H. Annexe, Elle est en partie responsable de l'´ etalement des ondes de contrainte dans la mousse. Son comportement est représentéreprésenté`représentéà l'aide d'uné equation d'´ etat de type Mie Grüneisen et d'une loi de comportementélastiquecomportementélastique parfaitement plastique. Les figures H.5 et H.6 comparent les profils de vitesse calculés avec et sans représentation des couches de colle

. H. Fig, Comparaison expériences / calculs sans prise en compte des couches de colle. (a) Essai n?1000 09

E. and D. Prete, Choc et onde de souffle dans les mousses aqueuses. ´ Etude expérimentale et modélisation numérique, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00790819

F. Ballanger, Confinement de la détonation d'un objet explosif par mousse aqueuse s` eche. ´ Etude expérimentale et numérique, pp.1-6, 2016.

F. Longy, Déformation et endommagement de céramiques soumisesàsoumisesà un choc intense : aspects macro et micromécaniques, 1987.

A. Cosculluela, Plasticité, endommagements et rupture des alumines sous sollicitations dynamiques triaxiales : influence de la taille des grains, 1992.

J. Cagnoux, Caractérisation dynamique de nouvelles céramiques pour blindages (TiB2, B4C, SiC), 1994.

J. Y. Tranchet, Comportement de deux matériaux fragiles polycristallins sous l'effet de la propagation d'une onde sphérique divergente, 1994.

N. H. Murray, The response of alumina ceramics to plate impact loading, 1997.

F. Malaise, Réponse d'une céramiquè a l'impact d'un barreaù a grande vitesse (1500 m/s) Croisement essais dynamiques -modélisation numérique, Ecole Nationale Supérieure d'Arts et Métiers, 1999.

B. Erzar, ´ Ecaillage, cratérisation et comportement en traction dynamique de bétons sous impact : approches expérimentales et modélisation, 2010.

S. Bonnan, Modélisation mésomécanique du comportement sous choc de l'aluminium poreux ? Validation expérimentale, 1996.

F. A. Fernandes, R. T. Jardin, A. B. Pereira, R. J. Alves, and . Sousa, Comparing the mechanical performance of synthetic and natural cellular materials, Materials & Design, vol.82, pp.335-341
DOI : 10.1016/j.matdes.2015.06.004

J. P. Yvrard, Expérimentation et modélisation du comportement mécanique du polystyrène expansé, 1998.

L. , D. Landro, G. Sala, and D. Olivieri, Deformation mechanisms and energy absorption of polystyrene foams for protective helmets, Polymer Testing, vol.21, pp.217-228, 2002.

A. Pellegrino, V. L. Tagarielli, R. Gerlach, and N. Petrinic, The mechanical response of a syntactic polyurethane foam at low and high rates of strain, International Journal of Impact Engineering, vol.75, pp.214-221, 2015.
DOI : 10.1016/j.ijimpeng.2014.08.005

S. H. Goods, C. L. Neuschwanger, C. Henderson, and D. M. Skala, Mechanical properties and energy absorption characteristics of a polyurethane foam, pp.7-16, 1997.
DOI : 10.2172/485941

J. C. Gowda, A flexible syntactic foam for shock mitigation, p.5, 2011.

M. Monloubou, Interaction d'une onde de souffle avec une mousse liquide : atténuation et rupture, p.6, 2015.

L. J. Gibson and M. F. Ashby, Cellular solids: Structure and properties -Second edition, pp.29-31, 1997.

P. Del-gallo and D. Gary, Procédé d'´ elaboration d'une mousse céramiquè a résistance mécanique renforcée pour emploi comme support de lit catalytique, p.482, 2011.

J. S. Blazy, Comportement mécanique des mousses d'aluminium : caractérisations expérimentales sous sollicitations complexes et simulations numériques dans le cadre de l'´ elasto-plasticité compressible, 2003.

S. Lee, F. Barthelat, N. Moldovan, H. D. Espinosa, and H. N. Wadley, Deformation rate effects on failure modes of open-cell Al foams and textile cellular materials, International Journal of Solids and Structures, vol.43, issue.1, pp.53-73, 2006.
DOI : 10.1016/j.ijsolstr.2005.06.101

V. S. Deshpande and N. A. Fleck, High strain rate compressive behaviour of aluminium alloy foams, International Journal of Impact Engineering, vol.24, issue.3, pp.277-2987, 2000.
DOI : 10.1016/S0734-743X(99)00153-0

B. Song, W. W. Chen, S. Dou, N. A. Winfree, and J. H. Kang, Strain-rate effects on elastic and early cell-collapse responses of a polystyrene foam, International Journal of Impact Engineering, vol.31, issue.5, pp.509-521, 2005.
DOI : 10.1016/j.ijimpeng.2004.02.003

J. Ribeiro, J. Campos, I. Plaksin, R. Mendes, P. Li et al., Shock wave propagation process in epoxy syntactic foams Strain rate dependent compressive properties of glass microballoon epoxy syntactic foams, AIP Conference Proceedings, pp.19-25, 2002.

P. Viot, K. Shankar, and D. Bernard, Effect of strain rate and density on dynamic behaviour of syntactic foam, Composite Structures, vol.86, issue.4, pp.314-3277, 2008.
DOI : 10.1016/j.compstruct.2008.07.021

URL : https://hal.archives-ouvertes.fr/hal-00326389

J. R. Maw, N. J. Whitworth, and R. B. Holland, Multiple shock compression of polyurethane and syntactic foams, AIP Conference Proceedings, p.7, 1996.
DOI : 10.1063/1.50732

M. Razmara, S. H. Saidpour, and S. Arunchalam, DMA investigation on polyurethane (PUR), International Conference on Fascinating Advancement in Mechanical Engineering, p.11, 2008.

B. Hopkinson, A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets, Proceedings of the Royal Society of London, p.13, 1914.

H. Kolsky, An Investigation of the Mechanical Properties of Materials at very High Rates of Loading, Proceedings of the Physical Society of London, p.13, 1949.
DOI : 10.1088/0370-1301/62/11/302

A. S. Khan and C. Hsiao, On the use of electrical-resistance foil strain gages for plastic-wave studies in solids, Experimental Mechanics, vol.10, issue.4, pp.254-25813, 1988.
DOI : 10.1007/978-3-642-88440-5

S. P. Marsh, LASL shock Hugoniot data, pp.53-60, 1980.

E. Zaretsky, Z. Asaf, E. Ran, and F. Aizik, Impact response of high density flexible polyurethane foam, International Journal of Impact Engineering, vol.39, issue.1, pp.1-714, 2012.
DOI : 10.1016/j.ijimpeng.2011.09.004

D. M. Dattelbaum, J. D. Coe, C. B. Kiyanda, R. L. Gustavsen, and B. M. Patterson, Reactive, anomalous compression in shocked polyurethane foams, Journal of Applied Physics, vol.429, issue.17, pp.17490814-17490829, 2014.
DOI : 10.1063/1.329160

D. Laporte, Analyse de la réponse d'assemblages collés sous des sollicitations en dynamique rapide. Essais et modélisations, pp.15-76, 2011.

S. Ouellet, D. Cronin, and M. Worswick, Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions, Polymer Testing, vol.25, issue.6, pp.731-74316, 2006.
DOI : 10.1016/j.polymertesting.2006.05.005

J. A. Bryson, Impact response of polyurethane, p.16, 2009.

W. Chen, F. Lu, and N. Winfree, High-strain-rate compressive behavior of a rigid polyurethane foam with various densities, Experimental Mechanics, vol.2, issue.4, pp.65-7316, 2002.
DOI : 10.1115/1.3408771

M. E. Kipp, L. C. Chhabildas, W. D. Reinhart, and M. K. Wong, Polyurethane foam impact experiments and simulations, AIP Conference Proceedings, pp.16-21, 1999.
DOI : 10.1063/1.1303481

D. Eaves, Handbook of polymer foams. Rapra Technology Limited, pp.16-27, 2004.

Z. H. Tu, V. P. Shim, and C. T. Lim, Plastic deformation modes in rigid polyurethane foam under static loading, International Journal of Solids and Structures, vol.38, issue.50-51, pp.9267-927917, 2001.
DOI : 10.1016/S0020-7683(01)00213-X

M. C. Saha, H. Mahfuz, U. K. Chakravarty, M. Uddin, M. E. Kabir et al., Effect of density, microstructure, and strain rate on compression behavior of polymeric foams, Materials Science and Engineering: A, vol.406, issue.1-2, pp.328-33617, 2005.
DOI : 10.1016/j.msea.2005.07.006

H. Jin, W. Y. Lu, S. Scheffel, T. D. Hinnerichs, and M. K. Neisen, Full-field characterization of mechanical behavior of polyurethane foams, International Journal of Solids and Structures, vol.44, issue.21, pp.6930-694417, 2007.
DOI : 10.1016/j.ijsolstr.2007.03.018

W. Y. Lu, Mechanical characterization of rigid polyurethane foams, pp.17-46, 2014.
DOI : 10.2172/1166886

C. Briody, B. Duignan, S. Jerrams, and J. Tiernan, The implementation of a visco-hyperelastic numerical material model for simulating the behaviour of polymer foam materials, Computational Materials Science, vol.64, pp.47-51
DOI : 10.1016/j.commatsci.2012.04.012

X. Yang, Y. Xia, and Q. Zhou, Influence of stress softening on energy-absorption capability of polymeric foams, Materials & Design, vol.32, issue.3, pp.1167-117618, 2011.
DOI : 10.1016/j.matdes.2010.10.024

M. K. Neilsen, W. Y. Lu, W. M. Scherzinger, T. D. Hinnerichs, and C. S. Lo, Unified Creep Plasticity Damage (UCPD) model for rigid polyurethane foams, p.201518
DOI : 10.1007/978-3-319-21762-8_11

G. Subhash, Q. Liu, and X. L. Gao, Quasistatic and high strain rate uniaxial compressive response of polymeric structural foams, International Journal of Impact Engineering, vol.32, issue.7, pp.1113-112618, 2006.
DOI : 10.1016/j.ijimpeng.2004.11.006

J. D. Ferry, Viscoelastic properties of polymers, p.18, 1961.

T. Thomas, H. Mahfuz, L. A. Carlsson, K. Kanny, and S. Jeelani, Dynamic compression of cellular cores: temperature and strain rate effects, Composite Structures, vol.58, issue.4, pp.505-51218, 2002.
DOI : 10.1016/S0263-8223(02)00159-9

W. , H. Carroll, and A. C. Holt, Constitutive equation for the dynamic compaction of ductile porous materials Static and dynamic pore-collapse relations for ductile porous materials, Journal of Applied Physics Journal of Applied Physics, vol.4020, issue.43, pp.2490-24991626, 1969.

A. L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Yield criteria and flow rules for porous ductile media, pp.20-24, 1975.

L. Seaman, R. E. Tokheim, and D. R. Curran, Computational representation of constitutive relations for porous materials, pp.20-23, 1974.
DOI : 10.21236/ADA007921

. Simulia, Analysis User's Manual, 2010.

A. Vandenbroucke, ´ Etude du comportement mécanique pour différentes températures d'unélastomèreunélastomère : caractérisations expérimentale et numérique, 2010.

A. N. Gent and A. G. Thomas, Mechanics of Foamed Elastic Materials, Rubber Chemistry and Technology, vol.36, issue.3, pp.597-61020, 1963.
DOI : 10.5254/1.3539591

M. Laroussi, Modélisation du comportement des mousses solidesàsolides`solidesà porosité ouverte : Une approche micromécanique, pp.20-22, 2002.

W. L. Ko, Deformations of Foamed Elastomers, Journal of Cellular Plastics, vol.19, issue.7, pp.45-5020, 1965.
DOI : 10.1038/scientificamerican0560-174

J. Thouvenin, Action d'une onde de choc sur un solide poreux, Journal de Physique, vol.258, issue.3-4, pp.183-189, 1966.
DOI : 10.1051/jphys:01966002703-4018300

URL : https://hal.archives-ouvertes.fr/jpa-00206385

N. Lelong and D. Rochais, ´ Evaluation des capacités de la Material Point Method (MPM) ` a résoudre la compression dynamique d'une mousse de polyuréthane, p.22

J. K. Mckenzie, The Elastic Constants of a Solid containing Spherical Holes, Proceedings of the Physical Society, 1950.
DOI : 10.1088/0370-1301/63/1/302

F. Malaise, J. M. Favier, D. Hébert, and C. Tallaron, Modélisation de la compaction dynamique d'une mousse, Séminaire RSP 2, p.23, 2009.

M. Mooney, A Theory of Large Elastic Deformation, Journal of Applied Physics, vol.92, issue.9, pp.582-59223, 1940.
DOI : 10.1021/ie50271a013

R. S. Rivlin, Large Elastic Deformations of Isotropic Materials. IV. Further Developments of the General Theory, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.241, issue.835, p.23, 1948.
DOI : 10.1098/rsta.1948.0024

R. Barthélémy, N. Jacques, S. Kerampran, and F. Vermeersch, Modelling of microinertia effects in closed-cell foams with application to acoustic and shock wave propagation, International Journal of Solids and Structures, pp.97-98445

V. Tvergaard, Influence of voids on shear band instabilities under plane strain conditions, International Journal of Fracture, vol.6, issue.4, pp.389-40724, 1981.
DOI : 10.1080/14786445108561065

Y. Marotel and . Polyuréthannes, Techniques de l'Ingénieur Plastiques et Composites, pp.1-1827, 2000.

C. L. Mader and W. J. Carter, An equation of state for shocked polyurethane foam, p.29, 1968.

C. Delhomme and D. Lespiaux, Communication privée, p.33

P. Pradel, F. Malaise, and T. De-rességuier, ´ Etude de la compaction dynamique de mousses polymères : Expériences et modélisation, Journée des Doctorants ? Institut P', 2017. (Cité pp.37, pp.124-133

P. Pradel, F. Malaise, T. De-rességuier, C. Delhomme, G. L. Blanc et al., Dynamic compaction of polyurethane foam: Experiments and modelling, EPJ ? Special Topics, pp.37-53, 2018.

F. Malaise, P. Pradel, C. Delhomme, G. Le-blanc, J. H. Quessada et al., Modélisation de mousses polymères sous sollicitations intenses : comparaisons expériences / calculs, Séminaire RSP 2, pp.201737-53

M. A. Meyers, Dynamic behavior of materials, 1994.
DOI : 10.1002/9780470172278

P. Pradel, F. Malaise, T. De-rességuier, C. Delhomme, B. Cadilhon et al., Stress wave propagation and mitigation in two polymeric foams, 20 th APS-SCCM Conference, pp.201753-124

K. W. Schuler and J. W. Nunziato, The dynamic mechanical behavior of polymethyl methacrylate, Rheologica Acta, vol.13, pp.773-78160, 1974.

L. M. Barker and R. E. Hollenbach, Shock???Wave Studies of PMMA, Fused Silica, and Sapphire, Journal of Applied Physics, vol.13, issue.10, pp.420860-61, 1970.
DOI : 10.1063/1.1709181

K. W. Schuler, Propagation of steady shock waves in polymethyl methacrylate, Journal of the Mechanics and Physics of Solids, vol.18, issue.4, pp.27760-61, 1970.
DOI : 10.1016/0022-5096(70)90008-6

P. L. Hereil, F. Lassalle, and G. Avrillaud, GEPI : An Ice Generator for Dynamic Material Characterisation and Hypervelocity Impact, AIP Conference Proceedings, p.61, 2004.
DOI : 10.1063/1.1780455

C. A. Hall, Isentropic compression experiments on the Sandia Z accelerator, Physics of Plasmas, vol.7, issue.5, pp.2069-207561, 2000.
DOI : 10.1063/1.322065

A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, Equations of state for metals at high energy density, Institute of Problems of Chemical Physics, pp.64-153, 1992.

D. J. Steinberg, S. G. Cochran, and M. W. Guinan, A constitutive model for metals applicable at high???strain rate, 64 et 163) [87] V. I. Romanchenko and G. V. Stepanov. Dependence of the critical stresses on the loading time parameters during spall in copper, aluminum, and steel, pp.1498-1504555, 1980.
DOI : 10.1063/1.1658111

L. C. Hudson, Computational studies of sympathetic detonation between two axially adiacent, cased charges of H6, Proceedings of American Physical Society Topical Conference, p.76, 1991.

L. Mullins, Effect of Stretching on the Properties of Rubber, Rubber Chemistry and Technology, vol.21, issue.2, pp.281-30089, 1948.
DOI : 10.5254/1.3546914

L. Mullins, Softening of Rubber by Deformation, Rubber Chemistry and Technology, vol.42, issue.1, pp.339-36289, 1969.
DOI : 10.5254/1.3539210

L. Mullins and N. R. Tobin, Theoretical model for the elastic behaviour of fillerreinforced vulcanized rubbers, Rubber Chemistry and Technology, vol.30, pp.551-57189, 1957.

L. Mullins and N. R. Tobin, Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber, Journal of Applied Polymer Science, vol.9, issue.9, pp.2993-300989, 1965.
DOI : 10.1002/app.1965.070090906

G. , D. Piero, and G. Pampolini, Un modèle viscoélastique pour la réponse des mousses polymériquespolymériquesà la compression cyclique, Mécanique & Industries, vol.10, pp.261-26691, 2009.

G. Pampolini, Les propriétés mécaniques des mousses polymériquespolymériquesà cellules ouvertes : expériences, modèle théorique et simulations numériques, p.91, 2010.

H. J. Qi and M. C. Boyce, Stress???strain behavior of thermoplastic polyurethanes, Mechanics of Materials, vol.37, issue.8, pp.817-83991, 2005.
DOI : 10.1016/j.mechmat.2004.08.001

A. Dorfmann and R. W. Ogden, A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber, International Journal of Solids and Structures, vol.41, issue.7, pp.1855-187891, 2004.
DOI : 10.1016/j.ijsolstr.2003.11.014

L. Voisin, B. Bicrel, T. Desanlis, A. Galtié, D. Hébert et al., Intense pulsed electron beam: Application to materials studies, Proceedings of 3 rd Euro-Asian Pulsed Power Conference, pp.2011-106

P. Pradel, F. Malaise, B. Cadilhon, C. Delhomme, and T. De-rességuier, Investigation of polyurethane foam shock mitigation by using high energy charged particle beams, 1 st International Conference on Impact Loading of Structures and Materials, p.2016106

P. Pradel, F. Malaise, B. Cadilhon, C. Delhomme, and T. De-rességuier, ´ Etude de la compaction sous choc de mousses expansées : Essais et modélisation, p.2016106

L. J. Lorence, J. E. Morel, and G. D. Valdez, Physics guide to CEPXS: A multigroup coupled electron-photon cross-section generating code, p.107, 1989.

T. Antoun, L. Seaman, D. R. Curran, G. I. Kanel, S. V. Razorenov et al., Spall fracture, p.111, 2002.

D. R. Ek and J. R. Asay, The Stress and Strain-Rate Dependence of Spall Strength in Two Aluminum Alloys, Shock Waves in Condensed Matter, p.112, 1986.
DOI : 10.1007/978-1-4613-2207-8_58

L. Berthe, Processus de claquage de milieux transparents sous irradiation laser Application au choc laser en régime de confinement par eau, p.123, 1998.

E. Gay, L. Berthe, M. Boustie, M. Arrigoni, and M. Trombini, Study of the response of CFRP composite laminates to a laser-induced shock, Composites Part B: Engineering, vol.64, pp.108-115
DOI : 10.1016/j.compositesb.2014.04.004

URL : https://hal.archives-ouvertes.fr/hal-01019922

A. Perrier, R. Ecault, F. Touchard, M. V. Urriza, J. Baillargeat et al., Towards the development of laser shock test for mechanical characterisation of fibre/matrix interface in eco-composites, Polymer Testing, vol.44, pp.125-134
DOI : 10.1016/j.polymertesting.2015.04.003

R. Ecault, F. Touchard, M. Boustie, L. Berthe, and N. Dominguez, Numerical modeling of laser-induced shock experiments for the development of the adhesion test for bonded composite materials, Composite Structures, vol.152, pp.382-394
DOI : 10.1016/j.compstruct.2016.05.032

L. Signor, ContributionàContribution`Contributionà la caractérisation etàet`età la modélisation du micro-´ ecaillage de l'´ etain fondu sous choc, Ecole Nationale Supérieure de Mécanique et d'Aérotechnique, p.123, 2008.

L. Signor, T. De-rességuier, A. Dragon, G. Roy, A. Fanget et al., Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-loaded tin, International Journal of Impact Engineering, vol.37, issue.8, pp.887-900, 2010.
DOI : 10.1016/j.ijimpeng.2010.03.001

URL : https://hal.archives-ouvertes.fr/hal-00836554

T. De-rességuier, H. He, and P. Berterretche, Use of laser-accelerated foils for impact study of dynamic material behaviour, International Journal of Impact Engineering, vol.31, issue.8, pp.945-956123, 2005.
DOI : 10.1016/j.ijimpeng.2004.07.003

P. Pradel, F. Malaise, T. De-rességuier, C. Delhomme, J. Grün et al., Laser-driven shock experiments to investigate mitigation ability of polymeric foams Characteristics of ablation plasma from planar, laser-driven targets, 12 th International DYMAT Conference, pp.545-547125, 1981.

P. Pradel, T. De-rességuier, F. Malaise, A. Rack, M. Olbinado et al., Use of ultrafast radiography to investigate dynamic compaction of polymeric foams, Workshop DYCOMAX ? ESRF, p.2017

M. Olbinado, V. Cantelli, O. Mathon, S. Pascarelli, J. Grenzer et al., Ultra high-speed imaging of laser-induced shock compression using synchrotron light, Journal of Physics D: Applied Physics, p.2017

F. Grotto and V. Jaulin, BE Radioss : Compaction d'une mousse, p.140, 2017.

T. Tho, Propagation d'un choc laser dans une mousse polyuréthane, p.2017140

P. Bauer, A. Chinnayya, and T. De-rességuier, Ondes de choc et détonations, De la théorie aux applications. ´ Editions Ellipses, p.151, 2015.

]. G. Prudhomme, ´ Etude des nuages de particuleséjectéesparticuleséjectées sous choc : apports de la Vélocimétrie Hétérodyne, Ecole Nationale Supérieure d'Arts et Métiers, p.161, 2014.

J. N. Johnson, Dynamic fracture and spallation in ductile solids, Journal of Applied Physics, vol.99, issue.4, pp.2812-2825164, 1981.
DOI : 10.1115/1.3443401

J. Von-neumann and R. Richtmyer, A Method for the Numerical Calculation of Hydrodynamic Shocks, Journal of Applied Physics, vol.21, issue.3, pp.232-237172, 1950.
DOI : 10.1007/BF01448839