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Abstract

Vibrational energy is an attractive power source for self-powered wireless sensors. A
mainstream harvesting technique for vibrational energy is electrostatic MEMS har-
vesters (e-VEH). Various circuit architectures have already been introduced with many
successful implementation, yet a load interface that efficiently manages the harvested
energy has rarely been reported.

In this work a load interface is proposed which is suited for any condition circuit
(CC) implementing rectangular QV cycles. In general, a rectangular QV condition-
ing circuit has an optimum interval of which the energy harvested is maximised, thus
the harvested energy should be periodically removed to maintain maximising the har-
vested energy. This is achieved through the load interface (LI). The LI proposed is a
switched inductor capacitive architecture with a LI controller allowing the extraction
of the energy in a multiple energy shot fashion. The LI controller incorporate an ultra
low power clock for switching events, as well as low power comparator for switching
decision. Power consumption is reduced by operating at a low supply voltage (1.1V).

The proposed load interface is implemented in AMS0.35HV technology with a
mixed high voltage and low power control blocks. It takes into account the harvester
operation to maximise the energy extracted from the harvester. It overcomes the con-
strained limited biasing power, and tackles resistive losses and power handling transis-
tor long channels by transferring the energy in a multiple shots fashion. A complete
CMOS implementation is proposed along with the simulation results with an average
consumed power of the controller less than 100nW allowing the system to operate with
input power levels as low as few hundreds of nanowatts.

Keywords: vibration, vibrational energy, power management, integrated circuit,
high voltage, controller, voltage regulation, switch, MEMS, capactive transducer.
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Abstract - French

Les vibrations ambiantes représentent une source potentielle d’énergie pour alimen-
tation des capteurs sans fil autonomes. La transduction électrostatique est une des
techniques utilisées pour la conversion de l’énergie des vibrations en électricité. De
nombreuses réalisations des transducteurs et leurs circuits de conditionnement ont
déjà été présentées dans la littérature. Pour transmettre l’énergie convertie vers une
charge utile (par exemple, une batterie), des interfaces spécifiques doivent être conçues.
Ce dernier sujet a été peu abordé dans la littérature.

Ce travail étudie une interface avec la charge dans un dispositif de récupération
d’énergie vibratoire. L’architecture proposée au cours de cette étude est particulièrement
adaptée aux circuits de conditionnement de type pompe de charge, qui fonctionne selon
un cycle charge-tension rectangulaire. L’interface proposée accomplit deux tâches.
Premièrement, il permet de transférer l’énergie électrique du circuit de condition-
nement vers une charge tout en abaissant la tension d’une manière adiabatique, c.a.d.,
en minimisant les dissipations. Deuxièmement, il permet de réguler le débit d’extraction
d’énergie du circuit de conditionnement en ajustant dynamiquement la puissance de
ce transfert. Cela est réalisé avec un circuit intégrée en technologie 0.35 um CMOS
haute tension dont l’architecture est inspirée d’un convertisseur DC-DC de type Buck
fonctionnant en régime discontinu. La consommation de l’interface est minimisée grâce
à l’utilisation du régime sous le seuil des transistors MOS pour pratiquement tous les
blocs, grâce à une alimentation réduite à 1.1 Volt. L’interface consomme en dessous
de 100 nanoWatts, et est capable de gérer des sources d’énergie à puissance en dessous
de 1 microWatt.
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“But man is not made for defeat” he said.
“A man can be destroyed but not defeated”.

– Ernest Hemingway, The Old Man and the Sea
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1.1 Overview

E ergy harvesting has been around since hundreds, if not thousands, of years.
Whether it was windmills, waterwheels or even the simple concept of storing
the energy from heat and vibrations. In fact, before the electrical era, energy

harvesting was the only possible way to get any useful form of energy.
Fast forward to today, the term Energy Harvesting is used to refer to extracting

energy from surrounding environment. The research behind energy harvesting has
grown wide recently and its driven by the need for autonomously power embedded
systems. Traditionally Li-ion batteries have been the go-to method for powering such
system, yet they impose certain limitations such as their lifespan and maintenance. In
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1.1 Overview

these applications, batteries proved to be inadequate and unpractical for applications
such wearable gadgets and implantable medical devices.

With the gap between the energy required to operate such devices and the function-
ality expected out of it is closing more and more with each year (mirco-watts range),
energy harvesting presents a solution to power such application. This said, energy
harvesting raises some issues that need to be addressed before it can be used. These
includes:

– Capture and transform the energy efficiently.
– How to accumulate, store and condition the harvested energy.
The issue of efficiently capturing the energy is introduced and studied extensively

within the energy harvesting community[1]. This PhD project is concerned with how
to manage the captured energy. However, before discussing our approach of how to
tackle this issue, a brief introduction to energy harvesting fundamentals is presented
in this chapter.

Motivation: A complete vibrational energy harvester system with
a self-powered energy load interface and regulated output voltage. 

Chapter 1: Background and fundamentals
of vibrational energy harvesting   

Chapter 2: State-of-Art for Electrostatic 
energy harvesters 

Chapter 3:  Proposed architecture of  e-VEH Load interface 
and multiple energy-shot transfer

Chapter 4: First implementation of load 
interface with focous on multiple enregy-shot 
transfer 

Chapter 5: Second implementation of load 
interface with focous power consumption and 
output voltage regulation 

Chapter 6: Conlcusion and Future work

Figure 1.1: Thesis chapters and outline
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1.2 Thesis Outline

The thesis outline, shown in Figure 1.1, is as follows: Chapter 1 presents the funda-
mentals of Vibration Energy Harvesters (VEH) and especially Electrostatic Vibration
Energy Harvesters (e-VEH) as well as the motivation for this PhD project. Chapter
2 highlights the recent reported vibrational harvesters and energy management inter-
faces. The methodology we present to tackle the problem of load interfacing with the
vibrational energy harvester is discussed in Chapter 3. A first approach towards a
smart energy management interface for e-VEH is proposed in Chapter 4, while an im-
proved version of the load interface addressing how to make the management interface
work autonomously is presented in Chapter 5. This work conclusion and future work
are summarised in Chapter 6.

1.3 Harvestable Energy Sources

Our surrounding environment is filled with various sources of energy that await to be
harvested. These sources share few common features such as being abundant, and
available yet free. The sources that are of interest for energy harvesting applications
can be classified by the nature of the energy harvested. These types include:

– Mechanical energy where vibration or mechanical stress/strain sources exists.
These sources could be a factory engine or a truck on a bridge.

– Thermal energy where sources of heater exists. These include industrial machin-
ery, furnaces and friction.

– Light energy this is usually implemented by solar panels that make use of direct
sunlight or even ambient light sources.

– Electromagnetic energy where source of Radio Frequency (RF) waves are used
to wireless transfer energy. This is commonly used for RFID and wireless charging of
electronic devices.

The sources of energy can also be classified by the amount of energy available to be
harvested. By defining the scale of application they can be classified into nano-watt,
milli-watt and Mega-watt applications as shown in Figure 1.2. For the application
that requires megawatt power range waterfalls and wind turbines as well as solar cell
panels are appropriate. For mid range power applications (milli to micro watts) piezo-
electric, electrostatic and electromagnetic energy harvesters from sources like vibration
are proven to be sufficient. For nano watt application the technology bound needed
to be pushed a little further towards piezoelectric nanowires and Nano-sensors. To
put this into perspective, Table 1.1 summarises the power density for each energy
source. This PhD project is concerned with micro-scale energy harvesting that is de-
rived from Micro-Electro-Mechanical-System (MEMS) devices. Targeted applications
include health monitoring wearables where a typical case is to harvest a user’s vibra-
tional energy and then use it to monitor and transmit data without the need for a
battery 1. In the next section, vibrational energy is introduced as well as its transduc-
tion to electrical energy methods.

1The health monitoring wearable is not the scope of this thesis whereas the energy management
interface is the main focus of this work.
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Mega-watt 
Applications
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watt Applications 
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Figure 1.2: Harvested energy range and application

Table 1.1: Estimated harvestable power density

Energy Source Characteristics Harvestable Power

Vibration Hz - Human
kHz - Industrial

4µW/cm2

800µW/cm3

Thermal Human
Industrial

60µW/cm2

1− 10µW/cm2

Light Outdoor
Indoor

100mW/cm2

100µW/cm2

Radio Frequency GSM 900 MHz
WiFi

0.1µW/cm2

0.001/muW/cm2

1.4 Vibration Energy Harvesting

The source of vibration energy could be any ambient kinetic energy in the surrounding
environment. It could be a car engine, a washing machine or simply a running man.
The frequency and amplitude of such source vary since they vary in their nature. Figure
1.3 shows some selected vibration spectrum from different ambient sources while Table
1.2 presents the amplitude and peak frequency of vibrations in some ambient sources.

As can be seen from Figure 1.3 the vibration spectrum spread over a range of
frequencies yet most of its power is concentrated in a narrow band of frequencies.
Moreover, Table 1.2 it is clear that the ambient vibration sources in the low frequency
range.
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Figure 1.3: Vibration spectrum of (a) human heart blood acceleration[2] (b) tire inner surface
@60 km/h[3] (c) car acceleration[4] (d) train acceleration[5]

Table 1.2: Vibration spectrum of different vibrating source [6]

Vibration source Peak acceleration Peak frequency
[m/s2] Fpeak [Hz]

Car engine compartment 12 200
Kitchen blender casing 6.4 121
Clothes dryer 3.5 121
HVAC vents in office building 0.5 60
Wooden deck with foot traffic 1.3 385
External window of a busy street 0.7 100
Washing machine 0.5 109
Refrigerator 0.1 240

1.5 Vibrational energy transduction methods

This section presents the common methods of converting vibration energy into elec-
trical energy with an emphasise what is called electrostatic energy harvesting. These
methods of converting mechanical energy into electrical energy exits, cf. Figure 1.4,
includes: Electromagnetic (EM) , Electrostatic (ES) and Piezoelectric (PE) [7–9].

Piezoelectric (PE): Consider a clamped cantilever made of two bimorph layers and
separated by a thin dielectric film and a proof mass attached its tip, cf. Figure 1.4a.
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1.5 Vibrational energy transduction methods

The mass is allowed to move freely with an external vibration are exerted on it. This
creates a strain on the piezoelectric material and separates charges across it. If the
movement of the mass is caused by a periodic vibration, an alternating voltage is
created. With rectification stage, this voltage can be captured and stored in a battery
[10, 11]. Some successful implementation of PE transducers was presented [12–15]

Electromagnetic (EM): They are based on electromagnetic induction and ruled by
Lenz’s law where an electromotive force is generated from a relative motion between
a coil and a magnet [16]. Assuming a movable coil attached to proof mass which
resonates with an external vibrating source, cf. Figure 1.4b. As the movable coil cuts
through the permanent magnetic flux it induces a current in the coil2. Electromagnetic
transduction usually requires a boost converter stage to provide sufficient voltage for
standard rectification techniques [17]. Some practical implementation was presented
in [18, 19]

Electrostatic (ES): vibration transducer is implemented by a variable MEMS ca-
pacitor, cf. Figure 1.4c. A proof mass is attached to one of the electrodes and is allowed
to resonate 3. The principle of energy conservation states that for the transducer to
transform the mechanical energy into electrical energy, an electrically-originated damp-
ing force on the moving mass should be applied to purposely reduce its kinetic energy.

Electrostatic transduction usually features high voltage with relatively low output
power (typically less than 10µW [1]). It is easier to integrate with power electronics
compared to other transduction methods [6], since it uses MEMS silicon technology.
This allows implementing the transducer along with its driving CMOS electronics on
the same wafer. A detailed survey of electrostatic energy transducers state-of-the-art
will be presented in Chapter 2.

(a) (b) (c)

Figure 1.4: Illustration of (a) Piezoelectric (b) Electromagnetic (c) Electrostatic transduction

Each of the mentioned methods of transduction has its advantages and disad-
vantages as summarised in Table 1.3. In most cases, PE and ES devices are more
appropriate for small scale energy harvesters (<1-10 cm3) while EM converters are
better for larger devices[16]. Moreover, ES converters show more potential when it
comes to monolithic integration. Electrostatic converters feature low output power
levels, yet with power electronics shifting towards ultra low power consumption, they

2The moving part can be either the movable coil or the permanent magnet.
3Electrostatic transducers can be non-resonators, yet in this context they are assumed resonant

structures.

6



CHAPTER 1. INTRODUCTION

now can be introduced as a valuable power source. This PhD project is concerned
with electrostatic transduction and thus the next section is dedicated to discussing its
fundamentals.

Table 1.3: Comparison between PE, EM and ES transduction methods

Method Advantages and Disadvantages of conversion methods
Advantages:

Piezoelectric
- high output power density[6]
- no separate pre-charging voltage source
- no need to control any gap [16]
Disadvantages:

(PE) - expensive material[20]
- hard to integrate with CMOS technology[6]
Advantages:

Electromagnetic
- high output current[20]
- long lifetime[16]
- robustness[16]
Disadvantages:

(EM) - low output voltages [16]
- low efficiency in low frequencies[16]
Advantages:

Electorstatic
- high output voltage[21]
- low cost[16]
- easy to integrate with CMOS[6]
Disadvantages:

(ES)
- requires a separate pre-charging voltage source[6]
- high impact of parasitic[16]
- need to precisely define µm-dimensions[16]

1.6 Electrostatic vibrational energy harvesters

Electrostatic Vibrational Energy Harvester e-VEH systems refer to a wide array of
architectures that aims to manage the energy harvesting process and prove a stable
constant DC voltage to a load or a buffer. In fact, a vibrational energy harvester
system can be break up into :

– The transducer interface which is the system input where the source vibration
energy is applied. This part of the system is responsible of regulating the energy trans-
duction process and accumulating the energy on to a reservoir. This part of the system
includes variable MEMS capacitors as transducers, see section 1.7, and conditioning
circuit CC, see section 1.9, section , which synchronise the energy conversion with the
capacitor variation.

This stage is chosen according to the nature of the transducer - whether it is piezo-
electric, electromagnetic or electrostatic - different implementation of these interfaces
are used. For example, piezoelectric transducer requires an AC-to-DC rectification as
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the piezoelectric transducer provides an AC output voltage. Electromagnetic trans-
ducers on the other hand require a boost dc-dc converter and rectification stages as its
transducers usually provide low AC output voltage. For electrostatic VEH the trans-
ducer is accompanied by a conditioning circuit (CC), that synchronises the energy
conversion with the movement of the variable capacitor, such as [6, 22–25].

– Power management interface This block controls the energy flow between the
transducer interface and the load interface blocks. For electrostatic vibrational har-
vesters this block is usually rarely address with most of the community research focus-
ing on the transducer interface block (either the transducer itself or its synchronising
electronics and the CCs).

– Load interface This is the output of the system, where the electrical energy is
consumed by a load. This block aims to provide the load with a stable regulated DC
voltage.

In chapter 2, the recent progress of energy management interfaces is described in
details. Moreover, this PhD work is concerned with developing and implementing a
whole system of e-VEH with focus on the energy management interface and the load
regulation.

Load 

Interface

Figure 1.5: Electrostatic vibrational energy harvester systems

1.7 Electrostatic Transducers

Electrostatic transducers are usually based on Micro-Electro-Mechanical-System (MEMS)
capacitors [1]. These capacitors are two terminal devices with one terminal attached
to a mobile proof mass while the other is fixed to a non inertial reference frame. The
variable MEMS capacitor response is described according to the direction of motion
of the external vibration exerted on the proof mass. This leads to a change in one of
the capacitor parameters, cf. Figure 1.6a, where the capacitance Cvar is expressed as,

Cvar = ε
W · l
d

(1.1)

where ε is the permittivity of the medium between the two plate (ε = εrε0 where εr is
the relative permittivity and ε0 is vacuum permittivity), W and l are the width and

8



CHAPTER 1. INTRODUCTION

the length of the parallel plates while d is the distance between the parallel plates.
It can be seen the geometry variation can be classified into: parallel movable plate,

movable dielectric and gap closing capacitor Figure 1.6. The movable dielectric geome-
try depends on varying the effective area of the dielectric material by sliding it between
the capacitor’s plate. The out-of-plan parallel electrodes geometry refers to the type of
variable capacitor where the effective parallel plate area varies. A gap-closing capacitor
operates by varying the gap between the capacitor two plates.

The most common geometry of the variable plate capacitor in the context of energy
harvesting is the gap varying capacitor [6]. For a gap-varying capacitor, equation 1.1
is reduced to,

Cvar = ε
W · l
d0 ± x

(1.2)

where x is the displacement of the movable plate as illustrated in Figure 1.6. As the gap
moves towards closer the capacitance increases. The translation of the source vibration
into a displacement of the variable capacitor movable plate can be simplified with the
aid of two frames of reference, cf Figure 1.7. First the inertial reference (global frame)
(0Y ) of which the vibration source occurs, while the second reference is a non-inertial
reference frame (0X) of attached to the source of the external vibrations.

Figure 1.6: Different transducer geometries (a) parallel plate (b) a movable dielectric (c)
out-of-plan parallel electrodes (d) gap-closing capacitors.

As the global reference accelerates with aext, one can write the 2nd Newtonian law

9



1.8 Energy conversion using variable capacitor

Figure 1.7: General vibration energy harvester system

for the non-inertial (second) reference frame, where the movable mass is subject to
an apparent force equal −maext. The principle of energy conservation states that in
an isolated system the energy remains constant over time. This means that for the
transducer to transform the mechanical energy into electrical energy an electrically-
originated damping force on the moving mass is applied to purposely reduce its kinetic
energy. In the case of parallel plate capacitor, such force is an electrostatic force which
is expressed by,

Felec = 1
2V

2dCvar
dx

(1.3)

Where V is the voltage across the parallel plate capacitor and dCt
dx is the space gradient

of the capacitance. Plugging in Eq.1.2 into Eq. 1.3,

Felec = 1
2εV

2 W · l
(d± x)2 (1.4)

This shows that the electrostatic force does not scale down with the device dimensions,
since both W · l and (d0 ± x)2 scale quadratically, whereas mechanical forces are pro-
portional to the linear dimensions of the spring and to the cube for the mass inertia
which means that electrostatic forces are too weak to be useful at the macroscale[1].
Moreover, it can be seen that this force is dependent on the voltage V and thus the
transducer mechanical behaviour can be controlled by changing biasing voltage.

1.8 Energy conversion using variable capacitor

This section discusses the energy conversion from the mechanical domain into the
electrical domain using a variable capacitor. Capturing the external vibration using
a resonator with the aid of interface circuit to induce an electromechanical feedback
force acting on the variable capacitor. For example, consider a gap-closing variable
MEMS capacitor which is exposed to an external vibration, the vibration is captured
and translated into a force acting on the capacitor movable plate. This changes the
capacitor ”physical” parameter, in this case the gap, which in turn changes the stored
energy in the capacitor. For all cases of the variable capacitors geometries the energy
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stored in the capacitor is defined as,

U = QV

2 = Q2

2Cvar
(1.5)

It can be seen that the stored energy is controlled by either the amount of the charges
or the induced voltage difference. Allowing vibrations to decrease the capacitance of
a variable capacitor while keeping its voltage or charge constant produces energy in
the form of charge or voltage, respectively[23]. These are indeed the two conversion
schemes which are used to transducer the mechanical energy into electrical energy using
a variable capacitor. The energy conversion process can either be charge-constrained
or voltage constrained. Constraining the charge generates high voltages (up to 250V)
that easily exceed the breakdown limits of standard CMOS technologies [26]. However,
constraining the voltage while allowing the variable capacitor to make use of the already
existing energy source to drive and to sink the harvested energy into it [23].

Charge-constrained: Let us consider the scenario where the charges Q on the vari-
able capacitor is forced to be fixed. Also, let us assume that the rest position of that
capacitor is where the x = 0.

The proof mass attached to the movable plate induced a displacement due to the
external vibration exerted on it. The new displacement d1 is the maximum allowed
displacement for the movable plate. This will force the capacitance of Cvar to decrease
which in turns will increase the voltage across the plate according to Q = CV . The
converted energy can be calculated as the difference between the capacitor’s final energy
state and the initial energy state as follows,

∆U = 1
2(CmaxV 2

0 − CminV 2
max) (1.6)

where Cmax is the initial capacitance value with an initial voltage of V0 while Cmin is
the final capacitance reach by the capacitor corresponding to the maximum voltage of
Vmax is reached. Given that constant charge Q0 is assumed at all time,

CmaxV0 = Q0 = CminVmax (1.7)

then the converted energy can be expressed as,

∆U = 1
2V

2
0 Cmax(Cmax

Cmin
− 1) (1.8)

Voltage-constrained: This conversion scheme assumes that the voltage is fixed dur-
ing the movement of the movable plate. Considering the rest position is when the
gap is d0 and the capacitance is at its local maximum. As the capacitance starts to
decreases the charges Q decreases following Q = CV . The converted energy can be
expressed as,

∆U = 1
2(CmaxV 2

const − CminV 2
const) = 1

2V
2
constCmin(Cmax

Cmin
− 1) (1.9)
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Q-V diagrams

The Q-V diagrams present the states of the variable capacitor at different moment in
time. This representation allows to easily estimate the converted energy per capaci-
tance variation cycle. The converted energy is given by the enclosed area of the Q-V
diagram. It is intuitive to use Q-V diagram as a graphical tool to analyse these two
conversion schemes, constant voltage and constant charge.

Charge-constrained Q-V diagram: The Q-V diagram of charge constraned scheme
is shown in Figure 1.8. The states of the variable capacitor are as follows:

– First, the capacitor Cvar is connected to a reservoir, cf. Figure 1.8a.
– Next the capacitor decreases from Cmax to Cmin forcing the voltage to increases

the energy stored in the capacitor from E to E Cmax
Cmin

. During this stage the variable
capacitor is isolated from the load, cf. Figure 1.8b.

– Finally, the variable capacitor is connected to a reservoir allowing to discharge
the harvested energy, cf. Figure 1.8c.

(a) (b)

(c)

Figure 1.8: Charge constrained Q-V diagram energy conversion cycle

Constant Voltage Q-V diagram: Figure 1.9a shows the capacitor states in a con-
stant voltage scheme. Theses states are as follows,

– First the capacitor Cvar is connected to an energy source charging it with its
initial energy until maximum capacitance Vres is reached.

– Next, Cvar is allowed to decrease while fixing the voltage using a voltage source.
– Finally, the variable capacitor is connected to a reservoir allowing to discharge

the harvested energy.
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(a) (b)

Figure 1.9: Q-V diagram for (a) Voltage constrained (b) Rectangular

For both conversion schemes the harvested energy is numerically equivalent to
the area enclosed by the QV diagram. It should be mentioned that practical imple-
mentation of these schemes is hard to be achieved precisely. This is as it requires a
synchronisation between the charge flow and the capacitance variation. In most im-
plementations, a modified Q-V cycle is adopted which is called rectangular Q-V cycle,
cf. Figure 1.9b.

To decide which scheme - charge or voltage constrained- is better, certain hypothe-
ses using the Q-V diagram must be considered. If the voltage source available initially
is greater than the achievable voltage then constant charge scheme will produce more
energy than the constant voltage. However, if the voltage equally limited in both
schemes, then the constant voltage will provide more energy.

In the previous conversation schemes, it is assumed that a certain control is imposed
to fix the charge, for fixed charge conversion, or the voltage, for fixed voltage conver-
sion. In reality this is achieved through what is called Conditioning Circuit (CC).
The conditioning circuits fundamentals and their requirements as electrostatic CC are
discussed in the next section.

1.9 Conditioning circuit

This section presents different conditioning circuits as well as their implementation.
First a basic conditioning circuit is introduced, then a primitive rectangular Q-V con-
ditioning circuit. This section concludes with what is called a series-parallel charge
pump CC, which is used for this project.

To study the conditioning circuits CC, the variation of transducer capacitance C(t)
is must be defined and fully characterised as a function of time. A main hypothesis
of the transducer capacitance is periodic with period T and having only one local
maximum and minimum (Cmax and Cmin) over this period should be emphasised [1].
In reality, because of the electromechanical coupling, the C(t) depends on the electrical
operation of the conditioning circuit can be non-periodic. However, assuming a pre-
determined C(t) is a necessary step in the to present CC operation and will be assumed
as such in the rest of this context.
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1.9.1 Basic conditioning circuit

This CC is regarded as the simplest implementation of a CC where the transducer is
connected in series with a load and a large capacitor reservoir Cres, cf. Figure1.10. This
implementation is first described in [27] to characterise an electret based transducer -
see chapter 2. In this arrangement a change in capacitance will always cause a charge
transfer between the two capacitors through the load resistance imposing work on the
load [28]. As the capacitor’s movable plate moves due to the external vibration, its

  Load 

Figure 1.10: Basic conditioning circuit

charges vary resulting in a current flow i(t) between the two capacitors through RL
which is expressed as,

i(t) = dQvar(t)
dt

(1.10)

where Q is the instantaneous charge on the capacitance. This current dissipates power
on the resistance, and this power can only come from the mechanical domain, not from
the initial charge of Cres. Indeed, the system goes back to its initial electrical state
after each periodic cycle of Cvar since the charges on Cvar and Cres are constant.

The drawback of this CC is that the load experiences an AC current with each
capacitor cycles which would require a rectification step to supplying DC loads[20].
Moreover, this CC is unable to increase its internal energy [1].

1.9.2 Charge constrained CC

Another conditioning circuit implementation which is called charge constrained CC
is shown in Figure 1.11a. This CC requires precise switching mechanism to insure
proper energy extraction as shown in Figure 1.11b 4. Charge-constrained CC operates
as follows:

– Assuming initially Cvar = Cmax and with charge of Q0. With the switches SW1
and SW2 are turned off. As the Cvar decreases by separating the plates of the capacitor
due to the external vibration source, the voltage increases as the charges are forced to
be constant.

– When the capacitance on Cvar = Cmin reaches its local minimum, the switch
SW2 is turned on, removing some charges 5 from Cvar and moving its energy into the

4Figure adopted from [29]
5 The time constant of when the capacitors is connected to the inductor is much shorter than the

vibration period.
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SW1

  
 

Load 

SW2

(a)

Vres

IL

(b)

Figure 1.11: Charge-constrained CC (a) schematic (b) switching timing

inductor in the form of an inductor current iL.

– Afterwards when Vres drops to zero and iL is maximised, the switch SW1 is
turned on and the charges removed from Cvar are placed on Cres without losses. The
capacitor Cvar moves back to its maximum value.

– The process is repeated with the overall system energy increasing.

One of the first realisations of the charge-constrained cc was introduced in 2001 by
Meninger et al; [29]. Another implementation was proposed later in 2005 by Despesse
et al; [4]. This CC requires precise switching mechanism for the CC be able to function.
In [29] a digital control was proposed with a counter and a delay line to achieve this
precise switching mechanism, see Chapter 2.
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1.9.3 Rectangular Q-V CC

Rectangular Q-V CC has two advantages over the two previous CC (i) rectangular Q-V
cc allow self-increasing of the accumulation of converted energy starting from initially
small bias. (ii) they can be implemented without external electronics to synchronise
the charge from the transducer with the mobile mass[1]. Two variations of rectangular
Q-V CC will be presented in this subsection: Charge-Pump CC and Series-Parallel
Charge Pump CC.

Charge-Pump CC

The first implementation of rectangular QV CC was introduced by [6]. It is based
on the traditional charge pump architecture and was implemented as shown in Figure
1.12.

  
 
  
D1 D2

Figure 1.12: Charge Pump Conditioning Circuit

Assuming initially Vvar = Vres = Vstore, Cvar = Cmax and both diodes D1 and D2
are turned off. The charge-pump CC operates as follow:

– As Cvar decreases, Vvar increases since the charge is kept constant.
– When Vvar is high enough to turn D2 ON, Vstore is connected.
– The charges are removed from Cvar into Cstore, dropping the voltage on Cvar. In

other words, the charges are pumped from Cvar into Cstore.
– The charges are pumped until D2 no longer is forward biased, and Cvar moves

from its local minimum value to its local maximum value, which decreases the voltage
on Cvar.

– As Cvar decreases further D1 is forward biased allowing charges to move from
Cres into Cvar.

– As Vvar increases reaching D1 is no forward biased, stopping the charge transfer.
– This process is repeated as Cvar cycles between its maximum and minimum local

values.
In sum, the mechanical vibrations have done a work on the Cvar increasing the

total energy stored in the system.
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Practical implementation of charge-pump CC

To illustrate the charge-pump conditioning circuit, a VHDL-AMS model is used to
simulate its behaviour as shown in Figure 1.13. The Charge Pump CC simulated had
the following parameters similar to the one presented in [21]:

– Initial voltage on Cres equal to Vres = 5V
– Variable capacitor Cvar varying between 100-200F.
– Reservoir capacitor was Cres = 1µF
– Storage capacitor of Cstore = 3nF.
The simulation shows that after few cycles of energy harvesting and increasing of

Cstore voltage, a saturation state is reached. To ensure continuous energy harvesting
process a mechanism by which charges from Cstore is extracted is removed from the
CC is needed. Most practical implementations of charge pumps conditioning circuits
implement some sort of feedback mechanism, where after few energy harvesting cycles
the charges are removed from Cstore and placed on Cres. This could be a resistive
flyback such as in [30] and [31], or an inductive flyback such as in [21].

0.0s 0.5s 1.0s 1.5s 2.0s

6

 Vres

 Vstore

 Vvar

0.1s 0.2s

5

6

7

8

9

Vvar

Vstore

Vres

Figure 1.13: Charge-pump CC simulation

An example of the flyback mechanism is shown in Figure 1.14 where an inductive
flyback mechanism is proposed. The flyback switching mechanism was defined by two
voltages an upper and lower bound voltages. When the upper bound is reached flyback
is activated while when the lower bound is reached flyback is turned off. The voltage
on Cstrore is periodically compared with these two voltages.

The charge-pump with inductive flyback mechanism simulated with and presented
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in [21]. The flyback is activated at V2 = 9V and deactivated at V1 = 6V using the
freewheeling diode and 15mH inductor with 31Ω winding resistance. As can be seen
from the simulation, cf. Figure 1.13, the charge-pump with the flyback mechanism is
able to maintain continuous harvesting process with self-increasing internal voltage on
Cres, unlike the CC without flyback mechanism.

  
 
  
D1 D2 SW

(a)

(b)

Figure 1.14: Charge-Pump CC with flyback (a) schematic (b) behaviour simulation[20]

This CC raises some issues when considering practical implementation such as:
– The voltage on Cres is increasing with time, and would eventually require regu-

lation to ensure that maximum energy flux is extracted with the flyback mechanism.
– Without Cres regulation, the switching events which is supplied by Cres will vary

as the voltage Vres slowly increases. This is due to the flyback mechanism slowly, but
gradually, increases the biasing conditions of the CC when charges are removed from
Cstore into Cres. In practical implementations such as [21] a periodic re-calibration
phase was proposed. In this implementation a semi-empirical calculation is achieved
to deduce and update the two switching voltages.

Series-Parallel Charge Pump

The series-parallel charge pump conditioning circuit is a modified architecture from
what is called Bennet’s doubler, which was first introduced by Queriroz et al. [32]
in 2014. It gained the interest of the electrostatic energy harvesting community as
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it is well suited with CMOS integration when the variable macroscale capacitor is
replaced by microscale MEMS capacitors. It is a new family of CCs that is capable of
exponentially increasing their internal accumulated harvested energy and the energy
converted at each cycle [1]. These CC are capable of continuous harvesting operation
through self-increasing their internal voltage.

A generic topology for series-parallel charge-pump conditioning circuits can be seen
in Figure 1.15a. It is composed of the variable MEMS capacitor Cvar and number of
voltage doubling cell. A details description of the series-parallel charge pump behaviour
is found in [1, 33–35] It is worth to mention that in practical implementation this
self-increasing of the internal voltage process actual reach a stopping point when the
electromechanical coupling becomes dominant [33, 34].

Practical implementation of series-parallel charge-pump CC

A simulation of series-parallel charge pump CC behaviour can be seen in Figure 1.15b
and 1.15c. These simulation are for a CC with Cvar varying between Cmin = 100pF,
Cmax = 180pF, N=2, C1 = 1nF, C2 = 10nF and Vvar0 = 5V. As can be seen starting
from initial low voltage invested on Cvar, the internal voltage of the harvester expo-
nentially increases as the variable MEMS capacitor transducer the mechanical energy
from vibration into an electrical energy. Moreover, the area enclosed in the QV dia-
gram with every cycle of the transducer increases with time indicating an increase in
the harvested energy.

The drawback of the series-parallel charge pump is that after few cycles the elec-
tromechanical coupling forces become dominant stopping the converted energy from
increasing. As can be seen in Figure 1.15d this behaviour of exponentially self increas-
ing the internal voltage of the CC is not exhibited in real implementation, see Chapter
3. It is evident that to keep the energy harvesting process going on in the CC, part of
the energy captured in has to be periodically extracted from the conditioning circuit.

1.10 Necessity of load interfaces

In e-VEH the harvested energy is accumulated on a reservoir capacitor, however with-
out regulation of the internal voltage of the harvester’s CC, a saturation state will
occur. If part of the reservoir capacitor energy is periodically removed this will en-
sure that the harvesting process will not reach the saturation state. The removed
energy from Cres is temporarily stored onto a buffer capacitor. This buffer capacitor
is necessary for two reasons:

– First, the reservoir capacitor can not directly supply the loads as it has to sustain
sufficient energy across it to allow the harvester to properly function.

– Second, the voltage across the reservoir capacitor is usually high to directly
interface with the load, so a step down voltage converter needs to be used.

For these reasons we proposed a load interface that transfers the energy from the
reservoir capacitor into a buffer capacitor. This interface is able to maintain maximum
energy flux from the energy harvester. It defines the amount of energy needed to be
extracted from the harvester without compromising its efficiency and transfer this
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(a) (b)

(c)

Voltage	on	Cvar

(d)

Figure 1.15: Series-parallel charge-pump CC (a) Generic topology (b) output voltage simu-
lation (c) Q-V diagram with time (d) measurement of Vvar for different excitation[34]

energy to a temporary storage to be later used to supply a low voltage load. This
interface is responsible for the following requirements to be fulfilled:

– Regulating the reservoir voltage to its optimal mode.
– A stabilised load voltage around a nominal low voltage.

1.11 Thesis contribution

This thesis is concerned with rectangular Q-V CC. It addresses the implementation
of a complete vibrational energy harvesting system as imagined in Figure 1.5. As
mentioned earlier in sections 1.9.3 and 1.10, a part of the energy accumulated on the
CC needs to be removed and stored temporarily onto a buffer capacitor.

This PhD work tackles this problem using the starting point of an optimum interval
to extract the energy from Cres [34]. We propose a method of energy extraction without
impacting the efficiency of the energy harvester. The amount of energy extracted as
well as when this energy is extracted impact on the harvesting process will be discussed
see Chapter 3. However, this function is achieved with what we call a load interface.
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This thesis introduces Conditioning Circuit Regulator (CCR) which interfaces the
rectangular Q-V CC to buffer capacitor. This CCR periodically extracting part of CC
harvested energy into a buffer capacitor. The next step is Load Voltage Regulation
(LVR) block which is responsible for regulating the output voltage within a nominal
low voltage. This thesis manuscript reports the following:

• Proposed a new ultra low power architecture for e-VEH with rectangular Q-V
CC load interface that is based on DC-DC buck converter.

• Provided an optimised mixed-signal load interface controller operating with an
input power at least 2µW.

• Proposed a low output voltage regulator for the load in conjunction with the
proposed load interface enabling a load to be periodically supplied by the e-
VEH.

1.12 Chapters summaries

Chapter 1 This chapter presents the fundamentals of energy harvesting in general.
It focuses on vibrational energy harvesting and more specifically electrostatic energy
harvester. First we summarise the different methods of transduction of vibrational
energy. Then electrostatic transduction ES advantages over other types of transduc-
tion methods are listed. These include: the high output voltage of ES, relatively low
cost, and ease of integration with CMOS. Afterwards, the three main blocks of any
smart electrostatic vibrational energy harvesters (e-VEH) is highlighted. These blocks
are the transducer interface, the power management interface and the load interface.
The transducer interface is responsible for transduction the vibrational energy into
electric energy as well as conditioning the output voltage from the transducer using
a conditioning circuit. Afterwards, the power management interface ensures that the
conditioning circuit is operating at its maximised output energy flux rate. This is
achieved by maintaining the internal voltage of the CC within its optimum interval
through periodically extracting part of the CC energy and temporary store onto a
buffer storage. The proposed buffer storage can be a rechargeable battery of a ca-
pacitor. The last block of the e-VEH is the load interface, which is responsible for
the regulated low output voltage and supplying the load the harvested energy when
available.

The rest of the chapter is dedicated to discussing the fundamentals of the electro-
static transducer, conditioning circuits and the necessity of load interfaces for e-VEHs.
For the conditioning circuit, this work incorporates rectangular QV cycle CC. Even
though the interface we propose can work with any rectangular QV cycle CC, yet the
design of interface targeted series-parallel charge pump. This is a new family of CC
with a key feature of its capability of self-increasing of the CC internal voltage starting
from relatively low voltage.

Chapter 2 In this Chapter the state-of-the-art of electrostatic energy harvesters is
discussed. An overview of the practical implementations in the last decade is presented,
distinguishing between four main steps towards what can be called a complete e-VEH.
The main characteristic to differentiate between these steps was the control electronics.
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With the research in the community shifting from developing a simple transducer, to
incorporating synchronised and self-synchronised conditioning circuit to a full system
that takes into account the optimum operating conditions of the CC as well as the load
interface. This chapter highlights the fact that a mature and smart e-VEH with both
load and energy management interfaces is still not explorer within the community.
The goal of this PhD work is to tackle this problem for a particular type of e-VEH CC
namely series-parallel charge pump CC.

Chapter 3 In Chapter 3, we describe the architecture developed within the frame
of this work. First different mechanisms which are used to transfer and manage the
energy extraction between two capacitor storage is discussed. These include dc-dc
interfaces that are capable of transferring the energy with minimum losses between
capacitors. A justification for using buck dc-dc converter is explained with the two
regulation processes that dictated by the e-VEH. The regulation process is the reservoir
voltage regulation and the load voltage regulation. The reservoir voltage regulation is
necessary to keep the harvesting processing from reaching saturation, while the load
voltage regulation is necessary for the low output regulated voltage for the load. The
reservoir voltage regulation strategies are proposed through first defining the optimum
interval of the CC internal voltage. Afterwards, the load interface control technique
is explained. For this work, the load interface control is achieved through a discrete-
time voltage control which is explained by the aide of behaviour model simulation.
Finally, one major type of losses is identified, namely condition losses. To overcome
such issue, multiple energy-shots transfer is proposed. In such scheme the energy
extraction from the energy reservoir to a buffer reservoir through a number of small shot
instead of a single shot. This maintains the interface inductor current within an upper
bound and helps mainly minimal losses during the transfer. This chapter concludes
with a VHDL-AMS behaviour model for the multiple energy-shot load interface. In
chapter 4 a transistor level implementation is proposed while in chapter 5 an improved
implementation of the LI addressing the power consumption is addressed.

Chapter 4 In this chapter the multiple energy-shot transfer is implemented in
transistor level for e-VEH load interface. This implementation promises an adequate
energy transfer technique regardless of the maximum inductor current limit dictated
by the LT switch. Moreover, a degree of modification for the switching thresholds
is proposed using an adjustable Schmitt trigger comparator that can be used to au-
tonomously adjust with the change of the optimum reservoir voltage caused by dynam-
ics of the harvester. This chapter begins by describing the technology of which the
transistor level implementation is proposed in. Justification for choosing such tech-
nology is listed. Next, the structure of the load interface implementation is described.
This implementation had three main blocks including switching decision block, clock
generator block and the switch control block. Each of the proposed blocks is described
in details through out this chapter. At the core of the LI controller is a low power
hysteresis comparator which is used to generate the required logical commands for
the LI switch, activating/deactivating the energy extraction according to the state of
the system. A sampled scaled down version of the CC internal voltage is applied to
the comparator allowing this logical command generation. Other blocks include an
ultra low power clock generator, zero-static current level shifter and a power switch.
The chapter concludes with a complete transistor level implementation of the reservoir
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voltage regulator and summary of the average power consumption of each of the LI
controller blocks.

Chapter 5 A second low power load interface is proposed in this chapter. Sim-
ilar to the first implementations it makes use of series-parallel charge pump CC as
a conditioning circuit and a mix of high voltage interface with an ultra low power
control block to maintain maximum energy harvested from e-VEH. The main focus of
this implementation was to reduce the average power consumption of the LI controller
and provide low output voltage regulation for the load. This required a modified LI
controller architectures with a new hysteresis comparator based on RS triggers. All
necessary modification required for the LI controller was carried out to reduce to reduce
the power consumption. Simulated results show that the second implementation LI
controller power overhead is less than 100nW thanks to an ultra low power RS-trigger
based comparator.

1.13 Summary

In this chapter, the fundamental of energy harvesting was introduced. A general model
of vibrational energy harvesters is presented before discussing the types of conditioning
circuits. With the main focus of this PhD project around electrostatic vibrational
energy harvester e-VEH , a complete e-VEH system is introduced with three main
blocks clearly distinguished. These main blocks general purpose is indicated, with
the target of implementing a transistor level e-VEH in the subsequent sections of this
thesis.

The next chapter summaries the recent advances in electrostatic energy harvesters
regarding both the transducers and the energy management interfaces. In Chapter 3,
the specification of the targeted e-VEH implementation is presented. Finally chapters
4 and 5 present two complete transistor level implementation for what we call smart
energy management interface for e-VEH.
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Chapter 2

State of the Art for Electrostatic
Vibrational Energy Harvesters
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2.1 Overview

I n the previous chapter the principle of electrostatic vibrational energy conversion
was discussed in details. This chapter presents a literature review on what have
been proposed by the community in the recent years.
First we discusses the approach towards using this transducers for energy har-

vesting, starting with electronics synchronising the charge flow of with the vibration
movement, moving to architecture which extract the charges moving towards a com-
plete system. Then we discuss the evolution of the vibrational electrostatic harvesters
through their different steps which unfolded in the last decade. We then conclude
with presenting our approach towards a complete energy harvesting system that can
extract, manage, regulate and deliver the energy for a load.

Before we begin presenting the survey of different electrostatic transducers, we first
distinguish between four steps starting from a simple transducer and ending up with
a complete e-VEH system.

These steps can be listed as follows,
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• Step 1: Primitive transducer, Figure 2.1a.

• Step 2: Synchronised transducer, Figure 2.1b.

• Step 3: Synchronised conditioning circuit, Figure 2.1c.

• Step 4: Complete energy harvester system, Figure 2.1d.

The rest of this chapter summarises the recent transducers advancements as well
as the energy management interfaces. The chapter is organised as follows, first the
electrostatic transducers two types (electret-free and electret-based) are discussed. A
summary of the last decade progress is presented. Next, the trends of load interfaces
are listed according to the steps presented in Figure 2.1.

2.2 Electrostatic transducer

This section summarise some of the proposed primary electrostatic harvesters which
presented either the Step 1, Figure 2.1a, or Step 2, Figure 2.1b, towards a complete
system of e-VEH. In this section we distinguish between implementations that makes
use of what is called electret transducers and electret-free transducers. The implemen-
tations are presented in chronological order, with a Table 2.1 summarising the list of
implementations. The capacitive electrostatic transducers can be classified into two
categories according to the charging method:

• Electret-free. These are transducers that requires an external source of charges
to harvest the vibrational energy. The external source provides the initial in-
vested energy for the transducer before the conversion of energy takes place.
They usually require active electronics to synchronise the movement of the ca-
pacitor with the movement of the charges[23].

• Electret-based These are transducers that uses an electret material to maintain
the charge of the electrostatic converter through time. Electrets are dielectrics
able to keep an electric field , as shown in Figure 2.2 in the form of a surface
voltage for years by trapping the charges on the surface [36].

2.2.1 Electret-Free transducers

This section presents electret-free transducers implementations. This kind of transduc-
ers requires a source of charges and thus would also require some managing electronics
to operate. Most of electret-free transducers are either implementing the scheme pre-
sented in 2.1b or 2.1c.

The first electret-free e-VEH develop as a comb based VEH was presented in 2001
by Meninger et al; [29]. This implementation presented a prototype that is capable
of delivering a 8µW of usable power. The synchronisation mechanism was based on
inductor switching as was presented in section 1.9.2. In 20103 Roundy et al. [6]
proposed an in-plane gap closing e-VEH that is capable of delivering up to 100µW/cm3

harvested power using an external vibration source with 2.2m/s2 at 120Hz. In 2005
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Figure 2.1: E-VEHs progress showing (a) Primitive transducer (b) Synchronised transducer
(c) Synchronised conditioning circuit (d) Complete energy harvester system

Despesse [37] et al. proposed an e-VEH that is able to provide harvested power of 1mW
with a 0.2g vibration source at 50Hz. It must be noted that all the previous examples
of electret-free transducers used charge-constrained scheme to harvest the energy with
inductive-switching to synchronise the energy extraction, see section 1.9.2, . In 2011
Hoffmann et al [38] developed a triangular electrode electrostatic energy harvester
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Figure 2.2: Electret-Free (Left) versus Electret (Right)

that provides higher capacitance per unit displacement 2.3a. This harvester was able
to harvest 123µJ of energy into a 20µF capacitor given a bias voltage of 15V and the
acceleration amplitude of 2ms−2. The energy was accumulated then manually release
using a wireless transmitter model that was charged to 3.5V in 5.7 minutes.

In this work, a first implementation of a simple conditioning circuit CC was intro-
duced. This CC was was a full wave rectifier and it implements in a continuous circuit
scheme using two complementary variable MEMS capacitors. This scheme of harvest-
ing the vibration energy is shown in Figure 2.1d where the transducer movement and
charge accumulation is synchronised using a CC and the energy is to a load. The load
interface was a simple full-wave rectifier which does not take into account extracting
the energy efficiently from the CC. Moreover, the energy was released with manual
triggers to the load - wireless transmitter - when enough energy was accumulated on
the buffer capacitor as shown in Figure 2.3b. Even-though this implementation was
permeative in terms of the a whole e-VEH, yet it indicated the main block necessary
to build a complete e-VEH.

(a) (b)

Figure 2.3: E-VEH presented in [38] (a) Microscopic images (b) Voltage characteristic of the
storage capacitor using a transmission module.

2.2.2 Electret-based transducers

These are variable capacitors with electret material between its plates. It has the
capability to directly transform the mechanical energy into electrical energy [1].

In 2007 Loa et al [46] developed an electret based e-VEH that operates in low
frequency. The prototype proposed in Figure 2.4a was capable of producing an output
power of 2.26µW through an output load of 40MΩ. The measurement was achieved
through at a vibrating source frequency of 60Hz.

28



CHAPTER 2. STATE OF THE ART FOR E-VEHS

Table 2.1: State-of-art for electret-free electrostatic transducer

Source Aex f Power Load Precharge Year
[g] [Hz] [µW] [Ω] [V]

Meninger [29] n/a 2200 8 n/a 5 2001
Mitcheson[39] n/a 41 0.0072 n/a 30 2004
Despesse [37] 9.36g 50 70 n/a 40 2005
Bartsch [40] n/a 1738 n/a 340kΩ 70 2007
Basset [41] 0.25g 250 0.061 60MΩ n/a 2009
Yang [42] 0.25g 63 0.39 80MΩ n/a 2010
Choi [43] n/a 5 35.3 n/a 1 2011
Hoffmann [38] 5.1g 1075 0.82 60kΩ 20 2011
Basset [44] n/a 150 2.2 5.4 30 2013
Lu [45] 2g 15 2.8 6.6MΩ 20 2017

Later in 2008, Lao et al [47] improved there prototype through using parylene HT
as the electret material and a new design that both electrodes are on the stator plate
and the rotor are in an insulator blocks coated with electret material. The device was
able to harvest a maximum output power of 17.98µW at 50Hz through a load of 80MΩ
.

(a) (b)

Figure 2.4: Schematic of energy harvester presented in (a) [46] (b) [47]

In 2009, Hoffmann et al [48] developed an electrostatic micro-generator shown in
Figure 2.5a. It is capable of extracting vibrational energy and delivering up to 1.58
µW average output power. It is packaged in 0.2cm3 volume using a modified SOI
technology developed for inertial sensors at HSG-IMIT. Experiment results highlighted
two important results:

– An optimal bias voltage where the output power is maximal exists. Thus, the
bias voltage has to be considered as a design parameter with respect to the excitation
conditions of the corresponding application [48].

– At larger excitations above a critical level the mechanical stoppers come into
effect causing the output power to flatten and weakly decrease, cf. Figure 2.5b [48].

In 2011 Choi et al [43] reported a liquid based electrostatic energy harvester shown
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(a) (b)

Figure 2.5: Electrostatic harvester presented in [48] (a) Microscopic view (b) Experimental
results showing bias voltage effect using a load resistance of 560kΩ

in Figure 2.6. The harvester a variable capacitance ranging between 10 nF and 5pf
which ensures a high capacitance ratio of 2000. It is capable of theoretical energy gen-
eration of 45.3µW at 5Hz periodic vibration excitation. The harvester uses a charge-
constrained conversion and an auxiliary voltage of 1V. overall device size was 1 cm2.

(a) (b)

Figure 2.6: Proposed device in [43] (a) a conceptual view (b) fabricated prototype[43]

In 2013 Altena et al [49] presented a method of an electret-based MEMS vibrational
electrostatic energy harvester that is capable of producing up to 175µW of power
shown in Figure 2.7. This two order of magnitude high output power is due to a
different electrical connection principle of the harvester and an optimised geometrical
configuration of the electrodes. The devices was tested under sinusoidal excitation with
acceleration of 2.5g at 1187Hz frequency and optimum load of 3.2MΩ. The electret
potential is 200V and device size of 1cm2.

In 2013 Chiu et al [50] reported an out-of-plane electret vibration energy harvester
made of Copper plates and flexible printed circuit board (FPCB). It can produce
output power up to 20.7µW with 50MΩ load. The measurement is given an external
vibration source of 110Hz and 2g acceleration. The electret potential was 400V and the
whole device size was 4cm2. Wang et al [51] developed advice of 1.43cm2 device. It is
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Figure 2.7: Left: schematic, middle: device cross section Right: Top view [49].

Figure 2.8: Proposed harvesters presented in [50]

capable of producing up to 0.15µW power when connected to external load resistance
of 13.4MΩ. The vibration source had 1g at 96Hz.

In 2014, Tao et al; develop a 3 dimensional electret based harvester that supports a
multiple vibration mode. They proposed a rotational symmetrical resonator as shown
in Figure 2.9. Electret material was charged through corona charging method and the
harvester prototype was able to produce 4.8nW of power given an external vibration
acceleration of 0.05g[52].

Figure 2.9: Schematic of the energy 3-dimensional harvester proposed in [52]

In 2015 J. Hillenbrand et al; proposed a vibration-based electret energy harvesters
with soft cellular spacer [53]. The proposed harvesters were designed to work with
acceleration of 8g to 23g and surface potentials in the 500V regime. It shows a mea-
sured harvested power of up to 8µW at 2 kHz and an acceleration of 1g. This soft
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cellular spacer design has several advantages over traditional design such as a compact
design as the harvesters is slightly larger than the seismic mass. This means that these
harvesters can operate with low resonance frequencies (< 100 Hz) and produce with
relatively high output power. Figure 2.10 shows an illustration of the proposed design
as well as the measured normalized power.

(a) (b)

Figure 2.10: Proposed e-VEH by[53] (a) schematic (b) harvested power

In 2015 Perez et al [54]; an airflow energy harvester was presented using an electret-
based conversion to turn the air flow into membrane movement and in turn into electri-
cal energy. The device proposed was implemented in 25µm thick Teflon PTFE electret
layer as shown in Figure 2.11. The device is able to harvest up to 2.1mW output power
with a 3g acceleration vibrating source with of 300Hz. The measured output was the
optimal load of 14MΩ.

Figure 2.11: Flutter-and-electret-based airflow energy harvester by [54]

Later in 2017 Tao et al [55] developed an improved version of the electret based
vibrational energy harvester. The new design was a sandwich structure MEMS that
has two opposite charged electrics integrated into a single electrostatic device. With
overall devices package of 0.24cm3 size, it generates a power of 0.22µW with a vibra-
tion acceleration of 1g with 122Hz and a load of 30 MΩ. Adopting this new MEMS
structure resulted in a direct improve of e-VEH performance compared to the per-
viously introduced model with the output voltage increased by 80.9% with an input
acceleration of 5ms−2.

Table 2.2 summarises most of the recent implementations of electret-based trans-
ducers in the energy harvesting community.
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Figure 2.12: Proposed device by [55] (a) three-plate MEMS e-VEH schematic (b) device
optical image (c) parallel-spiral-spring flexures and disk-shaped seismic mass SEM

Table 2.2: State-of-art for electret-based electrostatic transducer

Source Aex f Power Load Year
[g] [Hz] [µW] [Ω]

Boland [56] 7.1g 50 6 12MΩ 2005
Tsutsumino [57] 1.5g 20 37.7 60MΩ 2006
Lo [46] 14.2g 60 2.267 40MΩ 2007
Lo [47] 4.93g 50 17.98 80MΩ 2008
Sakane [58] 0.9g 20 700 2.5MΩ 2008
Edamoto [59] 0.87g 21 12.5 8.5 MΩ 2009
Hoffman [48] 13g 1460 3.5 560kΩ 2009
Naruse [60] 0.4g 2 40 7MΩ 2009
Jang [61] 0.7g 20 5.9 6.26kΩ 2011
Boisseau[36] 0.9g 50 50 300MΩ 2011
Altena [49] 2.5g 1187 495 3.2MΩ 2013
Chiu [50] 2g 110 20.7 50MΩ 2013
Bu [62] 2.5g 120 0.66 36.5MΩ 2013
Wang [51] 1g 96 0.15 13.4MΩ 2014
Tao [52] 0.05 66 4.80 · 10−3 60M Ω 2014
Perez [54] 1.3g 406 2100 14MΩ 2015
Tao [55] 1g 122.1 22 30MΩ 2017

2.3 E-VEH with energy management interfaces

This section discuss energy management interfaces for the e-VEH. As was shown in
Figure 2.1, we distinguish between four type of e-VEH with a key parameter to dif-
ferentiate between these interfaces is the monitoring electronics. The first step, 2.1a,
lacks any monitoring electronics that synchronise the charge movement with the in-
terface. The second step, Figure 2.1b, includes synchronising electronics allowing a
synchronised charge movement from the transducer to a load or a capacitor. The third
step, Figure 2.1c, rely on CC to autonomously accumulated the harvested charges on
a storage capacitor and uses monitoring electronics to control the energy discharge on
a load when enough energy is accumulated.
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2.3.1 E-VEH Step 1: Primitive transducer

This is the simplest implementation of the vibrational harvesters implementation where
the variable capacitor is directly connected to the load. These implementation are
usually used either characterise the MEMS transducer.

Few implementations of such interface were presented in 2009 by Paracha et al.[41],
in 2011 by Boisseau et al. [36] and in 2013 by Bu et al. [62]. In this interface the
variable MEMS capacitor is connected directly to a reservoir which could be capacitor
or a resistive load as shown in Figure 2.13. These kinds of interfaces has several
drawbacks including:

– They are not capable of synchronising efficently the charge movement with the
capacitor mechanical movement. This results in harvested energy loss [23].

– They are not able to self-increase their internal energy. This lead to eventually
stopping of the harvesting process [1].

(a) (b)

Figure 2.13: Energy extraction mechanism proposed in (a) [41] (b) [36]

2.3.2 E-VEH Step 2: Synchronised transducer

In these e-VEH interfaces the main concern is to synchronise the charge movement,
thus the interface controller relied on sensing the variable MEMS capacitor voltage to
activate the extraction mechanism, cf. Figure2.1b. Examples on such interfaces was
reported in [6, 23, 24, 29].

As can been in Figure 2.14a Meninger et al. proposed an switched-inductor in-
terface that synchronises the switching event for SW1 and SW2 with the variable
capacitor to achieved efficient energy extraction, see section 1.9.2. The drawback of
such implementation is that the controller assumes known and fixed operating con-
dition prior the harvesting process. This however is not possible when considering
harvesting energy from ambient vibration source.

In the proposed implementation by Torres et al. a load interface which precharges,
detects, and synchronises to a variable voltage-constrained capacitor was presented
[23]. The variable MEMS was an electret-free and thus required a battery which was
used as both the voltage-constraining device and precharging source. As can be seen
in Figure 2.14b the proposed interface had a state detector to distinguish between the
different states of the variable capacitor and generate the appropriate switching signals
to either extract or. replenish Cvar charges.

In step 2, the main focus was to achieve proper synchronisation of the variable
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MEMS capacitor according with the charge extraction through switches and sensing
electronics, this however was partially abandon with the adoption of self-synchronised
conditioning circuits as will be shown in step 3.

(a)

(b)

Figure 2.14: Synchronized energy extraction by (a) Meninger et al. [29] (b) Torres et al.[23]

2.3.3 E-VEH Step 3: Synchronised conditioning circuit

In step 3 most of the research of the community shifted towards investigating self-
synchronised conditioning circuits. These were CC based on charge-pump and was able
to achieve energy extraction from the variable MEMS capacitor thanks to replacing
the switches with a network of diodes.

Such interface first implementation was introduce by Roundy et al. in 2002 [6] It
relied on charge pump arrangement and later in 2004 replaced the switches with diodes,
cf. Figure 2.15a and section 1.9.3. This type of interface allowed self-synchronisation
of the charges with the variable capacitor movement, however as was shown in section
1.9.3 it suffers from saturation after few harvesting cycles. In 2005 Ben Yen et al.
[24] proposed a flyback mechanism as shown in Figure 2.15b and in 2011 Dudka et
al. [21, 63] proposed an improved version with a self-calibrated flyback thresholds. In
2011 Querioz et al.[64, 65] proposed a new CC based on Bennets doubler. It has gained
the interest of the electrostatic harvesting community since then such as [33, 66–68].
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In all of implementations proposed in Step 3, the interface control from step 2 was
replaced by improved self-synchronising CC and thus the controller electronics shifted
from monitoring the transducer to monitoring the internal voltage of the CC. The load
interface in this stage was merely addressed.

(a) (b)

(c) (d)

Figure 2.15: Self-Synchronized energy extraction showing (a) Charge-Pump by Roundy et al.
[6] (b) Charge-pump with flyback by Yen et al.[24] (c) Bennet’s doubler by [33] (b) Modified
Bennet’s doubler by [67]

2.3.4 E-VEH Step 4: Complete energy harvester system

In this step of load interfaces implementation, a whole system is considered from the
transducer synchronisation, conditioning of the voltage and load interfacing as shown
in Figure 2.1d. Only few groups have proposed a complete system as such, since
the main focus was on the harvester itself. With the transducer and its conditioning
circuits becoming more mature and fully characterised and analysed it is now most
appropriate to address the implementation of a whole e-VEH system.

One of the preliminary implementation was done by Asantha Kempitiya et al.
[25, 69] in 2013. They proposed a low power energy harvesting circuit that performs
synchronous energy harvesting on tri-plate variable capacitor. The proposed design was
a charge pump CC architecture implementing a charge constrained energy conversion.
The power IC control was implemented in AMI0.7µm high voltage CMOS process.
The overall harvester implementation was capable of generating a 308nW (at 98Hz
vibration). This implementation presented a new class of micro generators with the
potential for higher energy conversion than regular electrostatic energy harvesters.

More recent attempt for an efficient electrostatic energy harvesters is done by
Stefano et al [70, 71]. The implemented a high voltage and low power inductive
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DC-DC buck converter for e-VEH interface. The implementation was done using
TSMC 0.25µm CMOS technology and included a maximum point tracking algorithm
for matching the the internal impedance of the harvester and AC-DC converter. This
approach usually has a drawback of complex digital processing or a simple but analog
to perform the Maximum power point tracking (MPPT). The reported measured peak
end-to-end efficiency is 88% and control average power of 5000nW and does not oper-
ate under 25µW available power. An improved version of the harvester interface was
proposed later on by the same team on 2015 that is capable of operating with input
power under 1µW and with a controller average power of 500nW.

(a)

(b)

Figure 2.16: Complete e-VEH system proposed by (a) Kempitiya et al. [25] (b)Stanzione et
al. [71]
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2.4 Summary

In this chapter a summary of electrostatic energy harvesters was discussed. A distin-
guish between four chronological steps of e-VEH system was proposed. These steps
summarises the progress done towards a complete e-VEH system from a simple trans-
ducer to conditioning circuits and ending with a system employing an energy manage-
ment interface. With the recent advances in e-VEH CC it is now more challenging to
introduce a complete e-VEH system that is capable of managing the harvested power,
maintaining a maximised energy flux rate and regulating a low output voltage for a
load. In this thesis work, we propose a harvester interface as shown in Figure 2.1d, in
Chapter 3 the fundamentals of the load interface is discussed and in Chapter 4 and
Chapter 5 CMOS implementation of such interface is proposed.
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Chapter 3

Load Interface for E-VEH
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3.1 Overview

T his chapter describes the architecture developed in this thesis for interface be-
tween two energy storages: an internal capacitor of a conditioning circuit (called
a reservoir capacitor) which receives the energy converted from mechanical do-

main and a capacitor supplying a low voltage load (called buffer capacitor), cf. Figure
3.1. This interface transfers the energy of the reservoir capacitor while fulfilling the
requirement applied to this transfer (sec. 1.10) :
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– The voltage on the reservoir is regulated as required by the optimal operation
mode of the conditioning circuit.

– The voltage of the load is stabilised around the nominal low voltage.
– If the voltage of the reservoir is much larger than the voltage of the load (this is a

typical situation in electrostatic harvesters), the energy transfer should be as efficient
(lossless) as possible.

After a short review of DC-DC interfaces (sec.3.2), we present the design steps
justifying the architecture of the load interface selected in this work.

 

  
 Mechanical 

domain
Electrical 
domain

Convert
ed

energy

Resonator Conditioning
circuit

Vibration Energy Harvester

DC-DC converter

Control block

 ON/OFF sequence

Low voltage
load reservoir

 Load control

Load

SWLSWLI

Figure 3.1: Overview of the system Blocks for a e-VEH

3.2 Review of DC-DC Interfaces

A DC-DC interface generates a required DC voltage using a voltage source with a dif-
ferent DC voltage. In majority of cases, the DC-DC converters are used for the power
supply generation. According to the particular applicative context, different require-
ments are applied to them: stabilization of the output voltage (voltage regulators),
minimization of the voltage loss (Low Dropout Voltage, when the required output
voltage is comparable to the input voltage), minimization of the conversion losses...
In the case of capacitive energy harvesters, the main attention of DC-DC converter
designers is a delivery of the maximum of energy generated by the harvester to the
load, while respecting the required load operation conditions: the nominal load voltage
and the voltage regulation.

In the majority of the harvesters, the available output voltage is very low, and
the challenge is a stepping up of the output voltage (e.g., RF powering interfaces,
thermoelectric generators, miniature electromagnetic converters, etc). In the capacitive
harvesters, the output voltage is generally much higher than the voltage required by
the load. Hence a stepping down is required. Generally, it means that the harvested
energy is accumulated in a high-voltage capacitor (the reservoir capacitor), and it
must be transferred to a capacitor having a large capacitance and a low voltage (a
load capacitor).
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The circuits used for a transfer of energy between two capacitors are similar to
the conventional DC-DC converters, although their modes of operation are slightly
different. In this section, we present three types of capacitive interface: (a) Resistive
interface, which is a trivial topology, but whose analysis emphasizes the problem of
the energy transfer in capacitive networks, (b) interface based on Buck-Boost DC-
DC topology, (c) interface based on Buck topology. The section will conclude with a
justification of the choice of the Buck converter interface for this PhD project.

t=0

(a)
SW1 SW2

(b) (c)

Figure 3.2: Load interfaces (a) Resistive (b) Buck-Boost (c) Buck Interfaces

3.2.1 Resistive interface

Resistive interfaces - cf. Figure 3.2a - are the simplest form of interface allowing an
energy transfer between two capacitors. Such an interface allows to transfer energy
from a high voltage capacitor to a lower voltage capacitor, and never to the opposite
direction. The advantage of these interfaces is their simplicity. Unfortunately, the
energy transfer is done with some incompressible losses, which cannot be reduced by
any design effort.

Energy transfer between two identical capacitors: Let us assume that two capacitors
Cres and Cbuffer charged to V0 and 0. For simplicity and demonstration purposes, we
suppose them identical with capacitance C. Suppose, the goal is to transfer as much
energy as possible from Cres to Cbuffer. Initially, all system energy is stored in Cres,
and is equal to:

U0 = Ures0 = CV 2
0

2 (3.1)

When the two capacitors are connected, the charges are redistribution between them.
Since the two capacitors are identical, the charges are distributed equally between each
capacitor and their voltages become V0/2. The of energy stored in the system after
the transfer is,

Ufinal = Ures + Ubuffer = CV0
2

4 = U0
2 (3.2)

It is to be noted that the final energy of the system does not depend on the value
of the resistance, which suggest that this loss is structural, and can’t be reduced by
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a design effort, for example, by reducing the resistance of the connexion R. This is
known as capacitors energy paradox [72]. Indeed, the direct calculation of the energy
lost in the resistance R gives:

UR =
∫ ∞

0
i2RR =

∫ ∞
0

(Vres0
R

e
−2t
RC )2Rdt = CV 2

0
4 = U0

2 (3.3)

so that the lost energy does not depend on the resistance value, and so the loss cannot
be reduced by minimizing the resistance.

The situation will be even worse if Cload � Cres: in this case, the part of the energy
lost in the resistance will be close to 1− Cres/Cload.

Because of this structural loss, resistive interfaces are seldom used in the energy
harvesters. The next two interfaces presented in subsections 3.2.2 and 3.2.3 overcome
this drawback.

3.2.2 Buck-Boost DC-DC Load Interfaces

The only way to transfer energy between two capacitors without losses is to use an
inductor as an intermediate energy transfer medium. A Buck-Boost interface is the
most generic and straightforward solution for that, cf. Figure 3.2b.

The network includes the two capacitances Cres, Cbuffer, an inductor and two syn-
chronised switches - SW1 and SW2 and a some control unit generating switching
commands.

Buck-Boost Interface Operation: Let us assume the reservoir capacitor Cres is
initially charged to Vres0 , the buffer capacitor Cbuffer charged to zero, and the switches
are off. The goal of the network is to extract some predefined quantity of energy ∆W
from Cres, and to transfer it to Cbuffer. The switching events corresponding to the
Buck-Boost operation are given in Figure 3.3.

Switching on of SW1 for τ1 extracts the energy from the reservoir and transforms
it into magnetic energy in the inductor L. When the required energy is extracted from
Cres the switch states are complemented for a time τ1. The energy is transferred from
the inductor onto Cbuffer.

– After the energy transfer is completed the switches are turned off. This process
is repeated when energy extraction is needed.

The switching time τ defines the energy ∆W to be extracted from Cres. If all
the energy of Cres is required to be extracted, the time τ has to be equal to quarter
resonant period, i.e τ = π

2
√
LCres. When initially charged to zero, after the transfer

the buffer capacitor Cbuffer raises its voltage to,

Vbuffer =

Vres
√

Cres
Cbuffer

, τ = π
2
√
LCres

Vres√
LCbuffer

τ, τ < π
2
√
LCres

(3.4)

The principle of energy transfer doesn’t change if the buffer capacitor has a non-
zero initial energy. The Buck-Boost architecture allows a transfer whatever is the
ratio between Vres and Vbuffer, even if Vbuffer > Vres. This is a strong advantage of
the Boost-Buck topology, in particular, comparing to the resistive interface, where a
transfers requires Vres > Vbuffer.
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This energy transfer scheme has two drawbacks:
(a) It requires precise synchronization of the switches,
(b) The polarity of the output voltage Vbuffer is reversed with regards to Vres. This

is problematic for some applications and would require an extra regulation step.
In section 3.2.3 Buck DC-DC converters are presented as Load Interfaces that

overcome the drawbacks (a) and (b) for Buck-Boost converters. Later in section 3.6 a
method is introduce to overcome drawback (c) using multiple of energy-shot transfer.

Figure 3.3: Buck-Boost DC-DC Load interface

3.2.3 Buck DC-DC Load Interface

This section presents the operation of the Buck DC-DC converter as an interface
between two capacitors. First, the operation of Buck DC-Dc converters is introduced.
Later a justification for using Buck DC-DC converters over Buck-Boost converters in
the context of e-VEH is presented.

Buck DC-DC converter is composed on the same components as the Boost con-
verter, but in a slightly different topology, cf. Figure 3.2c (the diode playing the role
of the second switch). The Buck converter operates in two phases:

– Phase I - SWLI On: The reservoir Cres is connected to the buffer capacitor Cbuffer
through the inductor LLI initiating energy transfer from Cres to the network CbufferL.
For that to be possible, it is required Vres > Vbuffer. During this transfer, the diode D1
is reverse biased and is off. As charges flow through LLI an electromagnetic energy
gradually builds up and by the end of Phase I, and the energy removed from Cres is
partly transformed into electromagnetic energy of the inductor and partly transferred
to Cbuffer. Assuming that initially Cres and Cbuffer are charged with voltages Vres0 and
Vbuffer0 respectively, the electrical dynamic quantities of the circuit can be found from
the equation: 

Qres(t)
Cres

− Qbuffer(t)
Cbuffer

− Li′L(t) = 0
Qres(t) +Qbuffer(t) = Q0
iL = Q′buffer

(3.5)
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where, Qres(t) and Qbuffer(t) are the charge-time functions of the reservoir and buffer
capacitors respectively. By defining the governing equations (see Appendix I), the
inductor current iL is as follows,

iL(t) =

√
Ceq
L

(Vres0 − Vbuffer0)sin(ωt) (3.6)

If in this equation t is substituted by τ , the ON time of the first switch, the last
equation gives the current in the inductor at the end of the process. Obviously, the
maximum useful value for this parameter is T/4, where T is the oscillation period of
the circuit composed from L and series connection of Cres and Cbuffer.

In the context of using Buck DC-DC converters as LI, it is convenient to analyse
the LI in terms of the energies of the components.

It should be noted that most of the energy extracted from Cres in Phase I is trans-
formed into the inductor and only small part ends up on Cbuffer. If Cbuffer is chosen
such that Cbuffer � Cres, the energy accumulated on Cbuffer can be neglected.

The energy extracted from Cres in Phase I can be expressed as,

∆Ures = 1
2Cres

V 2
res0 −

(Vres0 − Vbuff0)cos(ωτ) + Vbuffer0 + Vres0
Cres
Cbuffer

Cres + Cbuffer
· Cbuffer


2

(3.7)
A part of this energy is stored in the inductor:

UL = (Vres0 − Vbuffer0)2

2
CbufferCres
Cres + Cbuffer

sin2ωτ (3.8)

If Cbuffer � Cres, the expressions (3.7) and (3.8) can be simplified:

∆Ures = 1
2Cres

[
V 2
res0 − [(Vres0 − Vbuffer0)cos(ωτ) + Vbuffer0 ]2

]
(3.9)

and

UL = (Vres0 − Vbuffer0)2

2 · Cressin2ωτ (3.10)

At the end of the phase 1, the inductor current is maximum. Its value is a key
design parameter, since it defines the sizing of the active circuits. The calculated en-
ergy UL is directly linked with the inductor current through the formula UL = LI2

L/2,
so that the current is proportional to the square of sinωτ . If τ � T , the maximum
current of the inductor is simply proportional to τ , and so can be easily controlled.

– Phase II - SWLI Off : The reservoir Cres is disconnected from Cbuffer and energy
extraction from the reservoir is stopped. However, thanks to the presence of the diode
DLI called a flyback diode, the inductor is now connected to Cbuffer. Since the inductor
is biased negatively (with regard to the current direction), the inductor reduces its
current and transfers the energy into Cbuffer. The duration of this process τ1 is at
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most the quarter of period of the LCbuffer. The precise duration depends on the ratio
between the energy in the inductor and in the Cbuffer at the beginning of the Phase II.
The value of the time τ1can be calculated from the following equation:

sin2ω1τ1 = LI2
0

LI2
0 + CbufferV 2

buffer
(3.11)

At the end of this process, all energy extracted from Cres during the phase I is
transformed into electrical energy stored in Cbuffer. We note that the total charge
of Cres and Cstore is larger at end than at the beginning of the Buck transfer cycle:
Indeed, during the phase II, the energy stored in the inductor was used to generate
(to separate) new charges on Cbuffer. On the contrary, the energy balance is fully
respected, as far as the losses are negligible.

Justification for DC-DC Buck Converters The main advantages of the Buck DC-
DC Load Interface over the Buck-Boost load interface is that, The output voltage -
Vbuffer - is in phase with the input voltage - Vres- thus no extra regulation step is
needed. The next section discuss how the Buck converter is used in the context of
e-VEHs.

Phase II

ON/OFF sequence

Phase I

(a)

Phase IIPhase I

(b)

Figure 3.4: Buck converter interface (a) Buck Load schematic (b) Switch time digram

3.3 Buck Converters as Load Interface for CCs

This section present how a DC-DC Buck converter architecture fulfils the function of
a load interface in a capacitive energy harvester, and to respond to the requirements
given in sec. 1.10. We note that the requirement of a high efficiency energy transfer
is fulfilled by the choice of the architecture, as mentioned in sec. 3.2.3. In the next
two subsections we show how the requirements of regulation of the reservoir and load
voltages is fulfilled.
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3.3.1 Reservoir voltage regulation

A voltage regulation requires a possibility to increase or to decrease the target voltage.
As explained in sec. 3.2.3, the amount of energy transferred during one cycle shown in
Figure. 3.4 is controlled by the duration of the switch ON τ pulse. Since the transfer
of energy toward the buffer capacitor decreases the voltage of the reservoir, the timing
of the switch drive controls the rate of the reservoir voltage decrease. We note that
the Buck DC-DC converter is not able to increase the reservoir voltage on its own.

The increase of the reservoir voltage is possible thanks to the energy flux coming
from the harvester. This flux is not controlled; however, the overall energy flux on the
reservoir capacitor is given by:

PCres = Pharv︸ ︷︷ ︸
uncontrolled

− PLI︸︷︷︸
controlled

(3.12)

where, PCres , PLI and Phar are the energy fluxes on the reservoir capacitor, buffer
capacitor and the harvester output respectively. In sec 3.4 control strategies to control
PLI - and in turn PCres - are discussed.

3.3.2 Load Voltage Regulation

The operation of the Buck converter transfers the energy toward the buffer capacitor,
and so tends to increase its voltage. The intensity of this flux is controlled by the switch
timing. If the switch timing is already used for the control of the reservoir voltage, this
mechanism can not be used for an arbitrary control of the buffer capacitor voltage. In
this way, the buffer capacitor receives some uncontrolled incoming energy flux, which
contributes to the increase of the load voltage.

A regulation of the load voltage is only possible if we introduce a controllable
outgoing flux. This flux is naturally implemented by the load, which consumes energy
of the buffer capacitor. However, the power of this flux is defined by the nature and
the needs of the load, and is not directly controlled, neither.

The only solution for the load voltage regulation is to introduce a control of the
load. In the most simple case, this control can be implemented by a load switch (SWL)
- cf. 3.1 - which connect the load if the Vload is in the vicinity of the nominal (desired)
load voltage, and disconnect it if the load voltage fall too low. This operation supposes
that the energy flux consumed by the load is always superior to the incoming energy
flux; in this case the average duty cycle of the SWL can fully regulate the voltage on
the load resistance [21].

Different strategies of the load voltage regulation are possible. All of them are
function of the load operation management and are tightly linked to the application
context. In addition, since the buffer capacitance is of a low voltage, the implemen-
tation of such control is not a major technical problem (some commercial ICs address
the problem of the load management, for instance, TPS22860 of Texas Instruments).
For this reason, the PhD project addresses only the problem of the reservoir-to-buffer
energy transfer with a side goal of the reservoir voltage control. The next section
presents control strategy for Buck converter to regulate the reservoir voltage.
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3.4 Reservoir Voltage regulation Strategies

In chapter one the CCs were introduced with section 1.5 highlighting the need for a
load interface to regulate the reservoir voltage. This section discusses in details how
this regulation is defined, then explains how this regulation can be achieved.

3.4.1 Defining Vres Regulation Interval

As mentioned earlier, a primary goal for the LI is to maintains the internal voltage of
the harvester - in this case Vres - within is optimum value to maximise the rate of the
harvested energy per cycle. To illustrate the harvester optimum value, we propose to
consider the measurements of a series-parallel charge pump harvester’s output voltage
shown in Figure 3.5. The measurements shows that for every set of operation condition,
their exists an optimum point of Vopt that maximizes the output energy flux. The only
way to regulate Vres to a it’s optimum value, is to know forehand the set of operating
conditions. This however is not realistic for real-life e-VEH, where some - if not all the
operating conditions - such as vibration frequency and amplitude.

Vopt

Vopt

Vopt

Figure 3.5: Series-Parallel Charge Pump CC measurements for Vres and PCres different g
with vibration frequency of 187.2 Hz, Cres = 1µF and Cstore = 2.8nF .

For this PhD we propose to adopt a range of permissible voltages rather than fixed
value of Vres, cf. Figure 3.5 grey region. The permissible voltages are chosen empirically
to satisfy the majority of the operating conditions. This range of permissible voltages
is defined by an upper Vupper limit and a lower Vlower limit on Vres.

Another advantage of adopting a range of permissible voltage rather than a single
operating point Vopt is a reduction of the frequency of the required energy transfer.
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Indeed, it takes some time to the conditioning circuit to charge Cres from Vlower to
Vupper. During this time, the load interface is idle, and only spend energy for monitoring
of the evolution of Vres. As a consequence, such an operation is more energy saving
comparing to a configuration where Vres would be maintained close to the optimal
voltage. From this point of view, the permissible interval should be defined as large as
possible. However, if the interval is too large, the system operates far from the optimal
mode during long time intervals (cf. fig. 3.5). A compromise depends on the practical
implementation of the system which defines the energy cost of Vres regulation. This
will be discussed in chapter 4 when a CMOS implementation of the system will be
presented.

Different strategy allows a regulation of the Vres voltage with use of the presented
Buck interface. The most straightforward way is to use a ”single shot” energy transfer:
when Vres reaches Vupper, the switch SWLI becomes on and the phase I of the Buck
transfer cycle starts. The τ parameter is chosen exactly so to transfer to Cbuffer the
amount of energy corresponding to decrease of Vres to Vlower. After that, the LI
interface stays idle till Vres crosses the upper threshold again. In next subsection more
detail will be given about possible strategies of regulation of Vres. Such an operation
ensures that the voltage on Vres is always within the predefined region (Vlower, Vupper
by regularly extracting the energy from Cres and by transferring in onto Cbuffer, cf.
Figure 3.6.

  
 

  On/Off sequence

e-VEH Load Interface

(a)

On Off

Vres < Vupper

Vres < Vlower

Vres > Vlower

Vres > Vupper
(b)

Figure 3.6: Buck Converter as LI of CCs (a) Vres regulation (b) state-machine diagram
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3.4.2 Load Interface Control

To achieve the regulation goal for Vres, switching commands has to be generated to
control the LI switch SWLI . This control commands can be time-controlled, voltage
controlled or a mix of the two controls. Here we discuss these options.

Time Control (TC): The switching commands is achieved through on/off pulse
sequence where the command signal duty cycle and the frequency is fixed. The on τ
and off τ1 times are predefined and fixed so to ensure the Vres variation in the predefined
interval, cf. Figure 3.7a. Such an open-loop operation can only be valid when the
harvester operates under periodic vibrating source with known and relatively stable
parameters. Since this is seldom the case in practice, a regulation feedback should be
introduced.

Voltage Control (VC): The SWLI switching commands rely on measuring Vres, cf
3.7b. In this control scheme two comparators are needed to compare Vupper and Vlower
with the Vres. Moreover SWLI switching commands has take into account the previous
state of the switch. If the current state of the switch is not know before generating
the next switching command, the SWLI can end up latching to one of the its states.
As a consequence, the switch SWLI state is controlled by a finite state automaton
presented in Figure 3.6b. A presence of a feedback on the value of Vres guarantees a
robust operation of the system.

Discrete-Time Voltage Control (DTVC) is a variant of the voltage control. In this
control strategy Vres used to control the finite state automaton in Figure 3.6b is sam-
pled in time. A clock is used to synchronise the sampling process and to activate the
comparators detecting events for the automaton operation. The sampling allows to
reduce the energy consumption of the regulation circuit, since the measurement, com-
parison and decision taking will be achieved at discrete time, and not continuously.
For this reason DTVC were adopt for this PhD project.

Vupper

Vlower

Vres

tVbu↵er

t

SWLI

(a)

Vupper

Vlower

Vres

t

t

t

Vbu↵er

SWLI

Different harvested 
energy flux rates

(b)

Figure 3.7: LI control strategies (a) Time control scheme (b) Voltage control scheme
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3.5 DTVC Control

This section describes how the DTVC is implemented to fulfil Vres regulation goals, see
section 3.4. It discuss Vres regulation phases, the requirements of the sampling clock
and introduces hysteresis comparators to generate switching commands of SWLI .

The DTVC control is composed of a sampling circuit followed by a comparator,
cf. Figure 3.8. These blocks are described in the rest of this section. However, it
is convenient to first define Vres operating phases as it gives better insight of the LI
operation.

  
 

  On/Off sequence

e-VEH 

Sampling ComparatorClock

 
 Load control

Figure 3.8: Discrete Time Voltage Control model

3.5.1 Reservoir Voltage Regulation Operating Phases

Consider the model shown in Figure 3.8. The current source Iharv models a series-
parallel charge pump CC. The model uses the following parameters: – The reservoir
capacitor Cres = 100nF is initially charged to Vin0 = 5V.

– The buffer capacitor Cbuffer is initial discharged.
– LI inductor L = 10mH with winding resistance LRLI

= 42Ω
– An ideal diode mode DLI and switches SWLI and SWL.
– The SWLI switch thresholds are Vupper = 16V and Vlower = 13V.
– The SWload switch thresholds are 1V and 1.1V.
– Iharv = 0.2µA supplying Cres with constant charge accounting for 3µW average

harvested energy flux.
The model simulation shows that energy accumulation on Cres initially takes 5.5

seconds, while its voltage rises from 5 V to Vupper. After that the first energy extraction
- which lasts for 460µs - Vres regulation repeats every 1.5 seconds as can be seen in
Figure 3.9. Three distinct phases of the e-VEH from Vres and Vbuffer regulation point
of view can be identified:

– Conditioning circuit setup : the conditioning circuit accumulate its internal en-
ergy so to reach the optimal mode of the energy harvesting. The voltage Vres increases
but there is no transfer of the energy to the load.

– Buffer setup: output (load) buffer accumulates energy in order to reach a nominal
voltage of the buffer.

– Steady State operation: the energy is converted and is transferred to the load a
nominal rate.
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Figure 3.9: Discrete Time Voltage Control Simulink model

3.5.2 DTVC Sampling Clock

The discrete time operation of the voltage regulator requires a clock. The clock fre-
quency is a critical design parameter for as it defines the voltage regulation resolution
and the power consumption. A high frequency sampling will results in accurate switch-
ing in contrast to a low frequency sampling, but it results in a higher energy cost.

It happens that the operation of the circuit has two processes having different
rates. When the switch SWLI is on during the time τ , the voltage Vres reduces
by 2 V. Although τ is not known a priori, we can consider its upper bound T/4 =
π/2

√
(LCresCbuffer/(Cres + Cbuffer) equal to 160 µs. Hence, if 5% of the precision is

required, the time resolution of the sampling must be 0.05τ which yields 8 µs for the
sampling time (a 125 kHz clock frequency).

However, when the capacitor Cres increases it voltage because of the energy har-
vesting process (e.g., with a current Iharv = 0.2µA as in the previous example), 10
seconds is necessary to increase its voltage from 6 to 8 V, and if 5% of precision is
required in the Vres definition, it is enough to have a 0.5s for the sampling period.

For this reason, practical implementation of the circuit will require two clocks: a
low frequency one for monitoring of the slow rising of Vres, and a high frequency one
for monitoring the energy extraction process during the phase I of the Buck converter.

3.5.3 Conduction losses

In the study case shown in section 3.5.2, it can be seen that the inductor current IL
reaches up to tens of mA - cf. Figure 3.9. This value is reached at the end of the time
interval τ (the phase I of the Buck converter operation). The current of the inductor is
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given by the calculations presented in sec. 3.2.3. It can be seen that the value of this
current increases with the square root of Cres. Indeed, a part of the energy extracted
from Cres is temporary stored in the magnetic field of the inductor, and it is clear that
the corresponding current increases with this capacitance.

A high current in the inductor may have significant impact on energy transfer
efficiency. Not only the switching losses increase, the technology of which the switch is
implemented sets a fundamental upper limit on the allowed inductor current (ILmax).

Loss power - resulting from ohmic losses in the power switches SWLI and the the
inductor L - can be defined as [73]. The energy cost of one Buck converter transfer
cycle due to the conductive loss is given by:

Pcond =
∫

Phases I and II

I2
L(t)RLIdt (3.13)

where IL is the instantaneous current through the inductor and RLI , and the resistance
RLI accounts for the winding resistance of the inductor as well as for the switch on
resistance. It can be seen that the power loss is proportional to square the current.
Moreover, if the current is high, the size of the transistor must be increased. In turn,
it will increase the capacitance of the switch, and will require a higher energy for the
switch driving.

Thus, in an effort to lower these losses it is more adequate to reduce the current IL.
One method to achieve that goal is to introduce multiple energy-shot transfer. The
idea is to transfer the energy ∆Ures which correspond to lowering of Cres voltage from
Vupper to Vlower not in one single Buck cycle, but in several cycles (shots). Since the
energy transferred at each shot is lower than when a single-shot transfer was used, the
maximum current is lower. This concept is explained in details in the next section 3.6.

3.6 Multiple Energy-shot transfer

This section presents what we call ”Multiple energy-shot transfer” strategy, consisting
in transferring a desirable amount of energy from Cres to Cbuffer within Each single
energy-shot transfer is done exactly as a the Buck converter transfer cycle described
in sec. 3.2.3, as a two phase process:

Phase I: In this phase, the switch SWLI is turned on, for a time ton, chosen so that
the inductor current does not exceed some predefined current ILmax . This allows a
part of the energy δU to be removed from Cres. If the current Imax is fixed, the time
ton is given by the following equation:

ton = 1
ω

sin−1
[

ILmax

Vres0 − Vbuffer0

√
L

Ceq

]
(3.14)

where, ω =
√

1/LCeq , Ceq is the equivalent series capacitance of Cres and Cbuffer, Vres0
and Vbuffer0 are the initial voltage at t = 0. The link between ton and the extracted
energy δU is given by eq. (3.7), where τ should be substituted by ton and ∆Ures by
δU .

Equation (3.14) provides an upper bound of ton which guarantees that, under given
initial voltages on the capacitors, the inductor current doesn’t exceed Imax. This upper
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bound depends as well on Vres0 −Vbuffer0 . So, the absolute upper bound of ton is given
by:

tonmax = 1
ω

sin−1
[
ILmax

Vres0 max

√
L

Ceq

]
(3.15)

i.e., when Vres0 has a maximum value, and Vbuffer0 is zero.
We note that for a given ILmax , ton .
Second Phase: This phase begins when SWLI is turned off, and lasts for a time toff.

This allows the energy accumulated on the inductor to be fully transferred to the load
capacitor. The maximum time guarantying full energy transfer toff is defined as,

toff = π

2
√
LCbuffer (3.16)

These two phases of energy transfer process is repeated until ∆U is extracted from
Cres. Both of ton and toff are chosen to be fixed and equal time needed to the energy-
shot transfer when Vbuffer = 0, since this is the only transfer where ILmax is reached.
The Vres, Vbuffer and iL evolution in a multiple energy-shot transfer are illustrated in
Figure 3.10.

VresH

VresL

Vres

Vbu↵er

Vres

Vbu↵er

VresH

VresL

iL(t)

iLmax

time

Vbu↵erL

Vbu↵erU

Multiple Shot
Single Shot

iLmax
single

multiple

Figure 3.10: Reservoir voltage Vres(t), buffer voltage Vbuffer(t) and inductor current iL(t)
illustration of multiple energy-shot transfer (solid line) single shot transfer (dashed-line)
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3.7 Load Interface Behavioural Model

To show the multiple energy-shot transfer in action, a mixed Spice/behavioural model
is introduced for the LI, as shown in Figure 3.11. The switching decisions are im-
plemented by a hysteresis comparator modeled with a Spice macromodel. A current
source mimics the influx of a harvested energy as a constant charge intake on capacitor
Cres whose voltage has a constant is maintained within the predefined limits Vlower
and Vupper. The model is simulated with the ADMS tool of Mentor Graphics with the
results shown in Figure 3.12.

This results shows a practical case illustrating the advantage of using the multiple
energy shot transfer over a conventional single shot transfer. If an optimum Vres
interval is defined by 10V < Vres < 20V , and given that Cres = 1µF , Cload = 20µF
and L = 15mH, the energy to be extracted so to drop Vres from VresH to VresL is
150µJ .

Assuming initially the buffer is at Vbuffer = 3.3V , with a single-shot transfer, the
inductor current can reach up to 120mA, according to Eq. 3.6. However, if for some
reasons the current must be limited to 15mA, this constraint can be satisfied with the
multiple-energy shot operation: as shows the simulation in fig. 3.12b, the energy is
transferred with 6 cycles (shots) and the current IL never overpass 15mA.

  
 

  On/Off sequence:

e-VEH 

Comparator

 
 Load control

VHDL-AMS Model

VHDL-AMS

Disconnected

Figure 3.11: Multiple Energy-Shot transfer LI VHDL-AMS model

3.8 Strategy of CMOS implementation

In the next two chapters, a CMOS implementation is proposed for the LI adopting
the multiple energy-shot transfer mechanism. First an appropriate cmos technology
is chosen to implement the LI controller. Second to be able to achieve a complete
e-VEH system we shifted our attention towards implementing a multiple energy-shot
controller. For this first implementation an external voltage source was assumed to
be available to supply the LI controller. Moreover, the load voltage regulation was
postponed for the next stage. After the compilation of the first implementation, power
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Figure 3.12: VHDL-AMS model of multiple shot energy transfer showing inductor current
iL(t), reservoir Vres(t) and load Vload(t) voltages with design parameters L = 10mH, Cres =
1µF , Cload = 20µF , VresH

= 6V , VresL
= 5V , Iharv = 2mA, ILmax

= 15mA, ton = 25µs and
toff = 160µs where (a) 0s < t < 1s and (b) 44ms < t < 47ms.

consumption assessment was overtaken to analyse each block of the loads interface
controller. This design is presented in Chapter 4.

With the main energy consuming blocks identified we shifted our attention towards
implementing self powered load interface. In this second implementation we included
the load voltage regulation block and targeted a self-power LI controller. This design
is presented in Chapter 5.

3.9 Summary

This chapter presented DC/DC buck converters as load interfaces for e-VEH. We
showed how hysteresis comparator can be used to generate the proper switching com-
mands for the LI and shred light on the need for two switching modes - idle and
switching modes - for the to operate. Moreover, multiple energy-shot transfer was
introduced to as an intuitive method improve the LI transfer efficiency and to keep
the LI current within the technology limits. In the two following chapters, two CMOS
implementations of the multiple energy-shot transfer strategy will be proposed.
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Chapter 4

First Implementation of Load
Interface System
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4.1 Overview

T his chapter presents a first implementation of the load interface (LI) for vibra-
tional energy harvesters. As introduced earlier in pervious chapters, the goal
is to implement a load interface that acts as an intermediate stage between the

CC and the load. This load interface maintains a maximised harvested energy rate
and uses a dc-dc buck converter to supply a low voltage buffer capacitor, which in
turns periodically supply a load.
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The first architecture developed in the PhD project accomplishes the goal of max-
imising the harvested energy and achieves the multiple energy-shot transfer, by imple-
menting the architecture of Figure 3.8.

This implementation of the Load Interface LI we present here addresses the reser-
voir voltage Vres regulation. The Vres regulator system-level approach discussed in
Chapter 3 is broken down to sub-block. Each block works in coordination with the
other to generate the switching commands of the LI switch, with the global goals
mentioned in Chapter 1 as key motivation behind this first implementation. Later
in the Chapter 5, more goals are added to the list including optimising the power
consumption and addressing the regulation of the load voltage.

This chapter is organised as follows: First the CMOS technology used is presented,
then the LI design parameters are discussed. Afterwards, the LI control blocks are
designed in transistor level. Finally we conclude with a complete transistor-level sim-
ulation of the system.

4.2 AMS 0.35µm CMOS Technology

In this PhD project, the technology used to implement Load Interface Controller in
transistor-level is H35 of AMS, which is a 0.35µm CMOS technology providing high
voltage devices. It is a technology optimized for complex analog and mixed signal cir-
cuits operating with voltages up to 120V. The H35 technology has two poly-silicon lay-
ers and four metal layers, cf Figure 4.1. It provides a variety of high voltage transistors
as well as standard low voltage transistors, as in the standard low voltage technology
C35. It is a mature technology that comes with a design kit (Hitkit) reliable enough
for ”first time right” designs.

Figure 4.1: Cross section view of the AMS-0.35µm technology [74]
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Table 4.1: CMOS 0.35µm H35B4D3 technology specifications

Technology 0.35µm H35B4D3
Number of Masks 27
Substrate Type p-type

Maximum Die Size 2cm · 2cm
Poly layers 2 High Resistive Poly

Metal layers 4 Thick Metal
Metal Type Aluminum

POLY1/POLY2 Current Density 0.34/0.2 mA/mum
High Resistive Poly Current Density 0.07 mA/µm
Metal (MET1,2,3) Current Density 0.67 mA/mum
Thick Top Metal Current Density. 3.35 mA/mum

Capacitor Types MOS, PIP
Gate Oxide Capacitance 4.54 fF/mum2

Vth of 3.3V NMOS/PMOS Typical +0.59V/− 0.72V
Core Cells 300 Standard Digital Cells

Periphery Cells A/D LV, HV and Floating LV
Supply Voltage 3.3V, 5V, 20V, 50V, 120V

Temperature Range From−40C/+ 125C
Special Features High Performance

Analog/Digital/HV Process

This technology is appropriate for sensors and energy harvesting applications due
to its reliability and low power consumption thanks to its low leakages transistors. It
is a perfect choice for the load interface control we propose as it provides the required
high and low voltage transistors, as well as MIM capacitors). The core transistors
provided within ams 0.35µm technology is based on thin-gate oxide 3.3V transistors
with a minimum channel length L of 0.35µm. Moreover the process family includes
a 5V and 20V gate options with a mid-oxide and thick oxide gates for both transis-
tors. The high voltage transistors have several limitations that can severely affect the
analog design such as they require a longer channel length L which results in higher
ON channel resistance RON and higher gate charge QG. The consequence is a higher
power dissipation because of significant conduction and switching losses. This must
be taken into account for a refined final design. Another important element in energy
harvesting applications is on chip capacitors. These can be achieved by the two avail-
able polysilicon layers (Poly1 and Poly2). They are layouted as Poly1-Insulator- Poly2
(PIP) capacitor or CPOLY capacitor which occupy less area then MOS capacitor of
the same capacitance value, yet they suffer from higher resistive losses. A summary of
the technology parameters are shown in Table 4.1 and Table 4.2.

4.3 First implementation of Load Interface

In this first implementation of the load interface only the reservoir voltage regulator
is considered. The capacitors (Cres & Cbuffer), inductor and the diode are discrete
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Table 4.2: High voltage transistor parameters of AMS H35B4D3

Paramater NMOS50T PMOS50T
Oxide thickness Tox [m] 7.575 · 10−9 7.66 · 10−9

Oxide capacitance Cox [F/m2] 4.555 · 10−3 4.506 · 10−3

Electron mobility µ [m2/V · s] 0.039 0.0128
Vth [V] 0.47 0.63
Vgs,max [V] 3.3 3.3

components, cf. Figure 4.2. It must be notice that the reservoir capacitor Cres is a
part of the harvester’s CC and for the LI design perspective it is predefined by the
CC. The Cbuffer is chosen 20 times larger to serve as the buffer and eventually as the
power supply for the LI. The first LI implementation has the parameters summarised
in Table 4.3.

  
 

  
e-VEH CC 

 Load control

LI Control 

first implementation 
of the load interface

first implementation Off-chip component

Figure 4.2: Load Interface showing off chip blocks

Table 4.3: Design parameters of the load interface first implementation

Element Value Note
Cres 1µF harvester capacitor
Vresopt 5V < Vresopt < 6V optimum interval
Cbuffer 20µF temporary buffer capacitor
ILmax 15mH load interface inductor
Eharv < 5µ W input energy flux
VDD 3.3V LI control supply
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4.4 Structure of the implemented load interface

As explained earlier, the design presented in this section focus on implementation of
the load interface achieving only the regulation of the reservoir voltage Vres. The
designed circuit is composed of three blocks: switching decision block, clock select
block and switch controllers block as shown in Figure 4.3. In this section we specify
the operation of each of these three blocks.

  
 

  

e-VEH 

 
 Load control

Comparator
Divider

Switch DecisionSEL1

COMP

Switch Driver

On/Off 
Sequence:

CLK1
MUX II

Switch Control

COMP

MUX I

CLK1

CLK2

Clock Generator

SEL1

COMP

Figure 4.3: Load interface architecture implementing the Vres regulation

1. The Switch Decision block: The role of this block is to generate a binary signal
enabling (when the output is ’1’) the transfer of energy from Cres to Cbuffer. It
is composed of a voltage divider and a hysteresis comparator.
The switching decision is achieved in two steps:

– First Vres is sampled and scaled down by a voltage divider (as Vres is higher
than the VDD voltage of the comparator).

– Second, the sampled downscaled version of Vres is introduced to a hysteresis
comparator with the thresholds corresponding to the downscaled Vres optimal
interval VresH and VresL .
More precisely, the comparator outputs ’1’ when:

• Vres > VresH ,
• Vres > VresL and Vres decreases.

The ’1’ level at the output of the comparator initiates the generation of the SWLI

control signals.
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For the reasons explained in section 3.5.2, the reservoir voltage Vres is sampled
using one of two sampling frequencies correspond to the two modes: an accumu-
lating mode and a transfer mode, cf. Figure 4.4. The accumulating mode is when
Cres is accumulating energy from the harvester (SWLI is OFF), it correspond to
a slow variation of Vres and hence to a low sampling frequency, while the transfer
mode is when Cres transfers ∆W to Cbuffer (SWLI is On), it corresponds to a
fast variation of Vres and hence to a high sampling frequency.

Accmulating Mode

Transfer Mode

Figure 4.4: Energy Transfer Modes

2. The clock generator: is composed of a multiplexer MUXII and two clocks (a high
frequency fH clock CLK1 and a low frequency fL clock CLK2). The output of
the switch decision block (the comparator output) controls the path selection of
the multiplexer. According to the mode (accumulation or transfer modes), the
block generates a high frequency or a low frequency clock.

The high frequency clock is set to frequency of 1/(ton + toff), while the low fre-
quency clock is chosen to reduce power consumption for when LI is accumulation
mode. The time ton is the time for a single energy shot - see section 3.6.

3. The Switch Control block: This block produces the switching signal for the switch
SWLI . This block is composed on the multiplexer MUXII generating the required
switch state, and on the switch driver, which converts the logical switch state to
physical signal required for the switch driving.

When the COMP signal is zero (the accumulation mode), the switch must be
off and the MUXII block generates zero. When the COMP signal is high (the
transfer mode), the switching signal is the same as the high frequency clock
(CLK1). Note that the use of CLK1 for the switching synchronises the energy
transfer with the sampling of Cres voltage.

This architecture has previously been modeled with a behavioural model at a high
abstraction level in section 3.7. The next sections present its design at transistor level
in CMOS process AMSH35 technology.
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4.5 Switch Decision Block

The transistor-level implementation of the Switch Decision block is shown in Figure
4.5. It is responsible for initiating the switching decision commands and is break up
into two sub-circuits:

– Voltage divider.

– Hysteresis comparator.

The thresholds for Vres regulations were chosen to be Vupper = 6V , Vlower = 4.8V .
The proposed architecture allows an adjustment of these parameters through either
changing the division factor or the thresholds of the comparator if another optimum
interval is targeted.

The next two subsections discuss the transistor-level implementation of these two
blocks.

Voltage Divider

Adjustable Schmitt Trigger

VDD

VDD

Figure 4.5: Switching Decision block showing the voltage divider and an adjustable Schmitt
Trigger comparator
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4.5.1 Voltage Divider

An energy efficient voltage division is achieved using MOSFET divider. It is imple-
mented by N stages of diode-connected high-voltage NMOS transistors connected in
series. The division factor is equal to N-1. To allow a sampling of Vres, two switching
transistors MN1 and MN2 are added with an enable signal SEL1 (cf. fig. 4.3). The
enable signal SEL1 is generated from the switching control block, which will be pre-
sented in section 4.7. The timing of the sampling process is defined by the clock CLK1
of the switch control block.

To design the voltage divider one must take into account the trade-off between
the static and dynamic power consumption. The static power consumption is defined
by leakage current of the divider when the transistors MN1 and MN2 are off. The
dynamic power consumption is due to the direct current from V DD to the ground and
to the charging of the capacitive load connected to the output of the divider, Cdiv. In
sum the voltage divider design must find a trade-off for the following features:

– Low static power consumption: through a high off resistance Roff of MN1 thus
minimizing the static current.

– Low dynamic power consumption: through low Ron for both of MN1 and MN2
thus allowing fast charging of the readout capacitance Cdiv.

With the aid of DC analysis, the minimal size of transistors MN1 and MN2 is found
as shown in Figure 4.5 to provide minimal ON current through the divider. The DC
analysis of the voltage dividing along with the leakage current is shown in Figure 4.6.
With the division factor N set to 5, a voltage sweep of the input shows that the voltage
can be divided in a linear manner by the voltage divider - up to 10V - as well as a
maximum current of 2.3µA.
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Figure 4.6: Voltage Divider Current DC analysis
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4.5.2 6T Comparator overview

The comparator shown in Figure 4.7a is implemented based on [75], and is called 6T
Schmitt-trigger comparator. It is composed of two symmetric circuits each defining
upper Vupper and lower Vlower thresholds. The hysteresis gap is defined by sizing
the transistors MC1 and MC3 for Vlower, as well as PC1 and PC3 for Vupper. The
transistor sizing was concluded to the shown in Figure 4.5 setting Vlower ≈ 1.2V
and Vupper ≈ 1.5V with Vadj = 3.3V , cf. Figure 4.7b. The comparator operation is
described in details in the next subsection.
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Figure 4.7: 6T Comparator (a) Schematic (b) Transfer function

4.5.3 6T Comparator Analysis

Assuming initial conditions Vin = 0, which in turns defines the output initially as
Vout = VDD. It follows that MC1, MC2 and PC3 are off, while MC3, PC1 and PC2
are on at this state. Moreover, the two PMOS transistors PC1 and PC2 at this stage
provides a DC path from VDD to Vout.

Considering the upper threshold part of the circuit, cf. Figure 4.8, as the Vin starts
to increase above VthMC1 MC1 begins to switch ON. This leads to Vx is gradually
being pulled to the ground. However, at this stage MC3 is still OFF, since Vout is
High (VDD), and thus try pull Vx to V DD− VthMC3 . When Vin increases further and
exceeds MC2 VthMC2 , MC2 turns ON. This pulls Vout to ground, consequently turning
MC3 OFF which in turn pulls Vx fully to ground. This voltages defines the upper
threshold of the 6T comparator VH .

Nevertheless, considering the upper part of the Schmitt tigger at this stage, where
Vout is LOW, PC3 is turned ON, while PC1 and PC2 begins to turn OFF cutting the
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DC path of VDD.

Considering the IDS current equations when both MC1 and MC3 are ON and MC2
is OFF, the drain current IDMC3 flows into the drain current IDSMC1 , thus IDSMC1 =
IDSMC3

βMC1
2 (VGSMC1 − V thMC1)2 = βMC3

2 (VGSMC3 − VthMC3)2 (4.1)

which follows,

βMC1(Vin − 0− V thMC1)2 = βMC3(VDD − Vx − VthMC3)2 (4.2)

However, as Vin and MC2 start to switch ON, then VH can be defined as, cf. Figure
4.9,

VH = Vx|Vin=VH
+ Vth2 (4.3)

Now substituting using Equation 4.3 into Equation 4.2 and taking into account
that MC2 and MC3 are tied together at the source (i.e VthMC2 = VthMC3 and any
increase in the threshold voltages of these two caused by the body effect is the same),
then,

βMC1
βMC3

= W1L3
L1W3

= ( VDD − VH
VH − VthMC1

)2 (4.4)

thus,
VH = VDD + αVthMC1

1 + α
(4.5)

where

α =
√
βMC1
βMC3

When the 6T comparator fully switches state, transiting from low to high, MC3 is
turned OFF while MC1 and MC2 are turned ON. It is worth to mention that, at
this stage PC3 is now turned on while PC1 and PC2 are turned off. Since, the high
threshold voltage that switches MC2 on, is not the same voltage that would completely
turn PC1 and PC2 off. This means that at this transition of the output from High to
Low, a current path from VDD to ground is created causing a current leakage.

Similar analysis can be conducted to define the lower threshold VL. If Vin is arbi-
trary assumed high (VDD), thus MC1, MC2 and PC3 are ON, while PC1, PC2 and
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Figure 4.9: Transition of Vx with Vin increases

MC3 are OFF which follows that output is LOW. As the input starts to fall from VDD
towards the grounds, PC2 starts to turn ON, which in turns pulls Vy up towards VDD.
However, since PC3 is ON, it tries to keep Vy to ground ( ≈ −VthP 3). As the input volt-
age drops further, a second threshold is reach that would switch PC1 On. Just before
PC1 is turned on, only the current flow from PC2 into PC3, or IDSP C2 = IDSP C3 .

βPC2
2 (VSGP C2 − V thPC2)2 = βPC3

2 (VSGP C3 − VthP C3)2 (4.6)

which in turns,
βPC2

2 (VDD − Vin − V thPC2)2 = βPC3
2 (Vy − VthP C3)2 (4.7)

However, the input voltage that turns PC1 ON defines the lower threshold voltage VL,

VL = Vy|Vin=VL
+ VthP C1 (4.8)

but since VthP C1 = VthP C3 , then
βP2
βP3

= WP2LP3
LP2WP3

=
[ VL
V DD − VL − VthP C2

]2 (4.9)

Thus, the low threshold voltage can be defined as,

VL = ξ

1 + ξ
(VDD − VthP C2) (4.10)

where,

ξ =
√
βPC2
βPC3

(4.11)

As was shown, the threshold voltage can be adjusted by sizing both MC1 and MC3
for VH and PC2 and P3 for VL.
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4.5.4 Adjustable 6T Schmitt Trigger Comparator

An adjustable hysteresis gap, cf. Figure 4.10, is achieved adding two cascoding MC4
and PC4. Both the low VL and high VH threshold can be relaxed -thus changing the
hysteresis gap - by adjusting VadjL and VadjH as shown in Figure 4.10a . The MOS
transistor sizing is concluded to the shown values setting the lower threshold VL ≈ 1.2V
and the upper threshold VH ≈ 1.5V with VadjH = VadjL = 3.3V .

The adjustable 6T thresholds versus Vadj are shown in Figure 4.10b. The VH can
be adjusted from 1.3V to 1.5V while the VL from 0.8V to 1.2V.
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Figure 4.10: 6T Comparator with adjustable thresholds with 3.3V VDD
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The power consumption can be reduced with scaling down of VDD to 1.1V . Again,
the thresholds can be adjusted as shown in Figure 4.11. The thresholds can be adjusted
in a linear fashion by sweeping VadjH or VadjL. They can be adjusted independently
as proposed here or complementary by tying Vadj and VadjL together. This low supply
implementation of the 6T comparator with adjustable threshold is not used for this
first implementation, yet in it was developed to the serve for the second implementation
when the power consumption of the controller is addressed.
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Figure 4.11: Comparator thresholds VH and VL versus Vadj with 1.1V VDD

4.6 The clock generator

This block is responsible for selecting the clock pulses according to the mode of opera-
tion - the Accumulating Mode and Transfer Mode. It includes two clocks and enabled
multiplier as shown in Figure 4.3. One of two clocks is selected according to the output
of the switch decision comparator. This section discusses the clock generator design.

Clocks CLK1 and CLK2 are generated with an ultra low power clocks generator
implemented as shown in Figure 4.12. The generator is a relaxation oscillator inspired
by [76]. The two clocks are of frequencies fH = 5 kHz and fL = 1.25 kHz for the fast
and slow switching respectively.

The clock generator is composed of four blocks:
– Proportional-To-Absolute Temperature PTAT Voltage Reference
– Comparator
– Pulse generator
– A Self Biased Current Source SBCS
The clock pulses are generated as follows, First, the SBCS provides a constant

current to charge CCLK and biases the PTAT. The PTAT voltage reference generates
a DC voltage Vref which is constantly compared with the CCLK voltage. This voltage
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Vref can be expressed by,

Vref = KBT

q
ln

[(w/l)MC2
(w/l)MC1

)
]

(4.12)

where, KB is Boltzmann’s constant, T is the absolute temperature and q is the electron
charge.

As the voltage on CCLK increases reaching Vref the pulse generator is triggered.
The pulse generator then generates a reset pulse discharging CCLK . This allows the
charging process to repeat resulting in a sawtooth VCLK with a period of TCLK . This
period can be expressed as,

TCLK ≈
CRVref
IB

(4.13)

where Vres is the voltage reference generated from the PTAT voltage reference - cf.
Figure 4.12.

It must be noticed that the output clock signal CLK is generated by a toggle
flip flop which receives the reset pulses at its input and generates a 50% duty cycle
signal with half the frequency of the sawtooth signal. The VDD for the two clocks is
3.3V and the comparator capacitor CCLK is 0.5pF and 2.9pF for the fast (5kHz) and
slow (1.25kHz) clocks respectively with the rest of the design parameters summarised
in Table 4.4a. 1 A detailed analysis and design for the Self-Biased Current Source
(SBCS) is presented in Appendix I.

The multiplexer MUXI multiplexer is a standard cell element assuring from the
digital low voltage library of the Design Kit H35.

1This clock design is later on modified to decrease the power consumption using a lower VDD of
1.1V in the next chapter.
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Figure 4.13: Fast and Slow clock outputs

Element Width [µm] Length [µm]
MC1 4 4
MC2 4 32
MC3 0.4 0.4
MC4 0.4 0.4
MC5 15 0.35

(a) Clock generator MOS parameters

Element Name Library
INVC1 INV0 CORELIB
INVC2 INV0 CORELIB
GC1 NOR20 CORELIB
GC2 NOR20 CORELIB
GC3 TFC1 CORELIB

(b) Standard Cell Gates
Element Value Note
IB 100 pA Generated by SBCS
Vref 70mV Generated by PTAT
CCLK1 0.5pF Fast Clock 5kHz
CCLK2 2.9pF Slow Clock 1.25kHz

(c) General Design Paramaters

Table 4.4: Design parameters for the two clock generators

4.7 Switch Control Block

The switch control block presented earlier in Figure 4.3 is responsible of generating
the power switch SWLI control commands, see section 4.4. It is composed of:

– Multiplexer - MUXII.
– Switch Driver which includes:
(a) Time delay (b) Edge Detector (c) Flip-flop gate driver
– Flip-Flop level shifter.
– Power Switch - SWLI .
This section is dedicated to the transistor level implementation of the switch control

block.
The MUXII, which allows an activation of the switch driver, is a standard gate cell

identical to MUXI.
The architecture of the switch driver is motivated by the following consideration.

Using AMS 0.35µm technology, the high voltage transistors can stand high voltages
up to 50V between the source and the drain electrode, yet the gate voltage is limited
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Figure 4.14: Switch Control Block

to a low voltage of 3.3V 2 - with respect to the bulk. If PMOS transistor is to be used,
the gate voltage is has to be referenced to the source voltage, which is connected to
Vres in our design. Thus, to be able to operate the PMOS gate the control command
should swing between Vres and Vres − 3.3V . However, since all the controlling block
of the LI controller operates in low voltage (e.g 3.3V) a level shifting stage is needed.
This level shifting is performed using a dynamic flip-flop level shifter, cf Figure 4.15.

Thus the LI switch must compose of [21]:
– The high-side PMOS transistor operating in triode mode when on.
– The level-shifter LS block translating a low-voltage enable pulse so to generate

on or off gate voltage referenced to Vres.
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Figure 4.15: Power switch with a level shifter to operate its gate commands

4.7.1 Power Switch - SWLI

The switch MSW was developed by a previous PhD student - Andrii Dudka [21] and
is slightly modified to suit our design. The PMOS switch MSW

3 is triggered to Vres
for its Off state and Vres − 3.3V for the On state using a level-shifter to raise the low
trigger voltage into this necessary voltages.

2Later this block is adjusted to operate with lower trigger voltage of 1.1V (Chapter 5)
3A PMOS transistor is driven with a voltage level lower than the highest potential in the circuit. In

contrast, using a NMOS switch would require to generate a voltage above the higher voltage, adding
complex and energy consuming blocks to the design.
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The power switch MSW is designed to withstand current up to few tens of milli-
ampere and also to have a low on resistance. This is achieved through maximising the
W/L ratio. With a minimum length of L = 1µm dictated by the technology constrains,
the width of MSW is chosen to be 1000µm and the on-resistance is 39Ω [21].

4.7.2 Dynamic flip-flop level shifter

This dynamic flip-flop level shifter was first introduced by [22]. It uses two capacitors
to maintain the set Cset and reset Crest state of the flip flop, cf. Figure 4.16. This is
achieved through two controlling pulses to charge either the state-storing capacitors
Cres or Crest according to the required state. Depending on the input at which a pulse
is applied (”on” or ”off”), one of the output nodes - set or reset - is connected to Vres or
Vres − 3.3 respectively. The change in states is achieved by charging the state-storing
capacitors through the bias currents Ib.

Through using series of forward-biased didoes, the voltage drop at the output
node Vout is limited. However, these diodes usually exhibit losses through junction
capacitance in reverse bias which contribute to gradually losing the stored state in the
capacitors Cset and Crest, due to charge sharing. This leads to a decrease in Vout of the
flip-flop which is the gate driving voltage for the power switch MSW . This in turns will
increase the on resistance of the power switch, leading to higher energy consumption.
To overcome charge sharing problem Dudka et al; [21] proposed to introduce two
switches on’ and off’ to isolate the Cres from Crest when flipping the state. This is
achieved through synchronised yet shorter pulses matching the on and off controlling
pulses, cf. Figure 4.16, through SW3 and SW4 switches.

The transistor level implementation of the flip-flop and the power switch MSW are
shown in Figure 4.17. The switches SW3 and SW4 are implemented using current
mirrors that allow to disconnect Cres and Crest earlier as the transition from high-to-
low happens for the trigger pulses on the switches MN1 and MN2. This technique
replaces the need to implement a synchronised SW3 and SW4 switches, as does not
require additional control signals on’ and off’ and hence presents a more simple and
less power-consuming solution [21]. Moreover, exploiting transistor gate capacitance
allows the replacement of the two capacitors Cset and Creset by the gate capacitances
of the transistors MP4 and MP5, though a proper sizing.

– The set capacitor is equivalent to the gate capacitance of MSW and MP4 and is
calculated by,

Cset ≈ Cox
[
(WL)MSW

+ (WL)MP4
]

= 4.7pF (4.14)

– The reset capacitor is the MP5 gate capacitance and is calculated by,

Creset ≈ Cox
[
WL

]
MP5 = 0.55pF (4.15)

– The charging current of for the set and reset capacitors has to be independent
on Vres. It is supplied through MN1 and MN2 respectively. Both MN1 and MN2 are
designed to operate in saturation region with IdMN1,2 = 2mA, and the ratio of W/L =
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Figure 4.16: (a) Dynamic flip-flop voltage level shifter [21]. (b) Voltage diagram of the
proposed level shifter switching levels
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Figure 4.17: High Side power switch developed in AMS 0.35µm technology
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30/4 4. This is calculated from,

IdMN1,2 = 1
2µnCox

[
W

L

]
MN1,2

(VgsMN1,2 − Vth)2 (4.16)

with transistor parameters listed in Table 4.2. The value of Vgs,MN1,2 are determined
by the voltage drop on two series diode connected transistors MP1 and MP2. Together
MP1-MP2 and MP1-MP3 provide a voltage drop of -2.8V.

– The time needed for both the on and off triggers is the time needed to charge the
set and reset capacitors to their Vgs and can be calculated by,

ton = Cset · Vgs,MN4
IdMN1

, toff = Cset · Vgs,MN5
IdMN2

(4.17)

The ton and toff are set to 50ns and are triggered using gate flip-flop gate driver
block, see section 4.7.3. Moreover the frequency and the duty cycle of the trigger pulses
are defined by other elements of the switch control block, namely the MUXII and the
time delay element, as will be explained in the next subsections.

4.7.3 Switch Driver

The gate driver generates the switching commands to SWLI as shown in Figure 4.18.
As can be seen, the clock pulse CLKI is with 50% duty cycle which is used to generate
the switching pulse. Generating SWLI command depends on the implementation of
the switch itself. The SWLI is controlled through a flip-flop level-shifter that flips its
state through low voltage pulse command. This means precise triggering command is
needed to flip the state of SWLI with a distinction between two pulses ton and toff ,
subsection 4.7.1.

The output of MUXII is used to trigger the flip-flop level shifter high, while a
delayed version of the output is used to flip it back low. This is explained in details in
the rest of this subsection.

CLKI

o
n

o
ff

Figure 4.18: Switch Driver command to SWLI

4Later this ratio will be increase to allow for 1.1 pulse to operate the level shifter
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Edge Detector

The rising edge detector senses the low-to-high transition of MUXII output. This
is achieved through comparing MUXII output with an AND gate of an inverted and
delayed version of MUXII output. The duration of the pulse that is seen on the output
of the AND gate is defined by the RC delay. A 50ns output pulse of the edge detector
is achieved though a 50KΩ and capacitance of 1pF with both implemented on chip.

Figure 4.19: Rise-edge detection circuit for SWLI command generation;

Gate Driver

To drive the two transistors responsible for flipping the state of the level-shifter MN1
and MN2, cf. Figure 4.20, an inverting gate drive is used. This gate driver amplify the
switching command from the MUXII. This is achieved through three series inverters
stages. Each stage has an increased size as shown in Figure 4.20. It must be notice
that the first inverter is a part of the rising edge detector.

Vin MN1,2 
Gate

Figure 4.20: Level shifter gate drivers for MN1 and MN2

Time Delay

Time delay block is used to generate a delayed version of the flip-flop level shifter on-
trigger. This delayed trigger is the low pulse of the level shifter. It is necessary for the
multiple energy shot transfer. Recalling section 3.6, the energy transfer is achieved in
a multiple energy shot. With each on pulse followed by an off pulse by a time constant
that defines the energy shot. Since this time constant - energy shot time - is constant,
it is defined by an integrated RC circuit.
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4.8 Simulation Results: First Implementation

The load interface controller transistor level implementation was simulated with the
design parameters of:

– Inductor L = 10mH and the maximum allowed current ILmax = 15mA.
– Reservoir capacitor Cres = 1µF.
– Optimum interval for VreS between VresH = 6V and VresL = 5V.
– Buffer capacitor Cbuffer = 20µF.
– The timing of the switch is ton = 25µs and toff = 175µs.
– For this simulation the input energy flux is assumed to be much greater than in

real application, Iharv = 2µA. This will reduce the simulation time. It must be noticed
that the load interface control is not impacted with the input energy flux at this stage,
since its supply voltage is assumed to be an standard voltage supply of 3.3V.

The simulation shown in Figure 4.21a is for 5 seconds operation. A zoomed plot
shows the details of the multiple energy-shot transfer of energy from Cres to Cbuffer,
Figure 4.21b. As can be seen the maximum inductor is indeed fixed to less than 15mA,
with each successive energy-shot transfer having lower max current. This is due to that
in each energy-shot transfer the buffer voltage is increased by the pervious energy shot
transfer.

The main goal for this implementation was to present a transistor level imple-
mentation of LI where the energy is extracted from the CC Cres, and dumped into a
intermediate storage Cbuffer. Moreover, multiple energy-shot transfers was adopted to
increase the transfer efficiency, see chapter 3. At this stage no load is connected nor
load regulation was considered, as power consumption optimazation was first needed
for the LI blocks.

The average total power consumption of each block is shown in Figure 4.22, with
the switch and comparator consuming the largest average power of the LI. The average
power consumption of each block is presented with an overall power consumption of
2.1µW for 5s operation .

This however pushes the boundaries for the energy consumption of the LI controller,
and leaves the load with barely any energy. Thus, in the next chapter, we tackle the
blocks of the LI controller which consumes most of the energy, mainly the comparator.
Moreover, the next goal would be to implement a semi-autonomous system that is
capable to operate with just an initial charge to its harvesters and buffer capacitors.
Thus, load regulation block must be addressed in the next step of the system design.

4.9 Summary

This chapter presented the main blocks for the intimidate LI block including the LI
controller. This block is responsible for regulating the internal voltage of the CC, Vres
, through regularly extracting the energy from the CC into a buffer capacitor Cbuffer.
The energy extraction is achieved through first defining the mode operating for the LI,
and then generating sequences of command pulses that controls the LI switch SWLI ,
which allows the energy to be extracted in the form of multiple energy-shot transfer.

The LI was fully proposed in transistor level using ams 0.35 µm high voltage tech-
nology H35B4D3, with the LI controller being fully integrated in CMOS. The goal of
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Figure 4.22: The average power of each LI block simulated over 5 seconds

maintaining Vres within its optimum region was met through using a hysteresis com-
parator that has its hysteresis gap fitted to the optimum interval of Vres. A degree
of freedom with the thresholds was introduced through proposing adjustable thresh-
olds of the comparator. A transistor level simulation showed that the LI controller
consumed around 2µW of average power in 5s of operation

In the next chapter we tackle the power consumption problem, proposed a buffer
voltage regulation block and introduce a semi-autonomous system that operates with
only charges in the CC and the buffer capacitor.
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5.1 Overview

T his chapter presents an improved version of the Load interface in terms of
power consumption and load voltage regulation. First we investigate the power
consuming elements of the design presented in Chapter 4, then we introduce

alternative implementations for these elements which ends up reducing the overall
power consumption.
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Second, a load voltage regulator is introduce to periodically supply a load with a
regulated voltage. Finally, the autonomy of the system is test by self-supplying the
reservoir capacitor voltage regulator and the load voltage regulator using the buffer
capacitor.

The improved system address the following goals:
– Lowering the power consumption of the LI controller.
– Stablilized the load voltage around the nominal low voltage.
– Improving the energy transfer efficiency.
In addition to the implementation presented earlier in Chapter 4 goals which in-

cluded:
– Regulating Vres to optimal operation mode of the conditioning circuit.
– Stepping down of Vres since to supply the load.
The implementation presented in Chapter 4 suffered from few short comings that

needed to be improved upon to decrease the overall power consumption of LI controller
aught.

These short comings, which are summarised in Figure 5.1, include:
– High losses in comparator conduction current when switching states.
– Two clocks working in background regardless of the operating mode.
– Standard supply voltage source of 3.3V which is separated from the LI controller.
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Figure 5.1: First implementations drawbacks
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5.2 Second implementation modification

The LI modified controller, shown in Figure 5.2, can be summarised in the following
points:

– First the supply voltage is reduced from 3.3V to 1.1V which allowed quadratically
reduction of power.

– The diode-connected voltage divider where replace by two off-chip resistances for
the voltage divider. This allowed the elimination of Vres sampling process.

– To ensure energy is transferred in precisely defined shots a safe-clock gating block
is used.

– Load voltage regulation is added allowing the buffer capacitor to supply the LI
controller with the required supply voltage.

Gated-Clock

  
 

  

e-VEH 

 
 Load  Voltage Regulation

Comparator
Divider Switch Driver On/Off 

Sequence:

On/Off 
Sequence:

CLK1
COMP

RS-Trigger

Figure 5.2: Modified Load Interface system blocks

First, the improved implementation is examined in terms of the power consumption
with no load voltage regulation. Then the load voltage regulation implementation is
proposed and a full transistor level simulation is presented. To distinguish between the
two regulating block through out this chapter the reservoir regulation block is called
condition circuit regulator CCR, while the load voltage regulator is called LVR.

5.3 Comparator Modification

In the first implementation presented in chapter 4, the main power consuming block
was the 6T hysteresis comparator. This is due to the direct current path it provides
between VDD to ground when switching states. A first attempt to reduce this power
consumption was to reduce the VDD required to power up the comparator. This
however reduced the adjustable range of the comparator’s thresholds, cf. Figure 4.11
due to scaling down the supply voltage to values comparable to the transistors threshold
voltage (see Table 4.2). To further reduce the power consumption of the comparator,
we adopted another comparator design based on RS triggers.
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5.3 Comparator Modification

5.3.1 RS-Trigger based Hysteresis Comparator

A low power implementation of the Hysteresis comparator is the RS-Trigger based
comparator shown in Figure 5.3a. It was first reported in [77, 78]. The design was
later improved upon in [79] as shown in Figure 5.3a. These hysteresis comparator
circuit proved to have a very well defined hysteresis gap and is well suited for low-
voltage and high speed applications. However the drawback of such circuit was that
logical threshold voltages are fixedly designed. Later in this chapter, we present an
adjustable threshold implementation of the RS-trigger based comparator.

5.3.2 RS-trigger hysteresis comparator operation

The RS-trigger comparator is composed of two inverters INV1 and INV2. These
two inverters have two different inverting points VH and VL. The outputs of the
two inverters connected to a NAND RS-Trigger where the output of VH inverter is
connected to the SET terminal of the RS-Trigger and the VL is connected the RESET
terminal. The transition of each switching event can be seen in Figure5.3b.

INV1

INV2

Vout

INV3

RS Trigger

(a)

INV1

INV2

Vout

INV3

Vin

VH

VL

(b)

Figure 5.3: RS Trigger comparator (a) schematic (b) switching transition

The operation of the RS-trigger comparator can be explained as follows:
– Assuming the input voltage is initially zero. The output of INV1 and INV2

are both high, while INV3 is low. Thus the RS trigger set is high, and reset is low
rendering the output of the comparator high.

– As the input voltage increases and reaches the first triggering voltage VL the
lower inverter INV2 is trigger to switch to low which in turns triggers INV3 high. The
high threshold inverters keeps its high state. The RS trigger is now subjected to both
high set and reset, forcing the comparator output to keep its previous high state.
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– As the input voltage increases further and reaches the high trigger voltage VH
for high inverter INV1, INV1 changes its state to low. Still both INV2 and INV3 keep
their pervious state. The RS trigger input at this stage is low set and high reset, thus
the comparator output is now flipped to low.

– Now, when the input voltage starts to decrease, the first inverter to switch its
state will be the high comparator INV1, flipping back to high when the input voltage
decreases below VH . The input of the RS trigger now will be high set and high reset
which again force to comparator to keep its pervious output low state.

– Finally, when the input voltage falls below the triggering voltage of INV2, INV2
switch state which in turns forces INV3 to flip from high to low. The input to the RS
trigger now would be high set and low reset, rendering the output of the comparator
to flip again to high.

It must be noticed that, since by definition the upper threshold VH is always higher
than the lower threshold VL, the illegal state of the RS-Trigger (Set=0, Reset=0) is
granted not to occur.

5.3.3 RS-trigger comparator design

The design of the RS-trigger thresholds is achieved by defining the logical thresholds
for the inverters INV1 and INV2 through defining the inverters’ aspect ratio. If a
supply low supply voltage of 1.1V - which is comparable to the threshold of the CMOS
transistor used - powered the inverters, the triggers threshold are defined by [77],

VM = VTn + r(VDD + VTp)
1 + r

(5.1)

where r =
√
kp/kn , kp = µpCox

[
W
L

]
p

, kn = µnCox
[
W
L

]
n
, VM is the inverter trigger

point and VTn and VTp are the threshold voltages for the nmos and pmos transistors
used for the inverter [77].

The inverter trigger point is weakly sensitive to the variation of the transistor’s
aspect ratio, especially when the ratio of the supply voltage to the transistor threshold
is small. This gives the RS-trigger comparator the advantage of being less sensitive
to fabrication process variation. However, this comes with the cost of larger die size
especially when adjustable threshold RS-comparator is proposed later in section 5.3.5
.

5.3.4 Comparing 6T and RS-trigger comparators

To compare between the two comparators architectures, 6T and RS-trigger, in terms
of power consumption a test-bench is set up for both comparators where both are
implemented in ams 0.35µm technology. Both designs will target the same switching
triggers and thus the transistors dimensions will be updated accordingly. Moreover,
the length size of all transistors in both architectures are kept equal. The power supply
for both architectures examined are low supply voltage of 1.1V.
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5.3 Comparator Modification

6T comparator testbench

A testbench is set for the 6T comparator similar to the one presented in chapter 4, cf.
Figure 4.7. The transistor sizing is concluded to the summarized value shown in Table
5.1. These will set the lower threshold VL ≈ 200mV and the upper threshold VH ≈
680mV . The simulation results are shown in Figure 5.4. Figure 5.4a shows the input
voltage changes between 0V to 1.1V, the output of the comparator being triggered at
different upper and lower triggering voltage and the instantaneous consumed power. It
can be seen that the transition does not happen instantaneous at VM . This drawback
allow a direct current path when changing states, especially when transition from high
to low, see section 4.5.3.

Table 5.1: 6T comparator transistor sizing

CMOS Width(µm) Length (µm)
MC1 1 10
MC2 2 10
MC3 0.5 10
PC1 3.5 10
PC2 1 10
PC3 3 10
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Figure 5.4: Simulation of 6T comparator (a) Transient Response (b) Transient response
presented as a parametric curve of input-output along with the instantaneous power

RS-trigger Comparator

A similar testbench is build for the RS-Trigger comparator with identical thresholds
targeted to match with the 6T comparator where VL ≈ 200mV and VH ≈ 640mV .
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The MOS sizing were concluded to the values shown in Table 5.2. The comparator is
subjected to the same input single. The transfer characteristic is shown in Figure 5.5.

Table 5.2: RS-Trigger CMOS sizing

Element CMOS Width (µm) Length (µm)

INV1 MN 0.35 10
MP 100 10

INV2 MN 0.35 10
MP 0.5 10

INV3 MN 0.35 10
MP 0.5 10
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Figure 5.5: Transient response presented as a parametric curve of input-output along with
the instantaneous power simulation for RS-trigger comparator

Energy consumption of 6T and RS-trigger comparator

To illustrate the superiority of the Rs-trigger comparator over the 6T comparator, the
energy consumed in two transitions - high-to-low and low-to-high - is calculated for
the pervious testbenches. The energy consumed is calculated for duration interval of
200µs with results shown in Table 5.3.

The results shows almost 4 times reduction in the consumed energy between the
two comparators under the same operating conditions. This lower energy consumption
justifies the adoption of the RS-trigger comparator over the 6T comparator. The rest
of this chapter is dedicated to discuss the modification required for LI controller that
allows the adoption of this comparator.

5.3.5 Adjustable RS-Trigger comparator

This section presents a method to allow a degree of freedom to the RS-Trigger com-
parator fixed thresholds. As described in 5.3.3, the threshold of the comparators are
defined through the aspect ratio of the transistors forming INV1 and INV2. These
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Table 5.3: Energy for Single ON and OFF switching

Comparator Energy (Joules)
6T 1.89 ∗ 10−12

RS 0.503 ∗ 10−12

are thus fixed once the chip is fabricated. What we propose is adding a number of
folded inverter design for these inverters that can be activated with external enable
signals when needed allowing to modify the effective aspect ratio of the transistor. A
self-adapting thresholds is not the focus of this work.

An adjustable RS Trigger comparator as shown in Figure 5.6 through external en-
able commands a0 & a1 for the lower threshold. The principle behind this adjustability
is to change the effective equivalent width of the transistor.

Consider only a lower adjustable threshold two cascaded inverters are introduced.
These inverters are composed of two main transistors N0 and N1 as well as two enabling
transistors NE0 and NE1. The sizing of N0, N1, NE0 and NE1 are summarized in the
Table 5.4. This arrangement allows a dynamic range of almost 100mV.

VDD

Vin

a0 a1
NE1NE0

N1N0

Ninv

Pinv

Vout

VL
a0
a1

Vin

INV1

INV2

Vin
VH

VL

VoutINV3

V ′
out

RS Trigger

a0
a1

Figure 5.6: Adjustable inverter switching point

Table 5.4: Adjustable Inverter Sizing

CMOS Width (µm) Length (µm)
N0 10 0.35
NE0 0.5 0.35
N1 100 0.35
NE1 0.5 0.35

Table 5.5: Adjustable Vlower

State VlowerV
a0=0, a1=0 453mV
a0=1, a1=0 400mV
a0=1, a1=1 365mV

A test-bench was setup for to test the adjustable lower threshold for the RS-
comparator as been from the transfer characteristic shown in Figure 5.7. It demon-
strates that the dynamic adjustable range for the lower threshold is 100mV from 350mV
to 450mV with a 50mV step set by the two bit control a0 and a1. This however comes
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at the cost of power consumption as can be seen from Figure 5.8 which shows the
transit response of the adjustable RS-trigger comparator along with the instantaneous
power consumption.

VL
a0
a1

Vin

Figure 5.7: Adjustable lower threshold switching point

In the practical implementations this can be adopted to provide an adjustable
threshold that can be controlled externally when needed. The rest of this chapter is
dedicated to present an improved version of the LI in terms of the power consumption.

5.4 The CCR comparator

The internal voltage of the harvester Vres is regulated to its optimum interval by
CCR Controller. By fitting the hysteresis gap of COMP1 comparator to a scaled
down version of Cres optimum interval a switching decision. This comparator for the
CCR replaces the 6T comparator in the previous implementation, yet serves the same
purpose of generating the switching decisions described in section 4.4.

The sizing of COMP1 transistors are shown in Figure 5.9, with the standard NAND
gates with both pull-up and pull-down transistors minimum size to ensure fast transi-
tion (0.35µm

10µm ).

5.5 High side power switch - SWLI

The high side power switch - shown in Figure 5.10 is composed of a level shifter based
on zero-static current analogy flip-flop topology level shifter and a high voltage PMOS
pull-up transistor presented earlier in Chapter 4. The level shifter flip flop holds its
state through the two capacitors Cset and Creset. These capacitors are formed by the
gates of the high voltage transistors MP4 and MP5. The Cset represented the total
capacitance of the gates of MP4 and MSW, while Creset is the gate capacitance of MP5.
The on and the off signals are handled by the two NMOS transistors MN1 and MN2.
They flip the state of the flipflop through either charging Cset or Creset to Vres− 2.8V .
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Figure 5.10: Power Switch with zero-static current level shifter

The ON (OFF) pulse duration is modified from the earlier version of the switch and
is set to charge Cset (Creset) using a low voltage of 1.1V. The necessary adjustments is
made to the power switch control transistors MN1 and MN2 with the lengths shown in
Figure 5.10. The width is increased to 300µm for both MN1 and MN2 to maintain the
drain current of 2mA as shown in Figure 5.11. This however will require to also modify
the gate driver to be able to safely drive MN1 and MN2 gates with their increased
capacitive load. A 2.5V voltage drop is defined by MOS diodes connected transistors
M1 - M3. This low supply voltage is necessary to maintain low power consumption of
the CCR blocks. It also enables the system to self power using a pre-charged supply
capacitor Vbuffer.

5.6 Safe-clock gating block

To insure proper switching for the harvester regulator and that every ON command
is followed by a OFF command an enabled clock (latch trigger) is used as shown in
Figure 5.12. This block is needed in order to have integer number of the clock pulses
and to avoid truncated clock pulse. The CCR Controller incorporates a 3kHz clock
similar to the one introduced in Chapter 4.

5.7 CCR using the second LI implementation

The transistor level implementation of the CCR controller is shows in Figure 5.13.
With the controller power optimised to operating at a low VDD of 1.1V, simulation -
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Figure 5.11: Characteristic of MN1 and MN2 showing Vds vs Id

shown in Figure 5.14 - shows the LI controller average power is < 100nW as summarised
in Table 5.6. This is an order of magnitude improvement in the consumed power
compared to the first LI implementation presented in section 4.8 which had an average
power consumption of 2µW.

The transistor level simulation shown in Figure 5.17, had the following parameters:
– Optimum interval set for Vupper = 10V and Vlower = 7.5V.
– LI inductor = 15mH.
– Reservoir capacitor of Cres = 1µF with initial voltage of 10V.
– Buffer capacitor Cbuffer = 20µF which was initially depleted of charges.
– CCR controller supply is a pre-charge capacitor separated from the controller.
– Input energy flux is defined by a current source accounting for 0.6µW input

power.
The system was simulated to run for 120s in which 3 energy transfers occurred. A

zoomed-in of the simulation is shown in Figure 5.17 showing the multiple energy-shot
transfer taking place. A series of precisely defined on/off pulses defines these shots.

To compare the performance of the improved implementation with the implementa-
tion of Chapter 4, the average power consumption of each block of the LI is calculated
for 120s of operation. In section 5.9.3, the energy consumption of a single transfer
is discuss in details, yet here the average power is presented as an indicator to the
reduced overall power of the LI controller. As shown in Table 5.6, the comparator av-
erage power consumption over 120s is 3.3nW while the time delay is 75nW. The time
delay consumption is inevitable, since it is used with every single energy-shot transfer,
while the comparator is only activated 3 times in the 120s.

In the next section, we focus on regulating the load voltage as without such reg-
ulation Vbuffer will continue to increase until reaching a saturation point where no
more energy can be transferred. Moreover, the buffer voltage needs to be regulated
as it should eventually replace the dummy supply voltage Cdummy. This will allow
autonomous operation of the LI controller.
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Figure 5.13: Modified Load Interface system blocks

Table 5.6: Average Power Consumption modified LI

Element Average Power (nW)
Clock Generator 18.75
Hysteresis Comp 3.30

Delay 75
Gate Drivers 0.76
Level Shifter 0.24

Total 98.05

5.8 Load voltage Regulator LVR

As described earlier in Chapter 3, the load is periodically supplied by Cbuffer with the
load voltage regulator block (LVR) managing this process. First, the LVR controller
senses a divided voltage of Vbuffer using a second comparator (COMP2) as shown in
Figure 5.15. Second, the output of COMP2 controls a low voltage switch SWload

connecting the load when sufficient energy is accumulated on Cbuffer and disconnected
when Cbuffer voltage falls below a certain voltage. Thus maintaining Vbuffer low voltage
between VbufferU and VbufferL

.
The LVR uses an off-chip resistive voltage divider allowing a degree of freedom to

shift the regulation interval for Vbuffer when needed by changing the division factor.
The buffer voltage Vbuffer is then regulated through using a hysteresis comparator
COMP2 similar to CCR comparator.

The voltage divider was chosen with a ratio of (30G/10G Ω). The transistor sizing
of COMP2 is summarised in Table 5.7. The switch SWload is a low voltage pmos
switch with an aspect ratio of 1000µm

10µm . A full transistor level simulation was conducted
including the CCR an the LVR. The Vbuffer is 2V < Vbuffer < 2.3V by allowing the
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(a)

(b)

Figure 5.14: LI energy transfer in (a)120s (b)zoom in interval of 51.877s < t < 51.88s.

discharge of Cbuffer into a resistive load of 52Ω in 1ms thus supplying the harvester
supply the load with energy of 3uJ shot.

Table 5.7: RS-Trigger comparator COMP2

Element CMOS Width (µm) Length (µm)

INV1 MN 0.35 10
MP 2 10

INV2 MN 0.5 10
MP 2 10

INV3 MN 0.35 10
MP 0.35 10
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Figure 5.15: Load voltage regulator

5.9 Autonomy of second implementation

In Chapter 3 a multiple energy-shot transfer was proposed to handle high inductor’s
current when regulating the harvester voltage, see section 3.6, yet the system autonomy
was not examined. Thanks to the minimised power consumption of CCR controller and
LVR we obtained in the second design, the interface circuit can now be self-powered
with the energy provided by the conditioning circuit and accumulated on the buffer
capacitor. This buffer capacitor should eventually be the supply source for the LI
controllers in future implementations. This section presents a three step investigation
of an autonomous operation of the circuit:

– First step: We examen the system autonomously through supplying the CCR
and LVR with a separated voltage source that is identical to the buffer capacitor. This
power source receives no restoring energy and is allowed to drain its energy driving the
CCR and LVR controllers for a fixed duration. The energy consumed by this source
is examined at the end of the duration to determine the amount of energy necessary
to safely drive the LI.

– Second step: The energy extracted from the reservoir and redistributed in the
system (into Cbuffer, CCR, LVR and the load) is examined in details.

5.9.1 Autonomous energy management system setup

To illustrate that the improved energy management system is capable of running from
a pre-charged state a pre-charged capacitor was used to supply the CCR controller,
cf. Figure 5.16. The system is allowed to run for a 1ms draining that supply. For
this demonstration the Vbuffer is regulated to be within 1.6V and 1.8V, while the Vres
is regulated to be within 15.5V and 17.5V. Since the supply for CCR and the LVR
is separated from Cbuffer, the energy intake is accelerated to decrease simulation run
time.

Figure 5.17 shows the result simulation of the system showing that Vbuffer was
initially discharged while the Vres initially charged to 17V . As the energy accumulates

94



CHAPTER 5. SECOND IMPLEMENTATION OF LOAD INTERFACE SYSTEM

on the reservoir capacitor by the CC, Vres increases to reach 17.5V . When this upper
limit is reached the energy extraction process begins, and part of the charges are
removed from Cres into Cbuffer. Since the charge removal rate is much higher than the
charges replenished by the CC, the voltage on Cres drops. When the lower threshold
for Vres is reached, the transfer process is stopped, allowing the energy harvesting
process - through the CC - to be resumed. This process of accumulation of energy
and extraction is repeated. The energy is accumulated on the buffer capacitor until
it reaches 1.8V . When this upper limit is reached a load is connected and is powered
by both the CC and the buffer capacitor. The load is allowed to be connected until it
drop the buffer voltage to 1.6V , then it is disconnected. The discharged buffer voltages
was charged to 1.8V in two successive transfers.
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Intially 
depleteted
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Figure 5.16: Schematic of first step simulation

Afterwards, the load is connect 7 successive times. The VDD powering the energy
extraction controller and load regulator dropped from 1.1V to 1.096V through 1s
which corresponds to 87nJ. To this figure, we need to add the energy consumed by the
clock generator (which, in this simulation, was substitute by its behavioural model for
reduction of the simulation time). As said in section 5.7, the clock generator consumes
for 1 second of operation corresponds to 18.75nJ. So, the overall energy consumed
during 1 second of operation is 105.75nJ, and the average power is ≈ 105nW . This is
far less than typical power provided by conditioning circuit, which is of order of 1µW.

Next, the output voltage voltage was adjusted to a narrower thresholds (here it is
set between 1.6V and 1.7V) where this narrower thresholds will be required for the
proposed future work of a self-power LI. This will allow a stabilised supply source for
the CCR and LVR controller.

Moreover, to present the system versatility we changed modified slightly the CCR
comparator thresholds. In this second simulated results the thresholds was raised to
higher level where Vres is now maintained between 19V < Vres < 15V along with
a a lower input energy flux of 1.8µW , to show the system versatility when modified
optimum interval is needed. The behaviour of the system is shown in Figure 5.18.

It must be highlighted that the LVR process is independent from the CCR process,
meaning that the load can be connected as Vres being regulated. In this second simu-
lation the load was connected twice while CCR is turned on as shown in Figure5.18.
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Figure 5.17: Simulation results showing Vres, Vbuffer, COMP, IL and ON/OFF commands

5.9.2 Connection between on-chip and off-chip components of the
load interface

The designed load interface contains off-chip and on-chip blocks. The only off-chip
blocks are the inductor, the freewheeling diode, the buffer capacitor and the resistances
of the divider used in CCR. The connection between on-chip and off-chip components
is achieved with use of pads. These pads are provides with AMS 0.35µm technology
design tool kit. For our design we used the high voltage pads - APRIOP HV - as
can be seen in Figure 5.19. This section presents the simulated results of the system
modelled the connecting pads. The design schematic can be found in Appendix C.
Similar design conditions are used as in the previous section first simulation 1.

The simulation results are shown in Figures 5.20, 5.21,5.22. They show the energy
extraction process from Cres into Cbuffer maintaining Vres within a predefined optimum
interval as shown in Figure 5.20a. The buffer capacitor was initially depleted and was
charged to its steady-state regulated interval after two energy extraction (from t=0s
to t=2s), cf. Figure 5.20b. When enough energy is accumulated on Cbuffer its voltage
is then regulated through connecting a load - 1kΩ - periodically (at t ≈ 2s, 3s, 4s), cf
Figure 5.20c. The inductor current is kept constrained with a maximum current of
10mA as shown in Figure 5.20d.

1Only the input energy flux was slightly decreased
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Figure 5.18: An energy shot transfer showing Vres, Vbuffer, Vload and IL

The CCR comparator output is shown in Figure 5.21a which designate an energy
extraction interval to initiate. As can be seen in Figure 5.21b, a zoomed-in of on energy
extraction interval is shown. The energy extract from Cres into Cbuffer from 17.7V to
15.7V takes 18ms and is done through 56 shots with each lasting 320µs. This slightly
shifted thresholds are due to using the pad. During the energy extraction from Cres
into Cbuffer the voltage Vbuffer increases and is regulated separately from Vres as shown
in Figure 5.21c. The 1kΩ load voltage is shown in Figure 5.21d while a zoomed-in of
the inductor current IL is shown in Figure 5.22a. The safe-gated clock is shown in
Figure 5.22b and 5.22c.
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Figure 5.19: Schematic of step simulation with pads
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Figure 5.20: Simulations with Pads - part 1 , (a) Reservoir capacitor voltage Vres (b) Buffer
capacitor voltage Vbuffer (c) Load resistance voltage (d) LI inductor current

5.9.3 Discussions

This section presents the results obtained of the final simulation results presented in
the pervious section. With the energy extracted from Cres is bumped into both Cbuffer
and the load, the steady-state energy extraction phase is analysed. Given that all
the blocks of LI receives a portion of this energy, each element was examined and the
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Figure 5.21: Simulations with Pads - part 2 (a) CCR Comparator output at 2.s to 2.04s (b)
Vres at 2s to 2.04s (c) Vbuffer at 2s to 2.04s (d) Load resistance voltage at 2.01s to 2.35s

energy they receive in an energy transfer is calculated.
The energy of a transfer (at time t=0.97s to t=1s) is calculated as shown in Figure

5.24. The reservoir capacitor voltage Vres drops from 17.7V to 15.6V which corresponds
to 33.2µJ while the energy received by the buffer capacitor is 20.1µJ. These results
shows that the transfer efficiency of almost 60% at this transient state. Most of the
loses are due to the diode.
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(a)

56 Safe-Gates clock commands

(b)

30 micro second Delay

(c)

Figure 5.22: Simulations with Pads - Part 3 (a) Inductor current at 2.s to 2.04s (b) Safe
Gated delayed clock at 2s to 2.04s (c)Delayed clock at 2.008s to 2.0085s

Table 5.8: CCR comparator consumed energy per transfer

Transfer stars Transfer Ends Energy consumed per transfer
0.97s 1s 90.29pJ

2s 2.03s 101.5pJ
3.04s 3.07s 88.15pJ
4.08s 4.11s 84.27pJ

The ”freewheeling” diode DLI losses become more significant when operating at
low voltage (1.1V) since each energy transfer an amount of energy is lost in the forward
biasing the diode ( ∆Wdiode = ∆q · VD , where q is the charges passing through the
diode). This can be in future LI implementations by replacing the freewheeling diode
with a synchronised switch at the expense of increased system complexity [80]. For
the analysed energy transfer (at time t=0.97s to t=1s) the diode losses accounts for
10µJ which is 33%. These diode losses are the highest since they occur at the transient
stage - where Cbuffer is still charging to its steady state value.
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Figure 5.23: Instantaneous power consumption of (a) CCR comparator (b) time delay block
(c) edge detector block (d) CCR controller pad

The energy consumption of the CCR comparator can be calculated with average
energy consumption per of 91pJ for one Vres regulation - from Vres = 17.7V to Vres =
15.7 as can be seen in Table 5.8.

The instantaneous power consumption of the highest power consuming blocks -
CCR comparator, time delay element, the edge detector block and the CCR controller
pad - are shown in Figures 5.23a, 5.23b, 5.23c and 5.23d respectively.
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Figure 5.24: Diagram showing each block received energy precentage during an energy trans-
fer at t=0.97s to t=1s where the total energy given by Vres is 33.2µJ.

5.10 Summary

In this chapter we presented an improved implementation of the LI controller as well as
load voltage regulator block. The system was examined in terms of power consumption
to insure an overall power consumption for the LI controller to be less than 1µW . All
the controlling blocks, including the CCR and LVR controllers - consume less than this
budget energy leaving enough energy to periodically power a load. For the proposed
LI we demonstrated as system the is capable of:

(1) transferring part of the reservoir capacitor (Cres) energy towards a buffer ca-
pacitor (Cbuffer).

(2) ensuring Vres is maintained within its optimum. This is however challenging
since Vres optimum interval can be as high as 30V for some capacitive transducers,
whereas the load buffer voltage is 1-2V.

(3) Multiple energy-shot transfer was introduce to for the CC energy extraction to
avoid high inductor current. This allows a transfer with lower resistive loses.

(4) The average power consumption of the active blocks load interface (excluding
losses in the switches during the energy transfer) is estimated to be 105 nW in the
steady-state mode. When the block is inactive (e.g., when the input energy flow is
weak and the comparator doesn’t order transfers), only the comparator and the clock
consume power. This idle power is estimated to be less than 30 nW (less then 10 nW
for the comparator, cf. Figure. 5.23a and 18nW for the clock). Such a low energy
consumption allows the circuit to operate even when the input energy flow is few
hundreds of nanowatts.

(5) A buffer low voltage regulation through periodically connecting to the load
when enough energy is accumulated on Cbuffer.

(6) An end-to-end efficiency of 60%, thanks to the multiple energy-shot technique,
that can be improved by replacing flyback diode with an active switch.
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In this chapter we summarise the work presented in this manuscript. The main
contribution of this work is discussed and perspectives for future work are listed.

6.1 Conclusions

Electrostatic energy harvesting is a challenging research domain that requires an inter-
disciplinarian knowledge. It raises many challenges such due to its particular charac-
teristics. This characteristics includes a relatively high voltage and low output power
which eventually requires a mixed of a high voltage/low power design to take full
advantage of the electrostatic harvester.

In the last decade, electrostatic energy harvesting has gained more attention and
has just started to pick up peace with other energy harvesting techniques such as
piezoelectric energy harvesting. Unlike its counter part, electrostatic energy harvest-
ing is still not mature enough to compete with other transduction methods such as
piezoelectric where the design stream flow is already well defined [81]. However, with
the recent trend of power electronics shifting towards ultra low power consumption
along substantial development of electrostatic energy harvesters and new conditioning
circuits - such as series-parallel charge pumps it is expected that in the next three
to five years the capacitive transduction will be widely adopted for applications that
requires tens micro watts of power [82].
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6.1 Conclusions

In this work we demonstrated a full e-VEH load interface for rectangular QV-cycles
CC which to our knowledge, was never been addressed before. For our implementa-
tion we adopted the series-parallel charge pump which allowed to self-increase of the
internal voltage of the CC from relatively low voltage [34]. Afterwards, we proposed
an intermediate stage permitted the regulation of the CC internal voltage keeping it
from saturation and maintain it within it optimum interval range [83]. This was com-
plemented with an added stage of low voltage regulation for the load [83]. A focus on
low power average consumption for the load interface blocks was taken into account
to reduce it to less than 100nW [84]. With these implementations it is obvious that a
self-power and self-regulating interface for any rectangular QV cycle CC is possible.

The focus of this work is towards implementing a load interface controller that
allows to maximise the harvested energy. Thus an adoption of different mixed signal
- high voltage and low power - techniques is needed for the proposed custom tailored
controller. Each of the fundamental blocks was build in AMS 0.35µm technology
including an ultra low power clock, hysteresis comparator, high-voltage level shifter
and a power switch. The power cost of the controlling is less than 100 nW in average,
and the efficiency of the power transfer from the conditioning circuit to the load voltage
low is 60 %. The last figure can be improved by implementing freewheeling with an
active zero-threshold diode. Such performances allows the system to operate with
input power levels as low as few hundreds of nanowatts.

The biggest challenge was to implement a low power hysteresis comparator and
adjust its hysteresis gap to the CC optimum interval. To achieve such goal we incor-
porated two comparators for each of the proposed design.

Another challenge was to generate a precisely defined switching command using a
single clock generator that can be used to trigger the LI and allowing multiple energy-
shot transfer to take place. This was achieved by using a time delay and separating
the on and off command generation for the switch.

As mentioned earlier, the design flow of electrostatic energy harvester has not been
fully standardised, yet some key features can be examined if the overall system perfor-
mance is to be compared to similar design approaches. In Table 6.1, we summarises
these key features of our design and compare it to two designs developed at imec in
2013 and 2015.

For our design we used AMS 0.35µm technology while the other mentioned work
TSMC 0.25 µm BCD was used. In the two implementation in [70] and [71], a Max-
imum Power Point Tracking algorithm for matching the equivalent source resistance
of harvester and AC-DC converter were used. This replaces the series-parallel charge
pump in our design. In [63] The input energy range was assumed to be significantly
higher than in our design with ranges between tens of micro watts up to 1mW. The
reported end-to-end efficiency was higher than our proposed design, yet that can be
improved by reducing the losses of the flyback diode.

A few challenges however are still need to be address to achieve a complete system.
These are discussed in the rest of this chapter.
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Table 6.1: Comparison with similar work

Element This work imec 2013 [70] imec 2015 [71]
CMOS Process 0.35µm AMS 0.25µm BCD 0.25µm BCD
Input Power 1− 5µW 25− 1600µW 1µW − 1mW
Input Voltage 5-50V 5-60V 5-60V
Output Voltage 1.6-2.6 V 2-5 V 0-5V
Inductor Current 15mH 10mH n/a
Average static current < 90nA 1.3µA n/a
Control Power 100nW 5000nW 500nW
Battery-less Yes No Yes
Reported end-to-end efficiency 74% 89 % 85%

6.2 Perspectives and Future work

In order to complete the e-VEH system, a few points needs to be addressed. These
includes a start-up circuit, reducing the diode losses and the integration of the CC.

6.2.1 Start-up circuit

In the proposed design, it was assumed a supply source is available to power the LI
controller from the start of its operation. However, the ultimate goal is to supply
the LI controller through the harvested energy without the need of any external or
pre-charged supply source. This will require a startup circuit enabling a cold start of
the controller [85]. One proposed architecture proposed by Stenzione et al. [71] was
to permit a direct charging of the supply source before enabling the LI controller.

6.2.2 Diode losses

The diode losses is a major issue when it comes to energy transfer efficiency. This
energy consuming element is dictated by the architecture of the dc-dc buck converter
load interface not by the LI controller design. To prevent the LI diode losses, an active
diode or an synchronised switch should be implemented. This however is not a straight
forward problem as it would require current sensing of a high voltage node. This topic
is the ongoing research of our team.

6.2.3 Integration of CC

The ultimate goal for a smart e-VEH is to integrate all of its components on-chip.
This is yet challenging as the series-parallel charge-pumps utilises a multiple of diodes
and relatively high capacitance ratios. With better understanding of how these CC
behave such as the work presented in [34, 68] and thanks to new cmos technologies
developing an integrable version of the CC can be possible. This issue is the currently
being investigate by our team.
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6.2.4 Self-adjustability threshold

In the presented work, we proposed an externally adjustable threshold controls for the
LI comparators. For the future work, these thresholds should be able to dynamically
change as the operating conditions of the CC change with the external vibration,
i.e MPPT. One way to achieve such self-adjustability is to introduce a calibration
phase where the energy harvesting process is withheld temporary for few seconds and
new thresholds values are refreshed to new values if necessary. A similar calibration
phase was proposed within our team in [21] in the frame of flyback mechanism for
charge-pump CC. This work can be adopted for the LI proposed for this work, yet few
challenges needs to be overcome including power consumption and proper command
generation that can be used to drive the ultra low power comparators proposed in this
PhD work.
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Appendix A

Analysis of Current and Energy
for dc-dc buck load interface

Defining the governing equations, assuming voltage and current directions as show in
Chapter 1 where,

iL(t) = −ires(t) (A.1)

iL(t) = iload(t) (A.2)

iload(t) = dQload(t)
dt

(A.3)

ires(t) = dQres(t)
dt

(A.4)

Differentiating Eq.3.5 with respect of time,

∴
d

dt

{
Qres(t)
Cres

− Qload(t)
Cload

− Li′L(t)
}

= 0 (A.5)

thus,
1

Cres

dQres(t)
dt

− 1
Cload

dQload(t)
dt

− Li′′L(t) = 0 (A.6)

Using the governing equation of Eq.A.1 and Eq.A.4,

iL(t) = −ires(t) = −dQres(t)
dt

(A.7)

which follows that,
i′′L(t) = −Q′′′res(t) (A.8)

Substituting in Eq.A.5

1
Cres

dQres(t)
dt

− 1
Cload

dQload(t)
dt

+ LQ′′′res(t) = 0 (A.9)

Also, expressing Qload(t) in terms of Qres(t) using Eq.A.1, Eq.A.2 and Eq.A.3 as
follows,
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dQload(t)
dt

= iload(t) = −ires(t) = −dQres(t)
dt

(A.10)

Then,
1

Cres

dQres(t)
dt

+ 1
Cload

dQres(t)
dt

+ LQ′′′res(t) = 0 (A.11)

Re-arranging,
Q′res(t)

( 1
Cres

+ 1
Cload

)
+ LQ′′′res(t) = 0 (A.12)

Let,
1
Ceq

=
( 1
Cres

+ 1
Cload

)
(A.13)

Then,
Q′′′res(t) +Q′res(t)

1
LCeq

= 0 (A.14)

Solving for Qres(t), Assume Qres(t) =
Let,

Qres(t) = e−λt (A.15)

∴ Q′res(t) = −λe−λt (A.16)

∴ Q′′res(t) = λ2e−λt (A.17)

∴ Q′′′res(t) = −λ3e−λt (A.18)

Substituting in Eq.A.14,
−λ3e−λt−λe−λt 1

LCeq
= 0 (A.19)

Substituting in Eq.A.14,
λ3 + λ

1
LCeq

= 0 (A.20)

then,
λ0 = 0 (A.21)

λ1,2 = ±i√
LCeq

(A.22)

Thus,
Qres(t) = Aeλ0t +Beλ1t + Ceλ2t (A.23)

Which is,
Qres(t) = A+Beλ1t + Ceλ2t (A.24)

Using Eurler’s expression, where,

eiat = cos(at) + isin(at) (A.25)

e−iat = cos(at)− isin(at) (A.26)

Thus,
Qres(t) = A+B′cos(ωt) + iC ′sin(ωt) (A.27)
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LOAD INTERFACE

where,
B′ = B + C (A.28)

C ′ = B − C (A.29)

and,
ω = 1√

LCeq
(A.30)

The first initial conditions for the load interface can be defined as follows:

iL(t)|t=0 = 0 (A.31)

From governing equations of Eq.A.1 and Eq.A.4,

iL(t)|t=0 = −dQres(t)
dt

∣∣∣∣
t=0

= 0 (A.32)

Substituting into Eq.A.27 where,

dQres(t)
dt

∣∣∣∣
t=0

= −ωB′ sin(ωt) + iωC ′ cos(ωt)
∣∣
t=0 = 0 (A.33)

Thus,
C ′ = 0

and Eq.A.27 reduces to,
Qres(t) = A+B′cos(ωt) (A.34)

The second initial conditions for the load interface can be defined as follows,

Qres(t)|t=0 = Qres0 (A.35)

Where, the suffix of Qres0 defines the charge cycle number. Thus, Eq.A.34 can be
expressed as follows,

Qres(t)|t=0 = A+B′ = Qres0 (A.36)

thus,
B′ = Qres0 −A (A.37)

Substituting into Eq.A.34 then,

Qres(t) = A+ (Qres0 −A)cos(ωt) (A.38)

which is,
Qres(t) = A(1− cos(ωt)) +Qres0cos(ωt) (A.39)

The third initial condition for the load interface can be defined as follows,

VL(t) = L
diL(t)
dt

= L
d2Qres(t)

dt2
(A.40)

thus,
d2Qres(t)

dt2
= VL(t)

L
(A.41)
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However at t = 0
VL(t)|t=0 = Vres0 − VLoad0 (A.42)

then,
d2Qres(t)

dt2

∣∣∣∣∣
t=0

= Vres0 − VLoad0

L
(A.43)

From Eq.A.34 differentiating twice with respect of time,

d2Qres(t)
dt2

= −B′ω2cos(ωt) (A.44)

Which wields,
d2Qres(t)

dt2

∣∣∣∣∣
t=0

= −B′ω2cos(ωt)
∣∣∣
t=0

= −B′ω2 (A.45)

Thus, from Eq.A.43,
1
L

(Vres0 − VLoad0) = −B′ω2 (A.46)

Which reduces to,
B′ = Ceq(VLoad0 − Vres0) (A.47)

From Eq.A.37 and Eq.A.47,

Ceq(VLoad0 − Vres0) = Qres0 −A (A.48)

Re-arranging,
A = Qres0 − Ceq(VLoad0 − Vres0) (A.49)

Substituting Eq.A.49 into Eq.A.39,

Qres(t) = (Qres0 − Ceq(VLoad0 − Vres0))(1− cos(ωt)) +Qres0cos(ωt) (A.50)

Simplifying,
Qres(t) = Qres0 − Ceq(VLoad0 − Vres0)(1− cos(ωt)) (A.51)

However,
iL(t) = −ires(t) = −dQres(t)

dt
(A.52)

Then,
iL(t) = Ceq(VLoad0 − Vres0)ω(sin(ωt)) (A.53)

iL(t) =

√
Ceq
L

(VLoad0 − Vres0)sin(ωt) (A.54)
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Appendix B

Second implementation
schematic

Figure B.1: Second implementation schematic overview
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Figure B.2: Second implementation comparator

Figure B.3: Second implementation 30µs delay
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CHAPTER B. SECOND IMPLEMENTATION SCHEMATIC

Figure B.4: Second implementation CCR pad
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