C. Acuna-goycolea, S. Brenowitz, and W. Regehr, Active Dendritic Conductances Dynamically Regulate GABA Release from Thalamic Interneurons, Neuron, vol.57, issue.3, pp.420-431, 2008.
DOI : 10.1016/j.neuron.2007.12.022

H. Adesnik, W. Bruns, H. Taniguchi, Z. Huang, and M. Scanziani, A neural circuit for spatial summation in visual cortex, Nature, vol.2, issue.7419, pp.226-231, 2012.
DOI : 10.1038/11197

A. Agmon and B. Connors, Repetitive burst-firing neurons in the deep layers of mouse somatosensory cortex, Neuroscience Letters, vol.99, issue.1-2, pp.137-141, 1989.
DOI : 10.1016/0304-3940(89)90278-4

B. Ahmed, J. Anderson, R. Douglas, K. Martin, and J. Nelson, Polyneuronal innervation of spiny stellate neurons in cat visual cortex, The Journal of Comparative Neurology, vol.227, issue.1, pp.39-49, 1994.
DOI : 10.1007/978-1-4684-8721-3

B. Ahmed, J. Anderson, K. Martin, and J. Nelson, Map of the synapses onto layer 4 basket cells of the primary visual cortex of the cat, The Journal of Comparative Neurology, vol.195, issue.2, pp.230-242, 1997.
DOI : 10.1007/978-1-4684-8721-3

H. Alitto and W. Usrey, Corticothalamic feedback and sensory processing, Current Opinion in Neurobiology, vol.13, issue.4, pp.440-445, 2003.
DOI : 10.1016/S0959-4388(03)00096-5

C. Allene, J. Lourenço, and A. Bacci, The neuronal identity bias behind neocortical GABAergic plasticity, Trends in Neurosciences, vol.38, issue.9, pp.524-534, 2015.
DOI : 10.1016/j.tins.2015.07.008

A. Alpár, U. Gärtner, W. Härtig, and G. Brückner, Distribution of pyramidal cells associated with perineuronal nets in the neocortex of rat, Brain Research, vol.1120, issue.1, pp.13-22, 2006.
DOI : 10.1016/j.brainres.2006.08.069

Y. Amitai, Thalamocortical Synaptic Connections: Efficacy, Modulation, Inhibition and Plasticity, Reviews in the Neurosciences, vol.195, issue.2, pp.159-173, 2001.
DOI : 10.1002/cne.901950207

J. Anderson, M. Carandini, and D. Ferster, Orientation Tuning of Input Conductance, Excitation, and Inhibition in Cat Primary Visual Cortex, Journal of Neurophysiology, vol.18, issue.2, pp.909-926, 2000.
DOI : 10.1017/S0952523800010257

M. Angulo, Distinct Local Circuits Between Neocortical Pyramidal Cells and Fast-Spiking Interneurons in Young Adult Rats, Journal of Neurophysiology, vol.16, issue.2, pp.943-953, 2002.
DOI : 10.1016/S0959-4388(99)80045-2

A. Antonini and M. Stryker, Plasticity of geniculocortical afferents following brief or prolonged monocular occlusion in the cat, The Journal of Comparative Neurology, vol.55, issue.1, pp.64-82, 1996.
DOI : 10.1101/SQB.1990.055.01.023

G. Ascoli and L. Alonso-nanclares, Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex, Nat Rev Neurosci, vol.9, pp.557-568, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00292588

B. V. Atallah, W. Bruns, M. Carandini, and M. Scanziani, Parvalbumin-Expressing Interneurons Linearly Transform Cortical Responses to Visual Stimuli, Neuron, vol.73, issue.1, pp.159-170, 2012.
DOI : 10.1016/j.neuron.2011.12.013

A. Bacci and J. Huguenard, Enhancement of Spike-Timing Precision by Autaptic Transmission in Neocortical Inhibitory Interneurons, Neuron, vol.49, issue.1, pp.119-130, 2006.
DOI : 10.1016/j.neuron.2005.12.014

A. Bacci, J. Huguenard, and D. Prince, Functional autaptic neurotransmission in fast-spiking interneurons: a novel form of feedback inhibition in the neocortex, J Neurosci, vol.23, pp.859-866, 2003.

M. Bagnall, C. Hull, E. Bushong, M. Ellisman, and M. Scanziani, Multiple Clusters of Release Sites Formed by Individual Thalamic Afferents onto Cortical Interneurons Ensure Reliable Transmission, Neuron, vol.71, issue.1, pp.180-194, 2011.
DOI : 10.1016/j.neuron.2011.05.032

M. Baker, Neuroscience: Through the eyes of a mouse, Nature, vol.502, issue.7470, pp.156-158, 2013.
DOI : 10.1038/502156a

T. Balmer, Perineuronal Nets Enhance the Excitability of Fast-Spiking Neurons, eNeuro, vol.3, issue.4, pp.112-128, 2016.
DOI : 10.1523/ENEURO.0112-16.2016

A. Bannister, Inter- and intra-laminar connections of pyramidal cells in the neocortex, Neuroscience Research, vol.53, issue.2, pp.95-103, 2005.
DOI : 10.1016/j.neures.2005.06.019

D. Bavelier, D. Levi, R. Li, Y. Dan, and T. Hensch, Removing Brakes on Adult Brain Plasticity: From Molecular to Behavioral Interventions, Journal of Neuroscience, vol.30, issue.45, pp.14964-14971, 2010.
DOI : 10.1523/JNEUROSCI.4812-10.2010

B. Bean, The action potential in mammalian central neurons, Nature Reviews Neuroscience, vol.538, issue.6, pp.451-465, 2007.
DOI : 10.1113/jphysiol.1995.sp020595

M. Beierlein, J. Gibson, and B. Connors, Two Dynamically Distinct Inhibitory Networks in Layer 4 of the Neocortex, Journal of Neurophysiology, vol.90, issue.5, pp.2987-3000, 2003.
DOI : 10.1146/annurev.physiol.64.092501.114547

Y. Bekku, M. Saito, M. Moser, M. Fuchigami, A. Maehara et al., Bral2 is indispensable for the proper localization of brevican and the structural integrity of the perineuronal net in the brainstem and cerebellum, The Journal of Comparative Neurology, vol.130, issue.8, pp.1721-1736, 2012.
DOI : 10.1007/s00418-008-0485-9

M. Bence and C. Levelt, Structural plasticity in the developing visual system, Prog Brain Res, vol.147, pp.125-139, 2005.
DOI : 10.1016/S0079-6123(04)47010-1

N. Berardi, T. Pizzorusso, and L. Maffei, Critical periods during sensory development, Current Opinion in Neurobiology, vol.10, issue.1, pp.138-145, 2000.
DOI : 10.1016/S0959-4388(99)00047-1

N. Berardi, T. Pizzorusso, G. Ratto, and L. Maffei, Molecular basis of plasticity in the visual cortex, Trends in Neurosciences, vol.26, issue.7, pp.369-378, 2003.
DOI : 10.1016/S0166-2236(03)00168-1

C. Bernard and A. Prochiantz, Otx2-PNN Interaction to Regulate Cortical Plasticity, Neural Plasticity, vol.125, issue.21, 2016.
DOI : 10.1146/annurev-psych-010814-015104

URL : http://doi.org/10.1155/2016/7931693

M. Beurdeley, J. Spatazza, H. Lee, S. Sugiyama, C. Bernard et al., Otx2 Binding to Perineuronal Nets Persistently Regulates Plasticity in the Mature Visual Cortex, Journal of Neuroscience, vol.32, issue.27, pp.9429-9437, 2012.
DOI : 10.1523/JNEUROSCI.0394-12.2012

B. Bhaumik and N. Shah, Development and matching of binocular orientation preference in mouse V1, Frontiers in Systems Neuroscience, vol.19, issue.87, p.128, 2014.
DOI : 10.1002/cne.903440407

A. Bikbaev, R. Frischknecht, and M. Heine, Brain extracellular matrix retains connectivity in neuronal networks, Scientific Reports, vol.1, issue.1, p.14527, 2015.
DOI : 10.1038/nprot.2006.356

D. Blitz and W. Regehr, Timing and Specificity of Feed-Forward Inhibition within the LGN, Neuron, vol.45, issue.6, pp.917-928, 2005.
DOI : 10.1016/j.neuron.2005.01.033

D. Bochner, R. Sapp, J. Adelson, S. Zhang, H. Lee et al., Blocking PirB up-regulates spines and functional synapses to unlock visual cortical plasticity and facilitate recovery from amblyopia, Science Translational Medicine, vol.46, issue.9, pp.258-140, 2014.
DOI : 10.1101/lm.030361.113

J. Bourassa and M. Deschenes, Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer, Neuroscience, vol.66, issue.2, pp.253-263, 1995.
DOI : 10.1016/0306-4522(95)00009-8

E. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, Millisecond-timescale, genetically targeted optical control of neural activity, Nature Neuroscience, vol.72, issue.9, pp.1263-1268, 2005.
DOI : 10.1016/S0896-6273(04)00266-1

E. Bradbury, L. Moon, R. Popat, V. King, G. Bennett et al., Chondroitinase ABC promotes functional recovery after spinal cord injury, Nature, vol.119, issue.6881, pp.636-640, 2002.
DOI : 10.1006/exnr.1993.1017

C. Brakebusch, C. Seidenbecher, U. Rauch, H. Matthies, H. Meyer et al., Brevican-Deficient Mice Display Impaired Hippocampal CA1 Long-Term Potentiation but Show No Obvious Deficits in Learning and Memory, Molecular and Cellular Biology, vol.22, issue.21, pp.7417-7427, 2002.
DOI : 10.1128/MCB.22.21.7417-7427.2002

F. Briggs and W. Usrey, Emerging views of corticothalamic function, Current Opinion in Neurobiology, vol.18, issue.4, pp.403-407, 2008.
DOI : 10.1016/j.conb.2008.09.002

D. Bright, M. Aller, and S. Brickley, Synaptic Release Generates a Tonic GABAA Receptor-Mediated Conductance That Modulates Burst Precision in Thalamic Relay Neurons, Journal of Neuroscience, vol.27, issue.10, pp.2560-2569, 2007.
DOI : 10.1523/JNEUROSCI.5100-06.2007

S. Brown and S. Hestrin, Intracortical circuits of pyramidal neurons reflect their long-range axonal targets, Nature, vol.457, issue.7233, pp.1133-1136, 2009.
DOI : 10.1113/jphysiol.1997.sp022031

G. Brückner, A. Bringmann, W. Härtig, G. Köppe, B. Delpech et al., Acute and longlasting changes in extracellular-matrix chondroitin-sulphate proteoglycans induced by injection of chondroitinase ABC in the adult rat brain, Exp Brain Res, vol.121, pp.300-310, 1998.

G. Brückner and J. Grosche, Perineuronal nets show intrinsic patterns of extracellular matrix differentiation in organotypic slice cultures, Exp Brain Res, vol.137, pp.83-93, 2001.

O. Bukalo, M. Schachner, and A. Dityatev, Modification of extracellular matrix by enzymatic removal of chondroitin sulfate and by lack of tenascin-R differentially affects several forms of synaptic plasticity in the hippocampus, Neuroscience, vol.104, issue.2, pp.359-369, 2001.
DOI : 10.1016/S0306-4522(01)00082-3

G. Buzsáki and A. Draguhn, Neuronal Oscillations in Cortical Networks, Science, vol.304, issue.5679, pp.1926-1929, 2004.
DOI : 10.1126/science.1099745

G. Buzsáki and X. Wang, Mechanisms of Gamma Oscillations, Annual Review of Neuroscience, vol.35, issue.1, pp.203-225, 2012.
DOI : 10.1146/annurev-neuro-062111-150444

R. Cabelli, D. Shelton, R. Segal, and C. Shatz, Blockade of Endogenous Ligands of TrkB Inhibits Formation of Ocular Dominance Columns, Neuron, vol.19, issue.1, pp.63-76, 1997.
DOI : 10.1016/S0896-6273(00)80348-7

J. Cabungcal, P. Steullet, H. Morishita, R. Kraftsik, M. Cuenod et al., Perineuronal nets protect fast-spiking interneurons against oxidative stress, Proceedings of the National Academy of Sciences, vol.298, issue.5596, pp.9130-9135, 2013.
DOI : 10.1126/science.1072699

M. Carandini and D. Heeger, Summation and division by neurons in primate visual cortex, Science, vol.264, issue.5163, pp.1333-1336, 1994.
DOI : 10.1126/science.8191289

M. Carandini, D. Shimaoka, L. Rossi, T. Sato, A. Benucci et al., Imaging the Awake Visual Cortex with a Genetically Encoded Voltage Indicator, Journal of Neuroscience, vol.35, issue.1, pp.53-63, 2015.
DOI : 10.1523/JNEUROSCI.0594-14.2015

S. Carcieri, Classification of Retinal Ganglion Cells: A Statistical Approach, Journal of Neurophysiology, vol.90, issue.3, pp.1704-1713, 2003.
DOI : 10.2307/1542798

J. Cardin, M. Carl-?-n, K. Meletis, U. Knoblich, F. Zhang et al., Driving fast-spiking cells induces gamma rhythm and controls sensory responses, Nature, vol.34, issue.7247, pp.663-667, 2009.
DOI : 10.1038/nature08002

URL : http://europepmc.org/articles/pmc3655711?pdf=render

K. Carstens, M. Phillips, L. Pozzo-miller, R. Weinberg, and S. Dudek, Perineuronal Nets Suppress Plasticity of Excitatory Synapses on CA2 Pyramidal Neurons, Journal of Neuroscience, vol.36, issue.23, pp.6312-6320, 2016.
DOI : 10.1523/JNEUROSCI.0245-16.2016

D. Carulli, T. Pizzorusso, J. Kwok, E. Putignano, A. Poli et al., Animals lacking link protein have attenuated perineuronal nets and persistent plasticity, Brain, vol.130, issue.8, pp.2331-2347, 2010.
DOI : 10.1007/s00418-008-0485-9

URL : https://academic.oup.com/brain/article-pdf/133/8/2331/16696088/awq145.pdf

T. Carvalho and D. V. Buonomano, Differential Effects of Excitatory and Inhibitory Plasticity on Synaptically Driven Neuronal Input-Output Functions, Neuron, vol.61, issue.5, pp.774-785, 2009.
DOI : 10.1016/j.neuron.2009.01.013

V. Casagrande, X. Xu, and G. Sary, Chapter 30 Static and dynamic views of visual cortical organization, Prog Brain Res, vol.136, pp.389-408, 2002.
DOI : 10.1016/S0079-6123(02)36032-1

M. Celio and I. Blumcke, Perineuronal nets ??? a specialized form of extracellular matrix in the adult nervous system, Brain Research Reviews, vol.19, issue.1, pp.128-145, 1994.
DOI : 10.1016/0165-0173(94)90006-X

M. Celio, R. Spreafico, D. Biasi, S. Vitellaro-zuccarello, and L. , Perineuronal nets: past and present, Trends in Neurosciences, vol.21, issue.12, pp.510-515, 1998.
DOI : 10.1016/S0166-2236(98)01298-3

M. Chen, S. Lee, S. Park, L. Looger, and Z. Zhou, Receptive field properties of bipolar cell axon terminals in direction-selective sublaminas of the mouse retina, Journal of Neurophysiology, vol.15, issue.8, pp.1950-1962, 2014.
DOI : 10.1073/pnas.91.11.4907

T. Chen, T. Wardill, Y. Sun, S. Pulver, S. Renninger et al., Ultrasensitive fluorescent proteins for imaging neuronal activity, Nature, vol.27, issue.7458, pp.295-300, 2013.
DOI : 10.1093/bioinformatics/btr390

J. Cho, K. Deisseroth, and V. Bolshakov, Synaptic Encoding of Fear Extinction in mPFC-amygdala Circuits, Neuron, vol.80, issue.6, pp.1491-1507, 2013.
DOI : 10.1016/j.neuron.2013.09.025

A. Chow, A. Erisir, C. Farb, M. Nadal, A. Ozaita et al., K(+) channel expression distinguishes subpopulations of parvalbumin-and somatostatin-containing neocortical interneurons, J Neurosci, vol.19, pp.9332-9345, 1999.

J. Coleman, M. Nahmani, J. Gavornik, R. Haslinger, A. Heynen et al., Rapid Structural Remodeling of Thalamocortical Synapses Parallels Experience-Dependent Functional Plasticity in Mouse Primary Visual Cortex, Journal of Neuroscience, vol.30, issue.29, pp.9670-9682, 2010.
DOI : 10.1523/JNEUROSCI.1248-10.2010

B. Connors and M. Gutnick, Intrinsic firing patterns of diverse neocortical neurons, Trends in Neurosciences, vol.13, issue.3, pp.99-104, 1990.
DOI : 10.1016/0166-2236(90)90185-D

S. Cooke and M. Bear, How the mechanisms of long-term synaptic potentiation and depression serve experience-dependent plasticity in primary visual cortex, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.35, issue.2, pp.20130284-20130284, 2013.
DOI : 10.1016/0006-8993(71)90508-7

S. Cruikshank, T. Lewis, and B. Connors, Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex, Nature Neuroscience, vol.24, issue.4, pp.1705-1716, 2007.
DOI : 10.1038/nn1861

S. Cruikshank, H. Urabe, A. V. Nurmikko, and B. Connors, Pathway-Specific Feedforward Circuits between Thalamus and Neocortex Revealed by Selective Optical Stimulation of Axons, Neuron, vol.65, issue.2, pp.230-245, 2010.
DOI : 10.1016/j.neuron.2009.12.025

S. Dauth, T. Grevesse, H. Pantazopoulos, P. Campbell, B. Maoz et al., Extracellular matrix protein expression is brain region dependent, Journal of Comparative Neurology, vol.130, issue.1 suppl 1, pp.1309-1336, 2016.
DOI : 10.1007/s00418-008-0485-9

M. Davis, F. Velez, D. Guevarra, R. Yang, M. Habeeb et al., Inhibitory Neuron Transplantation into Adult Visual Cortex Creates a New Critical Period that Rescues Impaired Vision, Neuron, vol.86, issue.4, pp.1055-1066, 2015.
DOI : 10.1016/j.neuron.2015.03.062

L. De-vivo, S. Landi, M. Panniello, L. Baroncelli, S. Chierzi et al., Extracellular matrix inhibits structural and functional plasticity of dendritic spines in the adult visual cortex, Nature Communications, vol.45, p.1484, 2013.
DOI : 10.1016/j.neuron.2005.01.003

D. Winter, F. Kwok, J. Fawcett, J. Vo, T. Carulli et al., The Chemorepulsive Protein Semaphorin 3A and Perineuronal Net-Mediated Plasticity, Neural Plasticity, vol.125, issue.24, 2016.
DOI : 10.1002/hipo.10041

S. Deepa, D. Carulli, C. Galtrey, K. Rhodes, J. Fukuda et al., Composition of Perineuronal Net Extracellular Matrix in Rat Brain, Journal of Biological Chemistry, vol.108, issue.26, pp.17789-17800, 2006.
DOI : 10.2307/279775

J. Defelipe, New insights into the classification and nomenclature of cortical GABAergic interneurons, Nature Reviews Neuroscience, vol.213, issue.3, pp.202-216, 2013.
DOI : 10.1007/s00429-008-0198-9

URL : https://hal.archives-ouvertes.fr/hal-01541368

J. Defelipe and I. Fariñas, The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs, Progress in Neurobiology, vol.39, issue.6, pp.563-607, 1992.
DOI : 10.1016/0301-0082(92)90015-7

C. Deleuze, A. Pazienti, and A. Bacci, Autaptic self-inhibition of cortical GABAergic neurons: Synaptic narcissism or useful introspection?, Current Opinion in Neurobiology, vol.26, pp.64-71, 2014.
DOI : 10.1016/j.conb.2013.12.009

D. Cristo, G. Chattopadhyaya, B. Kuhlman, S. Fu, Y. Bélanger et al., Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity, Nature Neuroscience, vol.280, issue.12, pp.1569-1577, 2007.
DOI : 10.1074/jbc.M410216200

M. Dino, S. Harroch, S. Hockfield, and R. Matthews, Monoclonal antibody Cat-315 detects a glycoform of receptor protein tyrosine phosphatase beta/phosphacan early in CNS development that localizes to extrasynaptic sites prior to synapse formation, Neuroscience, vol.142, issue.4, pp.1055-1069, 2006.
DOI : 10.1016/j.neuroscience.2006.07.054

A. Dityatev, G. Brückner, G. Dityateva, J. Grosche, R. Kleene et al., Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets, Developmental Neurobiology, vol.21, issue.5, pp.570-588, 2007.
DOI : 10.1016/0005-2744(70)90139-7

A. Dityatev and M. Schachner, Extracellular matrix molecules and synaptic plasticity, Nature Reviews Neuroscience, vol.3, issue.6, pp.456-468, 2003.
DOI : 10.1038/nsb0496-346

A. Dityatev and M. Schachner, The extracellular matrix and synapses, Cell and Tissue Research, vol.277, issue.2, pp.647-654, 2006.
DOI : 10.1007/s00441-006-0217-1

A. Dityatev, M. Schachner, and P. Sonderegger, The dual role of the extracellular matrix in synaptic plasticity and homeostasis, Nature Reviews Neuroscience, vol.158, issue.11, pp.735-746, 2010.
DOI : 10.1038/nrn2153

L. Djerbal, H. Lortat-jacob, and J. Kwok, Chondroitin sulfates and their binding molecules in the central nervous system, Glycoconjugate Journal, vol.22, issue.7, pp.1-14, 2017.
DOI : 10.1002/chem.201504440

URL : https://hal.archives-ouvertes.fr/hal-01461474

F. Donato, A. Chowdhury, M. Lahr, and P. Caroni, Early- and Late-Born Parvalbumin Basket Cell Subpopulations Exhibiting Distinct Regulation and Roles in Learning, Neuron, vol.85, issue.4, pp.770-786, 2015.
DOI : 10.1016/j.neuron.2015.01.011

F. Donato, S. Rompani, and P. Caroni, Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning, Nature, vol.50, issue.7479, pp.272-276, 2013.
DOI : 10.1016/j.neuron.2006.04.026

R. Douglas, K. Martin, and C. , NEURONAL CIRCUITS OF THE NEOCORTEX, Annual Review of Neuroscience, vol.27, issue.1, pp.419-451, 2004.
DOI : 10.1146/annurev.neuro.27.070203.144152

R. Druga, Neocortical inhibitory system, Folia Biol (Praha), vol.55, pp.201-217, 2009.

J. Espinosa and M. Stryker, Development and Plasticity of the Primary Visual Cortex, Neuron, vol.75, issue.2, pp.230-249, 2013.
DOI : 10.1016/j.neuron.2012.06.009

S. Fader, K. Imaizumi, Y. Yanagawa, and C. Lee, Wisteria Floribunda Agglutinin-Labeled Perineuronal Nets in the Mouse Inferior Colliculus, Thalamic Reticular Nucleus and Auditory Cortex, Brain Sciences, vol.22, issue.2, p.13, 2016.
DOI : 10.1523/JNEUROSCI.3073-10.2011

M. Fagiolini, Specific GABAA Circuits for Visual Cortical Plasticity, Science, vol.303, issue.5664, pp.1681-1683, 2004.
DOI : 10.1126/science.1091032

M. Fagiolini and T. Hensch, Inhibitory threshold for critical-period activation in primary visual cortex, Nature, vol.18, issue.6774, pp.183-186, 2000.
DOI : 10.1073/pnas.94.25.14060

M. Fagiolini, T. Pizzorusso, N. Berardi, L. Domenici, and L. Maffei, Functional postnatal development of the rat primary visual cortex and the role of visual experience: Dark rearing and monocular deprivation, Vision Research, vol.34, issue.6, pp.709-720, 1994.
DOI : 10.1016/0042-6989(94)90210-0

E. Favuzzi, A. Marques-smith, R. Deogracias, C. Winterflood, A. Sánchez-aguilera et al., Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican, Neuron, vol.95, issue.3, pp.1-17, 2017.
DOI : 10.1016/j.neuron.2017.06.028

M. Feldman, Morphology of the neocortical neuron, The Cerebral Cortex, pp.123-200, 1984.

D. Feldmeyer, Excitatory neuronal connectivity in the barrel cortex, Frontiers in Neuroanatomy, vol.6, pp.1-22, 2012.
DOI : 10.3389/fnana.2012.00024

Q. Fischer, A. Graves, S. Evans, M. Lickey, and T. Pham, Monocular deprivation in adult mice alters visual acuity and single-unit activity, Learning & Memory, vol.14, issue.4, pp.277-286, 2007.
DOI : 10.1101/lm.392107

M. Frenkel and M. Bear, How Monocular Deprivation Shifts Ocular Dominance in Visual Cortex of Young Mice, Neuron, vol.44, issue.6, pp.917-923, 2004.
DOI : 10.1016/j.neuron.2004.12.003

T. Freund, Interneuron Diversity series: Rhythm and mood in perisomatic inhibition, Trends in Neurosciences, vol.26, issue.9, pp.489-495, 2003.
DOI : 10.1016/S0166-2236(03)00227-3

T. Freund and I. Katona, Perisomatic Inhibition, Neuron, vol.56, issue.1, pp.33-42, 2007.
DOI : 10.1016/j.neuron.2007.09.012

URL : https://doi.org/10.1016/j.neuron.2007.09.012

R. Frischknecht and M. Happel, Impact of the extracellular matrix on plasticity in juvenile and adult brains, e-Neuroforum, vol.33, issue.11, pp.1-6, 2016.
DOI : 10.1523/JNEUROSCI.6267-11.2013

R. Frischknecht, M. Heine, D. Perrais, C. Seidenbecher, D. Choquet et al., Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity, Neuroforum, vol.15, pp.94-95, 2009.

Y. Fu and K. Yau, Phototransduction in mouse rods and cones, Pfl??gers Archiv - European Journal of Physiology, vol.371, issue.Pt 2, pp.805-819, 2007.
DOI : 10.1113/jphysiol.1986.sp015964

L. Gabernet, S. Jadhav, D. Feldman, M. Carandini, and M. Scanziani, Somatosensory Integration Controlled by Dynamic Thalamocortical Feed-Forward Inhibition, Neuron, vol.48, issue.2, pp.315-327, 2005.
DOI : 10.1016/j.neuron.2005.09.022

M. Galarreta and S. Hestrin, Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex, Proceedings of the National Academy of Sciences, vol.3, issue.2, pp.12438-12443, 2002.
DOI : 10.1007/BF00160806

C. Galtrey and J. Fawcett, The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system, Brain Research Reviews, vol.54, issue.1, pp.1-18, 2007.
DOI : 10.1016/j.brainresrev.2006.09.006

C. Galtrey, J. Kwok, D. Carulli, K. Rhodes, and J. Fawcett, Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord, European Journal of Neuroscience, vol.150, issue.6, pp.1373-1390, 2008.
DOI : 10.1128/MCB.21.17.5970-5978.2001

R. Gao and P. Penzes, Common Mechanisms of Excitatory and Inhibitory Imbalance in Schizophrenia and Autism Spectrum Disorders, Current Molecular Medicine, vol.15, issue.2, pp.146-167, 2015.
DOI : 10.2174/1566524015666150303003028

K. Giamanco, M. Morawski, and R. Matthews, Perineuronal net formation and structure in aggrecan knockout mice, Neuroscience, vol.170, issue.4, pp.1314-1327, 2010.
DOI : 10.1016/j.neuroscience.2010.08.032

N. Gogolla, P. Caroni, A. Luthi, and C. Herry, Perineuronal Nets Protect Fear Memories from Erasure, Science, vol.37, issue.9, pp.1258-1261, 2009.
DOI : 10.1016/S0005-7967(98)00106-5

T. Gollisch and M. Meister, Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina, Neuron, vol.65, issue.2, pp.150-164, 2010.
DOI : 10.1016/j.neuron.2009.12.009

J. Gordon and M. Stryker, Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse, J Neurosci, vol.16, pp.3274-3286, 1996.

Y. Gu, S. Huang, M. Chang, P. Worley, A. Kirkwood et al., Obligatory Role for the Immediate Early Gene NARP in Critical Period Plasticity, Neuron, vol.79, issue.2, pp.335-346, 2013.
DOI : 10.1016/j.neuron.2013.05.016

R. Guillery and S. Sherman, Thalamic Relay Functions and Their Role in Corticocortical Communication, Neuron, vol.33, issue.2, pp.163-175, 2002.
DOI : 10.1016/S0896-6273(01)00582-7

E. Gundelfinger, R. Frischknecht, D. Choquet, and M. Heine, Converting juvenile into adult plasticity: a role for the brain???s extracellular matrix, European Journal of Neuroscience, vol.557, issue.12, pp.2156-2165, 2010.
DOI : 10.1101/SQB.1990.055.01.049

A. Gupta, Organizing Principles for a Diversity of GABAergic Interneurons and Synapses in the Neocortex, Science, vol.287, issue.5451, pp.273-278, 2000.
DOI : 10.1126/science.287.5451.273

K. Harris and G. Shepherd, The neocortical circuit: themes and variations, Nature Neuroscience, vol.58, issue.2, pp.170-181, 2015.
DOI : 10.1016/j.neuron.2011.07.026

A. Haunsoø, M. Ibrahim, U. Bartsch, M. Letiembre, M. Celio et al., Morphology of perineuronal nets in tenascin-R and parvalbumin single and double knockout mice, Brain Research, vol.864, issue.1, pp.142-145, 2000.
DOI : 10.1016/S0006-8993(00)02173-9

H. He, R. B. Dennis, K. Quinlan, and E. , Experience-dependent recovery of vision following chronic deprivation amblyopia, Nature Neuroscience, vol.27, issue.9, pp.1134-1136, 2007.
DOI : 10.1038/nn1965

D. Heeger, Theory of cortical function, Proceedings of the National Academy of Sciences, vol.14, issue.2, pp.1773-1782, 2017.
DOI : 10.1098/rstb.2005.1662

S. Hefft and J. P. , Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron???principal neuron synapse, Nature Neuroscience, vol.488, issue.10, pp.1319-1328, 2005.
DOI : 10.1113/jphysiol.1995.sp020998

J. Heimel, R. Hartman, J. Hermans, and C. Levelt, Screening mouse vision with intrinsic signal optical imaging, European Journal of Neuroscience, vol.76, issue.3, pp.795-804, 2007.
DOI : 10.1113/jphysiol.1988.sp016939

K. Hengen, M. Lambo, S. Van-hooser, D. Katz, and G. Turrigiano, Firing Rate Homeostasis in Visual Cortex of Freely Behaving Rodents, Neuron, vol.80, issue.2, pp.335-342, 2013.
DOI : 10.1016/j.neuron.2013.08.038

T. Hensch, Critical Period Mechanisms in Developing Visual Cortex, Curr Top Dev Biol, vol.69, pp.215-237, 2005.
DOI : 10.1016/S0070-2153(05)69008-4

T. Hensch, Critical period plasticity in local cortical circuits, Nature Reviews Neuroscience, vol.46, issue.11, pp.877-888, 2005.
DOI : 10.1002/dev.20055

T. Hensch and M. Fagiolini, Excitatory???inhibitory balance and critical period plasticity in developing visual cortex, Prog Brain Res, vol.147, pp.115-124, 2005.
DOI : 10.1016/S0079-6123(04)47009-5

T. Hensch, M. Fagiolini, N. Mataga, M. Stryker, S. Baekkeskov et al., Local GABA Circuit Control of Experience-Dependent Plasticity in Developing Visual Cortex, Science, vol.282, issue.5393, pp.1504-1508, 1998.
DOI : 10.1126/science.282.5393.1504

H. Hioki, Compartmental organization of synaptic inputs to parvalbumin-expressing GABAergic neurons in mouse primary somatosensory cortex, Anatomical Science International, vol.15, issue.9, pp.7-21, 2015.
DOI : 10.1038/nbt0997-871

S. Hofer, T. Mrsic-flogel, T. Bonhoeffer, and M. Hübener, Prior experience enhances plasticity in adult visual cortex, Nature Neuroscience, vol.17, issue.1, pp.127-132, 2006.
DOI : 10.1046/j.1460-9568.2003.02420.x

S. Hofer, T. Mrsic-flogel, T. Bonhoeffer, and M. Hübener, Lifelong learning: ocular dominance plasticity in mouse visual cortex, Current Opinion in Neurobiology, vol.16, issue.4, pp.451-459, 2006.
DOI : 10.1016/j.conb.2006.06.007

S. Hofer, T. Mrsic-flogel, T. Bonhoeffer, and M. Hübener, Experience leaves a lasting structural trace in cortical circuits, Nature, vol.44, issue.7227, pp.313-317, 2009.
DOI : 10.1038/nature07487

M. Hoon, H. Okawa, D. Santina, L. Wong, and R. , Functional architecture of the retina: Development and disease, Progress in Retinal and Eye Research, vol.42, pp.44-84, 2014.
DOI : 10.1016/j.preteyeres.2014.06.003

M. Howarth, L. Walmsley, and T. Brown, Binocular Integration in the Mouse Lateral Geniculate Nuclei, Current Biology, vol.24, issue.11, pp.1241-1247, 2014.
DOI : 10.1016/j.cub.2014.04.014

H. Hu and J. P. , A supercritical density of Na+ channels ensures fast signaling in GABAergic interneuron axons, Nature Neuroscience, vol.574, issue.5, pp.686-693, 2014.
DOI : 10.1113/jphysiol.2005.104042

Z. Huang, D. Cristo, G. Ango, and F. , Development of GABA innervation in the cerebral and cerebellar cortices, Nature Reviews Neuroscience, vol.22, issue.9, pp.673-686, 2007.
DOI : 10.1038/nn1638

Z. Huang, A. Kirkwood, T. Pizzorusso, V. Porciatti, B. Morales et al., BDNF Regulates the Maturation of Inhibition and the Critical Period of Plasticity in Mouse Visual Cortex, Cell, vol.98, issue.6, pp.739-755, 1999.
DOI : 10.1016/S0092-8674(00)81509-3

D. Hubel, The Visual Cortex of the Brain, Scientific American, vol.209, issue.5, pp.54-63, 1963.
DOI : 10.1038/scientificamerican1163-54

D. Hubel, Exploration of the primary visual cortex, 1955???78, Nature, vol.159, issue.5883, pp.515-524, 1982.
DOI : 10.1113/jphysiol.1968.sp008455

H. Dh and W. Tn, Receptive fields of single neurones in the cat's striate cortex, J Physiol, vol.148, pp.574-591, 1959.

M. Hübener, Mouse visual cortex, Current Opinion in Neurobiology, vol.13, issue.4, pp.413-420, 2003.
DOI : 10.1016/S0959-4388(03)00102-8

M. Hübener and T. Bonhoeffer, Neuronal Plasticity: Beyond the Critical Period, Cell, vol.159, issue.4, pp.727-737, 2014.
DOI : 10.1016/j.cell.2014.10.035

A. Huberman and C. Niell, What can mice tell us about how vision works?, Trends in Neurosciences, vol.34, issue.9, pp.464-473, 2011.
DOI : 10.1016/j.tins.2011.07.002

A. Huberman, W. Wei, J. Elstrott, B. Stafford, M. Feller et al., Genetic Identification of an On-Off Direction- Selective Retinal Ganglion Cell Subtype Reveals??a Layer-Specific Subcortical Map of Posterior Motion, Neuron, vol.62, issue.3, pp.327-334, 2009.
DOI : 10.1016/j.neuron.2009.04.014

J. Huguenard and D. Mccormick, Thalamic synchrony and dynamic regulation of global forebrain oscillations, Trends in Neurosciences, vol.30, issue.7, pp.350-356, 2007.
DOI : 10.1016/j.tins.2007.05.007

C. Hull, J. Isaacson, and M. Scanziani, Postsynaptic Mechanisms Govern the Differential Excitation of Cortical Neurons by Thalamic Inputs, Journal of Neuroscience, vol.29, issue.28, pp.9127-9136, 2009.
DOI : 10.1523/JNEUROSCI.5971-08.2009

J. Isaacson and M. Scanziani, How Inhibition Shapes Cortical Activity, Neuron, vol.72, issue.2, pp.231-243, 2011.
DOI : 10.1016/j.neuron.2011.09.027

Y. Iwai, M. Fagiolini, K. Obata, and T. Hensch, Rapid critical period induction by tonic inhibition in visual cortex, J Neurosci, vol.23, pp.6695-6702, 2003.

N. John, H. Krügel, R. Frischknecht, K. Smalla, C. Schultz et al., Brevican-containing perineuronal nets of extracellular matrix in dissociated hippocampal primary cultures, Molecular and Cellular Neuroscience, vol.31, issue.4, pp.774-784, 2006.
DOI : 10.1016/j.mcn.2006.01.011

T. Kamigaki and Y. Dan, Delay activity of specific prefrontal interneuron subtypes modulates memory-guided behavior, Nature Neuroscience, vol.78, issue.6, pp.1-12, 2017.
DOI : 10.1016/j.neuron.2013.01.039

M. Kannan, G. Gross, D. Arnold, and M. Higley, Visual Deprivation During the Critical Period Enhances Layer 2/3 GABAergic Inhibition in Mouse V1, The Journal of Neuroscience, vol.36, issue.22, pp.5914-5919, 2016.
DOI : 10.1523/JNEUROSCI.0051-16.2016

M. Kano, T. Ohno-shosaku, Y. Hashimotodani, M. Uchigashima, and M. Watanabe, Endocannabinoid-Mediated Control of Synaptic Transmission, Physiological Reviews, vol.89, issue.1, pp.309-380, 2009.
DOI : 10.1038/22761

Y. Kawaguchi, H. Katsumaru, T. Kosaka, C. Heizmann, and K. Hama, Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin, Brain Research, vol.416, issue.2, pp.369-374, 1987.
DOI : 10.1016/0006-8993(87)90921-8

A. Kepecs and G. Fishell, Interneuron cell types are fit to function, Nature, vol.6, issue.7483, pp.318-326, 2014.
DOI : 10.3389/fnsys.2012.00079

L. Khibnik, K. Cho, and M. Bear, Relative Contribution of Feedforward Excitatory Connections to Expression of Ocular Dominance Plasticity in Layer 4 of Visual Cortex, Neuron, vol.66, issue.4, pp.493-500, 2010.
DOI : 10.1016/j.neuron.2010.04.012

H. Kitagawa, K. Tsutsumi, Y. Tone, and K. Sugahara, Developmental Regulation of the Sulfation Profile of Chondroitin Sulfate Chains in the Chicken Embryo Brain, Journal of Biological Chemistry, vol.265, issue.50, pp.31377-31381, 1997.
DOI : 10.1074/jbc.271.12.6583

T. Klausberger, J. Roberts, and P. Somogyi, Cell type-and input-specific differences in the number and subtypes of synaptic GABA(A) receptors in the hippocampus, J Neurosci, vol.22, pp.2513-2521, 2002.

T. Klausberger and P. Somogyi, Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations, Science, vol.94, issue.2, pp.53-57, 2008.
DOI : 10.1152/jn.00069.2005

M. Kloc and A. Maffei, Target-Specific Properties of Thalamocortical Synapses onto Layer 4 of Mouse Primary Visual Cortex, Journal of Neuroscience, vol.34, issue.46, pp.15455-15465, 2014.
DOI : 10.1523/JNEUROSCI.2595-14.2014

J. Klueva, E. Gundelfinger, R. Frischknecht, and M. Heine, Intracellular Ca2+ and not the extracellular matrix determines surface dynamics of AMPA-type glutamate receptors on aspiny neurons, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.20, issue.10, p.20130605, 2014.
DOI : 10.1016/S0166-2236(97)01100-4

H. Ko, L. Cossell, C. Baragli, J. Antolik, C. Clopath et al., The emergence of functional microcircuits in visual cortex, Nature, vol.26, issue.7443, pp.96-100
DOI : 10.1007/s10827-008-0117-3

Y. Kobayashi, Z. Ye, and T. Hensch, Clock Genes Control Cortical Critical Period Timing, Neuron, vol.86, issue.1, pp.264-275, 2015.
DOI : 10.1016/j.neuron.2015.02.036

Y. Kubota, N. Shigematsu, F. Karube, A. Sekigawa, S. Kato et al., Selective Coexpression of Multiple Chemical Markers Defines Discrete Populations of Neocortical GABAergic Neurons, Cerebral Cortex, vol.19, issue.8, pp.1803-1817, 2011.
DOI : 10.1093/cercor/bhn198

S. Kuhlman, N. Olivas, E. Tring, T. Ikrar, X. Xu et al., A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex, Nature, vol.19, issue.7468, pp.543-546, 2013.
DOI : 10.1109/83.661186

J. Kwok, D. Carulli, and J. Fawcett, In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity, Journal of Neurochemistry, vol.600, pp.1447-1459, 2010.
DOI : 10.1111/j.1471-4159.2010.06878.x

J. Kwok, G. Dick, D. Wang, and J. Fawcett, Extracellular matrix and perineuronal nets in CNS repair, Developmental Neurobiology, vol.154, issue.11, pp.1073-1089, 2011.
DOI : 10.1006/exnr.1998.6951

C. Lander, P. Kind, M. Maleski, and S. Hockfield, A family of activity-dependent neuronal cellsurface chondroitin sulfate proteoglycans in cat visual cortex, J Neurosci, vol.17, pp.1928-1939, 1997.

M. Larkum, A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex, Trends in Neurosciences, vol.36, issue.3, pp.141-151, 2013.
DOI : 10.1016/j.tins.2012.11.006

D. Latawiec, K. Martin, and V. Meskenaite, Termination of the geniculo-cotical projection in the striate cortex of the monkey: A quantitative immunoelectron microscopic study, J Comp Neurol, vol.419, pp.1-14, 2000.

A. Lee, D. Vogt, J. Rubenstein, and V. Sohal, A Class of GABAergic Neurons in the Prefrontal Cortex Sends Long-Range Projections to the Nucleus Accumbens and Elicits Acute Avoidance Behavior, Journal of Neuroscience, vol.34, issue.35, pp.11519-11525, 2014.
DOI : 10.1523/JNEUROSCI.1157-14.2014

H. Lee, C. Bernard, Z. Ye, D. Acampora, A. Simeone et al., Genetic Otx2 mis-localization delays critical period plasticity across brain regions, Mol, vol.Psychiatry, pp.680-688, 2017.
DOI : 10.1038/mp.2017.83

URL : http://www.nature.com/mp/journal/v22/n5/pdf/mp201783a.pdf

S. Lee, I. Kruglikov, Z. Huang, G. Fishell, and R. B. , A disinhibitory circuit mediates motor integration in the somatosensory cortex, Nature Neuroscience, vol.1, issue.11, pp.1662-1670, 2013.
DOI : 10.1038/nprot.2006.100

S. Lefort, A. Gray, and G. Turrigiano, Long-term inhibitory plasticity in visual cortical layer 4 switches sign at the opening of the critical period, Proceedings of the National Academy of Sciences, vol.33, issue.9, pp.4540-4547, 2013.
DOI : 10.1523/JNEUROSCI.4423-12.2013

K. Lensjø, A. Christensen, S. Tennøe, M. Fyhn, and T. Hafting, Differential Expression and Cell-Type Specificity of Perineuronal Nets in Hippocampus, Medial Entorhinal Cortex, and Visual Cortex Examined in the Rat and Mouse, eneuro, vol.4, issue.3, pp.379-395, 2017.
DOI : 10.1523/ENEURO.0379-16.2017

K. Lensjø, M. Lepperød, G. Dick, T. Hafting, and M. Fyhn, Removal of Perineuronal Nets Unlocks Juvenile Plasticity Through Network Mechanisms of Decreased Inhibition and Increased Gamma Activity, The Journal of Neuroscience, vol.37, issue.5, pp.1269-1283, 2017.
DOI : 10.1523/JNEUROSCI.2504-16.2016

C. Levelt and J. Heimel, The role of GABAergic inhibition in ocular dominance plasticity, Neural Plast, 2011.

C. Levelt and M. Hübener, Critical-Period Plasticity in the Visual Cortex, Annual Review of Neuroscience, vol.35, issue.1, pp.309-330, 2012.
DOI : 10.1146/annurev-neuro-061010-113813

A. Levy, M. Omar, and A. Koleske, Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood, Frontiers in Neuroanatomy, vol.436, pp.1-18, 2014.
DOI : 10.1038/nature03715

A. Lien and M. Scanziani, Tuned thalamic excitation is amplified by visual cortical circuits, Nature Neuroscience, vol.22, issue.9, pp.1315-1323, 2013.
DOI : 10.1007/s004220050411

H. Liu, P. Gao, H. Xu, M. Liu, T. Yu et al., Perineuronal nets increase inhibitory GABAergic currents during the critical period in rats, Int J Ophthalmol, vol.6, pp.120-125, 2013.

A. Maffei, M. Lambo, and G. Turrigiano, Critical Period for Inhibitory Plasticity in RodentBinocular V1, Journal of Neuroscience, vol.30, issue.9, pp.3304-3309, 2010.
DOI : 10.1523/JNEUROSCI.5340-09.2010

A. Maffei, K. Nataraj, S. Nelson, and G. Turrigiano, Potentiation of cortical inhibition by visual deprivation, Nature, vol.22, issue.7107, pp.81-84, 2006.
DOI : 10.1038/nn1152

A. Maffei, S. Nelson, and G. Turrigiano, Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation, Nature Neuroscience, vol.90, issue.12, pp.1353-1359, 2004.
DOI : 10.1152/jn.00283.2003

A. Majewska and M. Sur, Motility of dendritic spines in visual cortex in vivo: Changes during the critical period and effects of visual deprivation, Proceedings of the National Academy of Sciences, vol.287, issue.5460, pp.16024-16029, 2003.
DOI : 10.1126/science.287.5460.2029

G. Major, M. Larkum, and J. Schiller, Active Properties of Neocortical Pyramidal Neuron Dendrites, Annual Review of Neuroscience, vol.36, issue.1, pp.1-24, 2013.
DOI : 10.1146/annurev-neuro-062111-150343

F. Manseau, S. Marinelli, P. Méndez, B. Schwaller, D. Prince et al., Desynchronization of Neocortical Networks by Asynchronous Release of GABA at Autaptic and Synaptic Contacts from Fast-Spiking Interneurons, PLoS Biology, vol.18, issue.3, 2010.
DOI : 10.1371/journal.pbio.1000492.s003

T. Mao, D. Kusefoglu, B. Hooks, D. Huber, L. Petreanu et al., Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor Cortex, Neuron, vol.72, issue.1, pp.111-123, 2011.
DOI : 10.1016/j.neuron.2011.07.029

O. Marín, Interneuron dysfunction in psychiatric disorders, Nature Reviews Neuroscience, vol.28, issue.2, pp.107-120, 2012.
DOI : 10.1523/JNEUROSCI.1815-08.2008

H. Markram, M. Toledo-rodriguez, Y. Wang, A. Gupta, G. Silberberg et al., Interneurons of the neocortical inhibitory system, Nature Reviews Neuroscience, vol.25, issue.10, pp.793-807, 2004.
DOI : 10.1016/S0166-2236(02)02151-3

R. Masland, The Neuronal Organization of the Retina, Neuron, vol.76, issue.2, pp.266-280, 2012.
DOI : 10.1016/j.neuron.2012.10.002

J. Massey, Chondroitinase ABC Digestion of the Perineuronal Net Promotes Functional Collateral Sprouting in the Cuneate Nucleus after Cervical Spinal Cord Injury, Journal of Neuroscience, vol.26, issue.16, pp.4406-4414, 2006.
DOI : 10.1523/JNEUROSCI.5467-05.2006

N. Mataga, Y. Mizuguchi, and T. Hensch, Experience-Dependent Pruning of Dendritic Spines in Visual Cortex by Tissue Plasminogen Activator, Neuron, vol.44, issue.6, pp.1031-1041, 2004.
DOI : 10.1016/j.neuron.2004.11.028

R. Matthews, G. Kelly, C. Zerillo, G. Gray, M. Tiemeyer et al., Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets, J Neurosci, vol.22, pp.7536-7547, 2002.

D. Mccormick, B. Connors, J. Lighthall, and D. Prince, Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex, Journal of Neurophysiology, vol.54, issue.4, pp.782-806, 1985.
DOI : 10.1152/jn.1985.54.4.782

A. Mcgee, Experience-Driven Plasticity of Visual Cortex Limited by Myelin and Nogo Receptor, Science, vol.309, issue.5744, pp.2222-2226, 2005.
DOI : 10.1126/science.1114362

P. Mcrae, M. Rocco, G. Kelly, J. Brumberg, and R. Matthews, Sensory Deprivation Alters Aggrecan and Perineuronal Net Expression in the Mouse Barrel Cortex, Journal of Neuroscience, vol.27, issue.20, pp.5405-5413, 2007.
DOI : 10.1523/JNEUROSCI.5425-06.2007

P. Méndez and A. Bacci, Assortment of GABAergic Plasticity in the Cortical Interneuron Melting Pot, Neural Plasticity, vol.11, issue.9, p.976856, 2011.
DOI : 10.1016/j.neuron.2006.06.017

P. Mendez, A. Pazienti, G. Szabo, and A. Bacci, Direct Alteration of a Specific Inhibitory Circuit of the Hippocampus by Antidepressants, Journal of Neuroscience, vol.32, issue.47, pp.16616-16628, 2012.
DOI : 10.1523/JNEUROSCI.1720-12.2012

Q. Miao, Q. Ye, and X. Zhang, Perineuronal net, CSPG receptor and their regulation of neural plasticity, Sheng Li Xue Bao, vol.66, pp.387-397, 2014.

T. Mikami and H. Kitagawa, Biosynthesis and function of chondroitin sulfate, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1830, issue.10, pp.4719-4733, 2013.
DOI : 10.1016/j.bbagen.2013.06.006

S. Mitchell and R. Silver, Shunting Inhibition Modulates Neuronal Gain during Synaptic Excitation, Neuron, vol.38, issue.3, pp.433-445, 2003.
DOI : 10.1016/S0896-6273(03)00200-9

S. Miyata and H. Kitagawa, Chondroitin 6-Sulfation Regulates Perineuronal Net Formation by Controlling the Stability of Aggrecan, Neural Plasticity, vol.93, pp.7-9, 2016.
DOI : 10.1038/tp.2014.128

S. Miyata, Y. Komatsu, Y. Yoshimura, C. Taya, and H. Kitagawa, Persistent cortical plasticity by upregulation of chondroitin 6-sulfation, Nature Neuroscience, vol.18, issue.3, pp.414-422, 2012.
DOI : 10.1111/j.1460-9568.2008.06384.x

S. Miyata, Y. Nishimura, N. Hayashi, and A. Oohira, Construction of perineuronal net-like structure by cortical neurons in culture, Neuroscience, vol.136, issue.1, pp.95-104, 2005.
DOI : 10.1016/j.neuroscience.2005.07.031

B. Morales, S. Choi, and A. Kirkwood, Dark rearing alters the development of GABAergic transmission in visual cortex, J Neurosci, vol.22, pp.8084-8090, 2002.

M. Morawski, T. Reinert, W. Meyer-klaucke, F. Wagner, W. Tröger et al., Ion exchanger in the brain: Quantitative analysis of perineuronally fixed anionic binding sites suggests diffusion barriers with ion sorting properties, Scientific Reports, vol.100, issue.1, p.16471, 2015.
DOI : 10.12693/APhysPolA.100.603

S. Morikawa, Y. Ikegaya, M. Narita, and H. Tamura, Activation of perineuronal net-expressing excitatory neurons during associative memory encoding and retrieval, Scientific Reports, vol.35, p.46024, 2017.
DOI : 10.2307/1931034

H. Morishita and T. Hensch, Critical period revisited: impact on vision, Current Opinion in Neurobiology, vol.18, issue.1, pp.101-107, 2008.
DOI : 10.1016/j.conb.2008.05.009

H. Morishita, J. Miwa, N. Heintz, and T. Hensch, Lynx1, a Cholinergic Brake, Limits Plasticity in Adult Visual Cortex, Science, vol.11, issue.8, pp.1238-1240, 2010.
DOI : 10.1038/nn.2147

T. Mrsic-flogel, S. Hofer, K. Ohki, R. Reid, T. Bonhoeffer et al., Homeostatic Regulation of Eye-Specific Responses in Visual Cortex during Ocular Dominance Plasticity, Neuron, vol.54, issue.6, pp.961-972, 2007.
DOI : 10.1016/j.neuron.2007.05.028

M. Sherman and S. , Tonic and burst firing: dual modes of thalamocortical relay, Trends in Neurosciences, vol.24, issue.2, pp.122-126, 2001.
DOI : 10.1016/S0166-2236(00)01714-8

E. Nabel and H. Morishita, Regulating Critical Period Plasticity: Insight from the Visual System to Fear Circuitry for Therapeutic Interventions, Frontiers in Psychiatry, vol.4, pp.1-8, 2013.
DOI : 10.3389/fpsyt.2013.00146

G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili et al., Channelrhodopsin-2, a directly light-gated cation-selective membrane channel, Proceedings of the National Academy of Sciences, vol.114, issue.1, pp.13940-13945, 2003.
DOI : 10.1085/jgp.114.1.55

M. Nahmani and G. Turrigiano, Deprivation-Induced Strengthening of Presynaptic and Postsynaptic Inhibitory Transmission in Layer 4 of Visual Cortex during the Critical Period, Journal of Neuroscience, vol.34, issue.7, pp.2571-2582, 2014.
DOI : 10.1523/JNEUROSCI.4600-13.2014

S. Nelson and V. Valakh, Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders, Neuron, vol.87, issue.4, pp.684-698, 2015.
DOI : 10.1016/j.neuron.2015.07.033

C. Niell and M. Stryker, Highly Selective Receptive Fields in Mouse Visual Cortex, Journal of Neuroscience, vol.28, issue.30, pp.7520-7536, 2008.
DOI : 10.1523/JNEUROSCI.0623-08.2008

A. Nörenberg, H. Hu, I. Vida, M. Bartos, and J. P. , Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons, Proceedings of the National Academy of Sciences, vol.8, issue.1, pp.894-899, 2010.
DOI : 10.1038/nrn2044

T. Norton, R. Holdefer, and D. Godwin, Effects of bicuculline on receptive field center sensitivity of relay cells in the lateral geniculate nucleus, Brain Research, vol.488, issue.1-2, pp.348-352, 1989.
DOI : 10.1016/0006-8993(89)90728-2

D. Nowicka, S. Soulsby, J. Skangiel-kramska, and S. Glazewski, Parvalbumin-containing neurons, perineuronal nets and experience-dependent plasticity in murine barrel cortex, European Journal of Neuroscience, vol.57, issue.11, pp.2053-2063, 2009.
DOI : 10.1111/j.1460-9568.2009.06996.x

S. Oray, A. Majewska, and M. Sur, Dendritic Spine Dynamics Are Regulated by Monocular Deprivation and Extracellular Matrix Degradation, Neuron, vol.44, issue.6, pp.1021-1030, 2004.
DOI : 10.1016/j.neuron.2004.12.001

C. Orlando, J. Ster, U. Gerber, J. Fawcett, and O. Raineteau, Perisynaptic Chondroitin Sulfate Proteoglycans Restrict Structural Plasticity in an Integrin-Dependent Manner, Journal of Neuroscience, vol.32, issue.50, pp.18009-18017, 2012.
DOI : 10.1523/JNEUROSCI.2406-12.2012

L. Palmer, M. Murayama, and M. Larkum, Inhibitory Regulation of Dendritic Activity in vivo, Frontiers in Neural Circuits, vol.6, pp.1-10, 2012.
DOI : 10.3389/fncir.2012.00026

H. Pantazopoulos and S. Berretta, In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders, Neural Plasticity, vol.88, issue.6, 2016.
DOI : 10.1176/ajp.136.10.1310

A. Peters and . Je, Classification of cortical neurons, In: Cellular components of the cerebral cortex, pp.107-122, 1984.

L. Petreanu, T. Mao, S. Sternson, and K. Svoboda, The subcellular organization of neocortical excitatory connections, Nature, vol.34, issue.7233, pp.1142-1145, 2009.
DOI : 10.1007/BF00255235

C. Pfeffer, M. Xue, M. He, Z. Huang, and M. Scanziani, Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons, Nature Neuroscience, vol.13, issue.8, pp.1068-1076, 2013.
DOI : 10.1038/nn.2467

T. A. Pham, S. Graham, S. Suzuki, A. Barco, E. Kandel et al., A semi-persistent adult ocular dominance plasticity in visual cortex is stabilized by activated CREB, Learning & Memory, vol.11, issue.6, pp.738-747, 2004.
DOI : 10.1101/lm.75304

H. Pi, B. Hangya, D. Kvitsiani, J. Sanders, Z. Huang et al., Cortical interneurons that specialize in disinhibitory control, Nature, vol.586, issue.7477, pp.521-524, 2013.
DOI : 10.1113/jphysiol.2008.155242

T. Pizzorusso, Reactivation of Ocular Dominance Plasticity in the Adult Visual Cortex, Science, vol.298, issue.5596, pp.1248-1251, 2002.
DOI : 10.1126/science.1072699

T. Pizzorusso, P. Medini, S. Landi, S. Baldini, N. Berardi et al., Structural and functional recovery from early monocular deprivation in adult rats, Proceedings of the National Academy of Sciences, vol.397, issue.6717, pp.8517-8522, 2006.
DOI : 10.1038/16922

F. Pouille, Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition, Science, vol.293, issue.5532, pp.1159-1163, 2001.
DOI : 10.1126/science.1060342

F. Pouille, A. Marin-burgin, H. Adesnik, B. V. Atallah, and M. Scanziani, Input normalization by global feedforward inhibition expands cortical dynamic range, Nature Neuroscience, vol.87, issue.12, pp.1577-1585, 2009.
DOI : 10.1113/jphysiol.1982.sp014255

A. Preston and A. Evans, Lateral Geniculate Nucleus of Thalamus, Encyclopedia of Clinical Neuropsychology, pp.1435-1436, 2011.

N. Priebe, Mechanisms of Orientation Selectivity in the Primary Visual Cortex, Annual Review of Vision Science, vol.2, issue.1, pp.85-107, 2016.
DOI : 10.1146/annurev-vision-111815-114456

N. Priebe and D. Ferster, Mechanisms of Neuronal Computation in Mammalian Visual Cortex, Neuron, vol.75, issue.2, pp.194-208, 2012.
DOI : 10.1016/j.neuron.2012.06.011

N. Priebe and A. Mcgee, Mouse vision as a gateway for understanding how experience shapes neural circuits, Frontiers in Neural Circuits, vol.99, pp.1-9, 2014.
DOI : 10.1073/pnas.261707398

A. Prochiantz, J. Fuchs, D. Nardo, and A. , Postnatal signalling with homeoprotein transcription factors, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.282, issue.12, 2014.
DOI : 10.1074/jbc.M609246200

E. Putignano, G. Lonetti, L. Cancedda, G. Ratto, M. Costa et al., Developmental Downregulation of Histone Posttranslational Modifications Regulates Visual Cortical Plasticity, Neuron, vol.53, issue.5, pp.747-759, 2007.
DOI : 10.1016/j.neuron.2007.02.007

G. Qi and D. Feldmeyer, Dendritic Target Region-Specific Formation of Synapses Between Excitatory Layer 4 Neurons and Layer 6 Pyramidal Cells, Cerebral Cortex, vol.17, issue.4, pp.1569-1579, 2016.
DOI : 10.1016/j.neuron.2010.02.021

R. Douglas, H. Markram, and K. , Neocortex, 2004.
DOI : 10.1093/acprof:oso/9780195159561.003.0012

S. Reimers, M. Hartlage-rübsamen, G. Brückner, and S. Roßner, Formation of perineuronal nets in organotypic mouse brain slice cultures is independent of neuronal glutamatergic activity, European Journal of Neuroscience, vol.2, issue.9, pp.2640-2648, 2007.
DOI : 10.1074/jbc.C400122200

K. Reinhold, A. Lien, and M. Scanziani, Distinct recurrent versus afferent dynamics in cortical visual processing, Nature Neuroscience, vol.82, issue.12, pp.1789-1797, 2015.
DOI : 10.1113/jphysiol.2003.058107

D. Ringach, P. Mineault, E. Tring, N. Olivas, P. Garcia-junco-clemente et al., Spatial clustering of tuning in mouse primary visual cortex, Nature Communications, vol.29, p.12270, 2016.
DOI : 10.1146/annurev.neuro.29.051605.113024

M. Rivlin-etzion, K. Zhou, W. Wei, J. Elstrott, P. Nguyen et al., Transgenic Mice Reveal Unexpected Diversity of On-Off Direction-Selective Retinal Ganglion Cell Subtypes and Brain Structures Involved in Motion Processing, Journal of Neuroscience, vol.31, issue.24, pp.8760-8769, 2011.
DOI : 10.1523/JNEUROSCI.0564-11.2011

N. Rochefort and A. Konnerth, Dendritic spines: from structure to in vivo function, EMBO reports, vol.6, issue.8, pp.699-708, 2012.
DOI : 10.1038/nprot.2010.169

K. Rockland, Complex microstructures of sensory cortical connections, Current Opinion in Neurobiology, vol.8, issue.4, pp.545-551, 1998.
DOI : 10.1016/S0959-4388(98)80044-5

C. Romberg, S. Yang, R. Melani, M. Andrews, A. Horner et al., Depletion of Perineuronal Nets Enhances Recognition Memory and Long-Term Depression in the Perirhinal Cortex, Journal of Neuroscience, vol.33, issue.16, pp.7057-7065, 2013.
DOI : 10.1523/JNEUROSCI.6267-11.2013

L. Roux and G. Buzsáki, Tasks for inhibitory interneurons in intact brain circuits, Neuropharmacology, vol.88, pp.10-23, 2015.
DOI : 10.1016/j.neuropharm.2014.09.011

B. Rudy and C. Mcbain, Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing, Trends in Neurosciences, vol.24, issue.9, pp.517-526, 2001.
DOI : 10.1016/S0166-2236(00)01892-0

Y. Saalmann and S. Kastner, Cognitive and Perceptual Functions of the Visual Thalamus, Neuron, vol.71, issue.2, pp.209-223, 2011.
DOI : 10.1016/j.neuron.2011.06.027

A. Sale, M. Vetencourt, J. Medini, P. Cenni, M. Baroncelli et al., Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition, Nature Neuroscience, vol.14, issue.6, pp.679-681, 2007.
DOI : 10.1073/pnas.0602657103

M. Sato and M. Stryker, Distinctive Features of Adult Ocular Dominance Plasticity, Journal of Neuroscience, vol.28, issue.41, pp.10278-10286, 2008.
DOI : 10.1523/JNEUROSCI.2451-08.2008

N. Sawtell, M. Frenkel, B. Philpot, K. Nakazawa, S. Tonegawa et al., NMDA Receptor-Dependent Ocular Dominance Plasticity in Adult Visual Cortex, Neuron, vol.38, issue.6, pp.977-985, 2003.
DOI : 10.1016/S0896-6273(03)00323-4

M. Scali, L. Baroncelli, M. Cenni, A. Sale, and L. Maffei, A rich environmental experience reactivates visual cortex plasticity in aged rats, Experimental Gerontology, vol.47, issue.4, pp.337-341, 2012.
DOI : 10.1016/j.exger.2012.01.007

I. Scheyltjens and L. Arckens, The Current Status of Somatostatin-Interneurons in Inhibitory Control of Brain Function and Plasticity, Neural Plasticity, vol.3, issue.6, 2016.
DOI : 10.1124/pr.111.005611

K. Schlicker, M. Boller, and M. Schmidt, GABAC receptor mediated inhibition in acutely isolated neurons of the rat dorsal lateral geniculate nucleus, Brain Research Bulletin, vol.63, issue.2, pp.91-97, 2004.
DOI : 10.1016/j.brainresbull.2004.01.003

S. Schuett, T. Bonhoeffer, and M. Hübener, Mapping retinotopic structure in mouse visual cortex with optical imaging, J Neurosci, vol.22, pp.6549-6559, 2002.

M. Sedigh-sarvestani, L. Vigeland, I. Fernandez-lamo, M. Taylor, and L. Palmer, , Dynamics of Thalamocortical Synapses in Visual Cortex, The Journal of Neuroscience, vol.37, issue.21, pp.5250-5262, 2017.
DOI : 10.1523/JNEUROSCI.3370-16.2017

G. Seeger, K. Brauer, W. Härtig, and G. Brückner, Mapping of perineuronal nets in the rat brain stained by colloidal iron hydroxide histochemistry and lectin cytochemistry, Neuroscience, vol.58, issue.2, pp.371-388, 1994.
DOI : 10.1016/0306-4522(94)90044-2

C. Seidenbecher, E. Gundelfinger, T. Böckers, J. Trotter, and M. Kreutz, Transcripts for secreted and GPI-anchored brevican are differentially distributed in rat brain, European Journal of Neuroscience, vol.8, issue.5, pp.1621-1630, 1998.
DOI : 10.1016/B978-0-12-784401-5.50012-5

G. Sherman, Thalamus In: The synaptic organization of the brain, G. Shepher, pp.311-359, 2004.

Y. Shu, A. Hasenstaub, M. Badoual, T. Bal, and D. Mccormick, Barrages of synaptic activity control the gain and sensitivity of cortical neurons, J Neurosci, vol.23, pp.10388-10401, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00294475

M. Sidorov, E. Kaplan, E. Osterweil, L. Lindemann, and M. Bear, Metabotropic glutamate receptor signaling is required for NMDA receptor-dependent ocular dominance plasticity and LTD in visual cortex, Proceedings of the National Academy of Sciences, vol.17, issue.13, pp.12852-12857, 2015.
DOI : 10.1038/nn.3920

G. Silberberg, A. Gupta, and H. Markram, Stereotypy in neocortical microcircuits, Trends in Neurosciences, vol.25, issue.5, pp.227-230, 2002.
DOI : 10.1016/S0166-2236(02)02151-3

G. Silberberg and H. Markram, Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells, Neuron, vol.53, issue.5, pp.735-746, 2007.
DOI : 10.1016/j.neuron.2007.02.012

A. Sillito and H. Jones, Corticothalamic interactions in the transfer of visual information, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.357, issue.1428, pp.1739-1752, 2002.
DOI : 10.1098/rstb.2002.1170

R. Silver, Neuronal arithmetic, Nature Reviews Neuroscience, vol.9, issue.7, pp.474-489, 2010.
DOI : 10.3389/neuro.04.002.2009

Y. Sirotin and A. Das, Zooming in on mouse vision, Nature Neuroscience, vol.442, issue.9, pp.1045-1046, 2010.
DOI : 10.1038/nn0910-1045

S. Smith and J. Trachtenberg, Experience-dependent binocular competition in the visual cortex begins at eye opening, Nature Neuroscience, vol.102, issue.3, pp.370-375, 2007.
DOI : 10.1016/j.ophtha.2006.04.010

V. Sohal, F. Zhang, O. Yizhar, and K. Deisseroth, Parvalbumin neurons and gamma rhythms enhance cortical circuit performance, Nature, vol.397, issue.7247, pp.698-702, 2009.
DOI : 10.1016/0165-3806(96)00126-5

URL : http://europepmc.org/articles/pmc3969859?pdf=render

J. Sohn, S. Okamoto, N. Kataoka, T. Kaneko, K. Nakamura et al., Differential Inputs to the Perisomatic and Distal-Dendritic Compartments of VIP-Positive Neurons in Layer 2/3 of the Mouse Barrel Cortex, Frontiers in Neuroanatomy, vol.345, pp.1-18, 2016.
DOI : 10.1126/science.1254126

D. Southwell, R. Froemke, A. Alvarez-buylla, M. Stryker, and S. Gandhi, Cortical Plasticity Induced by, Inhibitory Neuron Transplantation. Science, vol.327, issue.80, pp.1145-1148, 2010.

J. Spatazza, H. Lee, D. Nardo, A. Tibaldi, L. Joliot et al., Choroid-Plexus-Derived Otx2 Homeoprotein Constrains Adult Cortical Plasticity, Cell Reports, vol.3, issue.6, pp.1815-1823, 2013.
DOI : 10.1016/j.celrep.2013.05.014

URL : https://doi.org/10.1016/j.celrep.2013.05.014

N. Spruston, Pyramidal neurons: dendritic structure and synaptic integration, Nature Reviews Neuroscience, vol.27, issue.3, pp.206-221, 2008.
DOI : 10.1038/nn0705-839

C. Stevens, Novel neural circuit mechanism for visual edge detection, Proceedings of the National Academy of Sciences, vol.17, issue.6, pp.875-880, 2015.
DOI : 10.1016/S0042-6989(97)00169-7

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, In vivo two-photon calcium imaging of neuronal networks, Proceedings of the National Academy of Sciences, vol.543, issue.1, pp.7319-7324, 2003.
DOI : 10.1113/jphysiol.2002.018465

G. Stuart and N. Spruston, Dendritic integration: 60 years of progress, Nature Neuroscience, vol.464, issue.12, pp.1713-1721, 2015.
DOI : 10.1038/4641290b

S. Sugiyama, D. Nardo, A. Aizawa, S. Matsuo, I. Volovitch et al., Experience-Dependent Transfer of Otx2 Homeoprotein into the Visual Cortex Activates Postnatal Plasticity, Cell, vol.134, issue.3, pp.508-520, 2008.
DOI : 10.1016/j.cell.2008.05.054

S. Sugiyama, A. Prochiantz, and T. Hensch, From brain formation to plasticity: Insights on Otx2 homeoprotein, Development, Growth & Differentiation, vol.7, issue.3, pp.369-377, 2009.
DOI : 10.1038/nrm1227

Q. Sun, Barrel Cortex Microcircuits: Thalamocortical Feedforward Inhibition in Spiny Stellate Cells Is Mediated by a Small Number of Fast-Spiking Interneurons, Journal of Neuroscience, vol.26, issue.4, pp.1219-1230, 2006.
DOI : 10.1523/JNEUROSCI.4727-04.2006

Y. Sun, T. Ikrar, M. Davis, T. Holmes, S. Gandhi et al., Neuregulin-1/ErbB4 Signaling Regulates Visual Cortical Plasticity, Neuron, vol.92, issue.1, pp.160-173, 2016.
DOI : 10.1016/j.neuron.2016.08.033

J. Szabadics, C. Varga, G. Molnar, S. Olah, P. Barzo et al., Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits, Science, vol.311, issue.5758, pp.233-235, 2006.
DOI : 10.1126/science.1121325

A. Takesian and T. Hensch, Balancing Plasticity/Stability Across Brain Development, Prog Brain Res, vol.207, pp.3-34, 2013.
DOI : 10.1016/B978-0-444-63327-9.00001-1

N. Tamamaki and R. Tomioka, Long-Range GABAergic Connections Distributed throughout the Neocortex and their Possible Function, Frontiers in Neuroscience, vol.4, pp.1-8, 2010.
DOI : 10.3389/fnins.2010.00202

G. Tamás, E. Buhl, and P. Somogyi, Massive autaptic self-innervation of GABAergic neurons in cat visual cortex, J Neurosci, vol.17, pp.6352-6364, 1997.

C. Tanahira, S. Higo, K. Watanabe, R. Tomioka, S. Ebihara et al., Parvalbumin neurons in the forebrain as revealed by parvalbumin-Cre transgenic mice, Neuroscience Research, vol.63, issue.3, pp.213-223, 2009.
DOI : 10.1016/j.neures.2008.12.007

Y. Tang, M. Stryker, A. Alvarez-buylla, and J. Espinosa, Cortical plasticity induced by transplantation of embryonic somatostatin or parvalbumin interneurons, Proceedings of the National Academy of Sciences, vol.2011, issue.54, pp.18339-18344, 2014.
DOI : 10.1038/nn.2467

H. Taniguchi, M. He, P. Wu, S. Kim, R. Paik et al., A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex, Neuron, vol.71, issue.6, pp.995-1013, 2011.
DOI : 10.1016/j.neuron.2011.07.026

J. Tigges and M. Tigges, Subcortical sources of direct projections to visual cortex, In: Cerebral cortex, pp.351-378, 1985.

I. Timofeev, F. Grenier, and M. Steriade, The role of chloride-dependent inhibition and the activity of fast-spiking neurons during cortical spike???wave electrographic seizures, Neuroscience, vol.114, issue.4, pp.1115-1132, 2002.
DOI : 10.1016/S0306-4522(02)00300-7

P. Tognini and T. Pizzorusso, MicroRNA212/132 family: Molecular transducer of neuronal function and plasticity, The International Journal of Biochemistry & Cell Biology, vol.44, issue.1, pp.6-10, 2012.
DOI : 10.1016/j.biocel.2011.10.015

P. Tognini, E. Putignano, A. Coatti, and T. Pizzorusso, Experience-dependent expression of miR-132 regulates ocular dominance plasticity, Nature Neuroscience, vol.2, issue.10, pp.1237-1239, 2011.
DOI : 10.1038/nm.2186

URL : https://hal.archives-ouvertes.fr/hal-00676205

C. Torborg and M. Feller, Unbiased analysis of bulk axonal segregation patterns, Journal of Neuroscience Methods, vol.135, issue.1-2, pp.17-26, 2004.
DOI : 10.1016/j.jneumeth.2003.11.019

T. Toyoizumi, H. Miyamoto, Y. Yazaki-sugiyama, N. Atapour, T. Hensch et al., A Theory of the Transition to Critical Period Plasticity: Inhibition Selectively Suppresses Spontaneous Activity, Neuron, vol.80, issue.1, pp.51-63, 2013.
DOI : 10.1016/j.neuron.2013.07.022

J. Trachtenberg, B. Chen, G. Knott, G. Feng, J. Sanes et al., Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex, Nature, vol.9, issue.6917, pp.788-794, 2002.
DOI : 10.1038/89460

J. Trachtenberg and M. Stryker, Rapid anatomical plasticity of horizontal connections in the developing visual cortex, J Neurosci, vol.21, pp.3476-3482, 2001.

H. Ueno, S. Suemitsu, M. Okamoto, Y. Matsumoto, and T. Ishihara, Sensory experience-dependent formation of perineuronal nets and expression of Cat-315 immunoreactive components in the mouse somatosensory cortex, Neuroscience, vol.355, pp.161-174, 2017.
DOI : 10.1016/j.neuroscience.2017.04.041

W. Usrey and H. Alitto, Visual Functions of the Thalamus, Annual Review of Vision Science, vol.1, issue.1, pp.351-371, 2015.
DOI : 10.1146/annurev-vision-082114-035920

V. Varga, A. Losonczy, B. V. Zemelman, Z. Borhegyi, G. Nyiri et al., Fast Synaptic Subcortical Control of Hippocampal Circuits, Science, vol.18, issue.11, pp.449-453, 2009.
DOI : 10.1016/j.euroneuro.2008.06.005

J. Vetencourt, A. Sale, A. Viegi, L. Baroncelli, D. Pasquale et al., The Antidepressant Fluoxetine Restores Plasticity in the Adult Visual Cortex, Science, vol.10, issue.4, pp.385-388, 2008.
DOI : 10.1034/j.1601-183X.2003.00037.x

D. Wallace and J. Kerr, Chasing the cell assembly, Current Opinion in Neurobiology, vol.20, issue.3, pp.296-305, 2010.
DOI : 10.1016/j.conb.2010.05.003

B. Wang, R. Sarnaik, and J. Cang, Critical Period Plasticity Matches Binocular Orientation Preference in the Visual Cortex, Neuron, vol.65, issue.2, pp.246-256, 2010.
DOI : 10.1016/j.neuron.2010.01.002

D. Wang and J. Fawcett, The perineuronal net and the control of CNS plasticity, Cell and Tissue Research, vol.130, issue.2, pp.147-160, 2012.
DOI : 10.1007/s00418-008-0485-9

I. Wickersham, D. Lyon, R. Barnard, T. Mori, S. Finke et al., Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons, Neuron, vol.53, issue.5, pp.639-647, 2007.
DOI : 10.1016/j.neuron.2007.01.033

T. Wiesel, Postnatal development of the visual cortex and the influence of environment, Nature, vol.182, issue.5884, pp.583-591, 1982.
DOI : 10.1113/jphysiol.1975.sp010995

T. Wiesel and D. Hubel, SINGLE-CELL RESPONSES IN STRIATE CORTEX OF KITTENS DEPRIVED OF VISION IN ONE EYE, Journal of Neurophysiology, vol.26, issue.6, pp.1003-1017, 1963.
DOI : 10.1152/jn.1963.26.6.1003

F. Worgotter, D. Eyding, J. Macklis, and K. Funke, The influence of the corticothalamic projection on responses in thalamus and cortex, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.357, issue.1428, pp.1823-1834, 2002.
DOI : 10.1098/rstb.2002.1159

J. Yamada, T. Ohgomori, and S. Jinno, Perineuronal nets affect parvalbumin expression in GABAergic neurons of the mouse hippocampus, European Journal of Neuroscience, vol.253, issue.3, pp.368-378, 2015.
DOI : 10.1016/j.neuroscience.2013.08.061

Y. Yamaguchi, Lecticans: organizers of the brain extracellular matrix, Cellular and Molecular Life Sciences, vol.57, issue.2, pp.276-289, 2000.
DOI : 10.1007/PL00000690

S. Yang and C. Cox, Modulation of Inhibitory Activity by Nitric Oxide in the Thalamus, Journal of Neurophysiology, vol.97, issue.5, pp.3386-3395, 2007.
DOI : 10.1016/S0306-4522(97)00095-X

Q. Ye, Q. Miao, and . Long, Experience-dependent development of perineuronal nets and chondroitin sulfate proteoglycan receptors in mouse visual cortex, Matrix Biology, vol.32, issue.6, pp.352-363, 2013.
DOI : 10.1016/j.matbio.2013.04.001

B. Yoon, G. Smith, A. Heynen, R. Neve, and M. Bear, Essential role for a long-term depression mechanism in ocular dominance plasticity, Proceedings of the National Academy of Sciences, vol.397, issue.6717, pp.9860-9865, 2009.
DOI : 10.1038/16922

M. Yuan, T. Meyer, C. Benkowitz, S. Savanthrapadian, L. Ansel-bollepalli et al., Author response image 3. Long-lasting potentiation can be induced at glutamatergic inputs targeting somatostatin-expressing interneurons (SOMIs) in the presence of the group II mGluR agonist DCG-IV., eLife, vol.15, pp.1-25, 2017.
DOI : 10.7554/eLife.21105.020

R. Yuste, The discovery of dendritic spines by Cajal, Frontiers in Neuroanatomy, vol.9, pp.1-6, 2015.
DOI : 10.3389/fnana.2015.00018

H. Zariwala, L. Madisen, K. Ahrens, A. Bernard, E. Lein et al., Visual Tuning Properties of Genetically Identified Layer 2/3 Neuronal Types in the Primary Visual Cortex of Cre-Transgenic Mice, Frontiers in Systems Neuroscience, vol.4, pp.1-16, 2011.
DOI : 10.3389/fnsys.2010.00162

X. Zhao, M. Liu, and J. Cang, Sublinear binocular integration preserves orientation selectivity in mouse visual cortex, Nature Communications, vol.84, pp.1-21, 2013.
DOI : 10.1163/156856897X00366

J. Zhuang, L. Ng, D. Williams, M. Valley, Y. Li et al., Author response image 3., eLife, vol.8, issue.1, pp.1-29, 2017.
DOI : 10.7554/eLife.18372.030

D. Zimmermann and M. Dours-zimmermann, Extracellular matrix of the central nervous system: from neglect to challenge, Histochemistry and Cell Biology, vol.557, issue.Pt 2, pp.635-653, 2008.
DOI : 10.1016/j.bbagen.2006.01.013