M. S. Dresselhaus, New Directions for Low-Dimensional Thermoelectric Materials, Advanced Materials, vol.92, issue.8, p.1043, 2007.
DOI : 10.1103/PhysRevB.69.195316

G. Chen, M. S. Dresselhaus, J. P. Fleurial, and T. Caillat, Recent developments in thermoelectric materials, International Materials Reviews, vol.227, issue.1, p.45, 2003.
DOI : 10.1016/S0080-8784(01)80136-8

G. S. Nolas, J. Poon, and M. Kanatzidis, Recent Developments in Bulk Thermoelectric Materials, MRS Bulletin, vol.31, issue.03, p.199, 2006.
DOI : 10.1557/mrs2006.45

J. M. Giovanni, Bulletin Technique de la Suisse Romande, 1977.

B. Lenoir, Thermoélectricité : des principes aux applications, Techniques de l'ingénieur, 1990.

J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki et al., Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States, Science, vol.111, issue.22, p.554, 2008.
DOI : 10.1103/PhysRev.111.1029

J. Horak, K. Cermak, and L. Koudelka, Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals, Journal of Physics and Chemistry of Solids, vol.47, issue.8, p.805, 1986.
DOI : 10.1016/0022-3697(86)90010-7

J. Navratil, P. Lostak, and J. Horak, Transport Coefficient of Gallium-doped Bi2Te3 Single Crystals, Crystal Research and Technology, vol.35, issue.6, p.675, 1991.
DOI : 10.1002/crat.2170260603

P. Lostak, J. Navratil, J. Sramkova, and J. Horak, (Bi0.5Sb0.5)2Te3 Crystals Doped with Indium Atoms, Physica Status Solidi (a), vol.17, issue.2, p.519, 1993.
DOI : 10.1139/p65-060

C. H. Goodman, The prediction of semiconducting properties in inorganic compounds, Journal of Physics and Chemistry of Solids, vol.6, issue.4, p.305, 1958.
DOI : 10.1016/0022-3697(58)90050-7

H. J. Goldsmid, Electronic Refrigeration, 1986.

Y. I. Ravich, B. A. Efimova, and I. A. Smirnov, Semiconducting Lead Chalcogenides, 1970.
DOI : 10.1007/978-1-4684-8607-0

D. M. Rowe, Handbook of Thermoelectrics, Boca Raton, FL, 1995.
DOI : 10.1201/9781420038903

S. K. Mishra, S. Satpathy, and O. Jepsen, Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide, Journal of Physics: Condensed Matter, vol.9, issue.2, p.461, 1997.
DOI : 10.1088/0953-8984/9/2/014

J. Navrátil, J. Horák, T. Plechacek, S. Kamba, P. Lo?t-'ák et al., Conduction band splitting and transport properties of Bi2Se3, Journal of Solid State Chemistry, vol.177, issue.4-5, p.1704, 2004.
DOI : 10.1016/j.jssc.2003.12.031

A. Va?ko, L. Tichy, J. Horák, and J. Weissenstein, Amphoteric nature of copper impurities in Bi2Se3 crystals, Applied Physics, vol.177, issue.3, p.217, 1974.
DOI : 10.1103/PhysRevB.2.3209

A. D. Lalonde, Y. Pei, H. Wang, and G. F. Snyder, Lead telluride alloy thermoelectrics, Materials Today, vol.14, issue.11, p.526, 2011.
DOI : 10.1016/S1369-7021(11)70278-4

V. L. Kuznetsov, L. A. Kuznetsova, and D. M. Rowe, skutterudites, Journal of Physics: Condensed Matter, vol.15, issue.29, p.5035, 2003.
DOI : 10.1088/0953-8984/15/29/315

D. T. Morelli, G. P. Meisner, B. X. Chen, S. Q. Hu, and C. Uher, Cerium filling and doping of cobalt triantimonide, Physical Review B, vol.79, issue.12, p.7376, 1997.
DOI : 10.1063/1.362516

G. S. Nolas, J. L. Cohn, and G. A. Slack, Effect of partial void filling on the lattice thermal conductivity of skutterudites, Physical Review B, vol.72, issue.1, p.164, 1998.
DOI : 10.1016/0022-5088(80)90260-X

G. S. Nolas, M. Kaeser, R. T. Littleton, and T. M. Tritt, High figure of merit in partially filled ytterbium skutterudite materials, Applied Physics Letters, vol.61, issue.12, p.1855, 2000.
DOI : 10.1103/PhysRevB.61.4608

Y. Z. Pei, S. Q. Bai, X. Y. Zhao, W. Zhang, and L. D. Chen, Thermoelectric properties of EuyCo4Sb12 filled skutterudites, Solid State Sciences, vol.10, issue.10, p.1422, 2008.
DOI : 10.1016/j.solidstatesciences.2008.01.016

M. Puyet, B. Lenoir, A. Dauscher, M. Dehmas, C. Stiewe et al., High temperature transport properties of partially filled CaxCo4Sb12 skutterudites, Journal of Applied Physics, vol.91, issue.9, p.4852, 2004.
DOI : 10.1063/1.1450036

X. Y. Zhao, X. Shi, L. D. Chen, W. Q. Zhang, W. B. Zhang et al., Synthesis and thermoelectric properties of Sr-filled skutterudite SryCo4Sb12, Journal of Applied Physics, vol.626, issue.5, p.53711, 2006.
DOI : 10.1103/PhysRevLett.95.185503

Y. Z. Pei, L. D. Chen, W. Zhang, X. Shi, S. Q. Bai et al., Synthesis and thermoelectric properties of KyCo4Sb12, Applied Physics Letters, vol.14, issue.22, p.221107, 2006.
DOI : 10.1103/PhysRevLett.80.3551

Y. Z. Pei, J. Yang, L. D. Chen, W. Zhang, J. R. Salvador et al., Improving thermoelectric performance of caged compounds through light-element filling, Applied Physics Letters, vol.626, issue.4, p.42101, 2009.
DOI : 10.1126/science.1159725

H. Fukuoka and S. Yamanaka, ???First Anion-Filled Skutterudite, Chemistry of Materials, vol.22, issue.1, p.47, 2010.
DOI : 10.1021/cm901594q

A. Harnwunggmoung, K. Kurosaki, H. Muta, and S. Yamanaka, High-temperature thermoelectric properties of thallium-filled skutterudites, Applied Physics Letters, vol.95, issue.20, p.202107, 2010.
DOI : 10.1063/1.3099804

G. S. Nolas, H. Takizawa, T. Endo, H. Sellinschegg, and D. C. Johnson, Thermoelectric properties of Sn-filled skutterudites, Applied Physics Letters, vol.77, issue.1, p.52, 2000.
DOI : 10.1107/S0108768198018345

G. S. Nolas, J. Yang, and H. Takizawa, Transport properties of germanium-filled CoSb3, Applied Physics Letters, vol.198, issue.25, p.5210, 2004.
DOI : 10.1103/PhysRevB.67.165207

B. C. Sales, B. C. Chakoumakos, and D. Mandrus, Thermoelectric properties of thallium-filled skutterudites, Physical Review B, vol.56, issue.4, p.2475, 2000.
DOI : 10.1103/PhysRevB.56.R1650

R. P. Hermann, R. J. Jin, W. Schweika, F. Grandjean, D. Mandrus et al., Einstein Oscillators in Thallium Filled Antimony Skutterudites, Physical Review Letters, vol.61, issue.13, p.135505, 2003.
DOI : 10.1103/PhysRevB.61.R9209

M. Christensen, S. Johnsen, and B. B. Iversen, Thermoelectric clathrates of type I, Dalton Trans., vol.70, issue.317, p.978, 2010.
DOI : 10.1021/ic061241w

K. A. Kovnir and A. V. Shevelkov, Semiconducting clathrates: synthesis, structure and properties, Russian Chemical Reviews, vol.73, issue.9, p.923, 2004.
DOI : 10.1070/RC2004v073n09ABEH000916

C. Gatti, L. Bertini, N. P. Blake, and B. B. Iversen, Guest???Framework Interaction in Type I Inorganic Clathrates with Promising Thermoelectric Properties: On the Ionic versus Neutral Nature of the Alkaline-Earth Metal Guest A in A8Ga16Ge30 (A=Sr, Ba), Chemistry - A European Journal, vol.9, issue.18, p.4556, 2003.
DOI : 10.1002/chem.200304837

T. Takabatake, K. Suekuni, T. Nakayama, and E. Kaneshita, Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory, Reviews of Modern Physics, vol.213, issue.2, p.669, 2014.
DOI : 10.1103/PhysRevB.85.214304

URL : http://arxiv.org/pdf/1402.5756

J. L. Cohn, G. S. Nolas, V. Fessatidis, T. H. Metcalf, and G. A. Slack, Glasslike Heat Conduction in High-Mobility Crystalline Semiconductors, Physical Review Letters, vol.131, issue.4, p.779, 1999.
DOI : 10.1103/PhysRev.131.1433

G. S. Nolas, J. L. Cohn, G. A. Slack, and S. B. Schujman, Semiconducting Ge clathrates: Promising candidates for thermoelectric applications, Applied Physics Letters, vol.2, issue.2, p.178, 1998.
DOI : 10.1063/1.475218

A. Bentien, S. Johnsen, and B. B. Iversen, Strong phonon charge carrier coupling in thermoelectric clathrates, Physical Review B, vol.316, issue.9, p.94301, 2006.
DOI : 10.1103/PhysRev.134.A1387

X. Shi, J. Yang, S. Bai, J. Yang, H. Wang et al., On the Design of High-Efficiency Thermoelectric Clathrates through a Systematic Cross-Substitution of Framework Elements, Advanced Functional Materials, vol.85, issue.5, p.755, 2010.
DOI : 10.3139/146.110012

K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, $_{2}$Sb$_{4}$S$_{13}$ with Low Thermal Conductivity, Applied Physics Express, vol.5, issue.5, p.51201, 2012.
DOI : 10.1143/APEX.5.051201

Y. Bouyrie, C. Candolfi, S. Pailhès, M. M. Koza, B. Malaman et al., From crystal to glass-like thermal conductivity in crystalline minerals, Physical Chemistry Chemical Physics, vol.85, issue.30, p.19751, 2015.
DOI : 10.1103/PhysRevB.85.174105

URL : https://hal.archives-ouvertes.fr/hal-01279097

W. Lai, Y. Wang, D. T. Morelli, and X. Lu, Tetrahedrites: When Lone-Pair Electrons Are Not So Lonely, Advanced Functional Materials, vol.44, issue.24, p.3648, 2015.
DOI : 10.1107/S0021889811038970

Y. Bouyrie, C. Candolfi, J. B. Vaney, A. Dauscher, and B. Lenoir, High Temperature Transport Properties of Tetrahedrite Cu12???x M x Sb4???y Te y S13 (M??=??Zn, Ni) Compounds, Journal of Electronic Materials, vol.26, issue.6, p.1601, 2016.
DOI : 10.1021/cm404026k

URL : https://hal.archives-ouvertes.fr/hal-01299691

A. Chatterjee and K. Biswas, Series as Nanosheets, Angewandte Chemie International Edition, vol.40, issue.19, p.5623, 2015.
DOI : 10.1023/B:INMA.0000027590.43038.a8

S. V. Borisov, N. V. Pervukhina, S. A. Magarill, and N. V. Kuratieva, THE CRYSTAL STRUCTURE OF (Cd,In)-RICH CANNIZZARITE FROM KUDRIAVY VOLCANO, ITURUP ISLAND, KURILES, RUSSIA, The Canadian Mineralogist, vol.50, issue.2, p.387, 2012.
DOI : 10.3749/canmin.50.2.387

A. Mrotzek and M. G. Kanatzidis, ], Accounts of Chemical Research, vol.36, issue.2, p.111, 2003.
DOI : 10.1021/ar020099+

A. Mrotzek, L. Iordanidis, and M. G. Kanatzidis, (A = K, Rb, Cs; M??? = Sn, Pb), Inorganic Chemistry, vol.40, issue.24, p.6204, 2001.
DOI : 10.1021/ic010285w

D. Y. Chung, K. S. Choi, L. Iordanidis, J. L. Schindler, P. W. Brazis et al., and Their Sb Analogues, Chemistry of Materials, vol.9, issue.12, p.3060, 1997.
DOI : 10.1021/cm970397e

A. Mrotzek, D. Y. Chung, N. Ghelani, T. Hogan, and M. G. Kanatzidis, Structure and Thermoelectric Properties of the New Quaternary Bismuth Selenides A1???xM4???xBi11+xSe21 (A=K and Rb and Cs; M=Sn and Pb)???Members of the Grand Homologous Series Km(M6Se8)m(M5+nSe9+n), Chemistry, vol.32, issue.9, p.1915, 2001.
DOI : 10.1016/0011-2275(92)90358-H

A. Mrotzek, D. Y. Chung, T. Hogan, and M. G. Kanatzidis, Structure and thermoelectric properties of the new quaternary tin selenide K1 ??? xSn5 ??? xBi11 + xSe22, Journal of Materials Chemistry, vol.10, issue.7, p.1667, 2000.
DOI : 10.1039/b000045k

G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nature Materials, vol.91, issue.2, p.105, 2008.
DOI : 10.1557/mrs2006.46

H. J. Goldsmid, Thermoelectric Refrigeration, 1964.
DOI : 10.1007/978-1-4899-5723-8

L. Zhang and D. J. Singh, and related intergrowth compounds, Physical Review B, vol.30, issue.24, p.245119, 2010.
DOI : 10.1103/PhysRevLett.104.176601

J. Takagi and Y. Takéuchi, The crystal structure of lillianite, Acta Crystallographica Section B, vol.28, issue.2, p.649, 1972.
DOI : 10.1107/S0567740872002924

A. Pring, M. Jercher, and E. Makovicky, Disorder and Compositional Variation in the Lillianite Homologous Series, Mineralogical Magazine, vol.63, issue.6, p.917, 1999.
DOI : 10.1180/minmag.1999.063.6.11

D. Topa, E. Makovicky, H. J. Schimper, and H. Dittrich, THE CRYSTAL STRUCTURE OF A SYNTHETIC ORTHORHOMBIC N = 8 MEMBER OF THE LILLIANITE HOMOLOGOUS SERIES, The Canadian Mineralogist, vol.48, issue.5, p.1127, 2010.
DOI : 10.3749/canmin.48.5.1127

J. Takagi and Y. Takeuchi, The crystal structure of lillianite, Acta Crystallographica Section B, vol.28, issue.2, p.649, 1972.
DOI : 10.1107/S0567740872002924

Y. Iitaka and W. Nowacki, A redetermination of the crystal structure of galenobismutite, PbBi2S4, Acta Crystallographica, vol.15, issue.7, p.691, 1962.
DOI : 10.1107/S0365110X62001887

M. Ohta, D. Y. Chung, M. Kunii, and M. G. Kanatzidis, : promising thermoelectric materials in the cannizzarite, lillianite, and galenobismuthite homologous series, J. Mater. Chem. A, vol.46, issue.47, p.20048, 2014.
DOI : 10.1021/ic501327u

A. Skowron and R. J. Tilley, Chemically twinned phases in the Ag2SPbsBi2S3 system, Journal of Solid State Chemistry, vol.78, issue.1, p.84, 1989.
DOI : 10.1016/0022-4596(89)90130-8

N. N. Mozgova, Non-Stoichiometry and Homologous Series of Sulphosalts, 1985.

N. I. Organova, Crystal Chemistry of Non-Commensurate and Modular Mixlayer Minerals, 1989.

L. E. Shelimova, O. G. Karpinskii, and V. S. Zemskov, X-ray diffraction study of ternary layered compounds in the PbSe-Bi2Se3 system, Inorganic Materials, vol.40, issue.5, p.927, 2008.
DOI : 10.1023/A:1013639108297

K. Segawa, A. A. Taskin, and Y. Ando, Pb5Bi24Se41: A new member of the homologous series forming topological insulator heterostructures, Journal of Solid State Chemistry, vol.221, p.196, 2015.
DOI : 10.1016/j.jssc.2014.09.034

L. E. Shelimova, O. G. Karpinskii, P. P. Konstantinov, E. S. Avilov, M. A. Kretova et al., Composition and properties of compounds in the PbSe-Bi2Se3 system, Inorganic Materials, vol.38, issue.10, p.120, 2010.
DOI : 10.1134/S0020168508090057

K. Nakayama, T. Sato, S. Souma, T. Takahashi, K. Segawa et al., Manipulation of Topological States and the Bulk Band Gap Using Natural Heterostructures of a Topological Insulator, Physical Review Letters, vol.109, issue.23, p.236804, 2012.
DOI : 10.1038/nphys1274

S. Sasaki, K. Segawa, and Y. Ando, Superconductor derived from a topological insulator heterostructure, Physical Review B, vol.58, issue.22, p.220504, 2014.
DOI : 10.1107/S0021889811038970

L. E. Shelimova, O. G. Karpinskii, and V. S. Zemskov, X-ray diffraction study of ternary layered compounds in the PbSe-Bi2Se3 system, Inorganic Materials, vol.40, issue.5, p.927, 2008.
DOI : 10.1023/A:1013639108297

Z. H. Zhang, Z. F. Liu, J. F. Lu, X. B. Shen, F. C. Wang et al., The sintering mechanism in spark plasma sintering ??? Proof of the occurrence of spark discharge, Scripta Materialia, vol.81, p.56, 2014.
DOI : 10.1016/j.scriptamat.2014.03.011

M. Nygren and Z. Shen, On the preparation of bio-, nano- and structural ceramics and composites by spark plasma sintering, Solid State Sciences, vol.5, issue.1, p.125, 2003.
DOI : 10.1016/S1293-2558(02)00086-9

C. Estournes, flash Mise en forme de matériaux par frittage flash par, p.1, 2014.

M. Suga, S. Asahina, Y. Sakuda, H. Kazumori, H. Nishiyama et al., Recent progress in scanning electron microscopy for the characterization of fine structural details of nano materials, Progress in Solid State Chemistry, vol.42, issue.1-2, p.1, 2014.
DOI : 10.1016/j.progsolidstchem.2014.02.001

J. Ruste, Microscopie électronique à balayage principe et équipement, Techniques de l'ingénieur, 2014.

A. Olvera, G. Shi, H. Djieutedjeu, A. Page, C. Uher et al., : A Lillianite Homologue with Promising Thermoelectric Properties, Inorganic Chemistry, vol.54, issue.3, p.746, 2014.
DOI : 10.1021/ic501327u

W. Lai, Y. Wang, D. T. Morelli, and X. Lu, Tetrahedrites: When Lone-Pair Electrons Are Not So Lonely, Advanced Functional Materials, vol.44, issue.24, p.3648, 2015.
DOI : 10.1107/S0021889811038970

Y. Bouyrie, C. Candolfi, J. B. Vaney, A. Dauscher, and B. Lenoir, High Temperature Transport Properties of Tetrahedrite Cu12???x M x Sb4???y Te y S13 (M??=??Zn, Ni) Compounds, Journal of Electronic Materials, vol.26, issue.6, p.1601, 2016.
DOI : 10.1021/cm404026k

URL : https://hal.archives-ouvertes.fr/hal-01299691

R. P. Hermann, R. J. Jin, W. Schweika, F. Grandjean, D. Mandrus et al., Einstein Oscillators in Thallium Filled Antimony Skutterudites, Physical Review Letters, vol.61, issue.13, p.135505, 2003.
DOI : 10.1103/PhysRevB.61.R9209

E. G. Nolas, The Physics and Chemistry of Inorganic Clathrates, 2014.
DOI : 10.1007/978-94-017-9127-4

M. Christensen, S. Johnsen, and B. B. Iversen, Thermoelectric clathrates of type I, Dalton Trans., vol.70, issue.317, p.978, 2010.
DOI : 10.1021/ic061241w

T. Takabatake, K. Suekuni, T. Nakayama, and E. Kaneshita, Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory, Reviews of Modern Physics, vol.213, issue.2, p.669, 2014.
DOI : 10.1103/PhysRevB.85.214304

URL : http://arxiv.org/pdf/1402.5756

A. Walsh, D. J. Payne, R. G. Egdell, and G. W. Watson, Stereochemistry of post-transition metal oxides: revision of the classical lone pair model, Chemical Society Reviews, vol.20, issue.9, p.4455, 2011.
DOI : 10.1021/cm071588c

O. Maldonado, Pulse method for simultaneous measurement of electric thermopower and heat conductivity at low temperatures, Cryogenics, vol.32, issue.10, p.908, 1992.
DOI : 10.1016/0011-2275(92)90358-H

J. B. Hay and J. Filtz, CND : méthodes surfaciques, p.42

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, Journal of Applied Physics, vol.32, issue.9, p.1679, 1961.
DOI : 10.1063/1.1728417

R. D. Cowan, Proposed Method of Measuring Thermal Diffusivity at High Temperatures, Journal of Applied Physics, vol.32, issue.7, p.1363, 1961.
DOI : 10.1016/0022-1902(58)80096-2

R. D. Cowan, Pulse Method of Measuring Thermal Diffusivity at High Temperatures, Journal of Applied Physics, vol.34, issue.4, p.926, 1963.
DOI : 10.1063/1.1736235

J. A. Cape and G. W. Lehman, Temperature and Finite Pulse???Time Effects in the Flash Method for Measuring Thermal Diffusivity, Journal of Applied Physics, vol.34, issue.7, p.1909, 1963.
DOI : 10.1063/1.1728417

D. Josell, J. Warren, and A. Cezairliyan, Comment on ??????Analysis for determining thermal diffusivity from thermal pulse experiments??????, Journal of Applied Physics, vol.24, issue.11, p.6867, 1995.
DOI : 10.1088/0022-3727/24/12/011

J. Faure, Détermination de la diffusivité thermique des isolants par la méthode du signal très bref, Euratom (EUR 1822.f), 1964.

L. M. Clark and R. E. Taylor, Radiation loss in the flash method for thermal diffusivity, Journal of Applied Physics, vol.46, issue.2, p.714, 1975.
DOI : 10.1063/1.1662393

.. Basse-et-haute-température, 195 I-1) Propriétés électriques et galvanomagnétiques. 195 I-2) Mesure de la bande interdite par spectroscopie d'absorption 202 I-3) Propriétés thermiques 204 I-4) Facteur de mérite adimensionnel, Propriétés physiques des composés ternaires (m = 1, p.209

H. J. Goldsmid and J. W. Sharp, Estimation of the thermal band gap of a semiconductor from seebeck measurements, Journal of Electronic Materials, vol.65, issue.7, p.869, 1999.
DOI : 10.1080/00207215908937186

Y. C. Akgöz and G. A. Saunders, Space-time symmetry restrictions on the form of transport tensors. I. Galvanomagnetic effects, Journal of Physics C: Solid State Physics, vol.8, issue.9, p.1387, 1975.
DOI : 10.1088/0022-3719/8/9/010

Z. M. Gibbs, A. Lalonde, and G. J. Snyder, Optical band gap and the Burstein???Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy, New Journal of Physics, vol.15, issue.7, p.75020, 2013.
DOI : 10.1088/1367-2630/15/7/075020

K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, $_{2}$Sb$_{4}$S$_{13}$ with Low Thermal Conductivity, Applied Physics Express, vol.5, issue.5, p.51201
DOI : 10.1143/APEX.5.051201

Y. Bouyrie, C. Candolfi, J. B. Vaney, A. Dauscher, and B. Lenoir, High Temperature Transport Properties of Tetrahedrite Cu12???x M x Sb4???y Te y S13 (M??=??Zn, Ni) Compounds, Journal of Electronic Materials, vol.26, issue.6, p.1601, 2016.
DOI : 10.1021/cm404026k

URL : https://hal.archives-ouvertes.fr/hal-01299691

S. R. Brown, S. M. Kauzlarich, F. Gascoin, and G. J. Snyder, :?? New High Efficiency Thermoelectric Material for Power Generation, Chemistry of Materials, vol.18, issue.7, p.1873, 2006.
DOI : 10.1021/cm060261t

E. S. Toberer, A. Zevalkink, N. Crisosto, and G. J. Snyder, The Zintl Compound Ca5Al2Sb6 for Low-Cost Thermoelectric Power Generation, Advanced Functional Materials, vol.73, issue.24, p.4375, 2010.
DOI : 10.1103/PhysRevB.73.224435

T. Yamada, H. Yamane, and H. Nagai, with Disordered Na Atoms in Helical Tunnels, Advanced Materials, vol.44, issue.32, p.4708, 2015.
DOI : 10.1107/S0021889811038970

U. Aydemir, A. Zevalkink, A. Ormeci, Z. M. Gibbs, S. Bux et al., by Zn Doping, Chemistry of Materials, vol.27, issue.5, p.1622, 2015.
DOI : 10.1021/cm5042937

D. G. Cahill, S. K. Watson, and R. O. , Lower limit to the thermal conductivity of disordered crystals, Physical Review B, vol.148, issue.10, p.6131, 1992.
DOI : 10.1103/PhysRev.148.463

W. Lai, Y. Wang, D. T. Morelli, and X. Lu, Tetrahedrites: When Lone-Pair Electrons Are Not So Lonely, Advanced Functional Materials, vol.44, issue.24, p.3648, 2015.
DOI : 10.1107/S0021889811038970

Y. Pei, C. Chang, Z. Wang, M. Yin, M. Wu et al., : A Promising Thermoelectric Material with Extremely Low Thermal Conductivity, Journal of the American Chemical Society, vol.138, issue.50, p.16364, 2016.
DOI : 10.1021/jacs.6b09568

M. Christensen, S. Johnsen, and B. B. Iversen, Thermoelectric clathrates of type I, Dalton Trans., vol.70, issue.317, p.978, 2010.
DOI : 10.1021/ic061241w

T. Takabatake, K. Suekuni, T. Nakayama, and E. Kaneshita, Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory, Reviews of Modern Physics, vol.213, issue.2, p.669, 2014.
DOI : 10.1103/PhysRevB.85.214304

Y. Bouyrie, C. Candolfi, S. Pailhès, M. M. Koza, B. Malaman et al., From crystal to glass-like thermal conductivity in crystalline minerals, Physical Chemistry Chemical Physics, vol.85, issue.30, p.19751, 2015.
DOI : 10.1103/PhysRevB.85.174105

URL : https://hal.archives-ouvertes.fr/hal-01279097

D. J. Safarik, A. Llobet, and J. C. Lashley, Harmonic Debye-Waller analysis of anharmonic vibrations, Physical Review B, vol.85, issue.17, p.174105, 2012.
DOI : 10.1103/PhysRevB.28.2866

M. M. Koza, H. Mutka, Y. Okamoto, J. Yamaura, and Z. Hiroi, : a benchmark system for ???rattling??? excitations, Physical Chemistry Chemical Physics, vol.115, issue.38, p.24837, 2015.
DOI : 10.1063/1.4878676

M. J. Winiarski and T. Klimczuk, Crystal structure and low-energy Einstein mode in ErV 2 Al 20 intermetallic cage compound, Journal of Solid State Chemistry, vol.245, p.10, 2017.
DOI : 10.1016/j.jssc.2016.09.029

T. Dahm and K. Ueda, NMR Relaxation and Resistivity from Rattling Phonons in Pyrochlore Superconductors, Physical Review Letters, vol.99, issue.18, p.187003, 2007.
DOI : 10.1016/j.jmmm.2006.10.035

R. P. Hermann, R. J. Jin, W. Schweika, F. Grandjean, D. Mandrus et al., Einstein Oscillators in Thallium Filled Antimony Skutterudites, Physical Review Letters, vol.61, issue.13, p.135505, 2003.
DOI : 10.1103/PhysRevB.61.R9209

T. Zhou, M. Colin, B. Lenoir, A. Dauscher, C. Candolfi et al., ??? 3.78), Chemistry of Materials, vol.26, issue.16, p.4765, 2014.
DOI : 10.1021/cm5016367

J. Horak, K. Cermak, and L. Koudelka, Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals, Journal of Physics and Chemistry of Solids, vol.47, issue.8, p.805, 1986.
DOI : 10.1016/0022-3697(86)90010-7

J. Navratil, P. Lostak, and J. Horak, Transport Coefficient of Gallium-doped Bi2Te3 Single Crystals, Crystal Research and Technology, vol.35, issue.6, p.675, 1991.
DOI : 10.1002/crat.2170260603

P. Lostak, J. Navratil, J. Sramkova, and J. Horak, (Bi0.5Sb0.5)2Te3 Crystals Doped with Indium Atoms, Physica Status Solidi (a), vol.17, issue.2, p.519, 1993.
DOI : 10.1139/p65-060