. Bibliography-1, T. Stappenbeck, M. Wong, and J. Saam, Notes from some crypt watchers: regulation of renewal in the mouse intestinal epithelium-9. 2. van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium, Curr Opin Cell Biol Annu Rev Physiol, vol.1071, pp.702241-60, 1998.

S. Fre, S. Pallavi, and M. Huyghe, Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine, Proceedings of the National Academy of Sciences, vol.3, issue.6, pp.6309-6323, 2009.
DOI : 10.1038/nprot.2008.73

A. Humphries and N. Wright, Colonic crypt organization and tumorigenesis, Nature Reviews Cancer, vol.4, issue.6, pp.415-439, 2008.
DOI : 10.1111/j.1349-7006.1996.tb00208.x

F. Radtke, H. Clevers, and O. Riccio, From Gut Homeostasis to Cancer, Current Molecular Medicine, vol.6, issue.3, pp.275-89, 2006.
DOI : 10.2174/156652406776894527

S. Hamilton, B. Vogelstein, and S. Kudo, Pathology and Genetics of Tumours of the Digestive System. WHO Classification of Tumours, pp.105-119, 2000.

E. Fearon and P. Jones, Progressing toward a molecular description of colorectal cancer development., The FASEB Journal, vol.6, issue.10, pp.2783-90, 1992.
DOI : 10.1096/fasebj.6.10.1321771

S. Leedham, S. Schier, and A. Thliveris, From gene mutations to tumours - stem cells in gastrointestinal carcinogenesis, Cell Proliferation, vol.52, issue.6, pp.387-405, 2005.
DOI : 10.1073/pnas.191225998

A. Rizvi, J. Hunter, and M. Wong, Gut-derived stem cells, Surgery, vol.137, issue.6, pp.585-90, 2005.
DOI : 10.1016/j.surg.2004.07.009

M. Sirakov and M. Plateroti, The thyroid hormones and their nuclear receptors in the gut: From developmental biology to cancer, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1812, issue.8, pp.938-984, 2011.
DOI : 10.1016/j.bbadis.2010.12.020

G. Sun, J. Roediger, and Y. Shi, Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis, Reviews in Endocrine and Metabolic Disorders, vol.105, issue.5, pp.559-569, 2016.
DOI : 10.1016/B978-0-12-396968-2.00010-5

M. Robinson-rechavi, E. Garcia, H. Laudet, and V. , The nuclear receptor superfamily, Journal of Cell Science, vol.116, issue.4, pp.585-591, 2003.
DOI : 10.1242/jcs.00247

A. Oetting and P. Yen, New insights into thyroid hormone action, Best Practice & Research Clinical Endocrinology & Metabolism, vol.21, issue.2, pp.193-208, 2007.
DOI : 10.1016/j.beem.2007.04.004

M. Plateroti, O. Chassande, and A. Fraichard, Involvement of T3R??- and ??-receptor subtypes in mediation of T3 functions during postnatal murine intestinal development???, ??????, ???, Gastroenterology, vol.116, issue.6, pp.1367-78, 1999.
DOI : 10.1016/S0016-5085(99)70501-9

M. Plateroti, E. Kress, and J. Mori, Thyroid Hormone Receptor ??1 Directly Controls Transcription of the ??-Catenin Gene in Intestinal Epithelial Cells, Molecular and Cellular Biology, vol.26, issue.8, pp.3204-3218, 2006.
DOI : 10.1128/MCB.26.8.3204-3214.2006

URL : https://hal.archives-ouvertes.fr/ensl-00000005

M. Sirakov, A. Boussouar, and E. Kress, The thyroid hormone nuclear receptor TR??1 controls the Notch signaling pathway and cell fate in murine intestine, Development, vol.142, issue.16, pp.2764-74, 2015.
DOI : 10.1242/dev.121962

E. Kress, A. Rezza, and J. Nadjar, The Frizzled-related sFRP2 Gene Is a Target of Thyroid Hormone Receptor ??1 and Activates ??-Catenin Signaling in Mouse Intestine, Journal of Biological Chemistry, vol.50, issue.2, pp.1234-1275, 2009.
DOI : 10.1002/ijc.21556

J. Munoz, D. Stange, and A. Schepers, The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ???+4??? cell markers, The EMBO Journal, vol.457, issue.14, pp.3079-91, 2012.
DOI : 10.1038/nature07589

M. Sirakov, S. Skah, and I. Lone, Multi-Level Interactions between the Nuclear Receptor TR??1 and the WNT Effectors ??-Catenin/Tcf4 in the Intestinal Epithelium, PLoS ONE, vol.277, issue.4, p.34162, 2012.
DOI : 10.1371/journal.pone.0034162.s005

S. Skah, J. Uchuya-castillo, and M. Sirakov, The thyroid hormone nuclear receptors and the Wnt/??-catenin pathway: An intriguing liaison, Developmental Biology, vol.422, issue.2, pp.71-82, 2017.
DOI : 10.1016/j.ydbio.2017.01.003

E. Kress, S. Skah, and M. Sirakov, Cooperation Between the Thyroid Hormone Receptor TR??1 and the WNT Pathway in the Induction of Intestinal Tumorigenesis, Gastroenterology, vol.138, issue.5, pp.1863-74, 2010.
DOI : 10.1053/j.gastro.2010.01.041

Y. Kawano and R. Kypta, Secreted antagonists of the Wnt signalling pathway, Journal of Cell Science, vol.116, issue.13, pp.2627-2661, 2003.
DOI : 10.1242/jcs.00623

K. Gauthier, M. Plateroti, and C. Harvey, Genetic Analysis Reveals Different Functions for the Products of the Thyroid Hormone Receptor ?? Locus, Molecular and Cellular Biology, vol.21, issue.14, pp.4748-60, 2001.
DOI : 10.1128/MCB.21.14.4748-4760.2001

URL : https://hal.archives-ouvertes.fr/ensl-00000006

R. Fodde, W. Edelmann, and K. Yang, A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors The Molecular Signatures Database (MSigDB) hallmark gene set collection, Proc Natl Acad Sci U S A Cell Syst, vol.911, pp.8969-73417, 1994.

M. Reich, T. Liefeld, and J. Gould, GenePattern 2.0, 27. RCoreTeam. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, pp.500-501, 2006.
DOI : 10.2202/1544-6115.1034

I. Caro, X. Boulenc, and M. Rousset, Characterisation of a newly isolated Caco-2 clone (TC-7), as a model of transport processes and biotransformation of drugs, International Journal of Pharmaceutics, vol.116, issue.2, pp.147-158, 1995.
DOI : 10.1016/0378-5173(94)00280-I

N. Aznar, K. Midde, and Y. Dunkel, Figure 8???figure supplement 1. Expression of Daple mRNA is suppressed in colorectal cancers, in part by copy number loss., eLife, vol.14, p.7091, 2015.
DOI : 10.7554/eLife.07091.022

J. Gayet, X. Zhou, and A. Duval, Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines, Oncogene, vol.20, issue.36, pp.5025-5057, 2001.
DOI : 10.1038/sj.onc.1201337

L. Marisa, A. De-reynies, and A. Duval, Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value Thyroid hormone regulation of intestinal epithelial stem cell biology, PLoS Med Mol Cell Endocrinol, vol.10, pp.1001453-1001485, 2013.

Y. Shi and A. Ishizuya-oka, Thyroid hormone regulation of apoptotic tissue remodeling: Implications from molecular analysis of amphibian metamorphosis, Prog Nucleic Acid Res Mol Biol, vol.65, pp.53-100, 2001.
DOI : 10.1016/S0079-6603(00)65002-X

J. Tata, Amphibian metamorphosis as a model for the developmental actions of thyroid hormone, Molecular and Cellular Endocrinology, vol.246, issue.1-2, pp.10-20, 2006.
DOI : 10.1016/j.mce.2005.11.024

E. Kress, A. Rezza, and J. Nadjar, The Thyroid Hormone Receptor-?? (TR??) Gene Encoding TR??1 Controls Deoxyribonucleic Acid Damage-Induced Tissue Repair, Molecular Endocrinology, vol.22, issue.1, pp.47-55, 2008.
DOI : 10.1210/me.2007-0278

N. Inestrosa and L. Varela-nallar, Wnt signalling in neuronal differentiation and development, Cell and Tissue Research, vol.132, issue.1, pp.215-238, 2015.
DOI : 10.1016/j.cell.2008.01.033

M. Krausova and V. Korinek, Wnt signaling in adult intestinal stem cells and cancer, Cellular Signalling, vol.26, issue.3, pp.570-579, 2014.
DOI : 10.1016/j.cellsig.2013.11.032

Z. Zhong, N. Ethen, B. Williams, M. Beildeck, E. Gelmann et al., WNT signaling in bone development and homeostasis Cross-regulation of signaling pathways: an example of nuclear hormone receptors and the canonical Wnt pathway, Wiley Interdiscip Rev Dev Biol Exp Cell Res, vol.3316, issue.39, pp.489-5001763, 2010.

H. Kim and S. Mohan, Role and Mechanisms of Actions of Thyroid Hormone on the Skeletal Development, Bone Research, vol.135, issue.2, pp.146-61, 2013.
DOI : 10.1089/thy.2007.0373

D. Errico, I. Moschetta, and A. , Nuclear receptors, intestinal architecture and colon cancer: an intriguing link, Cell Mol Life Sci, vol.65, pp.1523-1566, 2008.

D. Mulholland, S. Dedhar, and G. Coetzee, Interaction of Nuclear Receptors with the Wnt/??-Catenin/Tcf Signaling Axis: Wnt You Like to Know?, Endocrine Reviews, vol.26, issue.7, pp.898-915, 2005.
DOI : 10.1210/er.2003-0034

M. Sirakov, E. Kress, and J. Nadjar, Thyroid hormones and their nuclear receptors: new players in intestinal epithelium stem cell biology?, Cellular and Molecular Life Sciences, vol.4, issue.3, pp.2897-907, 2014.
DOI : 10.1089/thy.1994.4.319

H. Clevers, E. Batlle, and . Ephb, EphB/EphrinB Receptors and Wnt Signaling in Colorectal Cancer: Figure 1., Cancer Research, vol.66, issue.1, pp.2-5, 2006.
DOI : 10.1158/0008-5472.CAN-05-3849

I. Ramachandran, V. Ganapathy, and E. Gillies, Wnt inhibitory factor 1 suppresses cancer stemness and induces cellular senescence, Cell Death & Disease, vol.11, issue.5, p.1246, 2014.
DOI : 10.1152/ajpgi.00540.2007

N. Wang, Z. Wang, and Y. Wang, Dietary compound isoliquiritigenin prevents mammary carcinogenesis by inhibiting breast cancer stem cells through WIF1 demethylation, Oncotarget, vol.6, issue.12, pp.9854-76, 2015.
DOI : 10.18632/oncotarget.3396

J. Xu, H. Yang, and X. Zhou, Role of Wnt Inhibitory Factor-1 in Inhibition of Bisdemethoxycurcumin Mediated Epithelial-to-Mesenchymal Transition in Highly Metastatic Lung Cancer 95D Cells, Chin Med J (Engl), vol.128, pp.1376-83, 2015.

H. Taniguchi, H. Yamamoto, and T. Hirata, Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers, Oncogene, vol.24, issue.53, pp.7946-52, 2005.
DOI : 10.1002/path.1449

A. Patai, G. Valcz, and P. Hollosi, Comprehensive DNA Methylation Analysis Reveals a Common Ten-Gene Methylation Signature in Colorectal Adenomas and Carcinomas Wnt inhibitory factor-1: a candidate for a new player in tumorigenesis of intestinal epithelial cells, PLoS One Cancer Lett, vol.10206, pp.107-120, 2004.

R. Suzuki, S. Miyamoto, and Y. Yasui, Global gene expression analysis of the mouse colonic mucosa treated with azoxymethane and dextran sodium sulfate Wif1 and Ifitm3 gene expression preferentially altered in the colon mucosa of benzo[a]pyrene pre-treated mice following exposure to dextran sulfate sodium, Kormish JD, Sinner D, Zorn AM. Interactions between SOX factors and Wnt/betacatenin signaling in development and disease, pp.84-52164, 2007.

O. Galamb, A. Kalmar, and B. Peterfia, Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer, Epigenetics, vol.9, issue.8, pp.588-602, 2016.
DOI : 10.1093/bioinformatics/btp352

J. Li, C. Han, and L. Zheng, Epigenetic regulation of Wnt signaling pathway gene SRY-related HMG-box 17 in papillary thyroid carcinoma, Chin Med J (Engl), vol.125, pp.3526-3557, 2012.

N. Suraweera, J. Robinson, and E. Volikos, Mutations within Wnt pathway genes in sporadic colorectal cancers and cell lines Sox17 and Sox4 differentially regulate betacatenin/T-cell factor activity and proliferation of colon carcinoma cells, Int J Cancer Mol Cell Biol, vol.11927, pp.1837-427802, 2006.

Y. Ye, J. Wu, and C. Wang, Sox17 regulates proliferation and cell cycle during gastric cancer progression, Cancer Letters, vol.307, issue.2, pp.124-155, 2011.
DOI : 10.1016/j.canlet.2011.03.024

D. Fu, H. Tan, and J. Wei, Decreased expression of SOX17 is associated with tumor progression and poor prognosis in breast cancer, Tumor Biology, vol.33, issue.10, pp.8025-8059, 2015.
DOI : 10.1007/s13277-011-0278-y

J. Lu, G. Zhang, and Y. Cheng, Reduced expression of SRY-box containing gene 17 correlates with an unfavorable melanoma patient survival, Oncology Reports, vol.32, issue.6, pp.2571-2580, 2014.
DOI : 10.3892/or.2014.3534

Y. Li, Z. Lv, and G. He, The SOX17/miR-371-5p/SOX2 axis inhibits EMT, stem cell properties and metastasis in colorectal cancer, Oncotarget, vol.6, issue.11, pp.9099-112, 2015.
DOI : 10.18632/oncotarget.3603

K. Yan, C. Janda, and J. Chang, Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal RNF43 and ZNRF3 are commonly altered in serrated pathway colorectal tumorigenesis Molecular genetics and targeted therapy of WNT-related human diseases (Review), Nature Oncotarget Int J Mol Med, vol.545740, issue.64, pp.238-24270589, 2016.

N. Yu, H. Zhu, and Y. Tao, Association between prognostic survival of human colorectal carcinoma and ZNRF3 expression, OncoTargets and Therapy, vol.9, pp.6679-6687, 2016.
DOI : 10.2147/OTT.S108134

C. Wu, S. Qiu, and L. Lu, RSPO2???LGR5 signaling has tumour-suppressive activity in colorectal cancer, Nature Communications, vol.6, p.3149, 2014.
DOI : 10.1371/journal.pone.0021130

N. Barker, J. Van-es, and J. Kuipers, Identification of stem cells in small intestine and colon by marker gene Lgr5, Nature, vol.93, issue.7165, pp.1003-1010, 2007.
DOI : 10.1152/ajpgi.00415.2001

M. Espersen, J. Olsen, and D. Linnemann, Clinical Implications of Intestinal Stem Cell Markers in Colorectal Cancer, Clinical Colorectal Cancer, vol.14, issue.2, pp.63-71, 2015.
DOI : 10.1016/j.clcc.2014.12.004

E. Fearon, B. Vogelstein, . Ar, R. Simmen, and F. Simmen, A genetic model for colorectal tumorigenesis The role of thyroid hormone signaling in the prevention of digestive system cancers, Cell Int J Mol Sci, vol.6114, issue.70, pp.759-6716240, 1990.

M. Gerlinger, A. Rowan, and S. Horswell, Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing, New England Journal of Medicine, vol.366, issue.10, pp.883-892, 2012.
DOI : 10.1056/NEJMoa1113205

P. Martinez, C. Kimberley, and N. Birkbak, Quantification of within-sample genetic heterogeneity from SNP-array data Tumor heterogeneity: causes and consequences, Sci Rep Biochim Biophys Acta, vol.71805, pp.105-122, 2010.

M. Shackleton, E. Quintana, and E. Fearon, Heterogeneity in Cancer: Cancer Stem Cells versus Clonal Evolution, Cell, vol.138, issue.5, pp.822-831, 2009.
DOI : 10.1016/j.cell.2009.08.017

S. Park, M. Gonen, and H. Kim, Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype, Journal of Clinical Investigation, vol.120, issue.2, pp.636-680, 2010.
DOI : 10.1172/JCI40724DS1

S. Abe, N. Namba, M. Abe, M. Fujiwara, T. Aikawa et al., Monocarboxylate Transporter 10 Functions as a Thyroid Hormone Transporter in Chondrocytes, Endocrinology, vol.153, issue.8, pp.4049-4058, 2012.
DOI : 10.1210/en.2011-1713

H. Aberle, A. Bauer, J. Stappert, A. Kispert, and R. Kemler, ??-catenin is a target for the ubiquitin???proteasome pathway, The EMBO Journal, vol.16, issue.13, pp.3797-3804, 1997.
DOI : 10.1093/emboj/16.13.3797

J. Abuid and P. R. Larsen, Triiodothyronine and Thyroxine in Hyperthyroidism COMPARISON OF THE ACUTE CHANGES DURING THERAPY WITH ANTITHYROID AGENTS, Journal of Clinical Investigation, vol.54, issue.1, pp.201-208, 1974.
DOI : 10.1172/JCI107744

M. P. Alfaro, A. Vincent, S. Saraswati, C. A. Thorne, C. C. Hong et al., sFRP2 Suppression of Bone Morphogenic Protein (BMP) and Wnt Signaling Mediates Mesenchymal Stem Cell (MSC) Self-renewal Promoting Engraftment and Myocardial Repair, Journal of Biological Chemistry, vol.37, issue.46, pp.35645-35653, 2010.
DOI : 10.1016/j.ydbio.2009.10.015

A. L. Amir, M. Barua, N. C. Mcknight, S. Cheng, X. Yuan et al., A Direct ??-Catenin-independent Interaction between Androgen Receptor and T Cell Factor 4, Journal of Biological Chemistry, vol.126, issue.33, pp.30828-30834, 2003.
DOI : 10.1074/jbc.M008689200

A. Bafico, A. Gazit, T. Pramila, P. W. Finch, A. Yaniv et al., Interaction of Frizzled Related Protein (FRP) with Wnt Ligands and the Frizzled Receptor Suggests Alternative Mechanisms for FRP Inhibition of Wnt Signaling, Journal of Biological Chemistry, vol.10, issue.23, pp.16180-16187, 1999.
DOI : 10.1038/34848

C. M. Baker, A. Verstuyf, K. B. Jensen, and F. M. Watt, Differential sensitivity of epidermal cell subpopulations to ??-catenin-induced ectopic hair follicle formation, Developmental Biology, vol.343, issue.1-2, pp.40-50, 2010.
DOI : 10.1016/j.ydbio.2010.04.005

N. E. Baker, Transcription of the segment-polarity gene wingless in the imaginal discs of Drosophila, and the phenotype of a pupal-lethal wg mutation, Development, vol.102, pp.489-497, 1988.

A. Baniahmad, I. Ha, D. Reinberg, S. Tsai, M. J. Tsai et al., Interaction of human thyroid hormone receptor beta with transcription factor TFIIB may mediate target gene derepression and activation by thyroid hormone., Proc. Natl. Acad. Sci. USA 90, pp.8832-8836, 1993.
DOI : 10.1073/pnas.90.19.8832

J. H. Bassett, C. B. Harvey, and G. R. Williams, Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions, Molecular and Cellular Endocrinology, vol.213, issue.1, pp.1-11, 2003.
DOI : 10.1016/j.mce.2003.10.033

M. E. Beildeck, E. P. Gelmann, and S. W. Byers, Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway, Experimental Cell Research, vol.316, issue.11, pp.1763-1772, 2010.
DOI : 10.1016/j.yexcr.2010.02.001

J. Bernal, Thyroid hormone receptors in brain development and function, Nature Clinical Practice Endocrinology & Metabolism, vol.82, issue.3, pp.249-259, 2007.
DOI : 10.1038/ncpendmet0424

P. Bhanot, M. Brink, C. H. Samos, J. C. Hsieh, Y. Wang et al., A new member of the frizzled family from Drosophila functions as a Wingless receptor, Nature, vol.382, issue.6588, pp.225-230, 1996.
DOI : 10.1038/382225a0

A. C. Bianco and B. W. Kim, Deiodinases: implications of the local control of thyroid hormone action, Journal of Clinical Investigation, vol.116, issue.10, pp.2571-2579, 2006.
DOI : 10.1172/JCI29812

D. L. Bodenner, M. A. Mroczynski, B. D. Weintraub, S. Radovick, and F. E. Wondisford, A detailed functional and structural analysis of a major thyroid hormone inhibitory element in the human thyrotropin beta-subunit gene, J. Biol. Chem, vol.266, pp.21666-21673, 1991.

A. Borah, S. Raveendran, A. Rochani, T. Maekawa, and D. S. Kumar, Targeting selfrenewal pathways in cancer stem cells: clinical implications for cancer therapy, p.177, 2015.

P. Bovolenta, P. Esteve, J. M. Ruiz, E. Cisneros, and J. Lopez-rios, Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease, Journal of Cell Science, vol.121, issue.6, pp.737-746, 2008.
DOI : 10.1242/jcs.026096

A. R. Brown, R. C. Simmen, and F. A. Simmen, The Role of Thyroid Hormone Signaling in the Prevention of Digestive System Cancers, International Journal of Molecular Sciences, vol.21, issue.8, pp.16240-16257, 2013.
DOI : 10.1016/j.jnutbio.2009.09.008

D. R. Buchholz, R. A. Heimeier, B. Das, T. Washington, and Y. B. Shi, Pairing morphology with gene expression in thyroid hormone-induced intestinal remodeling and identification of a core set of TH-induced genes across tadpole tissues, Developmental Biology, vol.303, issue.2, pp.576-590, 2007.
DOI : 10.1016/j.ydbio.2006.11.037

C. J. Cain and J. O. Manilay, Hematopoietic stem cell fate decisions are regulated by Wnt antagonists: Comparisons and current controversies, Experimental Hematology, vol.41, issue.1, pp.3-16, 2013.
DOI : 10.1016/j.exphem.2012.09.006

V. Catalano, M. Dentice, R. Ambrosio, C. Luongo, R. Carollo et al., Activated Thyroid Hormone Promotes Differentiation and Chemotherapeutic Sensitization of Colorectal Cancer Stem Cells by Regulating Wnt and BMP4 Signaling, Cancer Research, vol.76, issue.5, pp.1237-1244, 2016.
DOI : 10.1158/0008-5472.CAN-15-1542

R. A. Cavallo, R. T. Cox, M. M. Moline, J. Roose, G. A. Polevoy et al., Drosophila Tcf and Groucho interact to repress wingless signalling activity, Nature, vol.395, pp.604-608, 1998.

O. Chassande, A. Fraichard, K. Gauthier, F. Flamant, C. Legrand et al., Identification of transcripts initiated from an internal promoter in the c-erbA alpha locus that encode inhibitors of retinoic acid receptoralpha and triiodothyronine receptor activities, Mol. Endocrinol, vol.11, pp.1278-1290, 1997.

F. Chatonnet, R. Guyot, G. Benoit, and F. Flamant, Genome-wide analysis of thyroid hormone receptors shared and specific functions in neural cells, Proc. Natl. Acad. Sci. USA, pp.766-775, 2013.
DOI : 10.1016/j.ydbio.2008.11.005

V. K. Chatterjee, J. K. Lee, A. Rentoumis, and J. L. Jameson, Negative regulation of the thyroid-stimulating hormone alpha gene by thyroid hormone: receptor interaction adjacent to the TATA box., Proc. Natl. Acad. Sci. USA, pp.9114-9118, 1989.
DOI : 10.1073/pnas.86.23.9114

W. Chen, D. Ten-berge, J. Brown, S. Ahn, L. A. Hu et al., Dishevelled 2 Recruits ??-Arrestin 2 to Mediate Wnt5A-Stimulated Endocytosis of Frizzled 4, Science, vol.301, issue.5638, pp.1391-1394, 2003.
DOI : 10.1126/science.1082808

S. Y. Cheng, Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors, Reviews in Endocrine and Metabolic Disorders, vol.1, issue.1/2, pp.9-18, 2000.
DOI : 10.1023/A:1010052101214

S. Y. Cheng, J. L. Leonard, and P. J. Davis, Molecular Aspects of Thyroid Hormone Actions, Endocrine Reviews, vol.31, issue.2, pp.139-170, 2010.
DOI : 10.1210/er.2009-0007

Y. Y. Cheng, J. Yu, Y. P. Wong, E. P. Man, K. F. To et al., Frequent epigenetic inactivation of secreted frizzled-related protein 2 (SFRP2) by promoter methylation in human gastric cancer, British Journal of Cancer, vol.26, issue.7, pp.895-901, 2007.
DOI : 10.1002/ijc.21045

H. C. Chi, C. H. Liao, Y. H. Huang, S. M. Wu, C. Y. Tsai et al., Thyroid hormone receptor inhibits hepatoma cell migration through transcriptional activation of Dickkopf 4, Biochemical and Biophysical Research Communications, vol.439, issue.1, pp.60-65, 2013.
DOI : 10.1016/j.bbrc.2013.08.028

L. Cianferotti, M. Cox, K. Skorija, and M. B. Demay, Vitamin D receptor is essential for normal keratinocyte stem cell function, Proc. Natl. Acad. Sci. USA, pp.9428-9433, 2007.
DOI : 10.1073/pnas.0405928102

H. Clevers, Wnt/??-Catenin Signaling in Development and Disease, Cell, vol.127, issue.3, pp.469-480, 2006.
DOI : 10.1016/j.cell.2006.10.018

H. Clevers, K. M. Loh, and R. Nusse, An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control, Science, vol.8, issue.6, p.1248012, 2014.
DOI : 10.1371/journal.pone.0066314

C. Contreras-jurado, L. Garcia-serrano, M. Gomez-ferreria, C. Costa, J. M. Paramio et al., The Thyroid Hormone Receptors as Modulators of Skin Proliferation and Inflammation, Journal of Biological Chemistry, vol.1, issue.27, pp.24079-24088, 2011.
DOI : 10.1016/j.tem.2006.08.005

J. C. Croce and D. R. Mcclay, Evolution of the Wnt Pathways, Methods Mol. Biol, vol.469, pp.3-18, 2008.
DOI : 10.1007/978-1-60327-469-2_1

C. M. Cruciat and C. Niehrs, Secreted and Transmembrane Wnt Inhibitors and Activators, Cold Spring Harbor Perspectives in Biology, vol.5, issue.3, p.15081, 2013.
DOI : 10.1101/cshperspect.a015081

A. Cvoro, L. Devito, F. A. Milton, L. Noli, A. Zhang et al., A Thyroid Hormone Receptor/KLF9 Axis in Human Hepatocytes and Pluripotent Stem Cells, STEM CELLS, vol.18, issue.suppl 1, pp.416-428, 2015.
DOI : 10.1038/nm.2667

D. 'errico, I. Moschetta, and A. , Nuclear receptors, intestinal architecture and colon cancer: an intriguing link, Cell Mol. Life Sci, vol.65, pp.1523-1543, 2008.

R. Dasgupta and E. Fuchs, Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation, Development, vol.126, pp.4557-4568, 1999.

P. J. Davis, J. L. Leonard, and F. B. Davis, Mechanisms of nongenomic actions of thyroid hormone, Frontiers in Neuroendocrinology, vol.29, issue.2, pp.211-218, 2008.
DOI : 10.1016/j.yfrne.2007.09.003

P. J. Davis, F. B. Davis, S. A. Mousa, M. K. Luidens, and H. Y. Lin, Membrane Receptor for Thyroid Hormone: Physiologic and Pharmacologic Implications, Annual Review of Pharmacology and Toxicology, vol.51, issue.1, pp.99-115, 2011.
DOI : 10.1146/annurev-pharmtox-010510-100512

W. B. De-lau, B. Snel, and H. C. Clevers, The R-spondin protein family, Genome Biology, vol.13, issue.3, pp.242-252, 2012.
DOI : 10.1038/embor.2011.175

A. Deb, B. H. Davis, J. Guo, A. Ni, J. Huang et al., SFRP2 Regulates Cardiomyogenic Differentiation by Inhibiting a Positive Transcriptional Autofeedback Loop of Wnt3a, SFRP2 regulates cardiomyogenic differentiation by inhibiting a positive transcriptional autofeedback loop of Wnt3a, pp.35-44, 2008.
DOI : 10.1634/stemcells.2007-0475

M. Dentice, A. Marsili, R. Ambrosio, O. Guardiola, A. Sibilio et al., The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration, Journal of Clinical Investigation, vol.120, issue.11, pp.4021-4030, 2010.
DOI : 10.1172/JCI43670DS1

M. Dentice, C. Luongo, R. Ambrosio, A. Sibilio, A. Casillo et al., ??-Catenin Regulates Deiodinase Levels and Thyroid Hormone Signaling in Colon Cancer Cells, Gastroenterology, vol.143, issue.4, pp.1037-1047, 2012.
DOI : 10.1053/j.gastro.2012.06.042

S. Descamps, H. Arzouk, F. Bacou, H. Bernardi, Y. Fedon et al., Inhibition of myoblast differentiation by Sfrp1 and Sfrp2, Cell and Tissue Research, vol.277, issue.2, pp.299-306, 2008.
DOI : 10.1007/s00441-008-0574-z

J. P. Dijksterhuis, J. Petersen, and G. Schulte, WNT/Frizzled signalling: receptor-ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR Review 3, British Journal of Pharmacology, vol.132, issue.2 Suppl., pp.1195-1209, 2014.
DOI : 10.1242/dev.01871

A. M. Dumitrescu, X. H. Liao, R. E. Weiss, K. Millen, and S. Refetoff, Tissue-Specific Thyroid Hormone Deprivation and Excess in Monocarboxylate Transporter (Mct) 8-Deficient Mice, Endocrinology, vol.147, issue.9, pp.4036-4043, 2006.
DOI : 10.1210/en.2006-0390

V. Easwaran, M. Pishvaian, . Salimuddin, and S. Byers, Cross-regulation of ??-catenin???LEF/TCF and retinoid signaling pathways, Current Biology, vol.9, issue.23, pp.1415-1418, 1999.
DOI : 10.1016/S0960-9822(00)80088-3

M. El-tanani, D. G. Fernig, R. Barraclough, C. Green, and P. Rudland, Differential Modulation of Transcriptional Activity of Estrogen Receptors by Direct Protein-Protein Interactions with the T Cell Factor Family of Transcription Factors, Journal of Biological Chemistry, vol.65, issue.45, pp.41675-41682, 2001.
DOI : 10.1006/dbio.1995.1236

M. Fanti, S. Singh, G. M. Ledda-columbano, A. Columbano, and S. P. Monga, Tri-iodothyronine induces hepatocyte proliferation by protein kinase a-dependent ??-catenin activation in rodents, Hepatology, vol.54, issue.1, pp.2309-2320, 2014.
DOI : 10.1002/hep.24506

M. Fernandez, S. Pirondi, M. Manservigi, L. Giardino, and L. Calza, Thyroid hormone participates in the regulation of neural stem cells and oligodendrocyte precursor cells in the central nervous system of adult rat, Eur. J. Neurosci, vol.20, pp.2059-2070, 2004.

P. Fernandez-pernas, J. Fafian-labora, I. Lesende-rodriguez, J. Mateos, A. De-la-fuente et al., 3, 3???, 5-triiodo-L-thyronine Increases In Vitro Chondrogenesis of Mesenchymal Stem Cells From Human Umbilical Cord Stroma Through SRC2, Journal of Cellular Biochemistry, vol.345, issue.1, pp.2097-2108
DOI : 10.1016/j.bbrc.2006.04.123

P. W. Finch, X. He, M. J. Kelley, A. Uren, R. P. Schaudies et al., Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action, Proc. Natl. Acad. Sci. USA 94, pp.6770-6775, 1997.
DOI : 10.1016/S0092-8674(00)81922-4

F. Flamant and J. Samarut, Thyroid hormone receptors: lessons from knockout and S. Skah et al, Developmental Biology, vol.422, pp.71-82, 2003.

C. Frau, R. Loi, A. Petrelli, A. Perra, S. Menegon et al., Local hypothyroidism favors the progression of preneoplastic lesions to hepatocellular carcinoma in rats, Hepatology, vol.6, issue.1, pp.249-259, 2015.
DOI : 10.1371/journal.pone.0024541

S. Fre, S. K. Pallavi, M. Huyghe, M. Lae, K. P. Janssen et al., Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine, Proc. Natl. Acad. Sci. USA, pp.6309-6314, 2009.
DOI : 10.1038/nprot.2008.73

S. Fre, A. Bardin, S. Robine, and D. Louvard, Notch signaling in intestinal homeostasis across species: the cases of Drosophila, Zebrafish and the mouse, Experimental Cell Research, vol.317, issue.19, pp.2740-2747, 2011.
DOI : 10.1016/j.yexcr.2011.06.012

E. C. Friesema, R. Docter, E. P. Moerings, B. Stieger, B. Hagenbuch et al., Identification of Thyroid Hormone Transporters, Biochemical and Biophysical Research Communications, vol.254, issue.2, pp.497-501, 1999.
DOI : 10.1006/bbrc.1998.9974

E. C. Friesema, A. Grueters, H. Biebermann, H. Krude, A. Von-moers et al., Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation, The Lancet, vol.364, issue.9443, pp.1435-1437, 2004.
DOI : 10.1016/S0140-6736(04)17226-7

F. Furuya, H. Shimura, S. Yamashita, T. Endo, and T. Kobayashi, Liganded Thyroid Hormone Receptor-?? Enhances Proliferation of Pancreatic ??-Cells, Journal of Biological Chemistry, vol.81, issue.32, pp.24477-24486, 2010.
DOI : 10.1016/j.devcel.2007.04.011

C. J. Guigon, L. Zhao, C. Lu, M. C. Willingham, and S. Y. Cheng, Regulation of ??-Catenin by a Novel Nongenomic Action of Thyroid Hormone ?? Receptor, Molecular and Cellular Biology, vol.28, issue.14, pp.4598-4608, 2008.
DOI : 10.1128/MCB.02192-07

C. J. Guigon, D. W. Kim, X. Zhu, L. Zhao, and S. Y. Cheng, Tumor Suppressor Action of Liganded Thyroid Hormone Receptor ?? by Direct Repression of ??-Catenin Gene Expression, Endocrinology, vol.151, issue.11, pp.5528-5536, 2010.
DOI : 10.1210/en.2010-0475

E. Hadzic, V. Desai-yajnik, E. Helmer, S. Guo, S. Wu et al., A 10-amino-acid sequence in the N-terminal A/B domain of thyroid hormone receptor alpha is essential for transcriptional activation and interaction with the general transcription factor TFIIB., Molecular and Cellular Biology, vol.15, issue.8, pp.4507-4517, 1995.
DOI : 10.1128/MCB.15.8.4507

B. Hagenbuch, Cellular entry of thyroid hormones by organic anion transporting polypeptides, Best Practice & Research Clinical Endocrinology & Metabolism, vol.21, issue.2, pp.209-221, 2007.
DOI : 10.1016/j.beem.2007.03.004

T. Hasebe, K. Fujimoto, M. Kajita, and A. Ishizuya-oka, Thyroid hormone activates Wnt/??-catenin signaling involved in adult epithelial development during intestinal remodeling in Xenopus laevis, Cell and Tissue Research, vol.283, issue.2, pp.309-318, 2016.
DOI : 10.1074/jbc.M802376200

Z. Hassani, J. C. Francois, G. Alfama, G. M. Dubois, M. Paris et al., A hybrid CMV-H1 construct improves efficiency of PEI-delivered shRNA in the mouse brain, Nucleic Acids Research, vol.35, issue.9, p.65, 2007.
DOI : 10.1093/nar/gkm152

URL : https://hal.archives-ouvertes.fr/hal-00179406

T. C. He, A. B. Sparks, C. Rago, H. Hermeking, L. Zawel et al., Identification of c-MYC as a Target of the APC Pathway, Science, vol.281, issue.5382, pp.1509-1512, 1998.
DOI : 10.1126/science.281.5382.1509

J. Herz, Y. Chen, I. Masiulis, and L. Zhou, Expanding functions of lipoprotein receptors, Journal of Lipid Research, vol.20, issue.Supplement, pp.287-292, 2009.
DOI : 10.1016/j.neuron.2008.10.006

A. N. Hollenberg, T. Monden, T. R. Flynn, M. E. Boers, O. Cohen et al., The human thyrotropin-releasing hormone gene is regulated by thyroid hormone through two distinct classes of negative thyroid hormone response elements, Mol. Endocrinol, vol.9, pp.540-550, 1995.

Z. Huang, L. Li, and J. Wang, Hypermethylation of SFRP2 as a Potential Marker for Stool-Based Detection of Colorectal Cancer and Precancerous Lesions, Digestive Diseases and Sciences, vol.50, issue.Suppl, pp.2287-2291, 2007.
DOI : 10.1016/S0002-9440(10)61128-5

A. Hurlstone and H. Clevers, NEW EMBO MEMBER'S REVIEW: T-cell factors: turn-ons and turn-offs, The EMBO Journal, vol.21, issue.10, pp.2303-2311, 2002.
DOI : 10.1093/emboj/21.10.2303

N. C. Inestrosa and L. Varela-nallar, Wnt signalling in neuronal differentiation and development, Cell and Tissue Research, vol.132, issue.1, pp.215-223, 2015.
DOI : 10.1016/j.cell.2008.01.033

M. Ito, N. Toyoda, E. Nomura, Y. Takamura, N. Amino et al., Type 1 and type 2 iodothyronine deiodinases in the thyroid gland of patients with 3,5,3'-triiodothyronine-predominant Graves' disease, European Journal of Endocrinology, vol.66, issue.1, pp.95-100, 2011.
DOI : 10.1210/jcem-66-1-147

T. C. Jakobs, C. Schmutzler, J. Meissner, and J. Kohrle, The Promoter of the Human Type I 5'-Deiodinase Gene - Mapping of the Transcription Start Site and Identification of a DR+4 Thyroid-Hormone-Responsive Element, European Journal of Biochemistry, vol.7, issue.1, pp.288-297, 1997.
DOI : 10.1016/0303-7207(95)92574-8

J. Jansen, E. C. Friesema, C. Milici, and T. J. Visser, Thyroid Hormone Transporters in Health and Disease, Thyroid, vol.15, issue.8, pp.757-768, 2005.
DOI : 10.1089/thy.2005.15.757

E. A. Jansson, A. Are, G. Greicius, I. C. Kuo, D. Kelly et al., The Wnt/beta-catenin signaling pathway targets PPARgamma activity in colon cancer cells, Proc. Natl. Acad. Sci. USA, pp.1460-1465, 2005.

C. Judelson and M. L. Privalsky, DNA Recognition by Normal and Oncogenic Thyroid Hormone Receptors, Journal of Biological Chemistry, vol.7, issue.18, pp.10800-10805, 1996.
DOI : 10.1016/S0969-2126(01)00150-2

Y. Kawano and R. Kypta, Secreted antagonists of the Wnt signalling pathway, Journal of Cell Science, vol.116, issue.13, pp.2627-2634, 2003.
DOI : 10.1242/jcs.00623

A. Kikuchi, H. Yamamoto, A. Sato, and S. Matsumoto, New Insights into the Mechanism of Wnt Signaling Pathway Activation, Int Rev. Cell Mol. Biol, vol.291, pp.21-71, 2011.
DOI : 10.1016/B978-0-12-386035-4.00002-1

H. Y. Kim and S. Mohan, Role and Mechanisms of Actions of Thyroid Hormone on the Skeletal Development, Bone Research, vol.135, issue.2, pp.146-161, 2013.
DOI : 10.1089/thy.2007.0373

A. Kinne, R. Schulein, and G. Krause, Primary and secondary thyroid hormone transporters, Thyroid Research, vol.4, issue.Suppl 1, p.7, 2011.
DOI : 10.1210/me.2005-0256

J. Ko, K. S. Ryu, Y. H. Lee, D. S. Na, Y. S. Kim et al., Human Secreted Frizzled-Related Protein Is Down-regulated and Induces Apoptosis in Human Cervical Cancer, Experimental Cell Research, vol.280, issue.2, pp.280-287, 2002.
DOI : 10.1006/excr.2002.5649

R. J. Koenig, M. A. Lazar, R. A. Hodin, G. A. Brent, P. R. Larsen et al., Inhibition of thyroid hormone action by a non-hormone binding c-erbA protein generated by alternative mRNA splicing, Nature, vol.337, issue.6208, pp.659-661, 1989.
DOI : 10.1038/337659a0

M. A. Kowalik, A. Perra, M. Pibiri, M. T. Cocco, J. Samarut et al., TR?? is the critical thyroid hormone receptor isoform in T3-induced proliferation of hepatocytes and pancreatic acinar cells, Journal of Hepatology, vol.53, issue.4, pp.686-692, 2010.
DOI : 10.1016/j.jhep.2010.04.028

M. Krausova and V. Korinek, Wnt signaling in adult intestinal stem cells and cancer, Cellular Signalling, vol.26, issue.3, pp.570-579, 2014.
DOI : 10.1016/j.cellsig.2013.11.032

E. Kress, A. Rezza, J. Nadjar, J. Samarut, and M. Plateroti, The Thyroid Hormone Receptor-?? (TR??) Gene Encoding TR??1 Controls Deoxyribonucleic Acid Damage-Induced Tissue Repair, Molecular Endocrinology, vol.22, issue.1, pp.47-55, 2008.
DOI : 10.1210/me.2007-0278

E. Kress, A. Rezza, J. Nadjar, J. Samarut, and M. Plateroti, The Frizzled-related sFRP2 Gene Is a Target of Thyroid Hormone Receptor ??1 and Activates ??-Catenin Signaling in Mouse Intestine, Journal of Biological Chemistry, vol.50, issue.2, pp.1234-1241, 2009.
DOI : 10.1002/ijc.21556

E. Kress, J. Samarut, and M. Plateroti, Thyroid hormones and the control of cell proliferation or cell differentiation: Paradox or duality?, Molecular and Cellular Endocrinology, vol.313, issue.1-2, pp.36-49, 2009.
DOI : 10.1016/j.mce.2009.08.028

URL : https://hal.archives-ouvertes.fr/hal-00522863

E. Kress, S. Skah, M. Sirakov, J. Nadjar, N. Gadot et al., Cooperation Between the Thyroid Hormone Receptor TR??1 and the WNT Pathway in the Induction of Intestinal Tumorigenesis, Gastroenterology, vol.138, issue.5, pp.1863-1874, 2010.
DOI : 10.1053/j.gastro.2010.01.041

V. Laudet, Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor, Journal of Molecular Endocrinology, vol.19, issue.3, pp.207-226, 1997.
DOI : 10.1677/jme.0.0190207

V. Laudet, The Origins and Evolution of Vertebrate Metamorphosis, Current Biology, vol.21, issue.18, pp.726-737, 2011.
DOI : 10.1016/j.cub.2011.07.030

P. Laurberg, H. Vestergaard, S. Nielsen, S. E. Christensen, T. Seefeldt et al., Sources of Circulating 3,5,3???-Triiodothyronine in Hyperthyroidism Estimated after Blocking of Type 1 and Type 2 Iodothyronine Deiodinases, The Journal of Clinical Endocrinology & Metabolism, vol.92, issue.6, pp.2149-2156, 2007.
DOI : 10.1210/jc.2007-0178

J. M. Lebel, J. H. Dussault, and J. Puymirat, Overexpression of the beta 1 thyroid receptor induces differentiation in neuro-2a cells., Proc. Natl. Acad. Sci. USA 91, pp.2644-2648, 1994.
DOI : 10.1073/pnas.91.7.2644

J. L. Lee, C. T. Lin, L. L. Chueh, and C. J. Chang, Autocrine/Paracrine Secreted Frizzled-related Protein 2 Induces Cellular Resistance to Apoptosis, Journal of Biological Chemistry, vol.19, issue.15, pp.14602-14609, 2004.
DOI : 10.1128/MCB.19.8.5576

Y. K. Lee, K. M. Ng, Y. C. Chan, W. H. Lai, K. W. Au et al., Triiodothyronine Promotes Cardiac Differentiation and Maturation of Embryonic Stem Cells via the Classical Genomic Pathway, Molecular Endocrinology, vol.24, issue.9, pp.1728-1736, 2010.
DOI : 10.1210/me.2010-0032

G. F. Lemkine, A. Raji, G. Alfama, N. Turque, Z. Hassani et al., Adult neural stem cell cycling in vivo requires thyroid hormone and its alpha receptor, The FASEB Journal, vol.19, issue.7, 2005.
DOI : 10.1096/fj.04-2916fje

URL : https://hal.archives-ouvertes.fr/hal-00090188

V. P. Leoni, G. M. Ledda-columbano, M. Pibiri, C. Saliba, A. Perra et al., Expression of c-jun is not mandatory for mouse hepatocyte proliferation induced by two nuclear receptor ligands: TCPOBOP and T3, Journal of Hepatology, vol.55, issue.5, pp.1069-1078, 2011.
DOI : 10.1016/j.jhep.2011.02.016

L. Leyns, T. Bouwmeester, S. H. Kim, S. Piccolo, and E. M. Derobertis, Frzb-1 Is a Secreted Antagonist of Wnt Signaling Expressed in the Spemann Organizer, Cell, vol.88, issue.6, pp.747-756, 1997.
DOI : 10.1016/S0092-8674(00)81921-2

C. H. Liao, C. T. Yeh, Y. H. Huang, S. M. Wu, H. C. Chi et al., Dickkopf 4 positively regulated by the thyroid hormone receptor suppresses cell invasion in human hepatoma cells, Dickkopf 4 positively regulated by the thyroid hormone receptor suppresses cell invasion in human hepatoma cells, pp.910-920, 2012.
DOI : 10.1016/j.cgh.2006.07.011

C. M. Liu, Y. M. Li, M. Semenov, C. Han, G. H. Baeg et al., Control of ??-Catenin Phosphorylation/Degradation by a Dual-Kinase Mechanism, Cell, vol.108, issue.6, pp.837-847, 2002.
DOI : 10.1016/S0092-8674(02)00685-2

D. M. Lonard and B. W. O-'malley, Nuclear Receptor Coregulators: Judges, Juries, and Executioners of Cellular Regulation, Molecular Cell, vol.27, issue.5, pp.691-700, 2007.
DOI : 10.1016/j.molcel.2007.08.012

A. Lopez-juarez, S. Remaud, Z. Hassani, P. Jolivet, J. P. Simons et al., Thyroid Hormone Signaling Acts as a Neurogenic Switch by Repressing Sox2 in the Adult Neural Stem Cell Niche, Thyroid hormone signaling acts as a neurogenic switch by repressing Sox2 in the adult neural stem cell niche, pp.531-543, 2012.
DOI : 10.1016/j.stem.2012.04.008

B. T. Macdonald, K. Tamai, and X. He, Wnt/??-Catenin Signaling: Components, Mechanisms, and Diseases, Developmental Cell, vol.17, issue.1, pp.9-26, 2009.
DOI : 10.1016/j.devcel.2009.06.016

H. S. Melkonyan, W. C. Chang, J. P. Shapiro, M. Mahadevappa, P. A. Fitzpatrick et al., SARPs: A family of secreted apoptosis-related proteins, Proc. Natl. Acad. Sci. USA 94, pp.13636-13641, 1997.
DOI : 10.1073/pnas.94.7.2859

Y. Mii and M. Taira, Secreted Frizzled-related proteins enhance the diffusion of Wnt ligands and expand their signalling range, Development, vol.136, issue.24, pp.4083-4088, 2009.
DOI : 10.1242/dev.032524

A. Milanesi, J. W. Lee, N. H. Kim, Y. Y. Liu, A. Yang et al., Thyroid Hormone Receptor ?? Plays an Essential Role in Male Skeletal Muscle Myoblast Proliferation, Differentiation, and Response to Injury, Endocrinology, vol.157, issue.1, pp.4-15, 2016.
DOI : 10.1210/en.2015-1443

J. R. Miller, The Wnts, Genome Biol, vol.3, issue.REVIEWS3001, 2002.

A. M. Mitchell, M. Tom, and R. H. Mortimer, Thyroid hormone export from cells: contribution of P-glycoprotein, Journal of Endocrinology, vol.185, issue.1, pp.93-98, 2005.
DOI : 10.1677/joe.1.06096

T. Mitsuhashi, G. E. Tennyson, and V. M. Nikodem, Alternative splicing generates messages encoding rat c-erbA proteins that do not bind thyroid hormone., Proc. Natl. Acad. Sci. USA, pp.5804-5808, 1988.
DOI : 10.1073/pnas.85.16.5804

URL : http://www.pnas.org/content/85/16/5804.full.pdf

M. Montcouquiol, E. B. Crenshaw, and M. W. Kelley, NONCANONICAL WNT SIGNALING AND NEURAL POLARITY, Annual Review of Neuroscience, vol.29, issue.1, pp.363-386, 2006.
DOI : 10.1146/annurev.neuro.29.051605.112933

R. Morello, T. K. Bertin, S. Schlaubitz, C. A. Shaw, S. Kakuru et al., function, Journal of Cellular Physiology, vol.78, issue.1, pp.127-137, 2008.
DOI : 10.1042/bj2890247

URL : https://hal.archives-ouvertes.fr/in2p3-00614822

S. Skah, The thyroid hormone nuclear receptors and the Wnt/??-catenin pathway: An intriguing liaison, Developmental Biology, vol.422, issue.2, pp.71-82, 2017.
DOI : 10.1016/j.ydbio.2017.01.003

D. J. Mulholland, S. Dedhar, G. A. Coetzee, and C. C. Nelson, Interaction of Nuclear Receptors with the Wnt/??-Catenin/Tcf Signaling Axis: Wnt You Like to Know?, Endocrine Reviews, vol.26, issue.7, pp.898-915, 2005.
DOI : 10.1210/er.2003-0034

J. Muller, S. Mayerl, T. J. Visser, V. M. Darras, A. Boelen et al., Tissue-Specific Alterations in Thyroid Hormone Homeostasis in Combined Mct10 and Mct8 Deficiency, Endocrinology, vol.155, issue.1, pp.315-325, 2014.
DOI : 10.1210/en.2013-1800

A. Nagafuchi and M. Takeichi, Transmembrane control of cadherin-mediated cell adhesion: a 94 kDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin., Molecular Biology of the Cell, vol.1, issue.1, pp.37-44, 1989.
DOI : 10.1091/mbc.1.1.37

J. S. Nam, T. J. Turcotte, P. F. Smith, S. Choi, and J. K. Yoon, Mouse Cristin/R-spondin Family Proteins Are Novel Ligands for the Frizzled 8 and LRP6 Receptors and Activate ??-Catenin-dependent Gene Expression, Journal of Biological Chemistry, vol.286, issue.19, pp.13247-13257, 2006.
DOI : 10.1242/dev.01522

O. Shea, P. J. Kim, D. W. Logan, J. G. Davis, S. Walker et al., Advanced Bone Formation in Mice with a Dominant-negative Mutation in the Thyroid Hormone Receptor ?? Gene due to Activation of Wnt/??-Catenin Protein Signaling, Journal of Biological Chemistry, vol.5, issue.21, pp.17812-17822, 2012.
DOI : 10.1016/j.tcb.2006.01.001

C. Oberste-berghaus, K. Zanger, K. Hashimoto, R. N. Cohen, A. N. Hollenberg et al., Thyroid Hormone-independent Interaction between the Thyroid Hormone Receptor ??2 Amino Terminus and Coactivators, Journal of Biological Chemistry, vol.19, issue.3, pp.1787-1792, 2000.
DOI : 10.1074/jbc.273.17.10270

M. Ozawa, H. Baribault, and R. Kemler, The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species, EMBO J, vol.8, pp.1711-1717, 1989.

H. G. Palmer, J. M. Gonzalez-sancho, J. Espada, M. T. Berciano, I. Puig et al., -catenin signaling, The Journal of Cell Biology, vol.20, issue.2, pp.369-387, 2001.
DOI : 10.1128/MCB.20.12.4238-4252.2000

A. Pascual and A. Aranda, Thyroid hormone receptors, cell growth and differentiation, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1830, issue.7, pp.3908-3916, 2013.
DOI : 10.1016/j.bbagen.2012.03.012

R. Paus, Exploring the ???Thyroid???Skin Connection???: Concepts, Questions, and Clinical Relevance, Journal of Investigative Dermatology, vol.130, issue.1, pp.7-10, 2010.
DOI : 10.1038/jid.2009.359

G. Peignon, A. Durand, W. Cacheux, O. Ayrault, B. Terris et al., Complex interplay between ??-catenin signalling and Notch effectors in intestinal tumorigenesis, Gut, vol.60, issue.2, pp.166-176, 2011.
DOI : 10.1136/gut.2009.204719

URL : https://hal.archives-ouvertes.fr/inserm-00553865

G. Perez-juste, S. Garcia-silva, and A. Aranda, An Element in the Region Responsible for Premature Termination of Transcription Mediates Repression of c-myc Gene Expression by Thyroid Hormone in Neuroblastoma Cells, Journal of Biological Chemistry, vol.275, issue.2, pp.1307-1314, 2000.
DOI : 10.1074/jbc.275.2.1307

A. Perra, M. Plateroti, and A. Columbano, /TRs axis in hepatocellular carcinoma: new concepts for an old pair, Endocrine-Related Cancer, vol.81, issue.8, pp.353-369, 2016.
DOI : 10.1038/onc.2009.476

M. Pibiri, G. M. Ledda-columbano, C. Cossu, G. Simbula, M. Menegazzi et al., Cyclin D1 is an early target in hepatocyte proliferation induced by thyroid hormone (T3), The FASEB Journal, vol.15, issue.6, pp.1006-1013, 2001.
DOI : 10.1128/MCB.18.10.5652

M. Plateroti, E. Kress, J. I. Mori, and J. Samarut, Thyroid Hormone Receptor ??1 Directly Controls Transcription of the ??-Catenin Gene in Intestinal Epithelial Cells, Molecular and Cellular Biology, vol.26, issue.8, pp.3204-3214, 2006.
DOI : 10.1128/MCB.26.8.3204-3214.2006

URL : https://hal.archives-ouvertes.fr/ensl-00000005

N. Radoja, O. Stojadinovic, A. Waseem, M. Tomic-canic, V. Milisavljevic et al., Thyroid Hormones and Gamma Interferon Specifically Increase K15 Keratin Gene Transcription, Molecular and Cellular Biology, vol.24, issue.8, pp.3168-3179, 2004.
DOI : 10.1128/MCB.24.8.3168-3179.2004

M. Raff, The mystery of intracellular developmental programmes and timers, Biochemical Society Transactions, vol.34, issue.5, pp.663-670, 2006.
DOI : 10.1042/BST0340663

J. Rodriguez, P. Esteve, C. Weinl, J. M. Ruiz, Y. Fermin et al., SFRP1 regulates the growth of retinal ganglion cell axons through the Fz2 receptor, Nature Neuroscience, vol.128, issue.10, pp.1301-1309, 2005.
DOI : 10.1016/S0896-6273(00)80391-8

J. D. Safer, L. M. Fraser, S. Ray, and M. F. Holick, Topical Triiodothyronine Stimulates Epidermal Proliferation, Dermal Thickening, and Hair Growth in Mice and Rats, Thyroid, vol.11, issue.8, pp.717-724, 2001.
DOI : 10.1089/10507250152484547

J. D. Safer, T. M. Crawford, and M. F. Holick, Topical Thyroid Hormone Accelerates Wound Healing in Mice, Endocrinology, vol.146, issue.10, pp.4425-4430, 2005.
DOI : 10.1210/en.2005-0192

A. N. Salic, K. L. Kroll, L. M. Evans, and M. W. Kirschner, Sizzled: a secreted Xwnt8 antagonist expressed in the ventral marginal zone of Xenopus embryos, Development, vol.124, pp.4739-4748, 1997.

J. Sap, A. Munoz, K. Damm, Y. Goldberg, J. Ghysdael et al., The c-erb-A protein is a high-affinity receptor for thyroid hormone, Nature, vol.70, issue.6098, pp.635-640, 1986.
DOI : 10.1038/324635a0

W. Satoh, T. Gotoh, Y. Tsunematsu, S. Aizawa, and A. Shimono, Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis, Development, vol.133, issue.6, pp.989-999, 2006.
DOI : 10.1242/dev.02274

URL : http://dev.biologists.org/content/develop/133/6/989.full.pdf

M. V. Semenov, R. Habas, B. T. Macdonald, and X. He, SnapShot: Noncanonical Wnt Signaling Pathways, Cell, vol.131, issue.7, 1378.
DOI : 10.1016/j.cell.2007.12.011

URL : https://doi.org/10.1016/j.cell.2007.12.011

S. Shah, M. N. Islam, S. Dakshanamurthy, I. Rizvi, M. Rao et al., The Molecular Basis of Vitamin D Receptor and ??-Catenin Crossregulation, Molecular Cell, vol.21, issue.6, pp.799-809, 2006.
DOI : 10.1016/j.molcel.2006.01.037

URL : https://hal.archives-ouvertes.fr/hal-00188140

R. A. Sinha, B. K. Singh, and P. M. Yen, Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism, Trends in Endocrinology & Metabolism, vol.25, issue.10, pp.538-545, 2014.
DOI : 10.1016/j.tem.2014.07.001

M. Sirakov, S. Skah, I. N. Lone, J. Nadjar, D. Angelov et al., Multi-Level Interactions between the Nuclear Receptor TR??1 and the WNT Effectors ??-Catenin/Tcf4 in the Intestinal Epithelium, PLoS ONE, vol.277, issue.4, p.34162, 2012.
DOI : 10.1371/journal.pone.0034162.s005

M. Sirakov, E. Kress, J. Nadjar, and M. Plateroti, Thyroid hormones and their nuclear receptors: new players in intestinal epithelium stem cell biology?, Cellular and Molecular Life Sciences, vol.4, issue.3, pp.2897-2907, 2014.
DOI : 10.1089/thy.1994.4.319

M. Sirakov, A. Boussouar, E. Kress, C. Frau, I. N. Lone et al., The thyroid hormone nuclear receptor TR??1 controls the Notch signaling pathway and cell fate in murine intestine, Development, vol.142, issue.16, pp.2764-2774, 2015.
DOI : 10.1242/dev.121962

S. Skah, J. Nadjar, M. Sirakov, and M. Plateroti, The secreted Frizzled-Related Protein 2 modulates cell fate and the Wnt pathway in the murine intestinal epithelium, Experimental Cell Research, vol.330, issue.1, pp.56-65, 2015.
DOI : 10.1016/j.yexcr.2014.10.014

I. Skvortsova, P. Debbage, V. Kumar, and S. Slwortsov, Radiation resistance: Cancer stem cells (CSCs) and their enigmatic pro-survival signaling, Seminars in Cancer Biology, vol.35, pp.39-44, 2015.
DOI : 10.1016/j.semcancer.2015.09.009

B. D. Smolich, J. A. Mcmahon, A. P. Mcmahon, and J. Papkoff, Wnt family proteins are secreted and associated with the cell surface., Molecular Biology of the Cell, vol.4, issue.12, pp.1267-1275, 1993.
DOI : 10.1091/mbc.4.12.1267

L. N. Song, R. Herrell, S. Byers, S. Shah, E. M. Wilson et al., ??-Catenin Binds to the Activation Function 2 Region of the Androgen Receptor and Modulates the Effects of the N-Terminal Domain and TIF2 on Ligand-Dependent Transcription, Molecular and Cellular Biology, vol.23, issue.5, pp.1674-1687, 2003.
DOI : 10.1128/MCB.23.5.1674-1687.2003

H. Suzuki, D. N. Watkins, K. W. Jair, K. E. Schuebel, S. D. Markowitz et al., Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer, Nature Genetics, vol.25, issue.4, pp.417-422, 2004.
DOI : 10.1038/77023

T. Tagami, L. D. Madison, T. Nagaya, and J. L. Jameson, Nuclear receptor corepressors activate rather than suppress basal transcription of genes that are negatively regulated by thyroid hormone., Molecular and Cellular Biology, vol.17, issue.5, pp.2642-2648, 1997.
DOI : 10.1128/MCB.17.5.2642

K. Tamai, M. Semenov, Y. Kato, R. Spokony, C. Liu et al., LDL-receptor-related proteins in Wnt signal transduction, Nature, vol.407, pp.530-535, 2000.

K. Tanaka, Y. Kitagawa, and T. Kadowaki, -Glycosylation of Wingless in the Endoplasmic Reticulum, Journal of Biological Chemistry, vol.71, issue.15, pp.12816-12823, 2002.
DOI : 10.1126/science.286.5446.1882

J. R. Tata, Amphibian metamorphosis as a model for the developmental actions of thyroid hormone, Molecular and Cellular Endocrinology, vol.246, issue.1-2, pp.10-20, 2006.
DOI : 10.1016/j.mce.2005.11.024

O. Tetsu and F. Mccormick, ??-Catenin regulates expression of cyclin D1 in colon carcinoma cells, Nature, vol.272, issue.6726, pp.422-426, 1999.
DOI : 10.1074/jbc.272.16.10859

Y. M. Tokumoto, D. G. Tang, and M. C. Raff, Two molecularly distinct intracellular pathways to oligodendrocyte differentiation: role of a p53 family protein, The EMBO Journal, vol.20, issue.18, pp.5261-5268, 2001.
DOI : 10.1093/emboj/20.18.5261

N. Toyoda, A. M. Zavacki, A. L. Maia, J. W. Harney, and P. R. Larsen, A novel retinoid X receptor-independent thyroid hormone response element is present in the human type 1 deiodinase gene., Molecular and Cellular Biology, vol.15, issue.9, pp.5100-5112, 1995.
DOI : 10.1128/MCB.15.9.5100

M. Trajkovic, T. J. Visser, J. Mittag, S. Horn, J. Lukas et al., Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8, Journal of Clinical Investigation, vol.117, issue.3, pp.627-635, 2007.
DOI : 10.1172/JCI28253DS1

E. Tsourdi, E. Rijntjes, J. Kohrle, L. C. Hofbauer, and M. Rauner, Hyperthyroidism and Hypothyroidism in Male Mice and Their Effects on Bone Mass, Bone Turnover, and the Wnt Inhibitors Sclerostin and Dickkopf-1, Endocrinology, vol.156, issue.10, pp.3517-3527, 2015.
DOI : 10.1210/en.2015-1073

R. Van-amerongen, A. Mikels, and R. Nusse, Alternative Wnt Signaling Is Initiated by Distinct Receptors, Science Signaling, vol.1, issue.35, 2008.
DOI : 10.1126/scisignal.135re9

W. M. Van-der-deure, R. P. Peeters, and T. J. Visser, Molecular aspects of thyroid hormone transporters, including MCT8, MCT10, and OATPs, and the effects of genetic variation in these transporters, Journal of Molecular Endocrinology, vol.44, issue.1, pp.1-11, 2010.
DOI : 10.1677/JME-09-0042

V. Falzacappa, C. Panacchia, L. Bucci, B. Stigliano, A. Cavallo et al., 3,5,3???-triiodothyronine (T3) is a survival factor for pancreatic ??-cells undergoing apoptosis, Journal of Cellular Physiology, vol.111, issue.2, pp.309-321, 2006.
DOI : 10.1152/ajpendo.00177.2002

W. E. Visser, W. S. Wong, A. A. Van-mullem, E. C. Friesema, J. Geyer et al., Study of the transport of thyroid hormone by transporters of the SLC10 family, Molecular and Cellular Endocrinology, vol.315, issue.1-2, pp.138-145, 2010.
DOI : 10.1016/j.mce.2009.08.003

URL : https://hal.archives-ouvertes.fr/hal-00547654

W. E. Visser, E. C. Friesema, and T. J. Visser, Minireview: Thyroid Hormone Transporters: The Knowns and the Unknowns, Molecular Endocrinology, vol.25, issue.1, pp.1-14, 2011.
DOI : 10.1210/me.2010-0095

Z. Von-marschall and L. W. Fisher, Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling, Biochemical and Biophysical Research Communications, vol.400, issue.3, pp.299-304, 2010.
DOI : 10.1016/j.bbrc.2010.08.043

M. S. Wagner, S. M. Wajner, J. M. Dora, and A. L. Maia, Regulation of Dio2 gene expression by thyroid hormones in normal and type 1 deiodinase-deficient C3H mice, Journal of Endocrinology, vol.193, issue.3, pp.435-444, 2007.
DOI : 10.1677/JOE-07-0099

R. L. Wagner, J. W. Apriletti, M. E. Mcgrath, B. L. West, J. D. Baxter et al., A structural role for hormone in the thyroid hormone receptor, Nature, vol.11, issue.6558, pp.690-697, 1995.
DOI : 10.1002/prot.340110407

L. Wang, Y. Y. Shao, and R. T. Ballock, Carboxypeptidase Z (CPZ) Links Thyroid Hormone and Wnt Signaling Pathways in Growth Plate Chondrocytes, Journal of Bone and Mineral Research, vol.24, issue.2, pp.265-273, 2009.
DOI : 10.1359/jbmr.081014

L. Wang, Y. Y. Shao, and R. T. Ballock, Thyroid hormone-mediated growth and differentiation of growth plate chondrocytes involves IGF-1 modulation of ??-catenin signaling, Journal of Bone and Mineral Research, vol.40, issue.(Pt 9), pp.1138-1146, 2010.
DOI : 10.1016/j.bone.2007.01.005

S. Wang, M. Krinks, K. Lin, F. P. Luyten, M. Moos et al., Frzb, a Secreted Protein Expressed in the Spemann Organizer, Binds and Inhibits Wnt-8, Cell, vol.88, issue.6, pp.757-766, 1997.
DOI : 10.1016/S0092-8674(00)81922-4

C. Weinberger, C. C. Thompson, E. S. Ong, R. Lebo, D. J. Gruol et al., The c-erb-A gene encodes a thyroid hormone receptor, Nature, vol.101, issue.6098, pp.641-646, 1986.
DOI : 10.1042/bj0980604

K. Willert and R. Nusse, Wnt Proteins, Cold Spring Harbor Perspectives in Biology, vol.4, issue.9, p.7864, 2012.
DOI : 10.1101/cshperspect.a007864

J. R. Nusse and R. , Wnt proteins are lipid-modified and can act as stem cell growth factors, Nature, vol.423, pp.448-452, 2003.

G. R. Williams, J. W. Harney, B. M. Forman, H. H. Samuels, and G. A. Brent, Oligomeric binding of T3 receptor is required for maximal T3 response, J. Biol. Chem, vol.266, pp.19636-19644, 1991.

F. E. Wondisford, Lessons learned from TR-beta mutant mice mice Syndromes of Hormone Resistance on the Hypothalamic-Pituitarythyroid Axis, pp.109-118, 2004.

Q. Xu, Y. Wang, A. Dabdoub, P. M. Smallwood, J. Williams et al., Vascular Development in the Retina and Inner Ear, Cell, vol.116, issue.6, pp.883-895, 2004.
DOI : 10.1016/S0092-8674(04)00216-8

M. Yamaguchi, T. Seki, I. Imayoshi, N. Tamamaki, Y. Hayashi et al., Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain, The Journal of Physiological Sciences, vol.19, issue.3, pp.197-206, 2016.
DOI : 10.1038/mp.2013.190

S. Yamamura, K. Kawakami, H. Hirata, K. Ueno, S. Saini et al., Oncogenic Functions of Secreted Frizzled-Related Protein 2 in Human Renal Cancer, Molecular Cancer Therapeutics, vol.9, issue.6, pp.1680-1687, 2010.
DOI : 10.1158/1535-7163.MCT-10-0012

P. M. Yen, Physiological and Molecular Basis of Thyroid Hormone Action, Physiological Reviews, vol.3, issue.3, pp.1097-1142, 2001.
DOI : 10.1046/j.1365-2265.1998.00627.x

F. Yu, S. Gothe, L. Wikstrom, D. Forrest, B. Vennstrom et al., Effects of thyroid hormone receptor gene disruption on myosin isoform expression in mouse skeletal muscles, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.76, issue.6, pp.1545-1554, 2000.
DOI : 10.1007/s004240050741

A. M. Zavacki, H. Ying, M. A. Christoffolete, G. Aerts, E. So et al., Type 1 Iodothyronine Deiodinase Is a Sensitive Marker of Peripheral Thyroid Status in the Mouse, Endocrinology, vol.146, issue.3, pp.1568-1575, 2005.
DOI : 10.1210/en.2004-1392

X. Zeng, K. Tamai, B. Doble, S. Li, H. Huang et al., A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation, Nature, vol.7, issue.7069, pp.873-877, 2005.
DOI : 10.1038/ncb1210

X. K. Zhang and M. Kahl, Regulation of retinoid and thyroid hormone action through homodimeric and heterodimeric receptors, Trends in Endocrinology & Metabolism, vol.4, issue.5, pp.156-162, 1993.
DOI : 10.1016/1043-2760(93)90105-N

Z. Zhong, N. J. Ethen, and B. O. Williams, WNT signaling in bone development and homeostasis, Wiley Interdisciplinary Reviews: Developmental Biology, vol.41, issue.6, pp.489-500, 2014.
DOI : 10.1146/annurev.pharmtox.41.1.789

URL : http://europepmc.org/articles/pmc4199871?pdf=render

Z. Zhou, J. Wang, X. Han, J. Zhou, and S. Linder, Up-regulation of human secreted frizzled homolog in apoptosis and its down-regulation in breast tumors, International Journal of Cancer, vol.6, issue.1, pp.95-99, 1998.
DOI : 10.1016/S0960-9822(02)70716-1

S. Skah, The thyroid hormone nuclear receptors and the Wnt/??-catenin pathway: An intriguing liaison, Developmental Biology, vol.422, issue.2, pp.71-82, 2017.
DOI : 10.1016/j.ydbio.2017.01.003