D. Bates, Mixed models in R using the lme4 package Part 5 : Generalized linear mixed models, 2012.

D. Bates, Fitting mixed-effect models using the lme4 package in R . International Meetting of the Psychometric Society, 2012.

G. Cottrell, B. Kouwaye, C. Pierrat, A. Le-port, and A. Boura¨?maboura¨?ma, Modeling the Influence of Local Environmental Factors on Malaria Transmission in Benin and Its Implications for Cohort Study, PLoS ONE, vol.6, issue.1, 2012.
DOI : 10.1371/journal.pone.0028812.t001

URL : https://hal.archives-ouvertes.fr/hal-01352441

F. Bach, Bolasso, Proceedings of the 25th international conference on Machine learning, ICML '08, 2008.
DOI : 10.1145/1390156.1390161

URL : https://hal.archives-ouvertes.fr/hal-00271289

F. Bach, Model-Consistent Sparse Estimation through the Bootstrap . Willow Project-team Laboratoire d'Informatique de l'Ecole Normale Supérieure (CNRS/ENS/INRIA UMR 8548) 45, rue d, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00354771

L. Ministère-de and . Santé, Programme national de lutte contre le paludisme (2010) Evaluation des activités de lutte contre le paludisme au bénin

L. Ministère-de and . Santé, Direction Nationale de la Santé Publique (2014) Programme national de lutte contre le paludisme

O. Coll, C. Menendez, F. Botet, and R. Dayal, Treatment and prevention of malaria in pregnancy and newborn, Journal of Perinatal Medicine, vol.85, issue.1, pp.15-29, 2008.
DOI : 10.1128/IAI.71.3.1242-1246.2003

M. A. Greenwood, R. J. Armstrong, P. Byass, W. R. Snow, and M. Greenwood, Malaria chemoprophylaxis, birth weight and child survival, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.ii, issue.5, pp.483-488, 1992.
DOI : 10.1136/bmj.287.6387.251

L. Hesran, J. Y. Cot, M. Personne, P. Fievet, N. Dubois et al., Maternal Placental Infection with Plasmodium falciparum and Malaria Morbidity during the First 2 Years of Life, American Journal of Epidemiology, vol.146, issue.10, pp.826-831, 1997.
DOI : 10.1093/oxfordjournals.aje.a009200

T. K. Mutabingwa, M. C. Bolla, J. L. Li, G. J. Domingo, and X. Li, Maternal Malaria and Gravidity Interact to Modify Infant Susceptibility to Malaria, PLoS Medicine, vol.87, issue.12, p.407, 2005.
DOI : 10.1371/journal.pmed.0020407.t003

URL : https://doi.org/10.1371/journal.pmed.0020407

N. G. Schwarz, A. A. Adegnika, L. P. Breitling, J. Gabor, and S. T. Agnandji, Placental Malaria Increases Malaria Risk in the First 30 Months of Life, Clinical Infectious Diseases, vol.174, issue.8, pp.117-125, 2008.
DOI : 10.1086/591057

S. Abdulla, J. A. Schellenberg, R. Nathan, O. Mukasa, and T. Marchant, Impact on malaria morbidity of a programme supplying insecticide treated nets in children aged under 2 years in Tanzania: community cross sectional study, BMJ, vol.322, issue.7281, pp.270-273, 2001.
DOI : 10.1136/bmj.322.7281.270

Y. Yé, V. R. Louis, S. Simboro, and R. Sauerborn, Effect of meteorological factors on clinical malaria risk among children : an assessment using village-based meteo-rological stations and community-based parasitological survey, BMC, vol.7, p.101, 2007.

A. Garcia, A. Baba, D. Rouget, F. Migot-nabias, F. et al., Role of environment and behaviour in familial resemblances of Plasmodium falciparum infection in a population of Senegalese children, Microbes and Infection, vol.6, issue.1, pp.68-75, 2004.
DOI : 10.1016/j.micinf.2003.09.021

L. Li, B. Ling, and Y. Guiyun, A study of the distribution and abundance of the adult malaria vector in western kenya malaria vector in western kenya, Microbes and infections, vol.6, pp.68-75, 2004.

K. D. Silué, G. Raso, A. Yapi, P. Vounatsou, and M. Tanner, Spatially-explicit risk profiling of Plasmodium falciparum infections at a small scale: a geostatistical modelling approach, Malaria Journal, vol.7, issue.1, p.111, 2008.
DOI : 10.1186/1475-2875-7-111

H. Guthmann, A. Llanos-cuentas, A. Palacios, and A. Hall, Environmental factors as determinants of malaria risk. A descriptive study on the northern coast of Peru, Tropical Medicine and International Health, vol.77, issue.6, pp.518-525, 2002.
DOI : 10.1016/S0035-9203(01)90084-7

M. Mabaso, M. Craig, A. Ross, and T. Smith, Environmental predictors of the season-nality of malaria transmission in africa : the challenge, 2007.

B. Kouwaye, N. Fonton, and F. Rossi, Sélection de variables par le glmlasso pour la prédiction du risque palustre, 47èmes Journees de Statistique de la SFdS, p.1196450, 2015.

B. Kouwaye, N. Fonton, and F. Rossi, Lasso based feature selection for malaria risk exposure prediction, 11th International Conference Poster Proceedings, ibai publishing. Petra Perner Machine Learning and Data Mining in Pattern Recognition, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01222403

B. Kouwaye, N. Fonton, and F. Rossi, Sélection de variables par le GLM- Lasso pour la prédiction du risque palustre . URL https://arxiv, 2015.

B. Kouwaye, N. Fonton, and F. Rossi, Lasso based feature selection for malaria risk exposure prediction. URL https, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01222403

B. Kouwaye, Anopheles number prediction on environmental and climatevariables using Lasso and stratified two levels cross validation. URL https://hal.archives-ouvertes, 2016.

N. Vapnik, The nature of statistical learning theory, 1995.

B. Ishak and A. , Sélection de variables par les machinesàmachinesà vecteurs supports pour la discrimination binaire et multiclasse en grande dimen- sion, 2007.

T. Kohonen, Self-organized formation of topologically correct feature maps, Biological Cybernetics, vol.13, issue.1, pp.59-69, 1982.
DOI : 10.1007/BF00337288

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning Data mining, Inference, Prediction, 2009.

L. D. Dohono and M. Johnstone, Adapting to unknown smoothess via wavlet shrinkage, AmerStatis, vol.Assoc, pp.1200-1224, 1995.

D. L. Dohono and I. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, pp.425-455, 1994.

L. Brigé, Model selection via testing: an alternative to (penalized) maximum likelihood estimators, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.42, issue.3, pp.273-325, 2006.
DOI : 10.1016/j.anihpb.2005.04.004

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate : a pratical and powerful approach to multiple testing, J Roy Statist Soc Ser B, vol.57, issue.1, pp.289-300, 1995.

P. Bauera, M. B. Potschera, and P. Hackla, Model selection by multiple test procedures, Statistics, vol.6, issue.1, pp.39-44, 1998.
DOI : 10.1214/aos/1176344136

M. Pötsher, Order Estimation in ARMA-Models by Lagrangian Multiplier Tests, The Annals of Statistics, vol.11, issue.3, pp.872-885, 1983.
DOI : 10.1214/aos/1176346253

F. Bunea, H. M. Wegkamp, and A. A. , Consistent variable selection in high dimensional regression via multiple testing, Journal of Statistical Planning and Inference, vol.136, issue.12, pp.4349-4364, 2006.
DOI : 10.1016/j.jspi.2005.03.011

P. D. Foster and I. George, The Risk Inflation Criterion for Multiple Regression, The Annals of Statistics, vol.22, issue.4, 1994.
DOI : 10.1214/aos/1176325766

P. D. Foster and I. George, Calibration and empirical bayes variable selection, Biometrika, vol.87, pp.731-747, 2000.

C. Mallows, Some comments on Cp, Technometrics, vol.15, issue.4, pp.661-675, 1973.

H. Akaike, Information theory and an extension of the maximum likelihood principle, Second International Symposuim on Information Theory (Tsahkador, pp.267-281, 1971.

G. Schwart, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

L. Birge and P. Massart, A generalized Cp criterion for gaussian model selection, p.39, 2001.

M. Hebiri, Quelques questions de sélections de variables autour de l'estimateur Lasso, 2009.

N. Vapnik, Statistical learning theory, 1999.

B. Kouwaye, Modelisation du risque spatio temporel d'exposition palustrè a Tori-Bossito (Bénin), 2011.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, Least angle regression, The Annals of statistics, vol.32, pp.407-499, 2004.

D. Bates, Linear mixed model implementation in lme4, 2010.

J. R. Tempelman and D. Gianola, Marginal maximum likelihood estimation of variance components in Poisson mixed models using Laplacian integration, Genetics Selection Evolution, vol.25, issue.4, pp.305-319, 1993.
DOI : 10.1186/1297-9686-25-4-305

URL : https://hal.archives-ouvertes.fr/hal-00893998

E. N. Breslow and G. Clayton, Approximate inference in generalized linear mixed model, Journal of American Statistical Association, vol.88, issue.421, pp.9-25, 1993.
DOI : 10.1080/01621459.1993.10594284

J. Pinheiro and D. Bates, Approximations to the log-likelihood function in the nonlinearmixed-effects models, JCGS, vol.4, issue.1, pp.12-35, 1995.

G. Bates, Sparse matrix representations of linear mixed models, 2004.

D. Bates and S. Debroy, Linear mixed models and penalized least squares, Journal of Multivariate Analysis, vol.91, issue.1, pp.1-17, 2006.
DOI : 10.1016/j.jmva.2004.04.013

URL : https://doi.org/10.1016/j.jmva.2004.04.013

A. Skrondal and S. Rabe-hesketh, Prediction and diagnostics, in generalized linear mixed models, recent advances in multilevel modelling : Methodology and applications, Royal Satistical Society, vol.33, p.6, 2007.

S. Rabe-hesketh and A. Skrondal, Multilevel and Longitudinal Modeling Using Stata, 2008.

B. Efron and R. Tibshirani, An introduction to the bootstrap, p.436, 1993.
DOI : 10.1007/978-1-4899-4541-9

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society Series BMethodological, pp.267-288, 1996.
DOI : 10.1111/j.1467-9868.2011.00771.x

S. S. Chen, L. D. Donoho, and A. Saunders, Atomic Decomposition by Basis Pursuit, SIAM Journal on Scientific Computing, vol.20, issue.1, pp.33-61, 1998.
DOI : 10.1137/S1064827596304010

URL : http://www-stat.stanford.edu/~donoho/Reports/1995/30401.pdf

L. D. Dohono and M. Johnstone, Adapting to Unknown Smoothness via Wavelet Shrinkage, Journal of the American Statistical Association, vol.31, issue.432, pp.1200-1224, 1995.
DOI : 10.1007/978-3-0346-0416-1

L. D. Donoho, I. Johnstone, and M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, vol.81, issue.3, pp.425-455, 1993.
DOI : 10.1093/biomet/81.3.425

H. Zou, T. Hastie, and R. Tibshirani, On the ???degrees of freedom??? of the lasso, The Annals of Statistics, vol.35, issue.5, 2004.
DOI : 10.1214/009053607000000127

C. Chesneau and M. Hebiri, Some theorical results on the Gouped Variables Lasso, pp.3-3, 2008.
DOI : 10.3103/s1066530708040030

V. Vapnik, The Nature of Statistical Learning Theory, 1998.

J. Fan and R. Li, Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties, Journal of the American Statistical Association, vol.96, issue.456, pp.1348-1360, 2001.
DOI : 10.1198/016214501753382273

URL : http://www.stat.psu.edu/~rli/research/penlike.pdf

F. Bunea, A. Tsybakov, and M. Wegkamp, Sparsity oracle inequalities for the Lasso, Electronic Journal of Statistics, vol.1, issue.0, pp.169-94, 2007.
DOI : 10.1214/07-EJS008

URL : https://hal.archives-ouvertes.fr/hal-00160646

N. J. Sampson and N. Chattrejee, Oracle is not optimal : Adapting the adaptive lasso, Biostatistics, vol.1, pp.1-27, 2010.

S. Van-de-geer and P. Bühlmann, On the conditions used to prove oracle results for the Lasso, Electronic Journal of Statistics, vol.3, issue.0, pp.1-33, 2009.
DOI : 10.1214/09-EJS506

M. Kwemou, On the conditions used to prove oracle results for the lasso, pp.1-39, 2012.

L. Breiman, Better Subset Regression Using the Nonnegative Garrote, Technometrics, vol.37, issue.4, pp.373-384, 1995.
DOI : 10.1080/01621459.1980.10477428

M. Yuan and Y. Lin, On the non-negative garrotte estimator, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.101, issue.2, pp.143-161, 2007.
DOI : 10.1111/j.1467-9868.2005.00503.x

H. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.5, issue.2, pp.301-320, 2005.
DOI : 10.1073/pnas.201162998

Q. Li and N. Lin, The Bayesian elastic net, Bayesian Analysis, vol.5, issue.1, pp.151-170, 2010.
DOI : 10.1214/10-BA506

D. Mol, C. , D. Vito, E. Rosasco, and L. , Elastic-net regularization in learning theory, Journal of Complexity, 2009.

R. Tibshirani and M. Saunders, Sparsity and smoothness via the fused lasso, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.99, issue.1, pp.91-108, 2005.
DOI : 10.1016/S0140-6736(02)07746-2

URL : http://www.stanford.edu/group/SOL/papers/fused-lasso-JRSSB.pdf

A. Rinaldo, Properties and refinements of the fused lasso, The Annals of Statistics, vol.37, issue.5B, pp.2922-2952, 2009.
DOI : 10.1214/08-AOS665

M. Yuan, M. Yuan, Y. Lin, and Y. Lin, Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.58, issue.1, pp.49-67, 2006.
DOI : 10.1198/016214502753479356

URL : http://www2.isye.gatech.edu/~myuan/papers/glasso.final.pdf

L. Meier, S. Van-de-geer, and P. Bühlmann, The group lasso for logistic regression, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.68, issue.1, pp.53-71, 2008.
DOI : 10.1093/oxfordjournals.pan.a004868

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2007.00627.x/pdf

J. Friedman, T. Hastie, and R. Tibshirani, A note on the group lasso and a sparse group, ArXiv, pp.10010736-10010737, 2010.

H. Zou and T. Hastie, The Adaptive Lasso and Its Oracle Properties, Journal of the American Statistical Association, vol.101, issue.476, pp.1418-1429, 2006.
DOI : 10.1198/016214506000000735

E. Candes and T. Tao, The Dantzig selector: Statistical estimation when p is much larger than n, The Annals of Statistics, vol.35, issue.6, pp.2313-2351, 2007.
DOI : 10.1214/009053606000001523

URL : http://doi.org/10.1214/009053606000001523

M. G. James, P. Radchenko, J. Dasso, and . Lv, DASSO: connections between the Dantzig selector and lasso, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.67, issue.1, pp.127-142, 2009.
DOI : 10.1111/j.1467-9868.2008.00668.x

URL : http://www-rcf.usc.edu/~gareth/research/JRSSB_copy.pdf

H. Wang, G. Li, and G. Jiang, Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso, Journal of Business & Economic Statistics, vol.25, issue.3, pp.347-355, 2007.
DOI : 10.1198/073500106000000251

S. Rosset and J. Zhu, Piecewise linear regularized solution paths, The Annals of Statistics, vol.35, issue.3, pp.1012-1030, 2007.
DOI : 10.1214/009053606000001370

URL : http://doi.org/10.1214/009053606000001370

A. Sara and S. Van-de-geer, High-dimensional generalized linear models and the lasso, The Annals of Statistics, vol.36, issue.2, pp.614-645, 2008.

A. Sara, S. Van-de-geer, and . Züricht, The deterministic Lasso, 2007.

V. Koltchinskii, Sparsity in penalized empirical risk minimization, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.45, issue.1, 2009.
DOI : 10.1214/07-AIHP146

R. S. Land and H. Friedman, variable fusion : A new adaptive signal regression methods, 1994.

D. Donoho, Compressed sensing. Information Theory, IEEE Transactions, vol.52, issue.4, pp.1289-1306, 2004.
URL : https://hal.archives-ouvertes.fr/inria-00369486

F. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the graphical lasso. The Annals of Statistics, 2007.

J. R. Tibshirani, H. Hoefling, and R. Tibshirani, Sparse inverse covariance estimation with the graphical lasso. The Annals of Statistics, 2007.

J. E. Candes and B. Recht, Exact Matrix Completion via Convex Optimization, Foundations of Computational Mathematics, vol.170, issue.1, pp.717-772, 2008.
DOI : 10.1017/CBO9780511814068

M. D. Witten, R. Tibshirani, and T. Hastie, A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis, Biostatistics, vol.15, issue.1, pp.515-534, 2009.
DOI : 10.1198/106186006X113430

URL : https://academic.oup.com/biostatistics/article-pdf/10/3/515/17735953/kxp008.pdf

J. J. Goeman, L1 penalized estimation in the cox proportional hazards model, Biometrical Journal, vol.52, pp.70-84, 2010.

Y. Kim and Y. Kim, Gradient Lasso for feacture selection, Preceedings of the 21st International Conference of machine learnig. ACM International Conference Preceedings Series, pp.473-480, 2004.
DOI : 10.1145/1015330.1015364

URL : http://www.aicml.cs.ualberta.ca/banff04/icml/pages/papers/130.pdf

B. Kouwaye, F. Rossi, N. Fonton, A. Garcia, D. Gbete et al., Predicting local malaria exposure using a Lasso-based two-level cross validation algorithm, PLOS ONE, vol.7, issue.3, p.14, 2017.
DOI : 10.1371/journal.pone.0187234.s001

URL : https://hal.archives-ouvertes.fr/hal-01736935

Y. Andrew and . Ng, Preventing " overfitting " of cross-validation data, Proceedings of the Fourteenth International Conference on Machine Learning., ICML '97, pp.245-253, 1997.

J. Friedman, T. Hastie, N. Simon, and R. Tibshirani, Lasso and elasticnet regularized generalized linear models, 2015.

J. Goeman, L 1 Penalized Estimation in Cox Proportional Hazards Model, Biometrical Journal, vol.52, pp.70-84, 2010.

J. Friedman, T. Hastie, and R. Tibshirani, Regularization Paths for Generalized Linear Models via Coordinate Descent, Journal of Statistical Software, vol.33, issue.1, pp.1-22, 2010.
DOI : 10.18637/jss.v033.i01

URL : https://doi.org/10.18637/jss.v033.i01

J. T. Hastie, R. Tibshirani, J. Friedman, and H. Jerome, The elements of statistical learning : data mining, inference, and prediction. Springer series in statistics, p.2013, 2009.

G. Bontempi, Structural feature selection for wrapper methods, ESANN 2005, 13th European Symposium on Artificial Neural Networks Proceedings. pp. 405?410. URL https, p.5, 2005.

K. Kourou, T. Exarchos, K. Exarchosa, M. Karamouzis, and D. Fotiadis, Machine learning applications in cancer prognosis and prediction, Computational and Structural Biotechnology Journal, vol.13, pp.8-17, 2015.
DOI : 10.1016/j.csbj.2014.11.005

URL : https://doi.org/10.1016/j.csbj.2014.11.005

E. Oermann, A. Rubinsteyn, D. Ding, J. Mascitelli, and R. Starke, Using a Machine Learning Approach to Predict Outcomes after Radiosurgery for Cerebral Arteriovenous Malformations, Scientific Reports, vol.63, issue.1, p.12, 2016.
DOI : 10.1007/s10994-006-6226-1

J. Weiss, S. Natarajan, P. Peissig, C. Mccarty, and D. Page, Machine Learning for Personalized Medicine : Predicting Primary Myocardial Infarction from Electronic Health Records. Association for the Advancement of Artificial Intelligence, p.13, 2012.
DOI : 10.1609/aimag.v33i4.2438

URL : https://aaai.org/ojs/index.php/aimagazine/article/download/2438/2332

S. Li and S. Oh, Improving feature selection performance using pairwise pre-evaluation, BMC Bioinformatics, vol.23, issue.2, p.13, 2016.
DOI : 10.1016/S0933-3657(01)00082-3

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-016-1178-3?site=bmcbioinformatics.biomedcentral.com

H. Wang and S. Liu, An Effective Feature Selection Approach Using the Hybrid Filter Wrapper, International Journal of Hybrid Information Technology, vol.9, issue.1, pp.119-128, 2016.
DOI : 10.14257/ijhit.2016.9.1.11

T. Van-der-ploeg and E. Steyerberg, Feature selection and validated predictive performance in the domain of Legionella pneumophila: a comparative study, BMC Research Notes, vol.54, issue.10, p.7, 2016.
DOI : 10.1016/S0895-4356(01)00341-9