Skip to Main content Skip to Navigation
Theses

Biological versus chemical leaching of electronic waste for copper and gold recovery

Abstract : The well-being of the society depends on a number of metals, including base metals, precious metals and increasingly rare earth elements (REE). The usage of these metals increased in numerous applications, including electrical and electronic equipment (EEE), and their interrupted supply is at stake. There is an increasing interest in the secondary sources of these metals, particularly waste electrical and electronic equipment (WEEE) in order to compensate their potential supply deficit. This PhD thesis demonstrates the advantages and bottlenecks of biological and chemical approaches, as well as the advances and perspectives in the development of sustainable processes for metal recovery from WEEE. Furthermore, a novel process for the recovery of metals from WEEE is described, and a techno-economic assessment is given. Discarded printed circuit boards (PCB) from personal computers (PC), laptops, mobile phones and telecom servers were studied. Following an extensive literature review, a novel characterization and total metal assay method is introduced and applied to waste board materials. Discarded PCB contained metals in the range of (%, by weight): copper (Cu) 17.6 - 39.0, iron (Fe) 0.7 - 7.5, aluminum (Al) 1.0 - 5.5, nickel (Ni) 0.2 - 1.1, zinc (Zn) 0.3 - 1.2, as well as gold (Au) (in ppm) 21 - 320. In addition, multi-criteria analysis (MCA) using the analytical hierarchical process (AHP) methodology is applied for selection of the best-suited technology. A proof-of-concept for a two-step bioleaching extraction was given, in which 98.4% and 44.0% of the Cu and Au, respectively, were extracted. The two-step extraction concept was applied to the chemical leaching of metals from PCB. Cu leaching was carried in an acidic oxidative mixture of H2SO4 and H2O2, whereas Au leaching for carried out by S_2 O_3^(2-) in a NH_4^+ medium, catalyzed by CuSO4. Under the optimized parameters, 99.2% and 96.6% of Cu and Au, respectively, were extracted from the board material. Selective recovery of Cu from the bioleaching leachate using sulfidic precipitation and electrowinning was studied. Cu was selectively recovered on the cathode electrode at a 50 mA current density in 50 minutes, with a 97.8% efficiency and 65.0% purity. The techno-economic analysis and environmental sustainability assessment of the new technology at an early stage of development was investigated
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01738056
Contributor : Abes Star :  Contact
Submitted on : Tuesday, March 20, 2018 - 10:50:08 AM
Last modification on : Wednesday, October 14, 2020 - 4:11:13 AM
Long-term archiving on: : Tuesday, September 11, 2018 - 8:02:55 AM

File

TH2016PESC1125.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01738056, version 1

Collections

Citation

Arda Isildar. Biological versus chemical leaching of electronic waste for copper and gold recovery. Environmental Engineering. Université Paris-Est; Università degli studi (Cassino, Italie), 2016. English. ⟨NNT : 2016PESC1125⟩. ⟨tel-01738056⟩

Share

Metrics

Record views

536

Files downloads

6173