each recognition
scheme using Dcc we �nd the di�erence of its pose error from the best value. We calculate the
maximum of this value i.e. di�erence with the best across TD3, TD5 and TD6. For example,
for the scheme [TD3 ATC Dcc NNR .8] (last row column 8 of table 4.2), the di�erence with
the best is 5.2 − 4.6 = .6%. In TD5 (value is not displayed in the table 4.3 because threshold
.6 outperforms .8) and TD6 this di�erence is even less. Hence the maximum di�erence for the
recognition scheme [ATC Dcc NNR .8] from the best accuracy across the data sets is .6%. Table
4.5 shows the result of this calculation for di�erent schemes. We have showed only those visual
word formation schemes which have at least one case with less than 5% error for table 4.5. The
values in the bold digits show the best in each row, gray shaded cells correspond to the best
in the column and red shade indicates the best of all. We can see that ATC provides the least
maximum di�erence with the best pose accuracy across the three di�erent datasets (TD3, TD5
and TD6).
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Matching CPU time
Rule in seconds

NN 1 17.9
NN 101 36.6
G 60 132.2
G 70 217.9
G 80 356.5
G 90 473
G 100 597
G 110 783
G 120 1636
G 130 1820
U 125 18.3
U 150 43.3
U 175 79
U 200 139
U 225 232
U 250 503
A Dcc NN 2 1.3

Table 4.1: Duration in seconds of CPU time per test image for matching test descriptors with
the 3D map from TD5. Fast nearest neighbor search [79] is used in all the computations. For all
the rows except the last one, the matching is performed with whole training set of descriptors
D. Last row shows the time needed for computing two nearest ATC cluster centers in Dcc.
The �rst two rows corresponding to matching rule 'NN1' and 'NN101' show the time needed
for computing �rst nearest neighbor and 101 nearest neighbors respectively. Subsequently each
row indicates the time needed for matching the descriptors in a test image through mean-shift
operation. Labels G and U in the �rst column of a row indicate Gaussian and Uniform mean-shift
kernel respectively and the number next to the label indicates the parameter.
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NNT NNR MS/A
Scheme D D3D Dcc D D3D Dcc

2 B 0.7 6.1/200 7.8/250 6.8/225 5.6/0.8 5.5/0.8 6.0/0.8 -

4 K 1000 8.0/250 8.4/175 7.8/200 12.1/0.8 11.1/0.7 11.5/0.7 -
5 K 1500 10.1/225 11.6/200 9.6/200 11.9/0.8 10.8/0.7 11.3/0.6 -
6 K 2000 6.1/225 6.5/175 6.9/225 7.2/0.8 7.5/0.8 7.6/0.7 -
7 K 2500 5.3/225 5.6/175 6.2/175 6.0/0.8 6.3/0.7 5.8/0.7 -
8 K 3000 6.0/175 6.6/175 6.4/175 7.2/0.8 6.0/0.7 7.4/0.8 -
9 K 3500 6.3/275 7.9/200 7.6/175 6.1/0.8 6.3/0.8 5.8/0.8 -
11 K 4500 5.9/175 6.4/200 5.9/175 6.3/0.8 6.4/0.8 6.9/0.8 -
12 K 5000 5.5/175 5.3/175 5.1/175 7.4/0.8 6.4/0.7 7.0/0.7 -
15 K 6500 5.5/175 6.3/175 6.5/200 6.8/0.7 7.5/0.8 6.5/0.8 -
16 K 7000 7.7/200 9.1/175 9.5/200 7.6/0.8 8.5/0.8 8.0/0.8 -
17 K 7500 6.6/225 7.2/175 7.9/175 7.7/0.8 7.5/0.7 6.9/0.8 -
18 K 8000 5.9/200 6.9/200 7.5/175 6.1/0.8 6.5/0.7 7.7/0.7 -
19 K 8500 7.5/175 8.3/175 10.8/175 8.8/0.8 10.3/0.8 8.2/0.8 -
20 K 9000 9.3/175 11.2/175 9.7/200 9.3/0.8 9.5/0.8 8.6/0.8 -
21 K 9500 8.1/200 8.8/175 7.8/175 9.1/0.8 8.8/0.8 8.6/0.8 -

34 G 40 10.3/250 9.7/200 9.0/175 13.6/0.7 11.3/0.6 8.9/0.8 -
35 G 50 6.1/175 6.4/175 5.5/175 7.5/0.8 6.3/0.8 6.4/0.8 -
36 G 60 5.7/225 5.8/175 6.1/200 6.7/0.8 5.8/0.8 6.8/0.8 6.5
37 G 70 4.2/225 5.3/175 6.3/175 4.6/0.8 4.6/0.8 4.8/0.8 5.9
38 G 80 5.0/175 4.7/175 5.2/200 5.0/0.8 4.6/0.8 4.6/0.8 5.2
39 G 90 7.6/250 8.2/225 8.0/225 6.1/0.8 6.4/0.8 7.2/0.8 9.1
40 G 100 5.0/225 6.5/225 6.1/225 5.9/0.7 6.2/0.6 5.0/0.8 6.1
41 G 110 6.4/275 5.2/200 6.3/200 5.4/0.7 5.9/0.7 6.8/0.8 7.1
42 G 120 5.0/225 5.9/225 5.6/250 5.1/0.8 5.2/0.7 5.1/0.7 8.6
43 G 130 5.8/250 5.6/225 6.5/225 4.8/0.7 5.7/0.7 6.3/0.7 8.1

45 U 100 5.9/175 6.9/200 6.6/200 8.9/0.8 5.7/0.8 7.2/0.8 9.6
46 U 125 5.3/200 6.1/200 7.9/175 6.4/0.8 6.1/0.7 5.9/0.8 7.1
47 U 150 5.1/250 5.6/175 6.2/200 6.3/0.8 5.8/0.8 5.9/0.8 6.0
48 U 175 5.0/225 5.2/200 5.1/200 5.7/0.8 5.4/0.8 5.3/0.7 6.7
49 U 200 4.4/200 4.8/225 5.2/225 5.6/0.8 5.0/0.8 5.1/0.7 5.8
50 U 225 5.0/250 6.3/200 6.4/175 6.2/0.8 7.4/0.8 7.0/0.7 5.7
51 U 250 5.8/225 7.6/250 6.8/250 6.7/0.7 5.9/0.7 6.1/0.7 7.2
52 U 275 6.3/275 7.4/250 6.8/225 6.3/0.8 6.8/0.8 6.9/0.7 7.5

55 T 100 5.9/175 6.3/200 6.8/175 6.0/0.8 5.1/0.7 5.4/0.8 -
56 T 125 4.9/200 5.5/200 7.0/200 4.8/0.8 5.5/0.6 4.6/0.7 -
57 T 150 4.5/225 6.1/200 6.1/200 4.5/0.8 5.2/0.8 5.0/0.8 -
58 T 175 4.5/250 4.9/200 4.8/225 4.2/0.8 3.2/0.7 5.4/0.7 -
59 T 200 5.0/275 5.0/225 5.6/225 4.6/0.8 5.2/0.7 5.4/0.8 -
60 T 225 5.3/250 6.5/225 6.6/250 6.3/0.8 6.7/0.8 7.7/0.7 -
61 T 250 5.5/225 6.5/250 5.6/250 6.5/0.8 5.1/0.6 7.1/0.7 -

65 A 4.8/225 6.6/175 7.0/175 4.3/0.8 5.1/0.8 5.2/0.8 5.0

Table 4.2: Pose Estimation by using TD3 for training. In the second column of each row
'L p' represents clustering scheme during training stage labelled as 'L' with p as its parameter.
Label 'L' can be G, U, T, A, B, K representing Gaussian mean-shift, Uniform mean-shift, range
based TC, ATC, standard SIFT keypoint matching and k-means based clusters respectively.
Each column heading indicates the matching rule used during the test stage. NNT indicates
thresholded nearest neighbor, NNR indicates ratio of distances from two nearest neighbors, MS
indicates mean-shift operation with the same parameter used during training and A indicates
adaptive thresholding. Each entry in the cell is in the form x/y where x is the pose error
in percentage computed using equation 4.1 and y is the parameter of for the matching rule
indicated by column heading. The values in bold faced letter and gray shaded cells indicate the
least error in the corresponding row and column respectively. The red shaded cell contains the
best result in the table.
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NNT NNR MS/A
Scheme D D3D Dcc D D3D Dcc

1 B 0.6 2.3/200 2.9/200 2.8/225 2.4/0.8 2.4/0.8 2.6/0.7 -
2 B 0.7 3.1/200 3.5/200 3.3/200 3.3/0.8 3.2/0.6 3.1/0.7 -
3 B 0.8 4.6/250 5.9/175 4.7/175 5.8/0.8 4.2/0.7 3.8/0.6 -

5 K 1500 5.6/175 5.5/200 5.7/200 5.3/0.8 6.0/0.6 5.3/0.8 -
6 K 2000 6.8/225 6.8/175 7.3/175 6.3/0.6 7.5/0.6 5.9/0.6 -
7 K 2500 4.1/200 5.5/200 5.0/200 3.5/0.7 4.2/0.7 3.7/0.6 -
8 K 3000 3.5/250 4.4/175 4.1/200 3.4/0.7 4.0/0.6 3.7/0.7 -
9 K 3500 3.2/250 4.2/175 3.6/200 4.1/0.8 4.0/0.7 3.2/0.8 -
10 K 4000 2.5/225 3.1/175 2.7/175 2.9/0.8 2.9/0.8 2.7/0.8 -
11 K 4500 7.9/225 6.7/175 7.0/175 8.7/0.8 9.1/0.7 8.1/0.8 -
12 K 5000 3.6/200 4.3/225 4.1/200 3.1/0.8 3.6/0.6 3.3/0.7 -
13 K 5500 3.7/175 5.6/200 4.5/175 5.0/0.7 4.5/0.7 4.6/0.7 -
14 K 6000 4.8/175 4.9/175 5.5/200 3.7/0.7 3.9/0.6 4.4/0.8 -
15 K 6500 2.8/200 3.0/200 3.2/200 3.0/0.7 2.7/0.8 2.4/0.7 -
16 K 7000 3.8/225 4.0/175 3.9/200 3.8/0.8 3.7/0.7 3.8/0.7 -
17 K 7500 3.2/200 3.6/225 3.2/225 4.1/0.8 3.4/0.8 2.7/0.8 -
18 K 8000 4.2/225 4.3/175 4.0/225 4.3/0.7 4.1/0.7 4.3/0.8 -
19 K 8500 3.3/225 3.6/200 4.9/225 3.4/0.8 3.5/0.8 3.6/0.7 -
20 K 9000 4.2/225 5.8/225 4.9/250 4.1/0.8 4.8/0.8 5.3/0.7 -
23 K 10500 3.0/250 4.0/200 3.6/175 3.2/0.8 4.1/0.8 3.2/0.8 -
25 K 11500 2.3/225 2.7/200 2.4/225 2.5/0.8 2.1/0.8 2.8/0.8 -
26 K 12000 3.2/275 3.7/250 4.3/200 3.9/0.8 3.8/0.8 4.0/0.8 -
27 K 12500 4.2/200 6.0/175 5.4/225 3.9/0.8 4.0/0.7 4.1/0.7 -
28 K 13000 3.4/225 3.6/200 4.1/225 3.5/0.7 3.2/0.8 3.4/0.8 -

34 G 40 7.0/275 4.7/175 4.5/175 18.4/0.8 5.8/0.7 5.6/0.8 -
36 G 60 3.0/275 3.2/175 3.0/250 3.3/0.8 2.7/0.7 3.2/0.7 3.2
37 G 70 2.4/175 2.7/175 2.6/175 2.7/0.8 2.5/0.7 3.0/0.7 2.3

38 G 80 2.2/225 2.5/175 2.4/175 2.3/0.7 2.1/0.7 2.4/0.8 2.7
39 G 90 2.5/250 2.6/200 2.7/225 2.4/0.7 2.5/0.8 2.4/0.8 2.7
40 G 100 2.2/250 2.5/200 2.1/175 2.0/0.8 2.3/0.7 2.2/0.8 2.5
41 G 110 2.3/275 2.4/200 2.3/225 2.5/0.8 2.4/0.7 2.1/0.8 2.3
42 G 120 2.1/200 2.3/175 2.1/225 2.5/0.8 2.2/0.7 2.1/0.7 2.5
43 G 130 3.5/300 3.1/175 3.4/275 2.9/0.6 3.4/0.7 3.1/0.6 3.5

47 U 150 2.3/250 2.5/175 2.3/175 2.3/0.8 2.1/0.7 2.3/0.7 3.0
48 U 175 1.9/225 2.5/225 2.3/225 1.9/0.8 2.2/0.8 2.4/0.7 2.5
49 U 200 2.1/225 2.3/200 2.4/200 2.8/0.7 2.6/0.8 2.4/0.7 2.4
50 U 225 1.9/225 2.3/225 2.0/175 2.6/0.7 2.2/0.7 2.3/0.7 2.3
51 U 250 2.3/175 2.3/200 2.6/250 2.6/0.6 2.3/0.8 2.8/0.7 2.6

54 T 75 5.7/200 5.1/175 4.8/175 7.5/0.8 4.7/0.8 5.5/0.7 -
55 T 100 1.9/200 2.3/200 2.4/225 2.4/0.8 2.2/0.8 2.2/0.7 -
56 T 125 2.0/200 2.0/175 2.2/225 2.0/0.7 1.9/0.8 2.1/0.7 -
57 T 150 1.9/275 2.2/175 2.1/175 2.1/0.8 1.8/0.8 2.0/0.6 -
58 T 175 4.3/250 4.4/175 4.3/225 4.3/0.7 4.4/0.8 3.9/0.7 -
59 T 200 2.4/225 2.7/200 3.0/225 2.8/0.6 2.7/0.7 2.9/0.6 -
60 T 225 2.8/250 2.9/225 3.1/250 2.7/0.8 2.9/0.8 3.3/0.7 -

65 A 2.4/225 2.5/200 2.5/175 2.4/0.7 2.4/0.8 2.3/0.6 2.5

Table 4.3: Pose Estimation by using TD5 for training
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NNT NNR MS/A
Scheme D D3D Dcc D D3D Dcc

2 B 0.7 4.6/250 5.8/175 4.9/175 3.7/0.8 3.3/0.8 3.4/0.8 -

7 K 2500 5.9/200 4.9/175 8.8/175 5.4/0.8 6.3/0.7 6.2/0.7 -
8 K 3000 11.0/200 11.4/175 13.7/200 10.2/0.8 9.7/0.7 10.7/0.7 -
10 K 4000 5.5/200 7.6/175 8.1/200 5.8/0.8 4.8/0.7 4.9/0.8 -
11 K 4500 4.6/175 4.9/175 6.6/175 4.1/0.8 4.7/0.8 5.3/0.8 -
12 K 5000 5.3/250 6.3/175 6.0/200 5.8/0.7 5.4/0.8 5.3/0.8 -
13 K 5500 4.9/225 5.5/175 5.6/200 5.5/0.8 5.2/0.8 5.4/0.8 -
14 K 6000 5.0/200 6.0/175 6.5/175 4.4/0.8 4.4/0.7 6.2/0.8 -
15 K 6500 4.3/225 5.9/175 6.8/175 4.5/0.8 5.4/0.7 6.0/0.8 -
17 K 7500 8.8/275 9.5/200 10.0/225 8.4/0.8 9.2/0.8 8.1/0.8 -
18 K 8000 4.5/200 5.2/200 4.8/175 4.1/0.8 4.3/0.8 5.8/0.7 -
19 K 8500 6.0/250 5.9/200 6.0/175 4.7/0.8 5.1/0.8 6.2/0.8 -
20 K 9000 9.1/200 16.8/175 18.8/200 8.6/0.8 8.3/0.7 8.3/0.8 -
21 K 9500 4.7/200 5.8/200 5.5/175 4.0/0.8 4.5/0.8 4.8/0.8 -
22 K 10000 4.4/200 5.0/175 5.4/175 4.7/0.8 3.7/0.8 4.7/0.8 -
23 K 10500 4.2/200 5.7/175 5.5/175 5.7/0.8 4.9/0.8 5.5/0.8 -
24 K 11000 4.1/200 5.4/175 6.7/200 5.5/0.8 6.2/0.7 5.1/0.8 -
26 K 12000 3.6/175 4.6/175 5.0/175 4.3/0.8 4.5/0.8 5.1/0.8 -
27 K 12500 4.1/225 5.3/200 4.5/175 4.0/0.8 4.5/0.8 5.0/0.8 -
28 K 13000 7.6/200 8.7/250 8.2/250 7.9/0.8 9.0/0.8 9.3/0.8 -

35 G 50 6.2/200 10.7/175 10.3/175 8.4/0.8 9.1/0.7 8.7/0.8 -
36 G 60 3.7/200 4.6/175 5.1/175 4.1/0.8 4.3/0.7 4.5/0.8 3.9
37 G 70 3.4/200 4.3/200 4.1/175 3.8/0.8 2.8/0.8 3.8/0.8 3.8
39 G 90 4.3/175 4.0/175 4.7/175 4.5/0.8 3.9/0.8 5.0/0.8 6.1
40 G 100 4.4/225 4.8/200 5.6/200 4.0/0.7 3.8/0.8 5.2/0.8 6.1
41 G 110 4.2/175 4.2/175 4.3/200 4.6/0.8 3.9/0.8 4.7/0.7 6.8
42 G 120 3.9/225 4.4/225 4.9/250 4.5/0.8 4.6/0.7 4.9/0.8 14.4
43 G 130 3.1/250 3.3/250 3.3/275 3.6/0.8 3.7/0.8 3.7/0.8 4.3

45 U 100 7.0/175 10.0/175 9.9/200 12.0/0.8 8.4/0.8 8.9/0.8 -
47 U 150 3.5/225 5.1/175 5.2/175 4.1/0.8 4.1/0.8 4.3/0.8 4.1
48 U 175 7.6/175 6.8/175 9.9/175 7.4/0.8 8.8/0.7 9.0/0.7 7.4
49 U 200 3.9/175 4.9/200 4.9/175 4.3/0.8 3.4/0.7 4.2/0.8 4.8
50 U 225 4.0/175 4.4/175 4.6/200 5.3/0.8 4.3/0.7 5.0/0.8 5.1
51 U 250 4.6/275 5.3/250 4.6/225 4.6/0.8 5.2/0.8 6.2/0.8 4.4

52 U 275 5.2/250 5.0/225 6.9/275 5.5/0.8 5.2/0.7 6.7/0.8 6.5

54 T 75 7.4/225 8.9/200 9.9/225 9.7/0.8 9.8/0.8 10.3/0.8 -
55 T 100 5.3/175 5.6/200 5.9/175 5.1/0.8 5.9/0.7 5.4/0.8 -
56 T 125 3.2/175 4.5/175 4.3/175 3.9/0.7 3.9/0.8 4.5/0.8 -
57 T 150 4.1/200 4.2/175 5.0/175 4.3/0.7 3.2/0.8 4.2/0.8 -
58 T 175 3.7/250 3.3/175 5.8/175 3.3/0.8 3.8/0.7 3.5/0.8 -
59 T 200 4.2/225 3.9/200 4.4/225 4.0/0.8 3.6/0.8 3.7/0.8 -
60 T 225 5.1/225 5.4/225 6.9/250 5.3/0.8 7.1/0.8 7.7/0.8 -
62 T 275 5.7/275 7.3/275 7.4/250 8.3/0.8 6.8/0.7 8.8/0.8 -

65 A 2.8/175 3.8/175 4.1/200 4.6/0.8 3.7/0.6 2.9/0.8 3.5

Table 4.4: Pose Estimation by using TD6 for training
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For each visual word formation scheme we choose the recognition method which gives the least
maximum di�erence from the best pose estimation using Dcc. For example, from table 4.5 we
can see that for ATC visual word a recognition method using NNR with threshold .8 provides
the least maximum di�erence from the best pose estimation. The scheme B 0.7 (corresponding
to the �rst row of table 4.5 did not yield a reasonable 3D map on TD2 (�gure 4.3). Hence we
do not use it in the experiments in next section 4.2.3.
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Figure 4.3: 3D map computed from TD2 using scheme B 0.7. The green dots connected by lines
in magenta show the camera positions. Red dots show the 3D points. Only 62 camera positions,
out of which 3 are incorrectly computed.

4.2.3 Pose estimation using TD1, TD2 and TD4

When using TD1 and TD4 for training, we employ an additional condition while choosing the
optimal inlier set during RANSAC based PnP. For other training sets this additional condition
is always satis�ed and hence we do not use it. In the following subsection we describe how we
incorporate this additional condition in RANSAC based DLSPnP and then present the results
in section 4.2.3.2.

4.2.3.1 RANSAC with inlier spread priority

In RANSAC algorithm (section 1.4) the choice of a consensus set in an iteration to be considered
as the set of inliers is based on the size (i.e. number of elements) of the consensus set. When
the commonly visible regions between the test and train data shrinks due to pose variation we
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NNT Dcc NNR Dcc

Scheme 175 200 225 .6 .7 .8

B .7 6.2 4.9 3.0 2.1 2.2 1.4

K 8000 4.9 4.1 3.7 6.4 3.1 3.3
K 8500 6.2 7.0 9.8 9.3 5.3 3.6

G 60 2.2 2.8 3.9 4.7 2.7 2.2
G 70 1.7 3.3 3.0 2.2 2.1 1.3
G 100 2.8 2.6 2.7 3.1 2.4 2.3
G 120 5.5 2.4 2.7 3.0 3.0 2.0
G 130 6.5 2.9 1.9 3.0 3.2 2.4

U 150 2.3 3.5 4.0 4.4 2.5 1.4
U 200 2.0 2.0 2.4 3.1 2.3 1.3
U 225 2.8 2.4 2.5 3.6 3.0 2.5
U 250 4.7 3.7 2.8 5.8 4.0 3.3

T 100 3.0 5.9 7.5 4.2 4.7 2.5
T 125 2.7 2.4 4.1 3.4 1.7 1.6
T 150 2.1 3.0 4.8 4.1 1.8 1.3

A 2.5 2.6 2.6 1.2 0.8 0.6

Table 4.5: Maximum di�erence from the best result for matching with Dcc.

face the following problem (�gure 4.4). The top and bottom portion of the �gure show the result
of two di�erent iterations of the RANSAC. At the left top we show the 2D locations of the
purported matches obtained by the test image 22 with TD1. The consensus set in one of the
RANSAC iterations are marked by a green star inside a square. The rest are marked by magenta
dots. The consensus set contains 12 members (numbered 5, 8, 15, 18, 19, 21, 22, 23, 29, 30, 40,
41) which are spread over a small region of the image. At the right top we show the estimated
camera positions. We can see that image number 22 is out of place from the circular trajectory
of test image camera positions. At bottom left we show the consensus set for the same image in
another RANSAC iteration. It contains only 11 members (numbered 2, 5, 8, 17, 19, 21, 22, 29,
30, 39, 44), but they are spread over a relatively large area of the image. At bottom right the
corresponding pose is shown. Through visual observation it is clear that the pose of the image
22 at bottom right is signi�cantly better than that at top right. There are alternative strategies
to choose the inliers for pose computation. MSAC [110] penalises each inlier in a consensus set
based on its reprojection error unlike RANSAC in which all the inliers are considered equal. In
[83], reprojection error of a 3D point is computed based on the uncertainty of its coordinate
values.

Since the problem we face appears to be based on the narrow spread of inliers we use the
following strategy. In order to make the RANSAC process choose the consensus set correspond-
ing to the bottom of the �gure 4.4 we should incorporate some measure of the spread of its
members over the image. The length of the smaller side of the minimum bounding[3] rectangle
on the 2D locations of the 2D points in a consensus set can be used to measure the spread. We
use a similar but simpler strategy. We compute the minimum bounding rectangle aligned with
the PCA axes of the 2D locations of the points in the consensus set. In �gure 4.4, the axes are
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shown in red lines. Clearly, the smaller axes in the left top image is much shorter when compared
to the bottom left. We incorporate this measure of spread (i.e. length of the smaller side of the
rectangle) in RANSAC as follows.

Let A represent the consensus set computed during the past RANSAC iterations and B be
the consensus set obtained from the random sample in the current iteration. Let nCur and
nNew be the cardinalities of A and B respectively. Let condnCur and condnNew be boolean
variables indicating whether sets A and B satisfy the additional spread condition. Each RANSAC
iteration proceeds as follows:

• Compute B, the consensus set in the random sample of the current iteration.

• Assign the cardinality of B to nNew. Set boolean variable condnNew to indicate
whether B satis�es the spread condition.

• If (condnNew == true && condnCur == false) OR (condnNew ==
true && nNew > nCur) OR (condnCur == false && nNew > nCur) then:
A = B
nCur = nNew

• If (condnNew == true && condnCur == false) OR (condnNew ==
true && nNew > nCur) then:
condnCur = true

Due to the above modi�cation, the RANSAC algorithm prefers a consensus set B which
satis�es the spread condition over a set A which does not satisfy the condition, irrespective of
the cardinality of A and B. If both A and B satisfy or both do not satisfy the condition, then
the one with higher cardinality is preferred.

4.2.3.2 Results

Using TD4 for training we were not able to obtain a reasonable pose from any combination of
clustering and recognitions schemes (typical example is shown in �gure 4.5). The accuracy of
pose estimation using TD1 and TD2 for training is shown in the third and fourth columns of the
table 4.6 respectively. On TD2 we obtain the least error of 5.6% using G 70 for clustering which
is closely followed by G 100, ATC, G 60, U 100, U 150 and T 125. But on TD1 all these schemes
(which are better than or close to the performance of ATC on TD2) perform poorly. We obtain
the least error of 14.3% through ATC based 3D map. Even though there is no combination
of scheme for clustering and recognition which is absolutely better over the other combinations
across di�erent data sets, we can say that ATC based clustering can be used to obtain reasonably
good pose estimation consistently across di�erent conditions of pose variation between train and
test image. It provides either the best or signi�cantly close to the best performance.
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Figure 4.4: Need for condition on the spread of consensus set during RANSAC. The top left
image shows test image 22. The 2D location of the consensus set is marked by a green star inside
a square and the rest are shown in magenta. The red lines show the spread of PCA axes of the
inliers. Since the spread is very small, the estimated pose of image 22 is out of place as shown
in the top right. In the bottom row the spread of consensus set covers a signi�cant portion of
the image. Hence the estimated pose of image 22 is relatively better.
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Figure 4.5: Pose estimated on 2D-to-3D matches obtained through scheme [TD4 A D NNR 0.8].
The red dots show the 3D points. Camera positions of images in TD4 are shown at the left
top. The estimated camera positions of the test images are shown in magenta. It is di�cult
to compare the performance of two such pose estimations with huge error at several camera
positions.

Scheme TD1 TD2

K 8000 Dcc NNR 0.7 93.8 8.4
K 8500 Dcc NNR 0.8 20.5 88.5
G 60 Dcc NNT 175 115.1 7
G 70 Dcc NNR 0.8 69.1 5.6
G 100 Dcc NNR 0.8 99.2 6.5
G 120 Dcc NNR 0.8 19.6 14.1
G 130 Dcc NNT 225 22.7 15.9
U 150 Dcc NNR 0.8 55.5 7.8
U 200 Dcc NNR 0.8 58.3 7.2
U 225 Dcc NNT 200 63.2 15.4
U 250 Dcc NNT 225 77.5 9.1
T 100 Dcc NNR 0.8 65.3 102
T 125 Dcc NNR 0.8 20.4 8
T 150 Dcc NNR 0.8 67 14
A Dcc NNR 0.8 14.3 6.9

Table 4.6: Accuracy of pose estimation when using TD1 and TD2 for training
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4.3 Recognition using statistical learning techniques

Statistical learning techniques use a set of training vectors to learn functions that can be used
for dimensionality reduction and classi�cation. As mentioned in the beginning of this chapter,
we can label the training SIFT descriptors using the ID of the associated 3D point. Number of
training SIFT descriptors per class we typically obtain is small when compared to the dimension
of the SIFT descriptor. For example, in TD1 we have 59713 SIFT descriptors out of which 37093
descriptors (nearly 62%) get associated with 2538 number of 3D points when SfM is applied on
ATC based clustering. This amounts to 14.6 SIFT descriptors per 3D point on average. This
value is much smaller to the dimension of SIFT descriptor which is 128. The largest class con-
tains 108 SIFT descriptors while the smallest contains only 4.

In this section we describe our experiments with popular statistical learning techniques namely,
PCA (Principal Component Analysis), LDA (Linear Discriminant Analysis)[30] and SVM (Sup-
port Vector Machine[91]). PCA learns a linear transformation from a given set of training vectors
which minimizes the mean-square error of its lower dimensional representation. PCA does not
use the class label information of the training vectors for computing the transformation. LDA
uses class label information to learn a linear transformation which brings together the vectors
belonging to the same class and segregates those belonging to di�erent classes. SVM identi�es
the vectors at the class boundaries in the training vector space and computes a hyperplane based
classi�er.

We use the clusters obtained through our ATC algorithm for training classi�ers in all the exper-
iments in this section. First we evaluate the classi�cation accuracy of the learning techniques on
RoboImage data. Then we evaluate the pose accuracy of the best performing learning method on
MPG. In section 4.3.1 we present the way we setup RoboImage data for evaluation of classi�ca-
tion accuracy. In section 4.3.2 we describe the way we use PCA, LDA and SVM for recognition.
Section 4.3.3 presents the classi�cation results on RoboImage data. We obtain best accuracy
using SVM based recognition. In section 4.3.4 we use SVMs for performing pose estimation on
MPG data and present the results.

4.3.1 Labelling test descriptors in RoboImage data

In order to measure accuracy of classi�cation we need class labels on test SIFT descriptors.
In practice it is very di�cult to say whether the image location of a test SIFT descriptor xt
belongs to any 3D point Qi or not. Moreover, the behavior of the classi�er will depend upon
the examples with which the classi�er is trained. For 3D point recognition, training examples
are labelled through a visual word formation technique. Hence we take the following approach.
Figure 3.13 shows the known camera positions of 119 images. First we extract SIFT descriptors
from the whole set of image and compute visual words. Then we obtain 3D points through SfM
on matches obtained through ATC clustering. We treat this 3D point association with the SIFT
descriptors as ground truth. That is, the SIFT descriptors associated with a 3D point Qi are
labelled as i both in training and test set. Others are labelled as -1. We select a subset of images
(55 images indicated in green in the �gure 3.13) and use the set of SIFT descriptors D extracted
from them for training and the rest (i.e. SIFT descriptors extracted from the 64 images indicated
in red in �gure 3.13) for testing. The set of SIFT descriptors associated with 3D points D3D and
set of centers of clusters associated with 3D points Dcc are derived from D as described in the
beginning of this chapter.
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4.3.2 Brief description of PCA, LDA and SVM

4.3.2.1 PCA

PCA transformation represents the training vectors in a given dataset using eigenvectors of the
covariance matrix of the dataset as basis. It can be used to reduce dimensionality by discard-
ing the eigenvectors corresponding to lower eigenvalues. Suppose λ1 ≥ λ2 ≥, ...,≥ λn are the
eigenvalues corresponding to the eigenvectors of the covariance matrix of D. We retain the �rst
l eigenvectors such that the ratio of sum of the eigenvalues corresponding to the retained eigen-
vectors and the total sum of all the eigenvalues is above a �xed value r. That is, l is the smallest
integer such that ∑l

i=1 λi∑n
i=1 λi

≥ r (4.2)

After computing the PCA transformation matrix (which consists of �rst l eigenvectors as its
rows) from D, we apply the transformation on D, D3D and Dcc. Using transformed D, D3D and
Dcc for training we perform 3D point recognition using NNT and NNR.

4.3.2.2 LDA and local variant of LDA(LLDA)

LDA tries to �nd a linear transformation which increases between class scatter and decreases
within class scatter of the given set of labelled examples. Let Sw and Sb be the within-class and
between-class scatter matrices corresponding to a given set of training vectors. Sw is computed by
adding the covariance matrix of training vectors belonging to individual classes. Sb is computed
as
∑

(µi−µ)(µi−µ)T where µi is the mean of the class labelled as i and µ is the mean of whole
training set. LDA transformation W T is computed so as to maximize the objective function
|WTSbW |
|WTSwW | where |B| represents determinant of matrix B. The objective function is the ratio of

the product of eigenvalues of Sb and Sw in the transformed domain. It turns out that [30] the
columns z1, z2, ...zd, of a locally optimal W can be obtained as follows:

1. Compute Λ and Φ which are the matrices containing non-zero eigenvalues and correspond-
ing eigenvectors of Sw respectively.

2. Then �rst apply the transformation Λ−1/2ΦT . Sw will become an identity matrix under
that transform. Sb will be transformed to

S′b = Λ−1/2ΦTSbΦΛ−1/2 (4.3)

3. Eigenvectors of S′b are columns of the locally optimal W. Let Ψ be the corresponding
projection matrix. Hence the transformation matrix will turn out to be

W = ΦΛ−1/2Ψ (4.4)

For computing LDA we use D3D i.e. only the training SIFT descriptors associated with a 3D
point. For the descriptors not belonging to any 3D point, it is di�cult to treat them as belong-
ing to a single class and hence the mean and within-class scatter for those samples do not make
sense. After computing the LDA transformation W T , we apply it on D, D3D and Dcc. Using
transformed D, D3D and Dcc for training we perform 3D point recognition using NNT and NNR.

Local variant of LDA (LLDA)
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A global LDA transformation may not be suitable for data in which training vectors belonging to
di�erent classes are scattered in di�erent shapes. Hence, we try to modify LDA training process
to learn multiple transformations depending upon local data distribution. In LLDA we train LDA
function for each class i (except for the class -1) using DQi and the descriptors in D which are
close to DQi . The idea is to explore whether we can locally classify the descriptors using a linear
discriminant function. For computing LDA based linear transformation all we need is within class
scatter matrix Sw and between class scatter matrix Sb. For class i we compute Sw using only the
training samples in DQi . To compute Sb, we select from D\DQi = {x : x ∈ D and x /∈ DQi}
a set of 500 training samples closest to the mean µi of DQi . Let Dc

Qi
be this set. Between

class scatter matrix is computed as Sb =
∑

x∈DcQi
(x − µi)(x − µi)T . Using these matrices we

compute the transformation Ti. We also compute a threshold bi to separate samples of DQi

and Dc
Qi

under this transformation. The value of bi is the average of the maximum distance of
a training sample in DQi and the minimum distance of a training sample in Dc

Qi
from µi under Ti.

A test vector xt is �rst matched with the class means in Dcc. Let µ1, µ2, ..., µk be the clos-
est k means before applying any transformation Ti. We compute d1, d2, ..., dk the values their
distances from xt under respective LLDA transformations. We select the least value for di

bi
. If

this value is less than 1 then we assign the class label i to xt. Other wise we label it as -1.

4.3.2.3 Support Vector Machines (SVM)

Given a set of labelled training vectors belonging to two di�erent classes (namely positive and
negative samples), SVM [91] computes the hyperplane which separates the samples belonging to
the two classes by minimizing the classi�cation error and maximizing the margin between two
classes. The whole computation can be expressed in terms of inner product between the vectors
and hence we can use kernel trick [4] to perform non-linear classi�cation in a transformed vector
space. We use gaussian kernel consisting of a single parameter σ > 0 through which we can
control the adaptability of the classi�er to a given training set. The inner product between two
vectors using gaussian kernel is computed as follows:

φ(xi, xj) = exp(−||xi − xj ||
2

σ
) (4.5)

We train a gaussian kernel SVM for each class i (except for the class -1) by using DQi as positive
samples and the rest of the training samples as negative samples. During test stage, for a test
vector xt, we compute the closest k centers from Dcc. If only one of the k SVMs corresponding
to the respective centers classi�es it as +ve then xt is assigned to its class. Otherwise we label xt
as -1. In our experiments the number of test descriptors which get positively classi�ed by more
than one SVMs is negligible (one test vector per two images on average).

Deciding the value of σ: We experiment with di�erent values of σ to �nd a suitable value.
In addition we use the method described in [64] to automatically compute an optimal value for
σ. It is based on the following observation. With the kernel de�ned in the equation 4.5 the

norm of a vector x in the transformed vector space is
√
exp(− ||x−x||

2

σ ) = 1 for any x. More-
over, the inner product between any two vectors is always greater than zero, which makes the
angle between any two di�erent vectors less than 90◦. Hence, gaussian kernel always maps the
vectors on to the positive orthant of the surface of the unit sphere in the transformed vector
space. It implies that the inner product between any two vectors is the cosine value of the angle
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between them. The method described in [64] tries to obtain the value for σ so that the angle
between vectors belonging to same class is close to zero (i.e. inner product close to 1) and the
angle between vectors belonging to di�erent classes is close to 90◦ (i.e. inner product close to
0) in the transformed vector space. From equation 4.5, we can see that the value of the inner
product increases with σ and approaches unity as σ approaches ∞. That is, as σ increases, the
vectors in the transformed domain move close to each other. Conversely, as σ approaches 0, the
value of inner product approaches zero making all the vectors perpendicular to each other in the
transformed descriptor space. For a particular value of σ, let fw(σ) be the average value of inner
product in the transformed vector space for the samples belonging to the same class and fb(σ)
be the average value of inner product in the transformed vector space for the samples belonging
to di�erent classes. We would like to have a σ for which fw(σ) is close to 1 and fb(σ) is close to
zero. The following function is evaluated for di�erent values of σ and the one which minimizes
it is chosen for learning the SVM:

J(σ) = 1− fw(σ) + fb(σ) (4.6)

In our experiments we observe that J(σ) is a 'U' shaped function of σ i.e. its value increases as
the value of σ moves away from the sampled point at which minimum value of J(σ) is obtained.
For di�erent classes the minimum value of J(σ) is always obtained between 1 to 8. Hence, for
each class we evaluate J(σ) at di�erent values of σ ∈ {1, 1.05, 1.1, ..., 8} and use the value of σ
corresponding to the minimum value of J(σ) to train SVM. Figure 4.6 shows the shape of the
function J(σ) for one of the clusters used during training.

1 2 3 4 5 6 7 8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
4.3  0.24564

Figure 4.6: Graph of J(σ) (de�ned in equation 4.6) for one of the clusters in our experiments for
di�erent values of σ ∈ {1, 1.05, 1.1, ..., 8}. The function attains minimum value of 0.25 at σ = 4.3

4.3.3 Classi�cation accuracy on RoboImage data

We have 32800 training vectors (extracted from 55 images) out of which 23349 are labelled to
one of 993 classes (or equivalently 3D points). There are 40297 test vectors extracted from 64
images, out of which 20091 labelled to one of 993 classes. First we discuss the result of applying
linear transformations based on PCA and LDA in section 4.3.3.1. In section 4.3.3.2 we present
the results of using SVM for learning non-linear discriminant function.
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4.3.3.1 Linear transformation through PCA and LDA

Table 4.7 and 4.8 show the classi�cation accuracy of using PCA and LDA transformation respec-
tively. Tables show the percentage of error for di�erent cases. The left most column indicates
the kind of linear transformation used. Corresponding to each transformation (except LLDA)
there are 6 rows each corresponding to a classi�cation scheme indicated in the second column,
3 for NNT on D, D3D, Dcc and 3 for NNR on D, D3D, Dcc respectively. The entries in each
cell of a row indicate the classi�cation error for di�erent parameters used in that particular
scheme. In table 4.7, the �rst part corresponds to 'SIFT 128' indicating that matching is per-
formed in original SIFT descriptor space. We use 8 di�erent thresholds on distances 125:25:300
for NNT. We use 4 di�erent thresholds .6,.7,.8,.9 on NNR. The rest of the 4 columns in a row
corresponding to NNR are left blank. These threshold values are indicated in the �rst row of
the table as 'x/y' where x and y correspond to the threshold values used for NNT and NNR
respectively. After the part corresponding to original SIFT descriptor space comes PCA based
transformation. 'PCAr − d' indicates PCA transformation obtained by retaining top eigenval-
ues summing up to r of the total sum which yields a transformation of dimensionality 'd'. For
NNT, when dimensionality is reduced we reduce the threshold values accordingly. We multiply
the threshold used in the original SIFT descriptor space by r. In table 4.8, LDAr − d in the
�rst column indicates LDA transformation computed after the application of PCAr − d on the
whole training set. Rest of the entries corresponding to these columns are arranged as in table 4.7.

At bottom part of table 4.8 the error rates of LLDA are shown. LLDAr indicates that PCAr
has been applied in the beginning on the whole training set. Each LLDAr contains two rows
with tags 'LowR' and 'FullSw' respectively. Since LLDA learns a discriminant function for each
class using only the training samples corresponding to that class as positive samples, there are
only few samples to compute Sw, it may be rank de�cient. Usually, in such cases the data is
�rst transformed by discarding the eigenvectors corresponding to the nullspace of Sw. After
this transformation we obtain a full rank Sw in a lower dimension. We may loose discriminant
information in the nullspace of Sw in this process. On the other hand we can modify the lower
eigenvalues of Sw in order to enforce full rank. Let Sw = φTAφ be the singular value decom-
position of Sw. Let λ1, ..., λl, λl+1, ..., λn be the diagonal elements of A which are eigenvalues of

Sw in the decreasing order in which
∑n
i=l+1 λi∑n
i=1 λi

≤ 5%. That is, the sum of eigenvalues λl+1, ..., λn

amounts to less than 5% of the total. We replace these lowest values by λl in A to obtain full rank
Sw. In table 4.8, 'FullSw' corresponds to the case in which this regulation process is followed.
'LowR' corresponds to the case where no such regulation is performed. Each column of LLDA
section corresponds to the number of cluster centers k computed while matching. We have tried
values 1, 5, 10, 15, 20, 25, 30, 35 for k. These value of k are indicated in the table in a row which
separates the portions of LDA and LLDA entries.

By observing tables 4.7 and 4.8, we can say that within each linear transformation (except
LLDA), NNR matching scheme with threhold 0.8 performs best classi�cation. For example, in
original SIFT descriptor space, for matching with Dcc (row numbers 4 and 7 of table 4.7), NNR
with threshold 0.8 gives the least classi�cation error of 20.7%. The least value of error for NNT
on Dcc is 25.3% corresponding to threshold 225. Matching a test descriptor xt with wholeD gives
better accuracy than matching with D3D which in turn gives better accuracy than matching with
Dcc. The error while using Dcc is nearly the double of that while using D for NNR classi�cation
scheme in most of the cases where it is more than 2.5 times for NNT. This error gap could not
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Scheme 125/0.6 150/0.7 175/0.8 200/0.9 225/- 250/- 275/- 300/-

SI
F
T
12
8

NNT D 15.5 13.0 11.8 11.3 11.5 12.3 13.7 15.2
NNT D3D 16.8 15.9 16.9 19.5 22.7 26.7 31.8 37.6
NNT Dcc 38.6 33.2 29.0 26.7 26.1 27.6 31.1 36.5
NNR D 13.9 11.2 10.0 10.8 - - - -
NNR D3D 13.9 13.3 15.0 22.7 - - - -
NNR Dcc 29.0 23.4 20.7 25.1 - - - -

P
C
A
0.
9-
51

NNT D 14.5 12.5 11.6 11.6 12.0 13.1 14.7 16.6
NNT D3D 16.3 16.2 17.8 20.7 24.2 28.6 34.4 40.7
NNT Dcc 37.4 32.3 28.7 26.6 26.5 28.4 32.5 38.3
NNR D 13.9 11.4 10.3 11.5 - - - -
NNR D3D 14.1 13.7 15.9 24.5 - - - -
NNR Dcc 28.7 23.9 21.7 27.4 - - - -

P
C
A
0.
8-
30

NNT D 14.4 12.7 12.0 12.2 12.9 14.3 16.2 18.3
NNT D3D 16.6 16.9 18.7 22.0 26.1 31.0 37.6 44.1
NNT Dcc 37.3 32.6 29.3 27.3 27.5 29.8 34.7 41.2
NNR D 14.3 11.8 11.0 12.5 - - - -
NNR D3D 14.6 14.5 17.2 26.5 - - - -
NNR Dcc 29.4 24.9 23.4 30.0 - - - -

P
C
A
0.
7-
20

NNT D 14.6 12.9 12.5 13.0 14.4 16.3 18.5 20.2
NNT D3D 17.2 17.5 19.8 23.6 28.5 34.6 41.7 47.7
NNT Dcc 37.5 33.0 29.8 28.6 29.4 32.3 37.7 45.0
NNR D 15.0 12.6 11.8 13.6 - - - -
NNR D3D 15.2 15.3 18.7 28.5 - - - -
NNR Dcc 30.3 26.2 25.7 33.4 - - - -

P
C
A
0.
6-
14

NNT D 15.3 13.9 13.6 14.6 16.6 19.0 21.0 22.3
NNT D3D 18.0 18.8 21.3 25.9 31.7 38.9 46.0 51.0
NNT Dcc 38.4 34.3 31.5 30.6 31.9 35.4 41.5 49.0
NNR D 16.2 14.0 13.2 15.4 - - - -
NNR D3D 16.3 16.6 20.5 31.0 - - - -
NNR Dcc 32.3 28.6 28.9 36.7 - - - -

Table 4.7: Classi�cation error for NNT and NNR matching schemes under PCA
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Scheme 125/0.6 150/0.7 175/0.8 200/0.9 225/- 250/- 275/- 300/-

L
D
A
SI
F
T
12
8 NNT D 17.3 14.0 12.4 11.8 11.6 12.2 13.3 14.9

NNT D3D 18.2 16.3 16.8 18.8 21.8 25.9 30.5 35.9
NNT Dcc 39.3 33.7 28.9 25.9 25.3 26.9 30.5 35.7
NNR D 14.5 11.5 9.8 10.3 - - - -
NNR D3D 14.2 12.9 13.9 20.3 - - - -
NNR Dcc 29.4 22.6 18.6 21.3 - - - -

L
D
A
0.
9-
51

NNT D 15.5 13.0 11.7 11.4 11.5 12.3 13.4 15.0
NNT D3D 16.6 15.9 16.5 18.9 21.9 25.8 30.3 36.1
NNT Dcc 38.2 33.0 28.8 25.8 24.7 25.9 29.0 33.6
NNR D 13.7 11.1 9.8 11.1 - - - -
NNR D3D 14.0 13.4 15.3 23.7 - - - -
NNR Dcc 28.0 22.5 19.9 24.8 - - - -

L
D
A
0.
8-
30

NNT D 15.0 12.9 11.9 11.8 12.2 13.1 14.7 16.6
NNT D3D 16.7 16.4 17.7 20.1 23.7 28.0 33.5 39.6
NNT Dcc 37.8 33.0 29.3 26.9 26.1 27.3 30.6 36.1
NNR D 14.0 11.6 10.7 12.0 - - - -
NNR D3D 14.4 14.2 16.5 25.3 - - - -
NNR Dcc 28.6 23.8 22.0 28.1 - - - -

L
D
A
0.
7-
20

NNT D 14.7 12.9 12.2 12.5 13.5 15.1 17.1 18.9
NNT D3D 17.1 17.1 19.2 22.5 26.9 32.7 39.2 45.3
NNT Dcc 37.2 32.8 29.4 27.7 27.9 30.4 35.3 41.8
NNR D 14.8 12.4 11.5 13.1 - - - -
NNR D3D 15.1 15.0 18.1 28.2 - - - -
NNR Dcc 29.6 25.4 24.6 31.9 - - - -

L
D
A
0.
6-
14

NNT D 14.8 13.5 13.5 15.0 17.0 19.4 21.4 22.5
NNT D3D 17.8 19.0 22.1 27.2 33.4 41.0 47.5 52.0
NNT Dcc 37.1 33.1 30.6 30.1 32.2 36.6 43.7 51.2
NNR D 16.1 13.8 13.1 15.3 - - - -
NNR D3D 16.3 16.5 20.2 30.8 - - - -
NNR Dcc 31.5 27.7 28.3 36.5 - - - -

1 5 10 15 20 25 30 35

L
L
D
A

0
.9

LowR 29.5 28.9 28.8 28.8 28.8 28.8 28.9 28.9
FullSw 19.3 18.3 18.3 18.2 18.2 18.2 18.2 18.2

L
L
D
A

0
.8

LowR 30.1 29.3 29.3 29.3 29.3 29.3 29.3 29.3
FullSw 19.8 18.6 18.5 18.5 18.5 18.5 18.5 18.5

L
L
D
A

0
.7

LowR 29.5 28.2 28.1 28.1 28.1 28.1 28.1 28.1
FullSw 20.7 19.0 18.9 18.8 18.8 18.8 18.8 18.8

L
L
D
A

0
.6

LowR 29.0 27.3 27.0 26.9 26.9 27.0 27.0 27.0
FullSw 22.3 20.3 20.1 20.0 20.0 20.0 20.0 20.0

Table 4.8: Classi�cation error for LDA and LLDA
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be reduced even by using LDA. Only LLDA with full rank regulation on Sw performs slightly
better than matching xt with Dcc in lower dimensions. For example LLDA 0.7 with FullSw and
k=5, gives 19% error while minimum error in that dimension for PCA and LDA is 24.6% (which
corresponds to LDA 0.7, NNR 0.8 on Dcc). But using D with LDA 0.7, we can obtain much
better accuracy of 11.5% through NNR 0.8.

4.3.3.2 Learning non-linear classi�er through RBF-SVM

Similar to LLDA we train RBF-SVM for each class. First we experiment by �xing a value for σ
for all classes. For each class we use the training vectors belonging to that class as +ve samples
and 500 training vectors closest to the mean of the +ve samples which do not belong to the
class as -ve samples. For each xt we classify xt with the SVMs belonging to k closest centers.
If only one of the k SVMs classi�es it as +ve then xt is assigned to that class. Otherwise we
label it as −1. We experiment by �xing di�erent values for σ and k. Then we experiment with
computing σ automatically for each class using the method described in [64]. Table 4.9 shows
the classi�cation accuracy. The �rst column indicates the σ value and the subsequent columns
show the classi�cation accuracy for di�erent values of k. The entries are in 'x/y' form in which
x is the classi�cation error in percentage and y is the number support vectors with which a test
vector xt had to be compared on average in order to perform classi�cation. Out of the four
di�erent values for σ, we obtain best results with σ = 5. Using σ = 5 we once again learned
SVM by using all the negative training samples (not just 500). The results are shown in the
row '5 All Neg'. We can see that there is not much di�erence in accuracy, but the number
of support vectors need to be compared is reduced slightly. We feel that the presence of all
the negative samples has helped SVM learning algorithm to choose the support vectors more
optimally. Hence while learning SVMs using automatically computed σ values for each class, we
used all the available -ve samples. The results are shown in the last row of table 4.9. We can see

σ k=1 k=5 k=10 k=15

4 14.1/61 12.4/301 12.3/609 12.2/926
5 13.4/36 11.6/180 11.4/364 11.4/553
10 13.6/22 12.6/109 12.9/219 13.1/330
25 15/19 16.9/94 19.8/188 22.1/282
50 15.3/19 17.9/96 21.5/192 24.4/288

5 All Neg 13.2/33 11.5/166 11.3/333 11.3/503
Auto σ 13.6/43 11.9/214 11.7/431 11.7/551

Table 4.9: Classi�cation error while using k-SVMs. The �rst column indicates the σ value and
the subsequent columns show the classi�cation accuracy for di�erent values of k, where k is the
number of SVMs chosen based on the k closest centers to the test vector xt. The entries are
in 'x/y' form in which x is the classi�cation error in percentage and y is the number support
vectors with which xt had to be compared on average in order to perform classi�cation.

that using the method in [64] we can obtain error rate as low as 11.9% for k = 5 which needs 214
additional vector comparisons. There is no signi�cant gain in accuracy by increasing k further.
This result indicates that using SVMs we can speed up the recognition process by performing
k-nearest neighbor search on Dcc and then using the SVMs to obtain the class label. Using the
method in [64] we can automate the task of choosing the right value for σ.
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4.3.4 Pose accuracy of SVM based recognition on MPG data

Based on the results on RoboImage data we learn SVMs with automatically computed σ for
each 3D point in order to recognize them in a test image. Since in MPG we have much more 3D
points (nearly 2500 points compared to 993 of RoboImage data), we apply PCA r = 0.9 based
dimensionality reduction before learning SVMs in order to reduce the memory needed for storing
each SVM. As in our earlier experiments, we use DLSPnP for TD1 and TD2, and EPnP for the
rest of the training sets. For TD1 we performed 2500 trials during RANSAC and for the rest we
used only 500 trials.

Table 4.10 shows the accuracy of pose computed from SVM based 3D point recognition us-
ing TD1,TD2,TD3, TD5 and TD6 for training. The �rst row shows the pose accuracy obtained
using SVM based 3D point recognition. The last row shows the pose accuracy of NNR 0.8 using
Dcc for comparison (copied from di�erent tables in the section 4.2.1 and 4.2.3.2). With SVMs
the pose accuracy seems to be reduced slightly for TD1 and TD6, with no signi�cant change in
other cases. We do not see any clear advantage of the better classi�cation performance of SVMs
when compared to NNR with Dcc.

In order to analyze this further we reduced the number of RANSAC trials while performing
pose computation using TD1. We computed pose multiple times using only 500 RANSAC sam-
ples (instead of 2500) each time. A better 3D point recognition method will contain less number
of outliers and hence it will be less e�ected by this reduction in RANSAC trials. The results
are shown in table 4.11. The �rst three columns correspond to recognition through NNR with
threshold 0.8. The �rst column uses the whole training set D, second column uses only Dcc and
the third column uses Dcc after reducing its dimension using a PCA transformation learned from
D with retained eigenvalue ratio 0.9. Last column corresponds to SVM based recognition learnt
from D after reducing its dimension using a PCA transformation learned from D with retained
eigenvalue ratio 0.9. The entries corresponding to error above 50% are shaded in gray. Error
above 50% indicates poor pose estimation accuracy with gross errors similar to that depicted in
�gure 4.1(c). Using Dcc in reduced dimensional space of PCA r = 0.9 (third column of table
4.11) produces gross errors 10 out of 20 i.e. 50% of the times. Using Dcc without any dimen-
sionality reduction (second column of table 4.11) produces gross errors 3 out of 20 times. SVM
based 3D point recognition (last column of table 4.11) leads to pose estimation which is as stable
as using the whole D (�rst column of table 4.11) for recognition i.e. there was no gross error
with less number of RANSAC trials.

Using SVMs signi�cantly reduces the time needed to perform recognition. Even if we consider
just the cost of �nding only the �rst nearest neighbor while matching with D of TD1, we need 9
seconds per image. We need only 0.32 seconds for performing k-nearest neighbor search in Dcc

for k=5. In addition we had to perform 3 × 1005 vector comparisons on average per image to
perform SVM based classi�cation. This needs nearly 1.6 seconds of cputime. Adding the two
durations together, we need 1.92 seconds per image which is signi�cantly less than 9 seconds.

4.4 Conclusion

In this chapter we experimented with various strategies on the 3D map obtained from di�erent
clustering schemes to perform 3D point recognition. Due to the huge number of combination of
parameters at training and test stage we successively eliminated test cases based on the results
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Scheme TD1 TD2 TD3 TD5 TD6

SVM (PCA r = 0.9),k=5 15.74 6.8 5.42 2.34 5.16
Dcc NNR 0.8 14.3 6.9 5.2 2.3 2.9

Table 4.10: Pose accuracy : SVM (PCA .9) vs NNR on Dcc based 3D point recognition. The
�rst column shows the recognition scheme used to identify 3D points in a test image. The
subsequent columns show the pose error for performing pose computation using 3D maps obtained
by di�erent training sets of MPG.

NNR 0.8 SVM k=5
D Dcc PCA Dcc PCA D

16.7 16.8 68.1 18.9
18.5 16.9 21.6 19.7
15.3 59.7 61.4 20.3
18.3 16.3 67.8 19.5
16.8 19.6 22.4 20.2
15.9 18.2 21.9 21.5
18.3 19.5 65.2 18.1
17.4 59.6 65.5 19.9
16.8 16.9 21.4 20.7
17.4 17.0 96.0 21.6
15.8 17.7 27.5 19.1
15.6 22.8 22.8 20.7
17.3 21.0 65.9 21.6
16.9 21.6 33.1 20.9
17.7 19.6 64.0 21.1
18.7 63.5 19.0 17.5
19.7 16.2 70.4 19.2
16.8 23.7 25.8 21.2
15.9 15.9 64.0 18.4
14.7 18.8 19.2 20.4

Table 4.11: Result of estimating pose repeatedly 20 times using 3D map computed from TD1.
Only 500 RANSAC trials are performed. It is much less than the 2500 trials we used in previous
experiments using TD1. The �rst three columns correspond to recognition through NNR with
threshold 0.8. The �rst column uses the whole training set D, second column uses only Dcc and
the third column uses Dcc after reducing its dimension using a PCA transformation learned from
D with retained eigenvalue ratio 0.9. Last column corresponds to SVM based recognition learnt
from D after reducing its dimension using a PCA transformation learned from D with retained
eigenvalue ratio 0.9. The entries corresponding to error above 50% are shaded in gray.
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we obtained at di�erent stages. Unlike previous chapter in which we were able to obtain results
showing clear advantage of ATC clustering scheme over other methods for building 3D map,
the results in this chapter showed marginal improvement due to ATC in few cases. The most
signi�cant of them being the ability to perform pose estimation consistently over di�erent pose
variation between train and test images. The clustering methods which performed better than
ATC in some cases failed to provide reasonable pose on TD1. Subsequently, we experimented with
statistical learning techniques on clusters obtained through ATC. Out of the various descriptor
space transformation and discriminant functions SVM based methods showed signi�cantly better
performance in classi�cation accuracy on RoboImage data. But we could not obtain results on
accuracy of pose computation which clearly follow its advantage in classi�cation. But when the
number of trials during RANSAC was reduced, we were able to see the advantage of SVMs in
terms of stability when compared to matching with Dcc and speed when compared to matching
with D. With TD4 we were not able to compute reasonably good pose in any combination of
clustering and recognition scheme. We feel that the main reason behind this is the poor quality
of 3D map built due to the lack of wide baseline view of the scene in TD4. Combining the
2D-to-2D match constraints between the test and train images along with the 2D-to-3D matches
[104] can be an interesting topic for future work for TD4.



Chapter 5

Accelerating Mean-Shift Clustering

5.1 Introduction

In chapter 3, we used Mean-Shift Clustering (MSC) based visual words to build 3D map. MSC
is a non-parametric clustering technique[35, 22, 23] which is becoming increasingly popular in
computer vision. Initially applied in relatively low-dimensional spaces (dimension up to 11, eg:
object tracking[9], image segmentation [121]), it is now being applied on high dimensional feature
descriptors like SIFT[51]. The simple iterative averaging process in MSC has strong theoretical
support. It can be considered as mode seeking[23] gradient-ascent algorithm over the density
function obtained through performing kernel density estimation (KDE) on the training set of
vectors. The step-size of the gradient ascent is adaptive and guarantees convergence. Since MSC
is based on non-parametric density estimation it can handle clusters of arbitrary shape. One
more distinctive feature of MSC technique is that we do not need to know the number of clusters
a priori. This is particularly advantageous in computer vision tasks for clustering objects with
similar visual patterns, since in most of the cases, the number of distinctive objects (or clusters)
in the scene is not known in advance. Despite these nice properties, MSC has a major disadvan-
tage. The computational cost of MSC becomes prohibitively huge as the dimension of the feature
space increases. The major source of this cost is the range search process [36] which involves
computing, in each iteration, the set of training vectors within a range w from the current mean
vector.

In chapter 3, we observed that MSC is the slowest among the di�erent clustering methods
(please refer to �gure 3.22) in our experiments. In this chapter we propose a strategy to accel-
erate MSC which tries to divide the training set into di�erent groups such that the mean-shift
computation for a vector in one group can be performed without comparing it with vectors in
other groups. These groups are obtained by performing transitive closure (TC) based clustering
presented in section 3.4.1.1. The matching threshold R for TC clustering depends on value of
the range w with which range search is performed in each MSC iteration. In fact we prove that if
R =

√
2w, then the modes we obtain by performing MSC on individual TC clusters are same as

the modes we obtain by performing MSC on whole training set. We perform exact computations
unlike methods which use subsampling of D[34] or approximate computations[20]. But, we ob-
tain moderate acceleration compared to these inexact methods, for a speci�c range of parameter
values used to perform mean-shift.

107
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5.1.1 Background

Let D = {x1, x2 . . . xn} be the set of n training vectors, where each xj ∈ RN . For each training
vector xj , MSC algorithm iteratively searches for peaks of the density function. Starting with
the initial estimate µ0j = xj , the mean vector is updated in each iteration as follows:

µk+1
j =

∑
xi∈DK(xi − µkj )xi∑
xi∈DK(xi − µkj )

(5.1)

where K is the kernel function from RN to R. As we can see from equation (5.1), for each vector
xj ∈ D, in each iteration k, we need to compute the distance of µkj with all the vectors of D.
Hence the computational complexity of standard mean-shift procedure is O(τNn2)[119] where
τ is the average number of iterations per data point. Usually the value of K(xi − µkj ) depends

only on the scalar value
||xi−µkj ||

h , where h is the bandwidth parameter and ||.|| is the Euclidean
norm. The bandwidth may be adaptive i.e. h is derived based on neighborhood of xi (e.g. h
taking value of distance of xi from its kth nearest-neighbor in D) or �xed i.e. a single value for
all xi. In practice almost all kernel functions have compact support i.e. there is a �nite range w
such that K(x− µkj ) = 0 for all ||x− µkj || > w.

Very small portion of D usually fall within the range w of µkj in a MSC iteration. On the other
hand, many of the elements in D eventually converge to the same mean at the end of MSC. Hence
there are two ways to accelerate MSC computation: (i)using fast range search techniques[79] to
reduce the number of comparisons needed in an iteration (ii)identifying D

′ ⊂ RN which is sig-
ni�cantly smaller than D but containing elements which can lead to the modes of D through
MSC. In [34] a set D

′
which is much smaller than D is obtained by randomly sampling KDE of

D without explicitly evaluating the KDE. MSC is performed on D
′
and at the end the elements

of D are associated with the closest modes of D
′
thus obtained. In [119], D is divided into

KD-tree clusters and each cluster is represented by a single sample. MSC is performed on this
reduced set of representative samples. In [28] MSC is performed hierarchically. Small value for
the range w is used to compute mean-shift clusters in the initial levels which merges elements
of D within small regions. Higher range values are successively applied on the centroids of the
previous level till the desired range size is reached. With small range values, tree structures (eg
KD-tree) for fast range search provide good acceleration. For higher range values the number of
data points get reduced due to merging. In [36, 117] locally sensitive hashing and dual tree based
data structures are used respectively to organize the elements of D for fast range search. In [122]
the datapoints in D which are likely to converge to the same mean are identi�ed in each MSC
iteration and merged. In [20] gaussian mean-shift is treated as expectation maximization (EM)
in which computing the coe�cient of each xi in the right hand side of the equation 5.1 becomes
E step and updating µj becomes M step. Sparse EM [81] is employed for reducing computation
in E step. EM step is combined with Newton's method in order to achieve faster convergence
near modes.

5.1.2 Overview

All the acceleration strategies discussed above use approximation, i.e, the �nal result may not
be same as performing MSC directly on D. In contrast the strategy we present produces exactly
same result as the original MSC on D. We try to reduce the required number of comparisons
by dividing D into a �nite set of partitions {Pi}, in such a way that for any xj ∈ Pi, it is
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guaranteed that ||x − µkj || > w for all the training vectors x /∈ Pi. The computation of the
partitions can be performed during the �rst MSC iteration on each training vector with some
additional cost. For the subsequent iterations the range search for a vector in a partition need
to be done only within the partition it belongs. Our acceleration strategy is applicable for all
kernel types which have compact support and �xed bandwidth. In section 5.2 we illustrate how
MSC update in an iteration can be considered as convex combination operation. We present the
necessary terminology in section 5.2.1 to systematically analyse our point of view. This point of
view leads us to a reachability criteria presented in section 5.3 which can be used to divide D and
reduce number of comparisons in MSC. Later in section 5.4 we present mathematical results to
�nd the best possible values for this criteria. In section 5.5.1 we present the result of using our
acceleration strategy for gaussian mean-shift operation on SIFT descriptors. Finally, in section
5.6 we summarize our observations based on the experimental results.

5.2 Mean-Shift update as bounded convex combination

We can rewrite the equation 5.1 as follows:

µk+1
j =

∑
xi∈D

K(xi − µkj )∑
xi∈DK(xi − µkj )

xi =
∑
xi∈D

θixi (5.2)

where θi =
K(xi−µkj )∑

xi∈D
K(xi−µkj )

, which implies that 0 ≤ θi ≤ 1 and Σn
1θi = 1. Hence, in each

iteration, the new mean vector µk+1
j lies within the convex hull of the training vectors which are

within distance w from its current position µkj .

5.2.1 Terminology

• The Euclidean norm of a vector x is represented by ||x||.

• If A and B are two sets of vectors, then the dissimilarity measure between the two sets is
de�ned as ||A,B|| = inf

x∈A,y∈B
||x− y||. If one of the sets is singleton containing a vector x,

then ||x,B|| = inf
y∈B
||x− y||

• If A and B are two sets of vectors, the A+B = {x+ y : x ∈ A, y ∈ B}. If one of the sets
is singleton containing a vector x, then x+B = {x+ y : y ∈ B}

• In each iteration µk+1
j depends only on µkj and the training vectors that are within distance

w from it. Hence, when we deal with the process within a single iteration, we refer to the
value of the mean vector in the beginning of the iteration (i.e. µkj ) as µ0 and the value at

the end of the iteration (i.e. µk+1
j ) as µ1.

• We say that a vector y is visible from vector x if ||x− y|| ≤ w.

• The set of training vectors visible from µ0 is called V . Elements of V are referred as
v1, v2 . . . vm.

• Convex hull of a set of vectors A is referred as CH(A).
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Figure 5.1: µ1 is computed by convex combination of vectors vi which lie within a distance w
from µ0

• While it is guaranteed that µ1 ∈ CH(V ), the converse is not true. Any vector in CH(V )
cannot be a valid µ1. For example, for uniform kernel the only possible µ1 that can be
computed from a visible set V is the centroid of V . For any �nite set of vectors A, we
denote CHK(A) as the set of vectors which can be obtained from A using only the convex
combination through the kernel function K as in equation (5.2). Mathematically :

CHK(A) =
⋃

µ0∈XA

{ ∑
yi∈A

θiyi where θi =
K(yi − µ0)∑

yj∈AK(yj − µ0)

}
where XA is the set of vectors in Rn from which all the elements of A are visible i.e.
XA = {x ∈ Rn : ||x− y|| ≤ w for all y ∈ A}.

5.2.2 Illustration in 2D

Bounded convex combination update of mean vector is illustrated in �gure 5.1. µ0 is the current
position of the mean vector. V = {v|v ∈ D and ||v − µ0|| ≤ w} = {v1, v2 . . . v9} i.e. training
vectors within the green circle of radius w around µ0. New mean vector is computed by convex
combination as µ1 =

∑
i θivi. µ1 will lie inside the CH(V ) (In the �gure CH(V ) is indicated

by dashed polygon in green color). In the next iteration we search for training vectors within
distance w from µ1 (i.e. the training vectors lying inside the blue circle).
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5.3 Reachability relation on elements of D

As we can see in the �gure 5.1, the vectors in V constrain the possible values of µ1 and conse-
quently constrain the set of training vectors visible from µ1. Let x be any vector in RN which
is visible from µ1. We want to compute a reasonable upper bound value R for the set of values
||x, V || can take. The R we want to de�ne here is the maximum distance from a vector visible
from µ1 to the set of training vectors visible from µ0 i.e. V . In other words, R is the distance
threshold such that, if µ1 is a convex combination of vectors in V obtained through a kernel
function and x is any vector satisfying ||µ1 − x|| ≤ w, then we are assured that there is at least
one vi ∈ V such that ||x − vi|| ≤ R. If such a distance threshold is available, then, in the next
iteration, we need to compare µ1 only with those training vectors which lie within distance R
from V . We de�ne R as:

R = sup
||r||≤w

||V,CHK(V ) + r|| (5.3)

Consider any training vector x ∈ D such that ||V, x|| > R. Since, by de�nition in equation
(5.3), R is the supremum of the distance values from V for a vector lying within distance w from
CHK(V ), we can say that ||V, x|| > R =⇒ ||x,CHK(V )|| > w. Since µ1 ∈ CHK(V ), we have
||x− µ1|| > w. Hence we get the following conclusion:

||V, x|| > R =⇒ ||x− µ1|| > w (5.4)

This condition is true for any upper bound of R

If we can compute R (or a reasonable upper bound of R) in advance, then we can de�ne a
reachability relation S on D. We say that y is reachable from x if y lies within distance R from x
i.e. S = {(x, y) : x, y ∈ D, ||x−y|| ≤ R}. This relation is re�exive and symmetric. For x ∈ D, let
Bx = {Elements in D which are reachable from x} = {y : (x, y) ∈ S} = {y ∈ D : ||x− y|| ≤ R}.
If we know R in advance, we can compute Bx for all the training vectors in advance. At the
end of each MSC iteration we can compute the reachability set B =

⋃
vi∈V

Bvi . In other words,

B is the set of training vectors within distance R from the vectors in V . For any y ∈ D, by
de�nition of B, we can say that if y /∈ B then ||V, y|| > R. Using equation (5.4), we can say
that ||y − µ1|| > w. To summarize, any training vector which does not belong to B will lie at a
distance greater than w from µ1. Hence, we need to compare µ1 only with the vectors in B in
next iteration.

5.3.1 Partitioning through transitive closure on reachability relation

If we apply transitive closure operation on relation S, we obtain a partition T = {Pi} on D i.e.
(∪Pi = D) and (Pi ∩Pj = φ for i 6= j). Since T is obtained by transitive closure operation on S,
we can say that (y ∈ Pi) =⇒ (By ⊆ Pi) =⇒ (By ∩ Pj = ∅ ∀i 6= j). Hence, in any iteration on
vectors in Pi, the reachability set B remains within Pi. Hence MSC can be performed on each
partition independently.

The accelerating technique mentioned above can be performed in the same way with any
upper bound of R. But, it is desirable to have a distance threshold as small as possible. In the
following section we present the theoretical results we have on the bounds of R.
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Figure 5.2: For any vector v /∈ CH(V ), the nearest point h in a convex hull would either be a
vertex or the line connecting v and h will be orthogonal to the surface of the convex hull.

5.4 Bounds on reachability threshold R

It is di�cult to compute the exact value of R, since it is di�cult to compute CHK(V ). Hence
we substitute CH(V ) to CHK(V ) in equation (5.3) to de�ne:

Rc = sup
r∈RN ,||r||≤w

||V,CH(V ) + r|| (5.5)

Since CHK(V ) ⊆ CH(V ), we can say that R ≤ Rc. In section 5.4.1, we show that Rc =
√

2w.
In section 5.4.2, using a hypothetical D and uniform kernel, we show that R ≥ π√

6
w. Hence, in

numerical terms we can say that 1.28w ≤ R ≤ 1.41w.

5.4.1 Upper bound on R

In this section we show that Rc =
√

2w. The overview of the proof is shown in the �gure
5.2. Since µ1 ∈ CH(V ), any point v within distance w from µ1 will have its closest point h in
CH(V ) such that ||h− v|| ≤ w. We will show that there is at least one vertex vi ∈ V such that
||h−vi|| ≤ w and (vi−h) is orthogonal to (v−h). Hence, ||v−vi||2 = ||v−h||2+ ||h−vi||2 ≤ 2w2.
In section 5.4.1.1, we present mathematical results which will be used to prove the main theorem
in section 5.4.1.2.
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5.4.1.1 Lemmas

Lemma 5.4.1 Let x0 be a vector in RN and t be a positive real number. Let X = {x1, x2 . . . xm}
be a �nite set of vectors in RN satisfying ||xi − x0|| ≤ t. For any x ∈ CH(X) , ∃xj ∈ X such

that ||x− xj || ≤ t.

Proof Without loss of generality, we assume that x0 is the origin. Hence ||xi|| = ||xi− x0|| ≤ t.
Let di = ||x − xi||. We need to prove that at least one di ≤ t. On the contrary, if di > t for all
xi ∈ X then:

d2i = (x− xi)T (x− xi) = xTx− 2xTxi + xTi xi > t2

=⇒ xTx− 2xTxi > 0 for all xi ∈ X, since xTi xi = ||xi||2 ≤ t2

=⇒ 2xTxi − xTx < 0 for all xi ∈ X

If we de�ne a hyperplane f(z) = uT z− b where uT = 2x and b = xTx, we can see that f(xi) < 0
for xi ∈ X and f(x) = 2xTx− xTx = xTx ≥ 0. This implies that the hyperplane f separates x
from X, which is a contradiction since x ∈ CH(X). Hence we have at least one dj ≤ t that is
∃xj ∈ X such that ||x− xj || ≤ t.(PROVED)

The following lemma is a classic theorem in theory of optimization [70]. We will be using it
to prove lemma 5.4.3.

Lemma 5.4.2 If G is a closed convex set in Euclidean space RN and x ∈ RN , then there exists

a unique vector g0 ∈ G such that ||x− g0|| = inf
g∈G
||g−x||. The necessary and su�cient condition

for g0 to be minimum distance vector from x is that (g0 − x)T (g0 − g) ≤ 0 for all g ∈ G.

Lemma 5.4.3 Let V = {v1, v2 . . . vm} be a �nite set of vectors in RN . Let v be a vector outside

CH(V ). Let h =
∑

vi∈V θivi be the vector in CH(V ) having the minimum distance from v. Then

θi > 0 =⇒ (h− v)T (h− vi) = 0.

This lemma implies that the line connecting v and the closest point h is orthogonal to the line
connecting h and any element of V having nonzero co-e�cient in the convex combination of h.

Proof Let bi = (h − v)T (h − vi). Since h ∈ CH(V ) is the closest point to v and vi ∈ CH(V ),
using lemma 5.4.2, it is clear that bi ≤ 0. We need to prove that, if θi > 0 then bi = 0.

m∑
i=1

θibi =

m∑
i=1

(h− v)T (θih− θivi) = (h− v)T (

m∑
i=1

θih−
m∑
i=1

θivi) = 0 (5.6)

If bj < 0 for some j and θj > 0 then θjbj < 0. Moving θjbj in the summation of equation (5.6)
to the right side, we get:

m∑
i=1
i 6=j

θibi = −θjbj > 0 (5.7)

Since θi ≥ 0, equation 5.7 implies that one of the bi's in the summation of the equation should
be greater than zero, which is a contradiction.(PROVED)

The following corollary directly follows from lemma 5.4.3:

Corollary 5.4.4 In Lemma 5.4.3, the vector h can be obtained using convex combination of only

those vectors vi ∈ V which satisfy (h− v)T (h− vi) = 0.
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5.4.1.2 Proof of R ≤
√

2w

Now we have all the necessary tools to prove what we have described in the beginning of this
section 5.4.1.

Theorem 5.4.5 Let µ0 ∈ RN and V = {v1, v2 . . . vm} be a �nite set of vectors in RN satisfying

||vi−µ0|| ≤ w. Let v a vector outside CH(V ) such that ||v, CH(V )|| ≤ w. Let h be the vector in

CH(V ) having the minimum distance from v. Then there exists vi ∈ V such that ||vi − h|| ≤ w
and (h− v)T (h− vi) = 0.

Proof From corollary 5.4.4, h is a convex combination of vectors U ⊆ V such that each u ∈ U
satis�es (h − v)T (h − u) = 0. Since all of those vectors in U are within distance w from
µ0, and h is convex combination of those vectors, from lemma 5.4.1, there exists at least on
ui ∈ U which such that ||ui − h|| ≤ w. Hence the distance between ui ∈ U ⊆ V and v i.e.
||ui − v|| ≤

√
w2 + w2 =

√
2w.

5.4.2 Lower bound on R

In section 5.4.1 we proved that R ≤
√

2w. In this section we prove that R, in general, cannot be
less than π/

√
6. The following result [5] will be used to derive this:

∞∑
j=1

1

j2
=

1

12
+

1

22
+

1

32
. . . . . . =

π2

6
(5.8)

5.4.2.1 Hypothetical training set

Consider a set of n vectors in n− 1-dimensional space, D = {x1, x2 . . . xn} ⊂ Rn−1, as follows:

x1 = (0, 0, 0, 0, 0 . . . 0)

x2 = (w, 0, 0, 0, 0 . . . 0)

x3 = (
w

2
, w, 0, 0, 0 . . . 0)

x4 = (
w

2
,
w

3
, w, 0, 0 . . . 0)

x5 = (
w

2
,
w

3
,
w

4
, w, 0 . . . 0)

x6 = (
w

2
,
w

3
,
w

4
,
w

5
, w, 0 . . . 0)

...

xk = (
w

2
,
w

3
,
w

4
,
w

5
, . . .

w

k − 1
, w, 0 . . . 0)

...

xn = (
w

2
,
w

3
,
w

4
,
w

5
, . . .

w

n− 1
, w)
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where w > 0. These vectors are generated according to the rule:

xij =


w
j+1 1 ≤ j ≤ i− 2

w j = i− 1

0 j ≥ i
(5.9)

Lemma 5.4.6 The nearest neighbor for any xl ∈ D, in set {x1, x2 . . . xl−1} is x1.

Proof For any k such that 2 ≤ k < l, we need to prove that, ||xl − xk||2 − ||xl − x1||2 ≥ 0.
We denote ∆kl for vector of absolute di�erence between co-ordinates of xk and xl. For any two
elements xk, xl ∈ D, where k, l > 1, we can obtain ∆kl as follows

xk = (
w

2
,
w

3
. . .

w

k − 1︸ ︷︷ ︸
k−2 terms

, w , 0, 0 . . . 0)

xl = (
w

2
,
w

3
. . .

w

k − 1︸ ︷︷ ︸
k−2 terms

,
w

k
,

w

k + 1
,

w

k + 2
. . .

w

l − 1︸ ︷︷ ︸
l−k−1 terms

, w, 0, 0 . . . 0)

∆kl = (0, 0 . . . . . . . . . .0︸ ︷︷ ︸
k−2 zeros

,
(k − 1)w

k
,

w

k + 1
,

w

k + 2
. . .

w

l − 1︸ ︷︷ ︸
l−k−1 entries

, w, 0, 0 . . . 0) (5.10)

From equations in (5.10), for any 2 ≤ k < l:

||xl − xk||2 − ||xl − x1||2 = ||∆kl||2 − ||xl||2 =
(k − 2

k
−
k−1∑
j=2

1

j2

)
w2 = f(k)w2 (5.11)

where f(k) = (k−2k −
∑k−1

j=2
1
j2

). It can be easily veri�ed that

f(k)− f(k − 1) =
k − 2

k(k − 1)2
≥ 0 for all k ≥ 2 (5.12)

which implies that f(k) is increasing function of k. Thus, the minimum value of f(k) is attained
when k = 2 which is f(2) = 0. Hence we can say that f(k) ≥ 0. Substituting this in equation
(5.11) we get

||xl − xk||2 − ||xl − x1||2 = f(k)w2 ≥ 0 (5.13)

(PROVED)

5.4.2.2 MSC with uniform kernel on D

MSC with uniform kernel shifts the mean vector in each iteration to the average of the set of
training vectors visible from the current mean vector.

Lemma 5.4.7 If we execute MSC iterations with uniform kernel of support size w on x1 ∈ D by

starting the �rst iteration with µ0 = x1, then, at the beginning of k
th iteration, the set of training

vectors visible from the mean µk−1 will be Vk = {x1, x2 . . . xk+1}.
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Since the uniform kernel takes the average of the visible training vectors, we get the following
corollary directly by taking average of �rst k + 1 training vectors:

Corollary 5.4.8 µk, the mean vector at the end of the iteration will be (w2 ,
w
3 ,

w
4 , . . .

w
k , 0, 0 . . . 0)

i.e. :

µkj =

{
w
j+1 1 ≤ j ≤ k
0 j > k

(5.14)

Proof We apply mathematical induction on the iteration k to prove lemma 5.4.7. It is easy to
verify that the statement is true for k = 1, since µ0 = x1 and, only x1 and x2 are visible from µ0.
We assume that the statement is true for k = m− 1 i.e. at the beginning of (m− 1)th iteration,
Vm−1 = {x1, x2 . . . xm}. Hence the mean vector at the beginning of mth iteration is the mean of
Vm−1 i.e. µm−1 = (w2 ,

w
3 ,

w
4 , . . .

w
m , 0, 0 . . . 0). We have to show that Vm = {x1, x2 . . . xm+1} i.e.

for any l = 1 . . .m+ 1 the distance ||µm−1−xl|| is less than or equal to w and for any l ≥ m+ 2,
the distance ||µm−1−xl|| is greater than w. For l ≥ m+ 2, it is trivial, since xl will have at least
two additional non-zero co-ordinates where µm−1 is zero and one of those co-ordinates in xl will
have value w. For l = m+ 1:

||xm+1 − µm−1||2 = ||(w
2
,
w

3
,
w

4
, . . .

w

m
,w, 0, 0 . . . 0)−

(
w

2
,
w

3
,
w

4
, . . .

w

m
, 0, 0 . . . 0)||2

= w2

For l ≤ m:

||xl − µm−1||2 = ||(w
2
,
w

3
,
w

4
, . . .

w

l − 1
, w , 0, 0 . . . 0)−

(
w

2
,
w

3
,
w

4
, . . .

w

l − 1
,
w

l
,
w

l + 1
. . .

w

m
, 0, 0 . . . 0)||2

=
((l − 1)2

l2
+

m∑
k=l+1

1

k2

)
w2

=f(l)w2 (5.15)

where f(l) = ( (l−1)
2

l2
+
∑m

k=l+1
1
k2

). It is easy to verify that

f(l + 1)− f(l) =
l − 1

l2(l + 1)
≥ 0 for all l ≥ 1

This shows that f(l) is increasing function of l, attaining its maximum (m−1)2
m2 when l = m.

Substituting this in equation (5.15)

||xl − µm−1||2 = f(l)w2 ≤ (m− 1)2

m2
w2 < w2

(PROVED)

5.4.2.3 Proof for R ≥ π√
6

From lemma 5.4.7, it is clear that the set of training vectors visible from the mean keeps on
growing by adding one element in each iteration. The only vector visible from µk and not a
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member of Vk is xk+2. From lemma 5.4.6, the closest neighbor to xk+2 in Vk will be x1. Hence
the distance of the newly visible training vector from the currently visible training vectors is :

||xk+2 − x1||2 = ||xk+2||2 =
( k+1∑
j=1

1

j2

)
w2 (5.16)

which according to equation 5.8, can be made arbitrarily close to π2

6 w
2 by choosing large k on a

training set D with large n . (PROVED)

5.5 Implementation details

Let T = {P1, P2, . . . , Pntc} be the partitions (i.e. clusters) of D = {x1, x2 . . . xn}, obtained
through transitive closure based clustering (TC) using matching threshold

√
2w. Let ci be the

number of vectors in Pi and the partitions are indexed in the decreasing order of their size i.e.
i < j =⇒ ci ≥ cj . P1 is the largest partition with c1 members. Based on the proof presented
in section 5.4.1, we can perform MSC on D with range w by performing mean-shift on each Pi
independently. If size of each Pi is signi�cantly smaller than that of D, then the range search
within each Pi will be faster when compared to that with whole D. Hence, we can say that if
c1 << n then TC partitions can be used to accelerate MSC.

We refer to the MSC algorithm which performs range search with whole D in each iteration
as SMSC (Standard MSC). The algorithm which uses TC partitions to perform MSC is referred
to as TCMSC. In our experiments we compare the time required to perform SMSC and TCMSC.
In our implementation of TCMSC, we perform TC on D during the �rst iteration of MSC by
performing range search with range

√
2w instead of w. During subsequent iterations, for a vec-

tor xj ∈ Pi we need to search only in Pi for neighbors within range w from the mean vector
corresponding to xj .

Our acceleration strategy is useful only when the size of each partition Pi is signi�cantly smaller
compared to n. It requires that the di�erent clusters in D are well separated from each other
so that the transitive closure operation on range based matching (i.e. reachability criteria) can
provide partitions in which each partition is signi�cantly smaller than D. When the data are well
separated, fast range searching techniques can also increase the e�ciency of MSC by employing
a pre-processing step in which the training vectors are arranged in a tree structure. Di�erent
subtrees of this structure hold vectors belonging to separate regions. This arrangement will help
to con�ne the range search to a limited region around the query vector. In our experiments
we would like to see whether TC partitions can further accelerate SMSC which employs a fast
range searching technique for performing range search in each iteration. We use [79] for fast
range search in SMSC and TCMSC. We perform exact range search without using approxima-
tion option available in [79]. When using fast range search methods, the cost of �rst mean-shift
iteration in TCMSC in which we use range

√
2w (which is larger than w) may increase. In order

to obtain acceleration through TCMSC, this additional cost during the �rst iteration should be
compensated by the faster range search in subsequent iterations due to the partitioning of D.
Hence, in addition to the size of TC partitions, the advantage of TCMSC depends also on the
subsequent number of iterations needed for convergence.
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5.5.1 Experiments with gaussian MSC on MPG data

Table 5.1 gives the details of running gaussian TCMSC and SMSC on SIFT descriptors extracted
from TD1 to TD6 of MPG dataset (section 3.5.1). Left most column indicates training data.
Each subsequent column corresponds to a σ parameter value of the gaussian kernel. We use
values {30, . . . , 110}. The support range value w, termination criteria ε1 corresponding to each σ
are chosen as explained in section 3.6.1. For each dataset there are four rows. The �rst row shows
(in bold faced letters) the ratio of CPU time utilized to perform SMSC and TCMSC. Whenever
SMSC takes more time than TCMSC this value is greater than 1 and vice-versa. The second row
shows c1

n × 100 i.e. the percentage of training vectors in the largest TC partition. The third row
shows the ratio of CPU time utilized by TCMSC and SMSC during the �rst mean-shift iteration.
This is always greater than 1 because TCMSC needs more time to perform range search in the
�rst iteration using threshold

√
2w which is larger than w used in SMSC iterations. For example,

if its value is 2, then it indicates that the �rst mean-shift iteration of TCMSC needs nearly the
time of two SMSC iterations. The fourth row shows the average number of mean-shift iterations
performed for a training vector.

As σ increases, the range value w increases. This increases the number of vectors getting merged
into a cluster through transitive closure operation on range based matching. Hence, as σ in-
creases, TC produces partitions with large number of elements. Therefore, the value in the
second row (the percentage of training vectors in the largest TC partition) corresponding to a
dataset increases as we move from left to right. In most cases, as σ increases, the ratio of CPU
time (third row of each data) needed to perform a range search with threshold

√
2w and w seems

to be moving closer to 1. For example, in the third row of TD4, this value decreases from 3.11
to 1.37 from the �rst to the second last column and increases slightly to 1.58 in the last column.
Average number of mean-shift iterations (fourth row of each data) usually increases with σ be-
cause larger range will involve vectors far from the current mean vector in mean-shift update.
The acceleration provided by TCMSC will be high when the size of the partitions (second row
of each data) is less and the average mean-shift iterations (fourth row of each data) is high. For
low value of σ (eg. σ = 30) we do not obtain much acceleration through TCMSC because the
mean-shift iterations are not su�cient to compensate for the additional cost incurred during the
�rst TCMSC iteration. As σ takes higher values the TC partitions (second row of each data)
grow and eventually the whole D is merged into a single partition. We obtain highest acceler-
ation through TCMSC for σ in the rage of 40 to 60 (best is 4.82 on TD4 for σ = 50. At worst
case TCMSC seems to be 5% slower than SMSC (last column of TD3).

5.6 Conclusions

We presented a strategy for accelerating mean-shift operation without using any approximation.
The speedup of the strategy depends on three di�erent factors (i)size of TC partitions, (ii)
additional cost incurred during the �rst iteration of TCMSC and (iii) number of mean-shift
iterations needed for convergence. Our experiments show that for gaussian kernel we obtain
acceleration up to 4 times for σ value near 50. In the worst case the speed reduced by 5%.
Our results are comparable to that in [20] (acceleration between 1.5 to 3 most of the time).
In contrast the method in [34] provides a speed up by a factor close to 1000. But it involves
subsampling D by a factor of 1024 before beginning MSC. For 3D point representation in which a
3D point associated with features in few images (nearly 20 in our case) such a huge subsampling
is not reasonable. In [122] a speed up by a factor close to 30 is achieved by eliminating the
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30 40 50 60 70 80 90 100 110

TD1

1.48 2.99 2.93 1.64 1.16 0.99 0.99 0.98 0.96
1.36 9.60 36.14 69.69 89.30 97.52 99.76 99.99 100.00
3.00 3.11 2.58 2.07 1.74 1.52 1.43 1.50 2.10
5.78 10.60 14.48 17.15 18.75 19.48 19.89 20.96 21.15

TD2

2.00 3.76 3.34 1.80 1.19 1.01 0.98 0.98 0.95
0.90 10.88 38.02 68.26 88.72 97.86 99.82 100.00 100.00
3.03 3.21 2.68 2.13 1.77 1.55 1.44 1.49 2.07
7.75 13.96 18.24 20.14 20.89 20.30 19.94 20.08 20.94

TD3

1.82 3.34 4.57 2.31 1.39 1.06 0.99 0.97 0.95
3.90 7.79 19.34 55.99 79.40 94.08 99.32 99.99 100.00
3.07 3.11 2.49 1.97 1.67 1.49 1.40 1.43 1.74
7.32 12.08 15.22 16.98 16.78 15.59 15.18 15.06 15.16

TD4

1.28 2.67 4.82 3.89 1.79 1.17 0.99 0.98 0.97
0.59 4.14 14.77 37.63 69.18 89.24 98.80 99.97 100.00
3.11 3.12 2.42 1.90 1.60 1.45 1.37 1.37 1.58
5.96 10.27 13.70 16.15 17.16 16.90 16.98 18.05 18.14

TD5

1.32 2.45 3.19 2.09 1.27 1.01 0.98 0.98 0.96
2.22 12.45 29.35 57.38 83.37 96.33 99.63 100.00 100.00
3.00 3.23 2.64 2.10 1.74 1.54 1.44 1.51 1.99
5.19 9.24 12.80 15.14 15.83 16.75 17.17 17.89 18.72

TD6

1.40 2.77 4.63 3.68 1.92 1.10 0.98 0.97 0.96
0.29 2.76 14.08 36.59 66.20 91.74 99.44 100.00 100.00
3.07 3.24 2.61 2.00 1.65 1.46 1.38 1.39 1.72
5.58 9.63 12.34 13.60 13.90 13.77 13.71 13.62 14.23

Table 5.1: Comparing computational cost of gaussian TCMSC and SMSC. Left most column
indicates the name of the dataset. Each subsequent column corresponds to a σ parameter of the
gaussian kernel. For each dataset there are four rows. The �rst of these four rows shows the
ratio of CPU time utilized to perform SMSC and TCMSC. If the ratio is greater than 1, then
TCMSC is faster than SMSC and vice-versa. The second of the four rows shows the percentage
of training vectors in the largest TC partition. The third row shows the ratio of CPU time
utilized by TCMSC and SMSC during the �rst mean-shift iteration. The last of the four rows
shows the average number of mean-shift iterations performed for a training vector.
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training vectors which are likely to converge to the same mode. But the results are shown on a
dataset containing more than 300 samples per class. During our experiments on pose estimation
we obtained better pose results for σ values above 50, for which the TCMSC acceleration is
moderate. As future work we would like to see whether we can use our strategy for performing
SfM through hierarchical mean-shift in which clustering is initiated with low σ values.



Chapter 6

Features from simulated views through

ASIFT

As pose di�erence between the test image and the images in the training set increases, it becomes
di�cult to identify a su�cient number of 3D points in the test image for pose estimation. If
new views of the environment can be simulated from one of its view then such techniques can be
used to generate new views of the environment from training and test images. Some of the views
simulated from training images may be closer to that of the test image and vice-versa. In this
chapter we present the experiments in which we attempt to use features from simulated views in
order to improve 2D-to-3D point matches under large pose variation between test and training
images. For all the experiments in this chapter we use ATC based visual words (section 3.4) for
performing SfM.

6.1 Background

Single image of a planar object contains all the parts of the object that are visible from di�erent
views. Hence, a di�erent view of a planar object can be simulated by applying the appropriate
transformation (usually homography or a�ne) to one of its views. Locally planar assumption
on the shape of the target environment provides scope to achieve robustness against change of
viewpoint. This can be done in two ways : (a)Surface normal based warping, (b)View simulation.

Surface normal based techniques try to estimate the local surface normal and generate the de-
sired view of the features to be matched to improve matching accuracy. In [118], dense textured
3D model of the environment is used to enhance the view invariance of the SIFT descriptors
by normalizing the image patches. The dominant planes are computed in the dense 3D model.
Then, for each dominant plane, texture is projected into an orthographic camera with viewing
direction parallel to the plane's normal. SIFT descriptors extracted from these orthographic
patch projections are used to match two di�erent 3D models of a scene. In [76], dynamically
estimated camera pose and 3D position of the tracked features under a SLAM model are used
to re�ne the surface normal from an initial estimate at each feature positions by successively
warping the image patches around it through homography. [21] uses similar warping strategy on
training images for which the camera positions are computed in an o�ine training step. In this
case the camera pose values are more reliable due to which the estimated surface normals are
more accurate.

121
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Second approach is to obtain feature descriptors from additional views simulated from avail-
able images. A�ne transformations (ASIFT[78], Ferns[89]) are widely used to generate new
views from the existing views. The parameters of the a�ne transformation are generated assum-
ing the frontoparallel view of the locally planar surface and ignoring perspectivity[66]. We adopt
view simulation based approach because unlike surface normal warping it does not rely on the
accuracy of the estimated surface normal.

6.1.1 Overview

In section 6.2 we give a brief description of the process of view simulation in Ferns and ASIFT
and justify our choice of using ASIFT over Ferns through an experiment. Section 6.3 presents the
di�erent approaches used in our experiments to incorporate features from simulated views into
3D map. In section 6.4 we describe the experimental framework for evaluating the performance of
these di�erent approaches. Section 6.5 presents the result of this evaluation and the conclusions
are presented in 6.6.

6.2 SIFT vs Ferns

6.2.1 View simulation in Random Ferns[89]

The random ferns method generates random a�ne transformations by

A = RθR−φdiag(λ1, λ2)Rφ (6.1)

where the diag(λ1, λ2) is a 2 × 2 diagonal matrix having λ1, λ2 as its diagonal values, Rα
represents 2D rotation by an angle α. The values of θ, φ, λ are randomly chosen from the range
[0 : 2π], [0 : π], [.5 : 1.5] respectively. User speci�ed number of synthetic images are generated
iteratively by applying a random a�ne transformation on the original training image in each
iteration. Interest points that are repeatedly detected in multiple simulations are retained.

6.2.2 View simulation in ASIFT[78]

Instead of randomly generating a huge number of a�ne transformations for view simulation,
ASIFT method systematically samples the view-hemisphere as depicted in the �gure 6.1 (It is
exact reproduction of �gure 14 of [78]). SIFT descriptors [69] are extracted from each simulated
image. The simulations are modeled as a rotation φ caused by longitude and a tilt t = | 1

cosθ |
caused by the latitude θ. ASIFT does not simulate in-plane rotation and scale change since the
SIFT feature extraction process itself is invariant to it. Hence the a�ne mapping is generated
by (

t 0
0 1

)
Rφ (6.2)

Where Rφ is the rotation matrix corresponding to angle φ. Images are generated for t ∈
{1,
√

2, 2, ...,
√

2
n} and φ ∈ {0, b/t, ..., kb/t} with b = 72o and k = bt/b.180oc.

Representing a keypoint in Random Ferns involves storing the distribution of values of a large
number of binary functions computed from image patch around the keypoint. It occupies a huge
amount of memory (nearly 480KB for a keypoint containing 30 ferns each with 12 binary func-
tions) which makes it di�cult to represent a 3D map with large number of 3D points. Moreover,
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Figure 6.1: (Exact reproduction of �gure 14 of [78]) Sampling of the parameters t = | 1
cosθ | and

φ. The samples are the black dots. Left: perspective illustration of the view hemisphere (only
t = 2, 2

√
2, 4 are shown). Right: zenith view of the observation hemisphere. The values of θ are

indicated on the �gure.

experimentally SIFT descriptors extracted from original image (without any view simulation)
have performed better than random fern based descriptors [65] in terms of ability and accuracy
of matching. Our own experiments con�rm these results. We used the code provided by the
authors on MPG dataset to detect planar region in test images using a single training image.
We select one image from TD2 and mark the planar region. After training random ferns on
this single image we use the images in TD1 as test images. We compute homography from the
matches computed on test images using the learned keypoints in the train image. Using the ho-
mography we demarcate the planar region in test images. We repeat the same experiment with
SIFT features (without using view simulation) by matching test images with the train image
using standard SIFT keypoint matching with threshold 0.6. The results are evaluated manually
looking at the demarcated planar region in the test image. Figure 6.2 shows the training image,
and one example for each case of correct detection and wrong detection. The detection count
for SIFT and Fern based methods is listed in table 6.1. The result clearly indicates that SIFT
descriptors are more robust compared to Ferns. Hence in our work we use ASIFT framework to
obtain features from simulated views.

6.3 Incorporating features from simulated views into 3D map

We explore di�erent ways of incorporating the descriptors from simulated views into 3D map of
the environment. A straight forward way is to extract ASIFT features (which consist of SIFT
features extracted from simulated images along with those from the original image) from each
training image and build the 3D map as described in chapter 3. This straight forward method
(referred to as Method1) is described in section 6.3.1. Through ASIFT descriptors one would
expect to enrich the visual representation of 3D points by having additional SIFT descriptors
from simulated views. In our experiments we observe that the SIFT features extracted from
simulated views more often produce new 3D points than providing additional descriptors to the
3D points computed from the original images. Hence, we design additional strategies to add
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Train

(a)

Sift Test  00005

(b)

Sift Test  00015

(c)

Figure 6.2: (a) Training image chosen from TD1 and the marked planar region. (b) Correct
detection (c) Wrong detection

Method Detected Wrong
Correctly Detection

Fern N = 100 3 114
Fern N = 200 6 111
Fern N = 400 6 111
Fern N = 800 3 114
Fern N = 1600 5 112

SIFT 70 47

Table 6.1: Detection counts for the planar region on 117 images of TD1 using one of the images
from TD2 for training (Please refer to �gure 6.2) . The �rst column shows the method used
(Fern[89] or SIFT[69]) for extracting features. For Fern method we have to specify N the number
of features to be extracted from an image. The two subsequent columns show the number of
Correct and Wrong detections respectively.
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SIFT descriptors for simulated views to the 3D map computed from original images. We �rst
build the 3D map through SfM on 2D-to-2D matches obtained from SIFT features extracted
from original training images. Then, for each 3D point we try to add SIFT descriptors from
views simulated from training images. We perform this post-SfM addition of descriptors in three
di�erent ways referred to as Method2, Method3 and Method4. They are presented in section
6.3.2. Throughout our presentation, the `2D location of a SIFT descriptor' refers to its 2D
coordinates in the original image, irrespective of whether the descriptor is extracted from the
original or a simulated image.

6.3.1 Method1 : Using ASIFT features during SfM

We build the 3D map as described in chapter 3 using the ATC clusters (section 3.4) on ASIFT
descriptors extracted from training images. The pruning step presented in section 3.3 discards
the clusters having multiple instances in a single training image. The set of ASIFT features may
contain multiple descriptors of a 3D point in a single training image due to view simulation.
Hence, we make a minor modi�cation in the pruning step. Suppose a cluster contains multiple
SIFT descriptors from a single training image I. Let {q1, ..., qk} be the 2D locations of those
descriptors in I. We compute the maximum Euclidean distance dmax between the 2D locations
{q1, ..., qk}. If dmax is greater than one pixel, then the cluster is discarded. Otherwise it is used
to generate 2D-to-2D matches. The 3D map thus obtained will contain the descriptors from
simulated views.

6.3.2 Post-SfM addition of simulated features to 3D map

For each 3D point in the 3D map computed from original training images through ATC based
clustering, we associate SIFT descriptors from simulated views in the following three di�erent
ways.

6.3.2.1 Method2 : Adding descriptors based on pixel distance

If the 2D locations of two di�erent SIFT descriptors are su�ciently close to each other then we
can say that they belong to the same 3D point. In Method2, SIFT descriptors from simulated
views of training images are added to the 3D map based on the proximity of their 2D locations
to that of the descriptors from original images which are associated with 3D map. Let q be the
2D location of a SIFT descriptor associated with a 3D point Q in one of the training images
I. We extract SIFT features from simulated views generated from I. All the SIFT features
from simulated views whose 2D locations when back projected to the original image, lie within
a distance of 1 pixel from q are associated with Q.

6.3.2.2 Method3 : Computing descriptors from a given location

The 2D location of a SIFT descriptor associated with a 3D point can be mapped to a simulated
view using the a�ne transformation used to generate the view. In Method3, we try to compute
additional SIFT descriptors for each 3D point from these mapped 2D locations in simulated
views. In addition to the 2D location we have to specify the scale at which the descriptor need
to be computed. We use the same scale as the original descriptor. That is, if a 3D point Q is
associated with SIFT descriptor extracted from a 2D location q and scale s of a training image I,
then from each simulated view of I we compute SIFT descriptor from the location corresponding
to q at scale s and associate it with Q.
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6.3.2.3 Method4 : Choosing the best scale for a given location

Method4 is similar to Method3 except that we try to determine the scale at which we want
to compute the descriptor from a given location q in the simulated image. The values in the
di�erent layers of the DoG (Di�erence of Gaussian) pyramid (section 2.1.1) of the simulated view
is searched along the location corresponding to q. If the value of DoG at the lowest layer of the
pyramid is -ve, then we look for the layer in the pyramid which has the lowest value for DoG
at q. If the value of DoG at the lowest layer of the pyramid is +ve, then we look for the layer
in the pyramid which has the highest value for DoG at q. If the extremum value occurs in the
bottom most or the top most layer, then we do not compute any descriptor at q. Otherwise,
SIFT descriptor is computed at the scale of the layer at which extremum occurs.

6.4 Experimental framework

We want to compare the quality of 2D-to-3D matches in a test image obtained through a 3D map
with and without having features from simulated views. We mainly use the reprojection error
corresponding to 2D-to-3D matches to measure the quality. There are many factors other than
the usage of simulated views which in�uence this measure. For example, ATC needs smooth
variation of pose in the training images in order to be able to establish 2D-to-2D matches, the
accuracy of the coordinates of 3D points depends on the length of the baseline available in the
training images. In order to reduce such in�uences we design our experiments in the following
way.

We select a set of test images and di�erent sets of training images from RoboImage[7] (de-
scribed in section 3.5.2) dataset. Figure 6.3.b shows the positions of images included in the test
set RITest. Figures (c) to (f) of 6.3 show the camera positions of the images in four di�erent
training sets RITrain1 to RITrain4. We can see that the change of camera pose in the training
images (especially in RITrain3) is not always smooth. Hence we choose a super train set (Figure
6.3.a) in which the pose variation is smooth. It contains all the images in the training sets
RITrain1 to RITrain4. We build 3D map through SfM on super train set. The coordinates of
each 3D point in the 3D map is recomputed by performing triangulation using the ground truth
camera positions of the super train set. 3D points having mean reprojection error higher than 1
pixel are discarded. Using this process we hope to obtain a good quality super 3D map in the
ground truth 3D coordinate system. For each training set we obtain its 3D map by choosing the
3D points from the super 3D map which are associated with its descriptors. Since these 3D maps
are in ground truth 3D coordinate system and we have ground truth camera pose information
of test images, we can compute the reprojection error for each 2D-to-3D match in a test image.

6.5 Results

For generating simulated views we use only one additional tilt i.e. t ∈ {1,
√

2} in equation 6.2.
Using more tilts will increase the computational cost of extracting and matching SIFT descrip-
tors. For t =

√
2 four simulated images are generated corresponding to di�erent longitudes.

Without using simulation we obtain around 600 SIFT keypoints per image. With simulation we
obtain nearly 2000 to 2500 keypoints per image. After computing the 3D map and adding fea-
tures from simulated views in di�erent ways as described in the section 6.3, we match the feature
descriptors from test images with D3D i.e. the training feature descriptors associated with 3D
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D013 Contains 39 images

(a) Super train set, 39 images
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(b) RITest, 11 imagesD002 Contains 4 images

(c) RITrain1, 4 images

D014 Contains 1 images

(d) RITrain2, 2 imagesD010 Contains 4 images

(e) RITrain3, 4 images

D011 Contains 4 images

(f) RITrain4, 4 images

Figure 6.3: Images selected from RoboImage dataset for experiments in this chapter. We select 6
di�erent subsets shown in the 6 plots above. Each plot shows the camera position of 119 images
in green dots. The camera positions of the selected images of a subset are indicated by arrows in
the direction of the orientation of the camera. Plot (a) shows the subset camera positions used
to build the 3D map during training. Plot (b) shows the subset used as test set. The test images
are numbered from 1 to 11. The rest, i.e, plots (c) to (f) are di�erent training sets. RITrain1
and RITrain2 provide views only from one extreme end. RITrain2 contains only one image from
the front row which leads to a huge scale variation with test images in the last row. RITrain3
provides views from both sides but middle views are missing. RITrain4 provides only the views
from the middle portion. Super train set in plot (a) contains all the images in the 4 training sets.
It is used to obtain a reliable 3D map which is projected on the di�erent training sets based on
the subset image positions.
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points. We apply a threshold of 0.8 on the ratio of distances with the two closest training feature
descriptors associated with two di�erent 3D points (this matching scheme is same as NNR with
D3D presented in section 4.2). We compute pose using EPnP with 500 RANSAC iterations. A
2D-to-3D match with reprojection error less than 1 pixel with respect to the ground truth pose
is considered as inlier.

The results for each test image (numbered 1 to 11 in �gure 6.3(b)) is shown separately in tables
6.2 to 6.12 respectively. In each table, the �rst column indicates the training set used to obtain
the 3D map. The subsequent columns are divided into two parts each containing 5 columns.
For the �rst part we do not use simulated views on the test images. For the second part we
use t ∈ {1,

√
2} to extract features through ASIFT. In each part M0 corresponds to the case in

which only SIFT features from the original training images are used during training. M1 to M4
correspond to 4 di�erent ways of using simulated features in 3D map as described in section 6.3.

In each table, there are 4 rows corresponding to each training set. The �rst three rows indi-
cate the quality of the 2D-to-3D matches obtained for the test image. The �rst row shows the
number of inlying 2D-to-3D matches in the test image with respect to the ground truth pose of
the camera. Second row shows the % of these inliers out of the total 2D-to-3D matches obtained
for the image. Third row shows the spread (in % computed as described in section 4.2.3.1) of 2D
locations of inlying 2D-to-3D matches in the image. The fourth row shows the accuracy of the
pose computation in terms of the error of estimated camera position from the ground truth. Let
Cg and Ce be the ground truth and estimated camera position for the test image corresponding
to the table. Let Qµ be the mean of the 3D coordinates of the 3D points available in the ground
truth information of the RoboImage data. The error value for the fourth row corresponding to
each training set is computed as ||Cg−Ce||2||Cg−Qµ||2 × 100.

Method1 to Method4 increase the number of descriptors associated with the 3D map by a ratio
of 3, 1.7, 5 and 1.6 respectively on average over di�erent training datasets. From the tables 6.2
to 6.12 we can see that method M0 provides reasonably good pose accuracy without using view
simulation on test images. Except for test image 11 (table 6.12) with RITrain2 (for which the
pose error is 40.8%) the pose error is less than 6%. The spread of inlying 2D-to-3D matches
is also more or less similar across di�erent methods (�gure 6.5 and 6.6 illustrate this). Hence,
in most cases we have to rely on the number of inlying 2D-to-3D matches for comparing the
performance of di�erent methods. We compare the performance of M1 to M4 with M0.

In most cases Method1 reduces the number of inlying 2D-to-3D matches for a test image
when view simulation is not performed on the test image. This point is evident if we compare
the �rst row of two columns M0 and M1 (in the left half portion of each table) corresponding to
each training set. For example it reduces from 277 to 262 for test image 1 with RITrain1 (table
6.2). The percentage of inliers also decrease in these cases. There are few exceptions (eg. for test
image 6, 7, 9, 10 and 11 with RITrain2 in tables 6.7, 6.8, 6.10, 6.11 and 6.12 respectively) where
there is a marginal increment in the number of inlying 2D-to-3D matches. This suggests that the
additional descriptors in the 3D map obtained through M1 are creating ambiguity for matching
with test SIFT descriptors from original test images. Only when the total number of available
features in the 3D map are very small (eg: for RITrain2 which has features from only one training
image) M1 increases the number of matches. When view simulation is not performed on test
images M2, M3 and M4 provide more or less the same number of inlying 2D-to-3D matches and



6.5. Results 129

(a) 1 (b) 2

(c) 3 (d) 4

Figure 6.4: The four training images in RITrain1. Image number 2 is the only training image
used in RITrain2.
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M0  Tot=95  In=45  Out=50

(a) M0 In=45 Out=50

M1  Tot=63  In=26  Out=37

(b) M1 In=26 Out=37

M2  Tot=92  In=41  Out=51

(c) M2 In=41 Out=51

M3  Tot=97  In=46  Out=51

(d) M3 In=46 Out=51

M4  Tot=100  In=46  Out=54

(e) M4 In=46 Out=54

Figure 6.5: 2D locations of the 2D-to-3D matches for test image 3 with RITrain1 (the four images
in this training set are shown in �gure 6.4)when view simulation is not performed on the test
image. The green '⊕' and red 'o' marks indicate inliers and outliers respectively with respect to
ground truth camera pose. Each sub�gure corresponds to method M0 to M4 (The 5 columns of
the left portion corresponding to RITrain1 in table 6.4). The number of inliers and outliers are
indicated along with each �gure. We can see that Except for the one green '⊕' mark near the
left top portion, M1 to M4 provide inliers from the same region as M0.
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M0  Tot=276  In=90  Out=186

(a) M0 In=90 Out=186

M1  Tot=246  In=97  Out=149

(b) M1 In=97 Out=149

M2  Tot=291  In=90  Out=201

(c) M2 In=90 Out=201

M3  Tot=284  In=91  Out=193

(d) M3 In=91 Out=193

M4  Tot=277  In=84  Out=193

(e) M4 In=84 Out=193

Figure 6.6: 2D locations of the 2D-to-3D matches for test image 3 with RITrain1 when view
simulation is performed on the test image. The green '⊕' and red 'o' marks indicate inliers and
outliers respectively with respect to ground truth camera pose. Each sub�gure corresponds to
method M0 to M4 (The 5 columns of the right portion corresponding to RITrain1 in table 6.4).
The number of inliers and outliers are indicated along with each �gure. We can see that Except
for the one green '⊕' mark near the left top portion, M1 to M4 provide inliers from the same
region as M0. The regions with green '⊕' mark seems to be same even if we compare with M0
of �gure 6.5 in which view simulation is not performed on the test image.
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M0  Tot=37  In=2  Out=35

(a) M0 In=2 Out=35

M1  Tot=27  In=7  Out=20

(b) M1 In=7 Out=20

M2  Tot=36  In=7  Out=29

(c) M2 In=7 Out=29

M3  Tot=34  In=2  Out=32

(d) M3 In=2 Out=32

M4  Tot=37  In=2  Out=35

(e) M4 In=2 Out=35

Figure 6.7: 2D locations of the 2D-to-3D matches for test image 11 with RITrain2 when view
simulation is not performed on the test image. The only training image in RITrain2 is shown
in sub�gure (b) of �gure 6.4. The green '⊕' and red 'o' marks indicate inliers and outliers
respectively with respect to ground truth camera pose.
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M0  Tot=128  In=13  Out=115

(a) M0 In=13 Out=115

M1  Tot=127  In=33  Out=94

(b) M1 In=33 Out=94

M2  Tot=119  In=18  Out=101

(c) M2 In=18 Out=101

M3  Tot=125  In=18  Out=107

(d) M3 In=18 Out=107

M4  Tot=132  In=13  Out=119

(e) M4 In=13 Out=119

Figure 6.8: 2D locations of the 2D-to-3D matches for test image 11 with RITrain2 when view
simulation is performed on the test image. The only training image in RITrain2 is shown in sub-
�gure (b) of �gure 6.4. The green '⊕' and red 'o' marks indicate inliers and outliers respectively
with respect to ground truth camera pose.
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pose accuracy.

When view simulation is used on test images, we obtain signi�cant number of additional 2D-to-
3D matches in all cases from M0 to M4. This is evident when we compare the left portion with
the right portion of each table. M1, in most cases, further increases 2D-to-3D matches and the
ratio of inliers from M0. Even with this signi�cant increase in the number of matches the spread
of matches over the test image seems to be unchanged (as can be seen in �gure 6.6).

When using SIFT features only from the original images (i.e. method M0 without perform-
ing view simulation on test image) we obtain highest pose error of 40.8% on test image 11 with
RITrain2 (table 6.12). Figure 6.7 and 6.8 show the distribution of the 2D location of the 2D-to-
3D matches with and without view simulation on the test image respectively. Method M1 and
M2 signi�cantly improve the number of matches in both cases.

The viewing angle of the images in training sets RITrain1 and RITrain2 (�gure 6.3) are very close
to each other. RITrain2 contains only one image, whereas RITrain1 contains multiple images
which cover the view at di�erent scales. This produces huge di�erence in the number of matches
obtained for a test image using RITrain1 and RITrain2. For examle, for test image 9 (table
6.10), the number of inlying 2D-to-3D matches for with RITrain1 is more than twice of that with
RITrain2 in most cases. For M0 (i.e. without view simulation on training images) this ratio is
nearly 5. Both RITrain1 and RITrain2 provide almost same number of matches for test image
1 (table 6.10) which is captured at a scale close to the image in RITrain1. This indicates the
limitation of the ability of SIFT features to handle scale variation.

6.6 Conclusion

In our experiments we could not obtain signi�cant advantage in 2D-to-3D matches and pose
computation despite employing various strategies. While performing image to image matching,
ASIFT provides signi�cantly more number of matches when compared to using only SIFT de-
scriptors from original image (online demo available [6]). We could not translate these bene�ts
in 3D map representation. The main di�erence between these two scenarios is that the 3D map
contains descriptors from various images and their simulated views. When performing image
to image matching, a test descriptor is matched with descriptors extracted from a single view
(original or simulated). Hence the ambiguity in the descriptor space is certainly much less while
matching two images than matching with 3D map. We may need more counter measures to get
rid of the ambiguity created by descriptors from synthetic views[31] before we could use it for
3D point representation.

We need to design better test cases in order to increase the scope of the experiments with
view simulation. Each image in the dataset we used covers a large portion of the environment
at a reasonably good pixel resolution. Hence it is di�cult to produce cases in which pose com-
putation fails with a training set containing more than two images when view simulation is not
used. Moreover we used only one scheme of matching which may not be suitable to handle the
ambiguities due to huge number of features generated from simulated views. In future we would
like to perform experiments with data captured from larger environment with more tilts while
generating view simulation and di�erent strategies to match 3D points.
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No view simulation on Test images Views simulated on Test images
M0 M1 M2 M3 M4 M0 M1 M2 M3 M4

R
IT
ra
in
1 277 262 277 292 283 455 888 513 495 467

81.7 75.1 81.2 78.9 80.2 54.4 75.6 55.1 52.7 52.9
105.5 99.1 105.1 102.5 103.3 105.2 100.1 104.2 104.0 103.8
0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1

R
IT
ra
in
2 228 215 230 244 229 336 708 393 388 351

81.4 75.7 81.0 81.3 79.8 54.0 72.3 54.7 53.5 53.0
98.1 94.3 100.2 100.1 97.4 99.4 102.2 103.2 102.8 97.6
0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1

R
IT
ra
in
3 265 249 267 276 271 408 851 473 450 414

80.1 74.1 78.8 80.7 79.0 53.4 75.1 54.8 52.3 51.8
106.5 96.3 106.1 104.8 104.7 105.1 100.0 105.1 104.3 103.6
0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1

R
IT
ra
in
4 58 48 54 64 60 105 144 112 119 109

59.2 49.5 50.9 52.5 54.5 38.9 46.3 36.7 36.1 37.7
83.6 91.7 83.8 87.1 90.1 84.4 96.4 87.2 84.8 93.2
0.4 0.3 0.4 0.4 0.3 0.3 0.2 0.5 0.9 0.3

Table 6.2: TestIm 1

No view simulation on Test images Views simulated on Test images
M0 M1 M2 M3 M4 M0 M1 M2 M3 M4

R
IT
ra
in
1 279 223 273 280 279 501 803 533 514 502

78.4 68.8 74.0 76.5 76.9 51.0 70.1 49.8 49.9 49.1
100.0 100.9 99.4 99.4 99.7 100.6 103.8 100.1 99.9 100.0
0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.3 0.2

R
IT
ra
in
2 288 229 284 285 287 446 799 502 496 466

86.0 75.1 85.8 82.4 84.4 54.9 72.3 55.2 52.4 53.0
101.5 102.0 101.8 100.4 101.7 103.6 104.8 104.8 102.2 104.1
0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.3 0.1 0.3

R
IT
ra
in
3 137 105 140 132 142 289 383 314 294 305

64.0 54.7 60.6 60.0 64.8 44.8 55.2 43.3 42.0 43.7
102.1 103.2 101.7 103.1 100.8 101.8 100.8 101.8 100.7 101.4
0.2 0.1 0.2 0.2 0.2 0.3 0.1 0.2 0.3 0.2

R
IT
ra
in
4 275 237 268 283 264 452 750 493 476 459

80.2 69.5 77.7 78.2 78.3 54.6 70.0 54.2 52.5 53.6
98.5 97.9 96.9 98.3 98.9 101.5 99.7 98.4 100.0 100.8
0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.2 0.2 0.2

Table 6.3: TestIm 2
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No view simulation on Test images Views simulated on Test images
M0 M1 M2 M3 M4 M0 M1 M2 M3 M4

R
IT
ra
in
1 45 26 41 46 46 90 97 90 91 84

47.4 41.3 44.6 47.4 46.0 32.6 39.4 30.9 32.0 30.3
41.3 58.2 33.8 60.1 65.2 68.6 71.7 66.1 62.3 65.8
0.5 0.4 0.7 0.8 0.7 3.3 0.6 0.9 0.9 2.7

R
IT
ra
in
2 44 27 42 44 43 71 90 80 79 75

48.4 39.7 47.7 51.2 50.6 29.0 38.3 30.8 29.9 31.8
68.5 46.5 68.5 68.2 68.4 79.0 56.9 79.8 79.3 76.9
0.7 0.8 0.4 0.5 1.6 5.3 0.7 2.5 2.8 0.7

R
IT
ra
in
3 154 114 156 160 155 255 354 289 276 258

67.2 58.5 67.8 64.8 67.4 44.7 57.6 46.3 43.1 43.3
86.7 85.6 86.1 86.0 74.9 85.4 84.7 85.2 85.2 80.0
0.2 0.1 0.1 0.1 0.3 0.1 0.2 0.1 0.2 0.6

R
IT
ra
in
4 253 200 251 245 253 430 675 464 445 434

75.5 68.5 75.1 76.1 76.2 53.7 70.2 54.1 51.9 53.0
91.0 77.7 90.8 91.5 90.6 89.7 78.3 89.1 88.5 89.6
0.1 0.1 0.0 0.1 0.1 0.3 0.1 0.2 0.1 0.0

Table 6.4: TestIm 3

No view simulation on Test images Views simulated on Test images
M0 M1 M2 M3 M4 M0 M1 M2 M3 M4

R
IT
ra
in
1 27 16 26 24 28 49 53 54 45 52

45.8 37.2 39.4 42.9 46.7 27.5 36.8 28.3 26.8 29.5
58.3 53.6 58.6 54.5 58.1 56.8 56.1 56.9 53.8 57.1
0.7 0.6 0.2 0.9 0.2 1.4 0.4 0.3 1.2 0.8

R
IT
ra
in
2 26 13 23 24 27 35 44 45 37 38

47.3 28.3 41.8 46.2 51.9 23.3 29.3 25.7 21.9 24.8
55.0 51.3 52.7 52.5 55.2 53.9 52.1 53.7 53.6 53.9
0.2 108.8 0.1 0.4 0.2 0.5 0.4 0.2 0.4 3.1

R
IT
ra
in
3 259 235 264 266 263 363 729 459 422 379

80.9 75.8 78.6 81.6 80.7 55.7 76.6 57.1 53.8 53.4
104.4 103.6 104.7 104.7 104.6 104.4 101.9 103.2 103.7 104.2
0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.1

R
IT
ra
in
4 92 60 84 88 87 164 197 170 165 167

68.7 52.6 63.2 61.1 61.3 45.1 52.0 43.6 40.4 43.0
61.5 60.8 61.4 87.8 61.3 70.2 69.4 70.2 80.7 70.4
0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.4 0.3 0.2

Table 6.5: TestIm 4



6.6. Conclusion 137

No view simulation on Test images Views simulated on Test images
M0 M1 M2 M3 M4 M0 M1 M2 M3 M4

R
IT
ra
in
1 102 67 90 93 93 199 235 204 203 187

52.0 39.6 47.6 50.3 48.4 34.9 42.3 33.3 34.6 31.6
97.8 94.5 97.3 96.0 98.2 98.9 94.4 99.9 101.7 99.8
0.3 1.1 1.3 0.6 0.5 1.2 0.9 2.1 0.3 1.0

R
IT
ra
in
2 92 64 89 90 91 174 238 191 185 182

60.9 48.5 57.8 58.4 57.6 38.8 48.1 37.8 36.8 37.7
91.3 71.0 92.2 95.1 93.1 84.0 81.3 83.5 81.6 90.6
0.2 1.8 0.5 0.2 0.3 0.7 0.4 0.5 0.4 0.2

R
IT
ra
in
3 85 63 93 99 85 193 224 214 220 197

46.7 35.4 46.3 51.6 46.7 35.9 39.9 35.4 36.5 35.4
86.4 94.7 89.2 88.2 86.8 87.2 92.5 86.3 86.1 87.1
0.1 0.5 0.3 0.1 0.2 0.1 0.6 0.3 0.2 0.4

R
IT
ra
in
4 392 353 392 394 393 625 1231 704 681 645

80.7 75.6 79.5 80.1 80.4 55.1 77.5 56.4 54.2 54.0
99.8 96.7 99.8 99.8 99.8 99.1 94.0 98.2 98.6 98.8
0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.2 0.4

Table 6.6: TestIm 5

No view simulation on Test images Views simulated on Test images
M0 M1 M2 M3 M4 M0 M1 M2 M3 M4

R
IT
ra
in
1 119 98 110 121 115 214 337 219 221 215

70.8 62.8 65.1 66.5 66.5 42.6 59.5 40.3 39.2 39.7
90.9 90.5 91.5 91.8 89.2 89.3 92.7 89.7 90.3 88.2
0.5 0.5 0.6 0.5 0.2 0.3 0.4 0.8 0.9 0.1

R
IT
ra
in
2 50 57 65 75 49 79 154 114 126 91

53.8 57.0 59.1 59.5 52.1 29.6 42.9 35.3 34.7 29.5
55.3 57.5 54.1 53.4 53.3 53.7 58.0 52.6 53.4 53.0
0.7 0.1 0.9 0.2 0.7 0.4 0.6 0.3 1.3 0.4

R
IT
ra
in
3 147 106 150 145 139 254 335 271 274 255

71.0 59.6 68.5 65.0 67.8 45.9 56.7 44.2 42.7 44.3
82.9 78.7 80.3 80.1 81.2 80.3 79.7 80.4 80.3 80.3
0.1 0.3 0.2 0.3 0.1 0.8 0.7 0.1 0.2 0.5

R
IT
ra
in
4 242 166 239 229 229 406 558 440 414 399

76.6 66.4 73.8 75.3 74.4 49.6 63.5 48.8 47.6 46.8
80.1 81.5 80.1 80.1 80.0 80.3 80.9 80.4 80.3 80.2
0.2 0.3 0.2 0.1 0.2 0.3 0.2 0.6 0.2 0.4

Table 6.7: TestIm 6
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No view simulation on Test images Views simulated on Test images
M0 M1 M2 M3 M4 M0 M1 M2 M3 M4

R
IT
ra
in
1 107 91 103 104 111 156 333 183 162 170

65.6 59.5 64.0 65.4 66.9 37.9 60.2 38.7 35.5 37.9
63.9 66.7 64.0 64.0 64.0 66.8 85.5 73.8 66.3 66.2
0.9 0.2 0.4 0.2 0.2 0.4 1.0 1.1 0.4 1.1

R
IT
ra
in
2 16 24 27 23 20 27 65 44 42 33

34.8 42.1 43.5 35.4 38.5 15.7 32.0 22.3 21.1 17.3
36.2 34.9 49.4 41.7 38.0 39.9 51.9 50.0 39.7 42.1
2.1 2.5 2.2 1.6 1.3 1.7 0.6 1.3 2.0 3.1

R
IT
ra
in
3 127 124 122 133 129 186 411 209 198 196

67.6 68.1 64.2 67.2 67.2 41.6 65.4 40.6 38.1 40.5
65.9 67.1 67.1 68.0 66.6 66.1 80.3 67.7 66.1 66.0
0.7 0.5 0.5 0.3 0.4 0.4 1.0 1.5 0.4 2.3

R
IT
ra
in
4 187 197 188 184 185 261 692 314 279 271

70.3 73.8 70.1 71.3 70.1 40.5 70.1 43.0 41.3 38.7
67.7 65.6 67.7 67.6 68.2 67.4 73.0 66.2 67.1 68.0
0.3 0.1 0.2 0.6 0.4 0.9 0.3 0.7 0.3 0.4

Table 6.8: TestIm 7

No view simulation on Test images Views simulated on Test images
M0 M1 M2 M3 M4 M0 M1 M2 M3 M4

R
IT
ra
in
1 278 258 284 289 284 400 803 473 434 427

81.0 76.1 79.3 81.6 80.5 49.9 71.5 50.9 47.3 49.4
88.6 87.1 88.4 88.0 88.1 88.1 92.9 87.8 87.2 87.6
0.2 0.1 0.2 0.1 0.0 0.1 0.1 0.2 0.4 0.3

R
IT
ra
in
2 138 138 164 161 140 179 309 247 229 199

63.6 62.4 69.5 67.1 66.0 38.4 48.0 44.2 41.0 39.6
74.2 71.9 76.6 74.2 73.1 73.5 73.8 75.7 73.7 73.3
0.3 0.4 0.4 0.3 0.1 0.4 0.2 0.3 0.5 0.6

R
IT
ra
in
3 168 147 174 172 169 267 445 299 282 281

74.3 67.1 75.3 73.2 73.2 43.1 58.5 44.0 39.7 42.4
90.2 88.2 90.1 88.1 89.8 90.5 91.0 91.9 88.6 90.0
0.2 0.2 0.3 0.3 0.1 0.2 0.2 0.3 0.3 0.6

R
IT
ra
in
4 151 93 161 145 151 233 339 275 243 239

77.8 52.8 73.2 75.9 75.1 44.7 53.3 45.2 42.0 43.6
90.3 88.1 93.3 91.7 88.7 91.4 93.0 94.0 91.7 89.3
0.1 0.3 0.2 0.1 0.1 0.4 0.3 0.8 0.3 0.5

Table 6.9: TestIm 8
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No view simulation on Test images Views simulated on Test images
M0 M1 M2 M3 M4 M0 M1 M2 M3 M4

R
IT
ra
in
1 52 41 50 57 49 75 136 83 88 72

62.7 56.9 58.8 63.3 57.0 34.6 54.8 34.2 39.1 31.4
76.4 45.6 70.8 71.0 71.6 77.0 72.7 69.8 74.4 71.1
0.3 0.9 0.2 1.1 0.4 5.1 1.5 3.2 0.9 6.4

R
IT
ra
in
2 8 25 19 18 10 17 45 28 31 21

20.0 54.3 35.2 36.0 21.7 12.1 31.5 18.5 19.6 14.6
55.5 20.0 46.9 47.5 54.7 52.1 26.3 48.6 47.5 54.8
5.2 0.5 7.9 2.4 11.0 4.4 1.9 23.5 1.2 2.3

R
IT
ra
in
3 139 100 141 149 138 224 297 233 248 224

72.4 62.9 72.3 71.6 72.3 43.7 54.5 43.2 42.5 43.3
89.8 81.7 90.1 90.5 90.0 89.7 83.8 89.8 89.9 89.8
0.2 0.9 0.2 0.2 0.0 0.3 0.4 0.3 0.4 0.2

R
IT
ra
in
4 147 100 141 149 138 217 289 233 239 211

75.4 59.5 71.6 71.0 72.6 46.3 53.4 45.2 43.4 45.2
89.9 61.1 90.0 90.0 90.0 89.7 85.1 89.7 89.9 89.8
0.2 0.2 0.2 0.1 0.3 0.2 0.5 0.2 0.4 0.8

Table 6.10: TestIm 9

No view simulation on Test images Views simulated on Test images
M0 M1 M2 M3 M4 M0 M1 M2 M3 M4

R
IT
ra
in
1 169 189 174 175 170 215 586 269 246 230

72.2 72.7 69.9 72.0 70.0 40.6 64.3 42.0 39.1 38.5
67.7 67.3 67.3 67.6 67.3 67.2 75.6 71.7 68.4 67.1
0.3 0.3 0.1 0.3 0.1 0.5 0.3 0.5 0.3 0.5

R
IT
ra
in
2 45 55 62 58 54 65 112 89 82 80

52.9 48.7 55.9 55.2 55.1 24.6 32.6 29.6 27.6 26.4
40.3 38.8 47.9 40.2 40.1 50.6 45.9 51.2 48.1 49.2
1.6 0.5 0.9 0.8 0.7 1.4 1.1 1.5 0.6 0.9

R
IT
ra
in
3 162 169 165 167 165 213 545 253 239 224

74.0 70.4 72.1 74.2 70.8 43.1 64.2 42.3 40.0 40.7
67.6 67.3 66.9 67.2 67.4 67.0 76.8 70.9 67.6 67.1
0.3 0.4 0.3 0.2 0.1 0.4 0.2 0.5 1.4 0.3

R
IT
ra
in
4 148 151 152 146 150 207 484 243 211 215

70.8 70.2 70.4 68.2 69.8 42.3 61.7 42.2 39.7 40.0
66.7 66.6 66.6 67.0 66.7 69.4 79.7 73.2 68.3 68.9
0.4 0.3 0.5 0.4 0.2 1.2 0.2 0.1 1.0 0.3

Table 6.11: TestIm 10
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No view simulation on Test images Views simulated on Test images
M0 M1 M2 M3 M4 M0 M1 M2 M3 M4

R
IT
ra
in
1 31 29 32 26 30 51 102 58 49 52

43.1 46.0 44.4 39.4 43.5 26.4 45.3 27.6 25.3 25.1
62.8 51.9 61.8 68.7 62.3 65.5 84.4 66.7 66.5 68.6
2.4 6.0 1.6 2.8 2.6 0.6 3.5 1.4 2.9 2.4

R
IT
ra
in
2 2 7 7 2 2 13 33 18 18 13

5.4 25.9 19.4 5.9 5.4 10.2 26.0 15.1 14.4 9.8
0.0 9.6 16.5 0.0 0.0 37.8 46.3 41.2 34.4 33.6
40.8 31.5 12.8 3.7 35.8 52.9 2.1 6.1 2.9 17.2

R
IT
ra
in
3 148 126 148 151 150 196 424 246 226 211

65.8 67.0 66.7 66.5 64.7 40.0 63.1 44.5 40.4 39.7
72.3 72.1 72.3 72.3 72.2 71.9 73.0 71.7 72.6 71.8
0.3 0.5 0.6 0.7 0.1 1.0 0.1 1.2 1.8 0.4

R
IT
ra
in
4 115 106 113 117 113 149 380 177 163 158

61.8 56.4 60.8 61.9 61.4 35.6 58.6 38.6 35.3 35.7
72.3 68.3 72.3 72.4 72.4 72.1 72.0 71.9 72.2 72.1
0.5 0.0 0.6 0.9 0.4 0.5 1.0 1.4 0.6 1.5

Table 6.12: TestIm 11



Chapter 7

Conclusion

Our work addressed the problem of producing 2D-to-3D matches for PnP (Perspective n-Point)
based camera pose estimation. Based on the recent developments in the area we adopted a two
stage framework in which SIFT technique is used for interest point detection and description.
During the training stage we explored di�erent ways of matching SIFT descriptors and during
test stage we tried di�erent ways of 3D point representation. Using ASIFT technique we ex-
plored obtaining additional feature descriptors from simulated views of the environment. We
also presented a strategy for accelerating mean-shift operation which we conceived during our
experiments with di�erent clustering techniques during training stage.

For matching SIFT descriptors during training stage we propose a novel method (ATC - Adap-
tive Transitive Closure) for clustering in which range based matching is performed adaptively.
Results of our evaluation presented in chapter 3 indicates many advantages of our method for
establishing 2D-to-2D matches to perform SfM. It avoids the need of knowing the number of
clusters apriori and the task of choosing the right parameter to represent intra-class distance.

During test stage we experimented with various strategies on the 3D map obtained from dif-
ferent clustering schemes to perform 3D point recognition. Unlike, the training stage in which
we were able to obtain results showing clear advantage of ATC clustering scheme over other
methods for building 3D map, the results in the test stage showed marginal improvement due
to ATC in few cases. The most signi�cant of them being the ability to perform pose estimation
consistently over di�erent pose variation between train and test images. We also demonstrated
the advantage of using SVM classi�er for 3D point representation.

Our strategy for accelerating mean-shift operation is based on mathematical support which
proves that we obtain exactly same result as the conventional mean-shift with our modi�cation.
But, compared to the existing strategies which use approximation and subsampling, we obtain
moderate acceleration in speci�c range of parameters.

Using features from simulated views did not show any clear advantage for pose computation
unless the number of feature descriptors in the 3D map is extremely scarce. We need to run
experiments with simulated views on a dataset captured in a larger environment and design new
strategies to handle the ambiguity in feature matching due to the huge number of features from
simulated views.

141
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7.1 Future work

Using high dimensional features like SIFT makes the matching process computationally ine�-
cient. We need a high degree of parallel processing (eg: parallel matching for each test vector)
for our method to be usable in applications which need real-time speed. In order to reduce com-
putational cost it would be interesting to experiment with fast classi�cation techniques[108, 89].

The features extracted from training images which could not participate in the 2D-to-2D match-
ing process are not included in the 3D map. This is particularly true for the features in the images
whose camera positions are at the extremities of the views available in the training set. Some
of these excluded features may match with the test image. We would like to explore whether
combining the 2D-to-2D match constraints between the test and train images along with the 2D-
to-3D matches during the test stage can lead to better pose estimation. These 2D-to-2D matches
between test and train images can be useful when the available 2D-to-3D matches are less or the
accuracy of the 3D coordinates of the matched 3D points is poor due to short baseline between
the training camera positions from which they are computed. The combination of 2D-to-2D and
2D-to-3D matches can also help to reduce the jitter in pose estimated through independently
recognized 3D points in successive images. For using simulated views this provides a scope for
exploring new strategies for choosing the appropriate simulation based on the approximate loca-
tion of the test image which can be guessed from previous image. We would also like to compare
the cost of computing features from simulated views with that of updating the 3D map with new
features from test images.

For mean-shift acceleration we want to explore a di�erent experiment in the same framework
presented in chapter 5. During the �rst iteration, instead of performing transitive closure using
range

√
2w, we can just keep a list for each training vector that stores all the training vectors

that are within distance
√

2w from it. After each iteration, we need to perform range search
with only those vectors which are in the list associated with the currently visible set of training
vectors.



Bibliography

[1] http://nlp.stanford.edu/IR-book/completelink.html. 52

[2] http://en.wikipedia.org/wiki/Coefficient_of_variation. 74

[3] http://en.wikipedia.org/wiki/Minimum_bounding_rectangle. 92

[4] http://http://en.wikipedia.org/wiki/Kernel_trick. 98

[5] http://en.wikipedia.org/wiki/Basel_problem. 114

[6] http://demo.ipol.im/demo/my_affine_sift/. 134

[7] Henrik Aanæs, Anders Lindbjerg Dahl, and Kim Steenstrup Pedersen. Interesting interest
points. International Journal of Computer Vision, 97(1):18�35, 2012. 59, 80, 126

[8] Adrien Angeli, David Filliat, Stéphane Doncieux, and Jean-Arcady Meyer. Fast and incre-
mental method for loop-closure detection using bags of visual words. IEEE Transactions

on Robotics, 24(5):1027�1037, 2008. 42, 44, 45

[9] S. Avidan. Ensemble tracking. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 29(2):261�271, 2007. 107

[10] Ronald T. Azuma. A survey of augmented reality. Presence: Teleoperators and Virtual

Environments, 6(4):355�385, 1997. 7, 17

[11] T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping (SLAM): part
II. IEEE Robotics Automation Magazine, 13(3):108�117, 2006. 7, 17, 37

[12] Stephen T. Barnard and William B. Thompson. Disparity analysis of images. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2(4):333�340, 1980. 37

[13] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust
features (SURF). Computer Vision and Image Understanding, 110(3):346�359, 2008. 36,
41

[14] M.-O. Berger. How to track e�ciently piecewise curved contours with a view to recon-
structing 3D objects. In ICPR, 1994. 38

[15] K. K. Srikrishna Bhat, Marie-Odile Berger, Gilles Simon, and Frédéric Sur. Transitive
closure based visual words for point matching in video sequence. In ICPR, 2010. 49

[16] K. K. Srikrishna Bhat, Marie-Odile Berger, and Frédéric Sur. Visual words for 3D recon-
struction and pose computation. In 3DIMPVT, 2011. 49

143

http://nlp.stanford.edu/IR-book/completelink.html
http://en.wikipedia.org/wiki/Coefficient_of_variation
http://en.wikipedia.org/wiki/Minimum_bounding_rectangle
http://http://en.wikipedia.org/wiki/Kernel_trick
http://en.wikipedia.org/wiki/Basel_problem
http://demo.ipol.im/demo/my_affine_sift/


144 Bibliography

[17] Tom Botterill, Steven Mills, and Richard Green. Bag-of-words-driven, single-camera si-
multaneous localization and mapping. Journal of Field Robotics, 28(2):204�226, 2011. 43

[18] A. J. Bray. Tracking objects using image disparities. Image Vision Computing, 8(1):4�9,
1990. 37

[19] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzinski, C. Strecha, and P. Fua. BRIEF: Com-
puting a Local Binary Descriptor Very Fast. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 34(7):1281�1298, 2012. 37

[20] M.A. Carreira-Perpinan. Acceleration strategies for gaussian mean-shift image segmenta-
tion. In CVPR 2006. 13, 23, 107, 108, 118

[21] Baptiste Charmette, Eric Royer, and Frédéric Chausse. Matching planar features for robot
localization. In International Symposium on Advances in Visual Computing: Part I, 2009.
121

[22] Yizong Cheng. Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 17(8):790�799, 1995. 42, 45, 107

[23] D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603�619, 2002.
13, 22, 42, 45, 63, 107

[24] Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Willamowski, and Cédric Bray.
Visual categorization with bags of keypoints. In Workshop on Statistical Learning in Com-

puter Vision, ECCV, 2004. 46

[25] Anders Lindbjerg Dahl, Henrik Aanæs, and Kim Steenstrup Pedersen. Finding the best
feature detector-descriptor combination. In 3DIMPVT, 2011. 36

[26] A.J. Davison. Real-time simultaneous localisation and mapping with a single camera. In
ICCV 2003. 8, 18, 39

[27] A.J. Davison, I.D. Reid, N.D. Molton, and O. Stasse. MonoSLAM : Real-time single camera
SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):1052�
1067, 2007. 7, 17, 37

[28] Daniel Dementhon. Spatio-temporal segmentation of video by hierarchical mean shift
analysis. 2002. 108

[29] Zilong Dong, Guofeng Zhang, Jiaya Jia, and Hujun Bao. Keyframe-based real-time camera
tracking. In ICCV, 2009. 42

[30] R. Duda, P. Hart, and D. Stork. Pattern classi�cation. John Wiley and Son, 2001. 12, 21,
40, 45, 79, 96, 97

[31] Michele Fenzi, Ralf Dragon, Laura Leal-Taixé, Bodo Rosenhahn, and Jörn Ostermann.
3D Object Recognition and Pose Estimation for Multiple Objects Using Multi-Prioritized
RANSAC and Model Updating. Pattern Recognition, 7476:123�133, 2012. 43, 80, 134

[32] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm for model
�tting with applications to image analysis and automated cartography. Communications

of the ACM, 24(6):381�395, 1981. 8, 10, 17, 20, 28, 29



145

[33] W. Forstner. A feature based correspondence algorithm for image matching. ISPRS, 1986.
36

[34] D. Freedman and P. Kisilev. Fast mean-shift by compact density representation. In CVPR,
2009. 13, 23, 107, 108, 118

[35] K. Fukunaga and L. Hostetler. The estimation of the gradient of a density function, with
applications in pattern recognition. IEEE Transactions on Information Theory, 21(1):32�
40, 1975. 107

[36] B. Georgescu, I. Shimshoni, and P. Meer. Mean shift based clustering in high dimensions:
a texture classi�cation example. ICCV 2003. 13, 22, 63, 107, 108

[37] Chris Goad. Readings in computer vision: issues, problems, principles, and paradigms.
chapter Special purpose automatic programming for 3D model-based vision, pages 371�
381. Morgan Kaufmann Publishers Inc., 1987. 37

[38] Iryna Gordon and David G. Lowe. What and where: 3D object recognition with accurate
pose. In Toward Category-Level Object Recognition, 2006. 9, 11, 19, 20, 42, 45, 46

[39] M. Grabner, H. Grabner, and H. Bischof. Learning features for tracking. In CVPR, 2007.
9, 18, 39

[40] W E L Grimson and T Lozano-Perez. Model-based recognition and localization from sparse
range or tactile data. The International Journal of Robotics Research, 3(3):3�35, 1984. 37

[41] C Harris and M Stephens. A combined corner and edge detector. In Alvey Vision Confer-

ence, 1988. 41, 43

[42] Chris Harris. Tracking with rigid objects. In MIT Press, 1992. 8, 18, 38

[43] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, Second edition, 2004. 25, 30, 32

[44] R.I. Hartley. In defense of the eight-point algorithm. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 19(6):580�593, 1997. 30, 31

[45] Joel A. Hesch and Stergios I. Roumeliotis. A direct least-squares (DLS) solution for PnP.
In ICCV 2011. 7, 17, 25, 34

[46] Stefan Hinterstoisser, Vincent Lepetit, Selim Benhimane, Pascal Fua, and Nassir Navab.
Learning real-time perspective patch recti�cation. International Journal of Computer Vi-
sion, 91(1):107�130, 2011. 9, 18, 39

[47] W. A. Ho�, K. Nguyen, and T. Lyon. Computer vision-based registration techniques for
augmented reality. In Proceedings of Intelligent Robots and Control Systems XV, Intelligent
Control Systems and Advanced Manufacturing, 1996. 8, 18

[48] J. Hong, X. Tan, B. Pinette, R. Weiss, and E.M. Riseman. Image-based homing. IEEE

Control Systems, 12(1):38�45, 1992. 40

[49] Berthold K. P. Horn. Closed-form solution of absolute orientation using unit quaternions.
The Journal of the Optical Society of America A, 4(4):629�642, 1987. 33, 81, 82



146 Bibliography

[50] Berthold K. P. Horn and Brian G. Schunck. Determining optical �ow. Arti�cial Intelligence,
1981. 38

[51] Edward Hsiao, Alvaro Collet, and Martial Hebert. Making speci�c features less discrim-
inative to improve point-based 3D object recognition. In CVPR, 2010. 9, 19, 42, 46, 80,
107

[52] A. Irschara, C. Zach, and H. Bischof. Towards wiki-based dense city modeling. In ICCV,
2007. 45, 46

[53] Michael Isard and Andrew Blake. Condensation - conditional density propagation for visual
tracking. International Journal of Computer Vision, 29(1):5�28, 1998. 38

[54] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. On the burstiness of visual elements.
CVPR 2009. 48

[55] G. Klein and D. Murray. Parallel Tracking and Mapping for Small AR Workspaces. In
ISMAR, 2007. 9, 18, 39

[56] Georg Klein and David Murray. Full-3D edge tracking with a particle �lter. In BMVC

2006. 38

[57] Dieter Koller, Gudrun Klinker, Eric Rose, David Breen, Ross Whitaker, and Mihran
Tuceryan. Real-time vision-based camera tracking for augmented reality applications. In
ACM VRST, 1997. 8, 18

[58] Henner Kollnig and Hans-Hellmut Nagel. 3D pose estimation by directly matching polyhe-
dral models to gray value gradients. International Journal of Computer Vision, 23(3):283�
302, 1997. 38

[59] J. Leng and H. Wang. Tracking as recognition: a stable 3D tracking framework. In
International Conference on Control, Automation, Robotics and Vision, 2004. 40

[60] V. Lepetit and P. Fua. Monocular Model-Based 3D Tracking of Rigid Objects: A Survey.
Foundations and Trends in Computer Graphics and Vision, 1(1):1�89, 2005. 15, 24, 35

[61] V. Lepetit and P. Fua. Keypoint Recognition using Randomized Trees. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 28(9):1465�1479, 2006. 41

[62] V. Lepetit, J. Pilet, and P. Fua. Point Matching as a Classi�cation Problem for Fast and
Robust Object Pose Estimation. In CVPR, 2004. 41

[63] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. EPnP: An Accurate O(n)
Solution to the PnP Problem. International Journal of Computer Vision, 81(2):155�166,
2009. 7, 17, 25, 28, 33

[64] Cheng-Hsuan Li, Chin-Teng Lin, Bor-Chen Kuo, and Hui-Shan Chu. An automatic method
for selecting the parameter of the RBF kernel function to support vector machines. In
IGARSS, 2010. 13, 22, 98, 99, 103

[65] S. Lieberknecht, S. Benhimane, P. Meier, and N. Navab. A dataset and evaluation method-
ology for template-based tracking algorithms. In ISMAR, 2009. 37, 123



147

[66] Wei Liu, Yongtian Wang, Jing Chen, Junwei Guo, and Yang Lu. A completely a�ne
invariant image-matching method based on perspective projection. Machine Vision and

Applications, 23(2):231�242, 2012. 122

[67] M.I. A. Lourakis and A.A. Argyros. SBA: A Software Package for Generic Sparse Bundle
Adjustment. ACM Trans. Math. Software, 36(1):1�30, 2009. 31, 32

[68] D G Lowe. Three-dimensional object recognition from single two-dimensional images.
Arti�cial Intelligence, 31(3):355�395, 1987. 37

[69] David G. Lowe. Object recognition from local scale-invariant features. In ICCV, 1999. 9,
19, 36, 41, 44, 122, 124

[70] D. G. Luenberger. Optimization by vector space methods, 1969. 113

[71] Jie Luo, Andrzej Pronobis, Barbara Caputo, and Patric Jensfelt. The KTH-IDOL2
Database. Technical Report CVAP304, KTH Royal Institute of Technology, CVAP/CAS,
Stockholm, Sweden, October 2006. 59, 80

[72] Eric Marchand, Patrick Bouthemy, and Francois Chaumette. A 2D-3D model-based ap-
proach to real-time visual tracking. Image and Vision Computing, 19(13):941�955, 2001.
38

[73] K. Mikolajczyk and J. Matas. Improving descriptors for fast tree matching by optimal
linear projection. In ICCV 2007. 46

[74] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615�1630, 2005. 36

[75] Krystian Mikolajczyk and Cordelia Schmid. An a�ne invariant interest point detector. In
ECCV, 2002. 41

[76] N. D. Molton, A. J. Davison, and I. D. Reid. Locally planar patch features for real-time
structure from motion. In BMVC, 2004. 121

[77] J. Mooser, S. You, and U. Neumann. Real-time object tracking for augmented reality
combining graph cuts and optical �ow. In ISMAR 2007. 38

[78] Jean-Michel Morel and Guoshen Yu. ASIFT: A new framework for fully a�ne invariant
image comparison. SIAM: SIAM Journal on Imaging Sciences, 2(2):438�469, 2009. 5, 14,
23, 122, 123

[79] David M. Mount and Sunil Arya. ANN: A library for approximate nearest neighbor search-
ing. http://www.cs.umd.edu/~mount/ANN. 14, 23, 63, 64, 85, 87, 108, 117

[80] Shree K. Nayar, Sameer A. Nene, and Hiroshi Murase. Real-time 100 object recognition
system. In ICRA, 1996. 40

[81] Radford M. Neal and Geo�rey E. Hinton. Learning in graphical models. chapter A view
of the EM algorithm that justi�es incremental, sparse, and other variants, pages 355�368.
MIT Press, 1999. 108

[82] U. Neumann and S. You. Natural feature tracking for augmented reality. IEEE Transac-

tions on Multimedia, 1(1):53�64, 1999. 38

http://www.cs.umd.edu/~mount/ANN


148 Bibliography

[83] Stéphane Nicolau, Xavier Pennec, Luc Soler, and Nicholas Ayache. Evaluation of a new
3D/2D registration criterion for liver radio-frequencies guided by augmented reality. In
Proceedings of the International Conference on Surgery simulation and soft tissue modeling,
2003. 92

[84] Huazhong Ning, Wei Xu, Yihong Gong, and T. Huang. Discriminative learning of visual
words for 3D human pose estimation. In CVPR 2008. 46

[85] D. Nister. An e�cient solution to the �ve-point relative pose problem. In CVPR, 2003. 30

[86] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. In CVPR, 2004. 8, 18, 39

[87] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. CVPR 2006. 11,
20, 42, 43, 44

[88] Esko Nuutila. E�cient transitive closure computation in large digraphs. Acta Polytechnica
Scandinavia: Mathematics and computing in engineering series., 74:1�124, 1995. 52

[89] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast keypoint recognition using random
ferns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(3):448�461,
2010. 5, 14, 23, 36, 37, 41, 122, 124, 142

[90] M. Ozuysal, V. Lepetit, F. Fleuret, and P. Fua. Feature Harvesting for Tracking-by-
Detection. In ECCV, 2006. 9, 18, 39, 44

[91] Sastry P.S. Computing and information sciences: Recent trend. chapter An introduction
to support vector machines. Narosa Publishing, New Delhi, 2002. 96, 98

[92] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detection.
In ECCV, 2006. 36

[93] Fred Rothganger, Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. 3D object mod-
eling and recognition using local a�ne-invariant image descriptors and multi-view spatial
constraints. International Journal of Computer Vision, 66(3):231�259, March 2006. 7, 9,
17, 19, 41, 42

[94] Eric Royer, Maxime Lhuillier, Dhome Michel, and Jean-Marc Lavest. Monocular vision for
mobile robot localization and autonomous navigation. International Journal of Computer
Vision, 74(3):237�260, 2007. 39, 43

[95] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An e�cient alternative to SIFT
or SURF. In ICCV 2011. 37

[96] F. Scha�alitzky and A. Zisserman. Automated location matching in movies. Computer

Vision and Image Understanding, 92:236�264, 2003. 48

[97] G. Schindler, M. Brown, and R. Szeliski. City-scale location recognition. In CVPR, pages
1�7, 2007. 44

[98] Jianbo Shi and C. Tomasi. Good features to track. In CVPR 1994. 39

[99] R. Sim and G. Dudek. Mobile robot localization from learned landmarks. In International

Conference on Intelligent Robots and Systems, 1998. 40



149

[100] R. Sim and G. Dudek. Learning visual landmarks for pose estimation. In ICRA, 1999. 40

[101] G. Simon and M.-O. Berger. A two-stage robust statistical method for temporal registration
from features of various type. In ICCV, 1998. 38

[102] G. Simon and M.-O. Berger. Pose estimation for planar structures. IEEE Computer

Graphics and Applications, IEEE, 22(6):46�53, 2002. 39

[103] G. Simon, A.W. Fitzgibbon, and A. Zisserman. Markerless tracking using planar structures
in the scene. In ISAR, 2000. 37

[104] Gilles Simon, Vincent Lepetit, and Marie-Odile Berger. Computer vision methods for
registration: mixing 3D knowledge and 2d correspondences for accurate image composition.
In Proceedings of the international workshop on Augmented reality : placing arti�cial objects
in real scenes, pages 111�127, 1999. 43, 106

[105] Josef Sivic and Andrew Zisserman. Video Google: A text retrieval approach to object
matching in videos. In ICCV 2003. 11, 20, 44

[106] Noah Snavely. http://phototour.cs.washington.edu/bundler/. 25, 28, 31

[107] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo tourism: exploring photo
collections in 3D. In ACM SIGGRAPH, 2006. 9, 19, 25

[108] C. Strecha, A.M. Bronstein, M.M. Bronstein, and P. Fua. LDAHash: Improved Matching
with Smaller Descriptors. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 34(1):66�78, 2012. 9, 19, 36, 37, 142

[109] M. Tamaazousti, V. Gay-Bellile, S.N. Collette, S. Bourgeois, and M. Dhome. Nonlin-
ear re�nement of structure from motion reconstruction by taking advantage of a partial
knowledge of the environment. In CVPR, 2011. 44

[110] P.H.S. Torr and A. Zisserman. MLESAC: A New Robust Estimator with Application to
Estimating Image Geometry. Computer Vision and Image Understanding, 78(1):138�156,
2000. 92

[111] Miroslav Trajkovic and Mark Hedley. Fast corner detection. Image and Vision Computing,
16(2):75�87, 1998. 39

[112] L. Vacchetti, V. Lepetit, and P. Fua. Stable real-time 3D tracking using online and o�ine in-
formation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(10):1385�
1391, 2004. 7, 17, 44

[113] J. Valls Miro, Weizhen Zhou, and G. Dissanayake. Towards vision based navigation in
large indoor environments. In International Conference on Intelligent Robots and Systems,
2006. 8, 18, 39

[114] J.C. van Gemert, C.J. Veenman, A.W.M. Smeulders, and J.-M. Geusebroek. Visual word
ambiguity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(7):1271�
1283, 2010. 46

[115] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer vision
algorithms. http://www.vlfeat.org/. 63

http://www.vlfeat.org/


150 Bibliography

[116] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple
features. In CVPR, 2001. 40

[117] Ping Wang, Dongryeol Lee, Alexander G. Gray, and James M. Rehg. Fast mean shift with
accurate and stable convergence. Journal of Machine Learning Research - Proceedings

Track, 2:604�611, 2007. 108

[118] Changchang Wu, B. Clipp, Xiaowei Li, J.-M. Frahm, and M. Pollefeys. 3D model matching
with Viewpoint-Invariant Patches (VIP). In CVPR, 2008. 121

[119] Chunxia Xiao and Meng Liu. E�cient Mean-shift Clustering Using Gaussian KD-Tree.
Computer Graphics Forum, 29(7):2065�2073. 108

[120] Jianxiong Xiao, Jingni Chen, Dit-Yan Yeung, and Long Quan. Structuring visual words
in 3D for arbitrary-view object localization. In ECCV, 2008. 42

[121] C. Yang, R. Duraiswami, N.A. Gumerov, and L. Davis. Improved fast gauss transform and
e�cient kernel density estimation. In ICCV 2003. 107

[122] Xiaotong Yuan, Bao-Gang Hu, and Ran He. Agglomerative mean-shift clustering via query
set compression. In Proceedings of the SIAM International Conference on Data Mining,
2009. 108, 118



Résumé

L'estimation de la pose (position et orientation) d'une caméra par rapport à un système �xe de co-
ordonnées 3D à partir d'une image de l'environnement a de nombreuses applications. Dans notre
travail, nous établissons des correspondances de points 2D-3D entre l'image et l'environnement
a�n d'appliquer l'algorithme Perspective-n-Point (PnP) pour calculer la pose. Chaque correspon-
dance 2D-3D associe les coordonnées 2D d'un point de l'image aux coordonnées 3D du point cor-
respondant dans l'environnement. A�n d'établir une correspondance 2D-3D entre points à travers
un point 3D capturé dans une image, il faut connaître (i) les coordonnées 3D du point (ii) des car-
actéristiques visuelles de ce point qui peuvent être utilisés pour identi�er sa position 2D dans une
image donnée. Nous proposons un cadre dans lequel nous calculons la carte 3D, c'est à dire les
coordonnées 3D et les caractéristiques visuelles de quelques-uns des points dans l'environnement,
par l'intermédiaire d'une étape hors ligne en utilisant un ensemble d'apprentissage d'images de
l'environnement. étant donné une nouvelle image de test, nous établissons les correspondances
de points 2D-3D à l'aide de la carte 3D pour détecter un certain nombre de points 3D visibles
dans l'image. Au cours de l'étape de construction nous utilisons un algorithme SfM (Structure
from Motion) sur des images d'apprentissage pour calculer les coordonnées 3D de quelques-uns
des points de l'environnement. Pour e�ectuer SfM nous avons besoin d'ensembles de points 2D
en correspondance dans les images d'apprentissage. Chacun est constitué d'un ensemble de coor-
données dans les images 2D d'un seul point 3D. Nous établissons ces ensembles en regroupant les
descripteurs SIFT calculés à partir des images d'apprentissage. Les positions 2D des descripteurs
SIFT ainsi regroupés sont utilisés comme ensemble de points en correspondance. L'algorithme
SfM calcule les coordonnées 3D de ces points en correspondance en minimisant l'erreur de repro-
jection. Pendant l'étape de test, les descripteurs SIFT associés à un point 3D sont utilisés pour
reconnaître le point 3D dans une image donnée. Ce processus est semblable au cadre des mots
visuels utilisés dans di�érents domaines de la vision par ordinateur. Pendant l'apprentissage, les
mots visuels sont construits par clustering et pendant les tests les points 3D sont identi�és grâce
à la reconnaissance de mots visuels. Nous menons des expériences avec di�érentes méthodes de
clustering (k-means et moyenne-shift) et proposons un nouveau schéma pour la formation de
mots visuels. Nous évaluons di�érents aspects de la qualité de l'ensemble de descripteurs associé
et des points 3D calculés à partir de ces méthodes. Pendant la phase de test, nous menons des
expériences avec di�érentes méthodes de mise en correspondance, y compris quelques méthodes
bien connues de classi�cation supervisée pour e�ectuer la reconnaissance des mots visuels. Nous
évaluons les di�érentes stratégies de reconnaissance, sur la base de la précision du calcul de
pose sous divers degrés de variation de la pose entre les images d'apprentissage et de test. A�n
d'assurer la robustesse à des variations de pose entre images d'apprentissage et de test, nous
testons di�érentes façons d'intégrer des descripteurs SIFT extraits de vues synthétiques générées
à partir des images d'apprentissage. En faisant des expériences de clustering avec l'algorithme
mean-shift, nous avons conçu une stratégie pour accélérer son calcul en divisant l'ensemble des
vecteurs de formation en groupes tels que les vecteurs dans un groupe ne seront jamais in�uencés
par le calcul des clusters dans un autre groupe. Nous présentons la stratégie d'accélération et la
preuve mathématique avec une évaluation expérimentale.

Mots-clés: Estimation de la pose, Mots visuel, Représentation de points 3D, Accélération de
mean-shift, Veu simulation
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Abstract

Estimating the pose (position and orientation) of a camera with respect to a �xed 3D coor-
dinate system from an image of the surrounding environment captured in that pose has many
applications. In our work we try to establish 2D-to-3D point correspondences between the im-
age and the environment in order to apply Perspective-n-Point (PnP) algorithm to compute the
pose. Each 2D-to-3D point correspondence associates the 2D image coordinates of an image
point to the 3D coordinates of the corresponding point in the environment. In order to establish
a 2D-to-3D point correspondence through a 3D point captured in an image, we should know
(i)3D coordinate of the point and (ii)quanti�ed visual characteristics of the point which can be
used to identify its 2D location in a given image. We propose a framework in which we com-
pute the 3D map i.e. 3D coordinates and visual characteristics of some of the points in the
environment, through an o�ine training stage using a set of training images of the environment.
Given a new test image we establish the 2D-to-3D point correspondences by using the 3D map
to detect some of the 3D points visible in the image. During the training stage we perform SfM
(Structure from Motion) on training images to compute 3D coordinates of some of the points
in the environment through . In order to perform SfM we need 2D-tracks of 3D points in the
training images. Each 2D-track consists of a set of 2D image coordinates of a single 3D point in
di�erent training images. We establish 2D-track by clustering the SIFT descriptors computed
from training images. The 2D positions of the SIFT descriptors in a cluster is used to establish
a 2D-track. SfM computes the 3D coordinates of the points corresponding to these 2D-tracks
by minimizing the reprojection error. During the test stage, the SIFT descriptors associated the
2D-track of a 3D point is used to recognize the 3D point in a given image. The overall process
is similar to visual word framework used in di�erent �elds of computer vision. During training,
visual word formation is performed through clustering and during testing 3D points are identi�ed
through visual word recognition. We experiment with di�erent clustering schemes (k-means and
mean-shift) and propose a novel scheme for visual word formation. We evaluate di�erent aspects
of the quality of 2D-tracks and the 3D points computed from these schemes during training.
During test stage, we experiment with di�erent matching rules including some of the popular
supervised pattern classi�cation methods to perform visual word recognition. We evaluate the
various recognition strategies based on the accuracy of pose computation under varying degree
of pose di�erence between training and test images. In order to achieve robustness against pose
variation between train and test images, we explore di�erent ways of incorporating SIFT descrip-
tors extracted from synthetic views generated from the training images. While experimenting
with mean-shift clustering we conceived a strategy to accelerate its computation by dividing the
set of training vectors into groups such that vectors in one group will never in�uence the com-
putation of clusters in another group. We present the acceleration strategy and mathematical
proof with experimental evaluation.
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