L. Modèles-biologiques-de-la-navigation-autonome and .. , 53 3.2.2 Navigation par guidage, 57 3.2.6 Discussion, p.57

L. Outils-informatiques-pour-la-navigation-autonome and .. , 59 3.3.1 Les modèles à base de règles, p.63

.. Reconnaissance-de-lieu-sur-simulation, 144 6.5.1 Dénition de l'application, p.146

I. Weight, for (i=0 ; i<Net?Units ; i++) { for (j=0 ; j<Net?Units

}. Setinput, NET * Net, INT * Input) { INT i ; for (i=0 ; i<Net?Units

}. and G. Net, INT * Output) { INT i ; for (i=0 ; i<Net?Units ; i++) { Output[i] = Net?Output

=. Changed and . False, Sum = 0 ; for (j=0 ; j<Net?Units ; j++) {

}. Sum and =. Net?threshold, { if (Sum < Net?Threshold[i]) Out = LO ; if (Sum > Net?Threshold[i]) Out = HI ; if (Out = Net?Output

}. Void and P. , NET * Net) { INT Iteration, IterationOfLastChange

/. Main, { NET Net

B. Annexe, Programme C pour le réseau de Hopeld CalculateWeights(&Net)

}. Bibliographie, [. A. Cartwright, C. A. Cartwright, and T. S. Collettalexandre, The Cortical Column : A New Processing Unit for Multilayered Networks [Alexandre, 1990] Frédéric Alexandre Une modélisation fonctionnelle du cortex : la colonne corticale Humain contingency judgments : Rule based or associative Neurons, numbers and the hippocampal network Dénition des mécanismes de mémorisation pour les systèmes neuromimétiques On a routing problem Poucet. A place navigation algorithm based on elementary computing procedures and associative memories Do animals have cognitive maps? Vergleichende Lokalisationslehre der grobhirnrinde, From Animals to Animats 3 : Proceedings of the Third International Conference on Adaptive Behavior Théorie de l'apprentissage, pp.5215431525435448-206213219224, 1909.

O. Burgess, J. Burgess, ]. G. O-'keefe, S. Carpenter, and . Grossberg, Neuronal computations underlying the ring of place cells and their role in navigation ART 2 : stable selforganization of stable category recognition codes for analog input patterns, Burnod. An adaptive neural network the cerebral cortex. Masson, p.74976249194930, 1987.

. Carpenter, . G. Grossberg, S. Carpenter, and . Grossberg, A massively parallel architecture for a self-organising neural pattern recognition machine, Computer Vision, Graphics and Image Processing, vol.37, p.54115, 1987.

S. J. Cohen, L. Cohen, and . Squire, Preserved learning and retention of pattern-analyzing skill in amnesia : dissociation of knowing how and knowing that [Davidor, 1991] Y. Davidor. Genetic algorithms and robotics a heuristic strategy for optimization. Robotics and Automated Systems The university of alberta's cognitive science dictionary, Science, issue.210, p.565582, 1980.

. Dehaene, Neural networks that learn temporal sequences by selection Consciousness Explained Boston : Little, Brown Connectionist models of cognition A hierarchical classier system implementing a motivationally autonomous animat, From Animals to Animats 3. Proceedings of the Third International Conference on Simulation of Adaptive Behavior (SAB94), pp.27272731-144153, 1987.

D. L. Dreyfus, S. E. Dreyfus, and . Dreyfus, The philosophy of articial intelligence , chapter Making a Mind versus Modelling the Brain : Articial Intelligence Back at a Branchpoint, 1990.

]. G. Edelman, . Biologie-de-la-conscience.-odile, . Jacob, and . Eichenbaum, Traduit de l'anglais, titre originalBright Air, Brilliant Fire : On the matter of Mind The hippocampus, memory and place cells : is it spatial memory or a memory space? Neuron Catastrophic Forgettings in Connectionnist Networks : Causes, Consequences and Solutions Sequence Learning : Paradigms, Algorithms and Applications, chapter Integration of biologically inspired temporal mechanisms into a cortical framework for sequence processing, Trends in Cognitive Sciences, vol.23, issue.34, p.128135, 1997.

. Gaussier, . P. Zrehen, S. Gaussier, and . Zrehen, PerAc: A neural architecture to control artificial animals, Robotics and Autonomous Systems, vol.16, issue.2-4, p.291320, 1995.
DOI : 10.1016/0921-8890(95)00052-6

. Gaussier, P. Zrehen, S. Gaussier, and . Zrehengaussier, Avoiding the world model trap : An acting robot does not need to be so smart Living in a partially structured environment : How to bypass the limitations of classical reinforcement techniques, Journal of Robot and Computer Integrated Robotics and Autonomous Systems journal, vol.11, issue.20, p.279286225250, 1995.

. Gaussier, Animal and robot learning : experiments and models about visual navigation, Seventh European Workshop on Learning Robots, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01416800

DOI : 10.1142/9789812792747_0004

URL : https://hal.archives-ouvertes.fr/hal-00426242

. Gaussier, From view cells and place cells to cognitive map learning : the hippocampus as a spatio-temporal memory Spiking neurons, Pulsed Neural Networks, 1998.

S. Graf, D. L. Graf, . Schacter-]-s, . Grossberg-]-s, . Grossberg-]-s et al., Implicit and explicit memory for new associations in normal and amnesic subjects Adaptive pattern recognition and universal recoding, I. Parallel development and coding of neural feature detectors Adaptive pattern recognition and universal recoding, II. Feedback , expectation, olfaction, and illusions Studies of the Mind and Brain : Neural principles of learning, perception, development, cognition, and motor control Some normal and abnormal behavioral syndromes due to transmitter gating of opponent processes Competitive learning : From interactive activation to adaptive resonance The link between brain learning, attention, and consciousness Genetic synthesis of modular neural networks, Proceedings of the 5th International Conference on Genetic Algorithms, ICGA- 93, pp.121134187202107511172363-144, 1976.

]. F. Gruauhasselmo, Automatic denition of modular neural networks for adaptive behavior Adaptive Behavior http ://www.francophonie.hachette-livre.fr/. [Harnad, 1990] S. Harnad. The Symbol Grounding Problem Encoding and retrieval of episodic memories : role of cholinergic and gabaergiq modulation in the hippocampus, Dictionnaire universel francophone, p.151184335346693708, 1990.

]. D. Hebbheitkoetter, ]. J. Beasley, D. Heitkoetter, and . Beasleyhertz, The Organization of Behavior The hitch-hiker's guide to evolutionary computation : A list of frequently asked questions (faq), 2000. rtfm.mit An Introduction to the Theory of Neural Computation Lecture Notes Volume I, 1949.

]. J. Hopeld, Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Acadamy of Science (USA), p.25542558, 1982.

M. Kodjabachian, J. A. Kodjabachian, . Meyer-]-t, and . Kohonen, Evolutionary design of an articial neural network controlling the locomotion of a six legged animat Associative memory : a system theoretic approach, ICML96 Workshop on Controlling the Locomotion of a Six Legged Animat Self-Organization and Associative Memory of Springer Series in Information Sciences, p.161182, 1978.

]. Littman, Processus Décisionnels de Markov appliqués à la planication sous incertitude Algorithms for Sequential Decision Making, 1996.

]. K. Lynch and D. Marr, The Image of the City Simple memory : A theory for archicortex, Philosophical Transactions of the Royal Society London B, vol.262, p.2381, 1960.

G. L. Mcclelland, N. Mcclelland, and . Goddard, Considerations arising from a complementary learning systems perpective on hippocampus and neocortex, Hippocampus, vol.6, p.655665, 1996.

R. J. Mcclelland, D. E. Mcclelland, and . Rumelhart, Amnesia and distributed memory In Parallel distributed processing : Explorations in the microstructure of cognition, volume II, p.170215, 1986.

R. J. Mcclelland, D. E. Mcclelland, and . Rumelhartmcclelland, A distributed model of human learning and memory In Parallel distributed processing : Explorations in the microstructure of cognition, volume II Why there are complementary learning systems in the hippocampus and neocortex : insigths from the successes and failures of connectionist models of learning and memory, p.503527, 1986.

C. Mccloskey, N. J. Mccloskey, and . Cohen, Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem, The Psychology of Learning and Motivation, vol.24, p.104169, 1989.
DOI : 10.1016/S0079-7421(08)60536-8

P. S. Mcculloch, W. Mcculloch, and . Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics, vol.5, p.115137, 1943.

N. L. Mcnaughton, L. Mcnaughton, and . Nadelmcnaughton, Hebb-marr networks and the neurobiological representation of action in space, Neuroscience and Connectionnist Theory, p.163, 1990.

J. J. Jung, H. Knierim, Y. Kudrimoti, W. E. Qin, M. Skaggs et al., Deciphering the hippocampal polyglot : the hippocampus as a path integration system Cortico-Hippocampal interplay and the representation of contexts in the brain, The journal of Experimental Biology, vol.199, p.173185, 1991.

. Milner, 14-year follow up study of h.m. Neurospychologia, p.215234, 1968.

. Minsky, ]. M. Papert, S. Minsky, . Papert, M. J. Jaap et al., Perceptrons : An Introduction to Computational Geometry [Munos, 1998] R. Munos. A general convergence method for reinforcement learning in the continuous case TraceLink : A Model of Amnesia and Consolidation of Memory, Lecture Notes in Computer Science, vol.1398, p.394400, 1969.

G. Myers, M. Myers, and . Gluck, Cortico-hippocampal representations in simultaneous odor discriminatation learning : a computationnal interpretation of Eichenbaum, Behavioral Neuroscience, 1996.

]. J. Neumann, The general and logical theory of automata, Cerebral Mechanisms in Behavior, p.141, 1941.

S. Newell, H. A. Newell, and . Simonnewell, Computer science as empirical inquiry : Symbols and search Report on a general problem-solving program, Int'l Conf. Info. Proc., UNESCO, reprinted in Computers and Automation, pp.113126-256264, 1959.

[. Keefe, D. O-'keefe, J. Dostrovsky, ]. J. O-'keefe, and L. Nadel, The hippocampus as a spatial map : preliminary evidence from unit activity in the freely moving rat The hippocampus as a cognitive map, Brain Res, vol.34, p.171175, 1971.

]. J. Keefe, R. C. Keefereilly, J. W. O-'reilly, . B. Rudy-]-d, and . Parker, Do hippocampal pyramidal cells signal non-spatial as well as spatial information Conjunctive representations in learning and memory : Principles of cortical and hippocampal function Learning-logic, Hippocampus, vol.9, p.352364, 1982.

]. I. Pavlov, Conditioned Reexes (V.Anrep, trans.), 1927.

I. Piaget, B. Piaget, and . Inhelderram, La représentation de l'espace chez l'enfant Using genetic algorithms to learn reactive control parameters for autonomous navigation Connectionist models of recognition memory : Constraints imposed by learning and forgetting functions, Paris : PUF Adaptive behavior Psychological Review, vol.2, issue.972, pp.277-304285308, 1948.

]. A. Redish, Contributions to a Computational Neuroscience Theory of Rodent Navigation, pp.15213-3891, 1997.

T. Reiss, J. G. Reiss, and . Taylor, Storing temporal sequences, Neural Networks, vol.4, issue.6, p.773787, 1991.
DOI : 10.1016/0893-6080(91)90057-C

W. Rescorla, A. Robert, A. R. Rescorla, and . Wagner, A theory of pavlovian conditioning : variations in the eectiveness of reinforcement and nonreinforcement [Rosenblatt, 1958] F. Rosenblatt. The perceptron : A probabilistic model for information storage and organization in the brain, Classical Conditioning II, chapter 3, p.6499386407, 1958.

]. F. Rosenblattrumelhart, N. E. Rumelhart, and D. A. Normanrumelhart, Principles of self-orgnisation, chapter Strategic approaches to the study of brain models Parallels Models of Associative Memory, chapter A comparison of models Hillsdale, NJ : Erlbaum Learning internal representation by error propagation, Parallel Distributed Processing : Explorations in the Microstructure of Cognition, pp.36-318, 1962.

]. N. Schmajuk, Animal learning and cognition : a neural network approach, 1997.

M. B. Scoville, B. Scoville, and . Milner, Loss of recent memory after bilateral hippocampal lesion, Journal of Neurology Neurosurgery and Psychiatry, vol.20, p.1121, 1957.

N. Simon, A. Herbert, A. Simon, ]. W. Newell, . P. Singer-]-b et al., Heuristic problem solving., Operations Research Psychological Review, vol.6, issue.992, p.110195231, 1938.
DOI : 10.1037/13978-004

]. J. Taylor-]-e, . C. Tolman-]-e, and . Tolmantrullier, The relational mind Purposive Behavior in Animals and Men. New York : Appleton- Century-Crofts Cognitive maps in rats and men Biologically based articial navigation systems : review and prospects Organisation of memory, chapter Episodic and semantic memory, Neural Networks Psychological review Progress in Neurobiology, vol.4, issue.51, p.189208483544, 1932.

]. A. Turing-]-p, . Werbos-]-n, and . Wiener, Beyond Regression : New Tools for Prediction and Analysis in the Behavioral Sciences Doctoral Dissertation Cybernetics or control and communication in the animal and the machine [Zadeh, 1987] Lot Asker Zadeh. Fuzzy sets as a basis for a theory of possibility, Proceedings Fuzzy Sets and Applications : Selected Papers by L.A. Zadeh Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble : A theory, p.23026521122126, 1936.

G. Zrehen, Stéphane Zrehen and Phillipe Gaussier Why topological maps are useful for learning in an autonomous agent, Proceedings of the From Perception to Action Conference, 1994.