%. Ic, Ic_0 plotted against Phi, p.10000

%. Ic, Ic_0 plotted against Phi, p.10000

M. H. Devoret and R. J. Schoelkopf, Superconducting Circuits for Quantum Information: An Outlook, Science, vol.109, issue.6, p.1169, 2013.
DOI : 10.1103/PhysRevLett.109.060501

T. Brecht, W. Pfaff, C. Wang, Y. Chu, L. Frunzio et al., Multilayer microwave integrated quantum circuits for scalable quantum computing, npj Quantum Information, p.16002, 2016.
DOI : 10.1117/12.926491

URL : http://www.nature.com/articles/npjqi20162.pdf

J. Koch, T. Yu, J. Gambetta, A. Houck, D. Schuster et al., Charge-insensitive qubit design derived from the Cooper pair box, Physical Review A, vol.61, issue.4, p.42319, 2007.
DOI : 10.1007/BFb0096194

URL : http://arxiv.org/pdf/cond-mat/0703002

T. W. Larsen, K. D. Petersson, F. Kuemmeth, T. S. Jespersen, P. Krogstrup et al., Semiconductor-Nanowire-Based Superconducting Qubit, Physical Review Letters, vol.115, issue.12, p.127001, 2015.
DOI : 10.1038/ncomms5772

URL : http://arxiv.org/pdf/1503.08339

G. De-lange, B. Van-heck, A. Bruno, D. J. Van-woerkom, A. Geresdi et al., Realization of Microwave Quantum Circuits Using Hybrid Superconducting-Semiconducting Nanowire Josephson Elements, Physical Review Letters, vol.115, issue.12, p.127002, 2015.
DOI : 10.1103/RevModPhys.80.1083

E. Bustarret, C. Marcenat, P. Achatz, J. Kacmarcik, F. Levy et al., Superconductivity in doped cubic silicon, Nature, vol.208, issue.7118, pp.465-468, 2006.
DOI : 10.1103/PhysRevLett.93.237005

URL : https://hal.archives-ouvertes.fr/hal-00115563

Y. P. Shim and C. Tahan, Bottom-up superconducting and Josephson junction devices inside a group-IV semiconductor, Nature Communications, vol.21, issue.4225, p.2014
DOI : 10.1103/RevModPhys.80.1083

URL : http://www.nature.com/articles/ncomms5225.pdf

F. Chiodi, J. Duvauchelle, C. Marcenat, D. Débarre, and F. Lefloch, Proximity-induced superconductivity in all-silicon superconductor /normal-metal junctions, Physical Review B, vol.67, issue.2, p.24503, 2017.
DOI : 10.1002/352760278X

URL : http://arxiv.org/pdf/1610.08453

Z. Zhang, SB-MOSFETs in UTB-SOI Featuring PtSi Source/Drain With Dopant Segregation, IEEE Electron Device Letters, vol.29, issue.1, pp.125-127, 2008.
DOI : 10.1109/LED.2007.911990

T. Poiroux, M. Vinet, F. Nemouchi, V. Carron, Y. Morand et al., Highly performant FDSOI pMOSFETs with metallic source/drain, 2009 International Symposium on VLSI Technology, Systems, and Applications, pp.748-750, 2009.
DOI : 10.1109/VTSA.2009.5159304

L. Landau, The theory of a Fermi liquid, Soviet Physics JETP, vol.3, pp.920-925, 1957.

B. L. Altshuler and A. G. Aronov, Electron-electron interactions in disordered systems, 1985.

W. Meissner and R. Ochsenfeld, Ein neuer Effekt bei Eintritt der Supraleitf???higkeit, Die Naturwissenschaften, vol.21, issue.44, p.787, 1933.
DOI : 10.1007/BF01504252

F. London and H. London, The Electromagnetic Equations of the Supraconductor, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.149, issue.866, p.71, 1935.
DOI : 10.1098/rspa.1935.0048

B. Pippard, An Experimental and Theoretical Study of the Relation between Magnetic Field and Current in a Superconductor, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.216, issue.1127, pp.547-568, 1953.
DOI : 10.1098/rspa.1953.0040

A. A. Abrikosov, On the magnetic properties of superconductors of the second group, JETP, vol.5, pp.1174-1182, 1957.

H. Fröhlich, On the Theory of Superconductivity: The One-Dimensional Case, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.223, issue.1154, p.296, 1954.
DOI : 10.1098/rspa.1954.0116

L. N. Cooper, Bound Electron Pairs in a Degenerate Fermi Gas, Physical Review, vol.100, issue.4, pp.1189-1190, 1956.
DOI : 10.1103/PhysRev.100.463

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of Superconductivity, Physical Review, vol.106, issue.5, pp.1175-1204, 1957.
DOI : 10.1103/PhysRev.106.208

M. Tinkham, Introduction to Superconductivity, 1996.

J. Brauer, F. Hübler, M. Smetanin, D. Beckmann, and H. V. Löhneysen, Nonlocal transport in normal-metal/superconductor hybrid structures: Role of interference and interaction, Physical Review B, vol.19, issue.2, p.24515, 2010.
DOI : 10.1103/PhysRevLett.103.067006

K. K. Likharev, Superconducting weak links, Reviews of Modern Physics, vol.3, issue.1, pp.101-159, 1979.
DOI : 10.1063/1.1659074

T. M. Klapwijk, Proximity Effect From an Andreev Perspective, Journal of Superconductivity, vol.17, issue.5, pp.593-611, 2004.
DOI : 10.1007/s10948-004-0773-0

B. Pannetier and H. Courtois, Andreev reflection and proximity effect, Journal of Low Temperature Physics, vol.118, issue.5/6, p.599, 2000.
DOI : 10.1023/A:1004635226825

M. Fauré, Supraconductivité et ferromagnétisme : compétition et coexistence, 2006.

A. F. Andreev, The thermal conductivity of the intermdiate state in superconductors, Sov. Phys. JETP, vol.19, p.1228, 1964.

P. G. De-gennes, Boundary Effects in Superconductors, Reviews of Modern Physics, vol.34, issue.1, pp.225-237, 1964.
DOI : 10.1063/1.1729520

G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion, Physical Review B, vol.21, issue.7, pp.4515-4532, 1982.
DOI : 10.1103/PhysRevB.21.945

. Dubouchet, Spectroscopie localè a basse température dans des systèmes supraconducteurs désordonnés, 2010.

B. D. Josephson, Possible new effects in superconductive tunnelling, Physics Letters, vol.1, issue.7, pp.251-253, 1962.
DOI : 10.1016/0031-9163(62)91369-0

C. W. Beenakker, Universal limit of critical-current fluctuations in mesoscopic Josephson junctions, Physical Review Letters, vol.54, issue.166, pp.3836-3839, 1991.
DOI : 10.1103/PhysRevLett.54.2449

V. Ambegaokar and A. Baratoff, Tunneling Between Superconductors, Physical Review Letters, vol.155, issue.11, pp.486-489, 1963.
DOI : 10.1007/BF01332932

P. L. Anderson and J. W. Rowell, Probable Observation of the Josephson Superconducting Tunneling Effect, Physical Review Letters, vol.1, issue.6, p.230, 1963.
DOI : 10.1016/0031-9163(62)91369-0

W. C. Stewart, CURRENT???VOLTAGE CHARACTERISTICS OF JOSEPHSON JUNCTIONS, Applied Physics Letters, vol.24, issue.8, p.277, 1968.
DOI : 10.1103/PhysRev.164.523

D. E. Mccumber, Effect of ac Impedance on dc Voltage???Current Characteristics of Superconductor Weak???Link Junctions, Journal of Applied Physics, vol.39, issue.7, p.3113, 1968.
DOI : 10.1016/0031-9163(66)90506-3

A. Barone and P. Paterno, Physics and applications of the Josephson effect, 1982.
DOI : 10.1002/352760278X

Y. Aharonov and D. Bohm, Significance of Electromagnetic Potentials in the Quantum Theory, Physical Review, vol.36, issue.3, pp.485-491, 1959.
DOI : 10.1103/PhysRev.36.444

R. A. Millikan, On the Elementary Electrical Charge and the Avogadro Constant, Physical Review, vol.86, issue.2, p.115, 1913.
DOI : 10.1098/rspa.1912.0012

M. Hofheinz, X. Jehl, M. Sanquer, G. Molas, M. Vinet et al., Capacitance enhancement in Coulomb blockade tunnel barriers, Physical Review B, vol.32, issue.23, p.235301, 2007.
DOI : 10.1103/PhysRevB.55.9223

R. J. Girvin and . Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature, vol.431, pp.162-167, 2004.

A. Kringhøj, Readout and control of semiconductor nanowire-based superconducting qubits, 2016.

D. C. Ralph, C. T. Black, and M. Tinkham, Spectroscopic Measurements of Discrete Electronic States in Single Metal Particles, Physical Review Letters, vol.69, issue.16, pp.3241-3244, 1995.
DOI : 10.1103/PhysRevLett.69.1997

T. Dirks, Y. F. Chen, N. O. Birge, and N. Mason, Superconducting tunneling spectroscopy of a carbon nanotube quantum dot, Applied Physics Letters, vol.95, issue.19, 2009.
DOI : 10.1103/PhysRevLett.102.036804

A. Y. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat et al., Supercurrents Through Single-Walled Carbon Nanotubes, Science, vol.284, issue.5419, p.1508, 1999.
DOI : 10.1126/science.284.5419.1508

A. F. Morpugo, J. Kong, C. M. Marcus, and H. Dai, Gate-Controlled Superconducting Proximity Effect in Carbon Nanotubes, Science, vol.286, issue.5438, p.263, 1999.
DOI : 10.1126/science.286.5438.263

P. Jarillo-herrero, J. A. Van-dam, and L. P. Kouwenhoven, Quantum supercurrent transistors in carbon nanotubes, Nature, vol.70, issue.7079, p.953, 2006.
DOI : 10.1088/2058-7058/13/6/26

URL : http://arxiv.org/pdf/cond-mat/0601434

J. A. Van-dam, Y. V. Nazarov, E. P. Bakkers, S. De-franceschi, and L. P. Kouwenhoven, Supercurrent reversal in quantum dots, Nature, vol.93, issue.7103, pp.667-670, 2006.
DOI : 10.1103/PhysRevLett.93.047002

D. Franceschi, L. Kouwenhoven, C. Schonenberger, and W. Wernsdorfer, Hybrid superconductor???quantum dot devices, Nature Nanotechnology, vol.453, issue.10, pp.703-711, 2010.
DOI : 10.1088/2058-7058/14/1/28

URL : https://hal.archives-ouvertes.fr/hal-00979554

N. Kurti, L'antiferromagnétisme aux basses températures. Le Journal de physique et le radium, pp.281-290, 1951.
DOI : 10.1051/jphysrad:01951001203028100

P. Das, R. B. Ouboter, and K. W. Taconis, A Realization of a London-Clarke-Mendoza Type Refrigerator, Low Temperature Physics, p.1253, 1965.
DOI : 10.1007/978-1-4899-6443-4_133

O. V. Lounasmaa, Experimental principles and methods below 1K, 1974.

O. V. Lounasmaa, Dilution refrigeration, Journal of Physics E: Scientific Instruments, vol.12, issue.8, 1979.
DOI : 10.1088/0022-3735/12/8/001

M. L. Cohen, The Existence of a Superconducting State in Semiconductors, Reviews of Modern Physics, vol.11, issue.1, pp.240-243, 1964.
DOI : 10.1103/PhysRevLett.11.6

R. A. Hein, J. W. Gibson, R. Mazelsky, R. C. Miller, and J. K. Hulm, Superconductivity in Germanium Telluride, Physical Review Letters, vol.131, issue.12, pp.320-322, 1964.
DOI : 10.1103/PhysRev.131.1105

E. A. Ekimov, V. A. Sidorov, E. D. Bauer, N. N. Mel-'nik, N. J. Curro et al., Superconductivity in diamond, Nature, vol.428, issue.6982, pp.542-545, 2004.
DOI : 10.1038/nature02449

G. Kerrien, J. Boulmer, D. Débarre, D. Bouchier, A. Grouillet et al., Ultra-shallow, super-doped and box-like junctions realized by laser-induced doping, Applied Surface Science, vol.186, issue.1-4, pp.45-51, 2002.
DOI : 10.1016/S0169-4332(01)00623-7

J. Boulmer, D. Debarre, A. Grouillet, and D. Lenoble, Dopage laser pour la microélectronique du futur. Colloque " UVX 2000, J. Phys. IV France, vol.11, issue.103, 2001.
DOI : 10.1051/jp4:2001733

URL : http://jp4.journaldephysique.org/articles/jp4/pdf/2001/07/jp4200111PR733.pdf

K. Hoummada, F. Dahlem, T. Kociniewski, J. Boulmer, C. Dubois et al., Absence of boron aggregates in superconducting silicon confirmed by atom probe tomography, Applied Physics Letters, vol.101, issue.18, p.182602, 2012.
DOI : 10.1103/PhysRevLett.102.217003

URL : https://hal.archives-ouvertes.fr/hal-00760773

A. Grockowiak, Supraconductivité et propriétés physiques du silicium très fortement dopé, 2012.

F. Dahlem, T. Kociniewski, C. Marcenat, A. Grockowiak, L. M. Pascal et al., Subkelvin tunneling spectroscopy showing Bardeen-Cooper-Schrieffer superconductivity in heavily boron-doped silicon epilayers, Physical Review B, vol.82, issue.14, p.140505, 2010.
DOI : 10.1103/PhysRevLett.98.027001

URL : https://hal.archives-ouvertes.fr/hal-00735571

F. Balestro, Dynamique quantique d'un SQUID DC, 2003.
URL : https://hal.archives-ouvertes.fr/tel-00004224

C. D. Tesche and J. Clarke, dc SQUID: Noise and optimization, Journal of Low Temperature Physics, vol.47, issue.3-4, pp.301-331, 1977.
DOI : 10.1051/rphysap:019740090107900

A. J. Annunziata, D. F. Santavicca, L. Frunzio, G. Catelani, M. J. Rooks et al., Tunable superconducting nanoinductors, Nanotechnology, vol.21, issue.44, p.445202, 2010.
DOI : 10.1088/0957-4484/21/44/445202

URL : http://arxiv.org/pdf/1007.4187

K. Hasselbach, C. Veauvy, and D. Mailly, MicroSQUID magnetometry and magnetic imaging, Physica C: Superconductivity, vol.332, issue.1-4, 2000.
DOI : 10.1016/S0921-4534(99)00657-7

W. Chang, S. M. Albrecht, T. S. Jespersen, F. Kuemmeth, P. Krogstrup et al., Hard gap in epitaxial semiconductor???superconductor nanowires, Nature Nanotechnology, vol.11, issue.3, p.232, 2015.
DOI : 10.1088/1367-2630/11/11/113025

URL : http://arxiv.org/pdf/1411.6255

K. Oto, S. Takaoka, and K. Murase, Superconductivity in PtSi ultrathin films, Journal of Applied Physics, vol.35, issue.9, pp.5339-5342, 1994.
DOI : 10.1103/PhysRevB.35.3214

P. A. Badoz, A. Briggs, E. Rosencher, F. Arnaud, and D. Avitaya, Superconductivity in ultra-thin CoSi2 epitaxial films, Journal de Physique Lettres, vol.35, issue.B, pp.979-983, 1985.
DOI : 10.1051/jphyslet:019850046020097900

URL : https://hal.archives-ouvertes.fr/jpa-00232927

V. Carron, F. Nemouchi, Y. Morand, T. Poiroux, L. Hutin et al., Metallic source and drain module for FDSOI MOSFETs applications, 2010 International Workshop on Junction Technology Extended Abstracts, 2010.
DOI : 10.1109/IWJT.2010.5474986

J. Choi, Y. Mao, and J. Chang, Development of hafnium based high-k materials???A review, Materials Science and Engineering: R: Reports, vol.72, issue.6, pp.97-136, 2011.
DOI : 10.1016/j.mser.2010.12.001

M. Houssa, L. Pantisano, L. Ragnarsson, R. Degraeve, T. Schram et al., Electrical properties of high-?? gate dielectrics: Challenges, current issues, and possible solutions, Materials Science and Engineering: R: Reports, vol.51, issue.4-6, pp.37-85, 2006.
DOI : 10.1016/j.mser.2006.04.001

S. M. Sze, Physics of semiconductor devices, 1985.

G. Oya, H. Inabe, Y. Onodera, and Y. Sawada, Si layers formed by the interaction of V films with thinly oxidized Si wafers, Journal of Applied Physics, vol.3, issue.2, pp.1115-1121, 1982.
DOI : 10.1103/PhysRev.127.1017

R. J. Schutz and L. R. Testardi, The formation of vanadium silicides at thin???film interfaces, Journal of Applied Physics, vol.34, issue.9, pp.5773-5781, 1979.
DOI : 10.1016/0025-5416(78)90046-0

S. D. Stefano, A. D. Chiara, and G. Peluso, Preparation and properties of V<inf>3</inf>Si thin films for superconducting electronics, IEEE Transactions on Magnetics, vol.21, issue.2, pp.878-879, 1985.
DOI : 10.1109/TMAG.1985.1063693

H. Kräutle, M. Nicolet, and J. W. Mayer, substrates, Journal of Applied Physics, vol.3, issue.8, pp.3304-3308, 1974.
DOI : 10.1116/1.1318668