J. A. Araújo, L. Susmel, D. Taylor, J. C. Ferro, and E. N. Mamiya, On the use of the Theory of Critical Distances and the Modified W??hler Curve Method to estimate fretting fatigue strength of cylindrical contacts, Table des références, pp.95-107, 2007.
DOI : 10.1016/j.ijfatigue.2006.02.041

A. Araújo, J. A. Pommier, S. Bellecave, J. Meriaux, and J. , Equivalent configurations for notch and fretting fatigue, pp.427-433, 2015.

A. Asai and K. , Fracture Mechanics Analysis of Fretting Fatigue Considering Small Crack Effects, Mixed Mode, and Mean Stress Effect Applied Fracture Mechanics A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions, International Journal of Fatigue, vol.25, pp.6-1079, 2003.

J. P. Baïlon2000-]:-baïlon, J. M. Dorlot, and A. J. Bassetti, Lamelles précontraintes en fibres carbone pour le renforcement de ponts rivetés endommagés par fatigue Stress gradients in fretting fatigue Validation of the step test method for generating Haigh diagrams for Ti, Des Matériaux International Journal of Fatigue, vol.217, pp.6-10, 1999.

D. K. Benson, J. C. Grosskreuz, and G. G. Shaw, Mechanisms of fatigue in millannealed Ti-6Al-V at room temperature and 600°F, Metallurgical Transactions, vol.3, 1972.

B. Bowen and A. W. , The influence of crystallographic orientation on tensile behaviour in strongly textured Ti???6Al???4V, Materials Science and Engineering, vol.40, issue.1, pp.31-47, 1979.
DOI : 10.1016/0025-5416(79)90006-5

B. Buckley, D. H. Cellier, A. Haron, C. H. Jawaid, and A. , Surface effects in adhesion, friction, wear and lubrification Etude du fraisage de l'alliage de titane Ti-6Al-4V The effect of machining on surface integrity of titanium, Journal of Materials Processing Technology, vol.166, pp.188-192, 1985.

C. Combres, Y. Champin, and B. , A 'crack-like' notch analogue for a safe-life fretting fatigue design methodology Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel, Proc. Int. Conf. on Fatigue of Metals, Institution of Mechanical Engineers, pp.1159-1170, 1956.

D. Dawson, D. B. Pelloux, and R. M. , Corrosion fatigue crack growth of titanium alloys in aqueous environments, Metallurgical Transactions, vol.2, issue.3, pp.723-731, 1974.
DOI : 10.1007/BF00183804

S. Degallaix, B. Ilschner, T. X. Delahay, and J. Mendez, Caractérisation expérimentale des matériaux I : Propriétés physiques, thermiques et mécaniques Développement d'une méthode probabiliste de calcul en fatigue multiaxiale prenant en compte la répartition volumique des contraintes, Microstructural effects on small fatigue crack initiation and growth in Ti-6Al-4V alloys. Fatigue of Engineering Materials and structures 18, pp.1483-1497, 1995.

H. Hadad, M. H. Topper, T. H. Smith, and K. N. , Prediction of non propagating cracks, Engineering Fracture Mechanics, vol.11, issue.3, pp.573-584, 1979.
DOI : 10.1016/0013-7944(79)90081-X

B. X. Feng, X. N. Mao, G. J. Yang, L. L. Yu, and X. D. Wu, Residual stress field and thermal relaxation behavior of shot-peened TC4-DT titanium alloy, Materials Science and Engineering: A, vol.512, issue.1-2, pp.1-2105, 2009.
DOI : 10.1016/j.msea.2009.01.028

R. Ferré, . Ecole, . De, B. Lyon-ferry, S. Fouvry et al., Etude expérimentale et modélisation de la durabilité d'un contact aube/disque de soufflante grenaillé revêtu soumis à des chargements de Fretting/Fatigue/Usure Study of the Stress Gradient Effect and the Size Effect in Fretting Fatigue, Multiaxial Fatigue Analysis of Fretting Contact Taking Into Account the Size Effect. In ASTM. pp, pp.167-182, 2000.

I. Freiherr-von-thungen, . Isae, and . Ensma, Effet dwell : relation microstructuremicrotexture-propriétés mécaniques de l'alliage de titane Ti6242 A relation between the critical alternating propagation stress and crack length for mild steel, Proc Inst Mech Eng, vol.173, pp.811-845, 1959.

. Gadouini2007, H. Gadouini, L. Gallego, A. E. Giannakopoulos, T. C. Lindley et al., Influence des défauts sur la tenue en fatigue des métaux soumis à des solicitations cycliques multiaxiales : Application à des éléments de liaison au sol ISAE ENSMA-Faculté des sciences fondamentales appliquées Fretting et Usure des Contacts Mécaniques : Modélisation Numérique, Institut National des Sciences Appliquées de Lyon Similarities of stress concentrations in contact at round punches and fatigue at notches: implications to fretting fatigue crack initiation. Fatigue Fract Engng Mater Struct, pp.561-571, 2000.

G. Gilbert, J. L. Piehler, H. R. Gomina, M. Fourvel, P. Osterstock et al., Grain egression: A new mechanism of fatigue-crack initiation in Ti-6Al-4V, Metallurgical Transactions A, vol.12, issue.4, pp.1715-1725183, 1988.
DOI : 10.1007/BF02644991

G. Gregory and J. K. , Handbook of fatigue crackpropagation in metallic structures, 1994.

C. Gross, R. Mendelson, and A. , Fatigue crack propagation in titanium alloys Plane elastostatic analysis of V-notched plates, International Journal of Fracture Mechanics, vol.8, pp.281-322, 1972.

H. Haritos, G. K. Nicholas, T. Lanning, and D. B. , Notch size effects in HCF behavior of Ti???6Al???4V, International Journal of Fatigue, vol.21, issue.7, pp.643-652, 1999.
DOI : 10.1016/S0142-1123(99)00023-7

H. Hénaff, G. Morel, F. Hines, J. A. Lutjering, and G. , Fatigue des structures, Propagation of microcracks at stress amplitudes below the conventional fatigue limit in Ti-6Al-4V. Fatigue & Fracture of Engineering Materials and Structures 22, pp.657-665, 1999.

S. G. Ivanova, F. S. Cohen, R. R. Biederman, R. D. Sisson-jr, S. G. Ivanova et al., Investigation of Fatigue Crack Initiation in Ti-6Al-4V During Tensile-Tensile Fatigue, Journal of Materials Engineering and Performance, vol.11, issue.2, pp.226-231, 1999.
DOI : 10.1361/105994902770344312

X. P. Jiang, X. Y. Wang, J. X. Li, D. Y. Li, C. Man et al., Enhancement of fatigue and corrosion properties of pure Ti by sandblasting Materials Science and Engineering A A new criterion of fatigue strength of a round bar subjected to combined static and repeated bending and torsion Modélisation de l'endommagement en fatigue des superalliages monocristallins pour aubes de turbines en zone de concentration de contrainte, Initiation and Growth of fretting Fatigue Cracks in the partial Slip Regime. Fatigue & Fracture of Engineering Materials and Structures, pp.1-230, 1979.

D. B. Lanning, G. K. Haritos, T. Nicholas, D. B. Lanning, T. Nicholas et al., Influence of stress state on high cycle fatigue of notched Ti-6Al-4V specimens*1, International Journal of Fatigue, vol.21, issue.25, pp.87-95, 1999.
DOI : 10.1016/S0142-1123(99)00059-6

L. Lanning, D. B. Nicholas, T. Haritos, and G. K. , On the use of critical distance theories for the prediction of the high cycle fatigue limit stress in notched Ti?6Al?4V*1, International Journal of Fatigue, vol.27, issue.1, pp.45-57, 2005.
DOI : 10.1016/j.ijfatigue.2004.06.002

P. Lazzarin and S. Filippi, A generalized stress intensity factor to be applied to rounded V-shaped notches, International Journal of Solids and Structures, vol.43, issue.9, pp.2461-2478, 2006.
DOI : 10.1016/j.ijsolstr.2005.03.007

L. Biavant-guerrier2000-le-biavant-guerrier, K. Leopold, and G. , Etude de l'amorçage de fissures de fatigue dans le Ti-6Al-4V Influence des defauts de fonderie sur la tenue en fatigue d'un alliage de titane moule, Key Engineering Materials, vol.664, pp.131-139, 2000.

B. Lin, C. Lupton, S. Spanrad, J. Schofield, and J. Tong, Fatigue crack growth in laser-shock-peened Ti???6Al???4V aerofoil specimens due to foreign object damage, International Journal of Fatigue, vol.59, pp.23-33, 2014.
DOI : 10.1016/j.ijfatigue.2013.10.001

[. Luká? and P. , Stress intensity factor for small notch-emanated cracks, Engineering Fracture Mechanics, vol.26, issue.3, pp.471-473, 1987.
DOI : 10.1016/0013-7944(87)90027-0

M. Mabru, C. Madge, J. J. Leen, S. B. Shipway, and P. H. , Etats de surface -Matériaux de surface : Résistance à l'endommagement. [HDR], Institut National Polytechnique de Toulouse The critical role of fretting wear in the analysis of fretting fatigue, Wear, vol.263, pp.1-6542, 2007.

M. Mall, S. Namjoshi, S. A. Porter, and W. J. , Effects of microstructure on fretting fatigue crack initiation behavior of Ti-6Al-4V, Materials Science and Engineering: A, vol.383, issue.2, pp.334-340, 2004.
DOI : 10.1016/j.msea.2004.05.019

M. Martins, L. H. Ferro, J. C. Ferreira, J. L. Araújo, J. A. Susmel et al., A notch methodology to estimate fretting fatigue strength, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol.29, issue.1, pp.76-84, 2007.
DOI : 10.1590/S1678-58782007000100011

M. Maxwell, D. C. Nicholas, and T. , A rapid method for generation of a Haigh diagram for high cycle fatigue. Fatigue and Fracture Mechanics: 29th Volume A theory of failure under multiaxial stress-strain conditions, Proc. Instn. Mech. Engrs, pp.745-755, 1973.

M. Milosevic, Z. Bathias, C. Pellissier-tanon, and A. , Ductile crack growth of surface cracks in thin welded joints of an aluminium alloy 7020 T6, Engineering Fracture Mechanics, vol.26, pp.1-33, 1987.

M. Montebello, C. Morrissey, R. J. Morrissey, R. J. Mcdowell, D. L. Nicholas et al., Analysis of the stress gradient effect in Fretting-Fatigue through a description based on nonlocal intensity factors Frequency and mean stress effects in high cycle fatigue of Ti- 6Al-4V Frequency and stress ratio effects in high cycle fatigue of Ti, International Journal of Fatigue, vol.21, pp.6-10, 1997.

M. Murakami, Y. Endo, and M. , Effects of defects, inclusions and inhomogeneities on fatigue strength, International Journal of Fatigue, vol.16, issue.3, pp.163-182, 1994.
DOI : 10.1016/0142-1123(94)90001-9

K. Nagai, T. Yuri, O. Umeza, T. Ogata, K. Ishikawa et al., High cycle fatigue properties of Ti?6Al?4V alloys at cryogenic temperatures. Titanium, Caplan IL Froes FH. Warrendale (PA), pp.1827-1861, 1993.

R. K. Nalla, B. L. Boyce, J. P. Campbell, J. O. Peters, and R. O. Ritchie, Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: Bimodal vs. lamellar structures, Metallurgical and Materials Transactions A 33, pp.899-918, 2002.
DOI : 10.1520/STP23220S

R. K. Nalla, I. Altenberger, U. Noster, G. Y. Liu, B. Scholtes et al., On the influence of mechanical surface treatments???deep rolling and laser shock peening???on the fatigue behavior of Ti???6Al???4V at ambient and elevated temperatures, Materials Science and Engineering: A, vol.355, issue.1-2, pp.216-230, 2003.
DOI : 10.1016/S0921-5093(03)00069-8

C. Navarro, S. Munoz, and J. Domínguez, On the use of multiaxial fatigue criteria for fretting fatigue life assessment, International Journal of Fatigue, vol.30, issue.1, pp.32-44, 2008.
DOI : 10.1016/j.ijfatigue.2007.02.018

N. Navarro, C. Vásquez, J. Domínguez, and J. , A general model to estimate life in notches and fretting fatigue. ngineering Fracture Mechanics 78, pp.1590-1601, 2011.

D. F. Neal and P. A. Blenkinsop, Internal fatigue origins in two alpha-beta titanium alloys, Scripta Metallurgica, vol.9, issue.10, pp.59-63, 1976.
DOI : 10.1016/0036-9748(75)90298-7

Z. Pan, Y. Feng, and S. Y. Liang, Material microstructure affected machining: a review. Manufacturing Rev, 2017.

I. V. Papadopoulos, V. P. Panoskaltsis, M. Papakyriacou, H. Mayer, C. Pypen et al., Invariant formulation of a gradient dependent multiaxial high-cycle fatigue criterion Engineering Fracture Mechanics Influence of loading frequency on high cycle fatigue properties of b, Materials Science and Engineering, vol.55, issue.308, pp.513-528, 1996.

L. Pazos, P. Corengia, and H. Svoboda, Effect of surface treatments on the fatigue life of titanium for biomedical applications, Journal of the Mechanical Behavior of Biomedical Materials, vol.3, issue.6, pp.6416-424, 2010.
DOI : 10.1016/j.jmbbm.2010.03.006

P. Pessard, E. Bellett, D. Morel, F. Koutiri, and I. , A mechanistic approach to the Kitagawa???Takahashi diagram using a multiaxial probabilistic framework, Engineering Fracture Mechanics, vol.109, pp.89-104, 2013.
DOI : 10.1016/j.engfracmech.2013.06.001

URL : https://hal.archives-ouvertes.fr/hal-00875771

P. Peters, M. Gysler, A. Lutjering, G. Kimura, H. Izumi et al., Influence of miucrostructure on the fatigue behavior of Ti-6Al-4V. 1777-1786 of Titanium'80 science and technology, pp.1597-1605, 1980.

H. Proudhon, S. Fouvry, and G. Yantio, Determination and prediction of the fretting crack initiation: introduction of the (P, Q, N) representation and definition of a variable process volume, International Journal of Fatigue, vol.28, issue.7, pp.707-713, 2006.
DOI : 10.1016/j.ijfatigue.2005.09.005

URL : https://hal.archives-ouvertes.fr/hal-00333260

H. Proudhon, J. Buffiere, and S. Fouvry, Three-dimensional study of a fretting crack using synchrotron X-ray micro-tomography, Engineering Fracture Mechanics, vol.74, issue.5, pp.782-793, 2007.
DOI : 10.1016/j.engfracmech.2006.06.019

URL : https://hal.archives-ouvertes.fr/hal-00434185

P. Velasquez, J. D. Tidu, A. Bolle, B. Chevrier, P. Fundenberger et al., Sub-surface and surface analysis of high speed machined Ti???6Al???4V alloy, Materials Science and Engineering: A, vol.527, issue.10-11, pp.2572-2578, 2010.
DOI : 10.1016/j.msea.2009.12.018

P. Rabbe, H. P. Lieurade, and A. Galtier, Essais de fatigue -Partie I, 2000.

S. Sadananda, K. Vasudevan, and A. K. , Short crack growth and internal stresses, Behavior of metals under complex static and alternating stresses. Metal fatigue, pp.99-108, 1959.
DOI : 10.1016/S0142-1123(97)00057-1

S. Susmel, L. Taylor, and D. , Non-propagating cracks and high-cycle fatigue failures in sharply notched specimens under in-phase Mode I and II loading, Engineering Failure Analysis, vol.14, issue.5, pp.861-876, 2007.
DOI : 10.1016/j.engfailanal.2006.11.038

S. Susmel, L. Taylor, and D. , On the use of the Theory of Critical Distances to predict static failures in ductile metallic materials containing different geometrical features, Engineering Fracture Mechanics, vol.75, issue.15, pp.4410-4421, 2008.
DOI : 10.1016/j.engfracmech.2008.04.018

E. Takeuchi, Y. Furuya, N. Nagashima, and S. Matsuoka, The effect of frequency on the giga-cycle fatigue properties of a Ti-6Al-4V alloy, Fatigue & Fracture of Engineering Materials & Structures31, pp.599-605, 2008.

T. Taylor, D. Cornetti, P. Pugno, and N. , The fracture mechanics of finite crack extension, Engineering Fracture Mechanics, vol.72, issue.7, pp.1021-1038, 2005.
DOI : 10.1016/j.engfracmech.2004.07.001

D. Taylor, The theory of critical distances, Engineering Fracture Mechanics, vol.75, issue.7, pp.1696-1705, 2008.
DOI : 10.1016/j.engfracmech.2007.04.007

. Vallellano2003, C. Vallellano, J. Dominguez, A. Navarro, and Y. Verreman, On the estimation of fatigue failure under fretting conditions using notch methodologies, Fatigue <html_ent glyph="@amp;" ascii="&"/> Fracture of Engineering Materials and Structures, vol.197, issue.5, pp.469-478, 1985.
DOI : 10.1520/STP14731S

Q. Vu, D. Halm, Y. Nadot, L. Wagner, and R. J. Wanhill, Multiaxial fatigue criterion for complex loading based on stress invariants Mechanical surface treatments on titanium, aluminium and magnesium alloys, Environment and frequency effects during fatigue crack propagation in Ti?2.5Cu (IMI 230) sheet at room temperature. Corrosion-NACE 30, pp.1004-1014210, 1974.

C. M. Close and J. Beevers, The influence of grain orientation on the mode and rate of fatigue crack growth in??-titanium, Metallurgical Transactions A, vol.1, issue.6, pp.1007-1017, 1980.
DOI : 10.1179/000705973798321928

W. Weibull and W. , A statistical theory of the strength of materials, Roy Swed Inst Engng Res Report, vol.151, 1939.

P. Weißgraeber, J. Felger, D. Geipel, and W. Becker, Cracks at elliptical holes: Stress intensity factor and Finite Fracture Mechanics solution, European Journal of Mechanics - A/Solids, vol.55, pp.192-198, 2016.
DOI : 10.1016/j.euromechsol.2015.09.002

Y. Yamashita, Y. Ueda, Y. Kuroki, H. Shinozaki, and M. , Fatigue life prediction of small notched Ti???6Al???4V specimens using critical distance, Engineering Fracture Mechanics, vol.77, issue.9, 2010.
DOI : 10.1016/j.engfracmech.2010.04.001

Z. Zay, K. Maawad, E. Brokmeier, H. G. Wagner, and L. , Influence of mechanical surface treatments on the high cycle fatigue performance of TIMETAL 54M, Materials Science and Engineering: A, vol.528, issue.6, pp.62554-2558, 2011.
DOI : 10.1016/j.msea.2010.12.064

X. C. Zhang, Y. K. Zhang, J. Z. Lu, F. Z. Xuan, Z. D. Wang et al., Improvement of fatigue life of Ti???6Al???4V alloy by laser shock peening, Materials Science and Engineering: A, vol.527, issue.15, pp.153411-3415, 2010.
DOI : 10.1016/j.msea.2010.01.076

M. H. Zhou, Z. R. Kapsa, P. Vincent, and L. , Radial fretting fatigue damage of surface coatings, Wear, vol.250, issue.1-12, pp.1-12650, 2001.
DOI : 10.1016/S0043-1648(01)00672-X

J. H. Zuo, Z. G. Wang, and E. H. Han, Effect of microstructure on ultra-high cycle fatigue behavior of Ti???6Al???4V, Materials Science and Engineering: A, vol.473, issue.1-2, pp.1-2, 2008.
DOI : 10.1016/j.msea.2007.04.062

J. H. Zuo, Z. G. Wang, and E. H. Han, Fatigue Behaviour of Ti-6Al-4V Alloy in Vacuum and at Low Temperature, Advanced Materials Research, vol.41, issue.42, pp.41-42, 2008.
DOI : 10.4028/www.scientific.net/AMR.41-42.83