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Abstract

In this thesis, we take a complementary look to the problem of optimizing the time for commu-
nicating query results in distributed query processing, by investigating the relationship between
the communication time and the middleware configuration. Indeed, the middleware determines,
among others, how data is divided into batches and messages before being communicated over
the network. Concretely, we focus on the research question: given a query Q and a network
environment, what is the best middleware configuration that minimizes the time for transferring
the query result over the network?

To the best of our knowledge, the database research community does not have well-established
strategies for middleware tuning.

We present first an intensive experimental study that emphasizes the crucial impact of mid-
dleware configuration on the time for communicating query results. We focus on two middleware
parameters that we empirically identified as having an important influence on the communication
time: (i) the fetch size F (i.e., the number of tuples in a batch that is communicated at once
to an application consuming the data) and (ii) the message size M (i.e., the size in bytes of the
middleware buffer, which corresponds to the amount of data that can be communicated at once
from the middleware to the network layer; a batch of F tuples can be communicated via one or
several messages of M bytes). Then, we describe a cost model for estimating the communication
time, which is based on how data is communicated between computation nodes. Precisely, our
cost model is based on two crucial observations: (i) batches and messages are communicated
differently over the network: batches are communicated synchronously, whereas messages in a
batch are communicated in pipeline (asynchronously), and (ii) due to network latency, it is more
expensive to communicate the first message in a batch compared to any other message that is
not the first in its batch. We propose an effective strategy for calibrating the network-dependent
parameters of the communication time estimation function i.e, the costs of first message and
non first message in their batch. Finally, we develop an optimization algorithm to effectively
compute the values of the middleware parameters F and M that minimize the communication
time. The proposed algorithm allows to quickly find (in small fraction of a second) the values
of the middleware parameters F and M that translate a good trade-off between low resource
consumption and low communication time. The proposed approach has been evaluated using a
dataset issued from application in Astronomy.

Keywords: middleware; distributed query processing; communication cost model; fetch size;
message size; optimizing communication cost.
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Résumé

Dans cette thèse, nous étudions le problème d’optimisation du temps de transfert de données
dans les systèmes de gestion de données distribuées, en nous focalisant sur la relation entre le
temps de communication de données et la configuration du middleware. En réalité, le middleware
détermine, entre autres, comment les données sont divisées en lots de F tuples et messages de M
octets avant d’être communiqués à travers le réseau. Concrètement, nous nous concentrons sur
la question de recherche suivante : étant donnée requête Q et l’environnement réseau, quelle est
la meilleure configuration de F et M qui minimisent le temps de communication du résultat de
la requête à travers le réseau?

A notre connaissance, ce problème n’a jamais été étudié par la communauté de recherche en
base de données.

Premièrement, nous présentons une étude expérimentale qui met en évidence l’impact de
la configuration du middleware sur le temps de transfert de données. Nous explorons deux
paramètres du middleware que nous avons empiriquement identifiés comme ayant une influence
importante sur le temps de transfert de données: (i) la taille du lot F (c’est-à-dire le nombre de
tuples dans un lot qui est communiqué à la fois vers une application consommant des données) et
(ii) la taille dumessage M (c’est-à-dire la taille en octets du tampon du middleware qui correspond
à la quantité de données à transférer à partir du middleware vers la couche réseau). Ensuite, nous
décrivons un modèle de coût permettant d’estimer le temps de transfert de données. Ce modèle
de coût est basé sur la manière dont les données sont transférées entre les nœuds de traitement
de données. Notre modèle de coût est basé sur deux observations cruciales: (i) les lots et les
messages de données sont communiqués différemment sur le réseau : les lots sont communiqués
de façon synchrone et les messages dans un lot sont communiqués en pipeline (asynchrone) et
(ii) en raison de la latence réseau, le coût de transfert du premier message d’un lot est plus élevé
que le coût de transfert des autres messages du même lot. Nous proposons une stratégie pour
calibrer les poids du premier et non premier messages dans un lot. Ces poids sont des paramètres
dépendant de l’environnement réseau et sont utilisés par la fonction d’estimation du temps de
communication de données. Enfin, nous développons un algorithme d’optimisation permettant
de calculer les valeurs des paramètres F et M qui fournissent un bon compromis entre un temps
optimisé de communication de données et une consommation minimale de ressources. L’approche
proposée dans cette thèse a été validée expérimentalement en utilisant des données issues d’une
application en Astronomie.

Mots clés : middleware; traitement des requêtes distribuées; coût de communication de
données; taille du fetch; taille du message; optimisation du coût de communication.
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Chapter 1
Introduction

Data transfer over a network is an inherent task of distributed query processing in the various
existing distributed data management architectures [25, 36] (e.g., Client-Server, Peer-to-Peer,
Parallel and data integration (mediated) systems). In all such architectures, a given node (playing
the role of a server, a client, a mediator, etc.) may send a query (or a subquery) to another
node (a server or a mediator) which will execute the query and send back the query results to
the requester node.

Despite the tremendous advances made both in networking and telecommunication technology
from one side, and distributed computing and data management techniques from another side,
the cost underlying data transfer (called also communication time) is still often an important
source of performance problems. This is due to the ever-increasing load imposed by modern
data-intensive applications. As a consequence, minimizing the communication time has been
recognized for a long time as one of the major research challenges in distributed data management
area [25, 36]. A long-standing research effort from both academia and industry focused on
developing techniques that minimize the total amount of data that needs to be communicated
over the network [5, 14, 17, 25, 29, 36]. When dealing with the communication cost, all but few
state-of-the-art distributed query optimization techniques [17, 25, 29] focus on the generation of
query plans that minimize the amount of data to be exchanged over the network using various
techniques, for example filtering outer relation with semijoin or Bloom-filter to reduce the volume
of data [25, 29] and pushing the join to remote sites [17] to avoid the communication overhead,
etc. Query result prefetching and caching have also been used to reduce the latency of network
and query execution e.g., by anticipating the computation of query results before they are needed
by an application [37], just to mention a few.

In this thesis, we take a complementary look to the problem of optimizing the time for
communicating query results in a distributed environment, by focusing on how data is transferred
over a network. To achieve this goal, we investigate the relationship between the communication
time and the middleware configuration. Indeed, today, most programs (including application
programs, DBMSs, and modern massively parallel frameworks like Apache Hive 1 and Apache
Spark 2) interact with data management systems using a remote data access middleware such as
ODBC [15], JDBC [40], or a proprietary middleware [6]. A remote data access middleware (or
simply, a middleware in the sequel) is a layer on top of a network protocol that is in charge of
managing the connectivity and data transfer between a client application and a data server in

1https://cwiki.apache.org/confluence/display/Hive/HiveClient
2http://spark.apache.org/sql/
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1. Introduction

distributed and heterogeneous environments. Of particular interest to our concerns, a middleware
determines how data is divided into batches and messages before being communicated over the
network. As we demonstrate in the sequel, this impacts drastically the communication time.

We analyze the middleware-based communication model and we identify empirically two
middleware parameters that have a crucial impact on the communication time:

• The fetch size, denoted F, which defines the number of tuples in a batch that is communi-
cated at once to an application consuming the data, and

• The message size, denoted M, which defines the size in bytes of the middleware buffer and
corresponds to the amount of data that can be communicated at once from the middleware
to the network.

The middleware parameters F and M can be tuned in virtually all standard or DBMS-specific
middleware [7, 15, 16, 30, 40], where they are usually set manually by database administrators
or programmers. The main thesis of this work is that tuning the middleware parameters F and
M is:

• An important problem because the middleware parameters F and M have a great impact
on the communication time of a query result and on resource consumption, and

• A non-trivial problem because the optimal values of the parameters are query-dependent
and network-dependent.

We briefly illustrate these points via Example 1.1.

Example 1.1. We consider two queries (that we present later on in detail in Figure 3.3) having
same selectivities and different tuple sizes:

– Q1: result of ∼32GB = ∼165M tuples × 205B/tuple;
– Q3: result of ∼4.5GB = ∼165M tuples × 27B/tuple.

Moreover, we take two networks: high-bandwidth (10Gbit/s) and low-bandwidth (50Mbit/s).
Finally, we consider the following two different middleware configurations:

– Configuration C1: F=110K tuples and M=4KB;
– Configuration C2: F=22K tuples and M=32KB.

For the moment ignore the choice of the actual values of middleware parameter; in Chapter 3,
we discuss in greater detail the precise meaning of each parameter and we present extensive results
for multiple combinations of parameter values that strengthen the points that we already make
in this example.

(i) To show that the communication time is sensitive to the middleware configuration, we
report in Table 1.1 the communication times (in seconds) for Q1 and Q3, in the high-
bandwidth network. We observe that the time needed to transfer a given volume of data
varies depending on the considered middleware configuration. For each query, we observe
that different middleware configurations drive dramatically different communication times.

(ii) To illustrate that the best middleware configuration is query-dependent, we consider again
Table 1.1, which reports the communication times (in seconds) for Q1 and Q3, in the high-
bandwidth network. We observe that C1 is the best configuration for Q3, whereas C2 is
the best configuration for Q1.

2



1. Introduction

Table 1.1: Communication times in high-bandwidth network.

Q1 Q3

C1 25.61 5.09
C2 20.48 8.22

Table 1.2: Communication times for query Q3.

High-bandwidth Low-bandwidth
C1 5.09 452.16
C2 8.22 66.49

(iii) To show that the best middleware configuration is network-dependent, we report in Ta-
ble 1.2 the communication times (in seconds) for Q3, in both high- and low- bandwidth
networks. We observe that C1 is the best configuration for the high-bandwidth network,
whereas C2 is the best for the low-bandwidth one.

� ♦

To our knowledge, no existing distributed DBMS is able to automatically tune the middleware
parameters, nor is able to adapt to different queries (that may vary in terms of selectivity and
tuple size) and network environments (that may vary in terms of bandwidth). It is currently
the task of the database administrators and programmers to manually tune the middleware to
improve the system performance.

In this thesis, we present MIND (MIddleware tuNing by the Dbms), a framework for tuning
the fetch size F and the message size M. Our approach is:

• Automatic, to alleviate the effort of database administrators and programmers.

• Query-adaptive, since every query has its own optimal middleware parameters.

• Network-adaptive, since every network has its own optimal middleware parameters.

To this purpose, we formalize and solve the problem of middleware tuning as an optimization
problem:

Input: Query result of Q and network environment.
Output: Best values of middleware parameters F and M that minimize the time for commu-
nicating the query result over the network.

To the best of our knowledge, the database research community does not have well-established
strategies for tuning the middleware parameters F and M. However, existing technical docu-
mentations e.g., [7, 40] put forward some recommendations, none of which being query- and
network-dependent. Our experimental study shows that these strategies do not usually yield the
best communication time in practice, even when they consume large resources by the middleware
parameters F and M.

The distributed query processing mainstream literature [5, 10, 14, 17, 25, 29, 36, 37] typically
focuses on designing distributed query plans that minimize the communication time. To this

3
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purpose, they mainly rely on communication cost models where the total amount of data that
needs to be communicated over the network is considered to have a major impact.

Our work is complementary to those cited in the previous paragraph because we focus on how
a query result is communicated over the network, more precisely on how to tune the middleware
parameters in order to minimize the communication time of a query result. Indeed, on the one
hand, none of the aforementioned works take into account the interaction between the DBMS and
the middleware, whereas on the other hand, we do not take into account the actual query plan
that constructs a query result as we are interested only in how a query result can be optimally
communicated over the network from the middleware point of view.

The state-of-the-art communication cost models in distributed databases area [14, 29, 36]
have two components: (i) the per-message cost component i.e., the cost of constructing a mes-
sage by the middleware of a data node, and (ii) the per-byte cost component i.e., the cost of
communicating bytes of data over the network. Our experiments presented at Chapter 4 show
that the estimation results returned by such communication cost models are not very accurate
since the used estimation functions do not take into account the round-trips and the pipelining
effects. To estimate the time needed to communicate a query result over the network, we develop
a novel estimation function that is at the core of MIND. The proposed function takes into account
the middleware parameters, the size of the query result, and the network environment. We show
in Chapter 4 an experiment emphasizing the accuracy of the proposed estimation function.

An important point is that the low-level network parameters (e.g., part of the TCP/IP pro-
tocol [39, 42]) are not in the scope of our work. However, we take into account the network
environment in our calibration phase, which allows to dynamically configure the weights of
messages (network-dependent parameters) of our communication time estimation function. The
parameter calibration achieved by MIND is in the spirit of the recent line of research on calibrat-
ing cost model parameters (for centralized DBMS) to take into account the specificities of the
environment [18].

Also, we point out that the MIND framework is in the spirit of the research line on DBMS self-
tuning [9, 27] and query-driven tuning [38]. However, we are complementary to such approaches
as we allow the DBMS to tune external parameters (i.e., from the middleware level), which falls
outside the scope of existing DBMS. There are also recent works on software-defined networking
for distributed query optimization [43] that tune parameters outside the DBMS. We are orthog-
onal on such approaches since they tune the network bandwidth needed to communicate a query
result, whereas we focus on tuning the middleware parameters.

We also emphasize that our middleware study is complementary to the distributed query
processing mainstream literature [5, 14, 17, 25, 29, 36] in the sense that we investigate how a
query result is communicated over the network according to the middleware parameters F and M
and not how to design an optimal query plan communicating as less data as possible.

Main contributions of the thesis
The goal of this thesis is to present the design and an empirical study of the MIND framework.
Our main contributions are as follows:

• We present an experimental study (Chapter 3) having as goal to emphasize that the mid-
dleware configuration has a crucial impact on the time of communicating query results, and
that research efforts need to be made to integrate the parameters F and M into the DBMS
optimizer. Our study is extensive in the sense that we did a total number of ∼43K tests,
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spread over∼7K distinct scenarios (two networks of different bandwidth× six queries of dif-
ferent selectivity × up to 629 different middleware configurations, depending on the result
tuple size of each query). In particular, we show that the values of the middleware param-
eters F and M that minimize the communication time are query- and network-dependent.
Moreover, we point out that none of the current recommendations found in technical doc-
umentations for tuning the middleware parameters is able to find the optimal values since
such strategies do not take into account the query- and network-dependency.

• We introduce the MIND’s function for estimating the communication time (Chapter 4). At
the outset of our method are two crucial observations:

– Batches and messages are communicated differently over the network: batches are
communicated synchronously, whereas messages in a batch are communicated in
pipeline (assuming that a batch has several messages), hence it is possible to exploit
the pipelining for minimizing the communication time, and

– Due to network latency, it is more expensive to communicate the first message in a
batch compared to any other message that is not the first in its batch.

These observations led to an estimation function where a message is treated differently
depending on whether or not it is the first in its batch. Then, we propose an effective
strategy for calibrating the costs (weights) of messages (first and non first in its batch),
which are network-dependent parameters, of the communication time estimation function
based on the actual network environment. We also show an experiments emphasizing the
accuracy of our estimation.

• We develop an optimization algorithm to effectively compute the values of the middleware
parameters F and M that minimize the communication time (Chapter 5). The proposed
algorithm is iterative in the sense that it starts with initial (small) values of the two
middleware parameters F and M and iterates to improve the estimation by updating the
initial values. This allows us to quickly find (in small fraction of a second) values of the
middleware parameters F and M for which the improvement in terms of communication time
estimation between two consecutive iterations is insignificant. In practice, this translates
to a good trade-off between low resource consumption and low communication time.

• We present an evaluation of the MIND framework (Chapter 5). In particular, we point out
the improvement that we obtain over the current strategies for middleware tuning (in terms
of communication time and/or resource consumption), the query- and network-adaptivity
of MIND, and how the time estimation and the two middleware parameters F and M change
during the iterations of the optimization algorithm.
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Chapter 2
Communication cost in distributed data

management systems

In this chapter, we briefly present different distributed DBMS architectures (Section 2.1) and we
discuss cost models and techniques developed for optimizing communication time in distributed
query processing (Section 2.2).

2.1 Distributed DBMS architectures

Distributed database management systems are at the convergence of two technologies: data
processing and computer network technologies [36]. In this section, we focus on main distributed
DBMS architectures proposed in the mainstream literature [25, 36]: Client-Server systems, Peer-
to-Peer distributed DBMS and data integration (mediated) systems.

Client-Server architecture
A distributed DBMS architectures, as presented in Figure 2.1, are based on a general paradigm
Client-Sever (or Master-Slave). This paradigm refers to a class of protocols that allows one node,
namely client, to send a request to another node, called server, that processes the query and
sends an answer as a response to this request. In this paradigm every node has a fixed role and
always acts either as a client (query source) or as a server (data source) [25].

[36] considers that the general idea behind Client-Server architecture is that the query pro-
cessing functions are divided into two classes: server functions and client functions. In fact, the
query processing, optimization, transaction management and storage management are done at

Client-Server

Client
application

DB

Q Ans(Q)

Peer-to-Peer

DB1

DB2

Q Ans(Q)

Mediator

Mediator

Data
source1 . . .

Data
sourcen

Q1 Qn

Q Ans(Q)

Figure 2.1: Main distributed architectures.
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2. Communication cost in distributed data management systems

the server node. In addition to the application and the user interface, the client has a DBMS
module, which is in charge of managing the cached data that is gathered from DBMS node (data
server) and sometimes managing transactions.

Peer-to-peer architecture
As presented in Figure 2.1, in Peer-to-Peer architectures every node can act as a server that stores
parts of the database and as a client that executes application programs and initiates queries [25].
[36] considers that the modern Peer-to-Peer systems go beyond this simple characterization and
differ from the old Peer-to-Peer systems. The first difference is the massive distribution of data
sources in current systems. The second difference is the inherent heterogeneity of distributed
data sources and their autonomy. The third major difference is the considerable volatility of
distributed data sources.

Data integration (mediated) architecture
In virtual data integration (mediated) systems, data stays at remote data sources and can be
accessed as needed at query time [13]. As presented in Figure 2.1, these systems consist of
integrating heterogeneous remote data sources in a virtual global schema, which is constructed
at mediator node [36]. In this architecture, client node sends query to mediator node, which is
in charge of constructing distributed query plan and decomposing query into subqueries that are
sent to remote nodes. Each remote node processes the subquery and sends back results to the
mediator node, which combines the results and send then back answer to the user.

2.2 Query optimization in distributed DBMS

The essence of Client-Server architecture is at the core of the aforementioned distributed ar-
chitectures, in the sense that data is persistently stored in remote data servers and queries are
initiated at client nodes [25]. In distributed DBMS architectures, the dominant cost of comput-
ing a distributed query plan is typically the cost of transferring (intermediate) results over the
network [25, 36]. As a consequence, minimizing the communication time has been recognized for
a long time as one of the major research challenges in distributed data management area [25, 36].
A long-standing research effort has been devoted to the investigation of this problem, which led
to the development of numerous distributed query optimization techniques [5, 14, 17, 25, 29, 36].

Next, we present different DBMS cost models used in query optimizer (Section 2.2.1) and we
discuss different techniques developed to minimize the communication time in distributed query
processing (Section 2.2.2).

2.2.1 Cost models in distributed DBMS
The query optimizer is a central component of a DBMS, having as goal to compute for a given
query an execution plan that reduces the response time. A key difficulty underlying query
optimization lies in the design of an accurate cost model that is used by the optimizer to estimate
the costs of candidate query plans. Centralized DBMSs consider that the main components
impacting query execution time is the CPU instructions and I/O operations. For instance, in a
commercial open-source DBMS, namely PostgreSQL, the cost model used by the query optimizer
consists of a vector of five components related to CPU instructions and I/O operations [18]. The
cost of query plan is composed of the following five components:
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• CPU instructions:

– The CPU cost to process tuples.
– The CPU cost to process tuples via index access.
– The CPU cost to perform operations such as a hash or aggregation.

• I/O operations:

– The I/O cost to sequentially access a page.
– The I/O cost to randomly access a page.

Distributed DBMSs optimizer, in addition to the cost components (CPU and I/O) of central-
ized DBMSs, takes into account the cost of transferring query results over the network. The state-
of-the-art communication cost models in distributed databases area [5, 14, 24, 29, 36] consider
as major parameters impacting the communication cost: the volume of data to be transferred
(called per-byte cost component) and number of messages constructed (called per-message cost
component). Next we present cost models proposed in mainstream literature [5, 14, 24, 29, 36].

2.2.1.1 Cost models based on volume of data and constructed messages

This class of models consider that the communication cost can be estimated using two compo-
nents:

• The per-message cost component i.e., the cost of constructing a message at a data node.
Precisely, it consists of estimating the overhead due to the construction of a message by
DBMS node. Hence, the total number of messages is an important parameter in such cost
models [14, 29].

• The per-byte cost component i.e., the cost of transferring bytes of data over the network.
Concretely, it is the needed time of communicating a unit of data (e.g., byte or packet)
of query result via network channel. Hence, the total size of query result influences the
estimated cost in such models [14, 29].

This cost model is at the core of many distributed query optimizer [14, 29, 36]. For instance,
the popular R∗ optimizer [29] considers the combination of the aforementioned cost components
to estimate the communication time in distributed query plan. Precisely, it considers:

• The cost of initiating all messages of query result (per-message cost). This cost encodes
the time needed to construct a message before communicating it over the network. It is
estimated by dividing the approximate number of instructions to initiate and receive a
message by the MIP rate (Million Instructions Per Second), which measures the number
of machine instructions that a computer can execute in one second.

• The cost of transferring over the network the total bytes of query result (per-byte cost)
in all messages over the network. This cost encodes the time needed to communicate the
bytes of a given message over the network. This cost is estimated by taking into account
the actual transmission speed of the network.

Also, [14] gives a formula to estimate the cost of sending and receiving a message from a data
server node to client node for parallel query optimization. Concretely, this formula estimates the
time for communicating a message as:
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• The cost of constructing a data message before any data is placed onto network (per-
message cost). This cost is considered a constant and estimated according to CPU cycles
of used machines.

• The cost of communicating a message over the network (per-byte cost). The cost of com-
municating a message is computed according to the machine power (CPU cycles of the
used machines).

It is worth noting that our experiments presented in Section 3.2 show that the estimation
results returned by communication cost models based on per-byte and per-message are not very
accurate because the used estimation functions do not take into account the round-trips and the
pipelining effects.

Recently, in massively parallel systems, several cost models have being proposed in liter-
ature [8] in order to optimize system performances. In these systems, the bottleneck is the
communication of data between computation nodes. This is due to the fact that query can be
evaluated by a large enough number of servers such that the entire data can be kept in the
main memory and network speeds in a large clusters are significantly lower than main mem-
ory access [5]. The recent research works focused on MapReduce framework has proposed the
MapReduce Class (MRC) to optimize the communication cost [1, 2, 5, 24] in massively parallel
systems. This model considers the amount of data assigned to a computation node and the
number of communication rounds for communicating intermediate results between computation
nodes. However, it does not take into account the overhead due to message construction and
transfer.

2.2.2 Techniques for optimizing communication cost
Many efforts from both academia and industry focused on developing techniques that minimize
the total amount of data that needs to be communicated over the network [1, 2, 5, 14, 17,
24–26, 29, 36], while few research works considered the problem of optimizing the number of
communicated messages [14, 25]. New emerging research works propose to use software defined
networking for distributed query optimization [43].

Next we review different techniques that allow to minimize the time for communicating query
result between computation nodes.

2.2.2.1 Query and data shipping techniques

There are three main approaches to minimize the communication overhead in distributed query
processing [25].

• Query shipping, consists in shipping the query to the lowest possible level in a hierarchy
of sites (database server site). In commercial distributed DBMSs, the so-called hints are
introduced to push operators (e.g., selection, projection and JOIN) to remote data nodes,
which yield to reduce the communication cost [17].

• Data shipping, queries are executed at the client machine, where data is cached in main-
memory or on disk at the client node.

• Hybrid shipping, is based on the combination of data and query shipping. Hybrid shipping
approach, which provides a flexibility to execute query operators on client and server nodes,
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presents in general better performance than data or query shipping. This is because hybrid
shipping enables to exploit client and server as well as intra-query parallelism. However,
query optimization is significantly more complex [25].

2.2.2.2 Techniques that reduce the volume of data

The popular techniques used to avoid communicating as less as possible of volume of data between
computation nodes, are: filtering relations, fragmenting big tables and compressing data before
being communicated over the network. The main ideas of these techniques are given bellow.

Semijoin technique:
[25, 29] consider that the semijoin operation can be used to decrease the total time of join

queries. The semijoin acts as a size reducer for a relation much as a selection does. The join of
two relations R and S over attribute A, stored at sites 1 and 2, respectively, can be computed by
replacing one or both operand relations by a semijoin with the other relation, using the following
rules:

• R onA S ⇔ (R nA S) onA S

• ⇔ R onA (S nA R)

• ⇔ (R nA S) onA (S nA R)

The choice between one of the three semijoin strategies requires estimating their respective
costs. The use of the semijoin is beneficial if the cost to produce and send it to the other site is
less than the cost of sending the whole operand relation and of doing the actual join.

Bloom-Filter technique: similar to semijoin technique, the Bloom-filter (also called Bloom-
join) is a "hashed semijoin", in the sense that it filters out tuples that have no matching tuples
in a JOIN operation [25, 29]. The main idea of Bloom-filter technique is to communicate as less
data as possible from one site to another.

2.2.2.3 Reducing the number of communicated messages

Row-blocking (batching) technique
The main idea of this technique is to ship tuples, from one site to another via network, in block-
wise fashion, rather than every tuple individually. This approach, implemented in commercial
distributed DBMS, is obviously much cheaper than the naive approach of sending one tuple at a
time because the data is communicated into fewer messages [25]. The technical documentations
of popular DBMS drivers (e.g., JDBC [40], ODBC [15], and proprietary middleware: Oracle Net
services [6, 35] and Distributed Relational Database Architecture: DRDA of DB2 [21] ) emphasize
the performance improvement obtained by communicating many rows at one time, which reduce
the number of round-trips from client node to DBMS node. But, this is at the price of resource
consumption, e.g., buffers and network bandwidth [40].

Despite the performance advantage provided by the row-blocking technique, to the best of
our knowledge that there is not cost model proposed in the literature that takes into account the
impact of row-blocking (batching).

In addition, other classical techniques have been used to reduce communicated volume of
data and messages, such as vertical and horizontal partitioning for big relations [3, 31] and data
compression [28].
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2.2.2.4 Adaptive optimization

Recent research work [43] proposes to use the software-defined networking to provide an optimal
network bandwidth. Precisely, this work points out that:

• Each query needs a particular network bandwidth to communicate efficiently its query
result from DBMS node to client node.

• DBMS optimizer can tune external parameters, such that network bandwidth, which can
be controlled via Software Defined Network (SDN) to fix the necessary bandwidth for each
query [43].

We are orthogonal on such approach since it tunes the network bandwidth needed to com-
municate a query result, whereas we focus on tuning the middleware parameters.

Furthermore, we point out that our research work is in the spirit of the research line on DBMS
self-tuning [9, 27], parametric optimization [23, 41] and query-driven tuning [38]. However, we
are complementary to such approaches as we allow the DBMS to tune external parameters (i.e.,
from the middleware level), which falls outside the scope of existing distributed DBMS.

2.3 Discussion

At the end of this chapter, it is important to stress that despite the developed approaches and
techniques (Section 2.2), minimizing the communication time in distributed query processing
remains an open research domain. This is motivated by the fact that:

 

 

SQL> SELECT * FROM emp; 

 

Client node 
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EMP_ID     FNAME     LNAME 
------     -----     ----- 

105        David     Austin 
106        Valli     Pataballa 
107        Diana     Lorentz 
108        Nancy     Greenberg 
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...     ...        ... 

SQL query 

Query result 

Figure 2.2: Communicating query result in a simplified client-server architecture.

• Cost models proposed in literature [5, 14, 29, 36], which are based on the per-message
and/or per-byte cost components are not suited to tune the middleware parameters F and
M because they do not take into account the round-trip and pipeline communication effects.
In Section 3.2.4, we give experiment results that strengthen this point.

• Distributed query processing mainstream literature [1, 2, 5, 14, 17, 24–26, 29, 36] does
not take into account the interaction between the DBMS and the middleware layer in
distributed query processing. It typically focuses on designing distributed query plans that
minimize the communicated volume of data and number of messages. The designed query
plans do not take into account how query results are communicated between computation
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nodes. However, we argue that it is important to look inside the middleware black-box to
understand what happens. For instance, the execution of a distributed query in Figure 2.2
raises several questions, such as:

– How data is communicated from DBMS node to client node (tuple-per-tuple, whole
query result at once or batch by batch)?

– How SQL middleware allocates memory in both DBMS and client nodes to manage
the query result?

– How client node processes the communicated query result (in streaming manner, wait
until receiving the whole query result, computing result batch per batch or with other
manner)?

– What is the influence of the communication layers (e.g., middleware, network protocol,
etc.) in the improvement of distributed query execution?

– What is the parameters that impact the time for communicating query result and how
they can be suited to provide a good communication time?

– Whether the classical cost models per-message and per-byte components are suited to
estimate the time for communicating query result between computation nodes?

In this thesis we focus on all these questions and we take a new look to the problem of opti-
mizing the time for communicating query results in a distributed architectures, by investigating
the relationship between the communication time and the middleware configuration.
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Chapter 3
DBMS-tuned Middleware

In this chapter, we recall the main functionalities provided by SQL middleware (in Section 3.1)
and then we present our experimental study that emphasizes the crucial impact of the middleware
configuration on the time for communicating query results over the network (in Section 3.2).

3.1 Middleware in distributed query processing

The term middleware refers to a software layer that provides a programming abstraction as
well as masking the heterogeneity of the underlying networks, hardware, operating systems and
programming languages [12].

In distributed DBMS architectures, the middleware (e.g., JDBC [40], ODBC [15], or propri-
etary middleware: Oracle-Net-services [6, 35] and Distributed Relational Database Architecture:
DRDA of DB2 [21]) is a layer on top of a network protocol that determines, among others, how
data is divided into batches and messages before being communicated from DBMS node to client
node over the network (see Figure 3.1).

Client node
(Application, Mediator, P2P, etc.)

Client middleware

Allocated memory to store
batch of F tuples︷ ︸︸ ︷

. . .

Network protocol

Network

Query Q and
parameters F, M

DBMS node

DBMS
• Compute query result Ans(Q)

DBMS middleware
• Send Ans(Q) according to F and M
– Split Ans(Q) in batches of F tuples
– Split batch in messages of M bytes

DB

Network protocol

. . . . . .︸ ︷︷ ︸
Batch of F tuples
sent synchronously

Messages of M bytes
sent in pipeline

Figure 3.1: Communication model in simplified Client-Server architecture.
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3.1.1 Middleware functionalities
The main functionalities provided by the SQL middleware in distributed DBMSs architectures
are:

• Establishing and managing connection between client and DBMS nodes. Indeed, the mid-
dleware is responsible to establish and keep alive connection between application and DBMS
nodes throughout the query execution.

• Hiding heterogeneity problems (e.g., data types, synthetic variables of the query language,
etc. ) between client and DBMS nodes. That means providing a maximum of interoper-
ability, in the sense that an application can access different heterogeneous DBMSs with a
single program code.
For example, most SQL middleware implements SQL Call Level Interface (CLI) i.e., an API
which provides standard functions to mainly send SQL statements to the DBMS and gather
query results into application node. The goal of this interface is to increase the portability
of applications by enabling them to become independent from particular DBMS [11].

• Determining how data is divided into batches of F tuples and messages of M bytes before
being communicated over the network from DBMS node to client node, such as illustrated
in Figure 3.1.

• Receiving and caching data into buffers before being processed by client application.

3.1.2 Communication model
We focus on a simplified distributed architecture (cf. Figure 3.1), where client node sends a query
Q to DBMS node, which in its turn sends back to client node the result of a query Q, assuming
that the result of Q is needed by some application from client node. Such an architecture is at
the core of several distributed architectures presented in Section 2.1 such as:

• The Client-Server, where client node is a client and sends its query to the server at DBMS
node, which sends back the query result.

• The mediator, where client node is a mediator, having as role to compute a distributed
query plan and decomposing Q into subqueries; then, it asks distributed data nodes such
as DBMS node to compute subquery results.

• The peer-to-peer, where every node can play at the same time the roles of client and server,
etc.

A simplified architecture as in Figure 3.1 allows us to stress test the communication time by
requiring to communicate over the network the entire query result that is computed in DBMS
node. We focus on the impact of the middleware configuration on the time for communicating
query result from DBMS node to client node. In particular, the middleware of DBMS node is in
charge of splitting query result in batches of F tuples and then splitting each batch in messages
of M bytes. The values of middleware parameters F and M can be tuned in all standard or
DBMS-specific middleware [7, 15, 16, 30, 40].

In the rest of this section, we describe the standard behaviour of these parameters. An
important point is that batches and messages are communicated differently over the network.
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Synchronous communication of batches

When DBMS node sends a batch of F tuples to client node, the communication is done syn-
chronously i.e., client node needs to wait an ack signal and a request for a next batch from the
part of client node to be able to send the next batch of F tuples. Moreover, client node is able
to process a batch only after receiving all messages composing that batch and it is blocked while
waiting all such messages. After client node receives and processes an entire batch, it sends to
DBMS node a request for a next batch.

The number of batches that are used to communicate a query result is known as the number
of round-trips [40]. Whereas the size of a batch F is usually given in tuples, it is sometimes
important to quantify the actual size in bytes of a batch, that we denote by FB (this can be
computed simply by multiplying F with the size in bytes of a tuple). For instance, client node
needs to have FB bytes of available heap memory to store an entire batch while receiving it.

Pipeline communication of messages

To send a batch of F tuples over the network, the middleware of DBMS node splits it into
messages, each message having M bytes. The messages of M bytes are sent in pipeline from
DBMS node to client node (assuming that a batch of F tuples has more than one message of M
bytes).

More precisely, the middleware at DBMS node has a buffer of M bytes that it continuously
filled with tuples of the current batch; each time the buffer is full, the middleware of DBMS node
sends a message of M bytes over the network, until the whole requested batch is achieved. This
means that DBMS node sends messages over the network without waiting for ack signals from
client node, hence several messages of a same batch can be communicated over the network at a
specific moment.

Low-level network communication

The messages of M bytes are further split into network packets by a low-level network protocol
such as TCP/IP [39], that we do not represent in Figure 3.1 for simplicity of presentation and
because such low-level protocols are out of the scope of our work. The technical documentation
of some state-of-the-art DBMS [6, 7] recommends using a middleware message that fits in a
network packet to avoid the overhead of fragmenting a middleware message of M bytes in several
network packets. However, our extensive empirical study shows that such a strategy never gives
the best communication time in practice, which suggests that the number of round− trips and
the network latency have the most dominant impact on the communication time.

3.1.3 Memory management

In this section, we focus on how middleware allocates and manages the query results commu-
nicated by DBMS node. Recall that the DBMS middleware communicates synchronously query
results in one or several batches (i.e., many tuples that are communicated at once from DBMS
node to client node. The number of tuples is fixed by a middleware parameter F). The middle-
ware in client node is in charge to allocate a sufficient memory (buffers) to store an entire batch
while receiving it, as depicted in Figure 3.1.

The popular JDBC middleware [20, 33] allocates buffers that should store query result or
batch of F tuples according to:
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• The number of columns and their types for a given query (to compute an approximate size
per row, where each column type has a its size).

• The size of the query result (if the whole query result is gathered at once) or batch (if
query result is split into several batches).It is recommended that the size of a batch should
be configured carefully because it has an enormous impact on memory consumption and
system performance.

The memory allocation in client middleware is very sensitive, in the sense that:

• Small memory size implies batch of small sizes (i.e., a small F) which lead to poor perfor-
mance in communication time because the client node needs many round-trips to process
the entire query result [40]. In this case, the main advantage is that the middleware con-
sumes a less memory resource, which does not impact system performance in client node.

• Large memory size for a batch of F tuples, in presence of enough bandwidth network,
can improve considerably the communication time. The drawback in this case is that the
middleware consumes a large memory, which impacts the system performance at client
node and can generate an errors when the available memory is not enough to store a batch
of F tuples.

To the best of our knowledge, no existing DBMS middleware is able to find the best value
of the middleware parameter F that provides a good trade-off between communication time and
memory consumption.

Furthermore and in addition to the memory consumption in client node, it is important to
stress that middleware parameters F has an important impact on the network bandwidth and
I/O disk access. We report in Appendix A the consumption of network bandwidth and I/O disk
access according to the values of middleware parameters F and M during query execution.

Next we present the current practices used in commercial DBMSs to set the middleware
parameters F and M.

3.1.4 Current practices for configuring middleware parameters
We focus on commercial distributed DBMSs, namely: Oracle [34, 35], DB2 [19, 21, 22], Post-
greSQL [16], SQL Server 1 and MySQL 2 to analyse how the middleware parameters F and M
are configured.

These DBMSs use different strategies to set the values of the middleware parameters F and
M. These strategies are summarized in the following points:

• Leave default values set by the DBMS middleware.

• Leave F as default value and set M to maximum value.

• Set F to maximum value and leave M as default value.

• Set both parameters F and M to maximum values.
1https://technet.microsoft.com/en-us/library/aa342344%28SQL.90%29.aspx
2http://dev.mysql.com/doc/connector-j/5.1/en/connector-j-reference-implementation-notes.html
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• Set M to maximum value and set F such that all tuples in a batch fit in a single message.

Next we give more detail on the current practices used in these DBMSs to set the values of
the middleware parameters F and M.

Oracle

Batch Size F: Oracle JDBC middleware [34] sets the default F at 10 tuples and can be setted to
maximum size that can be handled in the heap memory. Oracle ODBC3 middleware allows to
configure the amount of memory to contain a batch of F tuples. In ODBC, the default size to
handle a batch is fixed to 64 KB. For an application SQL − Plus command line, which uses a
proprietary middleware (Oracle Net-Services), it sets a default F to 15 tuples and a maximum
value to 5K tuples. Oracle considers that determining the best value of F is not obvious 4.

Message Buffer Size M: Oracle Net-Services [35] uses a session parameter, namely session data
unit (SDU, which is the M in our case). This parameter defines the size of data message that can
be used for communicating query results between DBMS and client nodes. The size of message
is negotiated between client and DBMS nodes at the connection time. The message size can
range from 0.5KB to 65KB. The default message size is 8KB, and rarely larger than 8KB bytes.
When large amounts of data are being transmitted, increasing the message size can improve
performance and network throughput. However, technical documentations [6, 7] consider that
the M should be less than the network packet limited by the parameter Maximum Transmission
Unit MTU.

DB2
DB2 has two strategies to set the middleware parameters F and M [19, 21, 22]. The first, called a
limited block fetch, which is a default strategy. This strategy recommends to set the values of the
middleware parameter F such that it fits in a one data message of M bytes. The second strategy,
called continuous block fetch, which consists of setting the middleware parameter F such that it
fits in several messages of M bytes. More detail on both strategies is given bellow.

Limited block fetch: consists of setting F such that it fits in one message of M bytes. The
sizes of the F and M are fixed via parameter RQRIOBLK. The default value is 32KB and uses
range of values from 4KB to 65KB. This strategy consumes less resources, but provides a worst
communication time when a large query result is communicated. This is due to the fact that
a large number of communicated batches (round-trips) is done synchronously (batch per batch)
between DBMS and client nodes, since each batch of F tuples is communicated in one message
of M bytes.

Continuous block fetch: consists of setting F such that it can be fitted in several messages of M
bytes. This strategy shows a good communication time due to the pipelined communication, of
messages in the same batch, between DBMS and client nodes. This is due to the fact that a DBMS
node does not wait a signal from client node to send next messages of a current batch. However,
DB2 client can receive multiple messages of M bytes from DBMS node for each batch of F tuples.
This strategy needs a large memory allocation in client node. The number of messages of M
bytes (called extra blocks in IBM documentation) is fixed by the parameter EXTRA BLOCKS
SRV in server node and MAXBLKEXT in client node. The maximum messages of M bytes that
can be communicated for a batch of F tuples is limited at 100 messages.

3https://docs.oracle.com/cd/B28359_01/server.111/b32009/app_odbc.htm#UNXAR403
4http://docs.oracle.com/cd/B25221_04/web.1013/b13593/optimiz011.htm
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SQL Server

Batch Size F: the default configuration of Microsoft JDBC Driver 5 is to retrieve the whole query
result from DBMS node at once. If a large query result is gathered SQL Server can provide an
adaptive buffering, but this can show an OutOfMemoryError in the JDBC application for the
queries that produce very large results.

Message Buffer Size M: Sql Server 6 uses a default packet size of 4KB. The message size M is very
sensitive in Sql Server DBMS, since it can only tuned by an experienced database administrator
or certified Sql Server technician.

PostgreSQL

Batch Size F: the default configuration of F in PostgreSQL 7 is to collect all query results at
once when the memory can handle it. For a large query results, the middleware (e.g., JDBC) can
extract only a small sizes of F tuples from DBMS node.

Message Buffer Size M: PostgreSQL uses a message-based protocol 8 for communicating query
result from DBMS node to client node. In this kind of protocol, the size of message M is not
fixed at session time, but each message contains its size in message-header.

MySQL

Batch Size F: by default MySQL 9 retrieves all query result at once, which is stored in client
middleware buffers. For queries handling a large query results, the middleware can extract small
batches from DBMS node (e.g., JDBC driver uses setFetchSize method to set the F).

At the end of this section, we stress that:

• The commercial DBMSs do not provide methods and techniques to efficiently set middle-
ware parameters F and M.

• The middleware parameters F and M are configured in commercial DBMS independently,
in the sense that there is not a clear correlation (relationship) between the values of mid-
dleware parameters F and M, since a batch of F tuples is communicated in one or several
messages of M bytes.

• The commercial DBMSs tune the values of middleware parameters F and M such that they
are used for all queries and network environments. This approach can not be useful because
there is not a unique optimal configuration of middleware parameters F and M that fits
all queries and network environments, because these parameters are query-dependent and
network-dependent.

5https://technet.microsoft.com/en-us/library/aa342344%28SQL.90%29.aspx
6https://technet.microsoft.com/en-us/lib rary/ms177437.aspx
7https://jdbc.postgresql.org/documentation/head/query.html
8https://www.postgresql.org/docs/9.3/static/protocol.html
9http://dev.mysql.com/doc/connector-j/5.1/en/connector-j-reference-implementation-notes.html
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3.2 Analysing the impact of middleware parameters

In this section, we present an experimental study emphasizing that the middleware configuration
has a crucial impact on the time of communicating query results. We present the considered
distributed architecture in Section 3.2.1, the experimental setup in Section 3.2.2, the trade-off
between performance and resource consumption in Section 3.2.3 and we discuss our empirical
observations in Section 3.2.4.

Query Q

Client node
(Application, Mediator, P2P, etc.)

Statistics

MIND
? Compute Best Parameters

Sends best
parameters

DBMS optimizer

Requests best
parameters

Client middleware
Communicate with data nodes

Query and
parameters

Query
result

DBMS node
DBMS
• Compute query result Ans(Q)
DBMS middleware
? Send Ans(Q) according to F and M
– Split Ans(Q) in batches of F tuples
– Split batch in messages of M bytes

Q
,F,M

. . .

︸
︷︷

︸

Batch of F tuples
sent synchronously

Messages of M bytes
sent in pipeline

Figure 3.2: Architecture for DBMS-tuned Middleware framework (called MIND).

3.2.1 Architecture

We focus on a simplified distributed architecture (cf. Figure 3.2), which is at the core of several
distributed paradigms [25, 36] such as: the Client-Server (where client node is a client and sends
its query to the server at DBMS node, which sends back the query result), the mediator (where
client node is a mediator, having as role to compute a distributed query plan and decomposing
Q into subqueries; then, it asks distributed data nodes such as DBMS node to compute subquery
results), the peer-to-peer (where every node can play at the same time the roles of client and
server), etc.
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Id Query Result size
(# of tuples)

Tuple size
(bytes)

Result size
(bytes)

Q1 SELECT * FROM source 165M 205B 32GB
Q2 SELECT objectid, sourceid, ra, decl, taimidpoint, psfflux

FROM source
165M 54B 9GB

Q3 SELECT objectid, taimidpoint, psfflux FROM source 165M 27B 4.5GB
Q4 SELECT * FROM object 4M 450B 2GB
Q5 SELECT objectid, ra_ps, decl_ps FROM object 4M 29B 0.1GB
Q6 SELECT objectid, taimidpoint, psfflux FROM source WHERE

objectid=433327840429162
55 27B 1.5KB

Figure 3.3: Six real-world astronomical queries.

The components annotated with ? in Figure 3.2 correspond to the middleware tuning features
proposed by our framework that we detail in Chapter 4 and Chapter 5.

A simplified architecture as in Figure 3.2 allows us to stress test the communication time by
requiring to communicate over the network the entire query result that is computed in a DBMS
node. We focus on the impact of the middleware on communicating the query result Ans(Q)
from DBMS node to client node. In particular, the middleware of DBMS node is in charge of
splitting Ans(Q) in batches of F tuples and then splitting each batch in messages of M bytes.

Recall that the middleware parameters F and M can be tuned in virtually all standard or
DBMS-specific middleware [7, 15, 16, 30, 40]. We recall also that the standard behaviour of
communicating query results in batches of F tuples and messages of M bytes is described in
Section 3.1.2.

3.2.2 Experimental environment

Data and queries

We focus on data and queries provided by researchers from the astronomical domain. More
precisely, the dataset consists of astronomical data from LSST10 (Large Synoptic Survey Tele-
scope). The dataset has ∼34GB spread over two tables: OBJECT of objects detected in the sky
(∼2GB, ∼4M tuples, 227 attributes) and SOURCE of sources used in the detection of these objects
(∼32GB, ∼165M tuples, 92 attributes). More information on the schema of these tables can be
found online11. Moreover, we focus on six queries (given in Figure 3.3) that we extracted from
existing workloads that astro-physicists frequently run on astronomical data12. The only criteria
that we took into account when choosing these queries is that they have diverse selectivities
(their query results span from a few bytes to 32GB). We are not interested in the actual query
plan that computes their query results as we are interested only in how their query results are
communicated over the network.

Database

Commercial distributed relational database system DBMS is used to store and manage dataset
in tables.

10http://www.lsst.org/lsst/
11https://lsst-web.ncsa.illinois.edu/schema/index.php?sVer=PT1_1
12https://dev.lsstcorp.org/trac/wiki/db/queries/ForPerfTest
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System environment
Our machines have CPU Xeon E5-2630 at 2.4 GHz, 8GB of memory, 250GB of hard drive (at
10K revolutions per minute), and run Ubuntu 12.04.

Network configurations
We use two configurations: (i) high-bandwidth (10Gbit/s) and (ii) low-bandwidth (50Mbit/s). In
both cases, we have an Ethernet MTU (Maximum Transmission Unit) jumbo frame of 8.95KB
(that is the size limit of a network packet that can be sent over our networks).

F and M configurations
We consider a set of 629 = 17× 37 configurations as follows:

• For M we have 17 values: 1.5, and from 2 to 32KB with a step of 2. We have a minimum
value of 1.5KB to simulate a standard Ethernet MTU that is usually fixed to 1.5KB.
Moreover, we have a maximum value 32KB for M because this is the maximum supported
by the middleware of the commercial DBMS that we used.

• For F we have 37 values:

– 9 values from 110 to 990 tuples with a step of 110,
– 9 values from 1.1K to 9.9K tuples with a step of 1.1K,
– 9 values from 11K to 99K tuples with a step of 11K, and
– 10 values from 110K to 1.1M tuples with a step of 110K.

We considered multiples of 110 tuples for F because 1.1K tuples can be communicated in
one message of 32KB corresponding to the maximum M for query Q3 (that we consider
to be the “average” query since both its result size of 165M tuples and its tuple size of 27
bytes are the most frequent among all queries; Q3 is actually the running example query
throughout the thesis).
We have a maximum value of 1.1M tuples for F because this occupies the maximum heap
space allowed for a middleware batch by our system (that is 30MB). We also point out
that for the queries Q1, Q2, Q4 having visibly larger tuples compared to Q3 only a subset
of the 629 configurations have been run successfully (since the largest batches that can be
used for the three aforementioned queries are of 110K, 550K, 66K tuples, respectively).

Measures
We report the time needed to communicate the result of a query Q between two nodes, for a given
network environment, a given F, and a given M. Each number reported for the high-bandwidth
configuration is obtained as the average over ten runs, whereas for the low-bandwidth config-
uration over three runs. The reported communication times are provided by the DBMS trace
files, which additionally provide information on the query execution time, number of transferred
messages, etc.

In Table 3.1, we zoom on the main information gathered from the DBMS trace files in each
query execution. The meaning of each column is explained bellow:
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Figure 3.4: How query is executed in experimental process?

(i) Trace file name: reports details on how query execution is done;

(ii) M value: the size in bytes of middleware buffer, which corresponds to the amount of data
that can be communicated at once from the middleware to the network;

(iii) F value: the number of tuples in a batch that is communicated at once;

(iv) Elapsed time: the query execution time in seconds;

(v) CPU time: the consumed time, in seconds, by CPU in the query execution;

(vi) Number of fetch operations (called also in the literature round− trips);

(vii) Number of rows in query result;

(viii) Number of first messages communicated;
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Table 3.1: Zoom on information gathered from DBMS trace files, according to experimental
process described in Figure 3.4.

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) ...
... ... ... ... ... ... ... ... ... ... ... ...
00.trc 32767 110 1325.75 454.54 1499907 164989583 1499907 944.47 ...
81.trc 32767 220 888.02 351.12 749954 164989583 749954 576.49 ...
84.trc 32767 330 681.64 306.15 499970 164989583 499970 403.64 ...
45.trc 32767 440 595.93 295.84 374978 164989583 374978 324.27 ...
99.trc 32767 550 531.79 269.36 299983 164989583 299983 281.26 ...
68.trc 32767 660 530.43 273.86 249986 164989583 249986 273.65 ...
08.trc 32767 770 504.40 270.43 214274 164989583 214274 249.79 ...
47.trc 32767 880 483.59 262.58 187490 164989583 187490 234.39 ...
80.trc 32767 990 464.04 258.10 166658 164989583 166658 219.13 ...
18.trc 32767 1100 440.02 252.18 149992 164989583 149992 198.87 ...
69.trc 32767 2200 320.27 220.29 74997 164989583 74997 104.80 74995 1.14 ...
86.trc 32767 3300 257.06 193.55 49998 164989583 49998 65.85 99992 1.99 ...
92.trc 32767 4400 209.85 164.32 37499 164989583 37499 44.93 112327 3.71 ...
86.trc 32767 5500 202.03 159.70 30000 164989583 30000 38.76 104739 6.04 ...
86.trc 32767 6600 187.25 152.80 25000 164989583 25000 31.81 112281 5.07 ...
78.trc 32767 7700 167.31 139.42 21429 164989583 21429 25.11 117656 4.94 ...
72.trc 32767 8800 161.47 137.28 18750 164989583 18750 21.98 121632 4.21 ...
64.trc 32767 9900 157.54 132.93 16667 164989583 16667 21.40 123887 5.28 ...
56.trc 32767 11000 153.32 129.98 15001 164989583 15001 18.70 119715 6.49 ...
49.trc 32767 22000 134.66 119.26 7501 164989583 7501 10.02 126506 6.99 ...
38.trc 32767 33000 129.55 116.75 5001 164989583 5001 6.89 127155 7.39 ...
26.trc 32767 44000 131.45 115.97 3751 164989583 3751 5.40 128640 6.53 ...
15.trc 32767 55000 128.10 117.18 3001 164989583 3001 4.30 128543 7.88 ...
01.trc 32767 66000 125.80 115.58 2501 164989583 2501 3.59 129134 7.83 ...
11.trc 32767 77000 124.90 117.12 2144 164989583 2144 3.08 129039 5.70 ...
00.trc 32767 88000 123.55 114.18 1876 164989583 1876 2.67 129206 7.96 ...
94.trc 32767 99000 125.77 118.31 1668 164989583 1668 2.46 129261 6.04 ...
80.trc 32767 110000 122.60 114.56 1501 164989583 1501 2.20 129325 6.98 ...
72.trc 32767 220000 128.09 122.75 751 164989583 751 1.16 129739 5.08 ...
58.trc 32767 330000 130.91 123.74 501 164989583 501 0.80 129826 7.16 ...
46.trc 32767 440000 125.73 123.36 376 164989583 376 0.62 129918 2.45 ...
35.trc 32767 550000 125.61 124.05 301 164989583 301 0.50 129933 1.50 ...
22.trc 32767 660000 122.84 120.56 251 164989583 251 0.42 129913 2.60 ...
10.trc 32767 770000 121.12 118.89 216 164989583 216 0.37 130012 2.31 ...
80.trc 32767 880000 121.36 118.90 189 164989583 189 0.33 129941 2.48 ...
86.trc 32767 990000 122.22 119.46 168 164989583 168 0.30 130004 3.21 ...
73.trc 32767 1100000 121.98 116.93 151 164989583 151 0.27 129934 3.74 ...
... ... ... ... ... ... ... ... ... ... ... ...

(ix) Time, in seconds, for communicating all first messages in all batches;

(x) Number of not first messages in all batches;

(xi) Time, in seconds, for communicating all not first messages in all batches.

For an extensive study of the influence of the middleware parameters F and M, we develop
a shell program on Linux OS that executes and analyses continuously for different values of
middleware parameters F and M. The mains tasks of this program are shown in Figure 3.4.

3.2.3 Trade-off between performance and resource consumption

Unsurprisingly, an as it can be observed in our intensive experimentation (cf. 3.2.2), the cost of
shipping query results is very sensitive to the network and middleware settings. Poor configura-
tions of these two layers can increase significantly the communication cost.
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We discuss the trade-off between performance and resource consumption for extreme cases of
F and M:

• Large value of F minimizes the number of round − trips (which minimizes the communi-
cation time in a network having a sufficiently large bandwidth), but increases the memory
footprint (since all messages of a same batch need to be stored before processing them),
and also increases the waiting time in Client node (since it is blocked while waiting for the
entire batch);

• Small value of F does not consume large resources (and also avoids potential out-of-memory
errors), but has the disadvantage of a large number of round− trips (which increases the
communication time);

• Large value of M gives empirically good results, particularly when it is combined with a
large F because this implies multiple messages in a batch that are communicated in pipeline,
which reduces the communication time, but at the price of increasing memory footprint in
both nodes and increasing network usage;

• Small value of M does not consume large resources and usually yields a pipelining implying
good communication times, but sometimes implies an overhead due to splitting batches in
a large number of messages in DBMS node and reconstructing the batches in Client node.
Our experiments confirm the intuitions outlined in this paragraph.

3.2.4 Empirical analysis
The goal of this section is to emphasize the impact of the middleware parameters F and M on
the time of communicating a query result from DBMS node and client node. In particular, we
show that:

• Two different middleware configurations can yield very different communication times;

• For a fixed network configuration, each query has a different best combination of F and M
(i.e., the best middleware configuration is query-dependent);

• For a fixed query, each network configuration has a different best combination of F and M
(i.e., the best middleware configuration is network-dependent);

• There is no current strategy of middleware tuning that allows to find the best parameters.

We next detail all these points.

Impact of the middleware configuration
To emphasize the impact of the middleware configuration on the communication time of a query
result, we report in Figure 3.5 the best and worst communication times among 629 combinations
of F and M parameters, six queries, and two networks (cf. Section 3.2.2). The difference between
the best and the worst configuration is particularly visible for the queries having a large result.
For example, for the queries Q1, Q2, and Q3 that return the largest results, the difference is
of two orders of magnitude in the high-bandwidth network and an order of magnitude in the
low-bandwidth network. Moreover, we observe in Figure 3.6 that for the first five queries the
communication times for the different combinations of F and M are not clustered neither around
the best case nor around the worst case, but are rather spread over the entire space between
them.
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Figure 3.5: Best and worst communication times in (H)igh and (L)ow bandwidth networks for
six queries (cf. Section 3.3).
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Figure 3.6: Repartition of communication times for all configurations (F and M) and for six
queries (cf. Section 3.3).

Query-dependency

We present in Figure 3.7 the resources consumed by the best and worst cases from Figures 3.5, 3.6.
In particular, we observe that all queries have pairwise distinct combinations of F and M that
yield the best communication time. This observation holds for both network configurations. For
example, if we look at Q3 and Q5 in the high-bandwidth network, we notice that both best cases
use M=32KB, but the query Q3 that has a much larger result also needs a larger F to obtain its
best time (it needs F=880K tuples compared to Q5 that needs F=330K tuples).

Network-dependency

In the same Figure 3.7, we observe that, for the first five queries, the two network configurations
have different combinations of F and M values that give the best result. For example, for Q3 we
observe that the low-bandwidth network requires a much smaller F (880K vs 22K tuples) due to
the network latency.
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High-bandwidth network Low-bandwidth network
Best case Worst case Best case Worst case
F M F M F M F M

Q1 110K 32 110 22 22K 32 4.4K 2
Q2 550K 32 110 8 7.7K 32 33K 4
Q3 880K 32 110 10 22K 24 110 4
Q4 66K 32 110 32 1.1K 30 66K 2
Q5 330K 32 110 6 3.3K 22 110 10
Q6 110 1.5 110 1.5 110 1.5 110 1.5

Figure 3.7: Resources consumed by the bars in Figure 3.5.

Limitations of current strategies
As already mentioned in this chapter, to the best of our knowledge, the database research com-
munity does not have well-established strategies for middleware tuning. However, the documen-
tation of the state-of-the-art DBMS e.g., [7, 40] puts forward some recommendations. We next
point out that none of these recommended strategies is able to capture the aforementioned query-
and network-dependency in order to find optimal values for the middleware parameters F and
M.

In this experiment, we zoom on queries Q3 and Q5 (that have different query result sizes), and
we report the communication times for four scenarios, obtained by crossing the two queries with
the two considered network configurations (high- and low-bandwidth). We discuss the following
five strategies, introduced in Section 3.1.4, for setting the values of middleware parameters F and
M.

(i) Leave default values set by the middleware of our DBMS (in our case F=15 tuples and
M=8KB).

(ii) Set M to maximum value (32KB) and leave F as default.

(iii) Set F to maximum value and leave M as default.

(iv) Set both parameters to maximum values.

(v) Set M to maximum value and set F such that all tuples in a batch fit in a single message.

In our case, we have for both queries Q3 and Q5 the same F=1.1M tuples in (iii) and (iv), and
the same F=1.1K tuples for (v) because the two queries have similar tuple sizes (cf. Figure 3.3).
The five aforementioned strategies correspond, in order, to the first five bars of each plot from
Figure 3.8. The default M (used in the strategies depicted in the first and third bar of each plot)
is set such that a middleware message of M bytes fits in one network packet (whose size is limited
by the MTU, which is set to 8.95KB in our system as mentioned in Section 3.2.2). Such a default
choice is suggested as being ”optimal” by a state-of-the-art DBMS [7] to avoid the overhead due
to splitting the middleware messages into network packets.

We observe that:

• There is no strategy that imposes itself as the best choice in all scenarios.
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• The best combination of F and M as found after an exhaustive search over 629 combinations
(i.e., the sixth bar of each plot) is always better than the best competing strategy.

• For each scenario, the worst performance is obtained by the strategies using a default
(small) F value because this implies a very large number of round−trips (cf. Section 3.2.1);
this suggests that the commercial DBMS that we use has chosen such a default F in order
to sacrifice the performance in the favor of less resource consumption (and to avoid out-of-
memory errors).

• For the high-bandwidth network, the combination of the parameters F and M that yields
the best communication time consumes less resources than the best competing strategy for
Q3 and Q5.

• Setting the middleware message M such that it fits in one network packet never gives
the best communication time (this last point is in fact noticeable in Figure 3.7 for all
combinations of queries and networks).

Limitations of classical communication cost models
As mentioned in Section 2.2, state-of-the-art cost models in distributed data management area
are based on per-byte cost and per-message cost components to estimate the communication
cost [14, 29, 36]. Recall that intuitively, the per-message cost encodes the time needed to con-
struct a message before actually communicating it over the network, whereas the per-byte cost
encodes the time needed to actually communicate the bytes of a given message over the net-
work. Our experiments show that such models are not precise enough to accurately estimate
the communication time. We stress in Example 3.1 the limitation of this cost model for tuning
middleware parameters F and M.

Example 3.1. We zoom on query Q3 and we report in Figure 3.9(a) the communication times
and in Figure 3.9(b) the number of communicated messages for four middleware configurations,
namely F=1.1K, 2.2K, 3.3K and 4.4K tuples, with M=32KB. Figure 3.9(b) depicts the total
number of messages with black bar, the total number of 1st messages in batches with slash bar,
and the total number of non first messages (i>1) in batches with backslash bar.

Observe that the four configurations transfer the same amount of data (4.5GB corresponding
the result size of Q3) using the same number of messages (150K messages as shown by the black
bar of Figure 3.9(b)). In this case, classical per-message and per-byte cost models [14, 29, 36]
tend to derive the same communication cost for the four configurations which is contradicted
by the measures reported at Figure 3.9(a). The reason behind this discrepancy comes from the
fact that existing cost models do not take into account the round-trip effect while, as it can
be observed at Figure 3.9(b), the communication time is tightly correlated to the number of
1st messages communicated in all batches (which corresponds to the number of round-trips). �
♦

Network overhead
Recall that the middleware messages of M bytes are further split into network packets by a
low-level network protocol such as TCP/IP [39]. The documentation of some state-of-the-art
DBMS [6, 7] puts forward a recommendation that suggests using a middleware message of M
bytes that fits in a network packet. The goal of such an approach is to reduce the overhead due to
the fragmentation of a middleware message in several network packets. However, our experiments
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show that such a recommendation never gives the best communication time in practice, which
suggests that the number of round-trips (that is equivalent to the number of first messages) has
the most dominant impact on the communication time. In the experiment that we present in
Example 3.2, we analyze the impact of the number of round-trips and the pipeline communication
of middleware messages of M bytes, and the effect of network overhead due to fragmentation of
M into network packets. Recall that the maximum size of a network packet that can be sent over
a network is limited by the MTU parameter (whose size is limited to 8.95KB in our network).

Example 3.2. Take query Q3 in the high-bandwidth network, using ten configurations obtained
by crossing values of F (1.1K and 110K tuples), and M (2, 4, 8, 16, and 32KB). We report the
communication times in Figure 3.10(a), the number of communicated messages for F=1.1K in
Figure 3.10(b) and for F=110K tuples in Figure 3.10(c). Moreover, Figure 3.10(d) and Fig-
ure 3.10(e) present the number of fragmentation operations of middleware messages of M bytes
into network packets, which is defined as d M

MTUe − 1.
In this example, we make two important points: (i) the effect of the fragmentation of mid-

dleware messages of M bytes into network packets, and (ii) the subtle interaction between the
values of the middleware parameters F and M.

Effect of fragmenting M into network packets. We show below that the overhead due to the
fragmentation of middleware messages into network packets is not a dominant cost.

• In configurations using F=110K tuples, the best communication time is obtained with
M=32KB, as depicted in Figure 3.10(a). Note that this case (F=110K tuples and M=32KB)
presents a maximum network fragmentation operations (see Figure 3.10(e)).

• In configurations using F=1.1K tuples, the best communication time is obtained with
M=2KB, as depicted in Figure 3.10(a). The documentation of some state-of-the-art
DBMS [6, 7] recommends setting the middleware message size M such that it fits in a
single network packet. Such documentation claims that this approach is optimal because
setting M 6 MTU avoids the overhead due to splitting the middleware messages into net-
work packets. However, we observe that such a recommendation does not fully capture
the practical behavior. More precisely, we consider three values of M i.e., 2, 4, 8KB that
are smaller than the MTU. In all three cases, although there is no cost associated to the
fragmentation of M into network packets (cf. Figure 3.10(d)), the overall communication
time varies from 64.98 seconds (for M=2KB) to 78.87 seconds (for M=8KB).

Subtle interaction between the values of F and M. Observe that there is a subtle interaction
between the values of F and M. For example, with F=110K tuples, the best communication
time is obtained using M=32KB, which is rather natural: we consume maximum resources of
F and M, and we observe low communication time. On the other hand, for F=1.1K, the best
communication time is obtained with M=2KB, which may appear unnatural because we use
small message size, which increases the total number of messages. The rational behind such a
behavior is that when smaller messages are sent through network of a large enough bandwidth,
the data can be communicated in pipeline (i.e., several messages can be at the same time in
the pipeline between DBMS node and client node) and, in addition, the cost of transferring the
first message is cheaper when M is small. Recall that we detailed the pipeline phenomenon in
Section 3.1.2. � ♦

Conclusions of experimental study and research problem statement. The experiments
detailed in this section show that there is no single combination of F and M that is optimal
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for all the considered queries and networks (even when large resources are consumed). This
motivates our work on the following research problem: given a query result size and a network
environment, what is the best trade-off between the middleware parameters F and M in order to
minimize the communication time of transferring the query result over the network? We present
our techniques to solve this problem in the following chapters.

3.3 Discussion

At the end of this chapter, we stress that:

• Tuning the middleware parameters F and M is non trivial problem because the optimal
values of the parameters are query-dependent (that may vary in terms of selectivity) and
network-dependent (that may vary in terms of bandwidth).

• The classical communication cost models (based on per-byte and per-message cost com-
ponents) can not estimate accurately the time for communicating query results between
distributed computation nodes. This is because they do not capture the practical behavior
of communicating query results over the network. Precisely, they do not take into account
the round-trip and pipeline communication effects.

• To the best of our knowledge, no existing DBMS is able to automatically tune the mid-
dleware parameters F and M, nor is able to adapt to different queries (that may vary in
terms of selectivity) and network environments (that may vary in terms of bandwidth). It
is currently the task of the database administrators and programmers to manually tune
the middleware to improve the system performance.

• The database research community does not have well-established strategies for middle-
ware tuning. However, existing technical documentations e.g., [7, 40] put forward some
recommendations, none of which being query- and network-dependent. Our intensive ex-
perimental study shows that these strategies do not usually yield the best communication
time in practice, even when they consume large resources.

We present next our solution that is based on MIND framework, which allows to find the good
values of middleware parameters F and M that minimize the communication time for a given
query and network environment.
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(c) Q5 in high-bandwidth network configuration.
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Figure 3.8: Communication times in different strategies for Q3 and Q5 in high- and low-
bandwidth networks.
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Figure 3.9: Zoom on Q3 and four configurations to show the influence of first and non first
messages (i>1).
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(d) Number of fragmentation operations on M to
produce a network packet of MTU size (8.95KB)
for F=1.1K tuples.
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duce a network packet of MTU size (8.95KB) for
F=110K tuples.

Figure 3.10: Zoom on Q3 using ten configurations introduced in Example 3.2.
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Chapter 4
MIND framework

We propose the MIND framework, which tunes the middleware parameters F and M, in order
to minimize the communication time, while adapting to different queries and networks. The
key ingredients of MIND are a communication time estimation function that we present in this
chapter and an iterative optimization algorithm, proposed in Chapter 5.

More precisely, in this chapter we present the intuition behind the estimation function of
the MIND framework (Section 4.1) and the model used to estimate the communication cost
(Section 4.2). And the parameter calibration algorithm (Section 4.3). We analyse the accuracy
of the proposed estimation function (Section 4.4). And demonstrate the sensitivity of calibrated
parameters to network environment (in Section 4.5).

4.1 Intuition

Before entering into the detail of the proposed communication cost model, we stress the fact
that in our query workload the communication time is dominant as shown in Figure 4.1. This
is due to the fact that we focus our study on optimizing the communication cost and we do not
consider the additional costs related to local processing and I/O operations.

Communication time
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Figure 4.1: Elapsed versus communication times using Q3 in high-bandwidth network.

35



4. MIND framework

Client DBMS

me
ssa
ge

1

me
ssa
ge

2

...

me
ssa
ge
n–
1

me
ssa
ge
n

︸
︷︷

︸

{

{

Time for
communicating

message 1

Time for
communicating
a message i > 1

Figure 4.2: Pipeline communication of a batch of n messages between DBMS and Client nodes.

We recall two crucial observations, presented in Section 3.1.2, that allow us to develop an
effective cost model for estimating the communication time:

• The batches are communicated synchronously over the network, whereas the messages in
a batch (assuming that a batch has more than a message) are communicated in pipeline,
hence it is possible to exploit the pipelining for minimizing the communication time, and

• Due to network latency and pipelining, it is more expensive to communicate the first
message in a batch compared to a message that is not the first in its batch.

We next detail the first observation that we have already introduced in Section 3.2.1. On
the one hand, when DBMS node sends a batch of F tuples to client node (cf. Figure 3.2), the
communication is done synchronously i.e., client node needs to wait to receive the whole batch
before it can start processing the batch and request the next batch. On the other hand, the
messages of M bytes are sent in pipeline from DBMS node to client node i.e., DBMS node can
send messages over the network without waiting for ack signals from client node. More precisely,
messages are sequentially sent over the network once the buffer is filled by the middleware, which
means that several messages of a same batch can be pipelined in the network at a specific moment.
Figure 3.2 presents an illustration of a pipeline communication of a batch. In Figure 4.2, we
zoom on pipeline communication of n messages between DBMS node and client node.

As for the second observation, we argue that it is more expensive to communicate the first
message of a batch compared to the time needed to communicate any other message.

We illustrate via Example 4.1 that the described intuition effectively matches the practical
behaviour. To the best of our knowledge, there are no related works in the literature that exploit
such observations to optimize the communication time.

Example 4.1. Take query Q3 (cf. Figure 3.3; recall that it has a result set of ∼4.5GB). In
the high-bandwidth network, the average time consumed by a first message is of 10−3 seconds,
whereas the average time consumed by a non first messages (messages i > 1 in Figure 4.2)
is of 3 × 10−5 seconds. The aforementioned numbers were obtained as an average for all 629
configurations of F and M (cf. Section 3.2.2).

Moreover, we report in Figure 4.3(a) and Figure 4.3(b) the total time of all first messages and
the total time of all non first messages, respectively, for the same query Q3 in the high-bandwidth
network. Notice that:
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Figure 4.3: Time for communicating first messages vs not first messages in its batch using Q3 in
high-bandwidth network.

• The time of all first messages can go up to a thousand seconds (Figure 4.3(a)), whereas for
all non first messages the time can go up to only tens of seconds 4.3(b), and

• The time of all first messages reach the highest values for small F (because this implies a
large number of round− trips i.e., a large number of batches, hence a large number of first
messages, which are more expensive)

We observe that the aforementioned behaviour occurs in practice for all queries and both
network configurations, although it is more visible for the queries Q1 to Q5 (which return larger
results). � ♦

As a consequence of this observation, the number of round − trips (first messages) has an
important impact on the communication time. As shown in the example 3.1.
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Figure 4.4: Consumed times for communicating a batch of F tuples in messages of M bytes from
DBMS node to client node.

4.2 Communication cost model

In this section, before introducing MIND’s function for estimating the communication time for a
query result, we zoom on the intuition outlined in Section 4.1 and we enumerate in Figure 4.4
the communication steps and times needed for communicating a batch of F in messages of M
bytes, which are:

• Step 1©: time needed to initiate a request of batch of F tuples from client node to DBMS
node.

• Step 2©: time needed to initiate a message of M bytes by DBMS node.

• Step 3©: time needed for communicating a message of M bytes over the network from
DBMS node to client node.

• Step 4©: time needed from receiving first message of M bytes in its batch by client node.

• Step 5©: time needed from receiving not first message of M bytes in its batch by client
node.

Relying on the Figure 4.4, MIND’s function for estimating the communication time for a
query result treats a communicated messages differently depending on whether or not it is the
first in its batch since we want to exploit the pipelining. More precisely, given a query Q, we
estimate the time C to communicate its result Ans(Q) from DBMS node to client node with the
formula:

CV,α,β(FB ,M) = α×
⌈
V

FB

⌉
+ β ×

⌈
V

FB

⌉
×
(⌈

FB
M

⌉
− 1
)

where:

• FB is the size in bytes of a batch i.e., the result of multiplying the number F of tuples in a
batch and the size in bytes of a tuple in Ans(Q);

• V is the size in bytes of the query result i.e., the result of multiplying the number of tuples
in Ans(Q) and the size in bytes of a tuple in Ans(Q);
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• The parameters α and β capture the characteristics of the network environment between
the two nodes: α captures the time of communicating the first message of each batch (it
is the 4© which equal to the sum of of consumed times in steps 1©, 2© and 3©), whereas β
captures the time of communicating a message that is not the first in its batch (it is the
time consumed in step 5©);

• The coefficient of α i.e.,
⌈
V/FB

⌉
gives the total number of first messages: Ans(Q) has

V bytes, which are communicated in batches of FB bytes, consequently there are at all
dV/FBe batches, hence dV/FBe first messages. As mentioned in Section 3.2.1, the number
dV/FBe is known as the number of round-trips in the literature [40];

• The coefficient of β i.e.,
⌈
V/FB

⌉
×(
⌈
FB/M

⌉
–1) gives the total number of messages that are

not the first in their batch: dFB/Me is the number of messages in a batch, hence dFB/Me–1
is the number of messages in a batch except the first one, and by multiplying it with the
total number of batches dV/FBe, we obtain the total number of messages that are not the
first in their batch.

Our formula for estimating the communication time is query-dependent (via the parameter V )
and network-dependent (via the parameters α and β). In Section 4.3, we show how to calibrate
α and β for a given network, whereas in Chapter 5 we develop an optimization algorithm that
finds the values of F and M that allow to minimize C.

We end this section with two observations on the presentation of our formula CV,α,β(FB ,M):

• We omit the indices V, α, β when these parameters are clear from the context because the
optimization is done for a query result and a network environment (hence these parameters
do not change during the optimization), whereas we write FB and M as function input
variables because their values change throughout the iterations.

• We used FB (the size in bytes of a batch) instead of F (the number of tuples in a batch) in the
definition of C because this facilitates the presentation of the linear regression calibration
algorithm (where both batch and message size are measured in bytes), which then also
plays a role in the optimization algorithm.

4.3 Parameters calibration

As introduced in Section 4.2, α and β measure the time needed to communicate a message that
is either the first or not the first in its batch, respectively. The parameter calibration introduced
in MIND is in the spirit of the recent line of research on calibrating cost model parameters (for
centralized DBMS) to take into account the specificities of the environment [18].

The calibration of α and β is the fundamental pre-processing step of the MIND framework,
which allows to capture the network environment as part of the communication time estimation.
Precisely, we capture the costs of first message in its batch via α and not first message in its
batch via β. The general idea of our calibration algorithm is to iterate over a set of queries and
different combinations of the two considered middleware parameters, and successively send over
the network a query result according to a combination of parameters. Then, we leverage the
observed communication times to estimate α and β.

In our calibration, we use the size of a batch in bytes (FB) rather than the number of tuples
in a batch (F) as a normalization of the batch size of all queries used for calibration. Indeed,
different queries may have different result tuple size, hence knowing only the number of tuples in

39



4. MIND framework

Real

LR estimation

AVG estimation

1.52468101214161820222426283032 M (KB)

0.11K

1.1K

11K

110K

1.1M

F (# of tuples)

1K

2K

0

T
im

e 
(s

ec
on

ds
)

Figure 4.5: Comparison of LR versus AVG estimations using Q3 in high-bandwidth network.

a batch does not provide enough information about the actual size in bytes that is communicated
over the network in a batch.

A naive way to estimate α and β would be to represent them as constant real values that
capture the averages of the observed communication times i.e., let α be the average time needed
to communicate a message that is the first in its batch and let β be the average time needed to
communicate a message that is not the first in its batch. However, such an approach does not
capture the natural relationship between FB , M and the communication time, as we illustrate in
Example 4.2.

Example 4.2. Take the query Q3 and the 629 combinations of F and M values (cf. Section 3.2.2).
We plot in Figures 4.6 and 4.7 the times observed for the messages that are the first and not
the first in their batch, respectively. The natural dependency between them is a “plane” (i.e., a
linear function of FB and M), whereas the plane given by choosing the calibration parameter α
as an average value clearly does not capture this natural dependency. Also, Figure 4.5 shows a
difference between average estimation and linear function estimation, where the last one provides
an estimations very closer to real communication times. � ♦

We observed in practice that the behaviour illustrated in Example 4.2 also holds for the other
low-bandwidth network, and for other queries. This suggests that the natural way to capture
the network environment via the parameters α and β is to define them as linear functions of FB
and M. Such a representation of α and β is very intuitive since the time of communicating a
message over the network obviously depends on the actual network environment, the size of the
message, and the size of the batch from which the message comes.

Next, we introduce the LR (linear regression) calibration algorithm (Algorithm 1), which
captures the linear dependency between FB and M by solving a linear regression based on the
observed times. We use a ternary relation result1 that stores three columns on each line: FB, M,
and the observed communication time for a message that is first for α and not first for β. Then,
we use a standard ordinary least squares (ols) regression to compute α as a function

α(FB,M) = a1 × FB + b1 ×M + c1
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Figure 4.6: Calibration of parameter α in high-bandwidth network.
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Figure 4.7: Calibration of parameter β in high-bandwidth network.
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that captures the time to communicate a message that is the first in its batch. We similarly
compute β as a function

β(FB,M) = a× FB + b×M + c

that captures the time to communicate a message that is not the first in its batch, by using a
similar data structure result to store the observed times.

Algorithm 1 LR (linear regression) algorithm for calibrating α and β. We use the index 1 when
we refer to a message that is the first in its batch and no index for all other messages.
Input: set Q of queries, set F of possible F values, setM of possible M values
Output: α, β (each of them as a function of FB and M)
let result1=∅, result=∅
for each (Q,F,M) ∈ Q× F ×M do

update1 (result1)
update (result)

return (ols(result1), ols(result))

Example 4.2 (continued). The linear function α(FB ,M) and β(FB ,M) result of applying a
linear regression on the observed points from Figures 4.6 and 4.7 are, respectively:

• α(FB ,M)= 2.02e−11×FB+1.17e−8×M + 4.5e−4, which captures precisely the plane entitled
“LR calibration” in Figure 4.6;

• β(FB ,M)=1.24e−14 × FB + 2.73e−10 × M + 4.35e−6, which captures precisely the plane
entitled ”LR calibration” in Figure 4.7.

�
At the end of this section, it is important to note that a new calibration phase is needed when
a network environment changes (that may vary in terms of bandwidth).

4.4 Accuracy of communication cost model

To emphasize the accuracy of the communication time estimation on top of the LR algorithm, we
present in Figure 4.8 the real and estimated communication times, for all queries (cf. Figure 3.3)
in high-bandwidth network (we report averages over the 629 combinations of F and M values
cf. Section 3.2.2), using query Q3 as calibration query. We observe that MIND achieves a very
accurate estimation for all six queries, although the majority of them differ from the calibration
query Q3 in terms of both tuple size and/or number of tuples in the query result.

Moreover, we empirically observed that the estimation has the desirable monotonicity prop-
erty i.e., when the estimated time for a combination of F and M values is smaller than for another
combination, then the real communication time for the first combination of F and M values is also
smaller than the second one. Such a property is useful because it implies that the combination of
values that minimizes the estimation function is also the one minimizing the real communication
time.

For instance, we depict in Figure 4.12 the real and estimated communication times for query
Q4 in the high-bandwidth network. Notice that query Q4 that we present in Figure 4.12 differs
from query Q3 that we used for calibration in terms of both tuple size and number of tuples
in the query result, which suggests the pertinence of our estimation method for middleware
optimization.
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Figure 4.8: Average real and estimated communication times for all 6 queries (cf. Figure 3.3) in
high-bandwidth network.
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Figure 4.9: Zoom on Q1 in high-bandwidth network.

We empirically observed similar monotonicity behaviours for all queries and network band-
widths.

4.5 Sensitivity of calibrated parameters to network environment

In this section, we show the sensitivity of calibrated parameters α and β on the network envi-
ronment characteristics. We experiment only the sensitivity on network bandwidth. We use the
network configurations (high and low bandwidth networks) introduced in Section 3.2.2.

We recall that in Section 3.2, we argue that the time for communicating a distributed query
result is network-dependency presented.

To show the sensitivity of calibrated parameters α and β, we zoom on the values of these pa-
rameters in both network configurations (high-bandwidth (10Gbps) and low-bandwidth (50Mbps)).
We report the values of α and β calibrated on the same query Q3 in Figure 4.15 for high-
bandwidth network and in Figure 4.16 for low-bandwidth network, respectively. We notice that:

• The calibration captures well the variation of network environment characteristics, in the
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Figure 4.10: Zoom on Q2 in high-bandwidth network.
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Figure 4.11: Zoom on Q3 in high-bandwidth network.
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Figure 4.12: Zoom on Q4 in high-bandwidth network.
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Figure 4.13: Zoom on Q5 in high-bandwidth network.
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Figure 4.14: Zoom on Q6 in high-bandwidth network.

sense that in high bandwidth the β values are negligible comparatively to the α values,
whereas in low-bandwidth, the β values are not negligible and have an important weight
as for the α values. This is because β captures a latency due to the low-bandwidth.

• The α values in high and low bandwidth networks shows a closer estimation time. This is
due to the fact that α captures the time for communicating the first message in its batch.
However, the first messages can avoid the network latency.

• The β calibration captures the variation of network environment characteristics, in the
sense that β captures the time for communicating messages that are not first in their
batches. Hence, large FB communicates an important number of messages in pipeline,
which can not be consumed easily and quickly in low-bandwidth network.
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(a) Time consumed for communicating first message in each batch in high bandwidth for Q3.
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(b) Time consumed for communicating next message that is not the first in its batch in high
bandwidth for Q3.

Figure 4.15: Sensitivity of calibrated parameters α and β in high-bandwidth networks using Q3
in calibration phase.
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(a) Time consumed for communicating first message in each batch in low bandwidth for Q3.
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(b) Time consumed for communicating next message that is not the first in its batch in low
bandwidth for Q3.

Figure 4.16: Sensitivity of calibrated parameters α and β in low-bandwidth networks using Q3
in calibration phase.
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Concretely, the linear functions α(FB ,M) and β(FB ,M) result of applying a linear regression
on the observed points from Figure 4.15 and Figure 4.16 in high- and low-bandwidth networks,
respectively, are:

• High-bandwidth network:

– α(FB ,M)= 2.02e−11×FB + 1.17e−8×M + 4.5e−4, which captures precisely the plane
entitled “LR calibration” in Figure 4.15(a). The variance of the values of a1, b1 and c1
are +/−5.32e−13 (2.63%), +/−4.6e−10 (3.93%) and +/−8.4e−6 (1.86%), respectively,
and

– β(FB ,M)=1.24e−14 × FB + 2.73e−10 × M + 4.35e−6, which captures precisely the
plane entitled ”LR calibration” in Figure 4.15(b). The variance of the values of a, b
and c are +/− 9.12e−14 (73.58%), +/− 8.06e−11 (2.94%) and +/− 1.53e−6 (3.53%),
respectively.

• Low-bandwidth network:

– α(FB ,M)= 1.94e−11×FB + 2.94e−8×M + 5.12e−4, which captures precisely the plane
entitled “LR calibration” in Figure 4.16(c). The variance of the values of a1, b1 and
c1 are +/− 7.787e−13 (4.00%), +/− 6.678e−10 (2.26%) and +/− 1.214e−5 (2.37%),
respectively, and

– β(FB ,M)=4.51e−11 × FB + 2.25e−8 × M + 1.29e−4, which captures precisely the
plane entitled ”LR calibration” in Figure 4.16(d). The variance of the values of a, b
and c are +/− 2.41e−12 (5.34%), +/− 2.11e−9 (9.39%) and +/− 4.05e−5 (31.28%),
respectively.

At the end of this section, it is important to note that the calibration of parameters α and
β preserves the network-dependency feature on the estimation of the communication time, at
the price of preprocessing phase to calibrate these parameters to a current network environment.
The network-dependency is visible via the parameter β in high- and low-bandwidth networks,
which presents a large difference between both network configurations.

We report in Figure 4.17, the estimated and real communications times for all queries (cf.
Figure 3.3) the averages communication times over 629 F and M values in both networks (high
and low-bandwidth). From this Figure, we notice that our communication cost model presents
a good adaptivity to network bandwidth variation (from high:10 Gbps to low:50 Mbps), in the
sense that the estimated communication times are closer to the real communication times, as
presented in this figure.
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(a) All 6 queries in high-bandwidth network.
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(b) All 6 queries in low-bandwidth network.

Figure 4.17: Real and estimated communication times, for all queries (cf. Figure 3.3) in high and
low-bandwidth networks.

4.6 Discussion

At the end of this chapter, we stress that:

• Our estimation function (communication cost model) simulates accurately the real com-
munication time, in the sense that it computes a good communication time estimation (cf.
Section 4.4).

• This cost model takes into account the pipeline costs, since it considers that the batches
of F tuples are communicated synchronously over the network, whereas the messages of M
bytes in a batch are communicated in pipeline. Recall that the classical communication
cost model (per-message and per-byte) can not provide a good estimation, because it does
not take into a account the pipeline effect(cf. Section 3.2).

• This cost model preserves the query-dependency and network-dependency.

– Query-dependency, in the sense that the coefficients of α and β, which are the num-
ber of first messages and other messages i>1 respectively, change according to the
query result and tuple sizes. Consequently, the estimated communication times (cf.
Section 4.4) change according to the given query.

– Network-dependency, since the calibrated parameters α and β are very sensitive to
the environment and capture the characteristics of the link between client and DBMS
nodes, such as presented in Section 4.5.

• The number of combinations that should be used in calibration phase is an important
element, in the sense that a large number of combinations of queries Q, F and M provide
a good calibration of parameters α and β but at the price of a large time.

Next we present an iterative optimization algorithm of the MIND framework that allows to find
a good middleware configuration (F and M) that minimizes the communication cost function and
provides a good trade-off of resource consumption (particularly memory space should be reserved
to FB).
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Chapter 5
An iterative middleware tuning approach

In this chapter, we present our optimization algorithm that takes as input query result needed
to be communicated from DBMS node to client node and effectively compute the values of the
middleware parameters F and M that minimize the communication time using the estimation
function described in Section 4.2. In Section 5.1, we introduce the optimization problem, in
Section 5.2, we develop our optimization algorithm that efficiently finds good values for the
middleware parameters, in Section 5.3, we evaluate MIND optimization algorithm, whereas in
Section 5.4, we present how MIND optimization algorithm stops iterations via threshold (∆).

5.1 Optimization problem

We consider the optimization problem as computing F and M that aim to minimize the com-
munication cost function C(FB ,M) (cf. Section 4.2). We formulate our optimization problem as
follows:

Input: Size of the query result (V ), the tuple size in query result (T ) and the network envi-
ronment characteristics captured via the parameters α and β obtained from the calibration
step.
Output: Parameters F and M that minimize the time for communicating the query result
over the network and consume less memory resources.

The values of F and M are integers that can span over the intervals of all possible values
[Fmin,Fmax] and [Mmin,Mmax], respectively. Notice that a brute-force algorithm would have
to loop over all combinations of possible values from the two sets and see which combination
minimizes the estimation of the communication time. It is easy to see that such an algorithm
would need to explore a very large number of combinations, as we illustrate via Example 5.1.

Example 5.1. Assuming a system whose memory can handle batches of up to 1.1M tuples (for
a tuple size of 27B), we obtain that [Fmin,Fmax] has 1.1M elements. Moreover, assuming that the
same system can handle messages of size between 512B and 32KB, we obtain that [Mmin,Mmax]
has more than 32K elements. Hence, there are more than 35 billions of distinct combinations of
F and M values. � ♦

Since it would be highly inefficient to naively explore all possible combinations, we developed
an optimization algorithm (detailed in Section 5.2) that efficiently explores the large search
space to quickly find the middleware parameters F and M that minimize the communication
time estimation.
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Figure 5.1: Illustration of consecutive iterations in Newton resolution.

5.2 Optimization approach

We present an optimization algorithm based on the Newton optimization, which is a popular
numerical optimization paradigm [32]. We have chosen to rely on such a paradigm because the
optimization is done iteratively, which allows to control the number of iterations. Figure 5.1
illustrates how iterations are done in Newton resolution. In particular, the algorithm that we
present in this section, the control is done via a threshold parameter measuring the gain in terms
of communication time between two consecutive iterations. This allows to stop the algorithm
when the gain is insignificant and comes at the price of large consumed resources, as illustrated in
Figure 5.1. Our approach translates in practice to a good trade-off between low communication
time and low resource consumption.

Recall that we introduced the communication time estimation function in Section 4.2 and the
calibration algorithm for network-dependent parameters α and β in Section 4.3. The function
that we optimize is (after replacing the calibration parameters in the estimation function):

C(FB ,M) =(a1 × FB + b1 ×M + c1)× V

FB +

(a× FB + b×M + c)× V

FB ×
(

FB
M − 1

)
.

We present the pseudo-code of the optimization algorithm in Algorithm 2, where we write x
and y as simplified notations for FB and M, respectively. The input consists of:

• Two parameters related to the query: the result size in bytes V (it is not visible later on
in the pseudo-code, but it is a necessary parameter of the estimation function C and its
derivatives) and the tuple size in bytes T (which is used at the end of the algorithm to
convert the batch size in bytes as computed by the algorithm in a batch size in number of
tuples, as usually used in a DBMS);
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• Six parameters related to the network environment (a1, b1, c1, a, b and c that capture the
coefficients of the linear functions that are result of the calibration, cf. Section 4.3);

• The maximum size FBmax of a batch in bytes, that we set as the maximum heap memory size
allowed by the middleware for a batch (hence we can compute Fmax as the largest number
of tuples that can fit in a batch that consumes the entire heap memory; we always assume
Fmin = 1 tuple);

• The minimum and maximum values for the message size allowed by system: Mmin and
Mmax, respectively;

• Threshold ∆ used to measure whether the gain of the time estimation between two con-
secutive iterations is small enough (insignificant) to stop the algorithm.

Our algorithm is iterative in the sense that it starts with initial (small) values of x and y,
and iterates to improve the estimation by updating the initial values. In particular, we configure
the initial x0 to contain a number of tuples that needs at least two messages of initial message
size y0=Mmin (to exploit the pipeline communication of messages). It is important to note that
Newton optimization does not impose a particular rule to define the initial configuration.

Algorithm 2 MIND optimization algorithm (x and y are simplified notations for FB and M,
respectively).
Input: V , T , a1 b1, c1, a, b, c, FBmax, Mmin, Mmax, ∆
Output: F and M minimizing C (cf. Section 4.2)
let y0 = Mmin
let x0 = 2× y0
let k = 0
while true do(

xk+1
yk+1

)
=
(
xk
yk

)
−
(
H(xk, yk)

)−1 ×
(
g1(xk, yk)
g2(xk, yk)

)
xk+1 = min(xk+1,FBmax)
yk+1 = min(yk+1,Mmax)
if C(xk, yk)− C(xk+1, yk+1) ≤ ∆ or

(xk+1 = FBmax and yk+1 = Mmax) then
return (bxk+1

T c, yk+1)
else

k := k + 1

For every loop, we update the values of the middleware parameters F and M as follows. We
rely on g1 and g2 that are the gradient functions of the Newton optimization i.e., the first-order
partial derivatives of the communication time estimation function C w.r.t. x and y, respectively:

g1(x, y) = ∂C(x, y)
∂x

,

g2(x, y) = ∂C(x, y)
∂y

.
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After applying standard differentiation rules, we obtain:

g1(x, y) = V × ((c− c1) + (b− b1)× y)
x2 + a× V

y
,

g2(x, y) = V × (b1 − b)
x

− V × (a× x+ c)
y2 .

We also rely on the Hessian matrix H i.e., a square matrix of second-order partial derivatives
of C. The four values of H are obtained by differentiating each of g1 and g2 w.r.t. x and y,
respectively.

H(x, y) =

∂g1(x,y)
∂x

∂g1(x,y)
∂y

∂g2(x,y)
∂x

∂g2(x,y)
∂y

 .

After applying standard differentiation rules, we obtain:

H(x, y) =

−2×V×((c−c1)+(b−b1)×y)
x3

V×(b−b1)
x2 − a×V

y2

V×(b−b1)
x2 − a×V

y2
2×V×(a×x+c)

y3

 .

We compute the new values xk+1 and yk+1 based on the current values xk and yk, the Hessian
matrix, and the gradient functions applied on xk and yk. If any of the new values surpasses the
corresponding maximum value FBmax and Mmax, respectively, we normalize it as the maximum
value. The algorithm stops when either

• The gain in terms of communication time estimation between two consecutive iterations is
below the threshold ∆ (this is the halt condition that occurred in all our experiments), or

• Both middleware parameters attain the maximum values (FBmax and Mmax). The algorithm
returns the last values of x (converted to number of tuples) and y.

The algorithm 2 works in practice because the gradient functions g1 and g2, and the Hessian
matrix H exist on the entire domain of the two input variables of the estimation function C (in
other words the function C is twice differentiable). This happens because in our framework, x
and y (that appear as denominators in g1, g2, and all four elements of H) can never be zero
(since the size in bytes of a batch x > 0 and the size in bytes of a message y > 0).

This algorithm allows us to quickly find (always in small fraction of a second) values of the
middleware parameters F and M for which the improvement in terms of communication time
estimation between two consecutive iterations is insignificant. In practice, this translates to a
good trade-off between low resource consumption and low communication time.

We end this section by noting that the proposed optimization algorithm can be easily in-
corporated inside the DBMS. Indeed, when a DBMS node is required to compute the result of
a specific query (e.g., as part of a distributed query plan), MIND can help the DBMS by com-
puting the best parameters F and M (based on the query and the network configuration; these
parameters are subsequently used when sending the query result over the network).
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5.3 Evaluation of MIND framework

In this section, we present an evaluation of the MIND framework as an end-to-end solution. In
particular, we point out the improvement that we obtain over the current strategies for mid-
dleware tuning (in terms of communication time and/or resource consumption), the query- and
network-adaptivity of MIND, and how the time estimation and the two middleware parameters F
and M change during the iterations. Moreover, recall that we have already shown an experiment
for the accuracy of the MIND estimation function in Section 4.4.

Throughout this section, we rely on the experimental setup introduced in Section 3.2.2 when
we motivated our study on the impact of the middleware configuration. In particular, we use
the same data (the astronomical dataset of ∼34GB), queries (six queries of diverse selectivity cf.
Figure 3.3), and network configurations (high- and low-bandwidth networks).

Middleware tuning strategies
We benchmark MIND against the same five strategies introduced in Section 3.2.4. In the re-
mainder of this section, by MIND we denote the combination of F and M returned by the MIND
optimization algorithm (cf. Figure 2), with [Mmin,Mmax]= [512B, 32KB], the maximum heap
memory size allowed by the middleware for a batch FBmax=30MB, the threshold ∆ set to a sec-
ond, and network parameters calibrated with the LR algorithm (with input the query Q3 and
the 629 combinations of F and M cf. Section 3.2.2).

We also recall the five strategies from Section 3.2.4, which correspond to recommendations
found in technical documentations for tuning the middleware parameters e.g., [6, 7, 40]:

(i) Default (default values set by the middleware of our DBMS),

(ii) Max M (set M to maximum value and leave F as default),

(iii) Max F (set F to maximum value i.e., all tuples in a batch consume the entire heap memory
allowed by the middleware for a batch, and leave M as default),

(iv) Max F/M (set both parameters to maximum values),

(v) F in Max M (set M to maximum value and set F such that all tuples in a batch fit in a
single message).

Comparison of middleware tuning strategies
We report in Figures 5.3, 5.4 and 5.2 the times and the resources needed to communicate over
the network the result of each query, using each strategy and each network i.e., high- and low-
bandwidth.

The only query for which all strategies yield the same communication time is Q6, which has
the smallest query result. Nonetheless, we observe that MIND consumes less resources to achieve
this communication time i.e., messages of only 0.5KB. Next, we make some important points
that hold for the first five queries, which have large results i.e., between ∼0.1GB and ∼32GB.

MIND gives particularly good results in the low-bandwidth network, where it is always the
best among all strategies. In the high-bandwidth network, the two strategies using maximum F
values (i.e., Max F and Max F/M) obtain slightly smaller communication times, but at the price
of consuming much larger resources (since they consume the entire heap memory allowed by the
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Default Max M Max F Max F/M F in Max M MIND
Common for both networks High-bandwidth Low-bandwidth

F M F M F M F M F M F M F M
Q1 15 8 15 32 110K 8 110K 32 150 32 110K 32 5K 32
Q2 15 8 15 32 550K 8 550K 32 550 32 88K 21 12K 32
Q3 15 8 15 32 1.1M 8 1.1M 32 1.1K 32 44K 22 24K 32
Q4 15 8 15 32 66K 8 66K 32 70 32 1K 6 2K 32
Q5 15 8 15 32 1.1M 8 1.1M 32 1.1K 32 1K 2 4K 31
Q6 15 8 15 32 55 8 55 32 55 32 36 0.5 36 0.5

Figure 5.2: Resources needed for each query by the strategies from Figures 5.3 and Figures 5.4
(F in tuples, M in KB).
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Figure 5.3: Communication times of sixmiddleware tuning strategies, in high bandwidth network.
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Figure 5.4: Communication times of six middleware tuning strategies, in low bandwidth network.

middleware for a batch). For example, for Q1, Max F and Max F/M use batches of 110K tuples,
whereas MIND needs batches of only 37K tuples to achieve a comparable communication time,
etc.

Moreover, the good communication times of the two strategies using maximum F values are
not confirmed in the low-bandwidth network since its latency precludes the pipelining of large
batches. We recall that MIND is always the best strategy in the low-bandwidth network, which
suggests another advantage of MIND that is the network-adaptivity. On the other hand, the
existing strategies use the same middleware configuration regardless the network environment.

We also point out that the strategies using small values of F (i.e., Default and Max M)
always give the worst communication times due to the overhead implied by a large number of
round− trips (first messages), confirming the discussion from Section 3.2.4

The limitations of the current strategies for middleware tuning that we have discussed in
this section are particularly interesting since all five competing strategies are recommended by
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Figure 5.5: Evolution of the values of F and M using Q1 throughout the iterations of the MIND
algorithm.

technical documentations e.g., [6, 7, 40]. On the other hand, the middleware tuning achieved
by MIND allows to find a good trade-off between a low communication time and low resource
consumption by middleware parameters F and M.

Query-adaptivity of MIND

We next point out that the values of F and M returned by MIND change from query to query (cf.
Figure 5.2). For both networks, all queries have pairwise distinct values for F and M. We recall
that MIND always yields the best communication time in the low-bandwidth network, whereas
in the high-bandwidth network it achieves comparable communication times to the strategies
Max F and Max F/M that consume larger resources.

None of the competing strategies is query-adaptive. Indeed, every such strategy always
assumes that the message size M is fixed for all queries, whereas the batch size F is fixed to the
default value (strategies Default and Max M), fixed such that a batch occupies the entire allowed
heap memory (strategies Max F and Max F/M), or fixed such that a batch occupies a maximum
message size (strategy F in Max M). In particular, the approach of fixing the batch size such
that it consumes the entire heap memory is not sustainable in practice (since all the memory is
reserved for a single query).

In Tables 5.1 and 5.2, we show how MIND optimization algorithm changes the values of
middleware parameters F and M over iterations. We focus on queries Q3 and Q5 that both
queries having the same tuple size but differ in query result size.
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Figure 5.6: Evolution of the values of F and M using Q2 throughout the iterations of the MIND
algorithm.

25x104

5x105

75x104

106

0
0 2 4 6 8 10 12 14 16 18 20 22 24

0

10

20

30

40

F
 (

tu
pl

es
)

M
(K

B
)

Iterations

High-bandwidth network

F (tuples)

M (KB)

gain <Δ=1

104

2x104

3x104

4x104

5x104

0
0 2 4 6 8 10 12 14 16 18 20 22 24

0

10

20

30

40

F
 (

tu
pl

es
)

M
(K

B
)

Iterations

Low-bandwidth network

F (tuples)

M (KB)

gain <Δ=1

Figure 5.7: Evolution of the values of F and M using Q3 throughout the iterations of the MIND
algorithm.
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Figure 5.8: Evolution of the values of F and M using Q4 throughout the iterations of the MIND
algorithm.
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Figure 5.9: Evolution of the values of F and M using Q5 throughout the iterations of the MIND
algorithm.
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Table 5.1: Consumed resources by F and M over MIND iterations, and gained time obtained
between iterations for query Q3 in high-bandwidth network (10Gbps).

It. FB F M C(Fk,Mk) C(Fk+1,Mk+1) C(Fk,Mk) − C(Fk+1,Mk+1)
0 1024 40 512 2 003.700
1 1 538 57 682 2 003.700 1 353.000 650.740
2 2 311 86 889 1 353.000 905.340 447.660
3 3 474 129 1 135 905.340 612.200 293.140
4 5 224 193 1 428 612.200 410.300 201.890
5 7 859 291 1 779 410.300 278.010 132.290
6 11 829 438 2 203 278.010 188.640 89.370
7 17 817 660 2 719 188.640 128.230 60.413
8 26 860 995 3 349 128.230 88.232 39.998
9 40 535 1 501 4 122 88.232 60.280 27.952
10 61 250 2 269 5 074 60.280 42.158 18.122
11 92 691 3 433 6 249 42.158 29.318 12.840
12 140 520 5 205 7 702 29.318 20.905 8.413
13 213 490 7 907 9 502 20.905 14.997 5.908
14 325 150 12 043 11 740 14.997 10.941 4.057
15 496 640 18 394 14 528 10.941 8.196 2.745
16 761 060 28 187 18 012 8.196 6.245 1.951
17 1 170 600 43 355 22382 6.245 4.878 1.367
18 1 807 900 66 958 27 883 4.878 3.899 0.979
19 2 804 500 103 870 32 767 3.899 3.219 0.680
20 4 385 300 162 420 32 767 3.219 2.745 0.474
21 6 937 100 256 930 32 767 2.745 2.446 0.299
22 11 033 000 408 630 32 767 2.446 2.254 0.191
23 17 536 000 649 460 32 767 2.254 2.151 0.104
24 27 583 000 1 021 600 32 767 2.151 2.088 0.063

Table 5.2: Consumed resources by F and M over MIND iterations, and gained time obtained
between iterations for query Q5 in high bandwidth network (10Gbps).

It. FB F M C(Fk,Mk) C(Fk+1,Mk+1) C(Fk,Mk) − C(Fk+1,Mk+1)
0 1 024 40 512 52.338
1 1 538 53 682 52.338 35.341 16.997
2 2 311 80 889 35.341 23.648 11.693
3 3 474 120 1 135 23.648 15.991 7.657
4 5 224 180 1 428 15.991 10.717 5.273
5 7 859 271 1 779 10.717 7.262 3.456
6 11 829 408 2 203 7.262 4.928 2.334
7 17 817 614 2 719 4.928 3.350 1.578
8 26 860 926 3 349 3.350 2.305 1.044
9 40 535 1 398 4 122 2.305 1.575 0.730
10 61 250 2 112 5 074 1.575 1.101 0.473
11 92 691 3 196 6 249 1.101 0.766 0.335
12 140 520 4 846 7 702 0.766 0.547 0.220
13 213 490 7 362 9 502 0.547 0.392 0.154
14 325 150 11 212 11 740 0.392 0.286 0.107
15 496 640 17 125 14 528 0.286 0.215 0.071
16 761 060 26 243 18 012 0.215 0.163 0.052
17 1 170 600 40 365 22 382 0.163 0.128 0.035
18 1 807 900 62 340 27 883 0.128 0.103 0.025
19 2 804 500 96 706 32 767 0.103 0.085 0.018
20 4 385 300 151 220 32 767 0.085 0.073 0.012
21 6 937 100 239 210 32 767 0.073 0.065 0.008
22 11 033 000 380 450 32 767 0.065 0.061 0.003
23 17 536 000 604 670 32 767 0.061 0.059 0.002
24 27 583 000 951 130 32 767 0.059 0.064 0.005
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Figure 5.10: Estimated time and corresponding gain computed with the MIND optimization
algorithm, for queries Q1 to Q5 in high-bandwidth network. We do not plot Q6, which always
needs only one iteration.

Network-adaptivity of MIND
To point out that MIND adapts to the network environment, we discuss how the values of F and
M returned by MIND change from a network to another (cf. Figure 5.2). As already pointed out,
none of the competing strategies adapts to the network environment.

For each of the first five queries, we observe that MIND returns values of F and M that differ
between the high- and the low-bandwidth networks. For instance, we observe that for the first
three queries (which have the largest results), MIND favors large values of F in the high-bandwidth
network (to exploit the pipelining of the messages from a large batch). The fact that the values
of F increase throughout the iterations (particularly fast for the high-bandwidth network) can be
noticed in Figures 5.5, 5.6, 5.7, 5.8 and 5.9. On the other hand, in the low-bandwidth network,
MIND tends to quickly attain the maximum M value during the first iterations to compensate the
choice of a smaller F compared to the high-bandwidth (this happens because the low-bandwidth
network has more latency, hence MIND avoids large batches).

In Tables 5.1 and 5.3 we show how MIND optimization algorithm changes the values of
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(b) Estimated time gain – low-bandwidth network.

Figure 5.11: Estimated time and corresponding gain computed with the MIND optimization
algorithm, for queries Q1 to Q5 in low-bandwidth network. We do not plot Q6, which always
needs only one iteration.

middleware parameters F and M over iterations for the same queryQ3 in high- and low-bandwidth
networks, respectively.

Impact of iterations in MIND
We present in Figure 5.10(a) the estimated communication time over MIND iterations and in
Figure 5.10(b) the corresponding gain between two consecutive iterations of the MIND optimiza-
tion algorithm for five queries (Q1-Q5, except Q6 which has a very small result set and the MIND
optimization algorithm converge in one iteration). The estimated gain between two consecutive
iterations is defined by the formula

C(FBk ,Mk)− C(FBk+1,Mk+1).

Also, we focus on queries Q3 and Q5 and we report in Tables 5.1 and 5.2 the successive
iterations done by MIND optimization algorithm.

We observe that with a threshold ∆ set to a second, the optimization algorithm always stops
after less than thirty iterations and the total time needed to compute these iterations is always
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Table 5.3: Consumed resources by F and M over MIND iterations, and gained time obtained
between iterations for query Q3 in low-bandwidth network (50Mbps).

It. F M C(Fk,Mk) C(Fk+1,Mk+1) C(Fk,Mk) − C(Fk+1,Mk+1)
0 40 512 3 068.2
1 60 766 2 929 1 993.05 935.95
2 90 1 143 1 993.13 1 369.1 624.03
3 136 1 704 1 369.1 952.96 416.1
4 206 2 532 952.96 675.43 277.53
5 311 3 745 675.43 490.24 185.19
6 473 5 507 490.24 366.54 123.7
7 721 8 034 366.54 283.75 82.784
8 1 107 11 600 283.75 228.17 55.586
9 1 710 16 542 228.17 190.64 37.528
10 2 659 23 261 190.64 165.1 25.539
11 4 159 32 234 165.1 147.54 17.563
12 6 539 32 767 147.54 137.32 10.221
13 10 310 32 767 137.32 131.22 6.098
14 16 124 32 767 131.22 127.98 3.24
15 24 487 32 767 127.98 126.82 1.16
16 34 505 32 767 126.82 127.05 0.235
17 41 324 32 767 127.05 127.61 0.555
18 40 523 32 767 127.61 127.53 0.075
19 40 940 32 767 127.53 127.57 0.039
20 40 735 32 767 127.57 127.55 0.019
21 40 839 32 767 127.55 127.56 0.01
22 40 787 32 767 127.56 127.56 0.005
23 40 813 32 767 127.56 127.56 0.002
24 40 800 32 767 127.56 127.56 0.001

less than a small fraction of a second. Next (in Section 5.4) we present an other alternative that
can be used to control the halt condition in MIND optimization algorithm.

To illustrate how the values of F and M change during the iterations, we zoom on queries
Q1-Q5 and show in Figures 5.5, 5.6, 5.7, 5.8 and 5.9 all intermediate values considered by the
algorithm. More detail on the values and iterations of each query is reported in Appendix C.

A first observation is that MIND converges faster in the low-bandwidth network. This happens
because, as already explained in the network-adaptivity paragraph, for such a network MIND
quickly arrives at the maximum value of M and then chooses a value of F that is enough to
obtain a gain below the threshold ∆. Moreover, we show in Figures 5.5, 5.6, 5.7, 5.8 and 5.9 the
values of F and M, for queries Q1, Q2, Q3, Q4 and Q5, respectively, that are considered by the
MIND’s optimization algorithm beyond the point where the gain is below ∆. For both networks,
we observe that the resource consumption continues to increase. Since this increasing resource
consumption implies only a small gain (quantified via comparison with threshold ∆), MIND
decides to stop the iterations, and returns the current values of the two middleware parameters
F and M.

5.4 Halt condition of the optimization algorithm

As introduced in previous section, MIND optimization algorithm is controlled via a threshold
parameter that measures the improvement (gain of time) between two consecutive iterations.
The halt condition could be improved by taking into account additional criteria. The general
problem can be viewed as a multi-criteria optimization problem, in the sense that two parameters
are worth to consider:
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• The estimated improvement in communication time.

• The cost of consumed resources which can be expressed in terms of the cost of memory
needed to store a batch of tuples (i.e., FB) or as a message of M bytes to communicate
data over the network.

In Example 5.2 we consider two approaches and we illustrate the practical behaviour of both
approaches (approach 1 and approach 2 ). For simplicity of presentation, we zoom only on the
consumed resource by middleware parameter F over MIND iterations.

• Approach 1 is exactly the algorithm defined in Section 5.2. Recall that the halt condition
in this algorithm consists of optimizing the gained communication time i.e., the MIND opti-
mization algorithm stops when the improvement given by C(FBk ,Mk)−C(FBk+1,Mk+1) ≤ ∆,
where ∆ is a given threshold (in seconds).

• Approach 2 is the same algorithm as defined in Section 5.2, except the halt condition.
Concretely, we replace the halt condition by

FBk+1 − FBk
C(FBk ,Mk)− C(FBk+1,Mk+1)

≥ ∆,

where ∆ is a given threshold (in KB/second). This halt condition focuses on the price
in bytes to pay for a gained second between two consecutive iterations i.e., the MIND
optimization algorithm stops when the price to pay for a gained second is greater than a
given threshold.

Example 5.2. Take queries Q3 (having a relative large query result of 4.5GB) and Q5 (hav-
ing a relative small query result of 0.1GB) (cf. Figure 3.3) in high-bandwidth network. We
report in Table 5.4 and Table 5.5 the obtained information over MIND iterations for Q3 and Q5,
respectively. In both tables, we report:

• Consumed FB in the iterations k and k + 1 in columns FBk and FBk+1, respectively.

• The difference of consumed FB between two consecutive iterations (k and k+ 1) in column
(FBk+1 − FBk ).

• Communication time improvement between two consecutive iterations in column Ck−Ck+1.
The formula is defined as

C(FBk ,Mk)− C(FBk+1,Mk+1)

.

• Cost in KB for a gained second between two consecutive iterations (k and k+1) in column
Cost (KB/Second). The formula is defined as

FBk+1 − FBk
C(FBk ,Mk)− C(FBk+1,Mk+1)

From these tables, we stress that:
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Table 5.4: Cost of consumed resource F versus gained time over MIND iterations using Q3 in
high bandwidth network (10Gbps).

It. FB
k (KB) FB

k+1 (KB) FB
k+1 - FB

k (KB) Ck − Ck+1 Cost (KB/Second)
1 1.00 1.50 0.50 650.740 0.0008
2 1.50 2.26 0.75 447.660 0.0017
3 2.26 3.39 1.14 293.140 0.0039
4 3.39 5.10 1.71 201.890 0.0085
5 5.10 7.67 2.57 132.290 0.0194
6 7.67 11.55 3.88 89.370 0.0434
7 11.55 17.40 5.85 60.413 0.0968
8 17.40 26.23 8.83 39.998 0.2208
9 26.23 39.58 13.35 27.952 0.4778
10 39.58 59.81 20.23 18.122 1.1163
11 59.81 90.52 30.70 12.840 2.3913
12 90.52 137.23 46.71 8.413 5.5518
13 137.23 208.49 71.26 5.908 12.0616
14 208.49 317.53 109.04 4.057 26.8804
15 317.53 485.00 167.47 2.745 61.0094
16 485.00 743.22 258.22 1.951 132.3540
17 743.22 1 143.16 399.94 1.367 292.6115
18 1 143.16 1 765.53 622.36 0.979 635.8756
19 1 765.53 2 738.77 973.24 0.680 1 431.9756
20 2 738.77 4 282.52 1 543.75 0.474 3 255.4829
21 4 282.52 6 774.51 2 491.99 0.299 8 327.1810
22 6 774.51 10 774.41 3 999.90 0.191 20 892.6735
23 10 774.41 17 125.00 6 350.59 0.104 61 210.4669
24 17 125.00 26 936.52 9 811.52 0.063 155 523.6964

• Using the Approach 1 with threshold parameter (∆1=1 second), the MIND optimization
algorithm stops at the iteration 17 with memory cost=292.61KB/second and memory con-
sumption FB=1 143.16KB. Whereas for query Q5, the MIND optimization algorithm
stops at the iteration 8 with memory cost=8.45KB/second and memory consumption
FB=26.23KB.

• For Approach 2, MIND provides a different values of F and M comparatively to Approach
1. For instance, for threshold (∆2=100KB/second), MIND stops at iteration 15 for query
Q3 (cf. Table 5.4), with memory consumption FB=485KB. Whereas it stops at iteration
11 for query Q5 (cf. Table 5.5), with memory consumption FB=90.52KB.

It is worth noting that both approaches can be combined, in the sense that MIND optimization
algorithm stops when the first halt condition (∆1 or ∆2) is satisfied.

� ♦

5.5 Discussion

At the end of his chapter, we stress that:

• Middleware parameters F and M belong to a large research space (as explained in Section 5.1
where a naive approach needs to enumerate more than 35 billions of distinct combinations
of F and M).

• MIND framework presents a good trade-off between communication time and consumed
resource comparatively to the five strategies recommended by commercial DBMSs.
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Table 5.5: Cost of the resource consumed versus gained time over iterations done by MIND
optimization algorithm using Q5 in high bandwidth network (10Gbps).

It. FB
k (KB) FB

k+1 (KB) FB
k+1 - FB

k (KB) Ck − Ck+1 Cost (KB/Second)
1 1.00 1.50 0.50 16.9970 0.030
2 1.50 2.26 0.75 11.6930 0.065
3 2.26 3.39 1.14 7.6569 0.148
4 3.39 5.10 1.71 5.2732 0.324
5 5.10 7.67 2.57 3.4556 0.745
6 7.67 11.55 3.88 2.3340 1.661
7 11.55 17.40 5.85 1.5784 3.705
8 17.40 26.23 8.83 1.0443 8.456
9 26.23 39.58 13.35 0.7304 18.284
10 39.58 59.81 20.23 0.4734 42.730
11 59.81 90.52 30.70 0.3351 91.618
12 90.52 137.23 46.71 0.2195 212.764
13 137.23 208.49 71.26 0.1543 461.976
14 208.49 317.53 109.04 0.1065 1023.493
15 317.53 485.00 167.47 0.0712 2353.406
16 485.00 743.22 258.22 0.0515 5013.740
17 743.22 1143.16 399.94 0.0350 11411.248
18 1143.16 1765.53 622.36 0.0253 24554.694
19 1765.53 2738.77 973.24 0.0177 54920.275
20 2738.77 4282.52 1543.75 0.0121 127151.800
21 4282.52 6774.51 2491.99 0.0083 300750.937
22 6774.51 10774.41 3999.90 0.0033 1218479.405
23 10774.41 17125.00 6350.59 0.0023 2708485.494
24 17125.00 26936.52 9811.52 0.0054 1819138.488

• Values of middleware parameters F and M provided by MIND are sensitive to query and
network environment, in the sense that they are query- and network-dependant parameters.

• MIND optimization algorithm converges quickly (in small fraction of a second) to the op-
timal region of middleware parameters F and M.

• Execution of MIND is controlled via a threshold parameter, which can be tuned to find
in order to find trade-off between the improvement in the communication time and the
consumed resources.

All these elements point out the effectiveness of MIND framework that aims to minimize the
time for communicating query result from DBMS node to client node with a rational consumption
of resource.
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Figure 5.12: MIND using threshold according to communication time improvement (∆=1 second
in our case) using Q3 and Q5 in high-bandwidth network.
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Figure 5.13: MIND using threshold according to memory cost (∆=100KB/second in our case)
using Q3 and Q5 in high-bandwidth network.
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Figure 5.14: MIND using threshold according to the improvement (∆1=1 second in our case) and
the memory cost (∆2=100KB/second in our case) in each improvement over iterations using Q3
and Q5 in high-bandwidth network.
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Chapter 6
Conclusions

In our research work, we have taken a complementary look to the problem of optimizing the
time for communicating query results in a distributed query processing, by focusing on how data
is communicated over the network. To achieve this goal, we have investigated the relationship
between the communication time and the middleware configuration. We have focused on two
middleware parameters that are manually tuned by database administrators or programmers:
the fetch size: F (i.e., the number of tuples that are communicated at once) and the message
size: M (i.e., the size of the buffer at the middleware level).

We first motivated our research by presenting an intensive experimental study that emphasizes
the impact of the middleware parameters F and M on the communication time. Also, we stress
that tuning the middleware parameters is a non-trivial problem because the optimal values are
query-dependent and network-dependent. Then, we designed MIND framework, which tunes the
aforementioned middleware parameters, while adapting to different queries (that may vary in
terms of selectivity) and networks (that may vary in terms of bandwidth). At the heart of the
MIND framework, there is a cost model that estimates accurately the communication time. This
cost model takes into account the middleware parameters F and M, together with the network
environment and the volume of data to transfer. The MIND framework includes a calibration
step that enables to tune the network dependent parameters. The cost model is exploited by an
optimization algorithm that allows to compute for a given query and a network environment the
F and M values while providing a good trade-off between optimized communication time and low
resource consumption.

Looking ahead to future work, there are many directions for further investigation. We plan,
in short term, to implement MIND framework inside a query optimizer in open-source DBMS.
This is due to the fact that DBMS is the right place where the relevant information are available,
in particular statistics and query plans.

Then, we project to refine the calibration process by investigating other approaches that
allow dynamic calibration of a network-dependant parameters α and β. The dynamic calibration
is important in the sense that (i) network-dependent parameters (α and β) are the core of the
accuracy of the estimation cost function and (ii) the workload may vary in time (e.g., the number
of concurrent queries may raise and the network characteristics may change).

Also, current MIND optimization algorithm uses a basic iterative optimization method namely
the Newton method, we plan to explore more sophisticated optimization techniques using sub-
gradient methods (e.g., Volume method [4]) which is more powerful for controlling the iterations
steps and halt conditions, in order to ensure that the function value is decreasing over iterations.
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6. Conclusions

In addition, such method can be more easily implemented than the Newton method because it
does not require calculation of the Hessian matrix and its inverse.

We also project in medium-term to explore how MIND framework can be used to built an
optimized query plan that minimizes the time for communicating query results between compu-
tation nodes. More precisely, our goal is to be able to optimize communication time between the
operators inside a distributed query plan (c.f. Figure 6.1). To achieve this goal, we need to be
capable to incorporate in our cost model the production and consumption rates of query plan
operators and design a more sophisticated optimization algorithm that is apt to handle such a
complex cost model.

./

R1

F1,M1

R2

F2,M2

./

R3

F3,M3F12,M12

Node1 Node2

Node3

Figure 6.1: Simplified distributed query plan.
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Appendix A
Resource consumption according to

middleware parameters

Figure A.1: Hard drive throughput of I/O operations in the execution of query Q3 in DBMS
node. One cycle (e.g., from 01:00 to 05:30) presents hard drive throughput of 37 configurations
of F in high-bandwidth network (cf. Section 3.2.2).

Figure A.2: Network traffic sent in the execution of query Q3 by DBMS node. One cycle (e.g.,
from 01:00 to 05:30) presents consumed network bandwidth for 37 configurations of F in high-
bandwidth network (cf. Section 3.2.2).
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A. Resource consumption according to middleware parameters

Figure A.3: CPU usage in the execution of query Q3 in DBMS node. One cycle (e.g., from 01:00
to 05:30) presents CPU consumption of 37 configurations of F in high-bandwidth network (cf.
Section 3.2.2).

Figure A.4: Hard drive throughput of I/O operations in the execution of query Q3 in client
node. This figure presents hard drive throughput different configurations of F in high-bandwidth
network (cf. Section 3.2.2).

78



A. Resource consumption according to middleware parameters

Figure A.5: Network traffic received by client node in the execution of query Q3. One cycle
(e.g., from 01:00 to 05:30) presents consumed network bandwidth for 37 configurations of F in
high-bandwidth network (cf. Section 3.2.2).

Figure A.6: CPU usage in the execution of query Q3 in client node. This figure presents CPU
consumption of different configurations of F in high-bandwidth network (cf. Section 3.2.2).
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Appendix B
Real and estimated communication times
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Table B.1: Real communication times using query Q1 in high-bandwidth network

F \ M 1.5Kb 2Kb 4Kb 6Kb 8Kb 10Kb 12Kb 14Kb 16Kb 18Kb 20Kb 22Kb 24Kb 26Kb 28Kb 30Kb 32Kb
110 833.15 809.72 911.23 963.11 1081.4 1231.5 1240.1 1336.7 1348.9 1470.9 1574.3 1667.2 1662.5 1643.3 1568.3 1641.3 1628.6
220 399.97 382.74 446.20 461.77 509.58 572.55 579.92 632.32 649.36 712.44 706.38 748.42 807.99 797.55 824.20 876.25 882.84
330 307.26 279.86 305.36 319.55 345.76 376.12 379.41 418.38 418.77 460.31 485.20 504.01 533.81 519.15 546.47 575.17 597.74
440 240.75 237.71 247.79 241.44 259.28 279.71 287.74 311.17 305.38 340.46 353.15 366.25 386.43 386.50 401.30 404.08 439.71
550 199.72 183.71 174.57 186.87 196.31 209.43 211.24 242.94 253.59 268.15 272.65 288.32 300.11 298.74 318.77 304.76 334.76
660 195.98 185.49 182.92 176.30 189.31 194.15 193.57 217.40 226.13 235.92 231.64 257.32 257.24 256.76 274.57 265.33 282.08
770 175.60 169.34 164.50 157.73 162.09 169.04 173.54 183.61 191.19 200.40 201.88 221.11 218.36 217.49 236.82 233.22 237.30
880 153.03 133.44 142.02 137.59 128.95 148.56 145.45 164.29 163.07 174.34 176.38 190.56 193.35 194.32 199.23 196.03 210.85
990 158.54 139.23 137.07 128.43 121.30 138.74 138.23 155.42 144.38 164.84 159.34 179.22 176.29 173.22 188.53 178.97 191.22
1 100 148.95 131.69 129.58 114.95 109.70 123.04 124.41 142.97 131.48 146.66 145.10 158.24 165.12 159.96 174.21 168.35 176.49
2 200 108.00 84.05 80.24 77.01 73.31 79.88 79.02 84.43 80.13 89.67 88.84 94.95 97.43 99.23 104.46 103.95 108.88
3 300 93.58 73.03 62.44 58.65 55.10 58.45 57.17 59.10 60.25 64.31 65.13 67.63 68.14 70.22 72.59 72.81 76.52
4 400 95.44 64.48 53.96 50.83 46.98 48.83 47.73 49.49 48.97 52.20 52.82 54.49 56.20 57.28 58.04 58.00 58.72
5 500 94.70 57.76 47.36 45.33 41.94 42.25 42.09 42.90 42.34 43.22 44.58 46.05 46.31 47.75 48.13 48.45 49.26
6 600 85.02 59.43 43.52 40.96 37.67 37.85 37.30 37.47 37.53 39.28 39.81 40.14 40.45 42.00 42.33 42.51 42.75
7 700 88.85 50.44 37.56 38.51 47.08 33.67 34.27 33.94 33.53 35.29 35.05 35.93 36.64 38.14 37.80 37.94 38.90
8 800 86.10 59.17 36.14 36.54 32.43 32.18 31.50 31.21 30.99 32.74 32.61 33.42 33.48 35.02 34.19 34.12 35.15
9 900 86.38 55.15 36.49 34.93 31.38 30.42 29.47 29.99 29.41 30.92 30.17 31.49 31.06 32.44 31.60 31.76 32.22
11x103 85.77 55.70 34.62 33.96 30.14 29.54 28.38 28.56 27.74 29.43 28.67 30.00 28.77 29.73 29.70 29.79 30.22
22x103 45.84 39.08 26.47 27.65 23.88 23.21 20.73 21.24 19.73 20.99 20.54 20.54 20.19 20.37 20.27 19.88 20.48
33x103 45.44 37.26 25.36 25.43 21.08 20.79 17.92 18.38 17.02 18.97 17.21 18.09 16.75 17.21 16.90 16.42 16.52
44x103 46.54 36.95 25.34 24.68 21.01 20.78 18.12 18.48 16.46 18.76 17.18 17.38 16.10 16.33 16.16 15.76 15.56
55x103 48.09 37.48 25.75 24.41 21.08 20.90 18.33 18.79 16.93 18.95 17.19 17.66 16.49 16.15 15.71 15.22 14.84
66x103 47.83 38.49 25.44 24.49 20.87 20.73 18.69 18.92 17.56 18.76 17.16 17.65 16.46 16.34 15.63 15.09 14.51
77x103 47.31 38.98 25.36 24.12 20.72 20.45 18.57 19.07 17.21 18.73 17.15 17.29 16.42 15.87 15.25 14.85 14.05
88x103 46.65 39.24 25.50 24.05 20.99 20.58 18.60 18.90 17.71 18.58 17.11 17.43 16.35 16.08 15.06 14.43 14.27
99x103 45.88 38.56 25.54 23.62 21.05 20.63 18.79 18.98 18.09 18.37 17.23 17.92 16.14 16.03 15.09 14.52 13.93
11x104 46.71 36.06 25.62 23.65 21.01 20.43 19.18 19.26 17.80 18.63 17.13 17.82 16.09 15.86 14.83 14.04 13.90
22x104 42.69 35.20 25.70 23.61 20.74 20.77 19.43 19.82 18.67 19.86 17.98 17.58 16.04 15.92 14.56 14.19 14.03
33x104 42.05 33.93 26.38 23.90 21.45 21.76 19.43 20.24 18.27 20.42 18.27 17.94 15.87 15.93 14.43 14.13 13.81
44x104 41.06 33.27 26.86 23.62 21.09 22.34 19.78 20.41 18.65 20.25 17.81 18.00 16.43 15.78 14.49 14.52 13.51
55x104 41.26 33.04 26.20 24.14 21.54 21.99 19.85 21.82 19.39 20.15 17.85 17.15 16.75 15.40 15.17 14.18 13.16
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Table B.2: Estimated communication times using query Q1 in high-bandwidth network

F \ M 1.5Kb 2Kb 4Kb 6Kb 8Kb 10Kb 12Kb 14Kb 16Kb 18Kb 20Kb 22Kb 24Kb 26Kb 28Kb 30Kb 32Kb
110 880.21 890.10 961.19 1045.9 1134.1 1223.7 1313.9 1404.6 1495.4 1586.5 1677.6 1768.9 1769.9 1769.9 1769.9 1769.9 1769.9
220 497.74 493.82 519.09 558.05 600.44 644.19 688.63 733.46 778.54 823.77 869.13 914.56 960.06 1005.6 1051.1 1096.8 1142.4
330 370.25 361.72 371.73 395.42 422.54 451.02 480.19 509.75 539.56 569.52 599.61 629.77 660.00 690.27 720.59 750.93 781.28
440 306.51 295.67 298.04 314.10 333.58 354.44 375.97 397.90 420.07 442.40 464.85 487.38 509.97 532.61 555.29 578.00 600.72
550 268.26 256.04 253.83 265.31 280.21 296.48 313.44 330.78 348.37 366.13 383.99 401.94 419.95 438.01 456.11 474.24 492.38
660 242.77 229.63 224.36 232.79 244.63 257.85 271.75 286.04 300.58 315.28 330.09 344.98 359.94 374.95 389.99 405.07 420.16
770 224.55 210.75 203.31 209.55 219.22 230.25 241.97 254.08 266.44 278.95 291.59 304.30 317.08 329.90 342.76 355.66 368.57
880 210.89 196.60 187.52 192.13 200.16 209.56 219.64 230.11 240.83 251.71 262.71 273.79 284.93 296.12 307.34 318.60 329.88
990 200.27 185.59 175.24 178.57 185.33 193.46 202.27 211.47 220.92 230.53 240.25 250.06 259.92 269.84 279.79 289.78 299.78
1 100 191.77 176.79 165.42 167.73 173.47 180.58 188.37 196.56 204.98 213.58 222.28 231.07 239.92 248.82 257.75 266.72 275.71
2 200 153.52 137.16 121.21 118.94 120.10 122.63 125.84 129.44 133.29 137.30 141.43 145.63 149.90 154.22 158.58 162.96 167.37
3 300 140.78 123.95 106.47 102.68 102.31 103.31 105.00 107.07 109.39 111.88 114.47 117.15 119.90 122.69 125.52 128.37 131.25
4 400 134.40 117.34 99.10 94.55 93.42 93.65 94.57 95.89 97.44 99.16 101.00 102.91 104.89 106.92 108.99 111.08 113.20
5 500 130.58 113.38 94.68 89.67 88.08 87.86 88.32 89.18 90.27 91.54 92.91 94.37 95.89 97.46 99.07 100.71 102.37
6 600 128.03 110.74 91.73 86.42 84.52 83.99 84.15 84.70 85.49 86.45 87.52 88.68 89.89 91.16 92.46 93.79 95.14
7 700 126.21 108.85 89.63 84.09 81.98 81.23 81.17 81.51 82.08 82.82 83.67 84.61 85.61 86.65 87.73 88.85 89.98
8 800 124.84 107.44 88.05 82.35 80.07 79.16 78.94 79.11 79.52 80.09 80.78 81.56 82.39 83.27 84.19 85.14 86.11
9 900 123.78 106.34 86.82 80.99 78.59 77.55 77.20 77.24 77.53 77.98 78.54 79.18 79.89 80.64 81.44 82.26 83.11
11x103 122.93 105.46 85.84 79.91 77.40 76.27 75.81 75.75 75.94 76.28 76.74 77.28 77.89 78.54 79.23 79.95 80.70
22x103 119.10 101.49 81.42 75.03 72.07 70.47 69.56 69.04 68.77 68.65 68.66 68.74 68.89 69.08 69.31 69.58 69.86
33x103 117.83 100.17 79.94 73.40 70.29 68.54 67.48 66.80 66.38 66.11 65.96 65.89 65.89 65.93 66.01 66.12 66.25
44x103 117.19 99.51 79.21 72.59 69.40 67.57 66.43 65.69 65.18 64.84 64.61 64.47 64.39 64.35 64.36 64.39 64.45
55x103 116.81 99.11 78.76 72.10 68.86 66.99 65.81 65.01 64.46 64.08 63.80 63.61 63.49 63.41 63.36 63.35 63.36
66x103 116.55 98.85 78.47 71.78 68.51 66.61 65.39 64.57 63.99 63.57 63.26 63.04 62.89 62.78 62.70 62.66 62.64
77x103 116.37 98.66 78.26 71.55 68.25 66.33 65.09 64.25 63.64 63.21 62.88 62.64 62.46 62.32 62.23 62.17 62.13
88x103 116.23 98.52 78.10 71.37 68.06 66.12 64.87 64.01 63.39 62.93 62.59 62.33 62.14 61.99 61.88 61.79 61.74
99x103 116.13 98.41 77.98 71.24 67.92 65.96 64.70 63.82 63.19 62.72 62.37 62.10 61.89 61.72 61.60 61.51 61.44
11x104 116.04 98.32 77.88 71.13 67.80 65.84 64.56 63.67 63.03 62.55 62.19 61.90 61.69 61.51 61.38 61.28 61.20
22x104 115.66 97.93 77.44 70.64 67.26 65.26 63.93 63.00 62.31 61.79 61.38 61.05 60.79 60.57 60.39 60.24 60.11
33x104 115.53 97.79 77.29 70.48 67.09 65.06 63.72 62.78 62.07 61.53 61.11 60.77 60.49 60.25 60.06 59.89 59.75
44x104 115.47 97.73 77.22 70.40 67.00 64.97 63.62 62.66 61.95 61.41 60.97 60.62 60.34 60.09 59.89 59.72 59.57
55x104 115.43 97.69 77.17 70.35 66.94 64.91 63.56 62.60 61.88 61.33 60.89 60.54 60.25 60.00 59.79 59.62 59.46
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Table B.3: Real communication times using query Q2 in high-bandwidth network

F \ M 1.5Kb 2Kb 4Kb 6Kb 8Kb 10Kb 12Kb 14Kb 16Kb 18Kb 20Kb 22Kb 24Kb 26Kb 28Kb 30Kb 32Kb
110 549.37 535.72 632.85 738.39 815.31 810.82 811.11 791.31 788.10 744.30 828.11 798.95 830.58 806.97 795.60 822.90 815.58
220 266.00 275.98 307.65 340.30 369.75 424.05 453.33 459.85 451.73 438.33 477.12 464.72 473.90 465.61 462.02 476.05 480.32
330 206.13 194.60 231.17 240.32 264.62 293.80 317.07 318.33 328.31 356.78 375.93 368.27 376.00 369.62 374.41 377.72 385.72
440 169.54 160.96 177.20 191.01 200.56 230.29 240.20 239.04 254.85 267.89 290.15 300.37 318.65 326.65 314.11 321.77 324.38
550 145.74 132.11 151.71 157.44 169.04 187.05 199.59 203.71 209.93 216.96 232.59 239.51 253.88 258.00 277.98 286.95 292.65
660 119.82 116.02 123.38 129.49 137.93 152.08 161.97 168.77 172.55 180.60 186.69 195.47 207.49 212.54 223.69 235.87 243.95
770 100.68 93.24 107.13 111.57 116.62 127.39 136.19 142.47 143.25 152.22 162.97 168.45 175.19 177.05 188.18 198.03 198.59
880 95.46 87.79 95.17 99.44 105.46 112.75 118.47 126.29 127.83 132.45 142.25 146.57 154.16 158.49 166.40 177.49 180.31
990 88.91 82.29 91.49 94.20 96.63 103.70 111.11 114.26 116.93 122.50 130.69 133.26 142.96 144.71 151.58 160.17 166.42
1 100 86.82 80.18 85.25 87.23 86.36 98.41 101.71 102.77 108.09 113.96 119.41 124.82 129.88 129.39 136.77 146.20 149.31
2 200 50.34 47.87 53.16 52.27 51.38 52.19 56.48 56.65 59.90 64.50 63.83 65.06 71.13 68.78 71.43 75.60 80.49
3 300 51.11 37.48 39.88 40.88 42.21 41.28 42.23 43.78 43.72 46.84 48.72 45.35 49.41 51.32 51.45 52.53 56.05
4 400 45.23 37.76 33.71 34.18 33.67 33.99 36.18 34.87 32.99 37.81 40.97 40.92 37.58 41.14 43.32 44.10 46.73
5 500 39.85 29.40 31.27 29.26 27.19 29.79 31.40 31.19 27.09 32.65 33.64 33.42 35.78 33.38 34.95 35.25 37.23
6 600 42.68 30.38 29.45 27.42 30.62 28.02 29.03 27.10 28.48 30.73 29.24 30.59 28.72 33.76 32.01 33.16 39.05
7 700 40.69 28.71 29.79 24.73 24.65 25.94 24.96 24.81 23.03 24.97 28.85 29.56 27.45 26.34 30.09 28.16 30.05
8 800 41.05 27.29 26.06 24.69 26.09 25.71 24.66 22.85 22.00 25.96 27.08 25.54 22.80 25.35 29.63 30.33 29.29
9 900 38.40 28.38 26.39 23.18 22.42 24.86 22.05 24.53 21.06 26.77 25.06 29.26 26.41 24.36 25.12 24.49 25.06
11x103 37.69 27.56 27.99 20.97 24.00 22.54 18.65 24.00 23.04 23.76 22.82 22.85 20.96 25.09 25.08 25.16 25.46
22x103 35.10 26.38 20.35 18.91 14.95 15.29 15.78 16.35 18.17 15.03 18.37 17.35 18.75 17.98 14.50 15.85 18.61
33x103 37.00 19.81 18.83 17.33 14.43 14.85 13.81 14.46 12.05 16.04 14.54 12.60 11.10 12.81 14.20 15.66 12.39
44x103 32.98 17.33 16.81 13.69 12.30 14.14 10.85 14.82 10.93 10.15 13.72 11.44 11.86 15.03 14.62 11.14 12.60
55x103 34.55 20.11 16.43 12.09 12.42 14.56 11.75 11.89 12.00 12.23 12.54 13.46 8.89 11.20 12.00 11.67 9.71
66x103 28.54 16.38 15.56 11.50 10.40 10.92 11.21 9.42 11.20 10.94 10.79 10.00 9.24 11.15 9.21 10.77 10.47
77x103 28.95 17.01 13.52 12.05 11.98 12.75 13.19 11.38 8.65 10.31 9.39 10.79 9.34 8.42 11.26 12.27 8.16
88x103 24.94 20.38 12.94 12.84 10.75 10.64 9.32 8.52 9.93 9.38 7.96 7.96 9.10 7.38 8.59 8.45 6.93
99x103 22.61 17.79 12.42 12.08 10.28 14.40 10.35 12.09 11.98 9.25 7.43 9.36 8.53 8.50 10.91 8.79 8.43
11x104 24.05 16.19 13.59 10.40 10.71 10.58 9.72 9.70 10.36 7.90 7.03 8.13 8.55 7.82 8.85 6.84 6.23
22x104 17.57 12.70 8.54 9.20 8.81 8.87 7.79 6.87 6.45 7.08 5.58 5.89 5.25 5.08 5.79 6.24 5.53
33x104 16.37 11.62 7.63 8.12 6.67 7.08 6.42 5.86 6.35 5.86 4.78 5.15 4.89 4.51 4.54 4.69 3.96
44x104 15.28 10.63 7.93 7.32 6.98 6.97 6.11 6.33 5.57 5.28 5.03 5.46 4.73 4.25 5.31 4.26 3.60
55x104 14.75 10.28 7.55 7.09 6.48 6.64 6.17 5.40 6.17 5.27 5.07 5.33 4.61 4.51 4.55 4.37 3.73
66x104 14.21 10.38 7.26 6.83 6.52 6.50 6.09 6.00 5.62 5.08 4.86 4.72 4.73 4.20 4.60 4.32 3.56
77x104 13.11 9.77 7.25 7.20 6.41 6.13 5.94 5.29 5.25 5.15 4.86 4.63 4.39 4.58 4.16 4.21 3.54
88x104 12.92 9.58 7.22 6.42 6.79 6.51 5.85 5.45 5.54 5.41 4.77 4.55 4.48 4.25 4.47 4.10 3.12
99x104 12.59 9.71 7.25 6.65 6.39 5.98 5.97 5.23 5.60 5.08 4.82 4.70 4.81 4.66 4.83 4.39 3.44
11x105 13.10 9.45 6.92 6.34 6.43 6.11 5.85 5.27 5.46 5.09 4.98 4.65 4.50 4.18 4.42 4.03 3.15
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Table B.4: Estimated communication times using query Q2 in high-bandwidth network

F \ M 1.5Kb 2Kb 4Kb 6Kb 8Kb 10Kb 12Kb 14Kb 16Kb 18Kb 20Kb 22Kb 24Kb 26Kb 28Kb 30Kb 32Kb
110 549.37 535.72 632.85 738.39 815.31 810.82 811.11 791.31 788.10 744.30 828.11 798.95 830.58 806.97 795.60 822.90 815.58
220 266.00 275.98 307.65 340.30 369.75 424.05 453.33 459.85 451.73 438.33 477.12 464.72 473.90 465.61 462.02 476.05 480.32
330 206.13 194.60 231.17 240.32 264.62 293.80 317.07 318.33 328.31 356.78 375.93 368.27 376.00 369.62 374.41 377.72 385.72
440 169.54 160.96 177.20 191.01 200.56 230.29 240.20 239.04 254.85 267.89 290.15 300.37 318.65 326.65 314.11 321.77 324.38
550 145.74 132.11 151.71 157.44 169.04 187.05 199.59 203.71 209.93 216.96 232.59 239.51 253.88 258.00 277.98 286.95 292.65
660 119.82 116.02 123.38 129.49 137.93 152.08 161.97 168.77 172.55 180.60 186.69 195.47 207.49 212.54 223.69 235.87 243.95
770 100.68 93.24 107.13 111.57 116.62 127.39 136.19 142.47 143.25 152.22 162.97 168.45 175.19 177.05 188.18 198.03 198.59
880 95.46 87.79 95.17 99.44 105.46 112.75 118.47 126.29 127.83 132.45 142.25 146.57 154.16 158.49 166.40 177.49 180.31
990 88.91 82.29 91.49 94.20 96.63 103.70 111.11 114.26 116.93 122.50 130.69 133.26 142.96 144.71 151.58 160.17 166.42
1 100 86.82 80.18 85.25 87.23 86.36 98.41 101.71 102.77 108.09 113.96 119.41 124.82 129.88 129.39 136.77 146.20 149.31
2 200 50.34 47.87 53.16 52.27 51.38 52.19 56.48 56.65 59.90 64.50 63.83 65.06 71.13 68.78 71.43 75.60 80.49
3 300 51.11 37.48 39.88 40.88 42.21 41.28 42.23 43.78 43.72 46.84 48.72 45.35 49.41 51.32 51.45 52.53 56.05
4 400 45.23 37.76 33.71 34.18 33.67 33.99 36.18 34.87 32.99 37.81 40.97 40.92 37.58 41.14 43.32 44.10 46.73
5 500 39.85 29.40 31.27 29.26 27.19 29.79 31.40 31.19 27.09 32.65 33.64 33.42 35.78 33.38 34.95 35.25 37.23
6 600 42.68 30.38 29.45 27.42 30.62 28.02 29.03 27.10 28.48 30.73 29.24 30.59 28.72 33.76 32.01 33.16 39.05
7 700 40.69 28.71 29.79 24.73 24.65 25.94 24.96 24.81 23.03 24.97 28.85 29.56 27.45 26.34 30.09 28.16 30.05
8 800 41.05 27.29 26.06 24.69 26.09 25.71 24.66 22.85 22.00 25.96 27.08 25.54 22.80 25.35 29.63 30.33 29.29
9 900 38.40 28.38 26.39 23.18 22.42 24.86 22.05 24.53 21.06 26.77 25.06 29.26 26.41 24.36 25.12 24.49 25.06
11x103 37.69 27.56 27.99 20.97 24.00 22.54 18.65 24.00 23.04 23.76 22.82 22.85 20.96 25.09 25.08 25.16 25.46
22x103 35.10 26.38 20.35 18.91 14.95 15.29 15.78 16.35 18.17 15.03 18.37 17.35 18.75 17.98 14.50 15.85 18.61
33x103 37.00 19.81 18.83 17.33 14.43 14.85 13.81 14.46 12.05 16.04 14.54 12.60 11.10 12.81 14.20 15.66 12.39
44x103 32.98 17.33 16.81 13.69 12.30 14.14 10.85 14.82 10.93 10.15 13.72 11.44 11.86 15.03 14.62 11.14 12.60
55x103 34.55 20.11 16.43 12.09 12.42 14.56 11.75 11.89 12.00 12.23 12.54 13.46 8.89 11.20 12.00 11.67 9.71
66x103 28.54 16.38 15.56 11.50 10.40 10.92 11.21 9.42 11.20 10.94 10.79 10.00 9.24 11.15 9.21 10.77 10.47
77x103 28.95 17.01 13.52 12.05 11.98 12.75 13.19 11.38 8.65 10.31 9.39 10.79 9.34 8.42 11.26 12.27 8.16
88x103 24.94 20.38 12.94 12.84 10.75 10.64 9.32 8.52 9.93 9.38 7.96 7.96 9.10 7.38 8.59 8.45 6.93
99x103 22.61 17.79 12.42 12.08 10.28 14.40 10.35 12.09 11.98 9.25 7.43 9.36 8.53 8.50 10.91 8.79 8.43
11x104 24.05 16.19 13.59 10.40 10.71 10.58 9.72 9.70 10.36 7.90 7.03 8.13 8.55 7.82 8.85 6.84 6.23
22x104 17.57 12.70 8.54 9.20 8.81 8.87 7.79 6.87 6.45 7.08 5.58 5.89 5.25 5.08 5.79 6.24 5.53
33x104 16.37 11.62 7.63 8.12 6.67 7.08 6.42 5.86 6.35 5.86 4.78 5.15 4.89 4.51 4.54 4.69 3.96
44x104 15.28 10.63 7.93 7.32 6.98 6.97 6.11 6.33 5.57 5.28 5.03 5.46 4.73 4.25 5.31 4.26 3.60
55x104 14.75 10.28 7.55 7.09 6.48 6.64 6.17 5.40 6.17 5.27 5.07 5.33 4.61 4.51 4.55 4.37 3.73
66x104 14.21 10.38 7.26 6.83 6.52 6.50 6.09 6.00 5.62 5.08 4.86 4.72 4.73 4.20 4.60 4.32 3.56
77x104 13.11 9.77 7.25 7.20 6.41 6.13 5.94 5.29 5.25 5.15 4.86 4.63 4.39 4.58 4.16 4.21 3.54
88x104 12.92 9.58 7.22 6.42 6.79 6.51 5.85 5.45 5.54 5.41 4.77 4.55 4.48 4.25 4.47 4.10 3.12
99x104 12.59 9.71 7.25 6.65 6.39 5.98 5.97 5.23 5.60 5.08 4.82 4.70 4.81 4.66 4.83 4.39 3.44
11x105 13.10 9.45 6.92 6.34 6.43 6.11 5.85 5.27 5.46 5.09 4.98 4.65 4.50 4.18 4.42 4.03 3.15
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Table B.5: Real communication times using query Q3 in high-bandwidth network

F \ M 1.5Kb 2Kb 4Kb 6Kb 8Kb 10Kb 12Kb 14Kb 16Kb 18Kb 20Kb 22Kb 24Kb 26Kb 28Kb 30Kb 32Kb
110 505.61 529.86 628.12 633.13 630.26 647.15 635.61 604.12 555.52 571.93 550.36 618.30 644.49 634.30 637.54 599.72 552.72
220 268.42 283.73 307.61 347.15 370.22 376.43 370.80 356.71 319.04 339.52 310.20 368.53 377.63 371.57 375.11 350.42 322.14
330 177.22 193.99 210.83 226.54 252.72 272.03 267.49 257.32 233.04 246.70 226.75 258.56 266.58 261.33 267.70 246.42 240.75
440 131.43 139.20 160.31 170.43 182.91 205.63 211.54 208.85 187.12 198.08 185.52 208.03 213.61 211.58 224.35 198.06 197.21
550 110.79 116.15 130.58 139.60 147.25 166.46 173.53 175.39 163.37 174.49 166.85 182.98 188.63 184.92 185.63 173.05 173.52
660 95.50 97.75 112.70 117.04 125.39 140.53 145.56 148.54 139.27 150.21 152.88 166.58 171.77 167.61 169.26 160.04 155.89
770 85.39 86.07 94.11 103.36 110.14 121.20 124.97 128.85 122.33 135.60 135.12 155.12 156.72 156.89 157.69 147.19 142.56
880 78.90 78.91 84.94 91.20 97.71 107.48 111.58 112.56 110.02 117.65 120.42 138.74 143.51 146.50 157.27 137.58 134.62
990 71.36 70.68 76.85 82.65 86.81 96.05 98.80 100.67 95.37 106.56 106.69 120.80 133.58 132.53 137.90 126.28 127.13
1100 65.45 64.99 68.60 74.92 78.87 87.26 89.58 91.59 86.30 96.32 96.65 110.18 117.64 122.57 127.11 118.94 119.25
2200 39.40 38.78 36.89 37.28 39.94 45.12 46.34 46.56 43.90 48.86 49.37 53.68 57.21 58.42 62.02 59.61 59.23
3300 30.34 29.74 26.34 25.85 27.02 29.95 31.00 31.36 29.44 32.00 33.19 35.47 38.77 39.65 40.64 39.29 41.81
4400 27.49 27.09 20.80 20.34 21.07 23.00 23.98 23.58 22.49 25.78 25.49 27.07 28.52 27.83 30.19 29.69 31.55
5500 24.52 24.51 17.70 17.56 17.33 19.21 19.75 19.50 18.66 19.65 20.66 21.64 23.18 23.07 24.42 24.53 25.32
6600 26.59 22.55 15.33 14.92 14.83 16.00 16.61 16.19 15.70 16.86 17.52 17.99 19.23 19.82 20.29 20.22 21.39
7700 22.72 21.85 13.90 13.48 13.08 14.47 14.47 13.97 13.50 15.03 15.56 15.48 15.95 16.79 18.45 17.01 18.63
8800 23.75 21.42 12.73 12.17 12.03 12.70 13.08 12.55 11.93 12.34 13.87 13.33 13.84 14.74 14.88 15.47 16.09
9900 23.09 20.70 11.34 11.35 10.91 11.88 11.85 11.42 11.25 11.96 12.98 11.91 12.35 13.01 13.53 13.67 14.57
11x103 22.28 19.44 10.79 10.53 10.25 10.83 10.55 10.81 10.01 10.43 11.37 11.45 10.99 11.29 12.06 12.15 13.49
22x103 20.03 17.01 7.90 7.30 6.88 7.33 6.96 6.69 6.51 7.13 7.55 6.62 7.02 6.92 7.09 7.01 8.23
33x103 20.04 17.01 6.58 6.46 5.95 6.37 5.84 5.96 5.44 5.55 5.80 5.08 5.20 5.34 5.64 5.78 7.06
44x103 18.83 17.42 6.15 5.97 5.34 5.53 5.45 5.05 4.56 4.97 4.64 4.58 4.32 4.60 4.95 4.88 5.44
55x103 18.93 9.80 5.84 5.67 4.98 5.19 4.71 4.52 4.22 4.86 4.68 3.96 4.09 4.30 4.44 4.30 7.87
66x103 18.56 15.79 5.49 5.43 4.76 5.02 4.64 4.08 3.87 4.21 4.01 3.63 4.05 3.70 3.85 3.85 4.23
77x103 18.43 9.49 5.41 5.50 4.63 4.67 4.23 3.85 3.52 3.63 3.76 3.39 3.63 3.27 3.51 3.49 3.94
88x103 18.05 13.74 5.18 5.16 4.47 4.53 3.86 3.82 3.49 4.08 3.33 3.29 3.20 3.44 3.14 3.53 3.63
99x103 18.56 13.80 5.01 4.88 4.26 4.82 4.04 3.78 3.46 3.62 4.01 3.14 3.04 2.92 3.05 3.44 3.48
11x104 18.31 13.71 5.09 4.95 4.23 4.27 4.18 3.72 3.55 3.45 3.99 2.99 2.84 3.03 2.87 3.21 3.03
22104 12.08 10.34 4.77 4.38 3.76 4.02 3.47 3.10 2.71 2.70 2.71 2.53 2.60 2.27 2.29 2.69 2.98
33104 11.99 9.57 4.22 4.31 3.58 3.86 3.15 2.90 2.54 2.55 2.85 2.27 2.36 2.30 2.11 2.59 2.42
44104 11.77 8.63 4.41 4.02 3.58 3.64 3.67 2.94 2.79 2.54 3.49 2.19 2.05 2.05 2.24 2.01 2.25
55104 11.49 8.42 4.20 4.15 3.69 3.67 3.22 3.01 2.71 2.56 3.10 2.16 2.14 2.03 2.04 2.33 2.06
66104 11.37 7.98 5.02 3.94 3.50 3.63 3.13 3.05 2.67 2.60 5.00 2.44 2.21 2.25 2.13 2.35 2.35
77104 10.81 7.46 3.95 3.85 3.39 3.71 3.02 2.90 2.67 2.94 2.50 2.16 2.24 2.22 2.18 2.56 2.31
88104 10.40 7.36 4.38 3.76 3.38 3.62 3.27 2.86 2.86 2.56 3.12 2.18 2.06 2.32 2.09 2.00 1.94
99104 10.24 7.25 4.12 3.95 3.40 3.74 3.04 2.98 2.70 2.57 3.06 2.56 2.18 2.10 2.01 2.40 2.04
11105 9.46 7.21 4.21 3.82 3.36 3.59 3.46 2.89 2.71 2.53 2.55 2.27 2.19 2.06 2.03 2.34 2.08
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Table B.6: Estimated communication times using query Q3 in high-bandwidth network

F \ M 1.5Kb 2Kb 4Kb 6Kb 8Kb 10Kb 12Kb 14Kb 16Kb 18Kb 20Kb 22Kb 24Kb 26Kb 28Kb 30Kb 32Kb
110 714.52 718.51 727.32 727.32 727.32 727.32 727.32 727.32 727.32 727.32 727.32 727.32 727.32 727.32 727.32 727.32 727.32
220 364.42 362.98 377.70 389.78 389.78 389.78 389.78 389.78 389.78 389.78 389.78 389.78 389.78 389.78 389.78 389.78 389.78
330 247.72 246.93 254.57 264.09 276.36 277.26 277.26 277.26 277.26 277.26 277.26 277.26 277.26 277.26 277.26 277.26 277.26
440 189.37 187.07 190.95 198.09 207.29 216.49 221.01 221.01 221.01 221.01 221.01 221.01 221.01 221.01 221.01 221.01 221.01
550 154.36 152.62 154.42 160.30 165.85 173.21 180.57 187.93 187.25 187.25 187.25 187.25 187.25 187.25 187.25 187.25 187.25
660 131.02 128.43 130.07 133.60 139.87 144.36 150.49 156.62 162.76 164.75 164.75 164.75 164.75 164.75 164.75 164.75 164.75
770 114.35 112.20 112.67 115.82 119.91 125.28 129.01 134.26 139.52 144.78 150.03 148.68 148.68 148.68 148.68 148.68 148.68
880 101.85 99.11 98.60 101.36 104.93 109.63 112.89 117.49 122.09 126.69 131.29 135.89 136.62 136.62 136.62 136.62 136.62
990 92.13 89.74 88.57 91.11 94.38 97.46 101.64 104.45 108.53 112.62 116.71 120.80 124.89 128.98 127.24 127.24 127.24
1100 84.35 81.51 80.54 82.01 84.95 87.72 91.49 95.25 97.69 101.37 105.05 108.73 112.41 116.09 119.77 119.74 119.74
2200 49.69 46.33 43.19 43.31 44.50 45.52 46.95 48.91 50.22 52.14 53.32 55.20 57.08 58.96 60.85 61.77 63.61
3300 38.14 34.36 30.74 30.41 30.69 31.45 32.49 33.47 34.39 35.26 36.57 37.36 38.64 39.92 41.20 41.85 43.10
4400 32.37 28.56 24.72 23.97 24.03 24.41 24.97 25.74 26.48 27.17 27.82 28.83 29.42 30.40 31.38 31.89 32.85
5500 28.76 24.93 20.95 20.10 20.03 20.19 20.69 21.11 21.73 22.32 22.88 23.40 24.22 24.69 25.49 25.91 26.70
6600 26.48 22.63 18.43 17.52 17.20 17.38 17.64 18.02 18.35 18.85 19.33 19.78 20.47 20.88 21.56 21.93 22.60
7700 24.84 20.89 16.63 15.55 15.32 15.37 15.46 15.81 16.12 16.57 17.01 17.41 17.80 18.16 18.76 19.08 19.67
8800 23.62 19.67 15.38 14.18 13.91 13.86 13.98 14.16 14.45 14.69 15.08 15.45 15.79 16.12 16.65 16.95 17.47
9900 22.59 18.65 14.32 13.12 12.71 12.69 12.69 12.87 13.15 13.38 13.75 13.92 14.23 14.73 15.02 15.29 15.76
11x103 21.84 17.90 13.48 12.27 11.84 11.75 11.78 11.84 12.11 12.33 12.53 12.85 13.15 13.44 13.71 13.96 14.39
22x103 18.38 14.35 9.79 8.36 7.75 7.48 7.33 7.27 7.29 7.34 7.43 7.50 7.62 7.73 7.81 7.98 8.14
33x103 17.24 13.17 8.53 7.08 6.39 6.06 5.84 5.75 5.69 5.68 5.68 5.71 5.78 5.82 5.91 5.99 6.06
44x103 16.66 12.59 7.93 6.43 5.73 5.35 5.10 4.96 4.89 4.85 4.85 4.82 4.85 4.87 4.92 4.95 5.02
55x103 16.32 12.24 7.55 6.03 5.32 4.92 4.66 4.51 4.41 4.35 4.32 4.29 4.30 4.30 4.32 4.36 4.39
66x103 16.11 12.01 7.31 5.79 5.05 4.64 4.38 4.21 4.09 4.02 3.99 3.96 3.93 3.92 3.95 3.97 3.98
77x103 15.95 11.85 7.13 5.60 4.85 4.44 4.17 3.99 3.86 3.78 3.73 3.70 3.67 3.67 3.66 3.66 3.68
88x103 15.84 11.73 7.01 5.46 4.72 4.29 4.01 3.82 3.70 3.60 3.56 3.51 3.47 3.47 3.44 3.46 3.46
99x103 15.76 11.64 6.91 5.36 4.60 4.17 3.88 3.70 3.57 3.48 3.41 3.36 3.32 3.31 3.30 3.30 3.28
11x104 15.68 11.57 6.83 5.27 4.51 4.07 3.78 3.60 3.46 3.37 3.30 3.24 3.20 3.18 3.16 3.15 3.14
22x104 15.45 11.29 6.50 4.91 4.13 3.66 3.36 3.15 2.99 2.88 2.79 2.72 2.66 2.62 2.59 2.56 2.53
33x104 15.45 11.26 6.41 4.81 4.01 3.54 3.23 3.00 2.84 2.72 2.63 2.55 2.49 2.43 2.39 2.36 2.33
44x104 15.51 11.28 6.39 4.77 3.96 3.48 3.16 2.94 2.77 2.65 2.55 2.47 2.40 2.35 2.30 2.26 2.23
55x104 15.59 11.32 6.39 4.76 3.94 3.45 3.13 2.90 2.74 2.60 2.50 2.42 2.35 2.30 2.25 2.21 2.18
66x104 15.68 11.38 6.41 4.76 3.93 3.44 3.12 2.89 2.71 2.58 2.48 2.39 2.32 2.26 2.22 2.18 2.14
77x104 15.83 11.48 6.45 4.78 3.95 3.45 3.12 2.88 2.71 2.57 2.47 2.38 2.31 2.25 2.20 2.16 2.12
88x104 15.92 11.54 6.48 4.79 3.95 3.45 3.11 2.88 2.70 2.57 2.46 2.37 2.30 2.24 2.18 2.14 2.10
99x104 16.02 11.60 6.50 4.80 3.96 3.45 3.11 2.87 2.70 2.56 2.45 2.36 2.29 2.22 2.17 2.13 2.09
11x105 16.09 11.65 6.52 4.81 3.96 3.45 3.11 2.87 2.69 2.55 2.44 2.35 2.28 2.21 2.16 2.11 2.08
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Table B.7: Real communication times using query Q4 in high-bandwidth network

F \ M 1.5Kb 2Kb 4Kb 6Kb 8Kb 10Kb 12Kb 14Kb 16Kb 18Kb 20Kb 22Kb 24Kb 26Kb 28Kb 30Kb 32Kb
110 20.15 20.72 24.48 27.61 30.12 32.35 33.78 35.09 37.15 39.71 40.86 44.78 46.13 45.93 51.93 52.60 53.15
220 11.22 11.30 12.26 13.71 14.97 15.95 16.70 16.99 17.66 19.36 19.19 22.28 22.58 22.52 25.61 25.27 25.97
330 8.74 8.57 8.81 9.65 10.29 11.10 11.19 11.25 11.65 12.79 13.23 14.80 15.20 15.37 16.73 17.31 17.29
440 7.23 6.81 6.91 7.53 7.91 8.58 8.85 8.68 8.89 9.67 10.35 11.18 11.57 11.65 12.74 12.91 13.35
550 6.56 5.80 5.89 6.28 6.84 7.30 7.54 7.26 7.30 8.25 8.58 9.15 9.58 9.76 10.37 10.56 10.85
660 5.86 5.32 5.46 5.77 6.18 6.55 6.75 6.54 6.57 7.16 7.40 8.01 8.15 8.43 9.06 9.26 9.51
770 5.25 4.82 4.95 5.43 5.58 6.03 6.08 6.03 6.15 6.61 6.93 7.39 7.54 7.88 8.34 8.60 8.79
880 4.96 4.57 4.47 4.90 5.01 5.36 5.49 5.30 5.41 5.82 6.15 6.44 6.64 6.97 7.28 7.54 7.68
990 4.62 4.24 4.11 4.50 4.61 4.93 4.97 4.89 4.90 5.25 5.54 5.73 5.98 6.19 6.53 6.69 6.91
1 100 4.37 4.04 3.85 4.21 4.26 4.52 4.63 4.46 4.51 4.87 5.10 5.33 5.58 5.66 5.94 6.12 6.41
2 200 3.47 2.84 2.52 2.71 2.69 2.74 2.76 2.63 2.62 2.77 2.85 2.94 3.05 3.13 3.26 3.35 3.44
3 300 3.38 2.47 1.95 2.17 2.16 2.19 2.15 1.99 1.98 2.07 2.13 2.15 2.24 2.30 2.37 2.43 2.50
4 400 2.95 2.24 1.72 1.95 1.88 1.89 1.82 1.69 1.67 1.71 1.75 1.76 1.84 1.87 1.93 1.96 1.99
5 500 3.22 2.13 1.56 1.80 1.71 1.70 1.63 1.51 1.47 1.51 1.54 1.55 1.58 1.60 1.67 1.68 1.73
6 600 3.14 2.04 1.48 1.68 1.59 1.59 1.51 1.37 1.35 1.38 1.39 1.37 1.42 1.44 1.49 1.50 1.59
7 700 2.75 2.12 1.46 1.62 1.50 1.52 1.41 1.28 1.25 1.27 1.28 1.26 1.32 1.33 1.36 1.37 1.39
8 800 2.71 2.17 1.41 1.58 1.46 1.47 1.35 1.22 1.18 1.19 1.19 1.19 1.22 1.22 1.27 1.26 1.27
9 900 2.56 2.17 1.37 1.49 1.39 1.38 1.28 1.16 1.12 1.13 1.12 1.13 1.15 1.16 1.20 1.17 1.19
11x103 2.52 2.09 1.39 1.46 1.35 1.34 1.26 1.12 1.07 1.09 1.07 1.06 1.08 1.09 1.14 1.13 1.15
22x103 2.54 2.01 1.43 1.34 1.26 1.26 1.14 1.01 0.92 0.94 0.93 0.90 0.88 0.88 0.93 0.87 0.90
33x103 2.73 2.17 1.45 1.31 1.28 1.29 1.19 1.05 0.96 0.94 0.92 0.90 0.89 0.83 0.89 0.83 0.86
44x103 2.59 2.15 1.43 1.34 1.29 1.30 1.20 1.08 0.99 0.95 0.95 0.87 0.85 0.83 0.87 0.81 0.82
55x103 2.53 2.08 1.49 1.31 1.27 1.28 1.21 1.08 1.00 0.95 0.92 0.88 0.85 0.82 0.85 0.80 0.82
66x103 2.49 2.06 1.45 1.32 1.29 1.29 1.23 1.05 1.02 0.97 0.93 0.87 0.86 0.83 0.85 0.79 0.81
77x103 2.50 2.03 1.44 1.33 1.29 1.31 1.23 1.08 1.01 1.00 0.94 0.87 0.85 0.82 0.84 0.80 0.82
88x103 2.46 2.00 1.46 1.32 1.32 1.30 1.25 1.08 1.01 0.97 0.95 0.87 0.83 0.81 0.82 0.79 0.81
99x103 2.44 2.02 1.46 1.30 1.32 1.28 1.21 1.08 1.02 0.97 0.95 0.87 0.84 0.81 0.82 0.79 0.79
11x104 2.40 1.98 1.47 1.33 1.33 1.30 1.24 1.07 1.02 0.98 0.95 0.87 0.84 0.80 0.82 0.79 0.78
22x104 2.37 1.96 1.47 1.30 1.31 1.28 1.24 1.08 1.03 0.98 0.92 0.86 0.82 0.79 0.81 0.78 0.76
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Table B.8: Estimated communication times using query Q4 in high-bandwidth network

F \ M 1.5Kb 2Kb 4Kb 6Kb 8Kb 10Kb 12Kb 14Kb 16Kb 18Kb 20Kb 22Kb 24Kb 26Kb 28Kb 30Kb 32Kb
110 24.76 24.48 25.61 27.48 29.52 31.64 33.79 35.97 38.16 40.36 42.56 44.77 46.98 49.19 51.41 53.63 55.84
220 15.45 14.84 14.86 15.61 16.54 17.55 18.59 19.65 20.72 21.81 22.90 23.99 25.09 26.19 27.29 28.39 29.50
330 12.35 11.63 11.28 11.66 12.22 12.85 13.52 14.21 14.91 15.62 16.34 17.07 17.79 18.52 19.25 19.98 20.72
440 10.80 10.03 9.49 9.68 10.05 10.50 10.98 11.49 12.01 12.53 13.06 13.60 14.14 14.69 15.23 15.78 16.32
550 9.87 9.06 8.41 8.49 8.75 9.09 9.46 9.86 10.26 10.68 11.10 11.53 11.95 12.39 12.82 13.25 13.69
660 9.25 8.42 7.69 7.70 7.89 8.15 8.45 8.77 9.10 9.44 9.79 10.14 10.49 10.85 11.21 11.57 11.93
770 8.81 7.96 7.18 7.14 7.27 7.48 7.72 7.99 8.27 8.56 8.85 9.15 9.45 9.76 10.06 10.37 10.68
880 8.48 7.62 6.80 6.71 6.81 6.98 7.18 7.41 7.65 7.90 8.15 8.41 8.67 8.93 9.20 9.47 9.74
990 8.22 7.35 6.50 6.38 6.45 6.58 6.76 6.95 7.16 7.38 7.60 7.83 8.06 8.30 8.53 8.77 9.01
1 100 8.01 7.13 6.26 6.12 6.16 6.27 6.42 6.59 6.78 6.97 7.17 7.37 7.58 7.78 8.00 8.21 8.42
2 200 7.08 6.17 5.19 4.93 4.86 4.86 4.90 4.96 5.03 5.11 5.20 5.29 5.39 5.48 5.58 5.68 5.79
3 300 6.77 5.85 4.83 4.54 4.43 4.39 4.39 4.42 4.45 4.49 4.54 4.60 4.66 4.72 4.78 4.84 4.91
4 400 6.62 5.69 4.65 4.34 4.21 4.16 4.14 4.14 4.16 4.19 4.22 4.25 4.29 4.33 4.38 4.42 4.47
5 500 6.53 5.59 4.54 4.22 4.08 4.02 3.99 3.98 3.99 4.00 4.02 4.05 4.07 4.10 4.14 4.17 4.21
6 600 6.46 5.53 4.47 4.14 3.99 3.92 3.89 3.87 3.87 3.88 3.89 3.91 3.93 3.95 3.97 4.00 4.03
7 700 6.42 5.48 4.42 4.08 3.93 3.86 3.81 3.79 3.79 3.79 3.80 3.81 3.82 3.84 3.86 3.88 3.91
8 800 6.39 5.45 4.38 4.04 3.89 3.80 3.76 3.74 3.72 3.72 3.73 3.73 3.74 3.76 3.77 3.79 3.81
9 900 6.36 5.42 4.35 4.01 3.85 3.77 3.72 3.69 3.68 3.67 3.67 3.68 3.68 3.69 3.71 3.72 3.74
11x103 6.34 5.40 4.33 3.98 3.82 3.73 3.68 3.65 3.64 3.63 3.63 3.63 3.63 3.64 3.65 3.67 3.68
22x103 6.25 5.30 4.22 3.86 3.69 3.59 3.53 3.49 3.46 3.44 3.43 3.42 3.42 3.41 3.41 3.41 3.42
33x103 6.22 5.27 4.18 3.82 3.65 3.55 3.48 3.44 3.40 3.38 3.36 3.35 3.34 3.34 3.33 3.33 3.33
44x103 6.20 5.26 4.16 3.80 3.63 3.52 3.46 3.41 3.38 3.35 3.33 3.32 3.31 3.30 3.29 3.29 3.28
55x103 6.19 5.24 4.15 3.79 3.61 3.51 3.44 3.39 3.36 3.33 3.31 3.30 3.28 3.27 3.27 3.26 3.26
66x103 6.18 5.24 4.15 3.78 3.61 3.50 3.43 3.38 3.35 3.32 3.30 3.28 3.27 3.26 3.25 3.24 3.24
77x103 6.18 5.23 4.14 3.78 3.60 3.49 3.42 3.37 3.34 3.31 3.29 3.27 3.26 3.25 3.24 3.23 3.23
88x103 6.18 5.23 4.14 3.77 3.59 3.49 3.42 3.37 3.33 3.30 3.28 3.27 3.25 3.24 3.23 3.22 3.22
99x103 6.17 5.23 4.13 3.77 3.59 3.48 3.41 3.36 3.33 3.30 3.28 3.26 3.25 3.23 3.22 3.22 3.21
11x104 6.17 5.23 4.13 3.77 3.59 3.48 3.41 3.36 3.32 3.30 3.27 3.26 3.24 3.23 3.22 3.21 3.20
22x104 6.16 5.22 4.12 3.76 3.58 3.47 3.40 3.34 3.31 3.28 3.25 3.24 3.22 3.21 3.20 3.19 3.18
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Table B.9: Real communication times using query Q5 in high-bandwidth network

F \ M 1.5Kb 2Kb 4Kb 6Kb 8Kb 10Kb 12Kb 14Kb 16Kb 18Kb 20Kb 22Kb 24Kb 26Kb 28Kb 30Kb 32Kb
110 9.587 9.054 11.016 12.818 12.352 12.763 13.296 12.889 12.201 10.701 10.376 11.129 11.025 10.846 10.516 10.455 11.529
220 5.281 5.189 5.844 7.031 7.361 7.646 7.968 7.678 7.565 6.562 6.442 7.048 6.782 6.771 6.237 6.466 6.728
330 3.226 3.773 4.348 4.635 4.835 5.479 5.764 5.548 5.880 5.087 4.921 5.310 4.977 5.218 4.880 4.583 4.908
440 2.639 2.964 3.390 3.720 3.749 4.062 4.510 4.772 4.773 4.416 4.145 4.505 4.234 4.528 4.115 4.043 4.334
550 2.280 2.463 2.967 3.135 3.071 3.379 3.699 3.803 4.234 3.845 3.796 3.991 3.795 4.014 3.735 3.712 3.741
660 1.977 2.149 2.669 2.630 2.641 2.781 3.166 3.261 3.527 3.318 3.418 3.655 3.511 3.672 3.470 3.368 3.409
770 1.814 1.916 2.161 2.293 2.245 2.479 2.685 2.917 3.124 2.943 2.969 3.458 3.277 3.375 3.202 3.139 3.186
880 1.702 1.816 1.953 2.091 2.045 2.257 2.441 2.459 2.856 2.603 2.668 2.895 2.871 3.146 2.937 2.911 2.974
990 1.549 1.684 1.777 1.878 1.891 1.960 2.108 2.233 2.568 2.410 2.453 2.646 2.657 2.795 2.745 2.812 2.848
1100 1.437 1.558 1.749 1.670 1.713 1.804 1.983 2.442 2.172 2.219 2.212 2.382 2.420 2.516 2.504 2.480 2.697
2200 0.906 0.896 0.989 0.931 0.887 0.945 1.061 1.058 1.181 1.147 1.171 1.269 1.258 1.310 1.308 1.306 1.372
3300 0.703 0.701 0.749 0.672 0.625 0.667 0.742 0.729 0.828 0.807 0.814 0.881 0.865 0.901 0.900 0.899 0.921
4400 0.642 0.555 0.533 0.504 0.503 0.538 0.585 0.597 0.640 0.620 0.637 0.676 0.663 0.692 0.692 0.681 0.700
5500 0.600 0.514 0.480 0.465 0.421 0.456 0.487 0.497 0.524 0.518 0.515 0.561 0.552 0.572 0.576 0.567 0.584
6600 0.543 0.484 0.423 0.434 0.370 0.391 0.420 0.407 0.444 0.446 0.451 0.482 0.477 0.495 0.493 0.477 0.504
7700 0.524 0.454 0.379 0.369 0.327 0.343 0.379 0.363 0.402 0.408 0.385 0.428 0.423 0.435 0.424 0.413 0.420
8800 0.487 0.400 0.347 0.348 0.305 0.300 0.336 0.338 0.360 0.351 0.351 0.382 0.372 0.381 0.380 0.368 0.378
9900 0.492 0.402 0.368 0.313 0.285 0.298 0.312 0.314 0.325 0.319 0.317 0.346 0.331 0.352 0.346 0.338 0.342
11x103 0.456 0.391 0.330 0.297 0.265 0.285 0.286 0.280 0.296 0.300 0.298 0.321 0.309 0.322 0.323 0.309 0.318
22x103 0.388 0.337 0.235 0.260 0.187 0.195 0.193 0.187 0.194 0.189 0.188 0.195 0.188 0.208 0.186 0.183 0.174
33x103 0.388 0.294 0.203 0.177 0.160 0.160 0.162 0.168 0.164 0.151 0.146 0.152 0.144 0.147 0.147 0.147 0.139
44x103 0.348 0.300 0.185 0.170 0.143 0.147 0.147 0.137 0.142 0.130 0.126 0.128 0.125 0.128 0.121 0.119 0.117
55x103 0.360 0.303 0.196 0.157 0.140 0.139 0.138 0.126 0.128 0.117 0.115 0.119 0.113 0.113 0.110 0.111 0.102
66x103 0.351 0.283 0.164 0.139 0.128 0.129 0.131 0.126 0.118 0.110 0.107 0.108 0.105 0.102 0.097 0.091 0.094
77x103 0.361 0.259 0.173 0.149 0.122 0.133 0.135 0.117 0.108 0.104 0.101 0.102 0.095 0.099 0.091 0.090 0.088
88x103 0.348 0.263 0.174 0.152 0.121 0.116 0.113 0.108 0.105 0.096 0.097 0.096 0.095 0.093 0.086 0.083 0.081
99x103 0.338 0.252 0.163 0.139 0.121 0.121 0.120 0.103 0.102 0.092 0.089 0.090 0.087 0.090 0.086 0.080 0.085
11x104 0.314 0.270 0.150 0.135 0.113 0.116 0.114 0.104 0.102 0.094 0.090 0.092 0.082 0.087 0.078 0.072 0.070
22x104 0.239 0.198 0.146 0.117 0.106 0.100 0.102 0.091 0.090 0.076 0.074 0.077 0.072 0.074 0.069 0.065 0.061
33x104 0.247 0.207 0.140 0.126 0.101 0.099 0.103 0.089 0.084 0.074 0.071 0.072 0.067 0.066 0.059 0.055 0.050
44x104 0.253 0.207 0.152 0.133 0.108 0.106 0.105 0.089 0.086 0.078 0.074 0.076 0.070 0.072 0.062 0.059 0.051
55x104 0.240 0.200 0.144 0.120 0.111 0.106 0.101 0.096 0.091 0.084 0.080 0.079 0.073 0.073 0.067 0.060 0.051
66x104 0.219 0.182 0.147 0.144 0.107 0.110 0.109 0.098 0.092 0.082 0.079 0.080 0.072 0.073 0.065 0.065 0.053
77x104 0.218 0.191 0.139 0.119 0.103 0.107 0.107 0.107 0.093 0.078 0.080 0.078 0.073 0.076 0.069 0.065 0.052
88x104 0.209 0.181 0.141 0.114 0.105 0.104 0.099 0.090 0.092 0.081 0.079 0.076 0.074 0.072 0.062 0.065 0.052
99x104 0.212 0.181 0.144 0.114 0.107 0.102 0.102 0.093 0.093 0.083 0.080 0.076 0.071 0.077 0.063 0.061 0.052
11x105 0.218 0.173 0.140 0.111 0.104 0.101 0.103 0.095 0.087 0.080 0.075 0.078 0.073 0.069 0.060 0.061 0.052
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Table B.10: Estimated communication times using query Q5 in high-bandwidth network

F \ M 1.5Kb 2Kb 4Kb 6Kb 8Kb 10Kb 12Kb 14Kb 16Kb 18Kb 20Kb 22Kb 24Kb 26Kb 28Kb 30Kb 32Kb
110 17.376 17.473 17.782 17.782 17.782 17.782 17.782 17.782 17.782 17.782 17.782 17.782 17.782 17.782 17.782 17.782 17.782
220 8.862 8.917 9.185 9.633 9.573 9.573 9.573 9.573 9.573 9.573 9.573 9.573 9.573 9.573 9.573 9.573 9.573
330 6.025 6.005 6.191 6.423 6.721 6.837 6.837 6.837 6.837 6.837 6.837 6.837 6.837 6.837 6.837 6.837 6.837
440 4.606 4.594 4.694 4.873 5.041 5.265 5.489 5.469 5.469 5.469 5.469 5.469 5.469 5.469 5.469 5.469 5.469
550 3.789 3.712 3.756 3.899 4.034 4.213 4.392 4.571 4.648 4.648 4.648 4.648 4.648 4.648 4.648 4.648 4.648
660 3.216 3.154 3.164 3.286 3.402 3.511 3.660 3.809 3.959 4.108 4.101 4.101 4.101 4.101 4.101 4.101 4.101
770 2.806 2.729 2.740 2.817 2.916 3.047 3.137 3.265 3.393 3.521 3.649 3.710 3.710 3.710 3.710 3.710 3.710
880 2.499 2.433 2.423 2.493 2.582 2.667 2.781 2.858 2.970 3.081 3.193 3.305 3.417 3.417 3.417 3.417 3.417
990 2.279 2.203 2.176 2.216 2.295 2.370 2.472 2.574 2.640 2.739 2.839 2.938 3.037 3.137 3.236 3.189 3.189
1100 2.086 2.001 1.959 2.017 2.066 2.160 2.225 2.317 2.376 2.466 2.555 2.645 2.734 2.824 2.913 3.003 3.006
2200 1.235 1.145 1.061 1.065 1.082 1.120 1.156 1.190 1.221 1.268 1.315 1.343 1.388 1.434 1.480 1.526 1.547
3300 0.951 0.854 0.761 0.747 0.755 0.774 0.790 0.814 0.837 0.869 0.890 0.921 0.940 0.971 1.002 1.033 1.048
4400 0.813 0.713 0.611 0.589 0.591 0.600 0.614 0.626 0.644 0.661 0.686 0.701 0.726 0.740 0.763 0.787 0.799
5500 0.728 0.625 0.518 0.494 0.492 0.497 0.504 0.520 0.529 0.543 0.557 0.577 0.589 0.601 0.620 0.640 0.650
6600 0.670 0.569 0.458 0.434 0.427 0.427 0.434 0.443 0.452 0.464 0.476 0.488 0.498 0.515 0.525 0.541 0.550
7700 0.633 0.530 0.417 0.388 0.380 0.378 0.385 0.390 0.397 0.409 0.414 0.424 0.440 0.449 0.457 0.472 0.479
8800 0.601 0.497 0.384 0.353 0.345 0.341 0.344 0.348 0.356 0.362 0.371 0.381 0.389 0.397 0.405 0.418 0.425
9900 0.577 0.474 0.360 0.327 0.318 0.315 0.316 0.320 0.324 0.330 0.339 0.343 0.351 0.359 0.371 0.378 0.384
11x103 0.559 0.454 0.338 0.305 0.293 0.291 0.290 0.294 0.298 0.304 0.309 0.317 0.320 0.327 0.338 0.344 0.350
22x103 0.476 0.369 0.249 0.212 0.195 0.188 0.183 0.182 0.181 0.183 0.185 0.187 0.188 0.191 0.195 0.197 0.201
33x103 0.448 0.341 0.219 0.180 0.162 0.153 0.147 0.145 0.143 0.142 0.142 0.143 0.144 0.145 0.147 0.149 0.151
44x103 0.436 0.329 0.205 0.166 0.147 0.137 0.130 0.127 0.124 0.123 0.123 0.122 0.122 0.123 0.124 0.125 0.126
55x103 0.424 0.317 0.195 0.155 0.136 0.125 0.119 0.115 0.112 0.110 0.109 0.108 0.108 0.108 0.109 0.109 0.110
66x103 0.420 0.313 0.189 0.149 0.130 0.119 0.112 0.107 0.104 0.102 0.101 0.100 0.100 0.099 0.100 0.100 0.100
77x103 0.422 0.313 0.188 0.147 0.127 0.116 0.108 0.103 0.100 0.098 0.097 0.096 0.094 0.094 0.094 0.094 0.095
88x103 0.416 0.308 0.183 0.142 0.122 0.111 0.103 0.099 0.095 0.093 0.091 0.090 0.089 0.088 0.089 0.088 0.088
99x103 0.415 0.306 0.181 0.140 0.120 0.108 0.101 0.096 0.092 0.090 0.088 0.087 0.086 0.085 0.085 0.084 0.084
11x104 0.414 0.305 0.180 0.138 0.118 0.106 0.099 0.094 0.090 0.087 0.085 0.084 0.083 0.082 0.082 0.081 0.081
22x104 0.420 0.307 0.176 0.133 0.112 0.099 0.091 0.085 0.081 0.077 0.075 0.073 0.071 0.070 0.069 0.068 0.068
33x104 0.432 0.314 0.179 0.134 0.112 0.098 0.089 0.083 0.079 0.075 0.073 0.070 0.069 0.067 0.066 0.065 0.064
44x104 0.445 0.323 0.183 0.136 0.113 0.099 0.090 0.084 0.079 0.075 0.073 0.070 0.068 0.067 0.065 0.064 0.063
55x104 0.447 0.325 0.183 0.136 0.113 0.099 0.090 0.083 0.078 0.074 0.071 0.069 0.067 0.065 0.064 0.063 0.062
66x104 0.473 0.343 0.193 0.143 0.118 0.103 0.094 0.087 0.081 0.077 0.074 0.072 0.070 0.068 0.066 0.065 0.064
77x104 0.476 0.345 0.194 0.143 0.118 0.103 0.093 0.086 0.081 0.077 0.074 0.071 0.069 0.067 0.066 0.064 0.063
88x104 0.457 0.331 0.185 0.137 0.113 0.099 0.089 0.082 0.077 0.073 0.070 0.067 0.065 0.064 0.062 0.061 0.060
99x104 0.517 0.375 0.210 0.155 0.127 0.111 0.100 0.092 0.087 0.082 0.079 0.076 0.073 0.071 0.070 0.068 0.067
11x105 0.463 0.335 0.187 0.138 0.114 0.099 0.089 0.082 0.077 0.073 0.070 0.067 0.065 0.063 0.062 0.060 0.059
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Table B.11: Real communication times using query Q6 in high-bandwidth network

F \ M 1.5Kb 2Kb 4Kb 6Kb 8Kb 10Kb 12Kb 14Kb 16Kb 18Kb 20Kb 22Kb 24Kb 26Kb 28Kb 30Kb 32Kb
110 0.35 0.33 0.36 0.36 0.36 0.33 0.34 0.38 0.39 0.38 0.35 0.33 0.34 0.32 0.37 0.35 0.34
220 0.34 0.35 0.33 0.35 0.34 0.36 0.35 0.35 0.32 0.34 0.33 0.32 0.32 0.32 0.34 0.34 0.30
330 0.34 0.34 0.32 0.32 0.33 0.32 0.36 0.35 0.32 0.36 0.33 0.32 0.35 0.36 0.33 0.32 0.34
440 0.35 0.34 0.33 0.37 0.35 0.33 0.33 0.36 0.34 0.40 0.35 0.32 0.32 0.33 0.36 0.32 0.32
550 0.37 0.32 0.33 0.35 0.34 0.34 0.33 0.33 0.37 0.35 0.36 0.30 0.34 0.32 0.33 0.32 0.33
660 0.36 0.32 0.37 0.37 0.34 0.34 0.33 0.34 0.35 0.35 0.35 0.32 0.34 0.32 0.33 0.33 0.30
770 0.34 0.34 0.34 0.34 0.34 0.34 0.33 0.33 0.36 0.36 0.35 0.33 0.32 0.35 0.32 0.32 0.33
880 0.37 0.33 0.34 0.34 0.35 0.35 0.38 0.36 0.33 0.38 0.33 0.31 0.34 0.32 0.32 0.32 0.32
990 0.36 0.35 0.41 0.35 0.36 0.32 0.36 0.38 0.34 0.35 0.35 0.33 0.33 0.32 0.34 0.34 0.31
1 100 0.35 0.35 0.35 0.35 0.33 0.34 0.33 0.35 0.35 0.37 0.33 0.32 0.32 0.32 0.33 0.32 0.32
2 200 0.33 0.34 0.34 0.36 0.34 0.34 0.35 0.35 0.33 0.34 0.33 0.31 0.32 0.32 0.33 0.32 0.35
3 300 0.37 0.34 0.35 0.36 0.34 0.32 0.34 0.33 0.33 0.36 0.34 0.34 0.35 0.34 0.32 0.32 0.33
4 400 0.34 0.37 0.36 0.37 0.35 0.32 0.33 0.36 0.36 0.36 0.33 0.32 0.32 0.32 0.33 0.33 0.32
5 500 0.38 0.34 0.34 0.33 0.34 0.37 0.34 0.37 0.34 0.36 0.36 0.33 0.32 0.33 0.33 0.32 0.32
6 600 0.35 0.33 0.36 0.33 0.34 0.33 0.37 0.36 0.35 0.37 0.33 0.32 0.32 0.31 0.34 0.35 0.32
7 700 0.39 0.35 0.33 0.36 0.34 0.32 0.35 0.34 0.33 0.35 0.34 0.32 0.32 0.33 0.35 0.32 0.33
8 800 0.37 0.36 0.33 0.33 0.35 0.32 0.35 0.36 0.34 0.36 0.34 0.33 0.33 0.31 0.34 0.33 0.33
9 900 0.37 0.36 0.36 0.36 0.33 0.33 0.35 0.37 0.34 0.37 0.34 0.31 0.33 0.32 0.35 0.31 0.35
11x103 0.35 0.35 0.35 0.39 0.34 0.33 0.35 0.35 0.33 0.37 0.33 0.32 0.30 0.31 0.33 0.36 0.32
22x103 0.36 0.35 0.34 0.33 0.38 0.35 0.37 0.34 0.36 0.36 0.32 0.32 0.32 0.32 0.34 0.31 0.32
33x103 0.36 0.34 0.34 0.33 0.35 0.32 0.34 0.34 0.38 0.32 0.33 0.33 0.33 0.31 0.33 0.33 0.34
44x103 0.36 0.34 0.33 0.32 0.35 0.34 0.34 0.35 0.33 0.36 0.34 0.33 0.32 0.32 0.32 0.32 0.34
55x103 0.38 0.36 0.33 0.35 0.34 0.35 0.34 0.34 0.33 0.36 0.34 0.34 0.32 0.33 0.32 0.34 0.32
66x103 0.35 0.36 0.35 0.34 0.34 0.33 0.34 0.35 0.32 0.35 0.33 0.31 0.33 0.31 0.33 0.32 0.32
77x103 0.37 0.35 0.33 0.36 0.33 0.32 0.37 0.34 0.38 0.37 0.33 0.31 0.33 0.32 0.35 0.33 0.32
88x103 0.34 0.35 0.34 0.35 0.34 0.34 0.37 0.34 0.37 0.37 0.33 0.31 0.33 0.33 0.33 0.34 0.32
99x103 0.40 0.33 0.34 0.34 0.36 0.36 0.35 0.35 0.33 0.33 0.34 0.31 0.33 0.33 0.34 0.32 0.33
11x104 0.36 0.37 0.34 0.35 0.35 0.33 0.34 0.33 0.33 0.36 0.33 0.33 0.32 0.34 0.33 0.32 0.32
22x104 0.36 0.35 0.33 0.33 0.32 0.36 0.34 0.33 0.36 0.34 0.36 0.32 0.31 0.32 0.33 0.32 0.34
33x104 0.35 0.40 0.34 0.34 0.34 0.35 0.35 0.33 0.34 0.35 0.34 0.33 0.33 0.33 0.32 0.33 0.33
44x104 0.39 0.36 0.35 0.34 0.36 0.33 0.35 0.33 0.33 0.35 0.33 0.34 0.32 0.33 0.32 0.34 0.33
55x104 0.35 0.35 0.34 0.35 0.37 0.36 0.36 0.36 0.34 0.38 0.34 0.31 0.32 0.33 0.32 0.33 0.33
66x104 0.34 0.36 0.33 0.33 0.38 0.35 0.34 0.36 0.36 0.34 0.35 0.33 0.33 0.32 0.34 0.35 0.32
77x104 0.36 0.34 0.34 0.36 0.33 0.33 0.38 0.36 0.35 0.35 0.36 0.33 0.33 0.33 0.33 0.31 0.35
88x104 0.34 0.35 0.38 0.33 0.38 0.34 0.36 0.33 0.35 0.36 0.36 0.32 0.33 0.33 0.34 0.33 0.34
99x104 0.35 0.35 0.36 0.35 0.35 0.34 0.36 0.37 0.36 0.34 0.36 0.32 0.32 0.32 0.34 0.32 0.31
11x105 0.38 0.35 0.38 0.34 0.35 0.34 0.34 0.35 0.34 0.35 0.34 0.32 0.32 0.34 0.34 0.34 0.33
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Table B.12: Estimated communication times using query Q6 in high-bandwidth network

F \ M 1.5Kb 2Kb 4Kb 6Kb 8Kb 10Kb 12Kb 14Kb 16Kb 18Kb 20Kb 22Kb 24Kb 26Kb 28Kb 30Kb 32Kb
110 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

220 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

330 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

440 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

550 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

660 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

770 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

880 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

990 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

1 100 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

2 200 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

3 300 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

4 400 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

5 500 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

6 600 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

7 700 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

8 800 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

9 900 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

11x103 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

22x103 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

33x103 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

44x103 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

55x103 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

66x103 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

77x103 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

88x103 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

99x103 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

11x104 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

22x104 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

33x104 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

44x104 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

55x104 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

66x104 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

77x104 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

88x104 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

99x104 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4

11x105 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4 5.2e−4
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Appendix C
Iterations of MIND algorithm on different

queries

To find the best configuration F and M that minimize the communication time for a given q
query. The MIND optimization algorithm (Section 5.2) applied for each query gives the following
iterations. In these iterations, we report for each iteration: the F, M, communication cost for
current iteration (Com. time K), communication cost fro next iteration (Com. time K+1) and
the difference between the communication times in current and next iterations ((K) - (K+1)).
The input that should be introduced MIND optimization algorithm:

• The estimated size of the query result (V ) and tuple size (T ) are indicated in Table 3.3,

• weights α and β are calibrated on Q3 (Section 4.3).

The iterations of MIND optimization algorithm in high bandwidth network (10Gbps) on Q1
are presented in Table C.1.

The iterations of MIND optimization algorithm in low bandwidth network (50Mbps) on Q1
are presented in Table C.1.

The iterations of MIND optimization algorithm in high bandwidth network (10Gbps) on Q2
are presented in Table C.3.

The iterations of MIND optimization algorithm in low bandwidth network (50Mbps) on Q2
are presented in Table C.4.

The iterations of MIND optimization algorithm in high bandwidth network (10Gbps) on Q3
are presented in Table C.5.

The iterations of MIND optimization algorithm in low bandwidth network (50Mbps) on Q3
are presented in Table C.6.

The iterations of MIND optimization algorithm in high bandwidth network (10Gbps) on Q4
are presented in Table C.7.

The iterations of MIND optimization algorithm in low bandwidth network (50Mbps) on Q4
are presented in Table C.8.

The iterations of MIND optimization algorithm in high bandwidth network (10Gbps) on Q5
are presented in Table C.9.

The iterations of MIND optimization algorithm in low bandwidth network (50Mbps) on Q5
are presented in Table C.9.

The iterations of MIND optimization algorithm in high bandwidth network (10Gbps) on Q6
are presented in Table C.11.
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C. Iterations of MIND algorithm on different queries

Table C.1: Iterations of MIND optimization algorithm using Q1 in high bandwidth network
(10Gbps).

It. F M C(Fk,Mk) C(Fk+1,Mk+1) C(Fk,Mk)− C(Fk+1,Mk+1)
0 5 512 16 146.000
1 7 372 16 146.000 10 838.000 5 307.900
2 11 458 10 838.000 7 302.000 3 535.700
3 17 563 7 302.000 4 934.200 2 367.800
4 25 691 4 934.200 3 346.900 1 587.300
5 38 848 3 346.900 2 281.600 1 065.300
6 58 1 042 2 281.600 1 565.600 716.050
7 87 1 279 1 565.600 1 083.400 482.130
8 131 1 572 1 083.400 758.110 325.310
9 198 1 933 758.110 538.060 220.050
10 299 2 379 538.060 388.770 149.290
11 453 2 930 388.770 287.120 101.640
12 688 3 613 287.120 217.630 69.488
13 1 047 4 461 217.630 169.900 47.734
14 1 598 5 517 169.900 136.930 32.969
15 2 447 6 834 136.930 114.020 22.914
16 3 761 8 483 114.020 97.981 16.037
17 5 802 10 554 97.981 86.672 11.309
18 8 992 13 162 86.672 78.631 8.041
19 14 001 16 458 78.631 72.864 5.767
20 21 912 20 635 72.864 68.691 4.173
21 34 471 25 946 68.691 65.645 3.046
22 54 509 32 712 65.645 63.401 2.244
23 86 631 32 767 63.401 61.781 1.620
24 110 000 32 767 61.781 60.725 1.056

The iterations of MIND optimization algorithm in low bandwidth network (50Mbps) on Q6
are presented in Table C.11.
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C. Iterations of MIND algorithm on different queries

Table C.2: Iterations of MIND optimization algorithm using Q1 in low bandwidth network
(50Mbps).

It. F M C(Fk,Mk) C(Fk+1,Mk+1) C(Fk,Mk)− C(Fk+1,Mk+1)
0 5 512 22 576.7
1 8 766 22 576.7 15 364 7 212.7
2 11 1 143 15 363.9 10 555 4 808.9
3 17 1 702 10 555.1 7 348.5 3 206.6
4 26 2 527 7 348.5 5 209.8 2 138.7
5 39 3 734 5 209.8 3 782.7 1 427.1
6 59 5 481 3 782.7 2 829.4 953.25
7 90 7 978 2 829.4 2 191.5 637.91
8 137 11 484 2 191.5 1 763.2 428.29
9 212 16 312 1 763.2 1 474.1 289.1
10 328 22 825 1 474.1 1 277.4 196.68
11 512 31 450 1 277.4 1 142.2 135.17
12 801 32 767 1 142.2 1 059.7 82.502
13 1 259 32 767 1 059.7 1 010.3 49.444
14 1 966 32 767 1 010.3 983.27 27.028
15 2 993 32 767 983.27 972.56 10.715
16 4 269 32 767 972.56 973.14 -0.588
17 5 262 32 767 973.14 977.58 -4.437
18 5 258 32 767 977.58 977.56 0.021
19 5 260 32 767 977.56 977.57 -0.011
20 5 259 32 767 977.57 977.57 0.005
21 5 260 32 767 977.57 977.57 -0.003
22 5 259 32 767 977.57 977.57 0.001
23 5 260 32 767 977.57 977.57 -0.001
24 5 259 32 767 977.57 977.57 0.000
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C. Iterations of MIND algorithm on different queries

Table C.3: Iterations of MIND optimization algorithm using Q2 in high bandwidth network
(10Gbps).

It. F M C(Fk,Mk) C(Fk+1,Mk+1) C(Fk,Mk)− C(Fk+1,Mk+1)
0 20 512
1 30 393 4 039.400 2 712.400 1 327.000
2 45 477 2 712.400 1 828.200 884.190
3 68 583 1 828.200 1 235.900 592.240
4 102 713 1 235.900 838.850 397.090
5 153 873 838.850 572.280 266.570
6 230 1 071 572.280 393.070 179.210
7 347 1 315 393.070 272.360 120.700
8 524 1 615 272.360 190.900 81.467
9 792 1 986 190.900 135.770 55.127
10 1 198 2 444 135.770 98.354 37.416
11 1 815 3 010 98.354 72.867 25.487
12 2 757 3 712 72.867 55.432 17.434
13 4 198 4 585 55.432 43.448 11.984
14 6 409 5 671 43.448 35.164 8.284
15 9 817 7 027 35.164 29.402 5.762
16 15 093 8 724 29.402 25.366 4.036
17 23 300 10 857 25.366 22.516 2.849
18 36 130 13 545 22.516 20.488 2.029
19 56 296 16 942 20.488 19.031 1.457
20 88 162 21 250 19.031 17.977 1.055
21 138 780 26 728 17.977 17.205 0.771
22 219 600 32 767 17.205 16.638 0.568
23 349 240 32 767 16.638 16.215 0.423
24 550 000 32 767 16.215 15.898 0.317
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C. Iterations of MIND algorithm on different queries

Table C.4: Iterations MIND optimization algorithm using Q2 in low bandwidth network
(50Mbps).

It. F M C(Fk,Mk) C(Fk+1,Mk+1) C(Fk,Mk)− C(Fk+1,Mk+1)
0 20 512 5 885.9
1 30 766 5 885.9 4 009.5 1876.4
2 45 1 144 4 009.5 2 758.5 1251
3 68 1 705 2 758.5 1 924.3 834.16
4 103 2 534 1 924.3 1 368 556.33
5 155 3 749 1 368 996.79 371.2
6 236 5 516 996.79 748.9 247.89
7 359 8 052 748.9 583.07 165.83
8 550 11 636 583.07 471.8 111.27
9 848 16 608 471.8 396.76 75.037
10 1 315 23 376 396.76 345.78 50.980
11 2 052 32 425 345.78 310.81 34.975
12 3 218 32 767 310.81 290.6 20.207
13 5 055 32 767 290.6 278.57 12.025
14 7 863 32 767 278.57 272.30 6.272
15 11 840 32 767 272.3 270.23 2.074
16 16 446 32 767 270.23 270.89 -0.665
17 19 255 32 767 270.89 271.96 -1.065
18 18 724 32 767 271.96 271.73 0.225
19 19 006 32 767 271.73 271.85 -0.118
20 18 869 32 767 271.85 271.79 0.058
21 18 939 32 767 271.79 271.82 -0.030
22 18 904 32 767 271.82 271.81 0.015
23 18 922 32 767 271.81 271.81 -0.008
24 18 913 32 767 271.81 271.81 0.004
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C. Iterations of MIND algorithm on different queries

Table C.5: Iterations of MIND optimization algorithm using Q3 in high bandwidth network
(10Gbps).

It. F M C(Fk,Mk) C(Fk+1,Mk+1) C(Fk,Mk)− C(Fk+1,Mk+1)
0 40 512 2 003.700
1 57 682 2 003.700 1 353.000 650.740
2 86 889 1 353.000 905.340 447.660
3 129 1 135 905.340 612.200 293.140
4 193 1 428 612.200 410.300 201.890
5 291 1 779 410.300 278.010 132.290
6 438 2 203 278.010 188.640 89.370
7 660 2 719 188.640 128.230 60.413
8 995 3 349 128.230 88.232 39.998
9 1 501 4 122 88.232 60.280 27.952
10 2 269 5 074 60.280 42.158 18.122
11 3 433 6 249 42.158 29.318 12.840
12 5 205 7 702 29.318 20.905 8.413
13 7 907 9 502 20.905 14.997 5.908
14 12 043 11 740 14.997 10.941 4.057
15 18 394 14 528 10.941 8.196 2.745
16 28 187 18 012 8.196 6.245 1.951
17 43 355 22382 6.245 4.878 1.367
18 66 958 27 883 4.878 3.899 0.979
19 103 870 32 767 3.899 3.219 0.680
20 162 420 32 767 3.219 2.745 0.474
21 256 930 32 767 2.745 2.446 0.299
22 408 630 32 767 2.446 2.254 0.191
23 649 460 32 767 2.254 2.151 0.104
24 1 021 600 32 767 2.151 2.088 0.063
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C. Iterations of MIND algorithm on different queries

Table C.6: Iterations of MIND optimization algorithm using Q3 in low bandwidth network
(50Mbps).

It. F M C(Fk,Mk) C(Fk+1,Mk+1) C(Fk,Mk)− C(Fk+1,Mk+1)
0 40 512 3 068.2
1 60 766 2 929 1 993.05 935.95
2 90 1 143 1 993.13 1 369.1 624.03
3 136 1 704 1 369.1 952.96 416.1
4 206 2 532 952.96 675.43 277.53
5 311 3 745 675.43 490.24 185.19
6 473 5 507 490.24 366.54 123.7
7 721 8 034 366.54 283.75 82.784
8 1 107 11 600 283.75 228.17 55.586
9 1 710 16 542 228.17 190.64 37.528
10 2 659 23 261 190.64 165.1 25.539
11 4 159 32 234 165.1 147.54 17.563
12 6 539 32 767 147.54 137.32 10.221
13 10 310 32 767 137.32 131.22 6.098
14 16 124 32 767 131.22 127.98 3.24
15 24 487 32 767 127.98 126.82 1.16
16 34 505 32 767 126.82 127.05 -0.235
17 41 324 32 767 127.05 127.61 -0.555
18 40 523 32 767 127.61 127.53 0.075
19 40 940 32 767 127.53 127.57 -0.039
20 40 735 32 767 127.57 127.55 0.019
21 40 839 32 767 127.55 127.56 -0.01
22 40 787 32 767 127.56 127.56 0.005
23 40 813 32 767 127.56 127.56 -0.002
24 40 800 32 767 127.56 127.56 0.001
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C. Iterations of MIND algorithm on different queries

Table C.7: Iterations of MIND optimization algorithm using Q4 in high bandwidth network
(10Gbps).

It. F M C(Fk,Mk) C(Fk+1,Mk+1) C(Fk,Mk)− C(Fk+1,Mk+1)
0 2 512 979.97
1 3 315 979.97 657.46 322.51
2 4 404 657.46 442.51 214.95
3 7 508 442.51 298.67 143.85
4 10 634 298.67 202.3 96.369
5 15 785 202.3 137.66 64.641
6 23 969 137.66 94.235 43.422
7 35 1 193 94.235 65.018 29.217
8 52 1 469 65.018 45.319 19.698
9 79 1 807 45.319 32.006 13.313
10 119 2 224 32.006 22.984 9.023
11 181 2 739 22.984 16.848 6.136
12 274 3 377 16.848 12.659 4.188
13 417 4 168 12.659 9.787 2.873
14 636 5 152 9.787 7.806 1.981
15 972 6 379 7.806 6.432 1.373
16 1 492 7 913 6.432 5.473 0.959
17 2 299 9 837 5.474 4.799 0.675
18 3 558 12 259 4.799 4.320 0.479
19 5 531 15 315 4.320 3.978 0.342
20 8 642 19 186 3.978 3.732 0.247
21 13 572 24 101 3.732 3.552 0.180
22 21 426 30 360 3.552 3.420 0.131
23 33 998 32 767 3.420 3.323 0.097
24 54 879 32 767 3.323 3.258 0.065
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C. Iterations of MIND algorithm on different queries

Table C.8: Iterations of MIND optimization algorithm using Q4 in low bandwidth network
(50Mbps).

It. F M C(Fk,Mk) C(Fk+1,Mk+1) C(Fk,Mk)− C(Fk+1,Mk+1)
0 2 512 1 308.7
1 3 765 1 308.7 889.56 419.17
2 5 1 141 889.56 610.08 279.48
3 7 1 698 610.08 423.72 186.36
4 10 2 518 423.72 299.42 124.3
5 16 3 712 299.42 216.46 82.958
6 24 5 434 216.46 161.03 55.425
7 36 7 879 161.03 123.93 37.107
8 55 11 283 123.93 98.993 24.933
9 85 15 925 98.993 82.143 16.850
10 131 22 118 82.143 70.661 11.482
11 204 30 224 70.661 62.755 7.907
12 319 32 767 62.755 57.672 5.083
13 500 32 767 57.672 54.584 3.087
14 784 32 767 54.584 52.821 1.763
15 1 207 32 767 52.821 52.014 0.807
16 1 766 32 767 52.014 51.895 0.119
17 2 300 32 767 51.895 52.126 -0.231
18 2 433 32 767 52.126 52.209 -0.083
19 2 376 32 767 52.170 52.192 -0.023
20 2 390 32 767 52.209 52.172 0.037
21 2 406 32 767 52.172 52.191 -0.019
22 2 391 32 767 52.191 52.182 0.009
23 2 399 32 767 52.182 52.187 -0.005
24 2 395 32 767 52.187 52.184 0.002
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C. Iterations of MIND algorithm on different queries

Table C.9: Iterations of MIND optimization algorithm using Q5 in high bandwidth network
(10Gbps).

It. F M C(Fk,Mk) C(Fk+1,Mk+1) C(Fk,Mk)− C(Fk+1,Mk+1)
0 40 512 52.338
1 53 682 52.338 35.341 16.997
2 80 889 35.341 23.648 11.693
3 120 1 135 23.648 15.991 7.657
4 180 1 428 15.991 10.717 5.273
5 271 1 779 10.717 7.262 3.456
6 408 2 203 7.262 4.928 2.334
7 614 2 719 4.928 3.350 1.578
8 926 3 349 3.350 2.305 1.044
9 1 398 4 122 2.305 1.575 0.730
10 2 112 5 074 1.575 1.101 0.473
11 3 196 6 249 1.101 0.766 0.335
12 4 846 7 702 0.766 0.547 0.220
13 7 362 9 502 0.547 0.392 0.154
14 11 212 11 740 0.392 0.286 0.107
15 17 125 14 528 0.286 0.215 0.071
16 26 243 18 012 0.215 0.163 0.052
17 40 365 22 382 0.163 0.128 0.035
18 62 340 27 883 0.128 0.103 0.025
19 96 706 32 767 0.103 0.085 0.018
20 151 220 32 767 0.085 0.073 0.012
21 239 210 32 767 0.073 0.065 0.008
22 380 450 32 767 0.065 0.061 0.003
23 604 670 32 767 0.061 0.059 0.002
24 951 130 32 767 0.059 0.064 0.005
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C. Iterations of MIND algorithm on different queries

Table C.10: Iterations of MIND optimization algorithm using Q5 in low bandwidth network
(50Mbps).

It. F M C(Fk,Mk) C(Fk+1,Mk+1) C(Fk,Mk)− C(Fk+1,Mk+1)
0 40 512 72.079
1 60 766 72.079 49.109 24.525
2 90 1 144 49.109 33.795 15.315
3 136 1 705 33.795 23.583 10.212
4 205 2 535 23.583 16.773 6.8104
5 311 3 752 16.773 12.229 4.544
6 471 5 522 12.229 9.194 3.0345
7 718 8 064 9.194 7.1642 2.0298
8 1 100 11 659 7.1642 5.8023 1.3619
9 1 696 16 655 5.8023 4.884 0.91826
10 2 631 23 464 4.884 4.2603 0.62371
11 4 106 32 582 4.2603 3.8325 0.42777
12 6 440 44 632 3.8325 3.5879 0.24465
13 10 115 46 857 3.5879 3.4424 0.14548
14 15 722 48 219 3.4424 3.3672 0.07521
15 23 626 49 127 3.3672 3.3433 0.02394
16 32 660 49 497 3.3433 3.3523 -0.00907
17 37 901 48 974 3.3523 3.365 -0.01265
18 36 768 48 108 3.365 3.362 0.00303
19 37 372 48 339 3.362 3.3636 -0.0016
20 37 078 48 219 3.3636 3.3628 0.00078
21 37 229 48 278 3.3628 3.3632 -0.0004
22 37 154 48 248 3.3632 3.363 0.0002
23 37 192 48 263 3.363 3.3631 -0.0001
24 37 172 48 256 3.3631 3.363 0.00005

Table C.11: Iterations of MIND optimization algorithm using Q6 in high bandwidth network
(10Gbps).

It. F M C(Fk,Mk) C(Fk+1,Mk+1) C(Fk,Mk)− C(Fk+1,Mk+1)
0 40 512 0.00097
1 59.852 392.61 0.00097 0.00049 0.00048

Table C.12: Iterations of MIND optimization algorithm using Q6 in low bandwidth network
(50Mbps).

It. F M C(Fk,Mk) C(Fk+1,Mk+1) C(Fk,Mk)− C(Fk+1,Mk+1)
0 40 512 0.00097
1 60.118 765.713 0.00097 0.00066 0.00031
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Appendix D
Network overhead

Pictures provided in this appendix are produced from trace files generated by TCPDUMP 1 and
analysed by wireshark 2. These pictures are captured in client node (TCP layer).

1http://www.tcpdump.org/
2https://www.wireshark.org/

Figure D.1: Connexion of client node to DBMS node in TCP/IP layer.
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D. Network overhead

(a) Requested batch of F= 1.1K tuples (e.g., lines 32, 40, 47 and 54) is sent in one message of M=32KB
(e.g., lines 30, 37, 44, 51 and 58) and each M is split into four network packets (e.g., lines 34, 35,
36 and 37 constitute one M). Each DBMS response of batch (e.g., line 30 in Figure) is succeeded by
another request for batch of F= 1.1K tuples (e.g., line 32 in Figure).

(b) Requested batch of F= 110K tuples (e.g., lines 29) is sent in several messages of M=32KB
communicated in pipeline (e.g., lines 34, 40, 47, 53, ...) and each M is split into four network
packets (e.g., lines 31, 32, 33 and 34 constitute one M).

Figure D.2: Zoom on requested batches in TCP network layer.
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D. Network overhead

(a) Communication time of first message in a batch of F= 1.1K tuples and M=32KB for query
Q3 in high-bandwidth network. Recall that a batch is communicated in one data message,
which presents an expensive communication time.

(b) Communication time of first message in a batch of F= 110K tuples and M=32KB for query
Q3 in high-bandwidth network. The first message presents an expensive communication time.

(c) Cost of next messages in a batch of F= 110K tuples and M=32KB for query Q3 in high-
bandwidth network. The time for communicating not first messages in its batch is more
cheaper than the first message in its batch.

Figure D.3: Cost of first and next messages in batches in TCP network layer.
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D. Network overhead

Figure D.4: Zoom on message of M=32KB fragmented in four network packets according to
MTU (which is setted to 8.95KB).

Figure D.5: Overhead time of fragmentations of message of M=32KB into network packets
according to MTU (which is setted to 8.95KB).
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