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Résumeé

L'objectif de ce travail de thése concerne I'étude et la mise en ceuvre de deux modéles de cavitation
dans le solveur NSMB (Navier-Stokes-Multi-Blocks): les modéles HEM (Homogeneous Equilibrium
Model) et une équation pour le taux de vide: le modéle a transport de taux de vide (TTV). Le phénom
ene de cavitation est modélisé par différentes équations d'état de mélange liquide-vapeur (EOS). De
s simulations numériques sont réalisées sur des écoulements diphasiques compressibles unidimensi
onnels et bidimensionnels avec des conditions d'interface et comparées a des solutions de référence.

De plus, la méthode TTV basée sur le taux de vide incluant les termes source pour la vaporisation et
la condensation dans le logiciel libre open source OpenFOAM est également présentée sur la géom
étrie Venturi pour capturer le phénomeéne du jet réentrant. La modélisation de la turbulence joue unr
Ole majeur dans la capture des comportements instationnaires et un limiteur est introduit pour réduir
e la viscosité turbulente afin de mieux prédire la structure a deux phases. Une comparaison de diver
s modéles de cavitation couplés avec des modeles de turbulence est étudiée. Les résultats computat
ionnels sont comparés aux données expérimentales existantes.

Mot clés : Cavitation, Ecoulement diphasique, HEM, TTV

Résumeé en anglais

The objective of this thesis work concerns the study and implement of two cavitation models in the N
SMB (Navier-Stokes-Multi-Blocks) flow solver: the Homogeneous Equilibrium Models (HEM) and a v
oid ratio Transport-based Equation Model (TEM). The cavitation phenomenon is modeled by different
liquid-vapor mixture equation of state (EOS). Numerical simulation are performed on some one- and
two-dimensional compressible two-phase flows with interface conditions and compared with referenc
e solutions.

Moreover, The TEM based method for the void ratio including the source terms for vaporization and
condensation in the free, open source software OpenFOAM is also presented on the Venturi geometr
y to capture the re-entrant jet phenomenon. The turbulence modeling plays a major role in the captur
e of unsteady behaviors and a limiter is introduced to reduce the eddy-viscosity to better predict the t
wo-phase structure. A comparison of various cavitation models coupled with turbulence models are i
nvestigated. Computational results are compared with existing experimental data.

Keywords: Cavitation, Two-phase flow, Homogeneous model, Transport equation model
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RESUME

En général, la cavitation se réfere a des poches de gaz apparaissant dans un écoulement fluide.
En d’autres termes, il s’agit d'un phénomene diphasique avec changement de phase. La cavitation
se produit lorsque la pression d’écoulement est inférieure a la pression de vapeur saturante.
Les structures ainsi formées sont entrainées par I'écoulement et lorsqu’elles atteignent une
zone de pression plus élevée, elles se condensent et implosent violement. La cavitation conduit
a des pertes importantes de performance de l'installation, 4 des problémes d’instabilités de
fonctionnement des machines et a I'erosion des parois du composant. C’est ainsi une source de
problémes techniques primordiaux dans le domaine des turbomachines hydrauliques et de la
construction navale. Il existe différents types de cavitation selon la configuration d’écoulement,
les propriétés du fluide et les géométries. Généralement, il y a quatre types de cavitation de base
et c’est-a-dire traveling cavitation, sheet cavitation, cloud cavitation et tip-vortex cavitation. Il est
classique de distinguer si I’écoulement est cavité ou non par le nombre de cavitation qui est défini
par I’'écart adimensionnel entre une pression de référence et la pression de vapeur saturante,
noté 0o = (Poo — Pyap )/(O.Spngo). P, représente la pression absolue en un point de référence
de I'écoulement, P, est la pression de la vapeur saturante a la température d’essai, p est la
masse volumique du liquide et Uy, est la vitesse de référence.

La prédiction numérique de la cavitation reste un défi pour plusieurs raisons. La modélisation
du changement de phase (thermodynamique) et les interactions avec la turbulence n’est pas
encour totalement établie. Du point de vue de 1a modélisation, la grande majorité des codes dédiés
a la simulation de la cavitation est basée sur une approche moyennée a la fois pour I’écoulement
diphasique et la turbulence. Une hiérarchie de modeles existe, du modeéle simple a trois modeles
d’équations (un fluide ou modele homogene) jusqu’au modéle a sept équations (deux fluides) qui
restent plus adaptés pour des géométries simples ou des fluides nonvisqueux. Les modeles deux
fluids a sept équations sont les plus complets. Dans ce modeéle, on suppose que les deux phases
coexistent a chaque point du champ d’écoulement et sont exprimées en termes de deux ensembles
d’équations de conservation qui développent I'équilibre de masse, de moment et d’énergie pour
chaque phase. L'équation de transport pour la fraction de vide est introduite pour décrire la
topologie de ’écoulement. Les modeles réduits a six équations sont similaires aux modeles de
sept équations a I'exception sans tenir compte de ’équation d’évolution de la fraction de vide.
Cependant, ils restent difficile a utiliser en écoulements industruels (turbomachines). La méthode
a un fluide, ou méthode homogéne, considére les écoulements comme un mélange de deux fluides
se comportant comme un fluide qui est semblable au courant monophasé. De cette facon, un
seul ensemble d’équations de conservation est employé pour exprimer I'interaction fluide pour le
mélange. Compte tenu de sa simplicité et de son faible cotit de calcul, la méthode homogeéne est
plus intéressante pour les simulations numériques des écoulements cavitants.

La plupart des phénomeénes de cavitation impliquent une turbulence et I'interaction turbulence-
cavitation est un phénomene sous-connu et documenté (di notamment a la difficulté d’effectuer
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des mesures expérimentales dans les écoulements cavitants). Les effets de la compressibilité sur
la turbulence et les effets de la phase dispersée sont également inconnus. La précision numérique
de la cavitation turbulente dépend de la modélisation de la cavitation et de la turbulence. Ainsi,
le choix d’'une modélisation de la turbulence est une question importante pour la simulation de la
cavitation. La simulation numérique directe (Direct Numerical Simulation (DNS)) a la capacité
la plus élevée de résoudre toutes les échelles de turbulence. Toutefois, il nécessite une résolution
de grille tres fine et, par conséquent, il est encore assez difficile a appliquer en raison de la
consommation élevée de performances informatiques. Bien que la simulation des grands échelles
(Large Eddy Simulation (LES)) ait déja été mise en oeuvre pour les écoulements turbulents
de cavitation, les codes habituels sont formulés dans un modele de Navier-Stokes (RANS) de
Reynolds a tensor turbulent par une équation de transport 2 — € (hypothése de Boussinesq) Entre
Ieffort de calcul et 1a précision. Cependant, les modeles standards de viscosité par tourbillons
basés sur ’hypothese de Boussinesq tendent a sur-prédire la viscosité par tourbillonnement
qui réduit l'effet du jet re-entrant et de la décomposition de structure biphasée. Ces modeéles
de turbulence sont inadéquats pour prédire correctement la dynamique des bulles de cavita-
tion. Plusieurs solutions ont été proposées et testées pour réduire la viscosité des turbulences
et améliorer le comportement des modeles de turbulence. Reboud a proposé une modification
arbitraire en introduisant un limiteur de viscosité de turbulence assigné en fonction de la densité
au lieu d’utiliser directement la densité du mélange. Une méthode basée sur le filtre (Filter-based
Method (FBM)) qui combine le concept de filtre et le modele RANS a été étudiée en imposant une
échelle de filtre indépendante, généralement la taille de la grille, sur le calcul de la viscosité de
Foucault. Une fois que I’échelle de longueur de turbulence est supérieure a la taille du filtre, la
viscosité de turbulence peut étre réduite par une fonction de filtrage linéaire. L'interaction entre
la turbulence et la cavitation en ce qui concerne I'instabilité et la structure du flux est complexe
et mal comprise. De plus, il ya moins d’études sur 'influence des modeéles de turbulence sur le
débit de cavitation. Dans cette étude, la correction de Reboud est mise en ceuvre en trois modeéles
de turbulence différents et simulée avec différents modeles de cavitation. L'objectif final est de
fournir un apercu de l'interaction entre les modéles de turbulence et de cavitation.

Cette étude présente la mise en ceuvre et la validation des modeles de cavitation développés
au LEGI (Laboratoire des Ecoulements Géophysiques et Industriels) dans les solveurs NSMB
(solveur compressible structuré multiblocks parallele avec maillage chimeére) et OpenFOAM
(Open source Field Operation And Manipulation). Les modeles de mélange homogéne ou un fluide
avec une équation d’état de barotrope effectués au LEGI ont réalisé dans le solveur NSMB. Les
modeles proposés ont été validés a 'aide de divers cas de test non invasifs, y compris le probleme
de mouvement de I'interface, le tube de choc eau-air et le tube d’expansion et I'interaction choc-
bulle. La possibilité d’obtenir des solutions correctes de ces cas de test a été étudiée. Les résultats
obtenus a partir des cas de test indiquent que la mise en ceuvre de ces deux modeles de cavitation
ne pouvait malheureusement pas étre la panacée et étre généralisée pour tous les cas de test.
Bien que les validations aient montré la capacité des modeles a simuler le développement de
la cavitation, les deux modeéles souffrent toujours du probleme de l'instabilité numérique. La
principale différence entre ces deux modeles est que le modele a trois équations a I’hypothése d’'un
équilibre thermodynamique complet entre les phases; par conséquent, cela pourrait expliquer les
écarts existant dans les cas de test ci-dessus. Puisque la mise en ceuvre et la validation dans le
solveur NSMB avaient déja pris trop de temps, afin d’atteindre les objectifs de cette étude, qui
sont la turbulence et la cavitation, un autre logiciel open source libre, OpenFOAM, a été adopté
pour effectuer les cavitations dans un venturi.

Les modéles a quatre équations qui sont composés de trois lois de conservation pour le
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mélange plus une équation de transport pour le taux de vide dans le solveur OpenFOAM appelée
interPhaseChangeFoam est étudié. Une comparaison de divers modeles de cavitation couplés
a des modeles de turbulence sur la géométrie Venturi 2D et 3D a été proposée. Le solveur
interPhaseChangeFoam a été utilisé pour simuler la poche de cavitation par la formulation de
modeles de cavitation a équation de transport a rapport de vide, y compris les modeles Kunz,
Merkle et SchnerrSauer. Pour la fermeture de la turbulence, trois modeles sont considérés: le
modele Spalart-Allmaras a une équation, le modele % — ¢ & deux équations et le modele Menter
k —w SST. Le limiteur de turbulence Reboud est introduit pour réduire la viscosité turbulente
afin de capturer la dynamique du jet ré-entrant. Les résultats numériques ont été comparés a
des données expérimentales concernant la ration de vide moyennée dans le temps et la vitesse
longitudinale, la pression pariétale, les fluctuations de pression de paroi RMS et la viscosité
tourbillonnaire turbulente. Les résultats ont montré que 'utilisation d’'un limiteur de turbulence
par turbulence permet au modeéle de simuler correctement les comportements instables de la
feuille, cependant de grandes différences apparaissent entre les modeles et I'effet de la réduction
n’est pas assez fort. En général, les trois modeles de cavitation étaient capables de reproduire le
phénomeéne de jet ré-entrant, mais la longueur de la cavité était sur-prédite. Parmi les résultats
issus de la simulation qui ont été comparés aux données expérimentales, c’est le modele de
cavitation de Kunz couplé au modeéle de turbulence 2 —w SST qui pourrait avoir une meilleure
prédiction pour la géométrie Venturi. De plus, I'effet 3D n’a pas beaucoup amélioré la prédiction
en fonction des résultats numériques obtenus. Ceci peut étre dii au probléme d’étalonnage du
terme de transfert de masse du taux de condensation et du coefficient de vitesse de vaporisation
ou au manque de cohérence thermodynamique. Aussi, 'impact sur la valeur de I'exposant n
utilisé dans cette correction doit étre étudié. En outre, interPhaseChangeFoam est un solveur
incompressible qui est moins capable de résoudre le type de géométrie interne.
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CHAPTER

INTRODUCTION

1.1 Background of cavitation

avitation is a phenomenon that occurs frequently in conventional hydraulic components

such as pumps, valves, turbines and propellers. Over-speeds imposed by the local ge-

ometry, shear phenomena, acceleration or vibration may cause local pressure drops in
the fluid. When the flow pressure is less than the vapor pressure of the fluid, there is a partial
vaporization and vapor structures arise. The so formed structures are entrained by the flow and
when they reach a higher pressure zone they condense and implode violently. Cavitation leads
to significant loss of system performance, problems of instability of operation of machines and
erosion of the component walls. It is thus a primary source of technical problems in the field of
hydraulic turbomachinery, naval propulsion and space as well as in high pressure fuel injection.
However, it should be noticed that in certain cases cavitation has a desired effect, for example,
supercavitation for underwater vehicles such as torpedoes. The gaseous cavities enveloping the
external body make it possible to reduce the friction drag. In addition, cavitation is used for the

purpose of cleaning by the control of erosion.

The mechanisms of the process of cavitation and boiling are similar except that in boiling, the
vaporization occurs with only small pressure change. In contrast to boiling, the vaporization in

cavitation occurs under only a minor temperature change (Figure 1.1).

In the development of a space launcher, cavitation is one of the most limiting factor generated
by the hydraulic because it requires from the design phase the introduction of safety margins
resulting primarily from an increase in pressure in the reservoirs. This increase in pressure
requires an increase in the wall thickness which generates an increase in the structure. The

magnitude of this increase in dry weight is 100 kg for 100 mbar of additional pressure, which
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Figure 1.1: Phase diagram of water.

corresponds about to 2% of the total weight of the largest telecommunications satellite built.
Cavitation appears in the ergol turbo pumps of the launcher propellant and it generates falls of
performances, instability of operation as well as mechanical loads on structures. The consequences

can be tragic as the failure of the Japanese H-II launch vehicle in 1999.

As for the shipbuilding industry, cavitation is one of the major constraints in the design
of marine propellers. Noise, vibration, erosion as issues resulting of cavitation are very tricky.
The appearance and disappearance of bubbles on the propeller blades create local pressure
fluctuations that can be compared to shock waves because of their violence. Moreover propeller
produces a rotating flow in its wake. Sections of rudders that are placed behind the propeller are
then in incidence and can cavitate violently at high speed. Cavitation is also very energetic and
very noisy in the audible range. Depending on the type of cavitation frequencies and very specific
signatures appear. This type of nuisance is obviously crucial for military vessels, as brought up
to 100 km offshore by poorly controlled cavitation. The determination of cavitation instabilities

regime is essential.

In the hydraulic energy field, cavitation is a limiting phenomenon in the design phase of
hydraulic machinery (pumps, turbines) and its consequences in terms of erosion of the walls
are a very important nuisance (operating range and duration component life). Damage to solid
walls (Figure 1.2) is caused by very short pressure spikes (10ns to 1us), high amplitude (~ 1GPa),
attributed to the impact of pressure waves emitted during the collapse of vapor structures.
Knowledge of the dynamics of pockets is therefore very important. Also operating machinery

instabilities related to the hydrodynamic coupling between the inter-blade channels are observed.
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Figure 1.2: Damage of vane by cavitation.

1.2 Types of cavitation

There exists different patterns of cavitation according to the flow configuration, the properties of

the fluid and the geometries. Generally, there are four basic types of cavitation and are described

briefly below:

¢ Traveling cavitation
These bubbles are formed in the zone of low pressure, travel with the flow and implode
after when they enter the region of higher pressure. This kind of cavitation is observed

particularly in the blades of turbine or propeller (Figure 1.3).

Figure 1.3: Traveling cavitation.

* Sheet cavitation
This type of cavitation appears on the low-pressure region of blades and foils. It is a
fixed, attached cavity or pocket cavitation and the fluid dynamic is largely affected by the
re-entrant jet (Figure 1.4).
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Figure 1.4: Sheet cavitation.

¢ Cloud cavitation
"Cloudy-looking" of cavitation bubbels are formed, separated and collapsed periodically by
the shedding of vorticity into the flow field. It can result in intenser noise, vibration and

erosion (Figure 1.5).

Figure 1.5: Cloud cavitation.

¢ Tip-vortex cavitation
At the tips of the rotating blade or wing, the pressure may be very low locally which will

generate a filament-looking cavitation (Figure 1.6).
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1.3. CAVITATION INCEPTION

Figure 1.6: Vortex cavitation.

1.3 Cavitation inception

It is conventional to distinguish whether the flow is cavitating or not by means of cavitation

number, 04, which is defined as
_ p [e) -P vap

_ vap 1.1
7% = 0 500U, (D

This parameter relates the vapor pressure, P,,p, to the free-stream pressure, P.,, and the
free-stream dynamic pressure.

Once the cavitation number, 0, is reduced in the flow, cavitation will first be observed to
appear at some particular value which can be called the incipient cavitation, o;.

The pressure coefficient, Cp, is given by the relation:

P-P

== 1.2
0.5p00U2, (1.2)

Cp
Therefore, cavitation number can be compared to the pressure coefficient and the following

estimate is considered for cavitation inception, o;

Pmin_Poo

1.3
0.5p00U2, (13

0;i=—Cpmin=

where Cp,i, is the minimum pressure coefficient.
With these definitions above, it is useful to consider that if P,,;, = Pyap Or 0o = —~Cpmin, the
incipient cavitation occurs which means the limiting regime between the non-cavitating and
cavitating flow. If further reduction in cavitation number which implies that 0, < —Cpy;n, the

developed cavitation happens with an increase in the size and number of bubbles.

5
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1.4 Objectives and organization of this thesis

Cavitation for most engineering applications is turbulent, and the interplay between cavitation
and turbulence makes the cavitation dynamics even more complicated, and thus the detail dy-
namics of the phase change is not well understood. Specific issues to numerical techniques in this
type of flow also persist. The objectives of this thesis are to implement several cavitation models
in the NSMB solver. The emphasis is placed on the study and implement of the Homogeneous
Equilibrium Models (HEM) coupled with a barotropic state law and a void ratio Transport-based
Equation Model (TEM). The TEM based method for the void ratio including the source terms
for vaporization and condensation in the free, open source software OpenFOAM (Open source
Field Operation And Manipulation) is also presented on the Venturi geometry to capture the
re-entrant jet phenomenon. For the turbulence closure, a density correction approach proposed
by Reboud is imposed to several turbulence models.

Besides the introduction, which presents the background of cavitation and the objectives of
the study, the thesis is organized as follows.

In Chapter 2, a literature review for the modeling of two-phase flows is investigated which
presents the theory in the modeling of cavitating flow, including the different models used for the
present work.

In Chapter 3, the flow solvers, the NSMB and OpenFOAM, used in this study are described,
including the essential elements of the governing equations, the modeling concepts and the
numerical schemes.

In Chapter 4, different test cases carried out by the NSMB solver are presented together with
validations against exact solutions of the Euler equations and the models implemented in the
solver.

In Chapter 5, the 2D and 3D Venturi geometry are performed by OpenFOAM with the
built-in solver interPhaseChangeFoam coupled with different turbulence models. Validation and
comparisons are done with experimental measurements including time-averaged void ratio and
velocity profiles, RMS wall pressure fluctuations.

Finally, conclusions and future investigations are discussed in Chapter 6.
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REVIEW OF CAVITATION MODELING

umerical prediction of cavitation remains a challenge for several reasons. First the mod-
eling of phase transition (thermodynamics) and the interactions with the turbulence is
not fully established. In addition, it is a complicated task to deal with the large variations
of density between the liquid and vapor phases. Specific issues to numerical techniques in this
type of flow also persist. On the issue of numerical architecture (compressible or incompressible
low Mach preconditioning extended to variable densities), the question remains open. However,
several studies have shown better capture re-entrant jet of cavitation bubbles by compressible
codes [Venkateswaran et al., 2002; Goncalves et al., 2010a; Park et al., 2012; Skoda et al., 2012].

2.1 Modeling of two-phase flows

In this chapter only the modeling of gas-liquid flows are presented. There exists two main

approaches for the gas-liquid flows :
* Direct or interface-based methods

¢ The averaged or diffusion methods of the interface

2.1.1 Direct resolution methods

The so-called direct resolution methods allow to solve all the spatial and temporal scales of the
two-phase flows. These kinds of methods reconstruct the interfaces and describe the propagation

of the flow, while solving the Navier-Stokes equations.

There are different ways of representing the spatial and temporal evolution of an interface :

7
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Front tracking method (Lagrangian)

Level Set method (Eulerian)

Volume Of Fluid method (Eulerian)

Diffuse interface method ([Jamet et al., 2004])

Because of the existence of various velocities at the interface i.e. liquid phase velocity, vapor
phase velocity and interface velocity, phase changes are difficult to be taken into account in these
kinds of methods. Moreover, the reconstruction of the interface in three-dimensional flows can be

difficult and very time consuming.

2.1.2 The average resolution methods

In most of these problems, it is not necessary and would be extremely difficult to know the
instantaneous values of the local variables of the flow due to the limitation of the capabilities
of computers and the difficulty in predicting the position of the interfaces. The prediction of
"averaged" properties are mostly interested in, such as the pressure drop in a bubble flow, the
volume flow rate in a conduit etc...

For this purpose, "averaged" forms of the equilibrium equations will be used to predict mean val-
ues of the flow parameters which are meaningful and experimentally accessible. Moreover, since
the equations of equilibrium appear in the form of partial differential equations, it is desirable
that the mean properties and their first derivatives, spatial and temporal, should be continuous.
The presence of interfaces leads to serious difficulties for the mathematical formulation of the

problem, in the same way as the shock waves in single phase.

The concept of beginning with these methods is the use of instantaneous conservation laws of
fluid mechanics for each phase. The interfaces appear as surfaces of discontinuity for the different
properties of the fluid, so the fundamental equilibrium equations are expressed in the form of

"averaged interface conditions".

There are many ways to "average". Averaging of conservation laws can be carried out:
* in space
* in time
* statistically from a set of measures

* or by a combination of the preceding ones (space/time, statistics/space...).

8
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Spatial averaging has been mainly used in the field of nuclear engineering (average over a section
of a pipe). It allowed the development of 1D code for the safety analysis of nuclear reactors by

averaging the equations on the section of a pipe.

Similar to the use of the RANS approach for turbulent single-phase flows, the temprol averaging
is widely used for two-phase flows, especially if they are turbulent. Indeed, since transport
phenomena are highly dependent on local fluctuations of variables, it is easier in this case to link
the laws of state and behavior needed to close the problem with experimental measurements
[Ishii and Hibiki, 2011] .

2.1.3 Local time-averaged equations

In single-phase turbulent regime, an approach in the sense of Reynolds averaged which treats
the instantaneous Navier-Stokes equations statistically is used. For a steady flow, the overall
average of equations (average obtained over a large number of realizations) can be replaced by a
temporal averaging (ergodic hypothesis).

In the two-phase flow; the location of the interface is unknown in time and space, the instanta-
neous equations can not be solved. The equations are averaged by decomposing each variable

into an average part and a fluctuating part.

The temporal averaging operator of the instantaneous equations reveals the presence rate «,
defined by:

__k
a= 7 2.1)

which represents the time T, of the presence of the phase &, with respect to a duration 7.
After spatial discretization of the computational domain, the presence rate is averaged over each
cell and is then expressed as the volume fraction:
k
a=— 2.2
% (2.2)

where V}, is the volume of the phase % in a volume mesh V.

2.1.4 The different models

Different classes of models are present in the literature according to the number of conserva-
tion laws treated and the assumptions made: equilibrium model/relaxed model, homogeneous

model/two-velocity model, two-fluid model/one-fluid model:

o Two-fluid models
The full seven-equation two-phase models proposed by Baer et Nunziato [Baer and Nun-
ziato, 1986] are the most complete. These models take into account explicitly the non-

equilibrium effects between phases (unequilibrium of pressure, velocity and temperature)

9
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but remain difficult to be used in industrial flows (turbomachinery). A seven-equation
model has been used for supercavitation and expansion tube problems by Saurel [Métayer
et al., 2005; Saurel and Metayer, 2001]. The two-fluid method remains more suited for
inviscid and simple geometries [Métayer et al., 2005; Saurel et al., 2008a; Petitpas et al.,
2009; Zein et al., 2010; Saurel and Metayer, 2001; Yeom and Chang, 2006, 2013].

¢ One-fluid homogeneous mixture models

The models are composed of three conservation laws written for the mixture and are
based on a assumption of non-slip between the phases. With the assumption of thermo-
dynamic equilibrium, the Homogeneous Equilibrium Models (HEM) are constituted. The
non-equilibrium effects can be introduced empirically [Yoon et al., 2006]. Different equa-
tions of state for the mixture have been developed in cavitation in a thermosensitive fluid :
barotropic law [Cooper, 1967; Rapposelli and d’Agostino, 2003], algorithm for calculating
temperature based on the equality of the free enthalpies between the phases [Edwards and
Franklin, 2000].

¢ Reduced models with five equations

These models are obtained from a simplification of the complete two-fluid model. The
archetype five-equation model is the one of Kapila [Kapila et al., 2001] which is composed
of two conservation equations for masses, one conservation equation for the mixture
momentum, one conservation equation for the mixture energy and one non-conservative
equation for the void ration to describe the flow topology. They involve two temperature
which makes it possible to reproduce thermal non-equilibrium effects, as proposed in the
model of Saurel [Saurel et al., 2008b] for cavitation simulation in diesel injectors. Some
formulations have been proposed to the simulation of interface between two fluids [Allaire
et al., 2002; Kreeft and Koren, 2010; Murrone and Guillard, 2005; Tian et al., 2011].

¢ Relaxed models with four equations

A four-equation model was developed for a flashing flows and ebullition applications :
the Homogeneous Relaxation Model (HRM). It consists of three conservation laws for the
mixture and one additional transport equation for the void ratio. The latter contains a
relaxation source term. The source term involves a relation time that is the time for the
system to regain its thermodynamic equilibrium state. This relaxation time is very difficult
to determine and is estimated from experimental data [Barret et al., 2002; Downar-Zapolski
et al., 1996]. Another formulation of the relaxation term was proposed by Helluy [Helluy
and Seguin, 2006], based on a constrained convex optimization problem on the mixture
entropy.

Another four-equation model which is very popular to simulate cavitating flows in cold
water has been adapted to cryogenic application [Hosangadi and Ahuja, 2005; Utturkar
et al., 2005; Zhang et al., 2008] by adding a transport equation for the void ratio : the

10
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Transport-based Equation Model (TEM). This equation includs a cavitation source term
for the modeling of condensation and vaporization. The main difficulty is related to the
formulation of the source term and the tunable parameters involved for the vaporization
and condensation process. The calculation of the void fraction by an additional transport
equation including the source terms for vaporization and condensation processes is increas-
ingly used for this model. In this case, the term of mass transfer between phases must be
treated explicitly. Several empirical formulations have been proposed to simulate cavitating
flows [Ahuja et al., 2001; Wang and Ostoja-Starzewski, 2007; Merkle et al., 1998; Singhal
et al., 2002; Venkateswaran et al., 2002; Vortmann et al., 2003; Wu et al., 2005; Morgut
et al., 2011; Kunz et al., 2000; Senocak and Shyy, 2002; Hosangadi and Ahuja, 2005] but
still suffer from a calibration problem and thermodynamics inconsistency [Goncalves and
Patella, 2011]. Different sets of parameters are presented in [Utturkar et al., 2005; Frikha
et al., 2008; Agnieszka et al., 2016].

The different classes of models are summarized in Table 2.1.

Models H Seven equations ‘ Five equations | Four equations Three equations
Equations 2 mass 2 mass 1 mass 1 mass

2 momentum 1 momentum 1 momentum 1 momentum

2 energy 1 energy 1 energy 1 energy

+a +a +a
Characteristic || 2 pressure 1 pressure 1 pressure 1 pressure

2 velocity 1 velocity 1 velocity 1 velocity

2 temperature 2 temperature | 1 temperature 1 temperature
Appellation two-fluid reduced one-fluid relaxed | one-fluid

HRM or TEM HEM ou HNEM

Applications || 1D Euler 2D Euler 2D, 3D N-S 2D, 3D N-S

Table 2.1: Class of models for cavitating flows

2.1.4.1 The two-fluid model

This model is about the Navier-Stokes equations for those phases involved. Here the case of two

phases is considered, where % is the phase index, k=1, 2. This gives the following six conservation

equations :
(Q%Ltpk+v.(akpkuk) Iy 2.3)
6%@# +V. (o, ®uy) ~V(a,p;)+ V., T) +a,0.F), + My, (2.4)
% +V.(a,0,E ) uy) -V.[a,q,] - V. [pu,]+V. [?k.uk] +a,0,F,.u, +Q, (2.5)

11
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E=c+ %uz is the specific total energy.
I'y, My, Qp are the source terms relating to transfers of mass, momentum and energy between

phases. They represent the interfacial effects and must be modeled.
M, =M, +P, Va, +F} (2.6)

The term M }; represents the momentum transfer due to the mass transfer. Fg corresponds to the

interfical friction force exerted on the phase k. Py is the pressure of phase % at the interface.
=H! %% , 2.7
Q= R PRI T kUrr tQpr (2.7)

H,E = Lyqpl'y represents the energy transfer due to the mass transfer, where L, is the latent
heat of phase change. @ corresponds to the interfacial heat transfer. uj; is the vector of velocity

of phase % at the interface.

In addition:

2 2
> M,=M,,=0 and ) @,=Q,,=0 (2.8)
k=1 k=1

It should notice that these two terms are not necessary equal to zero although they are generally
be taken like that. Indeed due to the variation of the curvature of the interface, the momentum

and the energy provided by one phase are not equal to those received by the other.

2.1.4.2 The one-fluid model

This model, also known as homogeneous mixture approach of two-phase flow consists in writing
the averaged Navier-Stokes equations for a "mixing" fluid. It is assumed that the two phases
move at the same velocity (i.e. neglecting the drag term between phases). The exchanges and the
unequilibrium between phases are then no longer directly modeled, but it is possible to represent
them in the closure of the system. Actually, the equation of state of the mixture may introduce a

difference at the saturation point (for example, the barotropic law).

A physical property of the mixture is defined by a weighting of the void ratio to its value between

each phase. For the weighting of the extensive properties, the density will be used.
om =apyv+({1—-a)pL and Pmem = apvey +(1—a)prer (2.9)

The conservation equations are as follows :

0
g;;n +V.(optt,) = O (2.10)
0 —_
p,gtum V. (Ol ®Up) = —V(P)+ V(T )+ 0 Fim (2.11)
0p,,E =
prgt V. (memum) = -V [qm] - V. [pum] +V. [Tmum] +omFmtm (2.12)
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It can be observed that the energy required for phase change, the latent heat, does not appear
explicitly in the energy conservation equation. In fact, this term is treated implicitely for the

mixture.

2.1.4.3 Four-equation models

These models are intermediate models between one-fluid and two-fluids ones. It consists of solving
the conservation equations for the mixture plus a continuity equation for one phase. This makes

it possible to treat the mass transfer term explicitly.

P oV (pten) = 0 (2.13)
a"gt“mw.(pmum@um)  V(p, )+ V., + o, F (2.14)
%Jrv_(memum) = —V,[qm]—V.[pum]+V.[%m.um]+mem.um (2.15)

aaa—ltlerv-(%Pﬂl) = I (2.16)

There exists different models according to the modeling of the mass exchange term between the

phases.

2.1.5 The equations of state

From the thermodynamic point of view, two state variables are sufficient to represent the

thermodynamic state of a fluid. The main relationships existing in the literature are :
¢ Incompressible fluid
e Tait law
e Perfect gas law
e Van der Waals law
e Mie-Griineisen type law
o Stiffened gas law

e Tammann law

2.1.5.1 Incompressible fluid

This assumption leads to a very simplified state law : p = pg
and Cj, = C, = C which are the specific heats at constant pressure and constant volume res-

pectively. This equality leads to the following relation between the internal energy and the
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temperature : de =CdT

This assumption has the effect of decoupling the mass conservation equation and the momen-
tum conservation equation with the energy conservation equation. In fact, the temperature no
longer appears in the first two equations,therefore it has no more influence on the other physical

properties.

2.1.5.2 Tait law

For the case of a slightly compressible flow it is possible to take into account the compressibility
of a fluid by the relation : AP = ¢2Ap

P+P0

Tait law : L _ \/f n]ﬁ where p,.r and P,.s are reference density and pressure. For

pref ref 0
water, Po=3x108 and n="17.
It is the formulation used by [Venkateswaran et al., 2002; Pouffary, 2004] to take into account
the compressibility in the pure phases for the modeling of cavitation. The speed of sound c is a

given value for each phases.

2.1.5.3 Perfect gas law

This state law allows to model a large number of gases with a good approximation: PV =nRT
avec R=8.314 J/(K.kg).

It is also written in the form: P = prT where r = R/M = C,, — C,, (=287 SI unit for air).
According to the internal energy : P (p,e) = (y — 1)pe

where y = g—’v’ is the ratio of specific heats.

With Joule’s law : Ae = C,AT and Ah = C, AT where C, and C), are constants.

There is also the semi-perfect gas law, which defines C,(T') and C,(T) no longer to be constant,

but by using polynomial laws as a function of temperature.

2.1.5.4 Van der Waals law

This law was first introduced by van der Waals in 1873. It contains two constants a and b which
are calibrated on the behavior of the fluid at the critical point. It represents one of the first state

laws for real gases.
(P + %) (v—=0b)=rT where v is the specific volume (2.17)
v

This law produces a negative sound speed (dP/dp < 0) in the phase transition zone (unstable

thermodynamic equilibrium).

14



2.1. MODELING OF TWO-PHASE FLOWS

2.1.5.5 Stiffened gas law

This low is detailed in [Rolland, 2003]. It is valid for a large number of fluids, and is sometimes
used for solids : P (p,e) =(y—1ple —q) = YPs

The term (y —1)p(e — q) represents the intermolecular repulsive effect. The term —yp, represents
the molecular attraction which is responsible for the cohesion of liquids or solids. This term is
null for the perfect gas state law.

It is set for each fluid by the constants y and p, (¢=0). In the phase change the parameter g,
which refers to the energy of the fluid at a given reference state, is non-zero.

The heat capacities are constants in the approximation of stiffened gas law. In the same way
as for the perfect gas law, a semi-stiffened gas law makes it possible to define C, and C, by

polynomial laws as a function of temperature.

Several sets of parameters for cold water have been proposed as shown in Table 2.2 :

Authors Y P, (Pa) q (J/kg) Cp J/Kkg) | c (m/s)
Saurel et Abgrall [Saurel and Abgrall, 1999] 44 6 x 103 0 - 1625
Barberon et Helluy [Barberon and Helluy, 2005] || 3 8.533 x 108 | -0.1148 x 107 | 4200 1569
Paillere et al. [Paillere et al., 2003] 2.8 8.5 x 108 0 4186 1486
Le Metayer et al. [Metayer et al., 2004] 2.35 | 10° -0.1167 x 107 | 4268 1300
Chang et Liou [Chang and Liou, 2007] 1.932 | 1.1645 x 10° | 0 8095 1487

Table 2.2: Parameters of the stiffened gas law for cold water by different authors

2.1.5.6 Tamman law

This law is equivalent to the stiffened gas law :P + P, = pr K(T + T,)
The use of parameters P, K, T, is another formulation but is equivalent to those of stiffened

gas law ¢, P, and y.

2.1.5.7 Mie-Griineisen type law

This law is written as : P(p,e) = Poo(p) +T'(p)p [e - eref(p)]

where I' = % g—é’ is the coefficient of Griineisen and P,,(p) is given as a function of the fluid.
The stiffened gas law is obtained with the assumption of low density variations from the Mie-
Griineisen law. For isentropic evolutions, it becomes the Tait law. Another particular case : if P,

is null, then the perfect gas law is obtained.
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2.1.5.8 Benedict-Webb-Rubin law

To get as close as possible to the representation of real gases, there are even more complex form
of state laws such as the Redlich-Kwong-Soave equation or the Benedict-Webb-Rubin equation
[Benedict et al., 1940].

The Benedict-Webb-Rubin law is written as :

1
P=RTd+d?(RTB+bd)-(A+ad-aad?))- 72 (C—cd(1+yd?)exp(-yd?))

With P the pressure, R the perfect gas constant, 7' the temperature, d the molar density, and a, b,
¢, A, B, C, a, y the empirical parameters. This law is for example used to represent refrigerants. It

is used to characterize hydrogen in the formulation "condensable fluid" in the code Fine”™ /Turbo.

2.1.6 Presentation of different models of cavitation

In this section, a review of various models available in the literature that describe the phenomena
of cavitation with or without the consideration of thermodynamic effect is presented.

In cold water, or more generally for a non-thermosensitive fluid, the dynamic and thermal
phenomena are decoupled. The energy equation is therefore not necessary.

In contrary, in thermosensitive fluid, it is necessary to include the equation of energy.

2.1.6.1 Models with the mixture state law

These are models with three equations (or two equations without the energy) for which the phase
change is controlled by a state law. There are several types of closure relations to link the two

phases in the literature :

Sinusoidal barotropic law [Delannoy and Kueny, 1990]

¢ Logarithmic barotropic law [Schmidt et al., 1999; Moreau et al., 2004; Xie et al., 2006]
e Saurel’s equilibrium law [Saurel et al., 1999]

e Tabulated state law [Ventikos and Tzabiras, 1995; Clerc, 2000]

e Equilibrium law based on free enthalpy [Edwards and Franklin, 2000]

e Polynomial law (of degree 5) [Song, 2002]

* Barotropic law "Italian" [Rapposelli and d’Agostino, 2003; Sinibaldi et al., 2006].

o State law based on entropy [Barberon and Helluy, 2005]

o Mixture of stiffened gas law [Goncalves and Patella, 2009]
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2.1. MODELING OF TWO-PHASE FLOWS

a/ Sinusoidal barotropic law

The barotropic model existing in Fine”™/Turbo was developed by the successive theses of Coutier
[Coutier-Delgosha, 2001] and Pouffary [Pouffary, 2004]. It was originally proposed by Delannoy et
Kueny [Delannoy and Kueny, 1990]. This law relates the pressure to the density by a sinusoidal

relation :

+ - p—p 2
_ PPy PPy sin( vap ) (2.18)

2 _
2 2 Crnin PrL =Py
Cmin represents the minimum speed of sound in the mixture. This law introduces a small non-

equilibrium effect on the pressure. The unequilibrium is controlled by the value of ¢,;.

b/ Schmidt’s barotropic law
From the integration of the Wallis mixture speed of sound which is the propagation velocity of

acoustic waves without mass transfer, Schmidt [Schmidt, 1997] proposes a barotropic law in the

form of :
_ pveypret (py —pr) pyey (og +alpy —pp))
P=p,+ o 5 3 In 5 3 5 (2.19)
PvCy —PLCL Py (pyet —alpyey —pre))

This expression is used in [Moreau et al., 2004; Dumont, 2004] to simulate the cavitation of diesel
in the injectors of piston engine. A modified version was proposed by [Xie et al., 2006] in order to

avoid the appearance of negative pressure.

c/ Saurel’s equilibrium law

For compressible flows, Saurel [Saurel et al., 1999] uses the Tait law for the liquid and the perfect
gas law for the vapor to calculate the pressure in each phase. The mixture is assumed to be in
kinematic and thermodynamic equilibrium. In this way, there is a logarithmic relation to connect
P and T in the form of :

In(P/Pg) = Y ar(T/To)* (2.20)
k

The densities of each phase are given by polynomial functions of the temperature. The void ratio

is defined as :
- (T)
o= P~ Prsas (2.21)
stat(T)_pLsat(T)

d/ Edwards equilibrium law

Edwards et al. [Edwards and Franklin, 2000] propose an equilibrium model to simulate two-
phase octane flows. The pure phases are governed by Sanchez-Lacombe’s law. Thermodynamic
equilibrium is defined by the equality of free enthalpies (g = A — T's) between phases : g7, = gv.

The iterative resolution of this equation makes it possible to determine the vapor pressure

p_pLsat(T)

Pyop(T). The void ratio is calculated by : a = PTG =
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e/ Rapposelli’s barotropic law

Using thermal analysis on a bubble, a relation between the speed of sound in the two-phase
mixture and the temperature can be obtained [Rapposelli and d’Agostino, 2003]. It is possible to
find a law between the density and the temperature by integrating the speed. This law has been
used for the calculation of hydrofoil in non-viscous flow.

The speed of sound is expressed as the relation :

1 1dp_1l-a

pc2  pdp  p

+ -4 (2.22)
YyP

p ES pc K
1-¢;)——+¢ (—)
( L) ch% LS p

In this expression, yy = g’; “/’ and e7, represent the liquid fraction participating in the heat

exchanges with the vapor and :

a
£, = ——
l1-a

5\
1+—=] -1 2.23
( 7 ) ] ( )
where %T is a controlled parameter obtained from calibration of the model from experimental
results. The other parameters are as follows :

For cold water : g* =1.67;n=0.73; P, = 221.29 10° Pa

For nitrogen : g* = 1.3; = 0.69; P, = 3.4 10° Pa

f/ State law based on entropy

Barberon et Helluy [Barberon and Helluy, 2005] proposed to calculate the entropy of the mixture
to evaluate the pressure and the temperature. The pure phases are both governed by the stiffened
gas law. The specific entropy of the mixture is maximal at thermodynamic equilibrium. During
the process of maximization the entropy can be determined when equilibrium is reached and

then also for the pressure P =T g—f} , where v is the specific volume.

g/ Mixture of stiffened gas law
With the assumption of thermal and mechanical equilibrium, an expression for the pressure and

the temperature can be deduced as follows [Goncalves and Patella, 2009] :

P(p,e,a) = (y(@)—1)ple—q(a))—y(@)Po(a)
1 a l-a
= + and (@)=« +(1-a)

Y@ -1 -1 yr-1 prq pvav PLYL
-1 PV PL
Pola) = (@) aYV - +(1_a)YL .
y(a) yv—1 yL—1

h-qla) .
T(p,h,a) = ——— with pCp(a)=apyCpyv+(1-a)prCp;,
Cp(a)
The void ratio is computed with saturation values of densities : a = %.
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2.1. MODELING OF TWO-PHASE FLOWS

An extension version considering thermodynamic effects for thermosensible fluids is proposed in
[Goncalves and Patella, 2010] by introducing a linear variation relation of P4,, pz, and py with
the temperature.

However, this law failed to obtain reasonable results for Venturi case of 4 degree.

2.1.6.2 Models with four equation, transport-based equation models (TEM)

In these models, a conservation equation for one of the phases is added by means of the source
term S which models the mass exchange between the phases. There are different formulations

for the source term (more or less empirical constants) :
e Merkle’s model [Merkle et al., 1998]
e Kunz’s model [Kunz et al., 2000]
e Senocak and Shyy model [Senocak and Shyy, 2002]
¢ Saito’s model [Saito et al., 2003]
e Vortmann’s model [Vortmann et al., 2003]
e Utturkar’s model [Utturkar et al., 2005]
e Hosangadi and Ahuja model [Hosangadi and Ahuja, 2005]
e Goncalves model [Goncalves, 2013]

¢ Source term based on the simplified Rayleigh-Plesset equation

a/ Merkle’s model (1998)
The model proposed by Merkle [Merkle et al., 1998] is one of the first models that uses the mass
conservation equation for the vapor phase to simulate the cavitation.

The equation solved for the vapor phase is as follows:

0x x x
Vi uvry =Y =L (2.24)
ot Ty, Tp
where xy and x7, are the mass fractions of the vapor and liquid phases respectively (apy, = xy,p).

The source term is defined as:

1 P_Puap
kTref q

1 0 when P < Py,
=

when P > Py,

77, is defined in the same way for condensation.

Tref = lL]’e’; is the reference time scale of the fluid, and % is a constant with the value around 1073.

The parameter ¢ is not specified in the article [Merkle et al., 1998] but seems to be the reference

dynamic pressure g = 0.5pUr2€ e
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b/ Kunz’s model (2000)
Kunz’s model [Kunz et al., 2000] is based on an empirical source term split into two contributions

for the evaporation and condensation process :

0
%+V.(aLu): (m*+m7) (2.25)

This model is implemented in the IZ code [Coutier-Delgosha et al., 2002, 2003; Patella et al.,

2006]. The evaporation and condensation source terms are given as following expressions :

_ CdestpVaLMln(O’P_PUap) and it CprodeaL(l a'L) (2.26)

PL(PLUZ /D)too Py too

where ¢, is the relaxation time, Cg.s; and Cp,oq are the constants to be calibrated.
The condensation rate is modeled as being proportional to the liquid volume fraction and the
amount by which the pressure is below the saturated vapor pressure. For the evaporation rate, a

simplified Ginzburg-Landau relationship is used.

c/ Senocak and Shyy model (2001)

Senocak et Shyy [Senocak and Shyy, 2002] try to eliminate the empirical constants by adopting
from Kunz’s model. It is carried out by the idea of introducing the normal interfacial velocity.
However there will be a problem of locating the interface arises. This difficulty is overcome by
the calculation of the density gradient. In this way, a fictitious interface is obtained because of

modeling effort inside it (see Figure 2.1). The mass transfer source terms are as follows :

PV“LMin(O,P _Pvap)

_ _ (1_aL)Max(O:P_Pvap)
~ pvUv = Urn)2pL — pv)teo

Uy —-Urn)*pL - pv)teo

- and m”*

m (2.27)

. v
where Uy , = u.n with n = IV_ZLI
L

The normal interfacial velocity, Uy ,, is zero in steady calculation. This model is called Sharp
Interfacial Dynamics Model (IDM).

o Py

T
q.,-r-'-F"""‘ g e “""i

Figure 2.1: Representation of a vapourous cavity [Senocak et Shyy, 2004]
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2.1. MODELING OF TWO-PHASE FLOWS

d/ Saito’s model (2003)

Saito [Saito et al., 2003] uses a mass transfer equation for the vapor phase. The system is closed
by the modeling of the source term and a mixture state law. The mixture state law is determined
by the weighting of each phase form the Tamman law for the liquid phase and the perfect gas law

for the vapor phase respectively. :

1 1 P(P+P
; =—0-x)+—x or p ( C) (2.28)

oL pv CKA-x)P(T+T)+rx(P+P,)T
The vapor pressure is given by an empirical formula as a function of the temperature. The mass
transfer source term is proportional to the pressure difference, P,,, — P, as well as the inverse of
the square root of the saturation temperature.
Py -P
m*=CoAa(l-a) 2L Y2 ___ ifp<p;

. PV \*/27:_1% Ts ep

Py, —P
m-=CAa(l-a) ——— if P=P}

\/2nRTg vap

where T'g is the saturation temperature and A =C,a(1-a)
A denotes the interfacial area concentration in the vapor-liquid mixture.

The saturation vapor pressure of cold water is given by the empirical formula as :

647.31

P, =22.13x10° exp{(l - ) (7.21879 + (1.152 x 107° - 4.787 x 10°T) (T—483.16)2)}

The parameters C,, C. and C, are empirical constants.

e/ Vortmann’s model (2003)

A rate equation for vapor quality x is formulated by Vortmann [Vortmann et al., 2003] as :
Ox
E+u.Vx =(1-x)K;_,—xK,_; (2.29)

The terms K;_., and K,_; mean the probabilities of phase change from liquid to vapor and
from vapor to liquid respectively. These terms integrate the Gibbs free energy and involve the

relaxation time set to 10~4s kg/m®. The vapor pressure is supposed to be constant.

f/ Utturkar’s model (2005)

The previous IDM model is adapted by Utturkar et al. [Utturkar et al., 2005] to take the
thermodynamic effects into account. The new model is then called Mushy Interfacial Dynamics
Model. The original model without thermodynamic effects uses the averaged interface coditions
of a liquid-vapor interface to construct the mass transfer source term. This approach is justified
by the authors that the sheet cavitation of the cold water contain a significant void ratio. Starting
from the analysis of Hord [Hord, 1974] for the composition of cryogenic sheet cavitation which

describes the vapor zone as the mixture zone with lower void ratio, a model using the averaged
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interface conditions between the liquid and the mixture is formulated.
The mass transfer source terms are given below :
pra; Min(0,P —Pyyp) p;(1-a;)Max(0,P — Py,p)

T = and m' = (2.30)
pi(Um,n - U]yn)z(PL — PV )ico pj(Um,n - UI,n)2(pL —Pv)teo

if a, 20.99 p; = pp, and pj = p,, otherwise p; = py and p; = pr,
This model is valid for the cavitating flows of cold water. As for the sharp IDM model:
Uy = 1 with n = ok

mn = U.n With n = 5ok

For the steady calculation, the normal component of interfacial velocity, Uy, is equal to zero.

Numerical simulations are presented for the analysis of the thermodynamic effects for 2D
turbulent liquid nitrogen around a warhead. The pressure profiles at the wall in the sheet show
a good qualitative behavior of the model, and the void ratio inside the sheet is significantly

decreased in comparison with the calculations for cold water.

g/ Hosangadi and Ahuja model (2005)

Hosangadi et Ahuja [Hosangadi and Ahuja, 2005] use the source term based on the one of Merkle
[Merkle et al., 1998]. The formulation has been implemented within a 3D unstructured code
CRUNCH. To our knowledge, this is the first one to calculate the performance drop of a liquid

cryogenic inducer (LH2). The transport equation of the vapor phase is shown as below :

dpya
ot

+V.(poyau)=m, (2.31)

m; is the mass transfer source term : m, = m~apy, +m*(1-a)p, with :

. 0 P<P,, . 0 P>pP,,
m- = U P-P and m™ = U pP-pP
= Lref 1 ng P> Pva L Lref 1 U;p P< Pva
TV ref §pLUref p TL ref §pLUrzf p

7y and 77, are the time constants for liquid reconversion and vapor formation respectively which
were set at 0.001 s. Fluid thermodynamic properties of each phase are calculated from the NIST
Chemistyr WebBook (http://webbook.nist.gov).

h/ Goncalves model (2013)

Goncalves [Goncalves, 2013] presents the first version of transport equation which has a form
that includes two quantities not used before: the speed of sound, ¢, and the Wallis mixture speed
of sound [Wallis, 19671, c,yq11is- The Wallis speed of sound is expressed as a weighted harmonic
mean of speeds of sound of each phase:

1 1-
e (2.32)

- 2 2
PChwaitis PvCv  PIC
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The void ratio equation can be expressed as :

da  da | pici—puch )| ou <y
—tu—=—— =4 —a_la m (2.33)
ot ot pic; | p,c2 | Ox pici | p,c?
Tt Qo — +
- a - a
=K =1/py the interfacial density

where m is the mass transfer between phases and py is the interfacial density. The term K
involves the speed of sound of pure phases and it reflects the effects of changes in volume of each
phase. By assuming that the mass transfer is proportional to the divergence of the velocity, the

mass transfer m is expressed as :

. PIPv c
m= 1- 5
pl_pv( 4

wallis

2

) divV (2.34)

Computations are performed by Goncalves and Charriére [Goncalves and Charriere, 2014] for
several cases including an underwater explosion with cavitation, bubble collapse by a pressure

wave and the 8 degree Venturi geometry.

I/ Source term based on the simplified Rayleigh-Plesset equation model
These models, unlike the bubble tracking approach, do not solve the complete Rayleigh-Plesset
equation [Brennen, 1995] which is written as :

d’R 3(dR)2_1 20 4pdR

2w 3 (ar) ~p (Pt PP - F G 25

This equation describes the evolution of a spherical bubble in an infinite domain of liquid. R is
the radius of the bubble, P, the saturation pressure, P, the pressure of dissolved gas, the last

two terms represent the surface tensions and the viscous effects respectively.

o The CAVKA code (CAVitation KArlsruhe)
This code was developed at the University of Karlsruhe by Sauer [Sauer and Schnerr, 2000;
Schnerr and Sauer, 2001]. It models the cavitation by a void ration equation where the
source term S is obtained from a number of nuclei, a characteristic radius of these nuclei

and the radius growth rate according to the simplified Rayleigh-Plesset equation.

n047£R2 dR

" T e d 239

no represent the bubble number density (108 by default), and the radius growth rate is

expressed as :

(2.37)
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The expression for the mass transfer source term is derived from the relation between the
void ratio and the bubbles :
4 3 4 3
_ W Np(nRY) _ ny(37R°)

= = = 1
Ve VYwtVy  1+n,37R3

(2.38)

where Np represents the number of bubbles in the computational cell and V,.;; is the
volume of the computational cell. A comparison of the results between the CAVKA code
and another CATUM code for the unsteady non-viscous flow on 2D hydrofoils is given in
[Schnerr et al., 2006].

A model with thermodynamic effects was proposed by the same authors [Sauer and Schnerr,
2000]. They propose to associate the thermodynamic properties of each phase, especially
for the vapor pressure, with the temperature obtained from the resolution of the mixture
energy equation.. Simulation of unsteady cavitating flow of hot water has been carried out

in a 2D nozzle.

e The codes of Fluent and ACE+
The model of Singhal [Singhal et al., 2002; Dular et al., 2005; Zhang et al., 2008; Tani et al.,

2009] where the phase change is managed by the conservation equation of vapor phase :

0x, 0
‘(;t ™ +V.(xyp,u) = Re—Rc (2.39)
x represents the vapor, Re and Rc are the evaporation and condensation source terms
respectively :
k 2Pyap—P
Re = CeﬁprV S (1-xy—xg) ifP <Py (2.40)
o 3 oL
k 2 Pyap—P
Rc = CcﬁprL —Lxg otherwise (2.41)
o 3 pL

Ce and Cc are the empirical constants, % is the local kinetic energy, o is the surface tension,
and x, is the mass fraction of dissolved gases. According to Singhal [Singhal et al., 2002],
Ce=0.02 and Cc=0.01.

An extened version taking into account thermodynamic effects is proposed by [Tani et al.,
2009]. The formulation shows the vapor pressure P,,,(T) varies with the temperature

which is derived from an analytical calculation based on the B-factor theory.

e The CFX code
The model contains the TEM model [Bouziad et al., 2003; Mejri et al., 2006]. The form of

the source term S is based on the simplified Rayleigh-Plesset equation :

2 |Pvap—P| :
Sy =FyNypy4nR3\[§—%— if P <Pyqp
g= (2.42)

2 |Pva _P| .
S, =F Nopy4nRy\| 52 if P> Pyqp
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Ny and N¢ represent the number of bubbles for different modeling of physical phenomenon

(vaporization or condensation).

3(Xd _ 3a
3

Ny =(1-
v =( a)4nR

(2.43)
B
Fy and F¢ are the empirical constants and represent different time scales for the vaporiza-
tion and condensation processes : Fiy=50 and F¢=0.01.

In addition, Rp is the initial radius for the bubbles and x4 is non-condensable gases which

provide nucleation sites for the cavitation process : Rg = 10"%m and x4 = 107 by default.

e The Star-CD code
This code contains the Rayleigh-Plesset model. However the expressions of the sources
terms are unknow, they are not explained in the articles [Kimura et al., 2006; Ugajin et al.,
2004].

Remark:

The free, open source software OpenFOAM is a one-fluid RANS solver which is developed under
the pressure-based schemes (SIMPLE and PISO). Several TEM models are implemented in
OpenFOAM [Erney, 2008], including the Kunz’s model, Merkle’s model and Sauer and Schnerr
model. The validation was carried out in a flow behind a hemisphere and two different hydrofoils
(NACAO0012 and NACAG66).

2.1.6.3 Saurel’s model with five equations

This model is composed of four conservation equations (two mass balance for each pure phase,
one mixture momentum , one mixture energy) plus a non-conservative equation for the void ratio.

The inviscid formulations are written as :

oa
o | div(apyu) = (2.44)
ol-a)
TpL+div((1—a)pLu) = -m (2.45)
0
%+div (pueu)+gradP = 0 (2.46)
OpE
%+div (WE+P)) = 0 (2.47)
0 a(l-a)prc? —opyc2)
2 ruva = TPLELZOVEV iy (u) (2.48)
ot aprc +(1-a)pyey,
2
a(l-a) Iy Iy ke
+ B B — + Q+ 2 z
apre; +(1-apyey \ a  1-a v, L

o T 1-a

The mass transfer term m and the heat transfer term @ between phases are expressed as :
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m=vp(gr—gv)and @ =H(Tr - Ty)

These terms involve free Gibbs enthalpy and the temperature of pure phases as well as two
relaxation coefficients v and H.

The property I' = % g—'z ) is the Griineisen coefficient of pure phases governed by the stiffened
gas law. With the assumption of mechanical equilibrium, it is possible to calculate the mixture
pressure :

(pe—apvqv -(1-a)prqr) - aYyY,—Ii:; +(1- a)yyﬁf
p(p.e,a,pv,pL) = T Ta (2.49)
yv-1 + yi—-1

The relaxation coefficients n and H are unknown and very difficult to determine in practice. To

remove this uncertainty, the resolution is carried out in two steps :

1. It is assumed that the thermodynamic equilibrium is reached, that is to say the relaxation

coefficients are taken as infinite. This allows to determine the equilibrium void ration a.,.

2. Then the whole system is solved. The mass exchange term between phases is evaluated by :

4 _
m=vp(gr—gv)= lgf" - lap V)Z’t 2PV The same goes for the heat transfer term Q.

The model has been tested on the problems of 1D expansion tube, 2D supercavitating flow around

an obstacle and 2D Venturi flow corresponding to a fuel injector (dodecane).

2.1.6.4 Two-fluid models

a/ Grogger and Alajbegovic model (1998)

This two-fluid model has been initially applied to the cavitation in cold water in 2D and 3D Venturi
[Grogger and Alajbegovic, 2001]. It has been applied more recently to a three-phase (liquid, vapor
and air) turbulent cavitating flows simulation for the high-pressure swirl injector geometry
(3D) [Alajbegovic et al., 2001]. This model is based on the resolution of mass and momentum
conservation equations for each phase (four equations in two phases and six equations in three
phases). It has the advantage of modeling the interactions of momentum between phases.

The system solved in the two phases is shown as below (¢ =L, V) :

0a,p,
ot

+V.(a,ppu,) = Th (2.50)
0Pl

V(o) = —a, Vp+ V., 7))+ F +u, Ty (2.51)

The mass transfer source term is based on the bubble growth rate from the simplified Rayleigh-

Plesset equation :

OR
Iy = pLN4nRZE =-Ty (2.52)
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The bubble radius R is defined in function of the void ratio a according to the following expres-
sion: R = %(%)1/3

N, fora <0.5
2(N0—1)(1—a) for « > 0.5

where Ny is the initial bubble number density and is set to 1012.

OR 2|p—
The bubble growth rate is modeled by : — =+ —M
ot 3 pg

The interfacial momentum transfer term is based on the effects of drag force of a sphere and

N represents the bubble number density : N = {

turbulent dispersion forces :

|urel|urelA

2 = —F“f with u,.; =ur —uy (2.53)

F‘Li =crpprLkLVa+cpprL

The term A represents the surface of a spherical bubble. C7p is the turbulent dispersion coeffi-

cient and % is the turbulent kinetic energy. The drag coefficient cp is given by the relations :
cp =24/Re(1+ 0.15Re°.687) if Rep <1000 andcp = 0.44 otherwise (2.54)

Re and Rep are the Reynolds number relative to the flow and the Reynolds number relative to
the bubbles respectively. This is one of the first cavitation model to simulate the slip between
phases. However, the evolution of this model by solving the energy conservation equations seems

not yet to be achieved.

b/ Saurel and Le Métayer model with seven equations (2003)

This model is based on the seven-equation model of Baer-Nunziato [Baer and Nunziato, 1986],
which uses the transport equation of the volume fraction a; to close the two-fluid model with
six equations [Saurel and Abgrall, 1999]. It was originally proposed without considering the
mass transfer. In the thesis of Le Métayer [Rolland, 2003], a phase change term is introduced to

the model. It allows to solve the complex problems such as flows with three components of velocity.

The seven equations of Baer-Nunziato without phase change are as follows (k=1,2) :

0apr

ot +V.(ayppuy) = 0
oa,p,u =
$+V.(akpkuk®uk) = —V(a,P,)+V.a,T) +a,p,F, +FL+PVay
oa,p, E —
EPrr =
T+V.(akpkEkuk) = -V.[a,q,]-V.[pyu,]+V. [Tk.uk] +Pu;Va,
+ IJPI(Pk_PkI)"'a’kPka'uk +Fg.u1+Qk1
0
%*‘uLval = —pP1—-Py)
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The index I represents the interface. The term p(P; — P2) which represents the production of the
volume fraction a1, is equal to the pressure difference between phases multiplied by a coefficient u
that controls the velocity at which pressure equilibrium is reached. This term induces pP; (Py,—p)
due to the interfacial pressure work to energy conservation equations.

To close the system, the interfacial pressure Py is represented by the most compressible phase
pressure and the interfacial velocity u; is represented by the less compressible phase velocity
in the original model. Subsequently, Saurel et Abgrall [Saurel and Abgrall, 1999] estimate the

interfacial pressure by the mixture pressure : Py = 22:1 ap Py,

After solving an inert Riemann problem i.e. without phase change, the study carried out by Le
Meétayer consists of considering the mass transfer term by the Rankine-Hugoniot relations across
the shock front. Different models are proposed. The most complex one deals with three velocities,
one for each phase plus one for the front. More details about this model are available in the
references [Saurel and Abgrall, 1999; Saurel and Metayer, 2001; Rolland, 2003; Abgrall et al.,
2003].

These models have been used and validated on a 1D inviscid flow expansion tube problem.

c/Saurel and Le Métayer model with ten equations (2001)

Saurel et Le Métayer [Saurel and Metayer, 2001] propose a multiphase model composed of five
equations for each phase. It is able to deal with a wide range of applications with the very
general formulation (interfaces between compressible materials, homogeneous two-phase flows,
the problems of shocks and cavitation). This approach is based on the one proposed by Baer et

Nunziato [Baer and Nunziato, 1986]. The system of equation for each phase & is written as :

oapr

+V. =
ot (arprur) mp
0
%+V.(akpkuk®uk) = —V(akPk)+mku1+F,‘j+P1Vak
oarprE
$+V.(akpkEkuk) = —V.[Pkuk]+P1u1.Vak+mkEk1
— WPr(Py—Pp)+Ffur+Qpr
oay, mp,
—+us.V = Py —Pp)+—
5 TurVa p(Pr, = Py) ox
ON, .
6—tk+V.(Nkuk) = N,

with the average interface conditions :

ka = 0

k
kau1+F,‘:+P1Vak = 0
k

ZPIUI-Vak +mpErr — uPr(Py —Pk/)+Fg.u1 +Qrr = 0
k
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2.1. MODELING OF TWO-PHASE FLOWS

The conservation law of mass, momentum and energy, appear the terms related volume fraction
transport equation a; of phase &, as well as the number density of the individual entity Ny,
composing phase % (ex : number of bubbles for a liquid-gas flow mainly liquid). The source term

N}, of the equation represents the phenomena of breakup or coalescence.

The interfacial velocity u; as well as the interfacial pressure pjy of the system are defined as :

_ LR QRPRUL

d = P, + —up)? 2.55
S G an pI %ak( L+ Pk (wr —ug)?) (2.55)

The momentum transfer term due to the drag force between phases is modeled by the velocity

: .pd _
relaxation term : F'f = 1, (uk - uk,)

The mass transfer term is obtained from the interface-averaged equations :

_ (@ +Qyy)

2.
&, -E (2.56)

my

I~ 21)

The energy transfer at the interface is provided by empirical correlations :
Qpr=hy (Tpr—Tp) Acx (2.57)

where A., is the exchange interfacial area.

For spherical entities (bubbles, drops) : A.., =N 147‘[R2

The heat exchange coefficient is defined as : A, = A’é%u

The Nusselt number is defined from the Reynolds number and the Prandtl number :
Nu=2+0.6Re%?Pr033 (2.58)

The u(Py, — Pyr) and puPy (P, — Py/) terms are related to the pressure relaxation process and are
controlled by the value of p.

my
b pX b
of the volume fraction, where px represents the density of the less compressible phase. The

When mass transfer occurs an extra source term is present in the transport equation

main purpose of this term is to separate the mass transfer and the acoustic propagation during

numerical resolution.

d/ Model of Saturne code of EDF

Mimouni et al. [Mimouni et al., 2006] present the simulation of cavitation carried out with the
NEPTUNE code which is originally developed by EDF and CEA for the study of two-phase flow
with ebullition. This code uses a two-fluid approach and allows to simulate a large number of

flow configurations : gaseous or liquid phase with solid particles, liquid phase and vapor , as well
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as different flow topologies : disperesd phases, flows with a continuous phase...

The mass transfer term is obtained from the interface-averaged equations :
qrrt+49q
I, =Ty = 2L "YLA; (2.59)
hy,,—h
vi~ LI

where g represents the interfacial heat flux in the phase &, hz; the enthalpy of the phase % at
the interface and Ay = %“ the exchange interfacial area («a is the void ration and d the averaged

bubble diameter taken equal to 0.1mm).

The enthalpies of each phase at the interface are assumed to be saturated. The interfacial heat

flux is modeled as follows :

qr1 = kI (Tsqt (P)—T}) (2.60)
Nup A ap,Cpy
With the specific heats as follows : c1.7 = ufi L and eyl = pVA—tp

The Nusselt number of liquid is modeled as : Nuz, =2+ 0.6Re! 2Pri/3
|U vV UL| d

VL

with Re the Reynolds number based on the radius of the bubble : Re =

and Pry, the Prandtl number of liquid : Pry, = YL

ar,
In these equations, A, is the thermal conductivity of liquid , Cpy the specific heat of vapor at
constant pressure, At the iterative time step, vz the kinematic viscosity of liquid and aj, the

thermal diffusivity of liquid.

The momentum transfer is based on a term due to mass transfer and a drag term. The results
are presented to a 3D cold water flow through a diaphragm. The calculations are compared with
the test data from the case named SUPER MOBY DICK. This study makes it possible to bring a
new modeling of the interfacial transfer for the cavitation based on those of ebullition.

The code has also been tested on a case of cavitation behind an orifice (EPOCA test case).

2.2 Summary

The vast majority of computer codes dedicated to the simulation of cavitation is based on an
averaged approach for both the two-phase flow and the turbulence. With proper averaging, the
mean values of fluid motions and properties can be obtained. Within the averaged model family,
there are different approaches according to the physic assumptions made on thermodynamics
equilibrium and slip condition between phases. This has resulted in the development of various
systems ranging from seven (two-fluid) to three (one-fluid) equations only. The two-fluid approach
is the most complete and is also known to be a real challenge for numerical simulation due to the

complicated characteristics of the equation system and the troublesome non-conservative terms.
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On the other hand, the one-fluid method, or homogeneous method considers the flows as a
mixture of two fluids behaving as one that is similar to the single-phase flow. In this way, only one
set of conservation equation is employed to express the fluid interaction for the mixture. Because
of the difficulty of modeling nonequilibrium thermodynamics pattern during a phase transition,
the existing models have systematic use of mechanical equilibrium assumptions (single pressure
model) and thermal (single temperature model). Besides, vaporization and condensation processes
are assumed to be instantaneous. Then, this method cannot reproduce strong thermodynamic
or kinetic non-equilibrium effects. Considering its simplicity and low computation cost, the
homogeneous method is more attractive for numerical simulations of cavitating flows. On the
assumptions of velocity equilibrium and pressure equilibrium for each phase from the full models,
a reduced model five-equation model is obtained. This model is capable of modeling the mass and
energy transfer terms between phases and taking the thermo non-equilibrium into account. By
assuming the the velocity, pressure and thermal equilibrium between phases, a four-equation
model can be expressed. With an additional transport equation, usually the void ratio, the mass
transfer between phases can be modeled. The main problem of this model is the formulation
of the source term and the tunable parameters involved for the cavitating processes. With the
assumption of complete thermodynamic equilibrium between phases, that is local temperature,
pressure and free Gibbs enthalpy are supposed to be in equilibrium, the three-equation models or
Homogeneous Equilibrium Models (HEM) are derived. The most difficult part for this approach
is to define a proper equation of state (EOS) for the thermodynamic behavior of the mixture to
close the system.

The one-fluid method (homogeneous method) has received more attention up to now, because
of its lower computational cost and easier coupling with turbulence models. Among the various
existing models, the main differences count on the relation between the pressure and density
fields. This coupling is generally treated through a barotropic equation of state, or developed by
the framwork of transport-based equation method. In this study, the HEM based formulations
coupled with a barotropic state law [Goncalves and Patella, 2009] and a four-equation based model
completed with a void ratio transport equation [Goncalves, 2013] are implemented and tested
with the interface movement and shock-bubble intercation for the NSMB solver. In addition, the
transport equation based method for the void ratio including the source terms for vaporization
and condensation in the free, open source software OpenFOAM (Open source Field Operation

And Manipulation) are also presented for the Venturi geometry.
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CHAPTER

NUMERICAL SOLVER

wo numerical codes used for the simulation of this study are briefly described in this
chapter. The Navier-Stokes Multi-Block (NSMB) solver is a numerical software developed
within an european consortium solving the finite volume Navier-Stokes equations. NSMB
is a multi-block structured solver and parallelized able to solve the steady or unsteady Navier-
Stokes equations in their compressible or incompressible version. Open source Field Operation
And Manipulation (OpenFOAM) is a free, open source software for computational fluid dynamics
(CFD). OpenFOAM is a Finite Volume Method (FVM) based numerical solver for solving systems
of transient transport equations. Plenty of solvers available for a wide range of domains such as

incompressible, compressible, multiphase, combustion, etc ...

3.1 NSMB

Navier-Stokes Multi-blocks (NSMB) was based on a structured multi-block Euler code (EULMB)
developed at Swiss Federal Institute of Technology in Lausanne (EPFL, “Ecole Polytechnique
Fédérale de Lausanne”) in 1989 with the support from the European Centre for Research and
Advanced Training in Scientific Computation (CERFACS, “Centre Européen de Recherche et de
Formation Avancée en Calcul Scientifique”) and the Royal Institute of Technology (KTH).
Originally developed by Jan Vos (CFS-Engineering, Lausanne) in 1989, NSMB was developed
from 1992 to the end of 2003 in the NSMB consortium, which included several universities
(EPFL, Lausanne, Switzerland; SERAM (“Société d’études et de recherches de 'Ecole nationale
supérieure d’arts et métiers”), Paris, France; Institute of Fluid Mechanics of Toulouse (IMFT,
“Institut de Mécanique des Fluides de Toulouse”), Toulouse, France; KTH, Stockholm, Sweden), a

research institution (CERFACS, Toulouse, France), and industrial partners EADS-France (Airbus
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France and EADS Space Technologies), SAAB Military Aircraft Engineering and CFS. Since
2004, NSMB is further developed by the EPF-Lausanne, ETH-Zrich, ICUBE-Strasbourg, IMFT-
Toulouse, Polytechnic University of Munich, the military University of Munich, CFS Engineering
and RUAG Aerospace. In addition to these groups, NSMB is still used by Airbus France, EADS-ST
and KTH.

The NSMB solver is a code which is parallelized in MPI (Message Passing Interface) and
solves the steady or unsteady Navier-Stokes equations in their compressible or incompressible
version on multi block structured grids by means of finite volume method. It provides a wide range
of numerical schemes both for spatial and temporal discretisation. There are for example the
central schemes (2nd and 4th order with artificial dissipation) and upwind schemes (Roe, AUSM,
Van Leer, Harten . ..) available for the spatial discretisation. Within this solver turbulence can
be treated in various ways: LES (Smagorinski, structure functions Lesieur et al, Ducros et al .. .),
turbulence models from zero equations (Baldwin-Lomax, Granville . ..), one equation (Spalart-
Allmaras and several variants), two equations linear models (2 — €,k —w, SST ...), nonlinear
models or explicit (EARSM) and the RSM model. For all these models, their RANS-LES (DES,
DDES, IDDES, WMLES) hybrid variants have been implemented. The SAS model based on
Menter £ — w SST has also been implemented. Chimera Methodologies (overlapping meshes) and
Immersed Boundary Method (IBM) have been successfully implemented in NSMB. The details
about the solver can be referred to the NSMB Handbook [Vos et al., 2013]. The cavitation models
and numerical method that are implemented in this study will be presented in the following

sections.

3.1.1 Governing Equations

The governing equations of the HEM based formulations coupled with a barotropic state law and

a four-equation based model completed with a void ratio transport equation are presented below.

A three-equation model

The movement of fluids is governed by three basic physical conservation equations: mass, momen-
tum and energy conservation equations. The homogeneous mixture approach is used to model
two-phase flows. The phases are assumed to be sufficiently well mixed and the disperse particle
size are sufficiently small thereby eliminating any significant relative motion. The phases are
strongly coupled and moving at the same velocity. In addition, the phases are assumed to be
in kinematic and thermodynamic equilibrium: they share the same pressure, temperature and
velocity . The evolution of the two-phase flow can be described by the conservation laws that
employ the representative flow properties as unknowns just as in a single-phase problem. The
void fraction « is introduced to characterize the volume of vapor in each cell: @ = 1 means that
the cell is completely filled with vapor; inversely, a complete liquid cell is represented by a = 0.

The density p, the center of mass velocity v and the internal energy e for the mixture are defined
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by [Ishii and Hibiki, 2011]:

p=ap, +(1-a)p; 3.1
pu=apyuy,+(1-—a)pju; (3.2)
pe=capye, +(1—a)p;e; (3.3)

where the subscripts v and [ are the vapor and liquid phase respectively.
The inviscid compressible Navier-Stokes equations in 3-D Cartesian corrdinates (x,y,z) can

be expressed in conservative form as:
0 0 0 0
— W)+ — — —(h)=0 3.4
Ot( )+6x(f)+6y(g)+az( ) (3.4)

where ¢ denotes the time.

The state vector W is given by:

0
ou
W=| pv (3.5)
ow
oE
and the convective fluxes are defined as:
ou oV ow
pu?+P pvu pwu
f= puv ,g=| pv’+P |,h= pwv (3.6)
puw pvw pw?+P
u(pE +P) v(pE +P) w(pE +P)

Here u,v and w are the Cartesian velocity components, P is the pressure and E is the total
energy.
The specific total energy E can be expressed in terms of the specific internal energy e and

kinetic energies as:

E=e+%(u2+v2+w2) (3.7)

It is sometimes useful to recast the energy equation in terms of enthalpy. The specific total

enthalpy is given by:

H=———+=(u*+v +w2) (3.8)

1 P 1
E:—1—+§(u2+vz+w2) (3.9)
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From the Equations of 3.8 and 3.9, E = H — % is obtained.

To close the system of equations the pressure P must be related to the state vector W. This
relation depends on the model used to describe the thermodynamic properties of the gas. The
difficulty with this homogeneous approach is to specify an equation of state (EOS) that covers all
possible fluid states: pure phases (incompressible region) and two-phase mixture (compressible
region).

For the pure phases, the convex stiffened gas EOS [Metayer et al., 2004] is used:

P(p,e)=(y—-1)p(e—q)—yPx (3.10)

P(p,T)=ply —1)C,yT — Py (3.11)

T(p,h)= =1 (3.12)
CP

where y = C,/C, is the polytropic coefficient, C,, and C, are thermal capacities,k the enthalpy,
q the energy of the fluid at a given reference state and P, is a constant reference pressure. The

speed of sound c is given by:

9 P+Py
c“=y

= (y-1)C,T (3.13)

In terms of computational methods, the application of a compressible formulation to simulate
low speed cavitating flows results in poor convergence and erroneous calculations. To achieve
this goal, a preconditioned method is necessary. The preconditioning matrix proposed by Turkel
[Guillard and Viozat, 1999] [Turkel, 1987] is used in this research (see Appendix A).

For the two-phase mixture, a sinusoidal barotropic law [Delannoy and Kueny, 1990] is applied:

psat _ psat
P(p,a)=Pyop + (IT”)ciinArcsin(A(l —2a)) (3.14)
hi-qi _hy—qv _h—q(a)
T(p,h) = = = (3.15)
Cp, Cp, Cpla)

This law is characterized by its maximum slope l/ciin. The quantity c,,;, is an adjustable
parameter of the model, which can be interpreted as the minimum speed of sound in the mix-
ture. With this barotropic law, there is no coupling with the temperature and the cavitation
phenomenon is assumed to be isothermal. In the original approach, pure phases are considered
as incompressible and the speed of sound is infinite in each phase. In order to join compressible
pure phases, a constant A, close to 1, is introduced to avoid infinite value of speed of sound. The

speed of sound can be computed by:

OP oP Ac? .
02=(_) :( ) - min (3.16)
9p s

oplr V1-A2(1-2a)7
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A four-equation model

Consider the five-equation Kapila model [Kapila et al., 2001] by assuming the liquid is at its
saturation state, a four-equation model is obtained. The model consists of three conservation laws
for mixture quantities as in Equation (3.4) and an additional equation for the void fraction a.

The void fraction equation can be expressed as:

—tu—+v—+w—=K—+K—+K— (3.17)

2 2
picy = puc
K:( [ ) (3.18)
pici | pocy
1—a+ a

The term K involves the speed of sound of pure phases and it reflects the effects of change in
volume of each phase.

To compute the pressure and the temperature, the convex stiffened gas EOS is used for the
pure phases as presented above for the HEM model. For the two-phase mixture, an expression for
the pressure and the temperature can be deduced from the thermal and mechanical equilibrium
assumption [Saurel et al., 2008b] on the basis of the stiffened gas EOS. These expressions are
available in all possible fluid states along with the function of the void fraction and the mass

fraction of gas Y = ap,/p:

P(p,e,a,Y)=(y(@~1)ple~q(Y)~y(a)Px(a) (3.19)
1 a l-«a
_ 3.20
Y@-1 -1 p-1 520
q¥)=Yq,+(1-Y)q; (3.21)
Po(@=12"L Yo pv g Y _pl (3.22)
(@) Yu—1 yi—1

By assuming the thermal equilibrium between phases, the mixture temperature is expressed

as:

h—q()

with C,Y)=YC,, +(1-Y)Cy, (3.23)
Without mass transfer, the propagation of acoustic waves follows the Wood or Wallis speed of
sound. This speed c¢,,477i5 is expressed as a weighted harmonic mean of speeds of sound of each

phase:

1 «a l1-«a
P = 5 T 2 (3.24)
PChatlis PvCv  PIC
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3.1.2 Numerics

The numerical simulations are carried out using an explicit time integration and based on a

finite-volume discretization. The convective flux through the cell interface is computed with
a HLLC scheme [Batten et al., 1997; Toro et al., 1994]. The method considers two averaged

intermediate states U; and U, separated by the contact wave of speed Sy;. The numerical flux

®; ; at cell interface / can be expressed as:

®; ;(UL,Ur) =1

GWyni; if SL>0
G(U})ni; if Sp<0<Sy
G(U)niy; if Su=0<Sg
GUr)n;; if Sp>0

(3.25)

where S7, and Sg are referred to the speeds of the smallest and largest waves at the cell

interface.

The normal velocity component V,, = V.n. The left (K = L) and right (K = R) states of the

variables Uy, and corresponding fluxes G (

G (U;;) ni;=

where the pressure P* is given by:

p* :PL+PL(VnL

Uy), are defined by:

Pk (Sk = Vi)
() (S5 Vo) +P* = Proms
(pv)k <)+ (P*=Pg)n;;

)
8
S

I*{ - Sk-Su (pw)K(SK Vig) +(P* —Pg)n;;
K

(PE)x (Sk = Vi) + P*Syr — Pg Vg
ak (Sk = Vi)

—SL1) (Va, =Su) =Pr + pr (Var, —SR) (Vo —Su)

And the contact-wave speed Sy is defined by:

Sy =

Pr—Pr+pLVy, (SL -

VnL) — PR Vng (SR _VnR)

oL (SL Vi) = R (SR = Vaz)
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The HLLC solver requires the estimates of wave speeds Sy and Sg in the Riemann problem.

A direct and simple wave speed estimation is used:
Sz, =Min (VnL —crL,Vop — cR) ;. Sp =Max (VnL +cr,Vag + cR) (3.30)

The non-conservative term is discretized following the idea of Daude et al. [Daude et al.,

2014]. The integral term is approximated with the following relation:

f BU)divvdS=B; ) | V.n;dl (3.31)
C; leaC; JIC;

where B; is some average of B on cell C;. Here, B; = B(U;) is used.

the cell interface value u;; is expressed as:

Vi.niyg if S;>0

SL_VnL .
— SM if SL SOSSM
uig (UL UR) = { giy" (3.32)

S-Sy Sy if Sy=<0<8Sg

Vr.niy if Sg>0

Details on the numerical method implemented in the NSMB solver can be referred to the
textbook from Blazek [Blazek, 2015] and the course from Goncalves [Goncalves Da Silva, 2008]

3.2 OpenFOAM

Open source Field Operation And Manipulation (OpenFOAM) is a free, open source software for
computational fluid dynamics (CFD). It is owned by the OpenFOAM Foundation and licenced
under the GNU General Public Licence (GPL) that gives users the freedom to modify and
redistribute the software and a guarantee of continued free use within the terms of the licence. The
codes are written in C++ programming language in an object-oriented manner to solve ordinary
differential equations (ODEs) and partial differential equations (PDEs). The correspondence
between the implementation and the original equation is clear due to the high level programming.
This feature makes users straightforward to modify or mimic the existing solvers. As a result,
this provides OpenFOAM with good extensibility qualities. Another distinguishing feature of
OpenFOAM is that it can be used in massively parallelism through domain decomposition
method, where the computational domain is split into a number of subdomains, one for each
processor. Each processor receives a separate distribution of the complied code to be run on
each subdomain. For the communication between processors, the Message Passing Interface
(MPI) is used. In addition, it provides with plenty of pre- and post-processing utilities for users
to perform. OpenFOAM is a Finite Volume Method (FVM) based numerical solver for solving
systems of transient transport equations. Regarding the finite-volume discretization, a variety

of discretization schemes are implemented for the temporal, convection, diffusion and source
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terms in the transport equations. Meanwhile, there are plenty of solvers available for a wide
range of domains such as incompressible, compressible, multiphases, combustion, etc ... The
above-mentioned advantages give OpenFOAM solvers a great capabilities and extensibility.
Unlike many other commercial CFD packages, OpenFOAM does not have a graphical user
interface to help the user in preparing a case. In order to run an OpenFoam case, it involves
typically the manual preparation of all the required input and mesh files. The minimum required

set of files are system, constant and time directories as shown in Table 3.1.

¢ system folder

The system directory contains run-time control and solver numerics. The decomposePar
file describes how the computational domains to be subdivided for multiple processors. The
controlDict file contains general simulation settings such as the time step, duration and
data saving interval. The fvSchemes file includes the definition of the numerical schemes
implemented to discretize the equations and interpolate the solutions. The fvSolution files

defines the parameters used to solve the flow equations and the residual tolerance.

e constant folder

The constant directory contains physical properties, turbulence modeling properties, ad-
vanced physics and so on. The polyhedral mesh information is placed in the polyMesh

directory.

e ( folder

The 0 directory contains several individual files for every relevant flow quantity including
both the initial and boundary conditions. When a new timestep is computed and stored, it
is written as a time directory in the case name directory. The time directories contains the

solution and derived fields and are created by the solver according to the setting of saving

frequency.
Table 3.1: Directory structure of an OpenFOAM case
case name
system controlDict
decomposePar
fvSchemes
fvSolution
constant physical properties
polyMesh points
cells
faces
boundary
0 BC and initial conditions

time directories
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The solver interPhaseChangeFoam of OpenFOAM is selected to simulate the cavitation. It is a
solver for two incompressible, isothermal immiscible fluids with phase-change (e.g. cavitation) and
uses a volume-of-fluid (VOF) phase-fraction based interface capturing approach. The momentum
and other fluid properties are of the "mixture" and a single momentum equation is solved. The
set of phase-change models provided are designed to simulate cavitation but other mechanisms
of phase-change are supported within this solver framework. The solver includes Kunz, Merkle
and SchnerrSauer cavitation models. It uses the Pressure-Implicit with Splitting of Operators
(PISO) algorithm to solve the Navier Stokes equations by first solving the momentum equations
with pressure from the previous time step followed by solving the pressure equation for the new
velocity field followed by velocity correction. Details on the numerical principles and specific
implementation can be referred to the documentation of OpenFOAM (http://www.openfoam.

com).

3.3 Turbulence Closures

Most cavitation phenomena involve turbulence and the turbulence-cavitation interaction is an
under-known and documented phenomenon (due in particular to the difficulty of performing
experimental measurements in cavitating flows). Compressibility effects on turbulence and the
effects of the dispersed phase are also unknown. The numerical accuracy for turbulent cavitation
depends on both cavitation and turbulence modeling. Thus, the choise of a turbulence modeling
is an important issue for the simulation of cavitation. Direct numerical simulation (DNS) has the
highest capability of resolving all turbulent scales. However, it requires a very fine grid resolution
and therefore it is still pretty hard to be applied because of the high consuming of computer
performance. Although the Large Eddy Simulation (LES) has already been implemented for the
turbulent cavitating flows [Wang and Ostoja-Starzewski, 2007] [Huang et al., 2014] [Gnanaskan-
dan and Mahesh, 2016], the usual codes are formulated in a Reynolds-averaged Navier-Stokes
(RANS) to tensor turbulent closure model by a transport equation % — ¢ (Boussinesq hypothesis)
considering the balabce between the computational effort and accuracy. This hypothesis suggests
that the turbulent shear or Reynolds stresses could be replaced by the product of the mean
velocity gradient and a “turbulent or eddy-viscosity”, y;. In this way, the stress tensor and heat
flux vector of the set of transport equations contain additional terms due to the Reynolds stresses.
The Reynolds stresses — pTu'j(i, J =x,y,2z) need to be modeled to close the system of equations.
The Boussinesq’s gradient transport hypothesis for turbulence closure by using the eddy viscosity
concept as the following equation:

!

_Pu;uJ=Ht(

ou; Ou;\ 2 d
Ui ”’) ~Z5, (utﬂ 4 pk) (3.33)
k

Oxj Ox; 3 0x

The eddy viscosity p; is not a fluid property, but a property that depends on the local turbu-

lence structure. The variable % is the turbulent kinetic energy, defined as k& = %u;u; The second
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term on the right hand side affects only the normal stresses which equals to twice the turbulent
kinetic energy.

Three turbulence models, the one-equation Spalart-Allmaras model, the two-equation & — ¢
model and the Menter 2 —w SST modle, are chosen for the study and briefly described in the

following section.

The Spalart-Allmaras model

For a one equation turbulence model, the state vector contains six unknowns. The last variable is

either vV or F = 12—2 with corresponding source terms Sy or Sg,
0 0 0 0
— W)+ —=(f-f)+—(@E-g)+—(h-h,)=S 3.34
at( ) Ox(f fv) Oy(g &v) 02( v) ( )
W = (p, pu, pv, pw,pE,v or F) (3.35)
f = (pu,pu®+p, puv, puw,u(pE + p),uv or uF),
g = (pv, pvu, pv? + p, pvw,v(pE + p),v¥ or vF), (3.36)
h= (pw,pwu,pwv,pw2 +p,w(pE + p),wv or wF).

fo= (0, Txx — Pu;cu;c, Txy — Pu;cu’y, Txz — pu;cu,z,(TU)x = qux,Dyy or DFx) )
v = (O,Tyx — PUY Uy, Tyy — PUyLLy, Ty, — PUyU,,(TU)y — qy,Dyy or DFy) , (3.37)
hy = (Oasz - pu’zu;cy":zy - pu;u;,,‘l,'zz - pu;u;,(rU)z —qz,Dy; or DFz) .
Sy =1(0,0,0,0,0,Py — ®3),
Y v (3.38)
SF :(0707070>07PF_CDF)-

The Reynolds stresses and heat diffusion are calculated using the Boussinesq approximation.
D denotes the different diffusion terms and ® the destruction terms.

A transport equation for the turbulent viscosity ¥ is assembled, using empiricism and argu-
ments of dimensional analysis, Galilean invariance, and selective dependence on the molecular

viscosity [Spalart and Allmaras, 1992]:

Dv 1 e 9 v 2
— = ¢p1SV +—=[V-(v+V)VV) + cpa(VV) - cp1 [ (=) (3.39)
\D,L — 4 RN d V)
convection production diff;sion dissi;;ttion
The eddy viscosity is defined as:
My = pVfu1=pVe (3.40)
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3.3. TURBULENCE CLOSURES

To ensure that v equals Kyu; in the log layer, in the buffer layer and viscous sublayer, the

damping function f,1 is defined as:

e
== 3.41
as function of the totally local variable A:
X = v (3.42)
v

The function S must be modified to maintain its log-layer behavior (S = U;/(Kd)) all the way
to the wall:

S=g¥24 Y ) (3.43)
%dﬁfz

which is accomplished with the help of the function f9:

X
1+val

The destruction term should vanish in the outer region of the boundary layer. Spalart-

foa=1- (3.44)

Allmaras proposed the function:

1/6

1+ 06w3
=gl——— 3.45
fw(r) g[g6+c6w3] ( )
with the argument r:
re— (3.46)
(kd)*S
Both r and f, equal 1 in the log layer, and decrease in the outer region.
g=r+cuyar®—r) (3.47)
the function g is merely a limiter that prevents large values of f,,.
The constants of the Spalart-Allmaras model are:
2 1+
c51=0.1355, cpy = 0.622,cu2 = 0.8,¢,1 = T.1,0 = 2, cu1 = %21 JAFe) o (348
o

The & — ¢ model

Two-equation turbulence models are widely used, as they offer a good compromise between
numerical effort and computational accuracy. The 2 — & model requires the solution of transport
equations for the turbulent kinetic energy £ and the turbulent dissipation rate ¢, the same for
k — w models. This basis model is typically a “high Reynolds number” model. To take into account

for the interaction between turbulence and fluid viscosity, many different low-Reynolds number
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versions have been implemented. These versions differ in the form of the source terms, in the
surface boundary conditions imposed, in the values of closure coefficients and also in the form of
the damping functions. They both solve an equation for the isotropic component of the turbulent
dissipation. The proposal to use this modified dissipation variable is due to Jones and Launder
[Jones and Launder, 1972] who cited decisive computational advantages.

The model uses the following transport equations:

Turbulent kinetic energy:

opU ik ou;
Dissipation rate:
The eddy viscosity is specified as:
B2
" =PCN? (3.51)

relating the variables k£ and ¢ via a dimensionless constant C,.

The constants of the model are:

C,=0.09,Cc1=1.44,C2=1.92,0,=1.0,0,=1.3 (3.52)

The Menter k2 — o SST model

The £—w model is also a two-equation turbulence model. Instead of using the turbulent disspiation
rate € as the second transported variable, it uses the specific turbulent dissipation rate w = %.
The standard Wilcox [Wilcox, 1988] & — w model is extremely accurate and robust in the near-wall
region in comparison to the more commonly used %2 —e models, but it suffers from high dependency
on the chosen inlet freestream turbulence properties. Menter [Menter, 1992, 1993] attacked this
problem by first transforming the £ — € model into a & — w type formulation before introducing a
blending function dependent, among other things, on distance from the nearest wall. Compared
to the original £ — w model, the differences are the values of the model constants and the presence
of an additional (cross-diffusion) term (Menter discards a small additional diffusion term during
the transformation). The two models are then combined by multiplying the original 2 — @ model
by a function F'1, the transformed model by (1 — F'1), and then adding. The result is a model
which keeps the robust and accurate near-wall formulation of the original Wilcox 2 —w model
and improves freestream independence through use of the £ — ¢ model in the outer part of the
boundary layer. Futher to this baseline (BSL) model, Menter then added a shear-stress transport
correction to form the £ —w model. The Menter 2 —w SST model is known to be particularly
capable of capturing flow fields featuring large separated shear layers. The equations governing

the £ —w SST model are presented below.
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3.3. TURBULENCE CLOSURES

Turbulent kinetic energy:

Dpk oU; 0 ]
— B ok +— + — 3.53
D T,Ja B* pkd o, (u Ukut) ( )
Specific dissipation rate:
Dok y oU; - 1 0k 0
—+U;= — _ Bp@ + — | +2(1-F — 3.54
Dt j= le 0 ppid (,U Uwﬂt) x; ( 1),00'102 o axj axJ ( )

with v; = k/@. The new constants are generated using the relations:

¢=F1¢p1+(1—-F1)po (3.55)

where ¢; and ¢2 represent constants in the original Wilcox model and transformed % — ¢ respec-

tively. The ¢; constants (Wilcox & — w) are:

or1=0.5, 0u, = 0.5, B1 =0.0750
B* =0.09, x =0.41, y1=B1/B* — 0w x%\/B*

The ¢p9 constants (standard Launder-Sharma % —¢) are:

ore =1, 0w, = 0.856, B2 =0.0828
B* =0.09, k =0.41, Y2 = Bo/B* — 0u,k%/\/B*

The other definitions are given by

Fi=tanh (arg‘i) (3.56)

. VE  500v\ 4p0,,k
= : : 3.57
argr=min max(o.ooga)y’y%)’cpkwyz S

where y is the distance to the closest wall and CDy,, is the positive part of the cross-diffusion

term in the blended specific turbulence dissipation equation:

L 0k 00 ‘20) (3.58)

CDy, =max (2;0(7&,2 o Ox ;10
j

The SST model is identical to the BSL model except the set of constants ¢p; and the definition of
the eddy viscosity. The new constants (SST ¢;) are:

o1 =0.85, 0w, =0.5, B1 = 0.0750, a;=0.31
B* =0.09, k=0.41, y1=B1/B* — 0w, x%/\/B*
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In this case the eddy viscosity is defined as:

aik
= 3.59
Ve max(a1®;|Q|Fy ( )

|QQ| is the norm of the mean vorticity vector but the norm of the rate of strain tensor is now

preferred [Menter et al., 2003]. Fq is given by

(3.60)

VE ‘5001/)

Fo=t A 2 = 2—7_
o = tanh(args) argz max( 0.0090y” y2@

Menter also recommends to limit the production in the turbulent kinetic energy equation to ten
times the dissipation to avoid excessive turbulence production, e.g. near stagnation points.

However, the standard eddy-viscosity models based on the Boussinesq hypothesis tend to over-
predict eddy-viscosity that reduce the effect of re-entrant jet and two-phase structure shedding
[Sorgiiven and Schnerr, 2003; Li et al., 2009]. These turbulence models are inadequate to correctly
predict the dynamics of cavitation bubbles. Several solutions have been proposed and tested to
reduce the eddy viscosity and improve the behavior of turbulence models. Reboud [Reboud et al.,
1998] proposed an arbitrary modification by introducing an eddy viscosity limiter assigned as a
function of density, /(p), instead of using the mixture density directly in the computation of the
turbulent viscosity for the & — ¢ turbulence model.

k2 (Pm —pv)"

pe=f(p)Cu—  with f(p)=pv+(p ; (3.61)
I~ Pv

)n—l

where n is a parameter set to 10.

The density function f(p) will be equal to p; and p, in the regions with pure liquid and vapor,
but decreases rapidly in the region with a mixture of liquid and vapor.

A filter-based method (FBM) which combines the filter concept and the RANS model was
investigated [Wu et al., 2005] [Tseng and Wang, 2014] by imposing an independent filter scale,
usually the grid size, in the computation of the eddy viscosity. Once the turbulence length scale
is larger than the filter size, the eddy viscosity can be reduced by a linear filter function. These
corrections have shown some success, but do not take into account the dynamics of small scales
[Coutier-Delgosha et al., 2003] [Goncalves et al., 2010b] [Goncalves, 2011].

The interplay between turbulence and cavitation regarding the unsteadiness and the structure
of the flow is complex and not well understood. Moreover, there are less studies about the influence
of the turbulence models on cavitating flow. In this study, the Reboud correction is implemented
into three different turbulence models and simulated with different cavitation models. The end

goal is to provide an insight into the interaction between the turbulence and cavitation models.
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CHAPTER

VALIDATION CASES

his chapter shows the validation of numerical method implemented in the NSMB solver
for capturing the phenomenon of cavitation. Four test cases including the one- and two-
dimensional compressible two-phase flows with interface conditions are considered. Both
the three-equation and four-equation model coupled with the HLLC scheme have been proposed

to solve these test cases.

4.1 Interface movement in a uniform pressure and velocity flow

A discontinuity of volume fraction movement between two fluids in a uniform pressure and
velocity flow at 100 m/s is considered. The discontinuity separates two nearly pure fluids from
each other and is initially located at x = 0.5 m in a one meter length tube. There is liquid water
in the left chamber and air in the right chamber. The uniform pressure is set equal to P = 10° Pa.

The fluid properties and initial condition for this test are given in Table 4.1.

Table 4.1: Properties of air and water and initial condition for interface movement in a uniform pressure
and velocity flow.

0<x<0.5 0.5<x<1

Air Water Air Water
p (kg/m®) 10 1000 10 1000
a 1076 1-107 1-107 1076
P (Pa) 0 6x108 0 6x108
y 1.4 4.4 1.4 4.4

The numerical solution is plotted in Figure 4.1 and 4.2 at time # = 2.79 ms and is compared

to the exact one. A mesh contains 200 uniform cells is used. The results obtained with the
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three-equation model are in good agreement with the previous investigations [Saurel et al., 2009;
Ansari and Daramizadeh, 2013] and there is no oscillation in the solution. However, the volume
fraction of gas computed by the four-equation model shows oscillation at the outlet. This problem

might be the issue of the boundary condition .
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Figure 4.1: Interface movement discontinuity problem. Void fraction and pressure profiles by 3-equation
model (symbols) and the exact solution (solid line).
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Figure 4.2: Interface movement discontinuity problem. Void fraction and pressure profiles by 4-equation
model (symbols) and the exact solution (solid line).
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4.2 Water-air mixture shock tube

This test case, as proposed in [Ansari and Daramizadeh, 2013], considers a one meter long
shock tube containing two chambers which involves a discontinuity of the volume fraction at the
location of x = 0.7 m. Each chamber contains a nearly pure fluid where the left chamber is filled
with high-pressure fluids and the right one is filled with low-pressure fluids. The initial velocity
is equal to 0 m/s. The fluid properties and initial condition for this test are given in Table 4.2.
Computations have been performed with a mesh of 1000 cells and with a time step At = 107 s.
Numerical solutions computed with the 3-equation and 4-equation model at 240 us are shown
in Figure 4.3 and 4.4 respectively. In this test case, strong pressure waves are propagated. The
obtained result with the four-equation model are in close agreement with solutions presented
in [Saurel et al., 2009]. In addition, the three-equation model was not able to predict well the

phenomena.

Table 4.2: Properties of air and water and initial condition for the water-air shock tube.

0<x<0.7 0.7<x<1

Air Water Air Water
p (kg/m3) 1 1000 1 1000
P (Pa) 10° 10° 105 105
a 1076 1-1076 1-1076 1076
Poo Pa) 0 6x 108 0 6x108
y 1.4 4.4 1.4 4.4
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Figure 4.3: Water-air mixture shock tube problem. Density, pressure, velocity and void fraction profiles by
3-equation model (symbols) and the exact solution (solid line).
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4.3 Water-air mixture expansion tube

lul =2 m/s
An expansion tube problem is considered with an initial velocity discontinuity located at the
middle of the tube. This test consists in a one meter long tube filled with liquid water at
atmospheric pressure and with density p; = 1150 kg/m®. A weak volume fraction of vapor a = 0.01
is initially added to the liquid. The initial discontinuity of velocity is set at 0.5 m, the left velocity
is -2 m/s and the right velocity is 2 m/s. The solution involves two expansion waves. As gas is
present, the pressure cannot become negative. To maintain positive pressure, the gas volume
fraction increases due to the gas mechanical expansion and create a pocket. Liquid water is
expanded until the saturation pressure is reached and then evaporation appears and quite small
amount of vapor is created.

The parameters of the stiffened gas EOS and saturation values for densities are given
in Table 4.3. The quantities have been evaluated with a saturation table at the reference

temperature. The vapor pressure P,,, = 51000 Pa.

Table 4.3: Parameters of the stiffened gas EOS for water at T' = 355 K.

Y Py (Pa) qJkg)  Cp (JKkg) psas (kg/m®)
Liquid 2.35 107 —-0.1167 x 107 4267 1149.9
Vapor 1.43 0 0.2030 x 107 1487 0.31

The solution obtained with the three-equation model is presented at time ¢ = 3.2 ms in Figure
4.5. Results are compared with the two-fluid solution computed in [Zein et al., 2010]. The mesh
contains 1000 cells. The time step is set to A¢ = 1078 s. The approximate HLLC Riemann solver
and the four-equation model were not able to provide a solution and the Jameson-Schmidt-Turkel
scheme [Jameson et al., 1981] is used instead. Computation results of the void fraction and

pressure profiles show large discrepancy with the two-fluid solution.
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Figure 4.5: Water-air mixture expansion tube problem |ul = 2 m/s. Void fraction and pressure profiles by
central scheme with 3-equation model (symbols) and 7-equation model (solid line).
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lal =100 m/s

The same conditions are used except regarding velocities which are set to u = -100 m/s on the
left, and u = 100 m/s on the right. This case is stiffer than the previous one because of the high
value of the initial velocity and evaporation is much more intense resulting in a large cavitation
pocket where the gas volume fraction is close to 1. Computations are performed on a 1000-cell
mesh with the time step set to Az = 1078 s.

The result obtained with the three-equation model is presented at time ¢ = 1.5 ms in Figure
4.6. The void fraction profile is in good agreement with the two-fluid solution whereas the
pressure simulated by the three-equation model is not able to capture the pressure drop inside
the cavitation pocket. Again, the approximate HLLC Riemann solver and the four-equation model

failed to solve this case.
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Figure 4.6: Water-air mixture expansion tube problem |ul = 100 m/s. Void fraction and pressure profiles
by central scheme with 3-equation model (symbols) and 7-equation model (solid line).
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4.4 Water-air shock bubble interaction

A cylindrical air bubble with an initial diameter Dy = 6 mm is immersed in a water pool. Due to
the symmetry of the problem the calculations are performed in a half-domain above the axis. The
center of the bubble is located at (9, 0) mm in the computational domain of size 24 x 12 mm. The
bubble is collapsed by a normal wave moving at Mach 1.72, initially located at abscissa xs; = 4
mm. The schematic diagram of the test case is given in Figure 4.7. The initial and post-shock

conditions are shown in Table 4.4.

0012 Msh=1.72

0.008 -

y (m)

0.004 -

Figure 4.7: Initial situation for the shock bubble interaction Dy = 0.006 m and M, = 1.72.

Table 4.4: Properties of air and water and initial condition for the water-air shock tube.

y  p(kgm®) wu(m/s) v(m/s) P(Pa) Po (Pa)

Water 4.4 1000 0 0 1x10° 6 x10°8
Air 14 1 0 0 1 x10° 0
post-shock 4.4 1323.65 681.58 0 1.9 x10° 6 x108

The boundary conditions are the following: the top and bottom boundaries are assumed to be
a wall and a symmetry axis, respectively. The left and right sides are assumed to be non-reflecting.
Simulations are performed using an uniform mesh composed by 1200 x 600 nodes and a time
step At = 10710 5. The number of nodes for a bubble diameter is 300.

The time evolution of the density gradient modulus (Schlieren-type representation) is plotted
in Figure 4.8 from time ¢ = 0.6 us to ¢ = 2.9 us. After the water shock wave has collided with the
bubble, a strong rarefaction wave is reflected backwards from the interface, and a weak shock
wave is transmitted inside of the bubble (time ¢ = 1.1 us). At time ¢ = 1.7 us the incident water
shock has traversed almost the full cavity width. The interaction between this shock and the
expansion waves originating at the bubble surface has resulted in significant weakening and
curvature of the incident shock. The shock inside the bubble propagates more slowly. Due to the
pressure difference between both sides, the bubble is asymmetrically contracted and spreads
laterally in the process. This change in shape is driven by vorticity generated at the edge of

the bubble due to the passage of the wave which induces a jet of water along the axis of flow
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symmetry. When this water jet impacts the stationary water at the front of the bubble (time
t =2 us), an intense blast wave also called water hammer shock [Hawker and Ventikos, 2012] is
formed generating a high-pressure zone. The blast front, which expands continuously, is highly
asymmetric due to the high-speed water jet (time ¢ = 2.4 us). The rightward blast wave increases
as a spherical wave. Both shocks lose strength as they advance, the rightward wave more so
than its leftward twin. The interaction of the blast wave with the bubble fragments lead to high
pressure levels (time ¢ = 2.7 us). Finally, at time ¢ = 2.9 us, the blast wave continues its expansion
and the cavity its shrinkage. These results show a good agreement with previous numerical
results [Ball et al., 2000; Nourgaliev et al., 2006; Ozlem et al., 2012].

The pressure evolution during the collapse is illustrated in Figure 4.9. During the impact
of the water jet with the stationary water at the front of the bubble, a blast wave is generated
leading to the pressure increase (time ¢ = 2 us). As previously described, the blast fronts are
highly asymmetric. The rightward wave increases as a spherical wave and expands continuously
in the radial direction ((time ¢ = 2.4 us and after). The shock intensity decreases during the
propagation, especially for the rightward front. At time ¢ = 2.4 us, the more intense pressure
peak is generated by the leftward front on the bubble axis. At time ¢ = 2.7 us, the interaction of
the leftward blast wave with the bubble pieces leads to a very strong pressure peak, which is the
most intense reached during the collapse. At time ¢ = 2.9 us, the low-pressure area inside the
vortices core are well illustrated. Both blast wave fronts continue to expand.

The time evolution of the axial velocity is plotted in Figure 4.10. The reflected rarefaction
wave, resulting from the impact of the incident shock with the upstream bubble interaction,
relaxes the pressure, which accelerates the flow and forms a high-speed water jet (time ¢t = 1.1 us
and after). The velocity magnitude is higher than 2000 m/s. At time ¢ =2 us, the water jet strikes
the downstream bubble interface leading to the blast wave generation. After time ¢ = 2.1 us, the
bubble is cut in half and forms a pair of distinct vortical structures. The developing leftward
wave advances relatively slowly due to the high water velocity in the jet fluid. After time ¢ = 2.6
us, the front of the leftward wave can be observed (abscissa x =~ 0.012 m).

The evolution of the vertical velocity is illustrated in Figure 4.11 at the same time as
previously. When the water jet impinges with the downstream edge of the bubble, at time ¢ = 2 us,
the bubble forms a pair of distinct vortical structures. At time ¢ = 2.6 us, caused by the leftward
blast wave, secondary jets penetrate into the smaller bubbles and cut the initial bubble into four

pieces.
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Figure 4.8: Water-air shock bubble interaction. Time evolution of the density gradient.
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Figure 4.10: Water-air shock bubble interaction. Time evolution of the axial velocity (in m/s).
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Figure 4.11: Water-air shock bubble interaction. Time evolution of the vertical velocity (in m/s).
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4.5 Summary

To sum up, the validation of numerical method implemented in the NSMB solver for capturing
the phenomenon of cavitation is illustrated in this chapter. There are four different test cases
investigated and discussed with both the three-equation and four-equation models coupled with
the HLLC scheme. The reuslts obtained from the previous test cases indicate that the implemen-
tation of these two cavitation models unfortunately could not be the cure-all and be generalized
for all the test cases. In other words, it infers that there is the numerical instability for the

implementation in the NSMB solver.

Since the NSMB is a huge solver, when the two cavitation models are implemented into
the solver, there are about 20 % (one thousand) of subroutines which require to be modified
or be coded. Therefore, it remains difficuilities and challenges for the modelling based on the
viewpoint of the CFD. However, in order to achieve the academic goal of this study, turbulence
and cavitation, another free open source software, OpenFOAM, is adopted. With the built-in
solver of the OpenFOAM, interphaseChangeFoam, the phenomenon of cavitation will be studied

with the 4° Venturi geometry and will be presented in the next chapter.
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CHAPTER

RESULTS ON THE VENTURI GEOMETRY CAVITATING FLOW

he Venturi geometry is investigated in this chapter for cavitating flow. First, the inves-
tigation is conducted on a 2D Venturi geometry with available experimental data tested
in the cavitation tunnel of CREMHyG (Centre de Recherche et d’Essais de Machines
Hydrauliques de Grenoble). Second, the 3D effect of the same geometry is considered. The sim-
ulation of cavitating flow is carried out by the free software OpenFOAM. The built-in solver,
interPhaseChangeFoam, is used for the computation. For the Venturi case, three turbulence
models, i.e. the Spalart-Allmaras, 2 — € and 2 —w SST models with the Reboud correction are

considered together with three cavitation models of interPhaseChangeFoam.

5.1 Venturi 2D

5.1.1 Experimental conditions

The Venturi type test section of the CREMHyG cavitation small tunnel was sized and designed to
simulate cavitating flows developing on blades of space turbopump inducers. It is characterized
by a divergence angle of 4°, as illustrated in Fig 5.1. The edge forming the throat of the Venturi
is used to fix the separation point of the cavitation cavity. This geometry is equipped with five
probing holes to take various measurements such as the local void ratio, instantaneous local
speed and wall pressure. The horizontal positions of the holes from the throat of the Venturi are

as follows:
— Station 1: X1 =5.1mm
— Station 2: X9 =209 mm

— Station 3: X3 =384 mm
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— Station 4: X4 =55.8 mm

— Station 5: X5 =73.9 mm

8, Siteoar -

!
Station | Station 2 Station 3 Station 4 Station 5

Figure 5.1: Schematic view of the Venturi profile.

The selected operation point is characterized by the following physical parameters [Barre
et al., 2009]:

— Ujniet = 10.8 m/s, the inlet velocity

Pin e _Pva . . . . .
Oinlet = W =~ (.55, the cavitation parameter in the inlet section

inlet

Trer =293 K, the reference temperature
— L,.;r =252 mm, the reference length

=2.7 x 108, the Reynolds number.

_ ReL _ UianLref

ref
With these parameters, a cavity length L ranging from 70 to 85 mm was obtained. The
experimental view for this geometry show a relatively stable cavity behavior, as shown in Figure
5.2. The attached cavity length corresponding to the end of the re-entrant jet is around 30-35 mm.
The re-entrant jet is mainly composed of liquid, which flows upstream along the solid surface. For

this geometry, no periodic cycles with large shedding were observed.

R ==

Figure 5.2: Photograph of the cavity.

5.1.2 Mesh and computational set-up

The grid is a H-type topology. It contains 251 nodes in the flow direction and 81 nodes in the
orthogonal direction. A special contraction on the mesh is applied in the main flow direction just

after the throat to better simulate the two-phase flow area, as illustrated in Figure 5.3.
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Figure 5.3: Enlargement of the mesh near the Venturi throat.

Various computations were performed by varying the cavitation model and the turbulence model.

An overview that includes all test cases of the Venturi 2D case is shown in Table 5.1.

Cavitation Model Turbulence Model Oinlet
KE + Reboud correction 0.708
Kunz KW SST + Reboud correction 0.597
SA + Reboud correction 0.655
KE + Reboud correction 0.614
Merkle KW SST + Reboud correction 0.602
SA + Reboud correction 0.612
KE + Reboud correction 0.613
SchnerrSauer KW SST + Reboud correction 0.598
SA + Reboud correction 0.61

Table 5.1: Matrix of the Venturi tested cases

The goal was to obtain a quasi-stable cavitation sheet whose length varied between 70-85
mm and a re-entrant jet. The time of simulation is around 5 s. The detailed initial and boundary
conditions and the corresponding flow properties are listed in Table 5.2. The physical properties
of the two phases, liquid and vapor, are taken at a temperature of 293 K. A velocity inlet condition
is applied at the upstream inflow and a pressure outlet condition is used at the outlet boundary
for the computational set-up. The vaporization pressure P, is set to 2300 Pa. The time step At

and the maximum Courant number are set to 107° s and 1.0 respectively.
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Boundary conditions

Velocity inlet (m/s) 10.8

Pressure outlet (Pa) 70000

Top zeroGradient

Bottom zeroGradient
Symmetry 1 empty

Symmetry 2 empty

Flow properties (T = 293 K) Liquid Vapour
Kinematic viscosity (m?/s) 1.2x107° 5.78 x 1074
Density (kg/m?) 1000 0.0173
Turbulence properties

Turbulence kinetic energy (m?/s?) 0.0045

Turbulence dissipation rate (m?/s%) 17

Specific turbulence dissipation rate (1/s) 44000

Dynamic viscosity (Pas) 0.0001

Table 5.2: Boundary conditions, flow and turbulence properties of the Venturi tested cases

The empirical values of the three cavitation models in OpenFOAM solver are specified in
Table 5.3. Here, Uy, is set to the freestream value, ¢, represents a relaxation time, n is the
bubble number density, dnuc is the nucleation site diameter and C. and C,, are the condensation

rate coefficient and vapourisation rate coefficient respectively.

Cavitation model

Kunz Uy =10.8(m/s) too = 0.023(s) C.=10 C,=8000
Merkle Uy = 10.8(m/s) too = 0.023(s) C.=80 C,=0.001
SchnerrSauer n=16x108m™3) dnuc=2x10"%m) C.=1 C,=1

Table 5.3: Empirical values of the cavitation models

5.1.3 Results for different turbulence models

The calculations are done by using the three cavitation models that are implemented in the solver
interPhaseChangeFoam of OpenFOAM with three different turbulence models. The Reboud
correction is applied to these turbulence models with the exponent value of n = 10. All numerical
values are obtained by a time-averaged statistical treatment over a simulation time of 5 s.
Figure 5.4 illustrates the different cavities where the time-averaged void ratio is plotted. All
the cavitation and turbulence models except for Merkle and SchnerrSauer cavitation models
coupled with KWReboud turbulence model show an attached cavity sheet with a large re-
entrant jet and with the presence of small clouds of mixture in the closure region of the sheet.
The configuration of quasi-stable sheet is observed. Among them, only Kunz cavitation model

coupled with the KWReboud turbulence and SchnerrSauer cavitation model coupled with the
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KEReboud turbulence model predict better the sheet length but still overestimate it (about
30%). Calculations obtained with Merkle and SchnerrSauer cavitation models coupled with the
KWReboud turbulence model show a stable cavity sheet with a small recirculation area at the

closure of the sheet.

S KEReboud sigma0613

o o o

Kunz_KWReboud_sigma0s97 . Merkle_KWReboud_sigma06o2 w S5_KWReboud_sigma0s9s

(a) Kunz model (b) Merkle model (¢) SchnerrSauer model

Figure 5.4: Visulization of the cavity — time-averaged void ratio.
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Figure 5.5 presents the evolution of the void ratio and longitudinal velocity profiles for the
numerical and experimental results from station 1 to 5 with Kunz cavitation model. At stations 1
and 2, inside the attached cavity sheet, a relative strong effect of the vaporization phenomenon is
clearly represented from the void ratio profile. The void ratio values of the first two stations are 0.9
and 0.95 near the wall according to experiments. At station 1, computations with the KEReboud
and SAReboud turbulence model are close and with the discrepancy of about 15% compared to
the experimental value. On the contrary, computation with the KWReboud turbulence model
over-estimates the maximum value of the void ratio (around 10%). The numerical cavity thickness
is under-estimated for all turbulence models. At station 2, the distribution is similar to that
obtained for station 1, with an increase in the sheet thickness. Computations with the KEReboud
and SAReboud turbulence models largely under-estimate the maximum value of the void ratio
(around 20%), as observed for station 1. The computation with the KWReboud turbulence model
is in better agreement with the experimental data. For the velocity profiles, at station 1 and 2, all
computations over-estimate the maximum value of the longitudinal velocity. In addition, there
shows the re-entrant jet phenomena with the KEReboud and SAReboud turbulence models which

is not observed in the experiment.

Further downstream, for stations 3, 4 and 5, the re-entrant is observed on the velocity
measurement. The experiment observation indicates a recirculating behavior with a re-entrant
jet extending roughly half the sheet thickness. However, the effect is not very evident especially
for the computation with the KWReboud turbulence model. In addition, the thickness of the
recirculating area is largely under-estimated by the KWReboud turbulence model at station 3
and 4. The intensity of the recirculating zone near the wall is under-estimated by all calculations.
Regarding the void ratio profiles, an over-estimation for both the void ratio values and the
thickness of the cavitation is observed by all computations. Computations with the KEReboud
and SAREeboud turbulence models are similar. Both models have the similar sheet thickness
and the void ratio values. For the KWReboud turbulence model, the void ratio value at the wall is
in very good agreement with the experimental value although the maximum value of it and the

thickness of the sheet are greatly over-estimated.

The dimensionless wall pressure profiles are plotted in Figure 5.6 versus the distance x—x;,7¢;-
The first five data are located inside the cavity (where the void ratio and velocity profiles are
measured). Both the KEReboud and SAReboud turbulence models have a slow re-compression
which results in an underestimation of the pressure downstream the cavity. The KWReboud
turbulence model presents an almost constant value of pressure in the cavity, but the value keeps

the same as the vaporization pressure further downstream compared to the experimental data.

The Root Mean Square (RMS) wall pressure fluctuations are plotted in Figure 5.7 versus
the distance x — x;,7¢¢;. The pressure fluctuation is divided by the time-averaged pressure Pg,.
Experimental data indicate an augmentation of pressure fluctuations at the end of the sheet

cavity, with a peak located at station 5. The peak of pressure fluctuation predicted by the
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KWReboud turbulence model is located downstream the cavity as compared to the experiment.
The amplitude of the fluctuation peak is underestimated by a factor 2. The pressure fluctuations
simulated with both the KEReboud and SAReboud turbulence models are too high.

Figure 5.8 compares time-averaged profiles of the viscosity ratio u;/u, at the five station,
obtained with Kunz cavitation model. The effect of the Reboud correction is not obvious for both
the KEReboud and SAReboud turbulence models. The KWReboud turbulence model induces a

large reduction of the ratio in the sheet at station 1 to 3.
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Figure 5.6: Dimensionless time-averaged wall pressure evolution - Kunz model comparison.
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Figure 5.7: RMS wall pressure fluctuations - Kunz model comparison.
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Figure 5.9 illustrates the evolution of the void ratio and longitudinal velocity profiles for
the numerical and experimental results from station 1 to 5 with Merkle cavitation model. At
station 1, close to the throat, the cavity thickness is similar by all simulations and is under-
estimated. Computations with the KEReboud and KWReboud turbulence models over-estimate
the maximum value of the void ratio: the discrepancy with the experimental value is around 7%
and 10%. On the other hand, computation with the SAReboud turbulence model under-estimates
the maximum value of the void ratio (around 7%). At station 2, all computations capture well the
cavity thickness with an increase of it from station 1. However, computations with the KEReboud
and SAReboud turbulence models under-estimate the maximum value of the void ratio. The
discrepancy with the experimental value is about 10%. For the SAReboud turbulence model,
the void ratio value at the wall is extremely low in relation to the experimental value. On the
contrary, the computation with the KWReboud turbulence model is over-predict the the maximum
value of the void ratio (around 4%). For the velocity profiles, at station 1 and 2, all computations
over-estimate the maximum value of the longitudinal velocity. The re-entrant jet phenomena are
observed with all turbulence models in station 1 and the KEReboud and SAReboud turbulence

models at station 2.

From station 3, the re-entrant jet becomes noticeable from the velocity measurement. The
KEReboud and SAReboud turbulence models reproduce well the effect of recirculating behavior
with a re-entrant jet extending through half the sheet thickness at station 3, 4 and 5. However,
simulation with the KWReboud turbulence model does not present the thickness of the recircu-
lating area and there is no re-entrant jet. The computation with the KEReboud turbulence model
captures better the intensity of the recirculating zone near the wall at station 3 and 4. At station
5, both the KEReboud and SAReboud turbulence models have the similar intensity prediction. As
for the void ration profiles, from station 3 to 5, computations with the KEReboud and SAReboud
turbulence models provide a better prediction of the void ratio values and the thickness of the
cavitation compared to the KWReboud one. In addition, the wall value of the void ratio given by
the SAReboud turbulence model at station 3 and 4 has good agreement with the experimental
value. The computation with the KWReboud turbulence model largely overestimates the void

ratio value.

The dimensionless wall pressure profiles are plotted in Figure 5.10 versus the distance
X — Xinlet- For all computations, the pressure remains at an almost constant value P, in the
cavity. Computations with the KEReboud and SAReboud turbulence models show that the re-
compression starts from station 4 and re-compress slowly afterward in comparison with the
experimental data. On the other hand, the KWReboud turbulence model keeps the pressure
equal to the vaporization pressure far downstream. The re-compression is lower for all simulation

downstream station 5 in relation to the experimental data.

The Root Mean Square (RMS) wall pressure fluctuations are plotted in Figure 5.11 versus

the distance x — x;,7.;. All models predict different behavior for the pressure fluctuations. The

71



CHAPTER 5. RESULTS ON THE VENTURI GEOMETRY CAVITATING FLOW

peak position varies among models. With the KWReboud turbulence model, the peak is present
downstream station 5, whereas the peak obtained with the SAReboud turbulence model is
upstream. The KEReboud turbulence model provides fluctuations in better agreement with
experimental data inside the cavity but not in the re-compression area.

Figure 5.12 compares time-averaged profiles of the viscosity ratio u;/u, at the five station,
obtained with Merkle cavitation model. At stations 2 and 3, a drastic decrease of y; close to the
wall for all models due to the Reboud correction can be observed. Therefore, a better prediction of
the unsteadiness and the separation can be expected. The KWReboud turbulence model shows a
large reduction of the ratio in the sheet at all stations. On the contrary, the SAReboud turbulence

is not in the same case.
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Figure 5.13 illustrates the evolution of the void ratio and longitudinal velocity profiles for the
numerical and experimental results from station 1 to 5 with SchnerrSauer cavitation model. At
station 1, inside the attached cavity sheet, all computations capture the similar cavity thickness
but is under-predicted. Computations with the KEREboud and KWReboud turbulence models
over-estimate the maximum value of the void ration: the discrepancy with the experimental
value is 6% and 10%. At station 2, all simulations present well the cavity thickness with a
correct estimation of it. Computations with the KEReboud and SAReboud turbulence models
under-estimate the maximum value of the void ratio (around 10%) whereas the KWReboud
turbulence model over-estimate it (around 4%). For the velocity profiles, at station 1 and 2,
all computations over-predict the maximum value of the longitudinal velocity. Moreover, the
re-entrant jet phenomena are obtained with all turbulence models which are not observed in the

experimental value and the effect is even stronger with the KWReboud turbulence model.

From station 3 to 5, the re-entrant jet becomes noticeable from the velocity measurement. The
KEReboud and SAReboud turbulence models capture well the effect of recirculating behavior with
a re-entrant jet except that the thickness of the recirculating area is over-estimated. In addition,
the intensity of the recirculating zone captured by the KEReboud turbulence model is in good
agreement with the experiment whereas it is under-estimated by the SAReboud turbulence model.
The KWReboud turbulence model is also capable of predicting the thickness of the recirculating
area but largely over-estimate the intensity of the recirculating zone. As for the void ratio profiles,
at station 3, all computations provide a better prediction of the thickness of the cavity sheet as
compared to the experimental data. The void ratio values are over-predicted by all computations
especially for the KWReboud turbulence model. At station 4 and 5, the void ratio values and
thickness of the cavitation are over-estimated by all computations. For the SAReboud turbulence

model, the void ratio value at the wall is in better agreement with the experimental value.

The dimensionless wall pressure profiles are plotted in Figure 5.14 versus the distance
X — Xinlet- For all computations, the pressure remains at an almost constant value P4, in
the cavity. Computations with the KEReboud and SAReboud turbulence models show that
the re-compression starts from station 4 and re-compress slowly after in comparison with the
experimental data. On the other hand, the KWReboud turbulence model keeps the pressure
equal to the vaporization pressure far downstream. The re-compression is lower for all simulation

downstream station 5 in relation to the experimental data.

The Root Mean Square (RMS) wall pressure fluctuations are plotted in Figure 5.15 versus
the distance x — x;,;.¢. Different behaviors for the pressure fluctuations are obtained by the
turbulence models. The peak position predicted by the KWReboud turbulence model is present
downstream station 5 and the amplitude of the fluctuation peak is underestimated. The pressure
fluctuations simulated with both the KEReboud and SAReboud turbulence models are too high.

Figure 5.16 compares time-averaged profiles of the viscosity ratio u;/u, at the five station,

obtained with SchnerrSauer cavitation model. Computational results with the KEReboud turbu-
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lence model the decrease of u; is apparent especially at station 3 to 5.
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Figure 5.13: Time-averaged void ratio (left) and velocity (right) profiles from station 1 to 5 - SchnerrSauer
model comparison
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Figure 5.14: Dimensionless time-averaged wall pressure evolution - SchnerrSauer model compar-
ison.
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Figure 5.15: RMS wall pressure fluctuations - SchnerrSauer model comparison.
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Figure 5.16: u,/u profiles from station 1 to 3 (left) and 4 to 5 (right) - SchnerrSauer model comparison
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Figure 5.17 illustrates the evolution of the void ratio and longitudinal velocity profiles for
the numerical and experimental results from station 1 to 5 with the & — ¢ turbulence model
with the Reboud correction. At station 1, the similar cavity thickness is estimated by all models
and is under-predicted. Computations with the Merkle and SchnerrSauer cavitation models
over-estimate the maximum value of the void ratio (around 6%) wheres the Kunz cavitation
model under-estimate it (around 6%). At station 2, all models estimate well the cavity thickness
but under-estimate the void ratio composition. At station 3, all models estimate still well the
cavity thickness but over-estimate the void ratio composition. At station 4 and 5, all models
over-estimate both the cavity thickness and the void ratio composition. For the velocity profiles, at
station 1 and 2, all models present the recirculating area which is not observed in the experiment.
Further downstream the re-entrant jet phenomenon is well observed in the experiment. From
station 3 to 5, computations with the Merkle and SchnerrSauer cavitation models reproduce the
recirculating area although over-estimate the thickness of it. The Kunz cavitation model does not
capture the recirculating area.

The dimensionless wall pressure profiles are plotted in Figure 5.18 versus the distance
X —Xjnler- The Kunz cavitation model has a slow re-compression which results in an underestima-
tion of the pressure downstream the cavity. Computations with the Merkle and SchnerrSauer
cavitation models show that the re-compression starts from station 4 and re-compress slowly
afterward in comparison with the experimental data.

The Root Mean Square (RMS) wall pressure fluctuations are plotted in Figure 5.19 versus
the distance x — x;,7.;. The pressure fluctuation simulated with the Kunz cavitation model is too
high. The Merkle and SchnerrSauer cavitation models provide fluctuations in better agreement
with experimental data inside the cavity but not in the re-compression area.

Figure 5.20 compares time-averaged profiles of the viscosity ratio u;/u, at the five station, ob-
tained with the KEReboud turbulence model. With both the Merkle and SchnerrSauer cavitation

models, the reduction effect is similar.

81



CHAPTER 5. RESULTS ON THE VENTURI GEOMETRY CAVITATING FLOW

0.003 — 0.004 .
———— Kunz_KEReboud_sigma0708 Kunz_K i_sigr
——«—— Merkle_KEReboud_sigma0614 Merkie_K id_sig
. SS_KEReboud_sigma0613 0.0035 SS_KEReboud_sigma0613
[ Experiment . Experiment
0.003
0.002
0.0025
£ I £ o.002
> >
0.0015
0.001
0.001
0.0005
o 1 0
0 01 02 03 04 05 06 07 08 09 1
alpha
0.008 ¢ 0.008
0.007 -
0.006 0.006
0.005 -
£ o.004 £ o.004
> >
0.003
0.002 0.002
0.001
o 1 0
0 01 02 03 04 05 06 07 08 09 1
alpha
0.008 0.01
0.007
0.008
0.006
0:008 0.006
£ o.004 E
> >
0.003 0.004
0.002
0.002
0.001
L |
° 05 1 o
0.01
0.008
0.006
E E
> >
0.004 [~ 0.004
0.003 =
0.002 = 0.002
0.001 [~
oL ! ! ! ! ! ! J °
0 01 02 03 0.5 07 08 09 1
alpha
0.01 0.012
0.009
0.01
0.008
0.007
0.008
0.006
£ o.005 £ o.008
> >
0.004
0.004
0.003
0.002
0.002
0.001
L L | °

Figure 5.17: Time-averaged void ratio (left) and velocity (right) profiles from station 1 to 5 - £ — & model
with the Reboud correction comparison
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Figure 5.18: Dimensionless time-averaged wall pressure evolution - 2 — & model with the Reboud
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Figure 5.19: RMS wall pressure fluctuations - £ — ¢ model with the Reboud correction comparison.
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Figure 5.20: y,/u profiles from station 1 to 3 (left) and 4 to 5 (right) - & — & model with the Reboud
correction comparison
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Figure 5.21 illustrates the evolution of the void ratio and longitudinal velocity profiles for the
numerical and experimental results from station 1 to 5 with the £ —w SST turbulence model with
the Reboud correction. At station 1, all computations predict almost the same cavity thickness
but the thickness is under-estimated. All computations over-predict the maximum value of the
void ratio (around 10%). At station 2, the distribution is similar to that obtained for station 1.
The cavity thickness is well captured by all cavitation models. At station 3, the cavity thickness
computed with all models is in good agreement with the experimental data except that the
vapor quantity inside the cavity is over-predicted. At station 4 and 5, computations with all
models over-estimate the cavity thickness and the vapor quantity inside the cavity. The Kunz
cavitation model, the void ratio value at the wall is in very good agreement with the experimental
value for station 3, 4 and 5. Regarding the velocity profiles, at station 1, computations with all
cavitation models and at station 2, with the SchnerrSauer cavitation model present the re-entrant
phenomenon which is not observed in the experiment. At station 3, the SchnerrSauer cavitation
model captures well the thickness of the recirculating area but over-estimates the intensity of the
recirculating zone near the wall. The Kunz and Merkle cavitation models do not reproduce the
recirculating area. At station 4 and 5, both the Kunz and SchnerrSauer cavitation models present
the recirculating area with an underestimation for the Kunz model and an overestimation for
the SchnerrSauer model of the intensity of the recirculating zone near the wall. The Merkle
cavitation model does not reproduce the recirculating area.

The dimensionless wall pressure profiles are plotted in Figure 5.22 versus the distance
X — Xinlet- For all computations, the pressure remains at an constant value P,,;, in the cavity
and the re-compression is lower downstream station 5 in relation to the experimental data. The
Merkle and SchnerrSauer cavitation models keep the pressure equal to the vaporization pressure
far downstream.

The Root Mean Square (RMS) wall pressure fluctuations are plotted in Figure 5.23 versus
the distance x — x;,7.;. The peak of pressure fluctuation predicted by the Kunz cavitation model is
located downstream the cavity as compared to the experiment. Computations with the Merkle
and SchnerrSauer cavitation models present the similar pressure fluctuation profiles.

Figure 5.24 compares time-averaged profiles of the viscosity ratio y;/u, at the five station,
obtained with the KWReboud turbulence model. Computational results show that the reduction

effect with the SchnerrSauer cavitation model is less evident.
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Figure 5.21: Time-averaged void ratio (left) and velocity (right) profiles from station 1to 5 - £ —w SST
model with the Reboud correction comparison
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Figure 5.22: Dimensionless tim