A. , A. Klar, A. Rascle, M. And-materne, and T. , Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM Journal on Applied Mathematics, vol.63, issue.1, pp.259-278, 2002.

A. , A. And-rascle, and M. , Resurrection of "second order"; models of traffic flow

B. , P. And-rascle, and M. , A multi-class homogenized hyperbolic model of traffic flow, SIAM J. Math. Anal, vol.35, 2003.

C. , M. J. Jang, K. And-daganzo, and C. F. , Macroscopic fundamental diagrams for freeway networks: Theory and observation, Transportation Research Record: Journal of the Transportation Research Board Traffic Flow Theory and Characteristics, pp.2011-2019, 2011.

C. , G. M. Garavello, M. And-piccoli, and B. , Traffic flow on a road network, SIAM Journal on Mathematical Analysis, vol.36, issue.6, pp.1862-1886, 2005.

C. , G. And-lebacque, and J. , Intersection modeling using a convergent scheme based on hamilton-jacobi equation, Procedia -Social and Behavioral Sciences, vol.2012, pp.343-363, 2012.

C. , G. And-lebacque, and J. P. , Intersection modeling using a convergent scheme based on hamilton-jacobi equation, Procedia-Social and Behavioral Sciences, vol.54, pp.736-748, 2012.

C. , T. And-leclercq, and L. , Cross-comparison of Macroscopic Fundamental Diagram Estimation Methods, Procedia -Social and Behavioral Sciences, vol.20, pp.417-426, 2011.

D. , C. F. And-geroliminis, and N. , An analytical approximation for the macroscopic fundamental diagram of urban traffic, Transportation Research Part B: Methodological, vol.42, issue.9, pp.771-781, 2008.

D. , C. F. And-laval, and J. A. , Moving bottlenecks: A numerical method that converges in flows, Transportation Research Part B: Methodological, vol.39, issue.9, pp.855-863, 2005.

D. , C. F. And-laval, and J. A. , On the numerical treatment of moving bottlenecks, Transportation Research Part B: Methodological, vol.39, issue.1, pp.31-46, 2005.

D. , F. Enaux, C. Jaouen, S. Jourdren, H. And-wolff et al., High-order dimensionally split lagrange-remap schemes for compressible hydrodynamics, Comptes Rendus Mathematique, vol.348, pp.1-2, 2010.

E. , R. Gallouët, T. And-herbin, and R. , VII of Handbook of Numerical Analysis, pp.713-1020, 2000.

F. , S. And-seibold, and B. , A comparison of data-fitted first order traffic models and their second order generalizations via trajectory and sensor data

F. , N. Haj-salem, H. Khoshyaran, M. Lebacque, J. Salvarani et al., The logit lane assignment model: First results. arXiv preprint, 2013.

F. , G. And-rohde, and J. , Operational macroscopic modeling of complex urban road intersections, Transportation Research Part B: Methodological, vol.45, issue.6, pp.903-922, 2011.

G. , C. And-remacle, and J. Gmsh, A 3-D finite element mesh generator with built-in pre-and post-processing facilities, International Journal for Numerical Methods in Engineering, vol.79, pp.11-1309, 2009.

G. , M. And-hanche-olsen, and H. , Existence of solutions for the aw-rascle traffic flow model with vacuum, Journal of Hyperbolic Differential Equations, vol.05, pp.1-45, 2008.

H. , H. Lebacque, J. And-mammar, and S. , An intersection model based on the gsom model, Proceedings of the 17th World Congress The International Federation of Automatic Control, pp.7148-7153, 2008.

H. , W. E. Watson, J. And-woodruff, and D. L. , Pyomo: modeling and solving mathematical programs in python, Mathematical Programming Computation, vol.3, issue.3, pp.219-260, 2011.

H. , A. Lax, P. D. And, and B. Van-leer, On upstream differencing and godunov-type schemes for hyperbolic conservation laws, SIAM Review, vol.25, issue.1, pp.35-61, 1983.

H. , B. And-bastin, and G. , A second order model of road junctions in fluid models of traffic networks, Networks and Heterogeneous Media, p.227, 2007.

H. , M. And-klar, and A. , Modeling, simulation, and optimization of traffic flow networks, SIAM Journal on Scientific Computing, vol.25, issue.3, pp.1066-1087, 2003.

H. , H. And-risebro, and N. H. , A Mathematical Model of Traffic Flow on a Network of Roads, pp.329-335, 1993.

H. , S. And-bovy, and P. , Multiclass macroscopic traffic flow modelling: a multilane generalisation using gas-kinetic theory, 14th International Symposium on Transportation and Traffic Theory, 1999.

H. , S. P. And-bovy, and P. H. , Continuum modeling of multiclass traffic flow, Transportation Research Part B: Methodological, vol.34, issue.2, pp.123-146, 2000.

H. , A. Nagel, K. And-axhausen, and K. W. , The Multi-Agent Transport Simulation MATSim, 2016.

H. , H. And-li, and Z. , A multiclass, multicriteria logit-based traffic equilibrium assignment model under ATIS, European Journal of Operational Research, vol.176, issue.3, pp.1464-1477, 2007.

J. , Y. Wong, S. Ho, H. Zhang, P. Liu et al., A dynamic traffic assignment model for a continuum transportation system, Transportation Research Part B, vol.45, pp.343-363, 2011.

K. , M. Kouvelas, A. Papamichail, I. And-papageorgiou, and M. , Exploiting the fundamental diagram of urban networks for feedback-based gating, Transportation Research Part B: Methodological, vol.46, pp.10-1393, 2012.

K. , M. Papageorgiou, M. And-knoop, and V. L. , Controller design for gating traffic control in presence of time-delay in urban road networks, Special Issue on International Symposium on Transportation and Traffic Theory, pp.308-322, 2015.

K. , M. Yildirimoglu, M. Geroliminis, N. And-papageorgiou, and M. , Multiple concentric gating traffic control in large-scale urban networks, IEEE Transactions on Intelligent Transportation Systems, vol.16, issue.4, pp.2141-2154, 2015.

K. , M. And-lebacque, and J. , A Reactive Dynamic Assignment Scheme, Mathematics in Transport Planning and Control, pp.131-143, 1998.

K. , M. And-lebacque, and J. , Numerical solutions to the logit lane assignment model, Procedia -Social and Behavioral Sciences, vol.54, pp.907-916, 2012.

K. , A. Greenberg, J. And-rascle, and M. , Congestion on multilane highways, SIAM Journal on Applied Mathematics, vol.63, issue.3, pp.818-833, 2003.

K. , A. Greenberg, J. M. And-rascle, and M. , Congestion on multilane highways, SIAM Journal on Applied Mathematics, vol.63, issue.3, pp.818-833, 2003.

K. , A. And-wegener, and R. , Enskog-like kinetic models for vehicular traffic, 1996.

K. , V. L. Van-lint, H. And-hoogendoorn, and S. P. , Traffic dynamics: Its impact on the macroscopic fundamental diagram. Physica A: Statistical Mechanics and its Applications 438, C, pp.236-250, 2015.

L. , J. Mammar, S. And-haj-salem, and H. , Generic second-order traffic flow modeling, Proceedings of the 17th International Symposium on Transportation and Traffic Theory, pp.749-770

L. , J. And-khoshyaran, and M. , First-order macroscopic traffic flow models: Intersection modeling, network modeling, pp.365-386, 2005.

L. , J. And-khoshyaran, and M. , A variational formulation for higher order macroscopic traffic flow models of the gsom family, Procedia-Social and Behavioral Sciences, vol.83, pp.370-394, 2013.

L. , L. Chiabaut, N. And-trinquier, and B. , Macroscopic fundamental diagrams: A cross-comparison of estimation methods, Transportation Research Part B: Methodological, vol.62, pp.1-12, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01349913

L. , R. J. And-shyue, and K. , Two-dimensional front tracking based on high resolution wave propagation methods, Journal of Computational Physics, vol.123, issue.2, pp.354-368, 1996.

L. , M. J. And-whitham, and G. B. , On Kinematic Waves. {II}. A Theory of Traffic Flow on Long Crowded Roads, Proc. Royal Soc, pp.317-345, 1955.

L. , T. Lenormand, M. Picornell, M. Cantú, O. G. Herranz et al., Uncovering the spatial structure of mobility networks, Nature Communications, vol.6, p.6007, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01118965

M. , T. And-lebacque, and J. , A dynamic packet-based multi-agent approach for large scale multimodal network simulation, 10th International Conference on Application of Advanced Technologies in Transportation, 2008.

M. , H. S. And-peeta, and S. , Network performance under system optimal and user equilibrium dynamic assignments: implications for advanced traveler information systems, Transportation Research Record, 1993.

M. , D. K. And-nemhauser, and G. L. , A model and an algorithm for the dynamic traffic assignment problems, Transportation Science, vol.12, issue.3, pp.183-199, 1978.

M. , D. K. And-nemhauser, and G. L. , Optimality conditions for a dynamic traffic assignment model, Transportation Science, vol.12, issue.3, pp.200-207, 1978.

M. , S. And-rascle, and M. , A hybrid lagrangian model based on the aw-rascle traffic flow model, SIAM Journal on Applied Mathematics, vol.68, issue.2, pp.413-436, 2007.

N. , B. Siirola, J. D. Watson, J. Zavala, V. M. And-biegler et al., dae: A modeling and automatic discretization framework for optimization with differential and algebraic equations, p.28, 2016.

P. , L. M. And-benitez, and F. G. , Traffic flow continuum modeling by hypersingular boundary integral equations, International journal for numerical methods in engineering, vol.82, issue.3, pp.47-63, 2010.

P. , I. , A. Herman, and R. , Kinetic theory of vehicular traffic, Transportation Research Board. 500 Fifth St. NW, 1971.

S. , T. Lebacque, J. And-haj-salem, and H. , A dynamical two-dimensional traffic model in an anisotropic network. Networks and Heterogeneous Media, pp.663-684, 2013.

S. , F. And-mauser, and W. , On the fundamental diagram of traffic flow, SIAM Journal on Applied Mathematics, vol.66, issue.4, pp.1150-1162, 2006.

S. , K. Lebacque, J. Mokrani, A. And-haj-salem, and H. , Traffic flow within a two-dimensional continuum anisotropic network, Transportation Research Procedia, vol.10, pp.217-225, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01559819

S. , K. And-lebacque, and J. , A multiclass vehicular dynamic traffic flow model for main roads and dedicated lanes/roads of multimodal transport network, Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2014, pp.1-4, 2014.

S. , K. And-lebacque, and J. , Dynamic Model for Assignment in a 'Sky-Car' Transit System: Spatial Interactions with Other Common Transport Modes, pp.499-506

S. , K. And-lebacque, and J. , Reactive Dynamic Assignment for a Bi-dimensional Traffic Flow Model, AISC, vol.539, p.17, 2016.

T. , C. M. Corthout, R. Cattrysse, D. And-immers, and L. H. , A generic class of first order node models for dynamic macroscopic simulation of traffic flows, Transportation Research Part B: Methodological, vol.45, issue.1, pp.289-309, 2011.

. Van-den, M. Berg, A. Hegyi, B. D. Schutter, and J. And-hellendoorn, A macroscopic traffic flow model for integrated control of freeway and urban traffic networks, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), pp.2774-2779, 2003.
DOI : 10.1109/CDC.2003.1273044

R. Van-nes, Design of multimodal transport networks; A hierarchical approach The Netherlands TRAIL Research School, 2002.

V. , J. Nkonga, B. And-audit, and E. , A Simple Two-Dimensional Extension of the HLL Riemann Solver for Gas Dynamics. [research report] rr-8540, hal-00998235v2, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00998235

W. , J. G. And-whitehead, and J. I. , Correspondence. some theoretical aspects of road traffic research, Proceedings of the Institution of Civil Engineers, vol.1, issue.5, pp.767-768, 1952.

W. , R. And-klar, and A. , A kinetic model for vehicular traffic derived from a stochastic microscopic model, Transport Theory and Statistical Physics, vol.25, issue.7, pp.785-798, 1996.

Z. , A. K. Waller, S. T. Li, Y. And-byram, and M. , Large-scale dynamic traffic assignment: Implementation issues and computational analysis, Journal of Transportation Engineering, vol.130, issue.5, pp.585-593, 2004.