D. Bakry, F. Barthe, P. Cattiaux, and A. Guillin, A simple proof of the Poincar?? inequality for a large class of probability measures, Electronic Communications in Probability, vol.13, issue.0, pp.60-66, 2008.
DOI : 10.1214/ECP.v13-1352

D. Bakry and M. Emery, Diffusions hypercontractives, Séminaire de Probabilités, XIX, pp.177-206, 1983.
DOI : 10.1007/BFb0075847

URL : http://archive.numdam.org/article/SPS_1985__19__177_0.pdf

F. Barret, A. Bovier, and S. Méléard, Uniform Estimates for Metastable Transition Times in a Coupled Bistable System, Electronic Journal of Probability, vol.15, issue.0
DOI : 10.1214/EJP.v15-751

URL : https://hal.archives-ouvertes.fr/hal-00400832

S. Benachour, B. Roynette, D. Talay, and P. Vallois, Nonlinear self-stabilizing processes ??? I Existence, invariant probability, propagation of chaos, Stochastic Processes and their Applications, vol.75, issue.2, pp.173-201, 1998.
DOI : 10.1016/S0304-4149(98)00018-0

S. Benachour, B. Roynette, and P. Vallois, Nonlinear self-stabilizing processes . II. Convergence to invariant probability. Stochastic Process, Appl, vol.75, issue.2, pp.203-224, 1998.

G. , B. Arous, and O. Zeitouni, Increasing propagation of chaos for mean fields models, Ann. Inst. H. Poincaré Probab. Statist, vol.35, issue.1, pp.85-102, 1999.

R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, A Theory of Stochastic Resonance in Climatic Change, SIAM Journal on Applied Mathematics, vol.43, issue.3, pp.43-563, 1983.
DOI : 10.1137/0143037

N. Berglund, B. Fernandez, and B. Gentz, Metastability in interacting nonlinear stochastic differential equations: I. From weak coupling to synchronization, Nonlinearity, vol.20, issue.11, pp.2551-2581, 2007.
DOI : 10.1088/0951-7715/20/11/006

URL : https://hal.archives-ouvertes.fr/hal-00115416

N. Berglund, B. Fernandez, and B. Gentz, behaviour, Nonlinearity, vol.20, issue.11, pp.2583-2614, 2007.
DOI : 10.1088/0951-7715/20/11/007

URL : https://hal.archives-ouvertes.fr/hal-00115417

N. Berglund and B. Gentz, The Eyring ?Kramers law for potentials with nonquadratic saddles arXiv, pp.807-1681

J. A. Carillo, R. J. Mccann, and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Revista Matem??tica Iberoamericana, vol.19, issue.3, pp.971-1018, 2003.
DOI : 10.4171/RMI/376

P. Cattiaux, A. Guillin, and F. Malrieu, Probabilistic approach for granular media equations in the non-uniformly convex case. Probability theory and related fields, pp.19-40, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00021591

A. Dembo and O. Zeitouni, Large deviations techniques and applications, 1998.

R. E. Deville and E. Vanden-eijnden, Regular Gaits and Optimal Velocities for Motor Proteins, Biophysical Journal, vol.95, issue.6, pp.2681-2691, 2008.
DOI : 10.1529/biophysj.108.130674

A. Erdélyi, ASYMPTOTIC EXPANSIONS, Bulletin of the London Mathematical Society, vol.6, issue.2, 1956.
DOI : 10.1112/blms/6.2.229

M. Freidlin and A. Wentzell, Random Perturbations of Dynamical Systems, 1998.

T. Funaki, A certain class of diffusion processes associated with nonlinear parabolic equations, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.61, issue.3, pp.331-348, 1984.
DOI : 10.1007/BF00535008

L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Stochastic resonance, Reviews of Modern Physics, vol.70, issue.1, pp.223-287, 1998.
DOI : 10.1103/RevModPhys.70.223

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, vol.224, 1977.

S. Herrmann and P. Imkeller, BARRIER CROSSINGS CHARACTERIZE STOCHASTIC RESONANCE, Stochastics and Dynamics, vol.02, issue.03, pp.413-436, 2002.
DOI : 10.1142/S0219493702000509

S. Herrmann, P. Imkeller, and D. Peithmann, Large deviations and a Kramers??? type law for self-stabilizing diffusions, The Annals of Applied Probability, vol.18, issue.4, pp.1379-1423, 2008.
DOI : 10.1214/07-AAP489

URL : https://hal.archives-ouvertes.fr/hal-00139965

S. Herrmann and J. Tugaut, Non uniqueness of stationary measures for self-stabilizing processes. Stochastic Process, Appl, vol.120, issue.7, pp.1215-1246, 2010.

S. Herrmann and J. Tugaut, Stationary measures for self-stabilizing processes : asymptotic analysis in the small noise limit. Prépublications de l'Institut Elie Cartan, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00397470

S. Herrmann and J. Tugaut, Self-stabilizing processes : uniqueness problem for stationary measures and convergence rate in the small noise limit. Prépublications de l'Institut Elie Cartan, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00599139

P. D. Hislop and I. M. Sigal, Introduction to spectral theory, of Applied Mathematical Sciences, 1996.
DOI : 10.1007/978-1-4612-0741-2

P. Imkeller and I. Pavlyukevich, First exit times of SDEs driven by stable Lévy processes. Stochastic Process, Appl, vol.116, issue.4, pp.611-642, 2006.

P. Imkeller and I. Pavlyukevich, Metastable behaviour of small noise Lévydriven diffusions. ESAIM Probab, Stat, vol.12, pp.412-437, 2008.

P. Imkeller, I. Pavlyukevich, and T. Wetzel, First exit times for L??vy-driven diffusions with exponentially light jumps, The Annals of Probability, vol.37, issue.2, pp.530-564, 2009.
DOI : 10.1214/08-AOP412

P. Jung, U. Behn, E. Pantazelou, and F. Moss, Collective response in globally coupled bistable systems, Physical Review A, vol.46, issue.4, pp.1709-1712, 1992.
DOI : 10.1103/PhysRevA.46.R1709

I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, 1991.

O. Kavian, G. Kerkyacharian, and B. Roynette, Some Remarks on Ultracontractivity, Journal of Functional Analysis, vol.111, issue.1, pp.155-196, 1993.
DOI : 10.1006/jfan.1993.1008

F. Malrieu, Logarithmic Sobolev inequalities for some nonlinear PDE's. Stochastic Process, Appl, vol.95, issue.1, pp.109-132, 2001.

F. Malrieu, Convergence to equilibrium for granular media equations and their Euler schemes, The Annals of Applied Probability, vol.13, issue.2, pp.540-560, 2003.
DOI : 10.1214/aoap/1050689593

URL : https://hal.archives-ouvertes.fr/hal-01282602

DOI : 10.1073/pnas.56.6.1907

H. P. Mckean and J. , Propagation of chaos for a class of non-linear parabolic equations, Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, pp.41-57, 1967.

K. Oelschläger, A law of large numbers for moderately interacting diffusion processes, Zeitschrift f??r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.52, issue.2, pp.279-322, 1985.
DOI : 10.1007/BF02450284

I. Pavlyukevich, Stochastic Resonance, zu Berlin, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00140418

D. W. Stroock and S. R. Varadhan, Multidimensional diffusion processes, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 1979.
DOI : 10.1007/3-540-28999-2

A. Sznitman, Topics in propagation of chaos, École d'Été de Probabilités de Saint-Flour XIX?1989, pp.165-251, 1991.
DOI : 10.1070/SM1974v022n01ABEH001689

Y. Tamura, Free energy and the convergence of distributions of diffusion processes of McKean type, J. Fac. Sci. Univ. Tokyo Sect. IA Math, vol.34, issue.2, pp.443-484, 1987.

Y. Tamura, On asymptotic behaviors of the solution of a nonlinear diffusion equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math, vol.31, issue.1, pp.195-221, 1984.