Rigidité des hypersurfaces en géométrie riemannienne et spinorielle: aspect extrinsèque et intrinsèque

Abstract : In this thesis, we study the relation between extrinsic and intrinsic aspects for hypersurfaces of space forms by the way of rigidity results. First, we prove some pinching results for lower bounds of the extrinsic radius in terms of the r-th mean curvatures. Then, we prove such results for upper bounds of the first eigenvalue of the Laplacian in Euclidean space, which give us some results about almost Einstein hypersurfaces. In a second time, we give a spinorial charcterization of surfaces into 3-homogenous manifolds with 4-dimensional isometry group.
Document type :
Theses
Complete list of metadatas

Cited literature [46 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01748157
Contributor : Julien Roth <>
Submitted on : Monday, December 18, 2006 - 10:25:26 AM
Last modification on : Thursday, January 17, 2019 - 4:56:45 PM
Long-term archiving on : Thursday, September 20, 2012 - 4:11:23 PM

Identifiers

  • HAL Id : tel-01748157, version 2

Collections

Citation

Julien Roth. Rigidité des hypersurfaces en géométrie riemannienne et spinorielle: aspect extrinsèque et intrinsèque. Mathématiques [math]. Université Henri Poincaré - Nancy 1, 2006. Français. ⟨NNT : 2006NAN10161⟩. ⟨tel-01748157v2⟩

Share

Metrics

Record views

463

Files downloads

457