Algorithmique de la réduction de réseaux et application à la recherche de pires cas pour l'arrondi de fonctions mathématiques

Abstract : Euclidean lattices are a powerful tool for several algorithmic topics, among which are cryptography and algorithmic number theory. The contributions of this thesis are twofold : we improve lattice basis reduction algorithms, and we introduce a new application of lattice reduction, in computer arithmetic. Concerning lattices, we consider both small dimensions and arbitrary dimensions, for which we improve the classical LLL algorithm. Concerning the application, we make use of Coppersmith's method for computing the small roots of multivariate modular polynomials, in order to find the worst cases for the rounding of mathematical functions, when the function, the rounding mode and the precision are fixed. We also generalise our technique to find input numbers that are simultaneously bad for two functions. These two methods are expensive pre-computations, but once performed, they help speeding up the implementations of elementary mathematical functions in fixed precision.
Document type :
Theses
Complete list of metadatas

Cited literature [193 references]  Display  Hide  Download

https://hal.univ-lorraine.fr/tel-01748080
Contributor : Thèses Ul <>
Submitted on : Thursday, March 29, 2018 - 11:23:52 AM
Last modification on : Tuesday, April 24, 2018 - 1:53:24 PM
Long-term archiving on: Friday, September 14, 2018 - 12:43:54 AM

File

SCD_T_2005_0148_STEHLE.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : tel-01748080, version 1

Collections

Citation

Damien Stehlé. Algorithmique de la réduction de réseaux et application à la recherche de pires cas pour l'arrondi de fonctions mathématiques. Autre [cs.OH]. Université Henri Poincaré - Nancy 1, 2005. Français. ⟨NNT : 2005NAN10148⟩. ⟨tel-01748080⟩

Share

Metrics

Record views

36

Files downloads

54