L. Océane, J. Références-andreopoulos, W. Et, and . Rodi, « Experimental investigation of jets in a crossflow », janvier): 93?127. doi, pp.10-1017, 1984.

G. E. Andrews, A. Et, H. Asere-par, G. Simpson, . Hewitt et al., TRANSPIRATION COOLING OF GAS TURBINE COMBUSTION CHAMBER WALLS, First U.K. National Conference on Heat Transfer, édité, 1984.
DOI : 10.1016/B978-0-85295-175-0.50035-7

G. Arroyo-callejo, I. Theses, and . Superieur-de-l-'aeronautique-et-de-l-'espace, Advanced Thermal Modeling of Multiperforated Plates of Jet-Engine Combustion Chambers with Compound Angle Injection, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01434141

S. Baldauf, A. Schulz, and E. S. Wittig, « High Resolution Measurements of Local Effectiveness by Discrete Hole Film Cooling », V003T01A020. doi:10, pp.99-145, 1115.

J. Bellettre, « Transferts de masse et de chaleur dans la couche limite pariétale et à l'intérieur d'une paroi poreuse plane soumise à de l'effusion ou de la transpiration, 1998.

D. G. Bogard, K. A. Et, and . Thole, Gas Turbine Film Cooling, Journal of Propulsion and Power, vol.12, issue.1, 2006.
DOI : 10.1115/1.555433

H. H. Cho, R. J. Et, and . Goldstein, Heat (Mass) Transfer and Film Cooling Effectiveness With Injection Through Discrete Holes: Part I???Within Holes and on the Back Surface, Journal of Turbomachinery, vol.90, issue.3, 1995.
DOI : 10.1115/1.3609155

G. Cottin, « Contribution à la modélisation thermique d'une paroi multiperforée, 2013.

J. H. Leylek, R. D. Et, and . Zerkle, « Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments, pp.93-207, 1993.

P. M. Ligrani, J. M. Wigle, S. Ciriello, and S. M. Jackson, Film-Cooling From Holes With Compound Angle Orientations: Part 1???Results Downstream of Two Staggered Rows of Holes With 3d Spanwise Spacing, Journal of Heat Transfer, vol.116, issue.2, pp.341-52, 1994.
DOI : 10.1115/1.2911406

J. Mazumder, J. Ni, and A. Shih, High-speed, ultra precision manufacturing station that combines direct metal deposition and edm, 2007.

S. Mendez, « Simulation numérique et modélisation de l'écoulement autour des parois multiperforées, 2007.

H. Nasir, S. Acharya, and S. Ekkad, Improved film cooling from cylindrical angled holes with triangular tabs: effect of tab orientations, International Journal of Heat and Fluid Flow, vol.24, issue.5, pp.657-68, 2003.
DOI : 10.1016/S0142-727X(03)00082-1

D. A. Nealy, S. B. Et, and . Reider, Evaluation of Laminated Porous Wall Materials for Combustor Liner Cooling, Journal of Engineering for Power, vol.102, issue.2, 1980.
DOI : 10.1115/1.3230247

. Oh, N. Ik-hyun, N. Nomura, S. Masahashi, and . Hanada, « Mechanical properties of porous titanium compacts prepared by powder sintering », Scripta Materialia, vol.49, issue.12, 2003.

S. Papell and . Stephen, Vortex generating flow passage design for increased film cooling effectiveness. US4529358 A, filed 15 février 1984, et issued 16 juillet 1985, 1985.

S. Pinson, Matériaux architecturés pour parois transpirantes : application au refroidissement des chambres de combustion, 2016.

R. Raj, S. L. Et, and . Moskowitz, Transpiration Air Protected Turbine Blades: An Effective Concept to Achieve High Temperature and Erosion Resistance for Gas Turbines Operating in an Aggressive Environment, Volume 1A: General, 1978.
DOI : 10.1115/78-GT-100

R. Plc, The Jet Engine. 5 edition, 2015.

S. Rouvreau, « Etude expérimentale de la structure moyenne et instantanée d'un film produit par une zone multiperforée sur une paroi plane: application au refroidissement des chambres de combustion des moteurs aéronautiques, France: Université de Poitiers. UFR des sciences fondamentales et appliquées, 2001.

S. Goncalves and F. , Caractérisation expérimentale et modélisation des interactions entre fissures et perçages multiples à haute température en élastoplasticité généralisée ou confinée, 2013.

J. E. Sargison, « Development of a Novel Film Cooling Hole Geometry, 2001.

J. E. Sargison, S. M. Guo, M. L. Oldfield, G. D. Lock, and A. J. Rawlinson, « A Converging Slot- Hole Film-Cooling Geometry?Part 1: Low-Speed Flat-Plate Heat Transfer and Loss », Journal of Turbomachinery, vol.124, issue.3, 2002.

J. P. Sellers, GASEOUS FILM COOLING WITH MULTIPLE INJECTION STATIONS, AIAA Journal, vol.1, issue.9, 1963.
DOI : 10.2514/3.2013

B. Sen, D. L. Schmidt, and D. G. Bogard, « Film Cooling With Compound Angle Holes: Heat Transfer », Journal of Turbomachinery, vol.118, issue.4, 1996.

A. K. Sinha, D. G. Bogard, and M. E. Crawford, Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio, Journal of Turbomachinery, vol.113, issue.3, 1991.
DOI : 10.1115/1.2927894

K. A. Thole, A. K. Sinha, D. G. Bogard, and M. E. Crawford, « Mean Temperature Measurements of Jets with a Crossflow for Gas Turbine Film Cooling Application ». In Rotating Machinery -Transport Phenomena, 1992.

K. Thole, M. Gritsch, A. Schulz, and E. S. Wittig, « Flowfield Measurements for Film-Cooling Holes With Expanded Exits », Journal of Turbomachinery, vol.120, issue.2, 1998.

L. «. Océane, Transition to Jet-Powered Airplanes ». 2016 In Airplane Flying Handbook, 15?2. Federal Aviation Administration. https://www.faa.gov/regulations_policies

«. Turboréacteur and ». , Wikipédia. https, 2017.

R. Viskanta, Heat transfer to impinging isothermal gas and flame jets, Experimental Thermal and Fluid Science, vol.6, issue.2, pp.10-1016, 1993.
DOI : 10.1016/0894-1777(93)90022-B

J. H. Wang, J. Messner, and E. H. Stetter, An Experimental Investigation on Transpiration Cooling Part II: Comparison of Cooling Methods and Media, International Journal of Rotating Machinery, vol.10, issue.5, pp.355-363, 2004.
DOI : 10.1155/S1023621X04000363

C. H. Yuen, R. F. Et, and . Martinez-botas, Film cooling characteristics of rows of round holes at various streamwise angles in a crossflow: Part I. Effectiveness, International Journal of Heat and Mass Transfer, vol.48, issue.23-24, pp.23-24, 2005.
DOI : 10.1016/j.ijheatmasstransfer.2005.05.019

S. Pinson, Matériaux architecturés pour parois transpirantes : application au refroidissement des chambres de combustion, 2016.

R. Raj, S. L. Et, and . Moskowitz, Transpiration Air Protected Turbine Blades: An Effective Concept to Achieve High Temperature and Erosion Resistance for Gas Turbines Operating in an Aggressive Environment, Volume 1A: General, 1978.
DOI : 10.1115/78-GT-100

R. Plc, The Jet Engine. 5 edition, 2015.

S. Rouvreau, « Etude expérimentale de la structure moyenne et instantanée d'un film produit par une zone multiperforée sur une paroi plane: application au refroidissement des chambres de combustion des moteurs aéronautiques, France: Université de Poitiers. UFR des sciences fondamentales et appliquées, 2001.

S. Goncalves and F. , Caractérisation expérimentale et modélisation des interactions entre fissures et perçages multiples à haute température en élastoplasticité généralisée ou confinée, 2013.

J. E. Sargison, « Development of a Novel Film Cooling Hole Geometry, 2001.

J. E. Sargison, S. M. Guo, M. L. Oldfield, G. D. Lock, and A. J. Rawlinson, « A Converging Slot- Hole Film-Cooling Geometry?Part 1: Low-Speed Flat-Plate Heat Transfer and Loss », Journal of Turbomachinery, vol.124, issue.3, 2002.

J. P. Sellers, GASEOUS FILM COOLING WITH MULTIPLE INJECTION STATIONS, AIAA Journal, vol.1, issue.9, 1963.
DOI : 10.2514/3.2013

B. Sen, D. L. Schmidt, and D. G. Bogard, « Film Cooling With Compound Angle Holes: Heat Transfer », Journal of Turbomachinery, vol.118, issue.4, 1996.

A. K. Sinha, D. G. Bogard, and M. E. Crawford, Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio, Journal of Turbomachinery, vol.113, issue.3, 1991.
DOI : 10.1115/1.2927894

K. A. Thole, A. K. Sinha, D. G. Bogard, and M. E. Crawford, « Mean Temperature Measurements of Jets with a Crossflow for Gas Turbine Film Cooling Application ». In Rotating Machinery -Transport Phenomena, 1992.

K. Thole, M. Gritsch, A. Schulz, and E. S. Wittig, « Flowfield Measurements for Film-Cooling Holes With Expanded Exits », Journal of Turbomachinery, vol.120, issue.2, 1998.

M. Ahsan, C. P. Naveed, L. M. Paul, A. J. Kukreja, and . Pinkerton, Porous structures fabrication by continuous and pulsed laser metal deposition for biomedical applications; modelling and experimental investigation, Journal of Materials Processing Technology, vol.211, issue.4, 2011.
DOI : 10.1016/j.jmatprotec.2010.11.014

A. Bandyopadhyay, F. Espana, V. K. Balla, S. Bose, Y. Ohgami et al., Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants, Acta Biomaterialia, vol.6, issue.4, 2010.
DOI : 10.1016/j.actbio.2009.11.011

W. G. Burgers, On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium, Physica, vol.1, issue.7-12, pp.10-1016, 1934.
DOI : 10.1016/S0031-8914(34)80244-3

S. Ergun, « Fluid flow through packed columns », Chem. Eng. Prog, vol.48, pp.89-94, 1952.
DOI : 10.1021/ie50474a011

T. Furumoto, A. Koizumi, R. Mohd-rizal-alkahari, A. Anayama, R. Hosokawa et al., Permeability and strength of a porous metal structure fabricated by additive manufacturing, Journal of Materials Processing Technology, vol.219, 2015.
DOI : 10.1016/j.jmatprotec.2014.11.043

L. Germain, S. R. Dey, M. Humbert, and N. Gey, Determination of parent orientation maps in advanced titanium-based alloys, Journal of Microscopy, vol.515, issue.3, 2007.
DOI : 10.1016/S0966-9795(99)00036-9

URL : https://hal.archives-ouvertes.fr/hal-00181744

N. Gey, M. Et, and . Humbert, « Specific Analysis of EBSD Data to Study the Texture Inheritance Due to the ? ? ? Phase Transformation, Journal of Materials Science, vol.38, issue.6, pp.10-10231022842712172, 2003.

D. Gu and Y. Shen, « Processing conditions and microstructural features of porous 316L stainless steel components by DMLS » Part 1): 1880?87, Applied Surface Science, vol.255, issue.5, 2008.

N. Ikeo, T. Ishimoto, N. Hiramoto, H. Fukuda, H. Ogisu et al., « Solid/Powder Clad Ti-6Al-4V Alloy with Low Young's Modulus and High Toughness Fabricated by Electron Beam Melting, Materials Transactions, vol.56, issue.5, 2015.

N. Ikeo, T. Ishimoto, and T. Nakano, Novel powder/solid composites possessing low Young???s modulus and tunable energy absorption capacity, fabricated by electron beam melting, for biomedical applications, Journal of Alloys and Compounds, vol.639, 2015.
DOI : 10.1016/j.jallcom.2015.03.141

C. Klahn, F. Bechmann, S. Hofmann, M. Dinkel, and E. C. Emmelmann, Laser Additive Manufacturing of Gas Permeable Structures, Physics Procedia, Lasers in Manufacturing, p.41, 2013.
DOI : 10.1016/j.phpro.2013.03.161

C. Klahn and M. Meboldt, Integration of Gas-Permeable Structures in Laser Additive Manufactured Products, Additive Manufacturing: Innovations, Advances, and Applications, pp.22-22, 2015.
DOI : 10.1201/b19360-11

C. Körner, E. Attar, and P. Heinl, Mesoscopic simulation of selective beam melting processes, Journal of Materials Processing Technology, vol.211, issue.6, 2011.
DOI : 10.1016/j.jmatprotec.2010.12.016

S. Pinson, « Matériaux architecturés pour parois transpirantes : application au refroidissement des chambres de combustion », 2016.

P. J. Soille, M. Marc, and . Ansoult, Automated basin delineation from digital elevation models using mathematical morphology, Signal Processing, vol.20, issue.2, pp.10-1016, 1990.
DOI : 10.1016/0165-1684(90)90127-K

R. Stamp, P. Fox, W. O. Neill, E. Jones, and E. C. Sutcliffe, The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting, Journal of Materials Science: Materials in Medicine, vol.1, issue.9, pp.1839-1849, 2009.
DOI : 10.3139/9783446402690

M. Suard, « Characterization and optimization of lattice structures made by Electron Beam Melting ». Grenoble Alpes, 2015.

Y. Wang, Y. Shen, Z. Wang, J. Yang, N. Liu et al., Development of highly porous titanium scaffolds by selective laser melting, Materials Letters, vol.64, issue.6, 2010.
DOI : 10.1016/j.matlet.2009.12.035

Z. Xiang, M. Yin, Z. Deng, X. Mei, and . Et-guofu-yin, Simulation of Forming Process of Powder Bed for Additive Manufacturing, Journal of Manufacturing Science and Engineering, vol.138, issue.8, pp.81002-081002, 2016.
DOI : 10.1115/1.4032970

I. Yadroitsev, . Ph, E. I. Bertrand, and . Smurov, « Parametric analysis of the selective laser melting process » Applied Surface Science, Photon-Assisted Synthesis and Processing of Functional MaterialsE-MRS-H Symposium, 2007.

I. Yadroitsev, I. Shishkovsky, P. Bertrand, and E. I. Smurov, Manufacturing of fine-structured 3D porous filter elements by selective laser melting, Laser and Plasma in Microand Nano-Scale Materials Processing and DiagnosticsProceedings from the European Material Research Society Spring Meeting 2008 ? Symposium B, 2009.
DOI : 10.1016/j.apsusc.2008.07.154

L. Océane, . Chino, D. C. Yasumasa, and . Dunand, « Directionally freeze-cast titanium foam with aligned, elongated pores », Acta Materialia, vol.56, issue.1, 2008.

N. G. Davis, J. Teisen, C. Schuh, and D. C. Dunand, Solid-state foaming of titanium by superplastic expansion of argon-filled pores, Journal of Materials Research, vol.27, issue.05, 2001.
DOI : 10.2355/isijinternational1966.27.725

S. Deville, Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues, Advanced Engineering Materials, vol.554, issue.283, 2008.
DOI : 10.1016/0921-5093(91)90800-3

. Deville, E. Sylvain, A. P. Saiz, and . Tomsia, Ice-templated porous alumina structures, Acta Materialia, vol.55, issue.6, 2007.
DOI : 10.1016/j.actamat.2006.11.003

URL : http://arxiv.org/pdf/1710.04651

J. L. Fife, J. C. Li, D. C. Dunand, and P. W. Voorhees, Morphological analysis of pores in directionally freeze-cast titanium foams, Journal of Materials Research, vol.84, issue.01, 2009.
DOI : 10.1002/jbm.a.31317

H. Jo, M. J. Kim, H. Choi, Y. Sung, H. Choe et al., Morphological Study of Directionally Freeze-Cast Nickel Foams, Metallurgical and Materials Transactions E, vol.17, issue.1, pp.46-54, 2016.
DOI : 10.1002/9780470872864

D. J. Jorgensen, C. Et-david, and . Dunand, Structure and mechanical properties of Ti???6Al???4V with a replicated network of elongated pores, Acta Materialia, vol.59, issue.2, 2011.
DOI : 10.1016/j.actamat.2010.09.069

H. Jung, T. Se-won-yook, Y. Jang, H. Li, Y. Kim et al., Dynamic freeze casting for the production of porous titanium (Ti) scaffolds, Materials Science and Engineering: C, vol.33, issue.1, 2013.
DOI : 10.1016/j.msec.2012.08.004

S. Kang and L. , Sintering: Densification, Grain Growth and Microstructure, 2004.

W. Li, M. M. Porter, E. A. Olevsky, R. M. German, and J. Mckittrick, Sintering of bi-porous titanium dioxide scaffolds: Experimentation, modeling and simulation, Materials Science and Engineering: A, vol.636, 2015.
DOI : 10.1016/j.msea.2015.03.065

H. Nakajima, « Fabrication, properties and application of porous metals with directional pores », Progress in Materials Science, vol.52, issue.7, 2007.

H. Park, M. Choi, H. Choe, and D. C. Dunand, « Microstructure and compressive behavior of ice-templated copper foams with directional, lamellar pores ». Materials Science and Engineering: A 679 (janvier): 435?45, 2017.

A. A. Plunk, C. Et-david, and . Dunand, Iron foams created by directional freeze casting of iron oxide, reduction and sintering, Materials Letters, vol.191, 2017.
DOI : 10.1016/j.matlet.2016.12.104

M. M. Porter, L. Meraz, A. Calderon, H. Choi, A. Chouhan et al., Torsional properties of helix-reinforced composites fabricated by magnetic freeze casting, Composite Structures, vol.119, 2015.
DOI : 10.1016/j.compstruct.2014.08.033

M. M. Porter, P. Niksiar, and J. Mckittrick, Microstructural Control of Colloidal-Based Ceramics by Directional Solidification Under Weak Magnetic Fields, Journal of the American Ceramic Society, vol.1418, issue.32, 2016.
DOI : 10.1016/j.biomaterials.2006.06.028

A. I. Ramos, D. C. Cuba, and . Dunand, Preparation and Characterization of Directionally Freeze-cast Copper Foams, Metals, vol.59, issue.1, 2012.
DOI : 10.1016/j.actamat.2010.09.019

T. A. Roth, The surface and grain boundary energies of iron, cobalt and nickel, Materials Science and Engineering, vol.18, issue.2, pp.10-1016, 1975.
DOI : 10.1016/0025-5416(75)90168-8

A. Röthlisberger, S. Häberli, R. Spolenak, and D. C. Dunand, Abstract, Journal of Materials Research, vol.224, issue.1, 2016.
DOI : 10.1126/science.1120937

K. Saitou, « Microwave sintering of iron, cobalt, nickel, copper and stainless steel powders ». Scripta Materialia, Viewpoint set no. 39: Statistical mechanics and coarse graining of dislocation behavior for continuum plasticity, 2006.

E. D. Spoerke, G. D. Naomi, H. Murray, L. C. Li, D. C. Brinson et al., Titanium with aligned, elongated pores for orthopedic tissue engineering applications, Journal of Biomedical Materials Research Part A, vol.24, issue.2, 2008.
DOI : 10.1016/S0142-9612(03)00085-1

E. Stagno, M. R. Pinasco, G. Palombarini, M. G. Ienco, and G. F. Bocchini, Behaviour of sintered 410 low carbon steels towards ion nitriding, Behaviour of sintered 410 low carbon steels towards ion nitriding, pp.172-79, 1997.
DOI : 10.1016/S0925-8388(96)02604-7