
HAL Id: tel-01735217
https://theses.hal.science/tel-01735217

Submitted on 15 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantics-Based Multi-Purpose Contextual Adaptation
in the Web of Things

Mehdi Terdjimi

To cite this version:
Mehdi Terdjimi. Semantics-Based Multi-Purpose Contextual Adaptation in the Web of Things. Web.
Université de Lyon, 2017. English. �NNT : 2017LYSE1315�. �tel-01735217�

https://theses.hal.science/tel-01735217
https://hal.archives-ouvertes.fr

No d’ordre NNT : 2017LYSE1315

THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée au sein de

l’Université Claude Bernard Lyon 1

École Doctorale ED512
Infomaths

Spécialité de doctorat : Informatique

Soutenue publiquement le 18/12/2017, par :

Mehdi Terdjimi

Adaptation Contextuelle
Multi-Préoccupations Orientée

Sémantique dans le Web des Objets

Devant le jury composé de :

Taconet Chantal, Maître de conférences (HDR), Télécom SudParis Rapporteure
Molli Pascal, Professeur, Université de Nantes Rapporteur
Laforest Frédérique, Professeure, Télécom Saint-Etienne Examinatrice
Gyrard Amélie, Chercheure Post-Doctorale, École des Mines de Saint-Étienne Examinatrice
Monteil Thierry, Professeur, INSA Toulouse Examinateur
Champin Pierre-Antoine, Maître de conférences (HDR), Université Lyon 1 Examinateur

Mrissa Michaël, Professeur, Université de Pau et des Pays de l’Adour Directeur de thèse
Médini Lionel, Maître de Conférences, Université Lyon 1 Co-directeur

2

UNIVERSITE CLAUDE BERNARD - LYON 1

Président de l’Université M. le Professeur Frédéric FLEURY

Président du Conseil Académique M. le Professeur Hamda BEN HADID
Vice-président du Conseil d’Administration M. le Professeur Didier REVEL
Vice-président du Conseil Formation et Vie
Universitaire

M. le Professeur Philippe CHEVALIER

Vice-président de la Commission Recherche M. Fabrice VALLÉE
Directrice Générale des Services Mme Dominique MARCHAND

COMPOSANTES SANTE
Faculté de Médecine Lyon Est – Claude
Bernard

Directeur : M. le Professeur G.RODE

Faculté de Médecine et de Maïeutique Lyon
Sud – Charles Mérieux

Directeur : Mme la Professeure C. BURIL-
LON

Faculté d’Odontologie Directeur : M. le Professeur D. BOURGEOIS
Institut des Sciences Pharmaceutiques et Bi-
ologiques

Directeur : Mme la Professeure C. VIN-
CIGUERRA

Institut des Sciences et Techniques de la
Réadaptation

Directeur : M. X. PERROT

Département de formation et Centre de
Recherche en Biologie Humaine

Directeur : Mme la Professeure A-M.
SCHOTT

COMPOSANTES ET DEPARTEMENTS DE SCIENCES ET TECHNOLOGIE
Faculté des Sciences et Technologies Directeur : M. F. DE MARCHI
Département Biologie Directeur : M. le Professeur F. THEVENARD
Département Chimie Biochimie Directeur : Mme C. FELIX
Département GEP Directeur : M. Hassan HAMMOURI
Département Informatique Directeur : M. le Professeur S. AKKOUCHE
Département Mathématiques Directeur : M. le Professeur G. TOMANOV
Département Mécanique Directeur : M. le Professeur H. BEN HADID
Département Physique Directeur : M. le Professeur J-C PLENET
UFR Sciences et Techniques des Activités
Physiques et Sportives

Directeur : M. Y.VANPOULLE

Observatoire des Sciences de l’Univers de
Lyon

Directeur : M. B. GUIDERDONI

Polytech Lyon Directeur : M. le Professeur E.PERRIN
Ecole Supérieure de Chimie Physique Elec-
tronique

Directeur : M. G. PIGNAULT

Institut Universitaire de Technologie de Lyon
1

Directeur : M. le Professeur C. VITON

Ecole Supérieure du Professorat et de
l’Education

Directeur : M. le Professeur A.
MOUGNIOTTE

Institut de Science Financière et d’Assurances Directeur : M. N. LEBOISNE

Remerciements

Cette thèse a été financée par l’Agence Nationale de la Recherche sous le numéro <ANR-13-INFR-012>.
Je tiens à remercier particulièrement Michaël Mrissa et Lionel Médini pour m’avoir donné l’opportunité
de faire cette thèse, qui a été pour moi le fruit d’échanges et d’expériences enrichissantes.

J’adresse mes sincères remerciements à Chantal Taconet et Pascal Molli, qui ont accepté de juger et
d’évaluer le travail que j’ai produit durant ces trois années de thèse. Je souhaite aussi remercier mes
examinateurs Frédérique Laforest, Amélie Gyrard, Thierry Monteil, ainsi que Pierre-Antoine Champin.

Enfin, je tiens à remercier mes proches, mon père, mon frère, ma soeur, Perrine, ainsi que Teemo, pour
m’avoir soutenu non seulement durant toute cette thèse, mais aussi durant toute ma vie. Cette thèse est
dédiée a ma mère, qui n’aura jamais douté de moi une seule seconde.

Semantics-Based Multi-Purpose Contextual
Adaptation in the Web of Things

Mehdi Terdjimi
PhD Thesis

4

Contents

Chapter 1 Introduction 9

1.1 The Web of Things . 10

1.2 The ASAWoO Platform . 12

1.3 Objectives & Plan . 14

Chapter 2 Multi-Purpose Context Modeling 17

2.1 Introduction . 17

2.2 State of the art on context modeling . 18

2.3 A Meta-Model for Context . 23

2.4 Building a Multi-Purpose Context Model in the Web of Things 26

2.5 A Multi-Purpose Context Model for Smart Agriculture . 27

2.5.1 Illustrative scenario . 28

2.5.2 Answering adaptation needs through context modeling 30

2.6 Synthesis and discussion . 33

Chapter 3 Multi-Purpose Contextual Adaptation 35

3.1 Introduction . 36

3.2 State of the art on Contextual Adaptation . 37

3.2.1 Contextual adaptation . 37

3.3 Multi-purpose adaptation in WoT applications . 42

3.3.1 Semantization step . 43

3.3.2 Transformation step . 44

3.3.3 Adaptation and Decision steps . 46

3.4 Avatar-based Contextual Adaptation Workflow . 49

3.5 Evaluation . 52

3.5.1 Accuracy . 52

3.5.2 Performance . 54

3.6 Discussion . 55

3.7 Conclusion . 56

Chapter 4 Multi-Purpose Adaptation Engine 57

5

6 CONTENTS

4.1 Introduction . 57

4.2 State of the art of adaptation rules design . 58

4.2.1 Generation of rules. 58

4.2.2 Reification and related techniques. 59

4.3 Meta-adaptation rule engine . 61

4.3.1 Generation of adaptation possibilities . 61

4.3.2 Score management . 62

4.3.3 Generation of adaptation rules . 65

4.4 Querying ranked adaptation possibilities . 66

4.5 Evaluation . 67

4.6 Synthesis and discussion . 71

Chapter 5 Web Reasoning Performance 73

5.1 Introduction . 74

5.2 State-of-the art on Web reasoning . 75

5.2.1 Reasoning in Web applications with OWL profiles. 75

5.2.2 Reasoning optimization approaches . 76

5.2.3 Incremental reasoning in RL. 76

5.2.4 Web-based reasoners . 77

5.3 Hybrid Location-Agnostic Reasoning . 78

5.3.1 Study of the influence of location on the reasoning process performance 78

5.3.2 Reasoner code location adaptation . 82

5.4 Tag-Based Reasoning . 86

5.4.1 Illustration with a smart home case study . 87

5.4.2 Tag-based Incremental Maintenance . 91

5.4.3 Complexity analysis and discussion . 95

5.4.4 Evaluation . 98

5.4.5 Implementation . 101

5.5 Conclusion . 102

Chapter 6 General Conclusion 105

Résumé

Le Web des Objets s’inscrit dans divers domaines d’application, tels que la domotique, les en-

treprises, l’industrie, la médecine, la ville, et l’agriculture. Il se présente comme une couche

uniforme placée au-dessus de l’Internet des Objets, afin de surmonter l’hétérogénéité des pro-

tocoles présents dans ces réseaux.

Une valeur ajoutée des applications Web des Objets est de pouvoir combiner l’accès à divers

objets connectés et sources de données externes avec des techniques standards de raisonnement

sémantique (RDF-S, OWL). Cela leur permet alors d’interpréter et de manipuler de ces données

en tant qu’informations contextuelles. Ces informations contextuelles peuvent être exploitées

par ces applications afin d’adapter leurs composants en fonction des changements dans leur

environnement.

L’adaptation contextuelle est un défi majeur pour le Web des Objets. En effet, les solutions

d’adaptation existantes sont soit fortement couplées avec leur domaine d’application (étant

donné qu’elles reposent sur des modèles de contexte spécifiques au domaine), soit proposées

comme composant logiciels autonomes, difficiles à intégrer dans des architectures Web et ori-

entées sémantique. Cela mène alors à des problèmes d’intégration, de performance et de main-

tenance.

Dans cette thèse, nous proposons une solution d’adaptation contextuelle multi-

préoccupations pour les applications Web des Objets, répondant à des besoins d’utilisabilité,

de flexibilité, de pertinence et de performance. Notre travail se base sur un scénario pour

l’agriculture numérique et se place dans le cadre de la plateforme orientée-avatar ASAWoO.

Premièrement, nous proposons un méta-modèle générique permettant de conçevoir des mod-

èles contextuels standards, interopérables et réutilisables. Deuxièmement, nous présentons

un cycle de vie du contexte et un workflow d’adaptation contextuelle, permettant la séman-

tisation de données brutes, ainsi que la contextualisation en parallèle durant l’exécution de

l’application. Ce workflow combine des données issues de sources hétérogènes, telles que

l’expertise du domaine, les documentations techniques des objets, les données de capteurs

et de services Web, etc. Troisièmement, nous présentons une méthode de génération de rè-

gles d’adaptations basées sur des situations contextuelles, permettant de limiter l’effort des

experts et concepteurs lors de l’élaboration d’applications adaptatives. Quatrièmement, nous

proposons deux optimisations pour le raisonnement contextuel : la première adapte la locali-

sation des tâches de raisonnement en fonction du contexte, la seconde améliore le processus de

maintenance incrémentale d’informations contextuelles.

Abstract

The Web of Things (WoT) takes place in a variety of application domains (e.g. homes, enter-

prises, industry, healthcare, city, agriculture...). It builds a Web-based uniform layer on top

of the Internet of Things (IoT) to overcome the heterogeneity of protocols present in the IoT

networks.

WoT applications provide added value by combining access to connected objects and exter-

nal data sources, as well as standard-based reasoning (RDF-S, OWL 2) to allow for interpreta-

tion and manipulation of gathered data as contextual information. Contextual information is

then exploited to allow these applications to adapt their components to changes in their envi-

ronment. Yet, contextual adaptation is a major challenge for the WoT. Existing adaptation solu-

tions are either tightly coupled with their application domains (as they rely on domain-specific

context models) or offered as standalone software components that hardly fit in Web-based and

semantic architectures. This leads to integration, performance and maintainability problems.

In this thesis, we propose a multi-purpose contextual adaptation solution for WoT appli-

cations that addresses usability, flexibility, relevance, and performance issues in such applica-

tions. Our work is based on a smart agriculture scenario running inside the avatar-based plat-

form ASAWoO. First, we provide a generic context meta-model to build standard, interoperable

et reusable context models. Second, we present a context lifecycle and a contextual adaptation

workflow that provide parallel raw data semantization and contextualization at runtime, using

heterogeneous sources (expert knowledge, device documentation, sensors, Web services, etc.).

Third, we present a situation-driven adaptation rule design and generation at design time that

eases experts and WoT application designers’ work. Fourth, we provide two optimizations of

contextual reasoning for the Web: the first adapts the location of reasoning tasks depending on

the context, and the second improves incremental maintenance of contextual information.

Chapter 1

Introduction

Decades ago, the outbreak of the first connected devices (computers, personal digital as-

sistants, smartphones, tablets, and other appliances) has marked the emergence of the In-

ternet of Things (IoT). This initiative was pushed by both academics and the industry, in

response to the increasing need for integrating various appliances on both the Internet and

local networks. By these means, applications are provided fast and substantial knowledge

that emerge from interactions with the users and connected devices, through data gath-

ering, sharing and publishing. Historically, the terms "Internet of Things" (IoT) came in

1999 from the Auto-ID Labs1, an international network of academic research laboratories

whose purpose was to connect various devices to the Internet through the usage of RFID,

QR codes, barcodes, and other means to identify objects. Since its advent, the term thing

gained a broad variety of synonyms. A thing could be either an object, a device, an appli-

ance, or an agent, depending on both the applicative context and the expertise field of IoT

solutions designers.

Despite the fact that devices are subject to hardware and software constraints, they are

able to augment their basic capabilities (memory, CPU, sensors and actuators) through

knowledge processing and sharing within connected devices networks. Augmented de-

vices have extended capabilities to realize complex tasks. This augmentation is achieved

through the composition and abstraction of basic capabilities, which are initially provided

on physical objects by the device manufacturers. Cyber-physical systems (CPS) tackles

limitations of devices to provide efficient real-time interactions, through the integration

of physical devices (the physical part) and software components (the virtual part) [Lee,

2008]. They rely on feedback loops in order to recursively impact physical and software pro-

1http://www.autoidlabs.org/

9

10 CHAPTER 1. INTRODUCTION

cesses all along the application lifecycle. CPS usually answer specific needs in particular

domains, such as biomedical and healthcare systems, smart grids and renewable energy

solutions [Baheti and Gill, 2011].

However, according to the Levels of Conceptual Interoperability Model (LCIM) de-

scribed in [Tolk and Muguira, 2003], most IoT solutions lack technical, syntactic, and se-

mantic interoperability. First, they use different data transfer protocols and data formats,

which are sometimes both proprietary. Second, they have different meanings and inter-

pretations for the data they manipulate. This leads to proprietary silos, i.e. to complex and

hardly reusable applicative solutions. The Web of Things (WoT) was recently designed to

deal with such issues. It relies on Web technologies and standards to support interactions

between things. The ambition of the WoT is to provide a layer on top of the IoT, where

things can be involved in software applications in a standardized, interoperable and secure

manner2 through Web standards.

1.1 The Web of Things

The number of connected devices grew considerably since their advent. According

to [Gubbi et al., 2013], the number of interconnected devices is expected to reach 24 billions

by 2020. Although this is an opportunity for companies to rapidly gain profit through IoT

technologies, the increasing number of connected devices leads to even more heterogeneity

within appliances, in both syntactic and semantic terms. This ends up with complex device

integration problems on IoT platforms, due to the lack of standardization and proprietary

silos. Hence, these problems greatly weakens the (re)usability potential of devices and IoT

application architectures, as application designers are forced to continuously learn how to

operate similar devices from different manufacturers for identical tasks. For these reasons,

recent advances in IoT research aim to exploit the potential of the Web 1) to avoid “reinvent-

ing the wheel”, by taking advantage of already proven standards and technologies (HTTP

protocol and verbs, REST architectural principles [Fielding, 2000], hypermedia, Semantic

Web representation and reasoning, Web RTC, Websockets, JSON serialization, etc.), 2) to

solve the interoperability issues caused by IoT silos, and 3) to gather information from the

Web, which in turn produces additional knowledge for both application users and compa-

nies.

2https://www.w3.org/WoT/

1.1. THE WEB OF THINGS 11

Integrating things on the Web. In 2002, the authors of the CoolTown project [Kindberg

et al., 2002] proposed to link physical objects with a Web page through Uniform Resource

Identifiers (URIs). Following this, the year 2005 has been marked with several efforts and

propositions on using Web standards such as SOAP [Thompson, 2005] for the IoT. Solutions

like OASIS [Dolin, 2006] have been proposed, with the intent to resolve interoperability is-

sues. OASIS relies on the SOAP/XML specification to allow for communication between

devices. Some other following projects and research in the field have attempted to exploit

the potential of REST to provide generic, reusable and flexible Web-based architectures.

For instance, Luckenbach et al. designed TinyREST [Luckenbach et al., 2005], a Protocol for

Integrating Sensor Networks into the Internet. TinyREST is based on an REST-like architec-

tural concept, applied to sensors and actuators, using limited verbs: GET (to access device

status and component values), POST (to command sensors and accuators) and SUBSCRIBE

(to register to specific services, for further event notification). In [Wilde, 2007], Wilde pro-

posed to integrate things into RESTful architectures, to provide substantial advantages over

state-based applications. Using REST as the toolbox to build universal APIs for embedded

devices illustrates Guinard and Trifa’s view of the WoT [Guinard et al., 2010].

Things may also provide different representations of themselves through HTTP content

negotiation, depending on the needs: it could be HTML for human browsing of things, or

JSON for data exchange, as proposed in Sun SPOT [Guinard et al., 2011]. In this project,

resources are accessed and manipulated via RESTful Web Services using four HTTP verbs:

GET for resource representation, PUT for resource updating, POST for subscribing to a rule

(for change notifications) and DELETE to shutdown a node or unsuscribe to a rule. More

recently, Mrissa et al. have proposed in [Mrissa et al., 2014c] a classification of physical

objects, from the basic object with no sensor nor resource to the resourceful object, capable

of embedding his virtual representation, without the requirement to be connected to the

Internet. This consideration allows things to be referenced by an URI even though they do

not possess any RFID tag, barcode, nor QR-code. Hence, the representation of the thing is

obtainable through an HTTP GET request on its URI.

The Semantic Web and the WoT. The Semantic Web is a strong opportunity for the

WoT, as semantics and reasoning capabilities brings additional information and provides

“intelligent” behavior for things, in a standardized manner. In WoT applications, anything

(including things) could be semantically annotated using description logics (DL) such as

RDF [Manola et al., 2004], RDF Schema [Brickley et al., 2014] and OWL 2 [Hitzler et al.,

2009]). On the whole, OWL – which is built over RDF – provides more expressivity than

12 CHAPTER 1. INTRODUCTION

RDF and RDFS by means of the concepts of classes and property types, and allows rep-

resenting any knowledge as ontologies. Hence, current applications could solve many

semantic interoperability issues by the means of ontologies to describe the domain, the

participants and the processes, using recommended ontologies, following ontology design

patterns [Gangemi and Presutti, 2009], and relying on ontology mappings [Euzenat et al.,

2007, Kalfoglou and Schorlemmer, 2003].

The WoT nowadays. As of today, the WoT offers numerous benefits. First, it provides

reusable platforms, technologies and user interaction techniques. Second, it eases appli-

cation development and reduces time-to-market for applications. Third, it bridges the gap

between the virtual and the physical worlds by providing a representation and access to

any kind of thing in a generic way, as Web resources. To provide such benefits, existing

WoT applications rely on Web standards, among which the exposition of things as REST-

ful resources [Fielding, 2000] and semantic descriptions of these resources with DL as ex-

plained previously. WoT standards thus define semantic vocabularies (Thing Description3)

and programming interfaces (servient4, scripting API5) reused in projects to design actual

WoT applications. Recently, [Mrissa et al., 2015] proposed a WoT application framework

called ASAWoO. ASAWoO comes with the notion of avatar, to allow for the integration of

semantic reasoning within servient-like interfaces [Médini et al., 2016]. By these means,

ASAWoO claims its intention to bridge the gap between the Web and Semantic Web.

1.2 The ASAWoO Platform

The current issues with CPS and classic IoT Machine-to-Machine (M2M) paradigms is the

lack of flexibility and reusability of their architectures. To this end, ASAWoO – which stands

for “Adaptive Supervision of Avatar/Object Links for the Web of Objects” – consists in a

WoT platform that aims to connect devices (objects) together in reusable, comprehensive

and well-architectured WoT applications. The purpose of the ASAWoO platform is to an-

swer different concerns in WoT applications. These concerns include discovering function-

alities from physical devices API, composing of complex applications, filtering of inade-

3https://www.w3.org/WoT/IG/wiki/Thing_Description
4https://w3c.github.io/wot/architecture/wot-architecture.html#general-description-of-wot-

servient
5https://www.w3.org/WoT/IG/wiki/Web_of_Things_scripting_API

1.2. THE ASAWOO PLATFORM 13

quate functionalities (with respect to various QoS concerns), providing disruption-tolerant

networks and relying on multi-agent organization and coalitions to achieve collaboration

between objects.

ASAWoO is based on the concept of avatar, which represents the software part attached

to an object in a CPS-inspired approach. It embeds the components that implement the

previous concerns required for the thing to participate in WoT applications through stan-

dard Web interfaces. Avatars expose the objects high-level functionalities to clients (users

or other avatars) inferred from the physical capabilities of objects (i.e. their APIs) using a

semantic approach. The functionalities directly inferred from capabilities are called atomic

functionalities, whereas functionalities that are composed by other ones are called composite

functionalities. Some functionalities may be local to an avatar (i.e. directly implemented by

the device) or collaborative (i.e. requires other avatars to complete the missing functionali-

ties it is composed of). The avatar architecture includes various components and managers

detailed in Appendix A, which handle specific concerns.

To perform the tasks described hereafter, avatar managers have specific responsibili-

ties within the WoT application lifecycle. The Local Functionality Manager must choose

the suitable capabilities to implement an atomic functionality, the Collaborative Function-

ality Manager sets up collaborative functionalities with suitable avatars, the Functionality

Deployment Manager has the responsibility of migrating functionality code modules in

suitable location, and the Applicative and Network Protocol Managers are in charge of

switching appropriate protocols. The choices made by each of these managers (i.e. func-

tionality implementation, composition and exposition, code deployment, communication

protocols) depends on the context. For this reason, the ASAWoO platform includes an ad-

ditional component – the Context Manager – which is in charge of filtering these choices to

provide adaptation for several concerns.

Contextual adaptation in ASAWoO. For managers to take appropriate decisions to an-

swer a concern is not straightforward: many options coexist, and some options should

not be chosen due to user preferences, security (which includes both physical and cyber

threats), quality-of-service (QoS), or other policies. To both find the optimal choices and

block inconvenient functionalities at runtime, avatars must be aware of the context. As

such, WoT applications are strongly dependent to the context, and require adaptation in

order to provide the most favorable decisions all along their lifecycle. For these reasons,

avatars require an additional component – the Context Manager – to reason about contex-

tual information, in order to give optimal and viable decisions to other managers, providing

14 CHAPTER 1. INTRODUCTION

adaptation for WoT applications for each concern. To perform all these adaptation tasks,

we aim to provide contextual adaptation in WoT applications by means of Semantic Web

concepts and technologies.

1.3 Objectives & Plan

WoT applications are built in a same fashion. Hence, they have common adaptation require-

ments: they need to adapt their communications protocols, their functionalities6, as well

as their collaborative setups. In ASAWoO, the avatars managers are in charge of dealing

with various concerns in conjunction with the Context Manager, which allows suggesting

the optimal decisions for these concerns.

In this respect, the contextual adaptation for WoT applications requires a novel approach,

which raises several research questions. The objectives to the thesis are the following:

• Provide standard, interoperable and reusable adapative WoT solutions, by fully taking

advantage of Web technologies

• Provide generic, extensible and multi-concern adaptation processes with the multi-

tude of applications and scenarios

• Ease and speed up the design process of adaptive solutions in WoT applications

• Provide efficient adaptation processes in WoT environments at runtime

In this thesis, we deal with the objectives enumerated previously through the following

scientific contributions:

1) A generic context meta-model for WoT applications. This context meta-model aims

to unite state-of-the-art context modeling with cross-cutting adaptation concerns, us-

ing semantic annotations to allow for standard-based RDF-S and OWL reasoning on

contextual information.

2) A context lifecycle and an adaptation workflow that provide parallel raw data se-

mantization and contextualization at runtime. The context lifecycle deals with data

6Although the notion of functionality differs across platforms, the issue of adapting the them to several changes
in the environment is common to any application.

1.3. OBJECTIVES & PLAN 15

transformation, from the raw data transmission to the adaptation decision. The adap-

tation workflow deals with data integration (i.e. when contextual data is pushed to

the avatar) and query answering (i.e. when the avatar managers send a purpose-based

adaptation question to retrieve the optimal adaptation possibilities), by using simple

SPARQL queries in conjunction with an incremental reasoner.

3) An implementation that generates adaptation rules at design time. This solution

relies on information about the context model components and the application in-

frastructure to generate adaptation rules at design time. These adaptation rules infer

adaptation scores to ensure optimal adaptation decision.

4) Two optimizations of contextual reasoning for the Web. The first optimization

aims to take advantage of contextual information and the purpose-based adaptation

methodology to provide an adaptive reasoning process, using a location-agnostic in-

cremental reasoner. The second optimization aims to reduce the overhead of the in-

cremental maintenance overdeletion step through fact-tagging.

This thesis is organized as follows. In Chapter 2, we present a general state-of-the art on

context modeling, detail our contribution on multi-purpose contextual modeling through

the concept of context meta-modeling, and present a sustainable agriculture scenario that will

be used thorough this thesis to illustrate our contributions. In Chapter 3, we present our

contribution on multi-purpose contextual adaptation and detail a contextual lifecycle along

with its adaptation workflow to be used in WoT applications. In Chapter 4, we describe how

to build and generate ranked adaptation rules using information about the context model.

In Chapter 5, we tackle optimization issues in semantic reasoning that impact the contextual

adaptation process. We present the two contributions to improve contextual reasoning

described above. We conclude this thesis in Chapter 6 and discuss future challenges in

semantics-based contextual adaptation for the WoT.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Multi-Purpose Context Modeling

Contents

2.1 Introduction . 17

2.2 State of the art on context modeling . 18

2.3 A Meta-Model for Context . 23

2.4 Building a Multi-Purpose Context Model in the Web of Things 26

2.5 A Multi-Purpose Context Model for Smart Agriculture 27

2.5.1 Illustrative scenario . 28

2.5.2 Answering adaptation needs through context modeling 30

2.6 Synthesis and discussion . 33

2.1 Introduction

The Web of Things (WoT) takes place in various domains such as homes, enterprises, in-

dustry, healthcare, city or agriculture. It builds a Web-based uniform layer on top of the

Internet of Things (IoT) to overcome the heterogeneity of protocols present in the IoT net-

works. To react to changes in their environment and exhibit context-adaptive behavior,

WoT applications need relevant context models. WoT applications provide added value

by combining access to connected objects and external data sources (i.e. Web services), as

well a standard-based reasoning (RDF-S, OWL 2) in order to interpret and manipulate the

17

18 CHAPTER 2. MULTI-PURPOSE CONTEXT MODELING

gathered data as contextual information. As a consequence of the diversity of use-cases

and applications, numerous domain-specific models relying on different formalisms and

reasoning mechanisms have been designed [Perera et al., 2014]. However, a single context

modeling framework for WoT apps is still missing. To provide cross-domain and interoper-

able context models, an accurate description and exploitation of WoT application require-

ments and adaptation purposes is needed. In this chapter, we present a state of the art

on context modeling, propose a context meta-model that allows designing context mod-

els to solve purposes that are common to any WoT application domain, and illustrate this

contribution in a smart agriculture scenario.

2.2 State of the art on context modeling

Related work in context awareness rely on various context models. In the literature, authors

usually group context information of the same type together, and some of them categorize

these groups as contextual dimensions. The following state of the art on context modeling ex-

plores and analyses different concerns, from concrete representations to abstract and high-

level considerations about context.

Context in the physical world. In [Abowd et al., 1999], the authors identify the context

as any information that answers the questions Where, Who, When and What, which compose

the physical world of entities (i.e. things and users). The physical world is one of the main

components of former and current state of the art context models. It includes the environ-

ment, the physical characteristics of entities, their activities and their surroundings. Such

context models rely on geospatial data and information about physical entities. Various ap-

plications exploit these aspects, from user assistants to custom web content based services,

but use different representations of context.

PARCTAB [Schilit et al., 1993] uses three pieces of contextual information: Date and

Time, Location and Co-location (i.e. what is nearby). [Schmidt, 2003] presents a three-

dimensional context, composed of the Environment (physical and social), Self (device

state, physiological and cognitive considerations) and the Activity (behavior and task).

In [Zimmermann et al., 2007], the authors object to the three-dimensional context proposed

in [Schmidt, 2003] as “the Self dimension introduces a relation of the context to one specific entity

[...] which lacks an approach of how his model would capture a setting comprised of many interact-

2.2. STATE OF THE ART ON CONTEXT MODELING 19

ing entities”, according to them. For these reasons, they extend this model by adding the

Relations dimension. They also use the Location and the Time dimensions instead of the

Environment proposed in [Schmidt, 2003]. In [Abowd et al., 1999], Dey and Abowd con-

sider the Environment dimension as a redundant information, as they see it as a synonym

for context. For this reason, they propose to replace Environment by Activity. They also

exclude Schilit’s nearby consideration [Schilit et al., 1994], because it overlaps the Location

and the Identity dimensions. This way, these two dimensions can be used separately, so

that information used to either locate or identify a thing can be realized independently.

More recent works rely on the Environment and the Activity (i.e. user-related) dimen-

sions. This the case for the Context-Aware Web Browser [Cop, 2010], which allows auto-

matic retrieval and constant update of the contextual information gathered from the phys-

ical world. They rely on context descriptors using the Location, Time, Activity, Posture and

Privacy dimensions, as well as information that characterize the context itself (Probability,

Importance, Description and Name).

Context at the communication layer. Quality of service, privacy and security concerns

motivate the usage of context for the communication between objects. Indeed, such infor-

mation allow to use the suitable protocols, network topologies and access control policies,

to deal with resource-constrained networks [Raverdy et al., 2006]. Gold and Mascolo [Gold

and Mascolo, 2001] use context for mobile peer-to-peer (P2P) networks. They use comput-

ing resources (availability, remaining battery power) and network information (services

in reach, distances) to optimize the P2P network routing structure. The Context-aware

Adaptive Routing (CAR) system [Musolesi and Mascolo, 2009] includes dynamic infor-

mation in its context model, such as the change rate of connectivity, i.e. the number of

(dis)connections a host experienced over a certain time.

In distributed architectures, Mascolo et al. [Mascolo et al., 2002] characterize two types

of network connection: permanent, via continuous high-bandwidth links, or intermittent,

when encountering disconnections due to unpredictable failures. In intermittent networks,

the performance of wireless networks may vary depending on the protocols and technolo-

gies being used.

In a similar manner, Wei et al. [Wei et al., 2006] identify and separate static context

from dynamic context. Static information is the user’s profile and history, the location of

network access points, the capacities and the services of the network, as well as its policies.

Dynamic information is related to location prediction and status, and current load of the

network. Static context and dynamic context is also used in service discovery applications,

20 CHAPTER 2. MULTI-PURPOSE CONTEXT MODELING

such as the Multi-Protocol Service Discovery and Access (MSDA) middleware [Raverdy

et al., 2006]. This middleware provides accurate routing for service discovery, using static

parameters such as the type of network, the supported protocols, the security levels, etc. It

also uses dynamic parameters, such as the number of active users and available services,

the current data load, and the control policies (i.e. incoming and outgoing messages in the

network).

Context in the application architecture. The choice and usage of context strongly

depends on the application itself. Designed context models are therefore highly spe-

cific [Abowd et al., 1999], yet necessary to answer its functional needs accordingly. In the lit-

erature, the context is used to describe various application architectures, from Web-service

based to groupware and collaborative systems. They sometimes use aspect-oriented mod-

els as a solution to properly separate the information concerning the application-core from

its business logic.

According to both [Gensel et al., 2008] and [Chaari et al., 2005], the application core must

be designed separately from the context information and its processing engine. In [Chaari

et al., 2005], Chaari et al. define the context for applications as “the application’s exter-

nal parameters which impacts its behavior, defining new views for its data and services”.

They propose five dimensions: Communication, User, Terminal, Location and Environ-

ment. The modularized approach from [Munnelly et al., 2007] address the problem of

“tangled code”, using aspect-oriented approach and context information. They context

model includes eight dimensions: Device, Location, User, Social, Environmental, System,

Temporal and Application-specific. In this approach, Device, Location, Temporal, Environ-

ment and Social dimensions are similar to Schmidt’s [Schmidt, 2003] as they are based on

his earlier work [Schmidt et al., 1999].

In their survey [Truong and Dustdar, 2009], Truong and Dustdar show that Web-service

based applications use similar dimensions as groupware and collaborative systems, such

as the Activity/Task, the Team and the Machine/Device dimensions. ESCAPE [Truong

et al., 2007] and inContext [Truong et al., 2008] separate the device from the application by

using the Service/Application dimensions.

According to Euzenat et al., [Euzenat et al., 2008], context may have different represen-

tations for a same situation. They believe that context models must enable the aggregation

and separation of context, to allow for context sharing between the application components.

Coutaz et al. [Coutaz et al., 2005] categorize the context in different layers: the Sensing layer

(numeric observables), the Perception layer (symbolic observables) and the Situation and

2.2. STATE OF THE ART ON CONTEXT MODELING 21

Context Identification layer (conditions for moving between situations and contexts). The

Thing-REST architecture [He et al., 2012] separates the context in two categories: the Se-

mantic context (human knowledge about the thing, static and predictable) and the Sensing

context (dynamically changeable and unpredictable knowledge, gathered from sensors).

In their system, each piece of information is reused across Web services. This supports the

view from [Euzenat et al., 2008, Coutaz et al., 2005, He et al., 2012] of a shared, accessible,

separated and aggregated context within the application.

Context for application users. Some of the literature relies on context information about

the user to adapt the applications behavior. This type of information is usually combined

with information about the physical world to extract additional useful information about

the user’s context, to improve the applications features. This is the case for the Conference

Assistant [Dey et al., 1999], which uses different context information, depending on their

level of privacy: the public context (location, time, presentation’s keywords, people pre-

senting, media used) the user’s context (time they entered or exited a room, their location,

the questions they asked, and the elements from slides that are pointed out), as well as the

other users’ context (their presence and the question they asked in presentations).

Context has also been used to provide accurate and adapted content to the user itself.

This is the case for the query recommendation system from [Cao et al., 2008, Cao et al.,

2009], which store user sessions (search queries and click-through) and use it as context

information. The query-ranking systems from [Xiang et al., 2010] relies on the consecu-

tive user query reformulations and query specialization/generalization. The query auto-

completion system from [Arias, 2008] uses human and device related dimensions (User

profile, Device and Browser) as well as physical-related dimensions (Geospatial, Envi-

ronment and Date/Time) to provide accurate suggestions. The recommendation system

from [Yu et al., 2006] relies on three contextual information: the user media preferences,

the user situation and the terminal capability (which contains the bandwidth status and

the device supported media). The work from Alti et al. in [Alti et al., 2012] consists in a

environment-based media content adaptation in the context of mobility. They propose a

context model based on four dimensions: User (profile, preferences), Mobile Device, Doc-

ument (format) and Service (QoS, role).

Groupware systems also rely on the user’s context to adapt their behavior. In [Kirsch-

Pinheiro et al., 2004], the authors rely on the user’s preference. They propose a context

model for groupware systems, using five dimensions: Space (physical location), Tool (de-

vice and application), Time (group calendar), Community (referring to the concepts of

22 CHAPTER 2. MULTI-PURPOSE CONTEXT MODELING

group, users and roles) and the Process viewpoint (activities with shared objects, handled

by the group). They also represent user profiles, using the user’s preferences and the con-

straints to be satisfied by the system for a group member, a role or a device. This approach

confronts the current user context and the profiles and situations in which they are valid,

i.e. the application context [Kirsch-Pinheiro et al., 2006].

Context in social computing. In social computing, entities that interact with the appli-

cation are not only the devices, but also the users themselves. Related work relies on the

cognitive and organizational aspects of the context, to improve decision making in multi-

agent systems.

In the domain of artificial intelligence, the lack of an operational definition of con-

text explains several failures in knowledge based systems, according to Brézillon and

Pomerol [Brézillon and Pomerol, 1996]. In [Brézillon, 1999], the author state that “these prob-

lems concern the exclusion of the user from the problem solving, the misuse and lack of knowledge-

based systems and the impossibility to generate relevant explanations”. He explains the lack of

consensus behind the definition of context in the literature. To deal with this problem in

context modeling, Brézillon describes the context at different levels: static or dynamic knowl-

edge, respectively any constant knowledge or changing knowledge through the whole inter-

action, and contextual or contextualized knowledge, respectively the explicit knowledge or the

implicit knowledge that intervenes in the problem solving. He defines context as a shared

knowledge space that is explored and exploited by agents in the interaction. Contexts can

then be organized into a hierarchy, by creating a higher-level context from already existing

ones. Shared knowledge includes elements from the domain, the users, their environment

and their interaction with the system.

In [Bucur et al., 2005], the authors identify the Environmental context of an agent and the

Organizational context resulting from their interactions. They define context as “a finality,

and the set of attributes that are relevant for that finality”. Much like Brézillon [Brézillon,

1999], each agent has its own context and can share his knowledge through its interactions.

Brézillon and Pomerol [Brézillon and Pomerol, 1999] separate this knowledge in three cat-

egories: proceduralized knowledge, the shared knowledge between agents involved in the de-

cision making step that is used directly for the problem solving, contextual knowledge, the

implicit knowledge that influences the problem solving and external knowledge, the knowl-

edge known by involved agents but that is not used in the current decision making step.

The dynamic context comes from switching between proceduralized and contextual knowl-

edge. Hence, between each decision making step, pieces of contextual knowledge becomes

2.3. A META-MODEL FOR CONTEXT 23

either procedural or external, and vice versa. Brézillon identifies in [Brézillon, 2003] the fol-

lowing information to build this knowledge: the Domain, the User, the Environment and

the Interactions. In [Bazire and Brézillon, 2005], Bazire and Brézillon propose a context

model that represents the components of a situation. A situation is defined by an User, an

Item in a particular Environment, and an Observer, where each of them interferes with a

related context.

Synthesis on context modeling state of the art. The related work highlights the diver-

sity and complexity of context. The purpose of this classification is to illustrate the variety

of each type of contextual information, to exhibit their characteristics in a more comprehen-

sive manner. In this state of the art, each work proposes a unique combination of device,

user, network, and application-specific context elements.

First, the distinction between static and dynamic contexts [Wei et al., 2006, Raverdy et al.,

2006, Brézillon, 1999] or semantic and sensing contexts [He et al., 2012] is mostly related

to the intrinsic characteristics of context data and its processing, rather than to the data

itself and its semantics. Second, some dimensions can be derived from other dimensions,

such as the “Nearby” dimension proposed in [Schilit et al., 1994] because of its redun-

dancy discussed in [Abowd et al., 1999]. There is also a redundancy between the Tool, Item

and Device dimensions. Thus, even though the current applications solve similar issues

(communication, organization, software architecture, functional aspects...), the traditional

semantic heterogeneities can still be found between context models, such as polysemy and

heteronymy.

Hence, reusing information from the literature to build context models and provide

adaptation for applications is not straightforward. In the following sections, we propose

a solution to this issue by formalizing the components of context-based models through a

meta-model, which allows for reusing and combining contextual information with adapta-

tion purposes.

2.3 A Meta-Model for Context

In the previous state-of-the-art, we saw that applications use different set of contextual di-

mensions, but may require adaptation for similar concerns. We can assume that contextual

24 CHAPTER 2. MULTI-PURPOSE CONTEXT MODELING

dimensions vary across application domains, while concerns vary across platforms but are

domain-independent. Hence, it could be useful to consider these concerns as part of the

context model.

To avoid the redefinition of specific contextual dimensions, allow the instantiation of

reusable domain-specific context models, and solve the current polysemy and heteronymy

issues in context modeling, we propose a meta-model for context applications running

inside component-based platforms. This meta-model relies on domain-independent con-

cerns and promotes the usage of identical reasoning mechanisms for any application do-

main, through common ontological concepts. The meta-model produces multi-purpose

context models using both contextual dimensions and adaptation purposes (i.e. concerns)

defined hereafter. This work has been published in [Terdjimi et al., 2016b].

Contextual Instance

A contextual instance i is a high-level piece of contextual information. It is a fact about a

particular context parameter, chosen among a predefined set of instances. In our work,

contextual instances can be either inserted at design time as semantic information by WoT

application designers (e.g. user preferences, regional settings, device static information,

etc.) or inferred at design time from raw sensor data using rule-based semantic reasoning.

We group these contextual instances in thematic sets called contextual dimensions.

Definition 1 (Contextual Instance) i ∈ I where I is a predefined set of instances.

Contextual Dimension

A contextual dimension d represents the set of contextual instances needed for any adap-

tation purpose, regarding a given type of observation (temperature, location, etc.).

Definition 2 (Contextual dimension) d = {id}, d ∈ D
where D is the set of available observations that are relevant for the application.

Adaptation Purpose

WoT application execution rely on different types of adaptation we call adaptation purposes.

Adaptation purposes are designed to be domain-independent, to perform all types of adap-

2.3. A META-MODEL FOR CONTEXT 25

tations required by the platform components. An adaptation purpose ap represents the set

of contextual instances related to a certain type of adaptation, for a given concern. The

set AP of adaptation purposes covers the different concerns to adapt, among which the

application domain, the users’ preferences, the platform architecture, etc. In the ASAWoO

project, the different managers that compose the avatar architecture require five adaptation

purposes, discussed in Section 2.4 hereafter.

Definition 3 (Adaptation purpose) ap = {iap}, ap ∈ AP
where AP is the set of adaptation purposes required by the platform components.

Contextual Situation

Contextual situations consist in sets of contextual instances that may belong to different

adaptation purposes, i.e. subsets of an instantiated context model.

Let i be a contextual instance, ap ∈ AP be an adaptation purpose, and d be a contex-

tual dimension. A contextual situation ς is a subset of an instantiated context model that

characterizes a salient situation identified by domain experts.

Definition 4 (Contextual situation) ς = {ij,k}
where j ∈ AP ∪ ∅ and k ∈ d ∪ ∅

Multi-purpose Context Model

Contextual dimensions and adaptation purposes are the main components of the context

meta-model, which are used to build multi-purpose context models. At adaptation solution

design time, WoT application designers discuss with domain experts to determine the ap-

propriate contextual dimensions and adaptation purposes composing the context model, as

well as the contextual instances that will populate the model at runtime. A multi-purpose

context model (or simply “context model”)M is a two-dimensional set of contextual in-

stances corresponding to both adaptation purposesAPM and contextual dimensionsDM.

Within a given modelM, dimensions and adaptation purposes are respectively disjoint in

DM and APM.

Definition 5 (Multi-Purpose Context model) M = APM ×DM = {iapM,dM}
where apM ∈ APM and dM ∈ DM.

26 CHAPTER 2. MULTI-PURPOSE CONTEXT MODELING

The context meta-model presents the following advantages. First, it allows high flexi-

bility for WoT application designers when building their adaptive solution, as there is no

restriction in the number of dimensions to compose the context model. Second, all the

models will follow the same description language (DL) thus allowing any standard-based

semantic reasoner to be applicable for the adaptation. Third, the purpose/dimension view

can be reused differently according to a WoT application settings, or even between several

WoT applications.

2.4 Building a Multi-Purpose Context Model in

the Web of Things

WoT applications are composed of various connected devices that communicate between

each other to achieve a common goal through different (sub-)tasks. They require an appro-

priate contextual adaptation process that must be executed at runtime. This process con-

sists in answering adaptation questions based to concerns that are common to all domains,

such as communication protocols, computing resources, etc. In ASAWoO, the adaptation

engine relies on semantic reasoning to answer such questions. We symbolize ASAWoO spe-

cific concerns by five adaptation purposes listed hereafter. These purposes are illustrated

in the scenario described in the next section (Section 2.5).

1. (Imp) Which appliance local capability should be involved in a given high-level

functionality? Physical devices provide several low-level capabilities that can be used

by its avatar to compose high-level functionalities [Mrissa et al., 2015]. In case several

possible compositions can fulfill the same functionality, the avatar must choose the

best way to achieve this functionality.

2. (Comp) Which functionalities should be involved in a given high-level functional-

ity composition? When several avatars manage to reach an agreement and propose

a to compose a functionality, issues similar to the previous concern arise. If a given

avatar proposes several times the same functionality, it must choose which one is the

best candidate to achieve a composite functionality. A composite functionality can

either be a local functionality (composed by a single object), or a collaborative func-

tionality (i.e. composed by different objects).

2.5. A MULTI-PURPOSE CONTEXT MODEL FOR SMART AGRICULTURE 27

3. (Exp) Which functionality should be exposed to clients (in applications) and other

avatars (for collaboration)? Deducing that several capabilities or functionalities can

technically be composed to achieve a higher-level functionality does not mean that

this functionality should actually be proposed to the user or to other avatars. It may

not be physically suitabke for several reasons (cyber and physical security, privacy,

etc.). This is an adaptation decision that avatars have to take and update at every

context change.

4. (Prtcl) Which protocols should the application use to communicate with connected

devices? The adaptation of communication protocols depends on the task to perform.

They must be adapted for wirelessly connected and mobile objects. In disruptive en-

vironments, adequate protocols must be chosen for avatars to fulfill a given function-

ality [Médini et al., 2016].

5. (Code) Where should the application code be executed? Application code modules

may be executed on the device for resourceful devices (i.e. that have processing capa-

bilities) or on a cloud infrastructure (e.g. for intensive calculations). Before executing

them, avatars must choose to load code modules on the appropriate locations.

The different types of contextual information needed by the application impacts the

choice of contextual dimensions and instances; however, each information type cannot be

formally linked with adaptation purposes. Indeed, the linkage of purposes and types of

information is subjective, as it depends on the application domain and may vary accord-

ing to the actors of the considered application. Still, they provide directions to choose the

contextual dimensions appropriately, depending on the application.

2.5 A Multi-Purpose Context Model for Smart

Agriculture

In the ASAWoO platform, each physical object functionality is exposed as a RESTful service.

This platform should be able to activate or deactivate functionalities at runtime, depend-

ing on the context. Along with the choice of exposition, the context influences the choice of

communication protocols, the location of applicative modules and the possible functional-

ity compositions for collaborative setups. To illustrate all these concerns, we base our work

28 CHAPTER 2. MULTI-PURPOSE CONTEXT MODELING

on the following sustainable agriculture scenario.

2.5.1 Illustrative scenario

In [Médini et al., 2016], we have presented a vineyard-watering application, which is the

basis of our work in the ASAWoO platform. This application allows detecting parts of

the field that need to be watered, while taking environmental conditions into account. A

WoT infrastructure hosts this application, which includes a cloud infrastructure, several

wireless gateways as well as an irrigation system composed of geolocated watering agribots

(i.e. robots used in smart agriculture) and drones that embed a GPS sensor and a thermal

camera. Drones and agribots have the ability to move over (respectively across) the field

to detect watering needs (respectively to water) given parts of the field, as illustrated in

Figure 2.1

Figure 2.1: Illustration of the vineyard-watering application.

Application setup. Several sensors are placed on each part of the field. These sensors

consist in an anemometer, a thermometer and a pluviometer to sense actual weather con-

ditions. Drones possess a thermo-sensing camera, a CPU to process field images, and are

equipped with a GPS sensor, a Wifi and a Bluetooth network interfaces. Drones are able

to sense their hardware status, such as battery level, storage capacity, CPU usage, and stor-

age space. In the WoT platform, complex processing tasks can be be executed either on the

cloud platform, or on the device itself. Thus, if a drone cannot process a picture due to

2.5. A MULTI-PURPOSE CONTEXT MODEL FOR SMART AGRICULTURE 29

limited memory or high CPU usage, it sends the picture to the platform to fulfill the task.

The platform then communicates with the suitable agribots to take care of the parts that

lack watering. Other devices consist in a central computer connected to the Internet to host

the WoT platform, as well as a tablet allowing users to remotely monitor the system.

Functionality hierarchy. A WoT application is designed as a hierarchy of functionali-

ties. In this scenario, the WateringApp functionality is on top of it. The latter is com-

posed of Watering, an atomic functionality implemented by the Sprinkler capability, and

WateringNeedsDetection, a composite functionality composed of the atomic functional-

ities PictureTaking, OutdoorMotion and PictureProcessing. The PictureProcessing func-

tionality includes image processing algorithms, and is in charge of transferring pictures

when needed. that pictures, and allows transferring picture . PictureProcessing allows

While OutdoorMotion and PictureProcessing can be implemented only with respectively

the Motor and the PictureProcessor capabilities, the PictureTaking functionality can be

implemented either by a high-definition camera (HDCamera capability) or a cheaper but

lower definition camera (LowResCamera capability).

Figure 2.2: Functionalities composition and implementation for the watering application.

The hierarchy of functionalities is depicted in Figure 2.21. The ASAWoO vocabu-

lary used for functionality implementation and composition is shown in Appendix B

and detailed in [Mrissa et al., 2014c, Mrissa et al., 2014b]. The implementation and

composition of functionalities relies on two object properties: asawoo:isImplementedBy

1The asawoo prefix corresponds to the namespace http://liris.cnrs.fr/asawoo/vocab#

30 CHAPTER 2. MULTI-PURPOSE CONTEXT MODELING

and asawoo:isComposedOf, respectively. asawoo:isImplementedBy has a owl:oneOf -

restricted range on the class asawoo:Capability, i.e. a functionality can be implemented

using exactly one capability at a time. asawoo:isComposedOf has a owl:allValuesFrom-

restricted range on the class asawoo:Functionality, i.e. a high-level functionality is

strictly composed by each low-level functionalities it is linked to. Composites function-

alites are expressed using the owl:unionOf predicate on a rdf:List that contains the sub-

functionalities they are composed of. An example of the WateringNeedsDetection compo-

sition is expressed in Listing B.1 below.

Listing 2.1: JSON-LD semantic representation of WateringNeedsDetection composition.

1 {
2 {
3 "@id": "asawoo:WateringNeedsDetection ",
4 "@type": "owl:Class",
5 "asawoo:isComposedOf": {
6 "@id": "_:detection_comp"
7 }
8 },
9 {

10 "@id": "_:video_surveillance_comp",
11 "http://www.w3.org /2002/07/ owl#unionOf": {
12 "@list": [
13 { "@id": "asawoo:PictureTaking " },
14 { "@id": "asawoo:OutdoorMotion " },
15 { "@id": "asawoo:PictureProcessing " }
16]
17 }
18 }
19 }

2.5.2 Answering adaptation needs through context mod-

eling

In the vineyard-watering application, several functionalities are achievable in multiple

ways. The adaptation solution should be able to choose the appropriate drones, picture

resolutions, network protocols, to allow the application to adapt its behavior. The most ac-

ceptable composition can be determined using contextual information. We consider here-

after several cases in which an avatar has to answer the five adaptation questions described

2.5. A MULTI-PURPOSE CONTEXT MODEL FOR SMART AGRICULTURE 31

previously, and present the contextual instances we use to solve these purposes. We fur-

ther propose an appropriate multi-purpose context model for smart agriculture that will

include these instances in the corresponding contextual dimensions. However, we will not

explain how to populate the context model, as this process will be detailed in the next

chapters.

(Imp) High quality pictures are preferable when implementing the functionality Picture-

Taking, to provide accurate watering needs detection. However, this requires a high-

resolution camera and sufficient storage capacity. If a drone has a HDCamera capa-

bility and 2.5 Gb of free internal storage, the picture can be taken and stored in high

definition; in this case, the HDCamera capability should implement the PictureTaking

functionality instead of the LowResCamera capability. Proposed contextual instances:

{LowQualityForP ictureTaking,HighDefinitionP ictureTaking,

HighStorageForP ictureTaking, LowStorageForP ictureTaking}
(Comp) Choosing the right drone to identify if a part of field needs to be watered de-

pends on the remaining battery power, the storage capacity, and the distance from the

part of the field of each drone. Amongst the drones that have at least half-battery left,

the closer should take part of the WateringNeedsDetection functionality composition, con-

sidering it has sufficient storage capacity to host the picture. Proposed contextual instances:

{HighStorageForDetection, LowStorageForDetection,

FarFromFieldForDetection, CloseToF ieldForDetection,

LowBatteryForDetection,HighBatteryForDetection}
(Exp) Drones may deteriorate if they are exposed to strong wind or to the rain.

They should not be able to go outside if the weather is inconvenient. Hence, drones

should not expose the OutdoorMotion functionality (which then disable the Water-

ingNeedsDetection functionality) to clients in this case. Proposed contextual instances:

{StrongWind,Breeze,NoWind,Dry,Wet, F looded}
(Prtcl) Choosing a network interface to transfer a picture depends on the distance between

the drones and their remaining battery. On the one hand, the Wifi has a wider range but

can rapidly become congested and consume lots of battery. On the other hand, high dis-

tances are problematic for low-range interfaces such as Bluetooth; in this case, the Wifi

is the most suitable protocol when transferring pictures. Proposed contextual instances:

{HighBatteryForTransfer, LowBatteryForTransfer, CloseToDroneForTransfer}
(Code) The application module that processes pictures to determine water needs may

be executed either on the drone or on the cloud. It requires high CPU avail-

ability and a minimum battery level. In addition, executing it on the cloud re-

32 CHAPTER 2. MULTI-PURPOSE CONTEXT MODELING

quires high bandwidth to transfer the picture in acceptable time, and more bat-

tery. Thus, if the CPU level is sufficient to do the processing on the drone and

the battery level is sufficient for both the cloud and the drone, the PictureProcess-

ing functionality should be executed on the drone. Proposed contextual instances:

{HighCPUAvailabilityForProcessing, LowCPUAvailabilityForProcessing,

HighBatteryForProcessing, LowBatteryForProcessing,

HighBandwidthForProcessing, LowBandwidthForProcessing}

The expression of the adaptation purposes in the vineyard-watering application above

require the following contextual dimensions: Resolution, Storage, Battery, Distance, Wind,

Rain, Temperature, CPU and Bandwidth. Table 2.1 details the context model considered

for this scenario.

(Imp) (Comp) (Exp) (Prtcl) (Code)

Resolution

LowQualityFor
PictureTaking,

HighDefinitionFor
PictureTaking

Storage

HighStorageFor
PictureTaking,

LowStorage
PictureTaking

LowStorage
ForDetection,
HighStorage
ForDetection

Battery

LowBattery
ForDetection,
HighBattery
ForDetection

LowBattery
ForTransfer,
HighBattery
ForTransfer

HighBattery
ForPicture,
LowBattery
ForPicture

Distance

FarFromField
ForDetection,
CloseToField
ForDetection

CloseToDrone
ForTransfer,

FarFromDrone
ForTransfer

Wind
StrongWind,
Breeze, NoWind

Rain
Dry, Wet,
Flooded

CPU
HighCPUAvailability

ForProcessing,
LowCPUAvailability

ForProcessing

Bandwidth

HighBandwidth
ForProcessing,
LowBandwidth
ForProcessing

Table 2.1: The context model with each possible contextual instances for the vineyard-watering
application. Adaptation purposes are displayed horizontally; contextual dimensions are dis-
played vertically.

2.6. SYNTHESIS AND DISCUSSION 33

This context model denotes the relation between adaptation purposes and contextual

dimensions using the contextual instances; it will be used through this thesis to illustrate

our next contributions. In the following chapters, we will present how to determine these

contextual instances with experts and users, and how to populate the model to provide

multi-purpose adaptation, at runtime.

2.6 Synthesis and discussion

In this chapter, we presented a meta-model to build multi-purpose context models.

They consist in a combination of domain-specific contextual dimensions with domain-

independent, platform-based adaptation purposes. Using multi-purpose context models

offers the following benefits: 1) they promote the reuse of various contextual information

as dimensions (including those already existing in the literature), 2) they allows combin-

ing domain-specific contextual information with adaptation purposes related to the WoT

application architecture, hence helping WoT application designers and device manufactur-

ers identify, organize and reason about context information, and 3) they encourage the

reusability of reasoning mechanisms across application domains while leaving flexibil-

ity for developers to design their application-specific context models. We identified five

adaptation purposes for the ASAWoO platform and illustrated our contribution through a

vineyard-watering scenario.

In this work, the representation of each element composing multi-purpose context mod-

els in OWL brings many advantages. It allows processing contextual information and pro-

viding further adaptation using standard, semantic reasoning, as each element of the model

is semantically-annotated. This avoids re-creating adaptation engines as any standard rea-

soner would be compatible with the solution, as long as it is fully OWL 2 compliant. It also

improves the reusability potential of context models using shared ontologies and vocab-

ularies. Hence, multi-purpose context models – as well as the meta-model itself – can be

validated using ontology-based methodologies. The criteria suggested in [Gómez-Pérez,

1998] are relevant for them, as they include (S1) Purpose and scope, (S2) Intended uses,

(S3) Intended users, (S4) Requirements, (S5) Competency Questions (CQs), and (S6) Val-

idation of Competency Questions. The meta-model validates those criteria as presented

in Tables 2.6 and 2.6. Table 2.6 shows the validation the competency questions using the

metrics proposed in [Hlomani and Stacey, 2014].

34 CHAPTER 2. MULTI-PURPOSE CONTEXT MODELING

Criteria Validation

(S1)

Multi-purpose context modeling targets any domain, such as smart homes, smart farms,
healthcare, etc. Its purpose is to provide context-awareness with reusable and relevant
models.

(S2)
Any WoT scenario is applicable to multi-purpose context modeling, as purposes provide
domain-independency for each dimension.

(S3) This solution targets WoT application designers.

(S4)

Building multi-purpose context models require relevant contextual information cover-
age (contextual dimensions and instances). Needed contextual information is identified
through discussion with experts, and using technical documentation of appliances.

Table 2.2: Multi-purpose Context Meta-modeling validation (S1 to S4)

Competency

Question
(S5) (S6)

(CQ1)
Does the model cover required context
information?

The meta-model allows any contextual
dimension to be created for complete cov-
erage.

(CQ2)
Does the DL language allow for complete
and sound results in a finite time?

The DL used (OWL) provides 3 pro-
files (EL, QL, RL) that are able to an-
swer any reasoning problem (conjunctive
query answering, class expression sub-
sumption...) in a finite time.

(CQ3)
Does the DL language provide the logical
constructs required by the reasoner?

OWL provides expressive relationships
(object, datatype properties), concepts
(classes, individuals, data values) and
constructs (oneOf, allValuesFrom,
unionOf, etc.) allowing the reasoner to
correctly answer queries.

(CQ4)
Are the adaptation purposes sufficient to
describe a WoT app context ?

Adaptation purposes provide different
sets of contextual instances (including
empty sets) for each dimension. More-
over, the meta-model itself do not limit
the number of contextual dimensions to
be used.

(CQ5)
Are the adaptation purposes redundant
or overlapping?

The adaptation purposes are based on
WoT application platform adaptation
needs, and do not overlap by design.

Table 2.3: Multi-purpose Context Meta-modeling validation (Competency questions)

The step that follows multi-purpose context modeling is providing relevant adaptation

decisions depending on contextual instances, at runtime. In the next chapter, we propose a

solution to infer contextual instances from static and dynamic data sources, and to provide

adaptation decisions using sets of contextual instances.

Chapter 3

Multi-Purpose Contextual Adapta-

tion

Contents

3.1 Introduction . 36

3.2 State of the art on Contextual Adaptation . 37

3.2.1 Contextual adaptation . 37

3.3 Multi-purpose adaptation in WoT applications 42

3.3.1 Semantization step . 43

3.3.2 Transformation step . 44

3.3.3 Adaptation and Decision steps . 46

3.4 Avatar-based Contextual Adaptation Workflow 49

3.5 Evaluation . 52

3.5.1 Accuracy . 52

3.5.2 Performance . 54

3.6 Discussion . 55

3.7 Conclusion . 56

35

36 CHAPTER 3. MULTI-PURPOSE CONTEXTUAL ADAPTATION

3.1 Introduction

The WoT aims at manipulating and accessing to various things from applications in a stan-

dardized, interoperable and secure manner. The variety of technical constraints, appli-

cations and tasks imposes WoT standards (e.g. resource-oriented architectures, semantic

Web, WoT specifications) and their implementations to cope with numbers of situations:

an application must be able to run on different things, use different data sources and per-

form several tasks. Yet, contextual adaptation in such applications is a major challenge.

Existing adaptation solutions are either tightly coupled with their application domains (as

they rely on domain-specific context models) or offered as standalone software components

that hardly fit in Web-based and semantic architectures. This leads to integration, perfor-

mance and maintainability problems. Hence, there is a need for an adaptation approach

able to remain independent from application domains and to comply with Web standards

by design.

In Chapter 2, we introduced the notions of contextual instance, contextual dimension

and adaptation purpose, and detailed how to design context models that allow for multi-

purpose adaptation in WoT applications. In this work, contextual instances are high-level,

semantic information that can be either static (user preferences, expert knowledge, techni-

cal documentations) or dynamic (sensors, Web services). Moreover, the right sets of con-

textual instances must be identified to answer the appropriate adaptation purposes, and to

further take the optimal decision at runtime, simultaneously for each purpose.

In this chapter, we propose a comprehensive contextual adaptation approach, able for

any WoT application to simultaneously answer domain-independent adaptation questions

with data originating from various sources. To do so, it turns raw data into semantically-

explicit contextual instances using transformation rules, and infers ranked adaptation possi-

bilities using adaptation rules. Ii is implemented in a contextual adaptation middleware,

executed at runtime on the ASAWoO platform.

3.2. STATE OF THE ART ON CONTEXTUAL ADAPTATION 37

3.2 State of the art on Contextual Adaptation

There are various ways to acquire contextual information, and so are the ways to deal with

contextual information interpretation and processing. Based on the literature, [Perera et al.,

2014] propose to combine common context lifecycle steps as context acquisition, context

modeling, context reasoning, and context dissemination to other devices. The workflow

proposed in [Bernardos et al., 2008] (acquisition, processing, reasoning and decision) sepa-

rates context processing from reasoning. Ferscha et al. propose in [Ferscha et al., 2001] the

sensing, transformation, representation, rule-base and actuation steps.

It can be seen that state-of-the-art context management lifecycles share similarities with

adaptation loops such as MAPE-K [IBM, 2004]. The diversity amongst lifecycles arise from

the different types of adaptation needed by the application, as well as its infrastructure. The

context lifecycle we propose hereafter aims to fit Web-based decentralized architectures (in

particular, avatar-based ones such as ASAWoO) to allow capitalizing on the reasoning pro-

cess in terms of response times. Unlike [Perera et al., 2014], we separate context modeling

from context instantiation. Context modeling is provided at design time, while context

instances vary at runtime to further suggest possibilities for the application to adapt its

behavior.

3.2.1 Contextual adaptation

The main notion of adaptation is related to the field of biology, where the Oxford Dictio-

nary defines it as “the process of change by which an organism or species becomes better suited to its

environment”. In [Da et al., 2011], the authors extend this definition to the field of software

engineering and identify two adaptation levels: environmental (related to the structure of

the application) and user-defined (related to functional aspects of the adaptation). To pro-

vide such adaptation, state-of-the art solutions usually rely on adaptation loops based on

similar steps: gather data, process information, decide the adaptation choice, and proceed

the actual adaptation (“act”). Those steps however slightly differ across solutions, depend-

ing on their adaptation type and approach.

The classification of adaptation approaches described in [Barbier et al., 2015] includes

38 CHAPTER 3. MULTI-PURPOSE CONTEXTUAL ADAPTATION

several characteristics: functional vs. nonfunctional, designed vs. unanticipated, pre-

dictable vs. unpredictable, third-party vs. self-adaptive (i.e. provoked by the adapta-

tion software itself) and business-specific vs. generic. Another adaptation classification

from [Fox and Clarke, 2009] includes the notions of anticipation (as the degree of anticipa-

tion to changes) and domain-specificity (as the level of parametrization of the adaptation

solution) as well. It also introduces two additional characteristics to position adaptation

solutions: tools (denotes whether the adaptation solution comes with a dedicated develop-

ment environment or a runtime monitoring environment) and scope (describes the extent of

the adaptation process over the application components and services). Several techniques

exist in the literature to adapt a software system to contextual parameters: service config-

uration, service substitution and adaptation planning [Hanney et al., 1995, Barbier et al.,

2015] [Fox and Clarke, 2009, 4.4]. The following adaptation frameworks illustrate these

techniques and stress their advantages and drawbacks for generic adaptation approaches.

Adaptation solutions and frameworks

In the past decades, numerous self-adaptive and autonomic systems have been proposed

to support dynamic contextual adaptations in pervasive and mobile computing environ-

ments. Some of these systems are based on a so-called control loop, such as in the au-

tonomic computing architecture MAPE-K (Monitor, Analyze, Plan, Execute, Knowledge)

defined by IBM [IBM, 2004] or the Rainbow framework [Garlan et al., 2009]. Some middle-

ware platforms, such as ReMMoC [Grace et al., 2003] and CARISMA [Capra et al., 2002]

implement reflexive mechanisms for dynamic adaptation purposes. The main drawback of

these solutions is that they are not adapted for Internet of Things because they only present

an isolated centralized autonomic manager addressing a set of specific problems.

The INCOME project [Arcangeli et al., 2012] is a multi-scale context management frame-

work for the IoT. The authors aims to provide self-adaptation for the deployment of context

management components, as well as for the dissemination of contextual information, based

on the detection of situations of interest. They also address quality of context and privacy

concerns.

In [Becker et al., 2007], the authors provide a service configuration adaptation approach

that is generic and based on reference models. It aims to ease the design of adaptation solu-

tions for business processes that are shared by various participants, based on a multidimen-

sional context model and complex transformation rules. The fact that a service configura-

tion engine has to generate numerous parameters makes such an approach strongly para-

3.2. STATE OF THE ART ON CONTEXTUAL ADAPTATION 39

metric and does not guarantee optimal adaptation decisions. Moreover, it is more difficult

for a domain expert to completely formalize the transformation function than to express its

behavior in natural language.

In the Adaptive CORBA Template (ACT) [Sadjadi and McKinley, 2004], the authors pro-

pose a service substitution approach for dynamic adaptation based on CORBA middleware

interceptors. Such interceptors can be registered, unregistered and enhanced at runtime,

thus producing adaptation cases that are not known in advance. This framework is domain-

independent, partially anticipatory as it preconfigures so-called adaptive CORBA templates

and its adaptation scope can address different tasks through the use of rule-based intercep-

tors. In this sense – and even though it requires the CORBA middleware, which is neither

tailored for resource-limited devices and nor compliant with Web standards - it is close

to more recent approaches such as aspect-oriented adaptation [Kongdenfha et al., 2006],

as well as to substitution of service-based applications [Zeginis and Plexousakis, 2010], or

more generally to adaptation in dynamic, component-based middlewares.

The Mobility and ADaptation enAbling Middleware (MADAM) framework [Mikalsen

et al., 2006] applies an adaptation planning approach to ease the development of adaptive

solutions. At request time, it chooses the combination of available services to compose

a response to a particular user’s need. To do so, it provides several managers (context,

configuration and adaptation managers) that allow for decoupled adaptation processes.

Moreover, it relies on "context reasoners", which are generic means to locate sensor data

processing in the adaptation workflow. In the perspectives, the authors foresee to reuse

this approach using Web services and semantic Web technologies.

WComp [Tigli et al., 2009] is an aspect-oriented, Web service-based middleware that

relies on the Aspect of Assembly (AA) aproach to provide compositional adaptation of

event-based services, depending on context changes. The adaptation decision is specific

to the aspect-oriented paradigm; it requires knowledge of advanced concepts such as joint

points, pointcuts, advices, etc. and is hardly reusable for integration in standard, rule-based

inference engines. The FraSCAti platform [Seinturier et al., 2009] aims to extend the Service

Component Architecture (SCA) [Beisiegel et al., 2007] by providing reflexive behavior for

service oriented architecture components. To do so, each component is associated to a

generic container (at a meta level of the architecture) that includes several services such as

component identity, lifecycle, hierarchy, wiring, etc.

More recent works, such as [Stehr et al., 2011], give some guidelines on how networked

cyber-physical systems could be used with fractionated software to build reliable systems.

However, such work does not include a Web-based perspective. Systems dedicated to the

40 CHAPTER 3. MULTI-PURPOSE CONTEXTUAL ADAPTATION

IoT that can perform multi-level adaptation in environments composed of cloud infras-

tructure and physical objects have been proposed in [Athreya et al., 2013] and [Alaya et al.,

2012]. However, in contrast to the avatars [Jamont et al., 2014], these solutions do not de-

fine an abstraction layer able to actually extend physical objects on the Web, and neither

support collaboration between these objects.

In [Gyrard et al., 2014], the authors present M3, an architecture that enriches sensor data

to enable its use in cross-domain applications. This work uses the Semantic Sensor Network

(SSN)1 ontology that provides a vocabulary to describe sensors and sensor data, to enable

their use in semantics-aware applications. However, this work has not yet explored the

adaptation problem in terms of cross-domain adaptation purposes.

Semantics-based adaptation approaches

The definition of context by Anind Dey [Dey, 2001] "Context is any information that can be used

to characterize the situation of an entity[...]" emerges the notion of information annotation and

therefore of generating graphs of interrelated pieces of data. The promise of the semantic

Web is to provide easier and standard creation, handling, querying and transformation of

such graphs [Berners-Lee et al., 2001]. Hence, it appears quite relevant to use semantic web

languages (RDF, RDF-S, OWL)2 to model contextual information, as well as to reason about

contextual data to make adaptation decisions, as context is metadata by essence. While

there are numerous domain-specific studies that produce semantic models (and sometimes

sets of reasoning rules) in application fields among which video streaming [Bertini et al.,

2006, Zufferey and Kosch, 2006] or e-learning [Baldoni et al., 2004, Sampson et al., 2004], few

generic adaptation systems take advantage of semantic web standards and tools to make

adaptation decisions.

[Laborie et al., 2011] present a semantic adaptation framework for multimedia docu-

ments in which they describe documents as sets of parts related by constraints. Although

they only apply adaptation to this application domain and use an on-purpose graph match-

ing algorithm rather than classical reasoning tools, their formalization makes their ap-

proach quite reusable. The work presented in [Baladron et al., 2012] proposes a generic

approach based on the semantization of sensor data and a context intelligence module, that

partly relies on a semantic reasoner to provide adaptation propositions. However,it seems

that [Wang et al., 2004] describes the first attempt to use both rule-based reasoning for con-

1http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
2https://www.w3.org/2001/sw/interest/

3.2. STATE OF THE ART ON CONTEXTUAL ADAPTATION 41

textual adaptation, as well as the expressivity of high-level description logics constructs

available in OWL relations.

Hence, the potential offered by Web-based reasoning and semantic technologies could

provide adaptation in WoT applications in a generic, flexible and reusable manner, for mul-

tiple and high-level purposes. We intend to reuse Web standards and provide compliance

with the WoT Interest Group specifications (Thing Description3, Servient4, Device API5,

protocol binding6...), to allow for adaptive WoT applications design.

Semantics-based adaptive WoT solutions

To reason about contextual data, semantic adaptation tools must first gather semantized

data. In the WoT application field, not all platforms provide semantic data to their com-

ponents. Actually, only recent advances in the WoT aim to bring together the Semantic

Web with Web standards, on top of the Internet of Things. UBIWARE [Katasonov et al.,

2008] uses semantic annotations to describe agents and behavioral tasks, to provide in-

teroperability and reusability of these definitions. SPITFIRE [Pfisterer et al., 2011] unites

RESTful approaches using CoAP [Shelby et al., 2014] with OWL/RDFS and SPARQL7 for

constraint devices. Sense2Web [Barnaghi and Presser, 2010] allows publishing sensor data

and measurements on the Web through a SPARQL endpoint, but still has to be coupled

with a functional solution to provide a complete WoT application capable of managing any

type of thing (sensor or actuator). The M3 framework provides a more comprehensive

and domain-independent approach through a dedicated vocabulary to describe sensors,

together with the tools to reason about these descriptions and deduce application tem-

plates [Gyrard et al., 2015a]. While these approaches facilitate things interoperability and

WoT application development, they do not tackle the adaptation concern.

ASAWoO provides a WoT platform that includes a component-based architecture to al-

low each element (aka "managers") to exchange semantic data. Each of them deals with a

specific purpose, and these purposes may require adaptation. In the next section, we pro-

pose a context lifecycle that achieves multi-purpose adaptation from semantized contextual

information, using an OWL 2 reasoner for adaptation planning.

3https://w3c.github.io/wot-thing-description/
4https://w3c.github.io/wot-architecture/#sec-servient-architecture
5https://www.w3.org/2009/dap/
6https://w3c.github.io/wot/current-practices/protocol-binding-templates/html/

protocolbindings.html
7https://www.w3.org/TR/rdf-sparql-query/

42 CHAPTER 3. MULTI-PURPOSE CONTEXTUAL ADAPTATION

3.3 Multi-purpose adaptation in WoT applica-

tions

Multi-purpose contextual adaptation in WoT applications originates from several processes

in which various actors take part. WoT platform designers create complex execution envi-

ronments that need to handle several concerns to support a variety of use cases and appli-

cations; they document these concerns and the corresponding adaptation purposes. Appli-

ance manufacturers describe device characteristics (QoS) in their documentations. Domain

experts identify application concepts and processes, along with all the environmental data

able to provide useful contextual data. Users specify their preferences (e.g. preferred de-

vices, privacy levels, etc.). WoT application designers then need to interpret pieces of con-

textual information and to integrate them in a comprehensive adaptation process. Their

work consists in designing a context model and two sets of rules: transformation and adap-

tation. Then, at runtime, the platform uses the first set to wire the context model to the

available data sources and executes the second to run the adaptation process.

Figure 3.1: The adaptation process and its actors.

The proposed adaptation process works as follows. First, at configuration time, static

3.3. MULTI-PURPOSE ADAPTATION IN WOT APPLICATIONS 43

data (e.g. application context model, appliance configuration, user preferences) are stored

in semantic repositories [Mrissa et al., 2015]. Then, at runtime, an avatar receives raw data

from various sources, including devices and Web services. These data are semantically an-

notated and transformed into instances of the context model, using transformation rules.

Adaptation rules are then applied to the instantiated context model to infer each possi-

ble adaptation choice. When an adaptation decision is required, an adaptation request is

sent to the context manager, which retrieves the best candidate. The querying process is

the same, regardless of whether the request relies on filtering (e.g. can we expose a given

functionality) or on ranking (e.g. which communication protocol is the most suitable). The

global process is depicted in Figure 3.1 and is detailed in the following subsections through

the vineyard-watering application. This work has been published in [Terdjimi et al., 2017].

3.3.1 Semantization step

WoT application aims to manipulate semantically-annotated data that are independent

from both the application domain and the adaptation solution. This include different types

of data coming from various sources, such as domain expert knowledge, user profiles, ap-

plication description and requirements, Web services, sensors, etc. Unlike the other data

sources (for which the semantization is realized at design time), the information coming

from sensors requires semantization at runtime, through appropriate semantic annotation

algorithms (e.g. by converting numeric data into triples, depending on the type of the data).

Yet, these algorithms are not part of this thesis contribution, hence will not be detailed here.

Some device manufacturers are provide semantically-annotated based on linked open

vocabularies8. They include information from data sharing vocabularies, such as units of

measure, types of data, quantities, which are both domain-independent and adaptation-

independent. This is the case for the new version of SSN9, which includes information

from QUDT10. In the transformation step, we bridge these independent information with

our adaptation solution using transformation rules.

8LOV: http://lov.okfn.org/dataset/lov/ and LOV4IoT: http://sensormeasurement.appspot.com/?p=

ontologies
9http://w3c.github.io/sdw/ssn/

10http://www.qudt.org/

44 CHAPTER 3. MULTI-PURPOSE CONTEXTUAL ADAPTATION

3.3.2 Transformation step

The transformation step relies on a set of transformation rules that pre-processes seman-

tized contextual data and transforms them into discrete contextual instances, in order to

enable the adaptation step. To design such rules, WoT application designers confront the

expert’s assessments to the appliance technical constraints. They identify the type of data

sent using either service descriptors or device specifications from this source, and deter-

mine the range values of contextual instances for each dimension using their thresholds.

Thresholds are determined using appliance documentation and domain expert knowledge,

and are expressed using comparison operators. In transformation rules, thresholds asso-

ciate data sources to their value using two triple patterns, where the first pattern describes

the carried value and the second pattern describes the nature of the data source. Each rule

produce a contextual instance suitable to a given functionality to be adapted (which we

detail in the adaptation step).

Transformation rules

Transformation rules are triggered at runtime, when the condition on semantically anno-

tated data is met (i.e. when a given value threshold is reached). Some data cannot be

directly compared to a threshold and require a pre-calculation: this is the case for the cal-

culation of distances between two entities (GPS coordinates of entities must be subtracted

to obtain the distance to be compared to a threshold).

A transformation rule t is a conjunctive rule, where its antecedents are 1) a set of nu-

merical values {ψΨ} sent by different data sources {Ψ}, which can be either sensors or a

Web services, 2) a calculation function cf() that computes all numerical values to produce

an interpretable value for the threshold, and 3) a contextualization threshold τ , i.e. a nu-

merical condition that allow for contextual instantiation using the interpretable value. The

consequent of the rule is a contextual instance i deduced from the comparison between the

value sent by the source and the threshold set by designers.

Definition 6 (Contextualization Threshold) τ = (�τ , ψτ)

where �τ ∈ {>,<,>=, <=,=} is a comparison operator, and ψτ ∈ R the threshold value to

be compared with.

Definition 7 (Transformation Rule) t = cf({ψΨ}) �τ ψτ → i

3.3. MULTI-PURPOSE ADAPTATION IN WOT APPLICATIONS 45

Vineyard-watering contextualization thresholds

Contextual
Dimension

Data Source(s) Value Type Contextual Instances Thresholds

Resolution Drone Camera
Integer

(number of horizontal lines)

HighDefinitionForPictureTaking:
x ≥ 720p

LowQualityForPictureTaking:
x < 720p

Storage Drone SD Card
Decimal

(remaining capacity
in bytes)

HighStorageForPictureTaking:
x ≥ 500Mb

LowStorageForPictureTaking:
x < 500Mb

HighStorageForDetection:
x ≥ 600Mb

LowStorageForDetection:
x < 600Mb

Battery Drone Battery
Decimal

(current battery voltage
in volts)

HighBatteryForDetection:
x ≥ 50%

LowBatteryForDetection:
x < 50%

HighBatteryForTransfer:
x ≥ 40%

LowBatteryForTransfer:
x < 40%

HighBatteryForPictureTaking:
x ≥ 40%

LowBatteryForPictureTaking:
x < 40%

Distance Drone GPS
Integer

(GPS coordinates of both
the device and the field)

CloseToFieldForDetection:
x ≥ 100m

FarFromFieldForDetection:
x < 100m

CloseToDrone_n_ForTransfer:
x < 1m

Wind Anemometer
Integer

(wind speed in km/h)

StrongWind: x ≥ 10km/h
Breeze: x ≥ 1km/h and x < 10km/h

NoWind: x < 1km/h

Rain
Web service
Pluviometer

Integer
(precipitation rate in mm/h)

Dry: x = 0mm/h
Wet: x > 0mm/h and x < 10mm/h

Flooded: x ≥ 10mm/h

CPU Device CPU
Decimal

(% of CPU load)

HighCPUAvailability-
ForProcessing: x ≥ 50%

LowCPUAvailability-
ForProcessing: x < 50%

Bandwidth
WoT

Infrastructure
Integer

(ping in milliseconds)

HighBandwidth-
ForProcessing: x < 100ms

LowBandwidth-
ForProcessing: x ≥ 100ms

Table 3.1: The relation between contextual dimensions, data sources, raw value types and con-
textual instance thresholds.

46 CHAPTER 3. MULTI-PURPOSE CONTEXTUAL ADAPTATION

The contextual thresholds of the vineyard-watering application are detailed in Figure 3.3.2.

To provide instances, the Distance and the Battery require calculation function to obtain

an interpretable value for the threshold (GPS coordinates of drones to substract, battery

voltage to compare to a fully charged battery).

We justify the contextual instance thesholds as follows. In the Resolution dimension,

only high definition pictures (720p) are suitable for watering needs detection. Hence, the

threshold is fixed to this value. The contextual instances from the Storage dimension have

different initial requirements: storing a picture requires less storage capacity than both

storing and processing it. For the Battery dimension, detection has also higher power re-

quirements than any other process. The Distance dimension also contains instances with

different thresholds: to travel to a part of the field, 100 meters is a reasonable limit; to avoid

drone collisions, 1 meter is the minimum. The Wind dimension fixes a threshold of 10

km/h to avoid drone deviation, based on technical documentation. The Rain dimension

rely on thresholds based on meteorology domain expertise. The CPU dimension provides

a general threshold of 50%, based on application benchmarks. The Bandwidth threshold

is fixed to a limit of 100ms, considered as the maximum response time to take a decision.

This value is confirmed on the performance evaluation (Section 3.5.2).

3.3.3 Adaptation and Decision steps

The adaptation step consists in inferring several ranked adaptation possibilities with respect

to a given contextual situation through adaptation rules, while the decision step consists in

querying the semantic reasoner to obtain the adaptation possibilities currently maintained.

Both steps require defining the following necessary components: the contextual situations,

the adaptation possibilities, and the adaptation rules.

Adaptation possibility

Adaptation possibilities are inferred using adaptation rules at the insertion of contextual

instances, and removed at their deletion. An adaptation possibility p represents an adap-

tation candidate c to a functionality f , with respect to an adaptation purpose ap. The can-

didate varies according to the adaptation purpose we consider. In our setup, it could be

3.3. MULTI-PURPOSE ADAPTATION IN WOT APPLICATIONS 47

either a capacity (Imp), a functionality (Comp,Exp), a protocol (Prtcl) or a code location

(Code). The set of possibilities for the same adaptation purpose is denoted P .

Definition 8 (Adaptation possibility) pf,ap = (c, ap, f)

where f is a functionality, c is an adaptation candidate and pf,ap ∈ Pf,ap.

For instance, in our scenario, we consider the adaptation possibility composed of the

candidate Cloud for the adaptation purpose Code, to adapt the location of the PicturePro-

cessing functionality.

Adaptation rule

Adaptation rules allows inferring adaptation possibilities in response to a contextual sit-

uation, for a given adaptation purposes. They have similar patterns, regardless of their

purposes. The antecedent of an adaptation rule α is a conjunction of contextual instances,

i.e. a conjunctive contextual situation. The body of the rule is a set of adaptation possi-

bilities P . In the adaptation solution, each purpose ap ∈ AP is associated to a set Rap of

adaptation rules.

Definition 9 (Adaptation rule) ας,ap =
∧

k≤|ς| ik → Pς,ap

where ik ∈ ς is a contextual instance and Pς,ap a set of inferred adaptation possibilities for a

given adaptation purpose ap, with respect to ς11.

Scoring of adaptation possibilities

To provide optimal adaptation decisions, we score each adaptation possibility, depending

on contextual situations: the more a candidate is favorable for a given adaptation request,

the higher its score value is.

The score of a possibility is determined as follows. At design time, each possible con-

textual situation is presented to the domain expert. The expert then suggests an appropri-

ate response to this situation, to allow the WoT application designer to determine which

capabilities/functionalities are the most/least appropriate to implement/compose a func-

tionality, which functionalities should not be exposed to clients, which protocols shoud be

used, or where the functionality code should be located (as in the ASAWoO platform). The

11In our solution, we provide a rule for each p ∈ Pς,ap.

48 CHAPTER 3. MULTI-PURPOSE CONTEXTUAL ADAPTATION

“most/least” degree is thereafter interpreted as the score for this adaptation possibility

with respect to the observed situation.

In ASAWoO, while the adaptation possibilities are either to expose a functionality or

not for the Exp adaptation purpose, the possibilities for other purposes may be multiple.

Hence, we merged these two types of solutions using a scoring approach: adaptation pos-

sibilities for all purposes are ranked in a common, normalized manner. Making binary

decisions then consists in selecting an adaptation possibility if its score equals 1. Finding

the best candidate for another purpose consists in selecting the possibility with the highest

score.12

Score functions. A score function attributes the impact of a contextual instances with re-

spect to several contextual situations. Hence, each instance of a context model is associated

to a score function sf that depends on its situation and allows to weight several adaptation

possibilities13.

Definition 10 (Score function) sf : iap,d,f , ς → {siap,d,f ,pn}, ∀n ∈ N, pn ∈ Pf,ap

with spn ∈ [0; 1]

Adaptation score calculation. The scores provided to adaptation possibilities using

score functions are specific to a contextual instance, itself part of a contextual situation.

Hence, to calculate the total score of an adaptation possibility regarding a contextual situa-

tion, the scores of this possibility must be added regarding each contextual instance con-

fronted with a given situation. The total score of this possibility is its adaptation score.

An adaptation score s is a numeric value that allows to weight an adaptation possibil-

ity for an adaptation purpose. Scores are normalized by their coefficients ε, are situation-

dependent and obtained using score functions.

Definition 11 (Adaptation score) sς,f,ap,p =

∑|D|
k=1(siap,dk,f ,pn)×ωk

∑|D|
k=1 ωk

where 0 ≤ siap,dk,f ,pn ≤ 1.

In ASAWoO, to determine the score of a composition candidate for the Comp pur-

pose, we calculate the average of each functionality scores that are part of the composition.

Hence, if a functionality can be composed in several ways, the composition with the highest

score would be chosen.
12In the case two (or more) possibilities have equal, highest scores, both are considered “valid” in our case.
13An example of scoring function is provided in Chapter 4, Section 4.3.2

3.4. AVATAR-BASED CONTEXTUAL ADAPTATION WORKFLOW 49

Adaptation request

An adaptation request is sent at decision time, to obtain the optimal adaptation choice for

a given purpose. An adaptation request q is formulated by specifying the functionality

f to be adapted and the related adaptation purpose ap ∈ AP . The answer to q is the

optimal adaptation possibility p̂, i.e. the possibility with the highest score for this adaptation

request.

Definition 12 (Adaptation request) q = f ∧ ap→ p̂

where p̂ ∈ Pap,f ∪∅, and

• sp = max(spn), ∀pn ∈ Pap,f

for purposes with multiple possibilities (e.g. Imp, Comp, Prtcl, Code)

• p̂ = p ∈ Pap,f if sp = 1, p = ∅ otherwise

for purposes resulting in binary decisions (e.g. Exp).

3.4 Avatar-based Contextual Adaptation Work-

flow

In ASAWoO, the avatar architecture includes various managers to handle different con-

cerns such as communicating with objects, composing functionalities from object capabili-

ties, collaborating with other avatars or managing contextual adaptation (Chapter 1). Dur-

ing the avatar lifecycle, these managers interact to identify/expose local and collaborative

functionalities, and respond to functionality requests.

To perform these tasks, each manager has a specific responsibility in the WoT applica-

tion adaptation workflow. Figure 3.2 shows, once the different WoT infrastructure compo-

nents have been populated and the avatar managers instantiated, the details of the adap-

tation workflow. Steps 1 to 5 of this workflow relate to the data integration task described

above, steps 6 and 7 to the query answering one. This workflow has been published in [Ter-

djimi et al., 2016c].

50 CHAPTER 3. MULTI-PURPOSE CONTEXTUAL ADAPTATION

Context
Manager

Applicative
Protocol
Manager

Functionality
Deployment

Manager

Collaborative
Functionality

Manager

Local
Functionality

Manager

Reasoner

Choose protocols
to communicate with the device

Choose location
of functionality
. code modules

Choose capabilities to
implement a local

functionality

Choose other avatars’
functionalities to com-

pose a collaborative
functionality .

Web Service
Client

Web
Services

Other
Avatars

Choose whether to expose or not a functionality

Functionality
Repository

Context

Repository

Capability
Repository

Appliance
Configuration

Repository

Network
Protocol
Manager

Capability
list

Capability
invocation

Capability
Manager

Appliance
Manager

1. Load
context

levels and
rules

3. Retrieve current
contextual
data

4. Apply
semantic

integration
rules on
data to

precompute
context
model

5. Send adaptation questions
to the Context Manager

User profile
Repository

2. Load
context

dimensions
and persistent

contextual
information

Local cache

6. Apply
semantic

adaptation
rules on
data to
answer

adaptation
question

Figure 3.2: Avatar-based contextual adaptation workflow.

Step 1: Initialization. At initialization time, the context manager loads the context

model. This model comprises two sets of rules, applied respectively at the transformation

step and at the adaptation step. Transformation rules allow populating a stable context

model with contextual instances. Adaptation rules allow generating ranked adaptation

possibilities.

Step 2: Static data loading. The context manager loads static data from the different

semantic repositories that store information related to the application domain, device, user

and environment. Such information is disseminated in four repositories. Each repository is

structured according to the type of contextual information for WoT applications identified

in Chapter 2, Section 2.4.

3.4. AVATAR-BASED CONTEXTUAL ADAPTATION WORKFLOW 51

• Functionality repository. It stores application-related information. It is populated

when installing a WoT application into the WoT infrastructure and contains details

about the functionalities that compose this application: semantic descriptions, as well

as QoS and application domain data. These two latter are specifically intended for

adaptation purposes. In particular, functionality QoS is mandatory to respond to al-

most all adaptation questions.

• Capability and appliance configuration repositories. These repositories store

device-related information. They are populated when installing and configuring a

new device. The capability repository contains semantic capability descriptions and

QoS information. How to actually call these capabilities is described in the appli-

ance configuration repository: it contains information about how to access to the de-

vice (address, protocols) and parameter format. These repositories are queried by

the context manager to perform low-level adaptation tasks, such as composing a local

functionality or identifying a suitable protocol to communicate with the device.

• User profile repository. It stores users’ preferences. For each user, they are instan-

tiated with a default profile that can be updated by the user.

Steps 3 and 4: Context update and semantic integration. The context manager up-

dates the avatar context with contextual data instances. To do so, it sends queries or re-

ceives change notifications from two kinds of dynamic data sources. In order to get data

from the device, the context manager queries the avatar capability manager, which in turn

queries the appliance manager. It can then gather device-related contextual data by re-

trieving its currently available capabilities (sensors, actuators, processing, communicating

capabilities). When external sources (other avatars, Web services) are required, the con-

text manager queries them using the Web service client. This allows retrieving contextual

information related to the user, application or environment.

All these data comprise numerical values from sensors or service responses. They must

be transformed into contextual instances in order to fit in the context model. To do so,

the context manager queries a reasoner that applies transformation rules to populate the

model with contextual instances. A particular contextual situation would then trigger one

or more adaptation rules, to produce sets of adaptation possibilities that will be maintained

in the reasoner.

Steps 5 and 6: Purpose-based adaptation request answering. At request time, one

of the five possible source managers sends an adaptation request to the context manager.

52 CHAPTER 3. MULTI-PURPOSE CONTEXTUAL ADAPTATION

This can be done to identify the functionalities that the avatar will expose (what to do), or

to actually execute a functionality invoked by a user or another avatar (how to do it).

When the context manager receives a adaptation request, it queries the reasoner to ob-

tain the optimal adaptation possibility for a functionality to be adapted, regarding one of

the five adaptation purposes. The adaptation purpose related to the adaptation request

depends on the manager that sent the adaptation request. The context manager then sends

back the optimal adaptation possibility to the manager, which will take the appropriate

action regarding the answer.

3.5 Evaluation

We conducted two evaluations using the WoT runtime environment of the ASAWoO plat-

form, according to criteria based on the work of Bass et al [Bass, 2007]. First, we evaluated

its accuracy, i.e. its ability to do the work for which it was intended. Second, we evaluated

its performance for both the data integration and query answering tasks. All experiments

were performed using the HyLAR semantic reasoner [Terdjimi et al., 2016a]. Both evalu-

ations take place in the vineyard-watering scenario, and their parametrization is detailed

below.

3.5.1 Accuracy

We evaluated the accuracy of the adaptation solution by simulating the scenario from Sec-

tion 2.5. We mocked three drones to the WoT platform, with the objective of realizing the

WateringApp functionality. The environmental setup includes a vineyard field seperated

in three parts, namely FieldPart 1, 2 and 3. The evaluation focused on the tasks that require

drones and did not consider other appliances such as the automatic irrigation system, for

the sake of clarity. The experimental setup was the ASAWoO platform, ran in an Ubuntu

16.04 VM with 2 VCPUs and 4Gb of RAM, in an OpenStack cloud infrastructure.

We varied the contextual parameters identified in Section 3.3.2 in a 2-days time interval.

In this interval, the managers ask the five adaptation questions to each drone avatars, at

3.5. EVALUATION 53

Figure 3.3: Variation of contextual data during a simulated 2-days time interval.

different times t1, t2, t3 and t4, as depicted in Figure 3.3. The answers to these questions

are expected to correspond to the adaptation rules described below. Table 3.2 shows the

answers returned to the adaptation questions by the five managers.

(Imp) The system must determine the best drone candidate to implement the PictureTaking

functionality. We see at t2 that drone 1 capabilities are preferred as drone 3 storage capacity

is too low. On the whole, we also see that drone 2 is not a good choice for detecting parts

of field to water due to its insufficient camera resolution.

(Comp) The system must determine the best drone candidate to compose the Water-

ingNeedsDetection functionality for FieldPart1. In particular, we see that drone 3 is the

optimal choice to take pictures at both t1 and t3, due to its proximity to FieldPart1. How-

ever, drone 1 is preferred at t2 due to its high battery level.

(Exp) The system is expected to determine the exposability of OutdoorMotion, for any

drone. The results show that at both t2 and t3, these two functionalities are not exposed as

either the wind is too strong or it rains.

(Prtcl) The system must determine the best candidate protocol (either Wifi or Bluetooth)

for the PictureProcessing functionality, between drone 1 and drone 2. At t2, we see that the

optimal protocol to transfer a picture between drone 1 and drone 2 is Wifi as both drones

are in different parts of the field (i.e. they are considered far from each other).

(Code) The system must determine the best code location candidate (either the drone itself

54 CHAPTER 3. MULTI-PURPOSE CONTEXTUAL ADAPTATION

– the device – or the cloud) for executing the PictureProcessing functionality. This part of

the evaluation focus on drone 3. In particular, we see that executing PictureProcessing in

devices is preferable at t2 and t3, due to ping timeouts or long delays caused by the weather

conditions (even though drone 2 CPU availability is acceptable, which is the case at t2).

Time

(Imp)

Implementation

of PictureTaking

(Comp)

Composition of

WateringNeedsD.

(FieldPart1)

(Exp)

Exposability of

PictureTaking &

WateringNeedsD.

(Prtcl)
Protocol to

transfer a picture

(Drones 1 & 2)

(Code)
Location of

PictureProc.

(Drone 2)

t1 Drone 3 Drone 3 Exposable Bluetooth Cloud

t2 Drone 1 Drone 2 Not exposable Wifi Device

t3 Drone 3 Drone 3 Not exposable Bluetooth Device

t4 Drone 3 Drone 1 Exposable Bluetooth Cloud

Table 3.2: Answers to five adaptation questions in four different times.

Summary. At all times, the results of this evaluation verify that all avatar context man-

agers provide the expected answers to all adaptation questions. The correctness of the

adaptation system is enforced by the use of a standard semantic reasoner, which ensures

that any other rule-based solution would have given the same answers. In addition, this

evaluation shows that the adaptation solution allows performing accurate multi-purpose

adaptation from a common semantic contextual model.

3.5.2 Performance

In this evaluation, we evaluate the performance of the adaptation solution in terms of pro-

cessing times. These experiments were performed on a Dell OptiPlex 780 - Core 2 Duo

E8400 @ 3 GHz. As the integration (semantization, transformation and application of adap-

tation rules) and adaptation request answering processes can run in parallel, we evaluated

them in separate runs, and with different goals (i.e. maximum processing times). Contex-

tual data integration runs as a background task, but must not monopolize all computing ca-

pabilities allocated to the avatar, especially if this avatar runs on a constraint device. Hence,

it must be lightweight but does not need to be immediate. We then chose a threshold of

1 second as success for this experiment. Adaptation request answering, however, is time-

critical, as it is required for the current functioning of the avatar and of the WoT application.

3.6. DISCUSSION 55

For this reason, we limited its acceptable response time to 100ms. For both processes, we

ran two experiments varying the number of rules and of triples in the knowledge base.

0

200

400

600

800

10 triples 100 triples 1000
triplesContextual Value Processing

Question Answering

0

200

400

600

800

1 Rule 10 Rules 100 rules
Contextual Value Processing
Question Answering

Time (ms) Time (ms)

Figure 3.4: Context processing and adaptation request answering times on different situations.

The results of these experiments are depicted in Figure 3.4. They show that the adap-

tation solution reaches by far the two initial goals as the respective processing times for

integration and answering do not exceed 650ms and 30ms.

3.6 Discussion

The multi-purpose adaptation solution we propose allows for semi-anticipated adaptation

planning. At design time, the application designer and experts pave the way for generat-

ing adaptation possibilities and situation-based adaptation rules. These possibilities are

inferred at runtime and the rules are triggered by context change events. In this sense, this

approach can be considered anticipated, as it pre-processes some (most of the) necessary

element on which the adaptation planning is based. However, plans are not yet available at

context change. Actual adaptation planning corresponds to the selection of an adaptation

possibility (if any), which depends on the scores of these possibilities that are computed at

request time (i.e. unanticipatedly).

This strategy allows reconciling the cost and benefits of relying on an inference engine.

Indeed, while inferences are processed at runtime, they are not triggered when an adap-

tation request arises, but can be processed in parallel. The inference results are only in-

tegrated in the context graph when they have all been inferred, so that the graph that is

56 CHAPTER 3. MULTI-PURPOSE CONTEXTUAL ADAPTATION

queried for adaptation always keep consistent. Moreover, performance also comes from the

fact that this solution uses an incremental reasoner that only recomputes the parts of the

graph that are impacted by context changes. Indeed, incremental reasoning allows capital-

izing on previous reasoning process. The inferred information is continuously maintained

in a graph, and the algorithm only processes the knowledge impacted by new insertions

and deletions. Thus, contextual information can be exported and shared to other com-

ponent on the infrastructure, using simple SPARQL CONSTRUCT and SPARQL Update

queries.

Adaptation rules provide optimal decisions at runtime by attaching scores to adaptation

possibilities. Yet, designing such rules by hand is tedious. Besides the fact that these scores

should be clearly identified and motivated, the process of writing adaptation rules with

scores by hand takes a significant time. This process may also be subject to erroneous,

duplicated or contradicting rules. To reduce the time and errors while designing such rules,

we propose in the next chapter a component to generate adaptation rules with little effort

from WoT application designers, at design time.

3.7 Conclusion

The multi-purpose adaptation solution we propose relies on a semantic WoT platform and

is able to incrementally reason about contextual information to support situation-based

adaptation for multiple adaptation purposes. In addition to easing the WoT application de-

signers’ work by pooling contextual data collection for various adaptation purposes (which

would anyway have been collected and processed separately otherwise), the adaptation

solution design cycle is iterative and incremental, similarly to agile methods used in soft-

ware development. It supports changes in domain knowledge, as well as in appliances

and actors’ description through the use of generic semantic methods. For instance, in the

vineyard-watering scenario, if the user buys new drones with different characteristics (in

terms of battery, storage or computing capabilities), the platform will seamlessly integrate

them and adapt the application to these new devices, to the cost of a simple configuration

task.

In the next chapter, we propose an implementation that allows generating adaptation

rules using information about the context model, at design time.

Chapter 4

Multi-Purpose Adaptation Engine

Contents

4.1 Introduction . 57

4.2 State of the art of adaptation rules design . 58

4.2.1 Generation of rules. 58

4.2.2 Reification and related techniques. 59

4.3 Meta-adaptation rule engine . 61

4.3.1 Generation of adaptation possibilities . 61

4.3.2 Score management . 62

4.3.3 Generation of adaptation rules . 65

4.4 Querying ranked adaptation possibilities . 66

4.5 Evaluation . 67

4.6 Synthesis and discussion . 71

4.1 Introduction

The multi-purpose adaptation solution presented in the previous chapter relies on Seman-

tic Web technologies to process and reason about semantically-annotated contextual infor-

mation.

57

58 CHAPTER 4. MULTI-PURPOSE ADAPTATION ENGINE

In this chapter, we propose an implementation that generates adaptation rules, using

information about multi-purpose context models. We present a state-of-the-art of adapta-

tion rule design, which includes the process of generating rules, as well as the assignment

of values to RDF triples inferred from these rules. We present a meta-adaptation rule engine,

which generates adaptation rules at design time. We evaluate our solution in terms of cor-

rectness for various contextual situations, discuss our results and provide some insights

regarding this contribution.

4.2 State of the art of adaptation rules design

Dynamic context-aware environments involve a large number of parameters (system re-

sources, perceived environment, user preferences, etc.). Defining a workflow starting from

all these parameters and resulting in an adaptation decision is a complex task [Chuang

and Chan, 2008, Kakousis et al., 2010, Floch et al., 2006] that is often achieved using rules.

The challenge when designing such rules is to provide accurate scores to semantically-

annotated possibilities. Attaching values to adaptation possibilities is not straightforward,

as in that case they are triples in the form (functionality, adaptation purpose, candidate), which

prevents attaching additional values. The following literature review presents some ap-

proaches to facilitate the design of rules, and to provide enriched information about triples

issued from these rules.

4.2.1 Generation of rules.

The first approach is based on reutilization. S-LOR [Gyrard et al., 2017] allows sharing

rules as Linked Data using a Linked Open Data vocabulary, and provides means to in-

tegrate those rules in semantic reasoners through the Jena API. Though this approach is

promising, the rules that have been shared yet are designed for the interpretation of sensor

data as semantic information rather than for adaptation. Still, challenges remain in the do-

main of rules generation. [Boussadi et al., 2011] propose a business rule design framework

that relies the Semantics of Business Vocabulary and Business Rules (SBVR) formalism1.

1http://www.omg.org/spec/SBVR/

4.2. STATE OF THE ART OF ADAPTATION RULES DESIGN 59

The method described in [Emani, 2014] generates such rules in the same manner, while

providing their semantic formalization as SPARQL queries. However, both methods re-

quires application users and domain experts to express each rule in natural language and

are intended for functional purposes only.

The reflexive method presented in [Andersson et al., 2008] allows generating on-the-fly

adaptation rules based to support dynamic changes on a system. However, this adaptation

solution is exclusively nonfunctional, centralized, and may not scale in environments with

numerous connected objects. Their method also does not provide adaptation possibilities

ranking. The solution presented in [Hong et al., 2009] infers rules with respect to contex-

tual information, referred as the user’s behavior. This however requires sufficient data to

provide significant accuracy. Such method is appropriate for recommender systems, but

not for adaptive systems on critical domains (such as security, healthcare, driving, etc.), as

they require highly accurate adaptation rules as soon as the application starts.

4.2.2 Reification and related techniques.

In the literature, many techniques exist to attach additional information and metadata to

RDF triples. A common method is the usage of named graphs [Carroll et al., 2005], which

allows the representation of quads, i.e. triples with an additional atom denoting the graphs

they belong to. Quads can be easily represented using the N-Quads language2, which pro-

vides clarity and understandability for application designers. RDF+ [Schueler et al., 2008]

extends named graphs by providing a additional atom to identify triples. Singleton prop-

erties [Nguyen et al., 2014] allow contextualizing triples using specific properties, in order

to represent unique relationships. They are derived from generic properties and carry con-

textual information about the relationships, usually in terms of periods of time or locations.

N-ary relations 3 are based on a standard-based pattern that provides extension of the clas-

sic RDF triple binary relation. This pattern consists in creating an individual, which is an

instance of the former binary relation. This individual relates the things that are involved

in that instance of the relation, as well as any other information, using additional proper-

ties having the instance class as their domain. NdFluents [Giménez-García et al., 2017] is

an ontology for RDF statements annotation through the notion of contextual extent, which

provides a unique identification for RDF statements and brings additional context-based

2N-Quads is a W3C recommendation. https://www.w3.org/TR/n-quads/#n-quads-language
3http://www.w3.org/TR/2006/NOTE-swbp-n-aryRelations-20060412/

60 CHAPTER 4. MULTI-PURPOSE ADAPTATION ENGINE

information about this statement. Triple reification [Manola et al., 2004, Section 4.3] al-

lows declaring RDF statements composed of the subject, predicate and object of specific

triples, through standard RDF properties. The statement can then be linked to additional

properties, to allow for unique identification of the triple (subject, predicate, object) asso-

ciated to additional values. RDF* [Hartig and Thompson, 2014] is an alternative approach

to reification that allows representing RDF statements directly as subject of triples. This is

a metadata extension of RDF, which provides additional syntax for SPARQL and Turtle.

Yet, some of the techniques enumerated above are not appropriate for adaptation possi-

bility scoring, for the following reasons. First, the usage of named graphs to attach a score

to a given adaptation possibility implies that the score is the named graph itself. Further-

more, there is no semantic relation between a triple and the named graph it belongs to (i.e.

the meaning of a triple does not imply its belonging to a given named graph), whereas

a semantic relation actually exist between scores and adaptation (as adaptation possibili-

ties are ranked with respect to their scores). RDF+, which is based on and extends named

graphs, has similar concerns. Second, the singleton properties imply the contextualization

of relationships using specific values. In the case of multi-purpose adaptation, this would

imply that adaptation possibilities (i.e. the relationship between an adapted functionality,

an adaptation purpose and an adaptation candidate) are contextualized by their score. This

is semantically incorrect as, in our work, scores are implied by the context, rather than be-

ing part of the context. Similarly, n-ary relationships between adaptation possibilities and

scores would be semantically incorrect, as they imply that the adaptation purposes are di-

rectly related to the contextualization of the adaptation possibilities. By definition, contex-

tual situations – and therefore specific sets of contextual instances – actually contextualize

adaptation possibilities and their score, attributed by rule-based inference. Hence, the in-

tegration of ranked adaptation possibilities into the NdFluents ontology would make the

instantiated model even more complex, and would lead to duplicated information about

contextual situation-based extents, for each possible score. This would cause knowledge

base inflation and decrease the contextual reasoning performance in terms of processing

times. Third, RDF+, RDF* and singleton properties are non-standard extensions of RDF

(and SPARQL for RDF*), making them difficult to be integrated into existing, standard-

based solutions.

In the next section, we propose a generic way to design adaptation rules and determine

scores by relying on a meta-adaptation rule engine.

4.3. META-ADAPTATION RULE ENGINE 61

4.3 Meta-adaptation rule engine

In this section, we present the implementation of our meta-adaptation rule engine, which

generates rules at application design time. This engine 1) generates contextual situations,

2) generates adaptation possibilities, 3) combines these elements with score functions to

apply a score on each adaptation possibility, and 4) outputs a set of adaptation rules using

the situations and the ranked adaptation possibilities. This engine has been implemented

in the ASAWoO platform.

The meta adaptation rule engine generates a set of adaptation rules. It relies on a triple-

store that supports SPARQL SELECT and CONSTRUCT queries, and that takes semanti-

cally annotated information as input. The architecture of the meta adaptation rule engine

is depicted in Figure 4.1 and is detailed in the subsections below.

Figure 4.1: The meta adaptation rule engine, its components and inputs.

4.3.1 Generation of adaptation possibilities

The adaptation possibility generation step produces adaptation possibilities using the appli-

cation domain functionalities, the architecture information (protocols, code hosts), and the

adaptation purposes. To do so, the engine populates its triplestore with these semantically-

annotated information and generates a graph of adaptation possibilities for each purpose,

62 CHAPTER 4. MULTI-PURPOSE ADAPTATION ENGINE

using the query from Listing 4.1.

Listing 4.1: CONSTRUCT query to retrieve the graph of adaptation possibilities.

1 PREFIX asawoo-vocab: <http://liris.cnrs.fr/asawoo/vocab#>
2 PREFIX asawoo-ctx: <http: // liris.cnrs.fr/asawoo/context/>
3 PREFIX rdfs: <http: //www.w3.org /2000/01/ rdf-schema#>
4 CONSTRUCT { ?adapted ?possibilityPred ?candidate }
5 WHERE {
6 ?purpose asawoo-ctx:purposePredicate ?possibilityPred

.
7 ?possibilityPred rdfs:domain ?adaptedClass .
8 ?possibilityPred rdfs:range ?candidateClass .
9 ?adapted rdf:type ?adaptedClass .

10 ?candidate rdf:type ?candidateClass .
11 }

In Listing 4.1, the triple patterns at lines 6-8 allow retrieving the adaptation purposes

domains and ranges, so that each possibility is generated through the CONSTRUCT pattern

(line 4). The adapted/candidate and their classes from lines 9 and 10 refer to the subjects

and objects enumerated in Table 4.1 below, which refer to the adaptation possibility triple

patterns.

Purpose Subject Type Predicate Object Type

Imp Functionality hasSuitableCapabilityForImplementation Capability

Comp Functionality hasSuitableFunctionalityForComposition Functionality

Exp Functionality hasExposability Exposability

Prtcl Functionality hasSuitableProtocol Protocol

Code Functionality hasSuitableCodeLocation CodeLocation

Table 4.1: Triple patterns of adaptation possibilities, for each adaptation purpose.

4.3.2 Score management

To attach scores to adaptation possibility triples, we choose to rely on triple reification.

Adaptation possibilities are derived into RDF statements, and are provided a score using

the standard rdf:value predicate. Reified statements are derived using existential rules,

4.3. META-ADAPTATION RULE ENGINE 63

and the uniqueness or their URI is guaranteed by skolemization (i.e. by removing exis-

tential quantifiers from statements), preventing infinite loops at inference time. Reification

is standard-based (properties are part of the RDF specification) and provides appropriate

semantics for adaptation possibility scoring, as it does not imply that possibilities are con-

textualized by their score. The choice of reification is also validated by the quantitative

evaluation from Chapter 3 – Section 3.5.2, which shows acceptable processing times.

To calculate possibility scores for each situation, the score application step combines con-

textual situations with adaptation possibilities and their score functions. A score function

is represented as triples, as follows:

• their rdf:type is asawoo-ctx:ScoringFunction,

• they are linked to the contextual instance they apply to using the object property

asawoo-ctx:scoresInstance,

• they are linked to a contextual dimension through the object property asawoo-

ctx:forDimension

• they are applicable to an adaptation purpose through the object property asawoo-

ctx:applicableTo,

• they are linked to a blank node using the object property asawoo-ctx:scores,

• this blank node consists in a reification through the following three object properties

– asawoo-ctx:forSituation for the considered situation,

– asawoo-ctx:forCandidate for the adaptation possibility candidate,

– asawoo-ctx:forAdapted for the adapted functionality,

– rdf:value for the actual score.

Listing 4.2 below shows an example of score function for the Bluetooth candidate, to adapt

the communication protocol to transfer a picture the drone has a high battery level while

in a LowCPU_LowMemory situation.

Listing 4.2: score function example (Battery dimension and Protocol purpose) in JSON-LD.

1 {
2 "@context": {
3 "asawoo -ctx": "http:// liris.cnrs.fr/asawoo/context /",
4 "asawoo -vocab": "http://liris.cnrs.fr/asawoo/vocab#",
5 "rdf": "http://www.w3.org /1999/02/22 -rdf -syntax -ns#",
6 "rdfs": "http://www.w3.org /2000/01/ rdf -schema #",
7 "xsd": "http://www.w3.org /2001/ XMLSchema #"
8 },
9 "@graph": [

10 {
11 "@id": "asawoo -ctx:F1",
12 "@type": "asawoo -ctx:ScoringFunction",

64 CHAPTER 4. MULTI-PURPOSE ADAPTATION ENGINE

13 "asawoo -ctx:scores": {
14 "@id": "_:F1_score_bn"
15 },
16 "asawoo -ctx:scoresInstance": {
17 "@id": "asawoo -ctx:HighBatteryForTransfer"
18 },
19 "asawoo -ctx:forDimension": {
20 "@id": "asawoo -ctx:Battery"
21 },
22 "asawoo -ctx:applicableTo": {
23 "@id": "asawoo -ctx:ProtocolPurpose"
24 }
25 },
26 {
27 "@id": "_:F1_score_bn",
28 "asawoo -ctx:forAdapted": {
29 "@id": "asawoo -vocab:PictureProcessing "
30 },
31 "asawoo -ctx:forCandidate": {
32 "@id": "asawoo -vocab:Bluetooth"
33 },
34 "asawoo -ctx:forSituation": {
35 "@id": "asawoo -ctx:LowCPU_LowMemory"
36 },
37 "rdf:value": 0.5
38 }
39]
40 }

The engine loads contextual instances, score functions and possibilities, and processes

the SPARQL query from Listing 4.3 below in the triplestore. This query calculates scores

for each group (contextual situation, adapted functionality, candidate possibility). Line 4-6

select the atoms that will compose each respective adaptation rule, compute the total score

of the possibility candidate with the SUM aggregate (line 5), and retrieve each contextual

instance from the current contextual situation using the GROUP_CONCAT aggregate at

line 6 (these two aggregates come with the corresponding GROUP BY at line 19). Lines 8-

10 link the adaptation possibility with the contextual situation. Line 12 retrieves the score

functions applicable to the current purpose. Lines 13-17 then retrieve the score of each

contextual instance that belongs to the current contextual situation, by reification.

Listing 4.3: SPARQL query that retrieves each groups of atoms composing the adaptation rules.

1 PREFIX asawoo-ctx: <http: // liris.cnrs.fr/asawoo/context/>
2 PREFIX rdf: <http: //www.w3.org /1999/02/22 -rdf-syntax-ns#>
3

4 SELECT DISTINCT ?adapted ?purposePred ?candidate
5 (SUM(?score) AS ?candidateScore)
6 (GROUP_CONCAT (? contextInstance) AS ?instances) {
7

4.3. META-ADAPTATION RULE ENGINE 65

8 ?adapted ?purposePred ?candidate .
9 ?purpose asawoo-ctx:purposePredicate ?purposePred .

10

11 ?scoringFunction asawoo-ctx:applicableTo ?purpose .
12 ?scoringFunction asawoo-ctx:scoresInstance ?

contextInstance .
13 ?scoringFunction asawoo-ctx:scores [
14 asawoo-ctx:forSituation ?contextSituation ;
15 asawoo-ctx:forCandidate ?candidate ;
16 asawoo-ctx:forAdapted ?adapted
17 rdf:value ?score]
18

19 } GROUP BY ?adapted ?purposePred ?candidate ?contextSituation

Afterwards, the engine divides each score by the number of effective contextual in-

stances from each contextual situation, to avoid invalid score computation if a contextual

instance is missing (e.g. when a sensor is unable to send data).

4.3.3 Generation of adaptation rules

The adaptation rule generation step produces a set of adaptation rules using the SELECT

bindings returned by the scoring application step. Algorithm 1 below details this process.

In Algorithm 1, causes and consequences are generated using the function

addConjunctiveAtom(), which adds an atom (triple) in the conjunction. The cause is

a conjunction of contextual instances, and the consequence is a set of ranked adapta-

tion possibilities (i.e. a set of reified blank nodes, as described in the Definition 8 from

Section 5.4.2). At each loop, if a rule with the generated cause already exists in the set

(getRuleWithCause() function), the generated consequence is added to this already ex-

isting rule (addConsequence() function). Otherwise, a new adaptation rule is created and

added to the set of adaptation rules. After this step, the meta-adaptation rule engine finally

returns the set of adaptation rules, to be integrated into an avatar reasoner.

66 CHAPTER 4. MULTI-PURPOSE ADAPTATION ENGINE

ALGORITHM 1: Adaptation rule generation

Data: A set B of SPARQL bindings with the variables { adapted, purposePredicate,
candidate, candidateScore, instances } corresponding to the scoring application
output.

Result: A set R of conjunctive adaptation rules.
1 R← []
2 foreach b ∈ B do

3 cause← new Conjunction()
4 foreach atom ∈ b.instances do

5 cause.addConjunctiveAtom(”atom rdf:type asawoo-ctx:ContextualInstance”)
6 consequence← new Conjunction()
7 consequence.addConjunctiveAtom(” _:blankNode rdf:subject b.adapted”)
8 consequence.addConjunctiveAtom(” _:blankNode rdf:predicate b.purposePredicate”)
9 consequence.addConjunctiveAtom(” _:blankNode rdf:object b.candidate”)

10 consequence.addConjunctiveAtom(” _:blankNode rdf:value b.candidateScore”)
11 tmpRule← R.getRuleWithCause(cause)
12 if tmpRule ! = null then

13 tmpRule.addConsequence(consequence)
14 else

15 R.push(new Rule(cause, consequence))

16 return R

4.4 Querying ranked adaptation possibilities

Once generated, the set adaptation rules is integrated into the WoT platform reasoner, to in-

fer and maintain adaptation possibilities. At decision time (Chapter 3, Section 3.3.3), these

adaptation possibilities are queried using adaptation questions. These questions are for-

mulated as SPARQL SELECT queries. Their pattern is based on the vocabulary described

in Definition 8: subjects are the components to adapt (functionalities), predicates are based

on the adaptation purposes, and objects are the adaptation possibilities. The pattern of a

generic SPARQL-based adaptation question is described below (Listing 4.4).

Listing 4.4: SPARQL-based adaptation question.

1 PREFIX rdf: <http: //www.w3.org /1999/02/22 -rdf-syntax-ns#>
2 SELECT ?adaptationPossibility ?score {
3 [] rdf:subject ?componentToBeAdapted ;
4 rdf:predicate ?adaptationPurpose ;
5 rdf:object ?adaptationPossibility ;
6 rdf:value ?score .
7 } ORDER BY DESC(?score) LIMIT 1

4.5. EVALUATION 67

The question consists in a SPARQL SELECT query that links adaptation possibilities

with their reified score through the rdf:value predicate. The ORDER BY DESC() clause

allows ordering the adaptation possibilities from the highest to the lowest score. Then, the

LIMIT 1 clause restricts the results to the optimal possibility. The adaptation question for

the Exp adaptation purpose requires an additional FILTER clause on the score, as it must

be strictly positive to allow exposability.

4.5 Evaluation

This section presents a correctness evaluation of the adaptation scores generated by the

meta-adaptation rule engine. The goal is to ensure the adaptation results correspond to

the expected adaptation results for different situations. We applied our experiments on the

sustainable agriculture scenario described in Chapter 2 Section 2.5 and its context model

(Table 2.1), and conducted this evaluation on a Dell OptiPlex 780 - Core 2 Duo E8400 @ 3

GHz. Stardog 4.2.34 has been used as a triplestore.

The correctness evaluation checks that the adaptation rules generated by the solution

produces the expected ranked adaptation possibilities for the five ASAWoO purposes (Imp,

Comp, Exp, Prtcl, Code). We consider the following situations: 1a) and 1b) are two dif-

ferent situations for the implementation of PictureTaking by different drones (distinct stor-

age capacities and camera resolutions); 2a) and 2b) are two different drone situations for

the composition of WateringNeedsDetection (distinct locations and storage capacities); 3)

queries the OutdoorMotion exposability during a flood; 4) requires the PictureProcessing

to choose a protocol in low-battery conditions for a far drone; and 5) requires to find the

accurate PictureProcessing code location in a situation with a low CPU availability and a

low battery level.

Situations 1a and 1b: Heterogeneous drones in terms of storage and

camera resolution

The functionality PictureTaking can be implemented by two different drones with distinct

situations. An optimal decision is expected, otherwise the watering needs detection would

4http://stardog.com/

68 CHAPTER 4. MULTI-PURPOSE ADAPTATION ENGINE

fail. Let us consider drone 1, which has high storage capacity but has a low quality camera,

and drone 2, which has limited storage capacity but is equipped with a HD camera.

Situation 1a (Drone #1) HighStorageForPictureTaking LowQualityForPictureTaking
Situation 1b (Drone #2) LowStorageForPictureTaking HighDefinitionForPictureTaking

Drone CPU availability Score

#1 High 0.6
#1 Low 0.3
#2 High 0.7
#2 Low 0.4

Table 4.2: Situations 1a/1b implementation scores.

Table 4.2 shows the scores obtained for the implementation of PictureTaking for each

drone, with varying CPU availabilities. Results shows that the camera quality is the

most impacting contextual information to determine the implementation of PictureTak-

ing. However, a low quality drone will always be preferred over a high-definition one if it

has both higher storage capacity and high CPU availability. This means that taking a high

definition picture when having low storage capacity with a busy CPU does not ensure ac-

ceptable response times, and can even cause disruptions in worst case situations.

Situations 2a and 2b: Heterogeneous drones in terms of storage, lo-

cated over different parts of the field

Two drones can take pictures to detect the watering needs. As these drones experience dif-

ferent situations, an optimal choice is expected to limit the energy and time consumptions

on drones. Let us consider drone 3, which is far from the field but has high storage capacity,

and drone 4, which is closer from the field but has a lower storage capacity.

Situation 2a (Drone #3) FarFromFieldForDetection HighStorageForDetection
Situation 2b (Drone #4) CloseToFieldForDetection LowStorageForDetection

Drone Battery level Score

#3 High 0.6
#3 Low 0.3
#4 High 0.7
#4 Low 0.4

Table 4.3: Situations 2a/2b composition scores.

4.5. EVALUATION 69

Let us choose to vary the battery levels of drones. Table 4.3 details the scores obtained

for the composition of WateringNeedsDetection for each drone. As expected, results shows

that drones closer from the field are always preferred to take pictures. It also shows that,

on this adaptation configuration, having a low battery level on a drone significantly lowers

its composition score (regardless of its location).

Situation 3: Flood

The system must determine if the weather condition is satisfiable to expose the Outdoor-

Motion functionality. In a flood situation, the Wind dimension has no impact; as long as

the contextual instance “Flooded” is present, the score of the possibility (OutdoorMotion

hasExposability Exposable) would always lower than 1. Thus, the functionality of Out-

doorMotion is never exposed while in this situation.

Wind Score

StrongWind 0.4
Breeze 0.7
NoWind 0.7

Table 4.4: Situation 3 exposability scores.

The scores obtained in Table 4.4 also show that the Breeze and NoWind instances from

the Wind dimension produce identical scores, which means that this adaptation configu-

ration (i.e. not exposing the OutdoorMotion functionality) also takes into account stormy

weather situations. We can deduce that sending drones to fly over the field is only possible

if the environmental conditions are neither stormy nor flooded.

Situation 4: Picture transmission to a far drone with low battery

In this situation, a drone must send a picture of the field to an another one in order to

process it. However, the only drone able to receive is far, and the one that sends the picture

has a low battery level. The system has to choose the best protocol to use, to save as much

battery level as possible and to send the picture with acceptable delays.

Situation 4 FarFromDrone_n_ForTransfer LowBatteryForTransfer

Table 4.5 shows that the adaptation configuration strongly favors Wifi if the picture

receiver is too far. Indeed, using Bluetooth has a limited range. However, Bluetooth has a

70 CHAPTER 4. MULTI-PURPOSE ADAPTATION ENGINE

Protocol Far Score Close Score

Bluetooth 0.1 0.7
Wifi 0.6 0.6

Table 4.5: Situation 4 protocols scores.

slightly higher score if drones are close from each other (regardless of the battery level) as

it has a lower power consumption than Wifi, both when sending or receiving data [Perrucci

et al., 2011].

Situation 5: Code hosting and execution for a drone with both limited

battery and CPU, on high bandwidth conditions

In this situation, the system must determine the best solution to provide picture processing

on a drone with limited capacities, while having a good network quality. It must determine

the best location to host and execute this functionality (either on the drone itself or onto the

cloud), in order to process pictures as fast as possible.

Situation 5 LowBatteryForTransfer
LowCPUAvailability

ForProcessing
HighBandwidth
ForProcessing

Storage capacity Drone score Cloud score

Low 0 1
High 0.3 0.9

Table 4.6: Situation 5 code locations scores.

Results from Table 4.6 show that the adaptation configuration prevents from locating

the PictureProcessing functionality code on the device, as long as the storage capacity is

not sufficient to host both the functionality module and the picture. It also shows that a

high storage capacity is not enough for the device to be the optimal code location, as the

adaptation solution would suggest taking advantage of the high bandwidth. In this config-

uration, we expect at least one more resource (either CPU or battery level) to be “High”, to

allow a score >= 0.7 for locating the code on the device. For all these reasons, the current

situation always favors the cloud as the functionality code location.

4.6. SYNTHESIS AND DISCUSSION 71

4.6 Synthesis and discussion

This chapter presented a meta-adaptation rule engine that allows for generic, situation-

based adaptation rules generation in WoT applications, based on domain-specific context

models. We detailed how this process generates adaptation rules in a declarative way,

through the use of the meta-adaptation rule engine. We presented the implementation of

this engine and evaluated its correctness on the vineyard-watering application, for several

situations.

In this work, we make the choice to rely on a semantic infrastructure to perform the adap-

tation. The choice of using semantic reasoning could be questionable. Indeed, the whole

adaptive solution takes raw sensor data – a number – as input, infers contextual instances

from these data, and attributes a score to adaptation possibilities regarding a set of contex-

tual instances, which is also a number. However, the meaning of the score number is not

the same. In a sense, scoring allows each type of information to be compared to each other,

without considering the data units and ranges. Semantics also provide reusability through

linked open vocabularies5 and domain knowledge expertise ontologies6, in an interopera-

ble manner.

Genericity and “evolutivity”

In this approach, adaptation rules always infer “positive” answers, i.e. this adaptation solu-

tion is not built upon negative assumptions. This way, the system reasons about contextual

information in an open-world assumption7 that avoids to unexpectedly block application

functionalities because a data is missing, or not available, or if it takes longer to transfer.

Moreover, the score functions can take into account this imprecision by normalizing scores

according to the number of actually available observations (aka dimensions). This makes

this approach itself dynamically adaptive to contextual conditions.

On the long run, this approach can also be adapted throughout projects and platforms.

While dimensions can be removed or added at design time, adaptation purposes can vary

5Linked Open Vocabularies (LOV) – http://lov.okfn.org/dataset/lov/
6Linked Open Vocabularies for Internet of Things (LOV4IoT) – http://sensormeasurement.appspot.com/?p=

ontologies
7The absence of data does not imply that the contextual information is false or invalid, but rather is unknown.

72 CHAPTER 4. MULTI-PURPOSE ADAPTATION ENGINE

according to the platform needs. For instance, at some point of the software maintenance

cycle, the adaptation solution may require an additional adaptation purpose (correspond-

ing to a new identified adaptation need). In that case, the application designers have to

identify the possible candidates for this purpose as well as their nature (identified as ob-

jects in Section 3.3.3 – Table 4.1). They must also identify the contextual dimensions and

their set of contextual instances, as well as the score functions required to provide adapta-

tion for this purpose.

Reasoning capabilities

The adaptation solution we propose relies on an incremental, rule-based reasoner. This

choice has a direct impact on reasoning performance, and therefore on the whole adapta-

tion process. First, having incremental reasoning allows maintaining the intentional knowl-

edge base, i.e. it maintains implicit facts in order to make SELECT query straightforward,

for the cost of incremental updates. Second, using rule-based reasoning allows the integra-

tion of business rules in conjunction with sets of RDF-S and OWL entailment rules. In such

system, both business rules and standard entailments can be removed or added, to tune

the reasoning process with respect to the application needs. Adaptation rules are those

business rules. Currently, they allow contextual adaptation in regular WoT applications

(healthcare, smart spaces, agriculture, etc.).

In the next chapter, we study how the contextual reasoning task itself can be adapted, in

order to improve the processing times of our adaptation solution. We explore the possibil-

ity to extend the original set of adaptation rules for the application and provide contextual

adaptation for the reasoning task itself. Hence, the application would be aware of its rea-

soning tasks costs, and can adapt its behavior to improve time performances.

Chapter 5

Web Reasoning Performance

Contents

5.1 Introduction . 74

5.2 State-of-the art on Web reasoning . 75

5.2.1 Reasoning in Web applications with OWL profiles. 75

5.2.2 Reasoning optimization approaches . 76

5.2.3 Incremental reasoning in RL. 76

5.2.4 Web-based reasoners . 77

5.3 Hybrid Location-Agnostic Reasoning . 78

5.3.1 Study of the influence of location on the reasoning process performance 78

5.3.2 Reasoner code location adaptation . 82

5.4 Tag-Based Reasoning . 86

5.4.1 Illustration with a smart home case study 87

5.4.2 Tag-based Incremental Maintenance . 91

5.4.3 Complexity analysis and discussion . 95

5.4.4 Evaluation . 98

5.4.5 Implementation . 101

5.5 Conclusion . 102

73

74 CHAPTER 5. WEB REASONING PERFORMANCE

5.1 Introduction

In the previous chapters, we adressed multi-purpose contextual adaptation in the WoT. We

use the ASAWoO platform, an avatar-based WoT infrastructure, to support our claims. In

this platform, avatars rely on semantic reasoning to combine capabilities from the devices,

data gathered by sensors, and information offered by Web services, in order to perform

different tasks, among which adapt their functionalities for several purposes.

Still, research questions are open to provide optimization of the reasoning tasks. First,

the reasoning task is a costly process. In the WoT application infrastructure, the reasoner

could be located either on servers or on client devices. However, the choice of its loca-

tion strongly depends on the context. Second, WoT applications usually face frequent re-

occuring data (e.g. temperature, GPS coordinates). Reasoners in WoT applications would

then frequently handle facts that have already been processed before.

In this chapter, we propose two solutions to optimize the contextual reasoning process.

The first is to provide adaptive reasoning based on a location-agnostic reasoning archi-

tecture, able to execute different reasoning tasks either on the client side (i.e. directly on

devices) or on the server-side (i.e. on the cloud). The second solution is to improve the

computation times of deletions and re-insertion tasks by tagging (i.e. annotating) KB facts

with their provenance and validity.

The contextual reasoning engine we used in Chapter 3 for the evaluation is HyLAR,

a rule-based reasoner called HyLAR [Terdjimi et al., 2016a], which has been designed ac-

cording to the RL profile. HyLAR is an appropriate choice for multi-purpose contexual

adaptation in the WoT, as it provides straightforward SELECT queries and allows answer-

ing adaptation queries in less than 100ms.

In the following sections, we present a state-of-the-art on Web reasoning and detail our

contributions and validate them on diverse evaluation setups, for each respective reasoning

optimization.

5.2. STATE-OF-THE ART ON WEB REASONING 75

5.2 State-of-the art on Web reasoning

Our contribution aims at designing reasoning processes that “bridge the gap between the

Web and the Semantic Web”1. Making better use of standard Web mechanisms (such as

HTTP caching and proxying) is the first mean to tackle this problem.

5.2.1 Reasoning in Web applications with OWL profiles.

OWL 2 profiles2 help adjusting the trade-off between expressivity and efficiency. Each

profile (EL, QL, RL) has its own specificities and targets different reasoning tasks, such

as classification (i.e. computing the transitive closure of a graph when loading an ontol-

ogy) and query answering (SELECT/UPDATE queries). Reasoning tasks differ in terms of

data, query and taxonomic complexity [Motik et al., 2009]. The choice of the appropriate

OWL profile is crucial to reduce reasoning overheads, but not always sufficient as reasoners

mostly rely on materialization (e.g. pre-compute and store inferences [Motik et al., 2015a])

which is computationally intensive. EL is suitable for very large TBoxes and would not fit

Web applications that expect their ABoxes to be contain more data than their TBoxes.

QL is appropriate for applications that manipulate high volumes of instances. It relies

on query rewriting, which is not appropriate for Web applications that require fast query

answering such as in WoT application scenarios. RL is more suitable, as it allows all ax-

ioms to be represented as logical implications and rules to be constructed as needed: to

enable reasoning about OWL constructs, one can define both entailment rules correspond-

ing to the expressive power expected for the application, and application-specific rules. RL

reasoners can involve a large amount of explicit facts [Krötzsch, 2012], and inferences are

pre-computed and explicitly stored, so that queries can be answered simply by querying

the store [Horrocks and Patel-Schneider, 2010]. This makes this profile suitable for Web

applications that require flexibility and need fast query answering.

1Phil Archer, W3C, SemWeb.Pro Paris, Nov. 2014
2http://www.w3.org/TR/owl2-profiles/

76 CHAPTER 5. WEB REASONING PERFORMANCE

5.2.2 Reasoning optimization approaches

In [Krishnaswamy and Li, 2014], the author discuss challenges in mobile OWL reasoning.

They describe how to reduce load by configuring reasoners for precise tasks using limited

description logics. Kollia and Glimm [Kollia and Glimm, 2014] propose to rewrite axiom

templates into smaller templates to reduce the query evaluation time cost. The Triple Pat-

tern Fragments [Verborgh et al., 2014a] (TPF) interface is a Web API to RDF data where

clients can ask for triples matching a certain triple pattern. This approach relies on intelli-

gent clients that query TPF servers to address the problem of scalability and availability of

SPARQL endpoints. However, the use of a LDF (Linked Data Fragments) server is neces-

sary.

Current existing mobile reasoners are based on first-order logic (FOL), managing Tbox

(schema), Rbox (roles) and Abox (assertions). Sinner and Kleemann’s KRHyper [Sinner and

Kleemann, 2005] is a novel-tableaux based algorithm for FOL. However, according to [Kr-

ishnaswamy and Li, 2014], KRHyper encounters memory exhausting problems when the

reasoning task becomes too large for the device. Based onALCN , Mine-ME 2.0 from [Ruta

et al., 2014] runs on Android devices. Embedded reasoners such as the EL+ reasoner pro-

posed in [Grimm et al., 2012] are capable of reasoning on large Tboxes due to the limitations

of EL (no individuals nor concept disjointness). But neither [Ruta et al., 2014] nor [Grimm

et al., 2012] provide access to Web clients.

5.2.3 Incremental reasoning in RL.

Web applications also need to handle frequent data updates. Reasoners embedded in those

applications can then rely on incremental reasoning (IR) [Motik et al., 2012] to avoid entire

recomputations. Several improvements of IR currently exist. The fact-dependency tracking

from [Goasdoué et al., 2013] traces the origin of facts (i.e. the other facts they have been

inferred with) and relies on query reformulation to provide the appropriate query result.

The counting method [Gupta et al., 1993] also tracks alternative derivations for each fact

but does not support recursive rules. However, even counting algorithms that support re-

cursion such as in [Dewan et al., 1992] do not reduce the re-insertion cost as alternative

derivations are not explicitly stated but rather counted. Nowadays, most incremental main-

5.2. STATE-OF-THE ART ON WEB REASONING 77

tenance algorithms are based on Gupta et al.’s delete-rederive (DRed) [Gupta et al., 1993].

DRed improves performance as it ensures that the rules apply only to modified facts and

thus prevents complete and successive recalculations of the KB on each update. The so-

lution presented in [Kazakov and Klinov, 2013] relies on DRed for the classification task,

but it exclusively targets EL+ ontologies with complex and changing TBoxes to tackle re-

classification issues.

In [Motik et al., 2015b], the authors tackle the derivation redundancy issue encountered

in the overdeletion step using a semi-naive materialization approach that combines back-

ward and forward (BF) chaining. This improvement however still relies on rule matching

and evaluation at deletion, and does not completely avoid overdeletion and re-derivation.

They implemented this approach in the RDFox triplestore [Nenov et al., 2015] that targets

highly scalable applications. Yet, we aim to build a JavaScript solution that targets Web

browsers, which is currently not possible with RDFox.

5.2.4 Web-based reasoners

An approach to embed a reasoner in mobile devices is to rely on Web standards and run it

in a Web browser in Javascript. Such works are oriented towards Web-based technologies

and rely on reasoners written in Javascript that can be embedded in mobile devices and

ran on the device browser, independently of their operating system. EYE3 is a NodeJS4-

compatible reasoner capable of inferring on FOL rules, performing server-side reasoning

while a client widget renders a graphical interface for SPARQL querying. As far as we

know, the reasoner has not been ported onto the client side. Based on the JSW Toolkit,

OWLReasoner5 allows client-side processing of SPARQL queries on OWL 2 EL ontologies.

After parsing an ontology, a classification step performs its deductive closure to return its

Tbox and Abox and converts them into a relational database. SPARQL queries sent to the

reasoner are rewritten into SQL queries, and processed on the database. Yet, the OWLRea-

soner SPARQL engine is limited to basic rule assertions, and its reasoning engine cannot

be provided additional rule-based entailments without modifying the reasoner code. The

Constraint Handling Rules [Frühwirth, 2015] language also allows efficient rule-based rea-

soning and has been implemented in JavaScript. However, it does not provide incremental

3http://reasoning.restdesc.org/
4https://nodejs.org/
5https://code.google.com/p/owlreasoner/

78 CHAPTER 5. WEB REASONING PERFORMANCE

maintenance.

5.3 Hybrid Location-Agnostic Reasoning

To address performance concerns that arise with high numbers of simultaneous requests,

Web application designers dispose of several tools, among which caching static data and

deferring code execution from the server to the client side. But even if in average, client

processing resources augment at a fast pace, they remain heterogeneous and in some cases,

too limited to execute heavy calculation processes.

In some way, solving SPARQL queries for a large number of clients can require heavy

reasoning processes and cause server unavailabilities. Client-side reasoning is therefore

to consider to lighten server charge, since current mobile devices and smart appliances

sometimes have enough computing capabilities to execute one or more reasoning tasks.

Yet, their diversity require the ability to defer reasoning tasks on either side (client device

or more powerful server) depending on the context. For such a possibility to work in the

WoT paradigm, reasoning solutions must provide the possibility to reason on the Web and

to be flexible enough to locate reasoning tasks on the appropriate sides.

We focus on taking in consideration the recent advances in Web technologies to exploit

client resources by deferring code execution on the client. We therefore focus on JavaScript-

based reasoning, so that the same parts of code can both be deployed on the client and

server sides, to provide an adaptable reasoning task. We build this reasoning architecture

with respect to W3C standards, using semantics-based description logics (DL) over FOL.

5.3.1 Study of the influence of location on the reasoning

process performance

To improve the reasoning performance, we propose to separate and locate the reasoning

tasks executed once (which can be preprocessed on the server side, such as parsing and

classification steps) from the reasoning tasks executed when a query is sent to the reasoner

5.3. HYBRID LOCATION-AGNOSTIC REASONING 79

(SPARQL query parsing and answering). In this study, we consider stable ontologies (i.e.

we do not consider the re-classification of the schema).

To identify the relevant pieces of contextual information to consider for the reason-

ing task adaptation, we propose a preliminary evaluation to benchmark the execution of

the steps in different reasoning code location configurations. The following subsections

characterize the most suitable architecture by evaluating the reasoning efficiency wrt. sev-

eral parameters: client resource limitation, number of simultaneous clients requesting the

SPARQL endpoint, size of the processed ontology and network latency. This work has been

published in [Terdjimi, 2015, Terdjimi et al., 2016a].

Benchmark of influence of contextual parameters

We consider four tasks, representing all possible steps of the reasoning process: (0) for

loading client scripts; (1) for loading a raw ontology; (2) for performing ontology parsing,

classification and loading the parsed ontology; (3) for SPARQL query processing through

the reasoner. These are depicted in Figure 5.1 below.

Figure 5.1: Architectures used for our evaluation

We used the architecture presented in Section 5.1 to evaluate the overall reasoning pro-

cess times in three situations: full server-side, full client-side and hybrid (server-side pars-

80 CHAPTER 5. WEB REASONING PERFORMANCE

ing and classification, and client-side query processing). Figure 5.1 shows (1), (2) and (3)

for each situation. Additionally, for the hybrid and full client-side variants, client-side parts

are evaluated both with and without a Web worker. We assume that scripts and ontologies

are available on the server. All scenarios conform to a query-processing-response pattern.

In the result tables, we noted [Q] the time for the client’s request to reach the server; [P] the

processing time and [R] the time for the server response to reach the client. Depending on

the scenario and location of the calculations, some parts of this steps/patterns are consid-

ered immediate (e.g. querying the local reasoner to process a query). They are noted in the

result tables as not applicable. Each evaluation is tested on two ontologies6: A (1801 class

assertions and 924 object property assertions) and B (12621 class and no object property

assertions).

The tests ran above show network request and response delays for each scenario. It is

realized by simulating a remote server with Clumsy 0.27. [R0] is the time for the client to

load scripts and following are the respective query/response times for [Q1]/[R1] retrieving

the raw ontlogy, [Q2]/[R2] retrieving the classification result and [Q3]/[R3] sending the

SPARQL query and retrieving results. A second evaluation compares processing times

for [P2] classification and [P3] reasoning in three different configurations: a Dell Inspiron

(with Chrome), a Nokia Lumia 1320 (Snapdragon S4 @ 1700 MHz, with Internet Explorer),

a Samsung Galaxy Note (ARM cortex A9 Dual-Core @ 1,4 GHz, with Firefox) and a Node.js

server set up in the Inspiron.

Ontologies A/B [R0] [Q1] [R1] [Q2] [R2] [Q3] [R3]

Remote server 334 54 110/275 119/120 167/647 146/154 61/85

Table 5.1: Network delays (in ms)

As expected, Table 5.2 shows that the server has the best results for the classification

processing time and can use caching. Even if the raw ontology is faster to load than the

classification results, loading scripts and data on the client is much faster than performing

the same classification step on each client. Therefore, it makes no sense to defer and du-

plicate heavy calculations onto clients, rather than pre-calculating them on the server and

caching results. Table 5.2 shows an important difference between configurations: it keeps

reasonable processing time for the query answering task in good to average configurations

(e.g. Inspiron and Lumia), but the older Galaxy Note is ten times slower than the server.

For such limited resource devices, the server could therefore take over the answering pro-

6We chose ontologies of “reasonable” sizes, representing datasets that a Web application can require. For in-
stance, ontology B has actually been used to perform client-side recommendation in [Médini et al., 2013]

7http://jagt.github.io/clumsy/

5.3. HYBRID LOCATION-AGNOSTIC REASONING 81

Ontologies A/B [P2] (no worker) [P2] (worker) [P3](no worker) [P3] (worker)

Inspiron

(Chrome)
790 /27612 764/26464 28/101 24/88

Lumia

(IE)
1989/54702 1883/53801 156/198 144/185

Galaxy Note

(Firefox)
2954/81255 2872/79752 465/2988 440/2872

Server

(Node.js)
780/20972 n/a 35/37 n/a

Table 5.2: Classification [P2] and reasoning [P3] times (in ms)

cess. More generally, for M clients and N queries/client, the three configuration calculation

times can be calculated as follows8:

Full Server-side P2server +M ×N × (Q3 + P3server +R3)

Full Client-side M × (R0 +Q1 +R1) + P2client +N × P3client

Hybrid P2server +M × (R0 +Q2 +R2) +N × P3client

Synthesis

Globally, the evaluation shows that choosing a location for the query answering process

is not as simple as for the classification step. For clients with limited resources, it can be

more efficient to perform this step on the server. But as the ontology usage (number of

queries per client) and the server load (number of clients) grow, it appears that relocating

query processing on the client can be a good strategy, since queries can be processed au-

tonomously on each client. A more powerful server would shorten server-side response

times, resulting in shifting the strategy switching point. Still, higher performance – and

therefore scalability – can be achieved by deferring this step on clients.

8Server-side classification (performed once and then cached) and client-side calculations (performed in parallel)
are only counted once.

82 CHAPTER 5. WEB REASONING PERFORMANCE

5.3.2 Reasoner code location adaptation

The preliminary evaluation above introduced the possibility to improve the reasoning pro-

cess by deferring appropriate tasks to clients. We use this strategy to answer the adaptation

purpose Code described in Chapter 2 to locate the reasoning task at runtime, according to

contextual information. We aim to identify the best code execution locations for reasoning

tasks in a transparent manner. In this setup, semantic reasoning is divided in two tasks.

The first is the domain ontology classification, which is the most complex but is only exe-

cuted when the application starts. The second task is query answering, which consists in

processing SPARQL queries on the knowledge base. This task is more straightforward but

more frequent. We evaluate the efficiency of the code execution location strategy for these

tasks. In order to evaluate tasks with different complexity levels, we chose to only evaluate

SELECT queries.

The context model we consider is composed of the following set of dimensions { Privacy,

OntologySize, Ping, Battery}. Their respective set of contextual instances are detailed in the

transformation setup section. The adaptation purpose is Code. The set of adaptation possi-

bilities is { Device, Cloud }, i.e. the possible code locations. The adapted components are the

reasoning tasks { Classification, QueryAnswering }. The scores are detailed in the adaptation

setup section.

Transformation setup

The contextual model for the reasoning task includes the following dimensions: ontology

size, battery level, ping duration and user privacy preferences. Data in these dimensions

come from different sources: the cloud and the device. The contextual model is built by

transforming numerical values in the dimensions into level-specific DL facts. In this exam-

ple, this transformation relies on the following rules:

• If the user has set her privacy preference in her profile as “important”, then the con-

textual instance for this dimension is HighPrivacy. If she has chosen to set it as “not

important”, it is LowPrivacy.

• If the ontology contains less than 200 entities, then the inferred contextual instance is

SmallOntology. If not, it is BigOntology.

5.3. HYBRID LOCATION-AGNOSTIC REASONING 83

• If the ping duration exceeds 150 ms, then the infered contextual instane is LongPing.

If not, it is ShortP ing.

• If the battery level exceeds 30%, then the inferred contextual instance isHighBattery.

If not, it is LowBattery.

This transformation setup limits the inference of contextual instances to four simultane-

ous instances using four rules, which corresponds to the necessary contextual information

used to adapt the code location.

Adaptation setup

In this adaptation setup, the two functionalities to be adapted are the ontology classifica-

tion and the query answering tasks, the adapation purpose is Code, and the possible code

execution locations are either on drones or on the cloud. The contextual instances are Big

or Small for the ontology size, High or Low for the battery level, and Long or Short for the

ping duration. The entailments below describe the rules related to this configuration. They

have been written in a simplified manner, where a rule atom antecedent CtxtInst(I) de-

notes the presence of the inferred contextual instance I and a rule atom consequent X(Y)

denotes the location Y of the reasoning taskX . Adaptation possibilities explicitely inferred

from the rules below always have their score s = 1, while their opposite possibilities (i.e.

Device for Cloud, and vice versa) will have their score s = 0. For instance, HighPrivacy

will produce the possibility “Classification(Device)” with s = 1, thus the score of “Classi-

fication(Cloud)” would be s = 0.

CtxtInst(HighPrivacy)→ Classification(Device)

CtxtInst(BigOntology)→ Classification(Cloud)

CtxtInst(LowBattery)→ Classification(Cloud)

CtxtInst(SmallOntology) ∧ CtxtInst(HighBattery)→ Classification(Device)

CtxtInst(LongPing)→ QueryAnswering(Device)

CtxtInst(HighBattery)→ QueryAnswering(Device)

CtxtInst(ShortP ing) ∧ CtxtInst(LowBattery)→ QueryAnswering(Cloud)

The classification task is executed directly on the device only if the ontology size is

small and the battery level is high. Otherwise, it is executed on the cloud. For the query

answering task, it is executed on the device except if the ping duration is short and the

84 CHAPTER 5. WEB REASONING PERFORMANCE

battery level is low, in which case it is executed in the cloud. At request time, the context

manager sends the code location adaptation query question (Listing 5.1) to the semantic

reasoner.

Listing 5.1: SPARQL code location adaptation question.

1 PREFIX rdf: <http: //www.w3.org /1999/02/22 -rdf-syntax-ns#>
2 PREFIX asawoo-ctx: <http: // liris.cnrs.fr/asawoo/context/>
3 SELECT ?codeLocation ?score {
4 [] rdf:subject ?reasoningTask ;
5 rdf:predicate asawoo-ctx:hasSuitableCodeLocation ;
6 rdf:object ?codeLocation ;
7 rdf:value ?score .
8 } ORDER BY ?score

Practical evaluation

We evaluate this adaptation on a Pentium Dual-Core CPU E5500 @ 2.80 GHz with 4 Gb

RAM that acts as the device, and a virtual machine with two VCPU and 2 Gb RAM hosted

on a cloud infrastructure based on Intel E52680 @ 2.50 GHz processors. The server on the

cloud runs a Node9 / Express10 engine. The device itself is not a drone (to simplify the

measures) but acts as such. We simulate network throttling using Google Chrome Canary

V.50.0.2651.0 on the ‘Regular 2G’ mode (250 kb/s down, 50 kb/s up, 300 ms RTT). We use

two ontologies: (O1) (Fipa-Device11) with 126 entities (schema + axioms) and (O2) (IoT-O12)

with 328 entities. The experiment relies on HyLAR to migrate the code between the object

and the cloud, and to measure reasoning times.

The process of this evaluation consists in (a) classifying the ontology and (b) sending

a select query. We calculated for both (a) and (b): (REQ) the time for the device request

to reach the cloud, (PROC) the task processing time, and (RES) the time for the cloud re-

sponse to reach the device. We use the following setups both in a wired connection or in

the ‘Regular 2G’ mode:

1. Locating the execution of (a) and (b) exclusively on the cloud (M1).

2. Locating the execution of (a) and (b) exclusively on the device (M2).

9https://nodejs.org/
10http://expressjs.com/
11www.fipa.org/specs/fipa00091/PC00091A.html
12http://www.irit.fr/recherches/MELODI/ontologies/IoT-O.owl

5.3. HYBRID LOCATION-AGNOSTIC REASONING 85

3. Locating the execution of (a) and (b) with respect to the adaptation engine answer.

(REQ) (PROC) (RES) (REQ) (PROC) (RES)
Wired 20 411 25 20 2 20 498

Regular 2G 350 411 380 350 2 350 1843
Wired 20 660 20 0 11 0 711

Regular 2G 350 660 350 0 11 0 1371
Wired 20 660 20 0 11 0 711

Regular 2G 350 660 350 0 11 0 1371

(REQ) (PROC) (RES) (REQ) (PROC) (RES)
Wired 20 7527 50 20 8 10 7635

Regular 2G 350 7537 6427 350 8 444 15116
Wired 20 9389 19 0 31 0 9459

Regular 2G 350 9389 1777 0 31 0 11547
Wired 20 7527 50 0 31 0 7628

Regular 2G 350 9389 1777 0 31 0 11547

DEVICE

ADAPTIVE

(O1)
CLASSIFICATION

(time in ms)
QUERY ANSWERING

(time in ms) Total
(ms)

CLOUD

Total
(ms)

QUERY ANSWERING
(times in ms)(O2)

CLOUD

DEVICE

ADAPTIVE

CLASSIFICATION
(times in ms)

Figure 5.2: Request, task processing and response times for ontologies (O1), (O2) in different
network conditions.

Time saved on
adaptation:

Time saved on
adaptation:

(a) then (b) (a) then 10x(b)
Wired (O1) -43% 0% Wired (O1) 8% 0%

Regular 2G (O1) 26% 0% Regular 2G (O1) 82% 0%
Wired (O2) 1% 20% Wired (O2) 1% 19%

Regular 2G (O2) 24% 0% Regular 2G (O2) 48% 0%

CLOUD DEVICECLOUD DEVICE

Figure 5.3: Percentage of time saved if using an adaptive solution in comparison to full cloud or
full device code execution, for two different workflows.

Figure 5.2 shows the results of our experimentations, and Figure 5.3 shows the time

saved by using an adaptive solution in comparison to fully relying on the cloud or fully

relying on the device. The latter also compares both the initial workflow (a), (b) and a more

realistic scenario (a), 10 x (b), i.e. an initial classification followed by several queries. This

86 CHAPTER 5. WEB REASONING PERFORMANCE

depicts how an adaptive solution can improve the reasoning performances by answering

the question of code execution location, which is 82% more effective than fixed implemen-

tations in disrupted environments for an average domain-specific ontology.

Evaluation synthesis

The evaluation showed that choosing the relevant contextual information to adapt the loca-

tion of reasoning tasks significantly improves the reasoner time performance. We showed

that, in practice, using the adaptation solution does not cause a time overhead for reason-

ers handling a significant amount of queries. Instead, the adaptation solution improves the

time performance in worst cases (e.g. bad network conditions, large ontologies...).

In the next section, we tackle the issues in UPDATE queries processing with incremental

reasoning for WoT applications that face frequently re-ocurring information.

5.4 Tag-Based Reasoning

WoT applications must dynamically handle various types of contents generated by users

or client sensors. Existing semantic technologies could improve these applications, but

the state of the art shows that they are currently under-exploited. One reason is that full-

fledged semantic stacks are perceived as costly, unreliable server-sided architectures, in

opposition with current (i.e. modular and client-side) Web design practices [Verborgh et al.,

2014b]. Adaptation of the reasoning can solve issues that are specific to the WoT application

infrastructure and software environment. The previous section addressed this problem

through code location adaptation, using HyLAR to defer specific reasoning tasks either on

the server or on the client sides.

State-of-the-art in semantic reasoning research work [Motik et al., 2012] aims at improv-

ing reasoning tasks through maintenance algorithms such as DRed-based incremental rea-

soning (IR). However, when the updated data is cyclic (i.e. facts that re-occur periodically),

applications should not only rely on IR to optimize reasoning, as they are regularly exposed

to overheads caused by re-deriving implicit facts that have been already derived in the past.

The objective of this section is to allow using reasoning for tasks currently located on WoT

application clients, that satisfy several conditions. We focus on datasets of relatively small

5.4. TAG-BASED REASONING 87

size (< 50k lines) and target Web applications based on stable data models (TBoxes) and

more varying model instances (ABoxes).

To solve the present issues in incremental maintenance for WoT applications, we pro-

pose an approach inspired by IR that prevents successive re-derivations by tagging facts

with respect to their provenance and validity. The solution we propose includes the fol-

lowing contributions:

1. Faster deletions using validity tagging. we provide validity tagging for explicit facts

and do not process costly overdeletion tasks. Instead, explicit facts are tagged as in-

valid at deletion time and as valid at re-insertion time.

2. Faster re-insertions using provenance tagging. Our approach tracks the provenance

of all implicit facts (i.e. all possible derivations), which avoids having to re-evaluate

them if they are reinserted in the knowledge base.

In this section, we formalize and highlight the re-derivation overhead problem, in a

classic WoT application setting. We propose three algorithms: implicit fact tagging, tag-

based KB update and fact selection filtering, and analyse the gain and cost of tagging facts

in terms of complexity. We evaluate the TB maintenance approach by comparing it with IR

and discusses the results with respect to different application settings.

5.4.1 Illustration with a smart home case study

WoT applications – or even more generally, Web applications – can be subject to frequent

updates. Possibly re-occurring data can be re-inserted or re-deleted, which can cause sig-

nificant computational overheads. We illustrate this issue with the scenario of a mobile WoT

application connected to a smart house: Julia uses this application on her smartphone to

automatically regulate her house temperature when she approaches her house. The appli-

cation locates her mobile phone either using its GPS sensor or by recognizing the network

it is connected to. She will be considered close to her house either if her cell phone GPS co-

ordinates correspond to her house neighborhood or if she connects the phone to the house

local network. This activates temperature regulation and deactivates it otherwise. Julia’s

proximity from her house is the re-occurring data: the application infers or not this infor-

mation as she moves back and forth with her cell phone, as she switches on and off the GPS

sensor, or as she connects and disconnects her phone from the house network.

88 CHAPTER 5. WEB REASONING PERFORMANCE

We use the following formalization, from [Motik et al., 2012]: a fact F can be explicit

(i.e. provided at startup or update), implicit (i.e. derived as a rule consequence), or both

implicit and explicit (i.e. explicitly stated and derived). A rule r has an antecedent, con-

junction of facts Fi, i ∈ N) and an implied consequence (a single fact I); when it applies, the

consequence is derived as an implicit fact: r :- F1 ∧ F2 ∧ ... ∧ Fx→ I.

Application ontology. Julia’s application in our scenario uses the following fixed ontol-

ogy (Classes and Properties) and entailment rules.

EO1

:Physica lAgent rd f : t ype owl :Class .

EO2

:User rdfs : subClassOf :Physica lAgent .

EO3

:SmartDevice rdfs : subClassOf :Physica lAgent .

EO4

:SmartPhone rdfs : subClassOf :SmartDevice .

EO5

:SmartHome rdfs : subClassOf :SmartDevice .

EO6

:Loca t ion rd f : t ype owl :Class .

EO7

:TemperatureStatus rd f : t ype owl :Class .

Listing 5.2: Classes

EO8

:hasLocat ion rd f : t ype owl :ObjectProperty .

EO9

:hasLocat ion rdfs:domain :Physica lAgent .

EO10

:hasLocat ion rd f s : r ange :Loca t ion .

EO11

:hasLocat ionCloseTo rd f : t ype owl :ObjectProperty .

EO12

:hasLocat ionCloseTo rd f : t ype owl :Trans i t iveProper ty .

EO13

:hasLocat ionCloseTo rdfs:domain :Physica lAgent .

EO14

:hasLocat ionCloseTo rd f s : r ange :Physica lAgent .

5.4. TAG-BASED REASONING 89

EO15

:hasTemperatureRegulation rd f : t ype owl :ObjectProperty .

EO16

:hasTemperatureRegulation rdfs:domain :SmartHome .

EO17

:hasTemperatureRegulation rd f s : r ange :TemperatureStatus .

Listing 5.3: Properties

Transitivity

(?p rd f : t ype owl :Trans i t iveProper ty) ∧ (? i 1 ?p ? i 2) ∧ (? i 2 ?p ? i 3)

→ (? i 1 ?p ? i 3)

Subsumption

(? c1 rdfs : subClassOf ?c2) ∧ (? s rd f : t ype ?c1)

→ (? s rd f : t ype ?c2)

Listing 5.4: Entailment rules

Application instances and rules. Below are the initial explicit and implicit facts in-

ferred via the Business Rules (Listing 5.5), which drive the application behavior. The set of

initial explicit facts declares Julia, her cell phone, her house and the instance that activates

temperature regulation in the KB, and assumes that Julia always carries her cell phone with

her. The application can reason about their locations via r1 (as they are inferred as physical

agents), and can switch on the regulation via r2.

r1

(? agent :hasLocat ion :JuliasHouseNeighborhoodLocation)

→ (? agent :hasLocat ionCloseTo : Ju l iasHouse)

r2

(: J u l i a :hasLocat ionCloseTo : Ju l iasHouse)

→ (: Ju l i asHouse :hasTemperatureRegulation :Ac t iva ted)

Listing 5.5: Business rules

E1

: J u l i a rd f : t ype :User .

E2

: Ju l i a sPhone rd f : t ype :SmartPhone .

E3

90 CHAPTER 5. WEB REASONING PERFORMANCE

: Ju l i asHouse rd f : t ype :SmartHome .

E4

: J u l i a :hasLocat ionCloseTo : Ju l i a sPhone .

E5

:Ac t iva ted rd f : t ype :TemperatureStatus .

Listing 5.6: Initial explicit facts

I1 (Subsumption)

: Ju l i a sPhone rd f : t ype :SmartDevice .

I2 (Subsumption)

: Ju l i asHouse rd f : t ype :SmartDevice .

I3 (Subsumption)

: J u l i a rd f : t ype :Physica lAgent .

I4 (Subsumption)

: Ju l i a sPhone rd f : t ype :Physica lAgent .

I5 (Subsumption)

: Ju l i asHouse rd f : t ype :Physica lAgent .

Listing 5.7: Initial implicit facts (inferred instances)

We consider the following 3-steps scenario.

(1) Julia approaches her neighborhood with her cell phone. The application analyzes the

phone GPS coordinates and adds the explicit fact E6. This allows the reasoner to infer I6

via r1 and I7 via Transitivity.

The application then enables temperature regulation as I7 triggers I8 via r2.

(2) Julia enters her house and cuts off the GPS to save energy. The phone position becomes

unknown. The application removes E6, which also triggers the removal of I6, I7, I8, and

disables temperature regulation.

5.4. TAG-BASED REASONING 91

(3) Julia connects her phone to the house local network. The application inserts E7, causing

I7 and I8 to be re-derived respectively via Transitivity and r2.

Step 3 highlights the re-evaluation overhead caused by over-deletion in the IR algo-

rithm: the deletion and reinsertion of explicit facts leads to the re-derivation of two implicit

facts that have already been derived at first insertion.

5.4.2 Tag-based Incremental Maintenance

To avoid recurrent re-derivations, we propose to keep the origin of previously obtained

inferences so that when already known facts re-occur, the reasoner can quickly retrieve their

consequences. To do so, it must keep track of all facts, including deleted ones, and be able

to assess their validity: explicit facts are tagged as valid/invalid, and implicit fact validity is

retrieved using those of the explicit facts they have been derived from. When the reasoner

receives an INSERT query, it only runs its inference algorithm on the explicit facts that

have not been inserted before and simply validates the others. Processing DELETE queries

only consists in invalidating the corresponding facts instead of removing them from the

knowledge base (as done in IR). At SELECT queries, the reasoner queries the knowledge

base and filters the resulting facts according to their validity.

The speed of this process relies on the principle of storing explicit fact validity in mem-

ory and obtaining implicit fact validity from simple logic operations on these values: an im-

plicit fact can originate from the disjunction of several sets of facts (explicit or implicit) that

match the antecedent pattern of a same rule or from multiple rules, and rule antecedents

92 CHAPTER 5. WEB REASONING PERFORMANCE

are defined as conjunctions.

Finally, we introduce a fact forgetting mechanism to avoid KB inflation. In this mecha-

nism, each fact is tagged with the timestamp of its latest validity update (i.e. the last change

on its validity tag), so that the oldest invalid facts are asynchronously removed when the

KB size reaches a given threshold. As this mechanism only removes invalid facts (i.e. facts

that would be deleted in the regular IR maintenance), it does not affect the inference cor-

rectness.

In the smart home case study presented in the previous section, when Julia switches

the phone GPS off, the application “loses” its location and asks the reasoner to remove E6.

But the reasoner only invalidates this fact. Then, the application sends a SELECT query on

I8. The reasoner performs a simple logical operation (explained below) on I8 causes (E4,

E6) that assesses that I8 is invalid, as E6 is invalid. It then does not return I8. When the

phone connects to the house network, the application creates E7. The reasoner attaches it

as alternative derivation of I7. At the next SELECT query, it deduces that I8 is valid as I7 is

valid, and sends it back to the application. The next subsections detail the main elements

of our Tag-Based (TB) approach: validity assessement, fact tagging, reasoning process and

selection tasks.

Fact validity

Let Fe and Fi be respectively the sets of explicit and implicit facts in the KB. We propose

to keep all facts (explicit and implicit) in the KB until the reasoning process is stopped or

the fact forgetting mechanism triggered, and to assess their validity instead of removing

them at DELETE queries. To do so, we tag explicit facts with a valid boolean indicator:

fe.valid ∈ B, fe ∈ Fe, which is set to true on insertion and false on deletion. We tag implicit

facts with a derivedFrom indicator that represents the minimal set of disjoint causes of

an implicit fact. We define a cause C as a set of explicit facts that must all be valid to

validate an implicit fact13: C = {fei}, i ∈ N, fei ∈ Fe. Hence, ∀fi ∈ Fi, fi.derivedFrom =

{Ci}, i ∈ N/∀x, y, 0 ≤ x < y ≤ i, Cx � Cy, Cy � Cx. We provide an isV alid() function that

checks the validity of an implicit fact using its derivedFrom tag. It evaluates the disjunction

between the tag elements and for each element, the conjunction between the valid tags

of the explicit facts referenced in this element: isV alid(fi) = ∨Ci
{∧fej{fej.valid}}, Ci ∈

fi.derivedFrom, fej ∈ Ci.

13To avoid recursion while assessing implicit fact validity, algorithm 3 (see below) only stores explicit facts in
causes.

5.4. TAG-BASED REASONING 93

Implicit fact tagging

ALGORITHM 2: Implicit fact tagging

Data: A newly inferred implicit fact f and the sets Fe (resp. Fi) of explicit (resp.
implicit) facts it has been derived from.

Result: f carries a derivedFrom tag composed of its explicit causes only.
1 if Fi = ∅ then
2 f.derivedFrom← {Fe}
3 return f
4 C ′ ← Fi.f irst().derivedFrom
5 foreach fi ∈ (Fi \ Fi.f irst()) do
6 tmp← ∅
7 foreach c ∈ C ′ do
8 foreach δ ∈ fi.derivedFrom do
9 tmp← tmp ∪ {c ∪ δ}

10 C ′ ← tmp
11 if Fe = ∅ then
12 f.derivedFrom← C ′

13 return f
14 C ← ∅
15 foreach c ∈ C ′ do
16 C ← C ∪ {c ∪ Fe}
17 f.derivedFrom← C
18 return f

Each time an implicit fact is derived, Algorithm 2 is applied to set its derivedFrom tag.

Let Fe (resp. Fi) be the sets of explicit (resp. implicit) facts a newly inferred fact f have been

derived from. In the general case, the algorithm builds the set C ′ of resolved explicit causes

by replacing implicit facts with their explicit causes14 and deduplicating these causes (lines

4-10). It then builds the set C of explicit causes by distributing the initial set of explicit facts

Fe into C ′ (lines 14-16). It finally sets C as derivedFrom tag of f – now tagged with a set

of disjoint explicit causes – and terminates (lines 17-18).

Two optimizations allow avoiding unnecessary loops: (i) if no implicit fact is present

(i.e. Fi is empty), the algorithm sets f.derivedFrom to Fe and terminates at line 3; (ii) if

no explicit fact is present (i.e. Fe is empty), the algorithm sets f.derivedFrom to C ′ and

terminates at line 13.

14These implicit facts have been inferred from prior evaluation loops; hence their derivedFrom tag is already set
and stricly composed of explicit facts.

94 CHAPTER 5. WEB REASONING PERFORMANCE

Enabling tagging in reasoning

ALGORITHM 3: Tag-based KB update

Data: Rule set R, explicit facts Fe, implicit facts Fi, added explicit facts F+
e ,

removed explicit facts F−
e

Result: The KB updates correspond to the changes caused by F+
e and F−

e wrt. R.
1 F+

i ← ∅
2 foreach fact ∈ Fe do
3 if fact ∈ F−

e then fact.valid← false
4 else if fact ∈ F+

e then
5 fact.valid← true
6 F+

e ← F+
e \ {fact}

7 if F+
e �= ∅ then

8 Fe ← Fe ∪ F+
e

9 do
10 Fi ← Fi ∪ F+

i

11 Rkb ← restrictRuleSet(R,Fe ∪ Fi)
12 F+

i ← evaluateRuleSet(Rkb, Fe ∪ Fi)
13 F+

i ← combine(Fi, F
+
i)

14 while F+
i �⊂ Fi

15 return Fe ∪ Fi

The KB update algorithm (Algorithm 3) performs the reasoning process while answer-

ing INSERT and DELETE queries. Let R be the set of rules and F+
e and F−

e the sets of

explicit facts to be respectively added and removed (from the query). It first invalidates the

explicit facts to be deleted, and validates those to be inserted (lines 2-6), so that F+
e only

contains new facts to be evaluated at line 7. Hence, for all deletions and re-insertions, our

approach allows to skip the whole evaluation loop (lines 9-13).

For the remanining facts in F+
e , the evaluation loop works very similarly to IR [Motik

et al., 2012]: the reasoner restricts R to the set Rkb of rules that match at least one cause

in the updated KB (Fe ∪ Fi) in restrictRuleSet() (line 11), evaluates Rkb over Fe ∪ Fi

(evaluateRuleSet(), line 12) and loops as long as new implicit facts are inferred. TB rea-

soning requires two additional steps: (i) at each iteration, the combine() function dedupli-

cates identical facts by concatenating their causes and removes unnecessary causes15 (line

13), and (ii) when new implicit facts have been inferred (i.e. in the innermost loop of the

evaluateRuleSet() function), it calls Algorithm 2 to set the fact causes in their derivedFrom

15For instance, if fi can be caused by both fe1 ∧ fe2 and fe1 ∧ fe2 ∧ fe3, only the former conjunction is stored as a
cause.

5.4. TAG-BASED REASONING 95

tags (line 12). After the evaluation loop, the algorithm terminates and returns Fe ∪Fi, that

reflects the KB changes, namely the updates in F+
e and F−

e and the valid and derivedFrom

tags of facts.

Fact-filtering

ALGORITHM 4: Tag-based KB filtering

Data: F a set contaning explicit and implicit facts from a SELECT query answer.

Result: The returned set is composed of valid facts.

1 V ← ∅
2 foreach f ∈ F do

3 if ((hasTag(f, valid) and f.valid) or (isV alid(f)) then V ← V ∪ {f}
4 return V

The fact-filtering algorithm (Algorithm 4) is applied after SELECT queries to filter out

valid facts. As these queries are time-critical for the application and this step represents

an overhead compared to other approaches, this algorithm must be kept fast. Let F be

a query result set of facts. The algorithm performs a single loop over F to construct –

and return – the set of valid facts V of F : V = {fe ∈ F ∩ Fe/Fe.valid = true} ∪ {fi ∈
F ∩ Fi/isV alid(Fe) = true}16.

5.4.3 Complexity analysis and discussion

Inserting a fact in a KB requires performing a transitive closure of the graph. The number

of times a rule-based reasoner executes the rule evaluation loop depends on the data and

on the expressivity of the used DL17. As tag-based is a maintenance approach, it does not

aim at reducing the whole reasoning process complexity, but at performing it as rarely as

possible. Our goal hereafter is to quantify the difference between TB maintenance and

regular IR for each reasoning task.

16For the sake of understandability, the algorithm comprises an hasTag() function to filter explicit from implicit
facts. This function is not implemented in practice.

17It is said to be EXPTIME-complete in |KB| with SHIQ [Hustadt et al., 2005], and even untractable with other
DLs [Donini, 2003] for tasks such as satisfiability or subsumption.

96 CHAPTER 5. WEB REASONING PERFORMANCE

Algorithm analysis

Fact tagging. The algorithm loops over all facts in Fi, then over their causes, and over

the causes of the fact to tag. Then it merges both types of causes in another loop. Its

complexity is O(nf .nc
3), where nc represents the number of causes in a fact (bounded

by |C| = maxj∈{1,...,|Fi|} |Cfij |), and nf numbers of facts (bounded by |KB|). It is then

O(|KB| × |C|3).
KB update. In the case of fact deletion and/or re-insertion (i.e. the scenario we target), the

algorithm does not step through the evaluation loop; its complexity is thus limited to that

of the first loop over Fe and is O(|KB|). The main evaluation loop (at first insertion) calls

in turn at each iteration:

– restrictRuleSet(R,F) checks |R| rules over |F | facts. Its complexity is O(nr.nf), with

nr a number of rules (bounded by |R|), that is O(|R| × |KB|).
– evaluateRuleSet() loops over a set of rules (nr ∈ Rkb), the antecedents of each rule

(na ∈ Ari , where ri ∈ R), and the updated KB (Fe ∪ Fi). Its complexity is therefore

O(nr.na.nf), which isO(|R| × |KB|) while reasoning in IR18. In TB maintenance, the

cost of the tagging algorithm must be added: O(|R| × |KB|2 × |C|4).
– combine(F1, F2) loops over the causes of two sets of facts. F1 = Fi ∈ KB is the set

of previously inferred facts. F2 = F+
i is the set of newly inferred facts, in which

facts only have one cause. As long as each rule antecedent evaluation performed

in evaluateRuleSet() produced a unique (distinct) fact, the maximum complexity of

combine() is reached. Hence, we can factorize with evaluateRuleSet() complexity, so

that the additional tagging cost in TB maintenance is O(|R| × |KB|2 × |C|4 × |F1|).
Hence, for both IR and TB algorithms, the complexity of a single loop is Poly() in |R| and

|KB| (with a higher degree for TB maintenance), but it is also Poly() in |C| for TB main-

tenance. As expected, TB maintenance has an additional cost at first insertion, discussed

below.

Fact filtering. The algorithm loops over query result facts (O(nf)), and calls isV alid() at

each iteration. isV alid(f) loops over the causes of an implicit fact and over explicit facts

in these causes, with an internal complexity of O(nc.nf). The fact-filtering algorithm com-

plexity is therefore O(|C| × |KB|2).

The above analysis shows that the time complexity of both the reasoning evaluation

18We do not consider the number of rule antecedent as a significant parameter. Therefore, na is bounded by
constant maxr∈R{|Ar|} and taken out of the Big-O expression.

5.4. TAG-BASED REASONING 97

loop at first insertion and fact filtering algorithms is Poly() in |KB| and |C|19. In the same

way, we can calculate that space complexity is O(|KB| × |C|), as it requires to store the

causes of implicit facts. As causes represent sets of disjoint conjunctions of explicit facts,

the set of all possible causes contains
∑|Fe|

i=1

(|Fe|
i

)
non-permuted combinations. As the set of

causes of an implicit fact does not contain redundant causes, |C| is bounded by the largest

term of this sum, which is
(|Fe|

|Fe|
2

)
= |Fe|!

(
|Fe|
2

!)2
. Even though this function grows slower than

e|fe|, it can still grow rapidly with |Fe|. This can be considered as the cost of “storing” the

reasoning complexity in causes to avoid recomputing it at deletions and rederivations. We

hereafter propose a method to ensure this cost stay limited, and our evaluations show that

even in a common use case, it keeps affordable.

Efficient usage of TB maintenance

In order to limit both the number of causes and the inflation of the knowledge base size

(which is higher in TB maintenance as explicit facts are not removed), we suggest to limit

the number of explicit facts. Our underlying hypothesis is that our reasoner targets Web

applications that can run on small devices such as smartphones, which is the case for most

WoT applications. It is not intended for storing application history but to receive facts that

will trigger rules at the application level. In our scenario, the phone GPS coordinates are

raw numeric values. They are not inserted “as is” in the reasoner but are transformed into

facts that fit the application requirements (the phone is located in the house neighborhood).

In these conditions, client-side reasoning can save both WoT application developers’

time while constructing their datasets (by using regular Semantic Web modeling tools),

and bandwidth (by leaving saturation and decision processes up to the clients). Using a

known set of explicit tags, TB reasoning allows application designers to first-insert and

delete these facts at bootstrap or asynchronously, to pre-compute the tagging step and en-

sure performance at runtime. Additionaly, the fact-forgetting method (i.e. actually delete

old facts) can significantly reduce the size of the KB to deal with worst cases. Another solu-

tion, which we did not test yet, would be to discretize frequents causes patterns; i.e. replace

frequent conjunctions of facts referenced as a cause by a single fact.

19We do not take into account the complexity in |R|, as we suppose it does not vary during application runtime.

98 CHAPTER 5. WEB REASONING PERFORMANCE

5.4.4 Evaluation

We evaluate the tag-based maintenance algorithm by comparing it to Motik et al.’s incre-

mental reasoning algorithm itself based on DRed. We chose to compare those algorithms

on the same implementation rather than comparing them on different applicative solutions:

our goal is not to provide the fastest reasoner, but rather to offer an optimal solution for

maintaining datasets incrementally in Web browsers using JavaScript. We evaluate these

algorithms for different tasks: ontology classification and initial insertion, insertion of new

triples, deletion, insertion of known triples and selection. The three latter represent the

cycles encountered in WoT applications such as the one we illustrated in the smart home

case study. We run each algorithm in Google Chrome v.54.0.2840.99, on a Lenovo Ideapad

700-15ISK (Intel Core i5-6300HQ @2.3GHz with 4GB RAM).

Datasets and rules

We generated 3 datasets (O1, O2 and O3) using the Lehigh University Benchmark

(LUBM) [Guo et al., 2005]. They are based on the Univ-Bench Ontology20 schema, which

has ALEHI+ expressivity and contains 36 SubClassOf, 6 EquivalentClasses, 5 SubOb-

jectPropertyOf, 1 TransitiveObjectProperty, 21 ObjectPropertyDomain, 18 ObjectProper-

tyRange and 4 DataPropertyDomain axioms, as well as 43 Class Assertions, 25 Object Prop-

erty Assertions and 7 Data Property Assertions21. O1, O2 and O3 contain respectively 8824,

7394, and 5759 triples, and correspond to the initial insertion.

The evaluation uses subset of OWL 2 RL rules below (Listing 5.8). Their name (scm-sco,

cax-sco...) refer the rules presented in [Motik et al., 2009] (section 4.3).

Rsub = { scm−sco, cax−sco, scm−spo, prp−spo1 } (Subsumption)

Rtrans−inv = { prp−trp, prp−inv1, prp−inv2 } (Transitivity/Inverse)

Requiv = { cax−eqc1, cax−eqc2, prp−eqp1, prp−eqp2 } (Equivalence)

Requal = { eq−rep−s, eq−rep−p, eq−rep−o, eq−trans } (SameAs)

Rall = Rsub ∪Rtrans−inv ∪Requiv ∪Requal

Listing 5.8: HyLAR’s sets of rules

20http://swat.cse.lehigh.edu/onto/univ-bench.owl
21Those metrics are provided by Protégé 5.0.0 – http://protege.stanford.edu/

5.4. TAG-BASED REASONING 99

Rsub provides subsumption inferences on classes, properties, as well as their instances.

Rtrans−inv provides inferences on both transitive and inverse properties. Requiv provides

inferences on instances that belong to equivalent classes. Requal provides inferences for

equality relations between subjects, predicates and objects, as well as transitive equality,

through the owl:sameAs property.

Practical evaluation

We ran 5 evaluation tasks: classification and initial dataset insertion (CLASSIF+INIT), in-

sertion, deletion, re-insertion and selection for both IR and TB algorithms22. Inserted and

deleted data have also been generated with LUBM and contain 500 triples. Each task ap-

plies the five rule sets described above. The results are depicted in Figure 5.4. Processing

times for each task are written in milliseconds. This table also shows the time difference

betweeen IR and TB (Diff.), as well as the performance of TB (Perf.), i.e. the percentage of

time gained if using TB instead of IR, for a particular task. The “10 CYCLES” column sums

the results for (i) classification and initial insertion, (ii) insertion, and ten cycles of (iii) dele-

tion and (iv) re-insertion. Such cycles correspond to applicative scenarios such as the one

described in Section 5.4.1.

Classification and initial insertion. As expected, TB maintenance does not outperform IR

for these tasks, as it adds the cost of tagging facts. Although the number of rules and the

size of the schema influence these results, RL profile reasoners do not target large classi-

fication tasks (an OWL-EL reasoner would probably be more suitable). Moreover, in Web

applications, the classification and initial dataset insertion usually involve shared data and

their results can therefore be computed on a server and cached for all clients. As tagging

time is related to the number of triggered rules and their possible recursivity, its overhead

is reduced for already closed datasets.

First insertion. Again, it takes longer for TB maintenance to perform a first insertion due

to the additional tagging step. In this case, it should be noted that the instance number and

the expressivity influences the results, as all facts - including instances - have to be tagged

while firstly inserted in the ontology. Results show that this overhead varies according to

the number of activated rules (i.e. the number and variety of OWL constructs).

Deletion. As expected, deletion is much (more than 50%) faster on TB maintenance, as IR

over-deletion is replaced with a single iteration over the KB. Instance numbers significantly

22The TB fact forgetting algorithm that prevents KB inflation has not been evaluated, as it is triggered and per-
formed asynchronously, when the application is idle.

100 CHAPTER 5. WEB REASONING PERFORMANCE

Figure 5.4: Evaluation results

affect processing times in both algorithms.

Re-insertion. Re-inserting the same triples is also much faster on TB maintenance, as re-

inserted triples do not have to be re-evaluated. TB performs particularly well with high

expressivity (such as transitivity + inverse and equivalence rules). As in the deletion pro-

cess, the number of instances is the most influential parameter.

Selection. Selections in IR are straightforward and give stable processing times. They are

slower on TB maintenance as the algorithm checks the validity of each fact returned by the

KB. With respect to IR, TB maintenance could then significantly impact SELECT queries

with high numbers of triples or highly interrelated datasets. However, SELECT operations

are much faster than the previous ones. Hence, despite its important value in percentage,

this overhead sounds acceptable in terms of absolute times (about twenty milliseconds), as

it only corresponds to a couple of frame rates of the most performant Web applications.

Multiple cycles. Here, the interest of the TB maintenance approach is clearly noticeable:

the initial tagging cost at classification and first insertion is re-gained along deletions/re-

insertion cycles. Due space limitation, we only show figures for 10 cycles. However, for all

situations in the evaluation, TB maintenance outperforms IR from 4 cycles, and its gain in

total computing time exceeds 50% for 100 cycles.

5.4. TAG-BASED REASONING 101

Evaluation synthesis

This evaluation shows that TB maintenance outperforms the regular IR algorithm when

data are being cyclicly deleted and reinserted into the reasoner, despite its cost on first in-

sertions and selections. For applications going through hundreds of such cycles, TB mainte-

nance can represent a massive performance improvement. This approach can particularly

fit applications that rely on constantly changing data. For instance, context-aware appli-

cations that take adaptation decisions according to environmental (sensor) data can now

integrate their own Web-based reasoner, process these data in Web clients and behave au-

tonomously.

5.4.5 Implementation

The implementation we propose is HyLAR23. HyLAR – which stands for Hybrid Location-

Agnostic Reasoning – consists in a partial OWL 2 RL reasoner that enables rule-based in-

cremental reasoning, with modularized reasoning steps to provide the execution of both

parsing and classification, as well as query answering steps either on the client side or on

the server side. HyLAR is composed of the following modules depicted in Figure 5.5.

Figure 5.5: HyLAR global architecture.

• Controller: handles ontology loading (parsing and classification) and querying, pro-

viding inferences on INSERT and DELETE queries with incremental maintenance.

23Repository: https://github.com/ucbl/HyLAR-Framework

102 CHAPTER 5. WEB REASONING PERFORMANCE

• Parsing Interface: integrates rdf-ext RDF/XML parser and SPARQL.js24 library, and

is able to convert triples (as described in RDF Interfaces 1.025) into turtle (for direct

triplestore insertion/deletion) and facts (for reasoning).

• Storage Manager: based on rdfstore.js26 [Hernández, 2012], this module handles on-

tology loading, updates and queries.

• Reasoner: holds and processes rules using a pattern matching mechanism. It includes

incremental maintenance algorithms (both IR and TB) and is able to process the set

of rules enumerated in Section 5.4.4, Listing 5.8.

• Dictionary: indexes all triples registered in the store and their representations as facts

in the KB; this accelerates validity checking at selection time.

• Logics: contains first-order logic operations: fact instantiation, fact set merging, and

rule restriction.

HyLAR can both run on server (Node.js27 5.1.1) and client (using browserify28) sides.

Thus, it can be integrated into a Web application, as well as a framework designed to op-

timize the reasoning process location. HyLAR benefits from JavaScript’s asynchronous

patterns (promises, callbacks). On the client side, the reasoner modules can be embed-

ded either in a regular angular service, or in a Web worker. On servers, event emitters (on

Node.js), allow for background task processing. HyLAR reasoning steps are packaged as

Node.js modules and AngularJS29 services. They are queried by an independent angular

service using an asynchronous promise pattern, so that the main service is totally agnostic

about the location of the reasoning modules.

5.5 Conclusion

We presented a solution to lighten the server load and reduce the network congestion by

deferring part of the reasoning tasks on the client side. However, choosing a location for

24https://github.com/RubenVerborgh/SPARQL.js
25http://www.w3.org/TR/rdf-interfaces/#triples
26Rdfstore.js is a graph store implementation with support for SPARQL 1.0 and 1.1/Update. Available at

https://github.com/antoniogarrote/rdfstore-js
27https://nodejs.org
28http://browserify.org/
29http://www.angularjs.org

5.5. CONCLUSION 103

each reasoning step is a complex task as it depends on the context. Thus, there is no opti-

mal reasoning configuration that works for any case: the architectural setup and contextual

conditions must be taken into consideration to provide the suitable adaptation. The diffi-

culty is therefore to identify and choose the actual contextual parameters that influence the

performance of each reasoning task, in order to build the reasoning context mode accord-

ingly.

Our study on the contextual parameters influence exhibited different types of contex-

tual information that affect processing times. An evaluation of the reasoning adaptation

has been conducted with several parameters (ping, battery level, ontology size) actually

affecting Web applications. The evaluation validated both the time processing efficiency of

our adaptation solution and its applicability for the reasoning task, which is a crucial con-

cern in the WoT as devices may not have sufficient capabilities to process each reasoning

task.

We addressed the issue of overdeleting and re-derivating facts in DRed Incremental

Reasoning (IR). We proposed a Tag-Based (TB) incremental maintenance approach that

solve these issues by tagging facts with respect to their provenance and validity. We pre-

sented three algorithms: implicit fact tagging, tag-based update and fact-filtering. The first

two are executed to update the KB and the third to filter valid facts out of SELECT query

results. Our approach targets Web applications that face multiple cycles of data deletions

and reinsertions, such as many WoT applications. Evaluation results showed that the cost

of TB maintenance is slightly higher for first insertions and for selections, but significantly

outperforms IR at deletion and reinsertion. This cost is also re-gained within a few cycles.

We conducted a complexity analysis of TB maintenance algorithms and showed that, to the

initial cost of fact tagging at first insertion and validity assessment at selection, the com-

plexity of re-insertions and deletion operations drops to linear, regardless of the reasoning

conditions.

The implementation of both IR and TB algorithms in HyLAR can stimulate the adoption

of semantic technologies not only for the WoT but also in the Web community. It and is

available as server-side (Node.js) or client-side (Bower) packages, this applies on HyLAR

reasoning location adaptation mechanism.

104 CHAPTER 5. WEB REASONING PERFORMANCE

Chapter 6

General Conclusion

The Web of Things (WoT) has been designed to unify the way connected objects interact,

through Web technologies and standards (REST, the Semantic Web, hypermedia, the pro-

grammable Web, etc.). WoT applications require – as for most IoT applications – to adapt

to the context, i.e. to react accordingly to changes in their environment, to comply with

quality of service, privacy, and security concerns, etc. In this thesis, we explored how the

Semantic Web can provide such adaptation through proven, standard semantic reasoning

techniques. We provided a solution at the junction between WoT applications, the Semantic

Web and adaptive systems that was lacking.

Summary of our contributions. In this thesis, we proposed a solution to allow multi-

purpose contextual adaptation in the WoT, i.e. to provide adaptation for several concerns.

This solution 1) allows designing standard, interoperable and reusable context models, 2)

provides generic and cross-domain contextual adaptation, 3) optimizes the reasoning pro-

cess that provides such adaptation. We presented a context meta-model that allows building

semantically-annotated multi-purpose context models. We detailed our context lifecycle,

which joins static (expert knowledge, technical documentations) and dynamic (sensors,

Web services) information to build the context model, along with a multi-purpose adapta-

tion workflow that relies on semantic reasoning to update context information and select

adaptation possibilities at runtime for each purpose. We presented our meta-adaptation rule

engine, which generates adaptation rules and scores adaptation possibilities at design time,

to ensure optimal adaptation decisions and reduce the adaptive WoT application design

effort. The rest of our contributions tackles Web reasoning performance issues which have

an impact on the contextual adaptation process in WoT applications. Firstly HyLAR, a hy-

105

106 CHAPTER 6. GENERAL CONCLUSION

brid location-agnostic architecture, locates parts of the reasoning tasks either on devices or on

the cloud depending on the context. Secondly, a tag-based maintenance mechanism reduces

processing time of both data deletions and re-insertions – which are common situations in

most WoT applications – in comparison to state-of-the-art incremental maintenance algo-

rithms.

Open questions and perspectives. The work we presented in this thesis opens various

research questions, related to the Semantic Web, the adaptive systems and the reasoning

fields. We identify the following perspectives.

• Currently, transformation rules infer contextual instances without providing meta-

data about the quality of the information. Hence, quality of context (QoC) – as de-

fined in [Buchholz et al., 2003] and built as part of the INCOME project [Arcangeli

et al., 2012] – could be integrated into the solution to improve the relevance of the

adaptation decision process. The choice of attaching this metadata either on the con-

textual instance itself or on the adaptation possibility issued from this instance would

therefore be an open question.

• We proposed an adaptive solution design technique similar to agile development

methods; the next step would be to evaluate models and solutions through a designer-

centered vision. Indeed, our contributions target WoT applications designers instead

of application end-users.

• To capitalize on the design of transformation rules (which are currently written by

hand), the solution may rely on Sensor-based Linked Open Rules (S-LOR). This may

also provide a further extension of S-LOR for adaptation rules generated from the

meta-adaptation rule engine, reducing even more the time and effort from designers

when building their solution.

• We envision many improvements to HyLAR, to provide distributed reasoning among

several clients. First, we would look into partitioning knowledge bases into named

graphs. Theses partitions would isolate data from the other they do not depend on.

Hence, the reasoner would apply on reduced and separated graphs, reducing the

processing times of both updates and selections. Second, we would provide caching

and replication techniques using several Web clients, to capitalize on the reasoning

process. For instance, if a client A has processed an ontologyO, HyLAR would cache

its saturated knowledge base and replicate it on other clients that need to process O;

the same mechanism would be applicable to update and select SPARQL queries.

107

• Tag-based maintenance space complexity improvement is also a perspective. Open

questions include the design of fact-forgetting mechanisms using pattern detection

for the discretization of fact sets, or deferred caching using distributed reasoning ar-

chitectures. The storage method may also be improved, by storing facts as bit vectors,

and by removing duplicated facts from same derivedFrom tags.

Concluding thoughts. Semantic Web technologies are usually seen as complex tech-

nologies for use in the current industry or in commercial applications. Nevertheless, we

believe that the WoT is an opportunity to provide use-cases for Semantic Web technolo-

gies. This thesis allowed us to highlight the benefits of the Semantic Web to the WoT, as

it provides linked, interoperable and smart applications and features. We support these

views by pushing advanced adaptation techniques to the Web and to WoT applications us-

ing semantics-based, ontological reasoning methods. Our work on contextual reasoning

allowed us to study reasoning not only on WoT applications, but also for the Web in gen-

eral. We explored the possibility to reason on the client side, which gave us the opportunity

to bring the good practices of the Web to the Semantic Web.

In order to keep WoT applications standard, interoperable and reusable, we believe that

both designers, researchers and the industry should promote linked, structured, and –

above all – open data.

108 CHAPTER 6. GENERAL CONCLUSION

Appendix A

ASAWoO Avatar Architecture

Some components of the avatar architecture (Fig A.1) are dedicated to thing control and

others implement the autonomous, self-adaptive and collaborative behavior of avatars. The

physical setup is decoupled from its logical architecture: an avatar can dynamically adapt

the distribution of its components to different locations (see below) to improve their effi-

ciency. We grouped the avatar components in 8 functional modules.

Figure A.1: The avatar architecture

• The Core Module includes components that are used in several steps of the avatar life-

109

110 APPENDIX A. ASAWOO AVATAR ARCHITECTURE

cycle. The component deployment manager defines which avatar components will

be instantiated wrt. the thing capabilities, and where1. Each avatar embeds a Rea-

soner, used by other components to process semantic information pertaining on the

capabilities, functionalities and context. So is the Local Cache, that stores semantic

information from diverse sources (thing, repositories, external context) and reflects

the current state of the avatar. In particular, the cache loads concepts from the se-

mantic repositories, in order to make them available to other modules through the

reasoner. This module is essential to address the multiple concerns targeted by the

application through the avatar, while avoiding allocating unnecessary resources. As

such, it participates in addressing most of the requirements.

• The Interoperability module provides the other avatar modules with a uniform inter-

face to interact with the thing it is attached to. This interface consists of a set of capabil-

ities that represent the thing API. It loads drivers from a platform repository and uses

them to identify the communication schemes understood by the thing; eventually, it

uploads onto the thing the appropriate configuration.

• The Filtering module restricts functionality exposition and data exchanges. If, for

privacy or security reason, some functionalities should not be achieved by the avatar,

they will be filtered by the Privacy manager.

• The Communication module ensures reliable communication with the thing. It se-

lects the appropriate network interface (Ethernet, Wi-Fi, Zigbee, etc.) and protocols

(CoAP, HTTP, etc.) according to communication purposes and performance needs

(throughput / energy consumption). It also supports connectivity disruptions.

• The Web service module allows avatars to communicate with other avatars and with

the external world wrt. Web standards. By this means, avatars can: interact with the

WoT platform to query repositories, respond to client requests regarding the function-

alities they expose as RESTful resources, exchange data with other avatars to achieve

collaborative functionalities and query external Web services to enrich their own data.

• The Local Functionality module handles high-level functionalities achievable using

the thing capabilities2. It relies on semantic technologies to map the thing layer (ca-

pabilities) with the application layer (functionalities) in a declarative and loosely cou-

pled manner, ensuring application interoperability with various things [Mrissa et al.,

1Avatar components can be located on the thing if it has enough computing capabilities or for time-constrained
code modules, on the gateway for processes that involve inter-avatar communication, or on the cloud for calculation-
intensive processes. This way, application components that model different cyber-physical systems (CPS) aspects
and address different application concerns can be executed at an optimal location.

2Functionalities provide user-understandable compositions of capabilities. For instance, a user will prefer to tell
a robot to move to another part of the field, rather than to pilot each of its wheels individually.

111

2014a]. When the avatar is created, the CapabilityManager queries the Interoperabil-

ity module for the thing capabilities and the platform capability ontology for their

semantic descriptions. It is queried by the LocalFunctionalityManager, which also

loads the descriptions of functionalities and uses the reasoner to infer the avatar lo-

cal functionalities3. For each inferred functionality, the LocalFunctionalityManager

queries the Context Manager to decide if it should be exposed to clients. Exposed

functionalities are bound to a registry, so that users and other avatars can find them.

• The Collaboration module handles functionalities that require collaboration between

several avatars. The CollaborativeFunctionalityDiscoveryManager queries the rea-

soner to identify, from the local functionalities, in which higher-level ones it could

participate. Then, it queries the platform functionality directory to search for the lo-

cally missing functionalities. If such functionalities are available from other avatars,

it calls the Collaborative Agent Manager, which handles negotiation with these other

avatars.

• The WoT Application module provides and controls “WoT application containers”

that execute code modules implementing the different aspects of a WoT application.

Such containers can be replicated on the thing, on the gateway and on the cloud in-

frastructure thanks to the deployment manager, so that modules are executed on the

appropriate location.

3Inference processing relies on the Capability and Functionality classes, and relationships between them, ex-
pressed in our own OWL (http://www.w3.org/TR/owl2-overview/) vocabulary. Individuals expressed in other
vocabularies [Gyrard et al., 2015b] can be used and “rdf:typed” as capabilities or functionalities.

112 APPENDIX A. ASAWOO AVATAR ARCHITECTURE

Appendix B

ASAWoO vocabulary

Listing B.1: ASAWoO vocabulary for functionality composition and implementation in JSON-

LD.

1 {
2 "@context": {
3 "rdfs": "http://www.w3.org /2000/01/ rdf -schema #",
4 "owl": "http://www.w3.org /2002/07/ owl#",
5 "asawoo": "http://liris.cnrs.fr/asawoo/vocab#"
6 },
7 "@graph": [
8 {
9 "@id": "asawoo:isImplementedBy",

10 "@type": "owl:ObjectProperty",
11 "rdfs:domain": {
12 "@id": "asawoo:Functionality"
13 },
14 "rdfs:range": {
15 "@id": "asawoo:Capability"
16 }
17 },
18 {
19 "@id": "asawoo:isComposedOf",
20 "@type": [
21 "owl:ObjectProperty",
22 "owl:TransitiveProperty"
23],
24 "rdfs:domain": {
25 "@id": "asawoo:Functionality"
26 },
27 "rdfs:range": {
28 "@id": "asawoo:Functionality"
29 }
30 },
31 {
32 "@id": "asawoo:Functionality",

113

114 APPENDIX B. ASAWOO VOCABULARY

33 "@type": "owl:Class",
34 "rdfs:subClassOf": {
35 "@id": "http://www.w3.org/ns/sosa/Procedure"
36 }
37 },
38 {
39 "@id": "asawoo:Capability",
40 "@type": "owl:Class",
41 "rdfs:subClassOf": {
42 "@id": "http://www.w3.org/ns/sosa/Procedure"
43 }
44 }
45]
46 }

Bibliography

[Cop, 2010] (2010). The context-aware browser. IEEE Intelligent Systems, 25(1):38–47.

[Abowd et al., 1999] Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., and

Steggles, P. (1999). Towards a better understanding of context and context-awareness. In

Handheld and ubiquitous computing, pages 304–307. Springer.

[Alaya et al., 2012] Alaya, M. B., Matoussi, S., Monteil, T., and Drira, K. (2012). Autonomic

computing system for self-management of machine-to-machine networks. In Proceedings

of the 2012 International Workshop on Self-aware Internet of Things, Self-IoT ’12, pages 25–30,

New York, NY, USA. ACM.

[Alti et al., 2012] Alti, a., Roose, P., Saffidine, R., and Laborie, S. (2012). Towards an au-

tomatic adaptation of heterogeneous multimedia mobile applications. Conference Inter-

nationale: Nouvelles Technologies de la Repartition - Colloque Francophone sur l’Ingenierie des

Protocoles, NOTERE/CFIP 2012.

[Andersson et al., 2008] Andersson, J., Ericsson, M., and Lowe, W. (2008). Automatic rule

derivation for adaptive architectures. In Software Architecture, 2008. WICSA 2008. Seventh

Working IEEE/IFIP Conference on, pages 323–326. IEEE.

[Arcangeli et al., 2012] Arcangeli, J.-P., Bouzeghoub, A., Camps, V., Canut, M.-F., Chabri-

don, S., Conan, D., Desprats, T., Laborde, R., Lavinal, E., Leriche, S., et al. (2012). Income–

multi-scale context management for the internet of things. In International joint conference

on ambient intelligence, pages 338–347. Springer.

[Arias, 2008] Arias, M. (2008). Context-Based Personalization for Mobile Web Search. Con-

text, pages 33–39.

[Athreya et al., 2013] Athreya, A., DeBruhl, B., and Tague, P. (2013). Designing for self-

configuration and self-adaptation in the internet of things. In First International Workshop

on Internet of Things (C-IOT), 9th International Conference on Collaborative Computing: Net-

working, Applications and Worksharing (CollaborateCom 2013), pages 585–592.

115

116 BIBLIOGRAPHY

[Baheti and Gill, 2011] Baheti, R. and Gill, H. (2011). Cyber-physical systems. The impact of

control technology, 12:161–166.

[Baladron et al., 2012] Baladron, C., Aguiar, J. M., Carro, B., Calavia, L., Cadenas, A., and

Sanchez-Esguevillas, A. (2012). Framework for intelligent service adaptation to user’s

context in next generation networks. IEEE Communications Magazine, 50(3).

[Baldoni et al., 2004] Baldoni, M., Baroglio, C., Patti, V., and Torasso, L. (2004). Reasoning

about learning object metadata for adapting scorm courseware. Engineering the Adaptive

Web., CS-Report, pages 04–18.

[Barbier et al., 2015] Barbier, F., Cariou, E., Goaer, O. L., and Pierre, S. (2015). Software

adaptation: Classification and a case study with state chart xml. IEEE Software, 32(5).

[Barnaghi and Presser, 2010] Barnaghi, P. and Presser, M. (2010). Publishing linked sensor

data. In Proceedings of the 3rd International Conference on Semantic Sensor Networks-Volume

668, pages 1–16. CEUR-WS. org.

[Bass, 2007] Bass, L. (2007). Software architecture in practice. Pearson Education India.

[Bazire and Brézillon, 2005] Bazire, M. and Brézillon, P. (2005). Understanding context be-

fore using it. Modeling and using context.

[Becker et al., 2007] Becker, J., Delfmann, P., and Knackstedt, R. (2007). Adaptive reference

modeling: integrating configurative and generic adaptation techniques for information

models. In Reference Modeling, pages 27–58. Springer.

[Beisiegel et al., 2007] Beisiegel, M., Blohm, H., Booz, D., Dubray, J.-J., Interface21, A. C.,

Edwards, M., Ferguson, D., Mischkinsky, J., Nally, M., and Pavlik, G. (2007). Service

component architecture. Building systems using a Service Oriented Architecture. BEA, IBM,

Interface21, IONA, Oracle, SAP, Siebel, Sybase, white paper, version, 9.

[Bernardos et al., 2008] Bernardos, A. M., Tarrio, P., and Casar, J. R. (2008). A data fusion

framework for context-aware mobile services. In Multisensor Fusion and Integration for

Intelligent Systems, 2008. MFI 2008. IEEE International Conference on, pages 606–613. IEEE.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., Lassila, O., et al. (2001). The semantic

web. Scientific american, 284(5):28–37.

[Bertini et al., 2006] Bertini, M., Cucchiara, R., Bimbo, A., and Prati, A. (2006). Semantic

adaptation of sport videos with user-centred performance analysis. IEEE Transactions on

Multimedia, 8(3):433–443.

BIBLIOGRAPHY 117

[Boussadi et al., 2011] Boussadi, A., Bousquet, C., Sabatier, B., Caruba, T., Durieux, P., De-

goulet, P., et al. (2011). A business rules design framework for a pharmaceutical valida-

tion and alert system. Methods of information in medicine, 50(1):36.

[Brézillon, 1999] Brézillon, P. (1999). Context in Artificial Intelligence: II. Key elements of

contexts. Computers and artificial intelligence, pages 1–27.

[Brézillon, 2003] Brézillon, P. (2003). Representation of procedures and practices in con-

textual graphs. The Knowledge Engineering Review, pages 1–26.

[Brézillon and Pomerol, 1996] Brézillon, P. and Pomerol, J. (1996). Misuse and nonuse of

knowledge-based systems: The past experiences revisited. . . . Systems for Supporting Man-

agement Decisions.

[Brézillon and Pomerol, 1999] Brézillon, P. and Pomerol, J. (1999). Contextual knowledge

sharing and cooperation in intelligent assistant systems. Le Travail Humain, pages 1–33.

[Brickley et al., 2014] Brickley, D., Guha, R. V., and McBride, B. (2014). Rdf schema 1.1.

W3C recommendation, 25:2004–2014.

[Buchholz et al., 2003] Buchholz, T., Küpper, A., and Schiffers, M. (2003). Quality of con-

text information: What it is and why wee need it. In Proceedings of the 10th International

Workshop of the HP OpenView University Association (HPOVUA’01), volume 2003.

[Bucur et al., 2005] Bucur, O., Beaune, P., and Boissier, O. (2005). Representing context in

an agent architecture for context-based decision making. Proceedings of the Workshop on

. . . .

[Cao et al., 2009] Cao, H., Hu, D. H., Shen, D., Jiang, D., Sun, J.-T., Chen, E., and Yang, Q.

(2009). Context-aware query classification. Acm Sigir, 106(3):3.

[Cao et al., 2008] Cao, H., Jiang, D., Pei, J., He, Q., Liao, Z., Chen, E., and Li, H. (2008).

Context-aware query suggestion by mining click-through and session data. Proceeding

of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining -

KDD ’08, page 875.

[Capra et al., 2002] Capra, L., Blair, G. S., Mascolo, C., Emmerich, W., and Grace, P. (2002).

Exploiting reflection in mobile computing middleware. SIGMOBILE Mobile Computing

Communication Revue, 6(4):34–44.

[Carroll et al., 2005] Carroll, J. J., Bizer, C., Hayes, P., and Stickler, P. (2005). Named graphs,

provenance and trust. In Proceedings of the 14th international conference on World Wide Web,

pages 613–622. ACM.

118 BIBLIOGRAPHY

[Chaari et al., 2005] Chaari, T., Laforest, F., Flory, A., Einstein, A. A., and Cedex, V. (2005).

Adaptation des applications au contexte en utilisant les services web. Proceedings of the

2nd French-speaking conference on Mobility and uibquity computing - UbiMob ’05, pages 3–6.

[Chuang and Chan, 2008] Chuang, S.-N. and Chan, A. T. (2008). Dynamic qos adaptation

for mobile middleware. IEEE Transactions on Software Engineering, 34(6):738–752.

[Coutaz et al., 2005] Coutaz, J., Crowley, J. L., Dobson, S., and Garlan, D. (2005). Context is

key. Communications of the ACM, 48(3):49–53.

[Da et al., 2011] Da, K., Dalmau, M., and Roose, P. (2011). A survey of adaptation systems.

International Journal on Internet and Distributed Computing Systems, 2(1):1–18.

[Dewan et al., 1992] Dewan, H. M., Ohsie, D., Stolfo, S. J., Wolfson, O., and Silva, S. (1992).

Incremental database rule processing in paradiser. Journal of Intelligent Information Sys-

tems, 1(2):177–209.

[Dey, 2001] Dey, A. K. (2001). Understanding and using context. Personal and ubiquitous

computing, 5(1):4–7.

[Dey et al., 1999] Dey, A. K., Salber, D., Abowd, G. D., and Futakawa, M. (1999). The con-

ference assistant: Combining context-awareness with wearable computing. In Wearable

Computers, 1999. Digest of Papers. The Third International Symposium on, pages 21–28. IEEE.

[Dolin, 2006] Dolin, R. A. (2006). Deploying the" internet of things". In 2012 IEEE/IPSJ 12th

International Symposium on Applications and the Internet, pages 216–219. IEEE Computer

Society.

[Donini, 2003] Donini, F. M. (2003). Complexity of reasoning. In The description logic hand-

book, pages 96–136. Cambridge University Press.

[Emani, 2014] Emani, C. K. (2014). Automatic detection and semantic formalisation of busi-

ness rules. In European Semantic Web Conference, pages 834–844. Springer.

[Euzenat et al., 2008] Euzenat, J., Pierson, J., and Ramparany, F. (2008). Dynamic context

management for pervasive applications. The Knowledge Engineering Review, 23(01):21–49.

[Euzenat et al., 2007] Euzenat, J., Shvaiko, P., et al. (2007). Ontology matching, volume 18.

Springer.

[Ferscha et al., 2001] Ferscha, A., Vogl, S., and Beer, W. (2001). Context sensing, aggrega-

tion, representation and exploitation in wireless networks. Scalable Computing: Practice

and Experience, 6(2).

[Fielding, 2000] Fielding, R. T. (2000). Architectural styles and the design of network-based soft-

ware architectures. PhD thesis, University of California, Irvine.

BIBLIOGRAPHY 119

[Floch et al., 2006] Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., and Gjorven, E.

(2006). Using architecture models for runtime adaptability. IEEE software, 23(2):62–70.

[Fox and Clarke, 2009] Fox, J. and Clarke, S. (2009). Exploring approaches to dynamic

adaptation. In Proceedings of the 3rd International DiscCoTec Workshop on Middleware-

Application Interaction, pages 19–24. ACM.

[Frühwirth, 2015] Frühwirth, T. (2015). Constraint handling rules-what else? In Interna-

tional Symposium on Rules and Rule Markup Languages for the Semantic Web, pages 13–34.

Springer.

[Gangemi and Presutti, 2009] Gangemi, A. and Presutti, V. (2009). Ontology design pat-

terns. In Handbook on ontologies, pages 221–243. Springer.

[Garlan et al., 2009] Garlan, D., Schmerl, B., and Cheng, S.-W. (2009). Autonomic Comput-

ing and Networking, chapter Software Architecture-Based Self-Adaptation, pages 31–55.

Springer.

[Gensel et al., 2008] Gensel, J., Villanova-Oliver, M., and Kirsch-Pinheiro, M. (2008). Mod-

èles de contexte pour l’adaptation à l’utilisateur dans des systèmes d’information web

collaboratifs. In Workshop from" 8èmes journées francophones". Sophia-Antipolis, France,

pages 5–16.

[Giménez-García et al., 2017] Giménez-García, J. M., Zimmermann, A., and Maret, P.

(2017). Ndfluents: An ontology for annotated statements with inference preservation.

In European Semantic Web Conference, pages 638–654. Springer.

[Goasdoué et al., 2013] Goasdoué, F., Manolescu, I., and Roatiş, A. (2013). Efficient query

answering against dynamic rdf databases. In Proceedings of the 16th International Confer-

ence on Extending Database Technology, pages 299–310. ACM.

[Gold and Mascolo, 2001] Gold, R. and Mascolo, C. (2001). Use of context-awareness in

mobile peer-to-peer networks. In Distributed Computing Systems, 2001. FTDCS 2001. Pro-

ceedings. The Eighth IEEE Workshop on Future Trends of, pages 142–147. IEEE.

[Gómez-Pérez, 1998] Gómez-Pérez, A. (1998). Knowledge sharing and reuse. Handbook of

applied expert systems, pages 10–11.

[Grace et al., 2003] Grace, P., Blair, G. S., and Samuel, S. (2003). Remmoc: A reflective mid-

dleware to support mobile client interoperability. In On The Move to Meaningful Internet

Systems 2003: CoopIS, DOA, and ODBASE, pages 1170–1187, Catania, Sicily, Italy.

[Grimm et al., 2012] Grimm, S., Watzke, M., Hubauer, T., and Cescolini, F. (2012). Embed-

ded EL+ reasoning on programmable logic controllers. In The Semantic Web–ISWC 2012,

pages 66–81. Springer.

120 BIBLIOGRAPHY

[Gubbi et al., 2013] Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M. (2013). Internet

of things (iot): A vision, architectural elements, and future directions. Future generation

computer systems, 29(7):1645–1660.

[Guinard et al., 2010] Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., and Savio, D. (2010).

Interacting with the soa-based internet of things: Discovery, query, selection, and on-

demand provisioning of web services. Services Computing, IEEE Transactions on, 3(3):223–

235.

[Guinard et al., 2011] Guinard, D., Trifa, V., Mattern, F., and Wilde, E. (2011). From the

internet of things to the web of things: Resource-oriented architecture and best practices.

In Architecting the Internet of Things, pages 97–129. Springer.

[Guo et al., 2005] Guo, Y., Pan, Z., and Heflin, J. (2005). Lubm: A benchmark for owl knowl-

edge base systems. Web Semantics: Science, Services and Agents on the World Wide Web,

3(2):158–182.

[Gupta et al., 1993] Gupta, A., Mumick, I. S., and Subrahmanian, V. S. (1993). Maintaining

views incrementally. ACM SIGMOD Record, 22(2):157–166.

[Gyrard et al., 2014] Gyrard, A., Datta, S. K., Bonnet, C., and Boudaoud, K. (2014). Stan-

dardizing generic cross-domain applications in internet of things. In IEEE GLOBECOM

Workshops 2014, pages 589–594, Austin, TX, USA. IEEE.

[Gyrard et al., 2015a] Gyrard, A., Datta, S. K., Bonnet, C., and Boudaoud, K. (2015a). Cross-

domain internet of things application development: M3 framework and evaluation. In

Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on, pages

9–16. IEEE.

[Gyrard et al., 2015b] Gyrard, A., Serrano, M., and Atemezing, G. A. (2015b). Semantic web

methodologies, best practices and ontology engineering applied to internet of things. In

Internet of Things (WF-IoT), 2015 IEEE 2nd World Forum on, pages 412–417. IEEE.

[Gyrard et al., 2017] Gyrard, A., Serrano, M., Jares, J. B., Datta, S. K., and Ali, M. I. (2017).

Sensor-based linked open rules (s-lor): An automated rule discovery approach for iot

applications and its use in smart cities. In Proceedings of the 26th International Conference

Companion on World Wide Web, page to be published. International World Wide Web Con-

ferences Steering Committee.

[Hanney et al., 1995] Hanney, K., Keane, M., Smyth, B., and Cunningham, P. (1995). Sys-

tems, tasks and adaptation knowledge: Revealing some revealing dependencies. In In-

ternational Conference on Case-Based Reasoning, pages 461–470. Springer.

BIBLIOGRAPHY 121

[Hartig and Thompson, 2014] Hartig, O. and Thompson, B. (2014). Foundations of an al-

ternative approach to reification in rdf. arXiv preprint arXiv:1406.3399.

[He et al., 2012] He, J., Zhang, Y., Huang, G., and Cao, J. (2012). A smart web service based

on the context of things.

[Hernández, 2012] Hernández, A. G. (2012). A javascript rdf store and application library

for linked data client applications. Citeseer.

[Hitzler et al., 2009] Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., and Rudolph,

S., editors (27 October 2009). OWL 2 Web Ontology Language: Primer. W3C Recommen-

dation. Available at http://www.w3.org/TR/owl2-primer/.

[Hlomani and Stacey, 2014] Hlomani, H. and Stacey, D. (2014). Approaches, methods, met-

rics, measures, and subjectivity in ontology evaluation: A survey. Semantic Web Journal,

na (na), pages 1–5.

[Hong et al., 2009] Hong, J., Suh, E.-H., Kim, J., and Kim, S. (2009). Context-aware system

for proactive personalized service based on context history. Expert Systems with Applica-

tions, 36(4):7448–7457.

[Horrocks and Patel-Schneider, 2010] Horrocks, I. and Patel-Schneider, P. (2010). Knowl-

edge representation and reasoning on the semantic web: OWL, 2010.

[Hustadt et al., 2005] Hustadt, U., Motik, B., and Sattler, U. (2005). Data complexity of rea-

soning in very expressive description logics. In IJCAI, volume 5, pages 466–471.

[IBM, 2004] IBM (2004). An architectural blueprint for autonomic computing.

[Jamont et al., 2014] Jamont, J., Médini, L., and Mrissa, M. (2014). A Web-Based Agent-

Oriented Approach to Address Heterogeneity in Cooperative Embedded Systems. In

the 12th International Conference on Practical Applications of Agents and Multi-Agent Systems

PAAMS 2014, volume 293 of Advances in Intelligent Systems and Computing, pages 45–52,

Salamanca, Spain.

[Kakousis et al., 2010] Kakousis, K., Paspallis, N., and Papadopoulos, G. A. (2010). A sur-

vey of software adaptation in mobile and ubiquitous computing. Enterprise Information

Systems, 4(4):355–389.

[Kalfoglou and Schorlemmer, 2003] Kalfoglou, Y. and Schorlemmer, M. (2003). Ontology

mapping: the state of the art. The knowledge engineering review, 18(1):1–31.

[Katasonov et al., 2008] Katasonov, A., Kaykova, O., Khriyenko, O., Nikitin, S., and

Terziyan, V. Y. (2008). Smart semantic middleware for the internet of things.

122 BIBLIOGRAPHY

[Kazakov and Klinov, 2013] Kazakov, Y. and Klinov, P. (2013). Incremental reasoning in

owl el without bookkeeping. In The Semantic Web–ISWC 2013, pages 232–247. Springer.

[Kindberg et al., 2002] Kindberg, T., Barton, J., Morgan, J., Becker, G., Caswell, D., Debaty,

P., Gopal, G., Frid, M., Krishnan, V., Morris, H., et al. (2002). People, places, things: Web

presence for the real world. Mobile Networks and Applications, 7(5):365–376.

[Kirsch-Pinheiro et al., 2004] Kirsch-Pinheiro, M., Gensel, J., and Martin, H. (2004). Rep-

resenting context for an adaptative awareness mechanism. In Groupware: Design, Imple-

mentation, and Use, pages 339–348. Springer.

[Kirsch-Pinheiro et al., 2006] Kirsch-Pinheiro, M., Villanova-Oliver, M., Gensel, J., and

Martin, H. (2006). A Personalized and Context-Aware Adaptation Process for Web-based

Groupware Systems. In , pages 884–898.

[Kollia and Glimm, 2014] Kollia, I. and Glimm, B. (2014). Optimizing sparql query answer-

ing over owl ontologies. arXiv preprint arXiv:1402.0576.

[Kongdenfha et al., 2006] Kongdenfha, W., Saint-Paul, R., Benatallah, B., and Casati, F.

(2006). An aspect-oriented framework for service adaptation. In International Conference

on Service-Oriented Computing, pages 15–26. Springer.

[Krishnaswamy and Li, 2014] Krishnaswamy, S. and Li, Y.-F. (2014). The mobile semantic

web. In Proceedings of the companion publication of the 23rd international conference on World

wide web companion, pages 197–198. International World Wide Web Conferences Steering

Committee.

[Krötzsch, 2012] Krötzsch, M. (2012). OWL 2 Profiles: An introduction to lightweight ontology

languages. Springer.

[Laborie et al., 2011] Laborie, S., Euzenat, J., and Layaïda, N. (2011). Semantic adaptation

of multimedia documents. Multimedia tools and applications, 55(3):379–398.

[Lee, 2008] Lee, E. A. (2008). Cyber physical systems: Design challenges. In Object Ori-

ented Real-Time Distributed Computing (ISORC), 2008 11th IEEE International Symposium

on, pages 363–369. IEEE.

[Luckenbach et al., 2005] Luckenbach, T., Gober, P., Arbanowski, S., Kotsopoulos, A., and

Kim, K. (2005). Tinyrest: A protocol for integrating sensor networks into the internet. In

Proc. of REALWSN, pages 101–105. Citeseer.

[Manola et al., 2004] Manola, F., Miller, E., McBride, B., et al. (2004). Rdf primer. W3C

recommendation, 10(1-107):6.

BIBLIOGRAPHY 123

[Mascolo et al., 2002] Mascolo, C., Capra, L., and Emmerich, W. (2002). Mobile computing

middleware. In Advanced lectures on networking, pages 20–58. Springer.

[Médini et al., 2013] Médini, L., Bâcle, F., and Nguyen, H. D. T. (2013). Dataconf: Enriching

conference publications with a mobile mashup application. In Proceedings of the 22nd

International Conference on World Wide Web, pages 477–478. ACM.

[Médini et al., 2016] Médini, L., Mrissa, M., Terdjimi, M., Khalfi, E.-M., Le Sommer, N.,

Capdepuy, P., Jamont, J.-P., Occello, M., and Touseau, L. (2016). Building a web of things

with avatars.

[Mikalsen et al., 2006] Mikalsen, M., Paspallis, N., Floch, J., Stav, E., Papadopoulos, G. A.,

and Chimaris, A. (2006). Distributed context management in a mobility and adaptation

enabling middleware (madam). In Proceedings of the 2006 ACM symposium on Applied

computing, pages 733–734. ACM.

[Motik et al., 2009] Motik, B., Grau, B. C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C., et al.

(2009). Owl 2 web ontology language: Profiles. W3C recommendation, 27:61.

[Motik et al., 2012] Motik, B., Horrocks, I., and Kim, S. M. (2012). Delta-reasoner: a seman-

tic web reasoner for an intelligent mobile platform. In Proceedings of the 21st international

conference companion on World Wide Web, pages 63–72. ACM.

[Motik et al., 2015a] Motik, B., Nenov, Y., Piro, R., and Horrocks, I. (2015a). Combin-

ing rewriting and incremental materialisation maintenance for datalog programs with

equality. arXiv preprint arXiv:1505.00212.

[Motik et al., 2015b] Motik, B., Nenov, Y., Piro, R., and Horrocks, I. (2015b). Incremental

update of datalog materialisation: the backward/forward algorithm. In Proc. AAAI.

[Mrissa et al., 2014a] Mrissa, M., Médini, L., and Jamont, J. (2014a). Semantic discovery

and invocation of functionalities for the web of things. In 2014 IEEE 23rd International

WETICE Conference, WETICE 2014, Parma, Italy, 23-25 June, 2014, pages 281–286. IEEE

Computer Society.

[Mrissa et al., 2015] Mrissa, M., Médini, L., Jamont, J.-P., Le Sommer, N., and Laplace, J.

(2015). An avatar architecture for the web of things. IEEE Internet Computing, 19(2):30–

38.

[Mrissa et al., 2014b] Mrissa, M., Médini, L., and Jamont, J.-P. (2014b). Semantic discovery

and invocation of functionalities for the web of things. In IEEE International Conference

on Enabling Technologies: Infrastructure for Collaborative Enterprises.

124 BIBLIOGRAPHY

[Mrissa et al., 2014c] Mrissa, M., Médini, L., Jamont, J.-P., Le Sommer, N., and Laplace, J.

(2014c). An avatar architecture for the web of things.

[Munnelly et al., 2007] Munnelly, J., Fritsch, S., and Clarke, S. (2007). An aspect-oriented

approach to the modularisation of context. In Pervasive Computing and Communications,

2007. PerCom’07. Fifth Annual IEEE International Conference on, pages 114–124. IEEE.

[Musolesi and Mascolo, 2009] Musolesi, M. and Mascolo, C. (2009). Car: context-aware

adaptive routing for delay-tolerant mobile networks. Mobile Computing, IEEE Transactions

on, 8(2):246–260.

[Nenov et al., 2015] Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., and Banerjee, J.

(2015). RDFox: A highly-scalable RDF store. In The Semantic Web - ISWC 2015, volume

9367, pages 3–20. Springer International Publishing.

[Nguyen et al., 2014] Nguyen, V., Bodenreider, O., and Sheth, A. (2014). Don’t like rdf reifi-

cation?: making statements about statements using singleton property. In Proceedings of

the 23rd international conference on World wide web, pages 759–770. ACM.

[Perera et al., 2014] Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D. (2014).

Context aware computing for the internet of things: A survey. Communications Surveys

& Tutorials, IEEE, 16(1):414–454.

[Perrucci et al., 2011] Perrucci, G. P., Fitzek, F. H., and Widmer, J. (2011). Survey on energy

consumption entities on the smartphone platform. In Vehicular Technology Conference

(VTC Spring), 2011 IEEE 73rd, pages 1–6. IEEE.

[Pfisterer et al., 2011] Pfisterer, D., Romer, K., Bimschas, D., Kleine, O., Mietz, R., Truong,

C., Hasemann, H., Kröller, A., Pagel, M., Hauswirth, M., et al. (2011). Spitfire: toward a

semantic web of things. IEEE Communications Magazine, 49(11):40–48.

[Raverdy et al., 2006] Raverdy, P.-G., Riva, O., de La Chapelle, A., Chibout, R., and Issarny,

V. (2006). Efficient context-aware service discovery in multi-protocol pervasive environ-

ments. In Mobile Data Management, 2006. MDM 2006. 7th International Conference on, pages

3–3. IEEE.

[Ruta et al., 2014] Ruta, M., Scioscia, F., Loseto, G., Gramegna, F., Ieva, S., and Di Sciascio,

E. (2014). Mini-me 2.0: powering the semantic web of things. In 3rd OWL Reasoner

Evaluation Workshop (ORE 2014)(jul 2014).

[Sadjadi and McKinley, 2004] Sadjadi, S. M. and McKinley, P. K. (2004). Act: An adaptive

corba template to support unanticipated adaptation. In Distributed Computing Systems,

2004. Proceedings. 24th International Conference on, pages 74–83. IEEE.

BIBLIOGRAPHY 125

[Sampson et al., 2004] Sampson, D. G., Lytras, M. D., Wagner, G., and Diaz, P. (2004). On-

tologies and the semantic web for e-learning. Educational Technology & Society, 7(4):26–28.

[Schilit et al., 1994] Schilit, B., Adams, N., and Want, R. (1994). Context-aware computing

applications. In Mobile Computing Systems and Applications, 1994. WMCSA 1994. First

Workshop on, pages 85–90. IEEE.

[Schilit et al., 1993] Schilit, B. N., Adams, N., Gold, R., Tso, M. M., and Want, R. (1993). The

parctab mobile computing system. In Workstation Operating Systems, 1993. Proceedings.,

Fourth Workshop on, pages 34–39. IEEE.

[Schmidt, 2003] Schmidt, A. (2003). Ubiquitous computing-computing in context. PhD thesis,

Lancaster University.

[Schmidt et al., 1999] Schmidt, A., Beigl, M., and Gellersen, H.-W. (1999). There is more to

context than location. Computers & Graphics, 23(6):893–901.

[Schueler et al., 2008] Schueler, B., Sizov, S., Staab, S., and Tran, D. T. (2008). Querying for

meta knowledge. In Proceedings of the 17th international conference on World Wide Web,

pages 625–634. ACM.

[Seinturier et al., 2009] Seinturier, L., Merle, P., Fournier, D., Dolet, N., Schiavoni, V., and

Stefani, J.-B. (2009). Reconfigurable sca applications with the frascati platform. In Services

Computing, 2009. SCC’09. IEEE International Conference on, pages 268–275. IEEE.

[Shelby et al., 2014] Shelby, Z., Hartke, K., and Bormann, C. (2014). The constrained appli-

cation protocol (coap).

[Sinner and Kleemann, 2005] Sinner, A. and Kleemann, T. (2005). Krhyper–in your pocket.

In Automated Deduction–CADE-20, pages 452–457. Springer.

[Stehr et al., 2011] Stehr, M., Talcott, C. L., Rushby, J. M., Lincoln, P., Kim, M., Cheung,

S., and Poggio, A. (2011). Fractionated software for networked cyber-physical systems:

Research directions and long-term vision. In Formal Modeling: Actors, Open Systems, Bi-

ological Systems - Essays Dedicated to Carolyn Talcott on the Occasion of Her 70th Birthday,

volume 7000 of Lecture Notes in Computer Science, pages 110–143. Springer.

[Terdjimi, 2015] Terdjimi, M. (2015). Multi-level context adaptation in the web of things.

In Doctoral Consortium at ISWC2015.

[Terdjimi et al., 2016a] Terdjimi, M., Médini, L., and Mrissa, M. (2016a). HyLAR+: Im-

proving Hybrid Location-Agnostic Reasoning with Incremental Rule-based Update. In

WWW’16: 25th International World Wide Web Conference Companion, Montreal, Québec,

Canada.

126 BIBLIOGRAPHY

[Terdjimi et al., 2016b] Terdjimi, M., Médini, L., and Mrissa, M. (2016b). Towards a meta-

model for context in the web of things. In Karlsruhe Service Summit Workshop.

[Terdjimi et al., 2016c] Terdjimi, M., Médini, L., Mrissa, M., and Le Sommer, N. (2016c). An

avatar-based adaptation workflow for the web of things. In Enabling Technologies: Infras-

tructure for Collaborative Enterprises (WETICE), 2016 IEEE 25th International Conference on,

pages 62–67. IEEE.

[Terdjimi et al., 2017] Terdjimi, M., Médini, L., Mrissa, M., and Maleshkova, M. (2017).

Multi-purpose adaptation in the web of things. In CONTEXT-17.

[Thompson, 2005] Thompson, C. W. (2005). Smart devices and soft controllers. Internet

Computing, IEEE, 9(1):82–85.

[Tigli et al., 2009] Tigli, J.-Y., Lavirotte, S., Rey, G., Hourdin, V., Cheung-Foo-Wo, D., Calle-

gari, E., and Riveill, M. (2009). Wcomp middleware for ubiquitous computing: Aspects

and composite event-based web services. annals of telecommunications-annales des télécom-

munications, 64(3-4):197–214.

[Tolk and Muguira, 2003] Tolk, A. and Muguira, J. A. (2003). The levels of conceptual in-

teroperability model. In Proceedings of the 2003 Fall Simulation Interoperability Workshop,

volume 7. Citeseer.

[Truong and Dustdar, 2009] Truong, H.-L. and Dustdar, S. (2009). A survey on context-

aware web service systems. International Journal of Web Information Systems, 5(1):5–31.

[Truong et al., 2008] Truong, H.-L., Dustdar, S., Baggio, D., Corlosquet, S., Dorn, C., Giu-

liani, G., Gombotz, R., Hong, Y., Kendal, P., Melchiorre, C., et al. (2008). Incontext: A

pervasive and collaborative working environment for emerging team forms. In Applica-

tions and the Internet, 2008. SAINT 2008. International Symposium on, pages 118–125. IEEE.

[Truong et al., 2007] Truong, H.-L., Juszczyk, L., Manzoor, A., and Dustdar, S. (2007).

ESCAPE–an adaptive framework for managing and providing context information in emergency

situations. Springer.

[Verborgh et al., 2014a] Verborgh, R., Hartig, O., De Meester, B., Haesendonck, G.,

De Vocht, L., Vander Sande, M., Cyganiak, R., Colpaert, P., Mannens, E., and Van de

Walle, R. (2014a). Querying datasets on the web with high availability. In The Semantic

Web–ISWC 2014, pages 180–196. Springer.

[Verborgh et al., 2014b] Verborgh, R., Sande, M. V., Colpaert, P., Coppens, S., Mannens,

E., and de Walle, R. V. (2014b). Web-scale querying through linked data fragments. In

Proceedings of the Workshop on Linked Data on the Web co-located with the 23rd International

World Wide Web Conference (WWW 2014), Seoul, Korea, April 8, 2014.

BIBLIOGRAPHY 127

[Wang et al., 2004] Wang, X. H., Zhang, D. Q., Gu, T., and Pung, H. K. (2004). Ontology

based context modeling and reasoning using owl. In Pervasive Computing and Communi-

cations Workshops, 2004. Proceedings of the Second IEEE Annual Conference on, pages 18–22.

Ieee.

[Wei et al., 2006] Wei, Q., Farkas, K., Prehofer, C., Mendes, P., and Plattner, B. (2006).

Context-aware handover using active network technology. Computer Networks,

50(15):2855–2872.

[Wilde, 2007] Wilde, E. (2007). Putting things to rest. School of Information.

[Xiang et al., 2010] Xiang, B., Jiang, D., Pei, J., Sun, X., Chen, E., and Li, H. (2010). Context-

aware ranking in web search. Sigir 2010, page 451.

[Yu et al., 2006] Yu, Z., Zhou, X., Zhang, D., Chin, C.-Y., Wang, X., et al. (2006). Supporting

context-aware media recommendations for smart phones. Pervasive Computing, IEEE,

5(3):68–75.

[Zeginis and Plexousakis, 2010] Zeginis, C. and Plexousakis, D. (2010). Web service adap-

tation: State of the art and research challenges. Self, 2:5.

[Zimmermann et al., 2007] Zimmermann, A., Lorenz, A., and Oppermann, R. (2007). An

operational definition of context. In Modeling and using context, pages 558–571. Springer.

[Zufferey and Kosch, 2006] Zufferey, M. and Kosch, H. (2006). Semantic adaptation of mul-

timedia content. In Multimedia Signal Processing and Communications, 48th International

Symposium ELMAR-2006 focused on, pages 319–322. IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

