. Schlumberger, https://www.software.slb.com/products/ petrel. Accessed, pp.2016-2022

T. Ahmed, Reservoir engineering handbook, 2006.

W. Badziong and R. K. Thauer, Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources, Archives of Microbiology, vol.112, issue.2, pp.209-214, 1978.
DOI : 10.1099/00221287-67-2-145

O. Basso, P. Caumette, and M. Magot, Desulfovibrio putealis sp. nov., a novel sulfate-reducing bacterium isolated from a deep subsurface aquifer, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.55, issue.1, pp.101-104, 2005.
DOI : 10.1099/ijs.0.63303-0

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn et al., A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework, Computing, vol.82, issue.2-3, pp.2-3103, 2008.
DOI : 10.1007/s00607-008-0003-x

S. Bauer, A. Gubik, M. Pichler, A. P. Loibner, K. Scherr et al., Underground Sun Storage: Erneuerbare Energie untertage speichern. energie wasser-praxis, pp.50-54, 2014.

L. K. Baumgartner, R. P. Reid, C. Dupraz, A. W. Decho, D. H. Buckley et al., Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries, Sedimentary Geology, vol.185, issue.3-4, pp.131-145, 2006.
DOI : 10.1016/j.sedgeo.2005.12.008

S. Becker and A. Kuznetsov, Heat Transfer and Fluid Flow in Biological Processes, 2014.

P. Bedrikovetsky, Mathematical theory of oil and gas recovery: with applications to ex-USSR oil and gas fields, 1993.
DOI : 10.1007/978-94-017-2205-6

F. C. Boait, N. J. White, M. J. Bickle, R. A. Chadwick, J. A. Neufeld et al., Spatial and temporal evolution of injected CO2 at the Sleipner Field, North Sea, Journal of Geophysical Research: Solid Earth, issue.B3, pp.117-2012, 1978.

J. O. Bockris, A Hydrogen Economy, Science, vol.176, issue.4041, p.1323, 1972.
DOI : 10.1126/science.176.4041.1323

R. H. Brooks and A. T. Corey, Hydraulic properties of porous media and their relation to drainage design, Transactions of the ASAE, vol.7, issue.1, pp.26-0028, 1964.

S. E. Buckley and M. C. Leverett, Mechanism of Fluid Displacement in Sands, Transactions of the AIME, vol.146, issue.01, pp.107-116, 1942.
DOI : 10.2118/942107-G

U. Bünger and O. Kruck, Overview and public launch of the HyUnder project, 2012.

F. Buzek, V. Onderka, P. Van?ura, and I. Wolf, Carbon isotope study of methane production in a town gas storage reservoir, Fuel, vol.73, issue.5, pp.747-752, 1994.
DOI : 10.1016/0016-2361(94)90019-1

P. O. Carden and L. Paterson, Physical, chemical and energy aspects of underground hydrogen storage, International Journal of Hydrogen Energy, vol.4, issue.6, pp.559-569, 1979.
DOI : 10.1016/0360-3199(79)90083-1

J. F. Carriere, G. Fasanino, and M. R. Tek, Mixing in Underground Storage Reservoirs, SPE Annual Technical Conference and Exhibition, 1985.
DOI : 10.2118/14202-MS

F. H. Chapelle, J. L. Zelibor, D. J. Grimes, and L. L. , to groundwater, Water Resources Research, vol.21, issue.2, pp.1625-1632, 1987.
DOI : 10.1111/j.1745-6584.1983.tb00710.x

Z. Chen, Reservoir Simulation: Mathematical Techniques in Oil Recovery, SIAM, vol.77, 2007.
DOI : 10.1137/1.9780898717075

H. Class, R. Helmig, and P. Bastian, Numerical simulation of non-isothermal multiphase multicomponent processes in porous media., Advances in Water Resources, vol.25, issue.5, pp.533-550, 2002.
DOI : 10.1016/S0309-1708(02)00014-3

R. Cord-ruwisch, H. Seitz, and R. Conrad, The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor, Archives of Microbiology, vol.2, issue.4, pp.350-357, 1988.
DOI : 10.1002/jctb.280350109

J. Cordazzo, C. R. Maliska, and A. F. Silva, Interblock transmissibility calculation analysis for petroleum reservoir simulation, 2nd Meeting on Reservoir Simulation, pp.5-6, 2002.

F. Crotogino, S. Donadei, U. Bünger, and H. Landinger, Large-scale hydrogen underground storage for securing future energy supplies, 18th World hydrogen energy conference, pp.16-21, 2010.

H. Cypionka, Grundlagen der Mikrobiologie, 2010.
DOI : 10.1007/978-3-662-07587-6

L. P. Dake, Fundamentals of reservoir engineering, 1983.

A. Dedner, R. Klöfkorn, and M. Nolte, The DUNE-ALUGrid module. arXiv preprint, 2014.

D. N. Dietz, A theoretical approach to the problem of encroaching and by-passing edge water, Proc, pp.83-92, 1953.

W. S. Dockins, G. J. Olson, G. A. Mcfeters, and S. C. Turbak, Dissimilatory bacterial sulfate reduction in montana groundwaters, Geomicrobiology Journal, vol.22, issue.1, pp.83-98, 1980.
DOI : 10.1016/0016-7037(54)90036-8

P. Dornseiffer, B. Meyer, and E. Heinzle, Modeling of anaerobic formate kinetics in mixed biofilm culture using dynamic membrane mass spectrometric measurement, Biotechnology and Bioengineering, vol.41, issue.3, pp.219-228, 1995.
DOI : 10.1007/978-1-4757-0169-2_12

M. Dworkin, S. Falkow, E. Rosenberg, K. Schleifer, and E. Stackebrandt, The Prokaryotes Third Edition -A handbook on the biology of bacteria: Ecophysiology and Biochemistry, 2006.

A. Ebigbo, F. Golfier, and M. Quintard, A coupled, pore-scale model for methanogenic microbial activity in underground hydrogen storage, Advances in Water Resources, vol.61, pp.74-85, 2013.
DOI : 10.1016/j.advwatres.2013.09.004

URL : https://hal.archives-ouvertes.fr/hal-01301169

S. O. Elferink, R. N. Maas, H. Harmsen, and A. J. Stams, Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge, Archives of Microbiology, vol.164, issue.2, pp.119-124, 1995.
DOI : 10.1007/s002030050243

S. O. Elferink, A. Visser, L. W. Pol, and A. J. Stams, Sulfate reduction in methanogenic bioreactors, FEMS Microbiology Reviews, vol.15, issue.2-3, pp.119-136, 1994.

DOI : 10.1142/9789812817617_0002

F. Feldmann, B. Hagemann, L. Ganzer, and M. Panfilov, Numerical simulation of hydrodynamic and gas mixing processes in underground hydrogen storages, Environmental Earth Sciences, vol.18, issue.6, p.751165, 2016.
DOI : 10.3997/2214-4609.20143214

URL : https://hal.archives-ouvertes.fr/hal-01410067

B. Flemisch, M. Darcis, K. Erbertseder, B. Faigle, A. Lauser et al., DuMux: DUNE for multi-{phase,component,scale,physics,???} flow and transport in porous media, Advances in Water Resources, vol.34, issue.9, pp.1102-1112, 2011.
DOI : 10.1016/j.advwatres.2011.03.007

C. Ganser and B. Eng, New energy storage concept for renewable energies in the form of potential energy storage, p.70, 2013.

L. Ganzer, V. Reitenbach, D. Pudlo, M. Panfilov, D. Albrecht et al., The H2STORE project-experimental and numerical simulation approach to investigate processes in underground hydrogen reservoir storage, EAGE Annual Conference & Exhibition incorporating, 2013.

T. R. Ginn, B. D. Wood, K. E. Nelson, T. D. Scheibe, E. M. Murphy et al., Processes in microbial transport in the natural subsurface, Advances in Water Resources, issue.8, pp.251017-1042, 2002.

P. Glendinning, Stability, instability and chaos: An introduction to the theory of nonlinear differential equations, 1994.
DOI : 10.1017/CBO9780511626296

F. Golfier, B. D. Wood, L. Orgogozo, M. Quintard, and M. Bù-es, Biofilms in porous media: Development of macroscopic transport equations via volume averaging with closure for local mass equilibrium conditions, Advances in Water Resources, vol.32, issue.3, pp.463-485, 2009.
DOI : 10.1016/j.advwatres.2008.11.012

J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, 2013.

B. Hagemann, Hydrodynamics of Hydrogen in Underground Storages, 2013.

B. Hagemann, M. Panfilov, and L. Ganzer, Modelling Bio-reactive Transport in Underground Hydrogen Storages - Spatial Separation of Gaseous Components, ECMOR XV, 15th European Conference on the Mathematics of Oil Recovery, 2016.
DOI : 10.3997/2214-4609.201601768

B. Hagemann, M. Panfilov, and L. Ganzer, Multicomponent gas rising through water with dissolution in stratified porous reservoirs ??? Application to underground storage of H 2 and CO 2, Journal of Natural Gas Science and Engineering, vol.31, pp.198-213, 2016.
DOI : 10.1016/j.jngse.2016.03.019

URL : https://hal.archives-ouvertes.fr/hal-01409122

B. Hagemann, M. Rasoulzadeh, M. Panfilov, L. Ganzer, and V. Reitenbach, Hydrogenization of Underground Storage of Natural Gas - Impact of Hydrogen on Bio-chemical Transformations of Stored Gas, ECMOR XIV, 14th European Conference on the Mathematics of Oil Recovery, 2014.
DOI : 10.3997/2214-4609.20141878

URL : https://hal.archives-ouvertes.fr/hal-01410062

B. Hagemann, M. Rasoulzadeh, M. Panfilov, L. Ganzer, and V. Reitenbach, Mathematical modeling of unstable transport in underground hydrogen storage, Environmental Earth Sciences, vol.73, issue.3, pp.736891-6898, 2015.
DOI : 10.1111/j.1574-6968.1990.tb03944.x

URL : https://hal.archives-ouvertes.fr/hal-01417579

B. Hagemann, M. Rasoulzadeh, M. Panfilov, L. Ganzer, and V. Reitenbach, Hydrogenization of underground storage of natural gas, Computational Geosciences, vol.351, issue.3, pp.595-606, 2016.
DOI : 10.1016/j.chemgeo.2013.05.025

URL : https://hal.archives-ouvertes.fr/hal-01410062

S. A. Haveman, E. L. Nilsson, and K. Pedersen, Regional distribution of microbes in groundwater from hastholmen, kivetty, olkiluoto and romuvaara, finland, Report POSIVA, vol.6, p.35, 2000.

Z. E. Heinemann, Introduction to Reservoir Simulation, Montanunivertät Leoben, 2005.

R. Helmig, Multiphase flow and transport processes in the subsurface: A contribution to the modeling of hydrosystems, 1997.
DOI : 10.1007/978-3-642-60763-9

A. Henderson, J. Ahrens, and C. Law, The ParaView Guide, 2004.

J. Norman-'s-historyofinformation and . Com, An early vision of transhumanism , and the first proposal of a hydrogen-based renewable Bibliography energy economy, pp.2013-2019

C. K. Ho and S. W. Webb, Gas transport in porous media, 2006.
DOI : 10.1007/1-4020-3962-X

A. Husain, Mathematical models of the kinetics of anaerobic digestion???a selected review, Biomass and Bioenergy, vol.14, issue.5-6, pp.561-571, 1998.
DOI : 10.1016/S0961-9534(97)10047-2

. Hyunder, Assessment of the potential, the actors and relevant business cases for large scale and long term storage of renewable electricity by hydrogen underground storage in europe. Executive Summary HyUnder, 2012.

E. J. Jones, M. A. Voytek, M. D. Corum, and W. H. Orem, Stimulation of Methane Generation from Nonproductive Coal by Addition of Nutrients or a Microbial Consortium, Applied and Environmental Microbiology, vol.76, issue.21, pp.7013-7022, 2010.
DOI : 10.1128/AEM.00728-10

I. Kalfas, Dynamics of cortical networks segregated into layers and columns, 2015.

F. Karadagli and B. E. Rittmann, Kinetic characterization of methanobacterium bryantii moh. Environmental science & technology, pp.4900-4905, 2005.

T. Katayama, H. Yoshioka, Y. Muramoto, J. Usami, K. Fujiwara et al., Physicochemical impacts associated with natural gas development on methanogenesis in deep sand aquifers, The ISME Journal, vol.8, issue.2, pp.436-446, 2015.
DOI : 10.1111/j.1472-4669.2009.00231.x

J. Kepplinger, F. Crotogino, S. Donai, and M. Wohlers, Present trends in compressed air energy and hydrogen storage in germany, Solution Mining Research Institute Fall Technical Conference, 2011.

W. Kleinitz and E. Boehling, Underground gas storage in porous media?operating experience with bacteria on gas quality (SPE94248), Bibliography

T. Görke, G. Kalbacher, C. I. Kosakowski, and . Mcdermott, Opengeosys: An open-source initiative for numerical simulation of thermohydro-mechanical/chemical (THM/C) processes in porous media, Environmental Earth Sciences, vol.67, issue.2, pp.589-599, 2012.

S. Kotelnikova and K. Pedersen, in deep granitic rock aquifers, FEMS Microbiology Reviews, vol.20, issue.3-4, pp.339-349, 1997.
DOI : 10.1111/j.1365-2672.1983.tb02660.x

O. R. Kotsyurbenko, M. V. Glagolev, A. N. Nozhevnikova, and R. Conrad, Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature, FEMS Microbiology Ecology, vol.41, issue.2-3, pp.153-159, 2001.
DOI : 10.1111/j.1574-6941.2001.tb00893.x

J. K. Kristjansson, P. Schönheit, and R. K. Thauer, Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: An explanation for the apparent inhibition of methanogenesis by sulfate, Archives of Microbiology, vol.111, issue.3, pp.278-282, 1982.
DOI : 10.1007/BF00405893

B. H. Kueper and E. O. Frind, An overview of immiscible fingering in porous media, Journal of Contaminant Hydrology, vol.2, issue.2, pp.95-110, 1988.
DOI : 10.1016/0169-7722(88)90001-0

J. P. Laille, C. Coulomb, and M. R. Tek, Underground Storage in Cerville-Velaine, France: A Case History in Conversion and Inert Gas Injection as Cushion Substitute, SPE Annual Technical Conference and Exhibition, 1986.
DOI : 10.2118/15588-MS

A. L. Lee, M. H. Gonzalez, and B. E. Eakin, The Viscosity of Natural Gases, Journal of Petroleum Technology, vol.18, issue.08, pp.997-998, 1966.
DOI : 10.2118/1340-PA

W. Leonhard, Energiespeicher in Stromversorgungssystemen mit hohem Anteil erneuerbarer Energieträger: Bedeutung, Stand der Technik , Handlungsbedarf. VDE, ETG Task Force Energiespeicher, 2008.

D. R. Lovley and E. J. Phillips, Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric Bibliography iron reduction in sediments, Applied and Environmental Microbiology, issue.11, pp.532636-2641, 1987.

X. Luo, J. Wang, M. Dooner, and J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Applied Energy, vol.137, pp.511-536, 2015.
DOI : 10.1016/j.apenergy.2014.09.081

K. U. Mayer, D. W. Blowes, and E. O. Frind, Reactive transport modeling of an in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater, Water Resources Research, vol.294, issue.12, pp.3091-3103, 2001.
DOI : 10.2475/ajs.294.5.529

J. Monod, The Growth of Bacterial Cultures, Annual Review of Microbiology, vol.3, issue.1, pp.371-394, 1949.
DOI : 10.1146/annurev.mi.03.100149.002103

D. Morozova, M. Zettlitzer, D. Let, and H. Würdemann, Monitoring of the microbial community composition in deep subsurface saline aquifers during CO2 storage in Ketzin, Germany, Energy Procedia, vol.4, pp.4362-4370, 2011.
DOI : 10.1016/j.egypro.2011.02.388

A. Moser, Bioprocess Technology: Kinetics and Reactors, 1988.
DOI : 10.1007/978-1-4613-8748-0

E. M. Murphy and T. R. Ginn, Modeling microbial processes in porous media, Hydrogeology Journal, vol.8, issue.1, pp.142-158, 2000.
DOI : 10.1007/s100409900043

J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, of Interdisciplinary Applied Mathematics, 2001.

J. D. Murray, Mathematical Biology I: An Introduction, of Interdisciplinary Applied Mathematics, 2002.

R. Nethe-jaenchen and R. K. Thauer, Growth yields and saturation constant of Desulfovibrio vulgaris in chemostat culture, Archives of Microbiology, vol.43, issue.3, pp.236-240, 1984.
DOI : 10.1007/BF00414550

H. M. Nilsen, J. R. Natvig, and K. Lie, Accurate Modeling of Faults by Multipoint, Mimetic, and Mixed Methods, SPE Journal, vol.17, issue.02, pp.568-579, 2012.
DOI : 10.2118/149690-PA

C. M. Oldenburg, Carbon Dioxide as Cushion Gas for Natural Gas Storage, Energy & Fuels, vol.17, issue.1, pp.240-246, 2003.
DOI : 10.1021/ef020162b

G. J. Olson, W. S. Dockins, G. A. Mcfeters, and W. Iverson, Sulfate???reducing and methanogenic bacteria from deep aquifers in montana, Geomicrobiology Journal, vol.22, issue.4, pp.327-340, 1981.
DOI : 10.1111/j.1745-6584.1975.tb03609.x

F. M. Orr, Theory of gas injection processes. Tie-Line Publications Copenhagen, 2007.

]. M. Panfilov, Underground storage of hydrogen: In situ selforganisation and methane generation. Transport in porous media, pp.841-865, 2010.

L. Paterson, Radial fingering in a Hele Shaw cell, Journal of Fluid Mechanics, vol.9, issue.-1, pp.513-529, 1981.
DOI : 000__S002211208000242X

L. Paterson, The implications of fingering in underground hydrogen storage, International Journal of Hydrogen Energy, vol.8, issue.1, pp.53-59, 1983.
DOI : 10.1016/0360-3199(83)90035-6

D. W. Peaceman, Interpretation of Well-Block Pressures in Numerical Reservoir Simulation(includes associated paper 6988 ), Society of Petroleum Engineers Journal, vol.18, issue.03, pp.183-194, 1978.
DOI : 10.2118/6893-PA

K. Pedersen, Preliminary investigations of deep ground water microbiology in swedish granitic rock, SKB Tech. Rep, vol.88, issue.1, p.22, 1987.

D. Peng and D. B. Robinson, A New Two-Constant Equation of State, Industrial & Engineering Chemistry Fundamentals, vol.15, issue.1, pp.59-64, 1976.
DOI : 10.1021/i160057a011

L. Petrie, N. N. North, S. L. Dollhopf, D. L. Balkwill, and J. E. Kostka, Enumeration and characterization of iron (iii)-reducing microbial communities from acidic subsurface sediments contaminated with uranium (vi) Applied and environmental microbiology, pp.697467-7479, 2003.

W. T. Pfeiffer and S. Bauer, Subsurface porous media hydrogen storage?scenario development and simulation. Energy Procedia, pp.565-572, 2015.
DOI : 10.1016/j.egypro.2015.07.872

URL : https://doi.org/10.1016/j.egypro.2015.07.872

T. R. Pintelon, C. Picioreanu, M. Van-loosdrecht, and M. L. Johns, The effect of biofilm permeability on bio-clogging of porous media, Biotechnology and Bioengineering, vol.56, issue.4, pp.1031-1042, 2012.
DOI : 10.1016/S0009-2509(00)00398-5

B. E. Poling, J. M. Prausnitz, O. Paul, and R. C. Reid, The properties of gases and liquids, 2001.

K. Porsch, J. Meier, S. Kleinsteuber, and K. Wendt-potthoff, Importance of Different Physiological Groups of Iron Reducing Microorganisms in an Acidic Mining Lake Remediation Experiment, Microbial Ecology, vol.43, issue.33, pp.701-717, 2009.
DOI : 10.1023/A:1019959814202

J. A. Robinson and J. M. Tiedje, Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions, Archives of Microbiology, vol.33, issue.1, pp.26-32, 1984.
DOI : 10.1007/BF00425803

P. Ryan and E. Colleran, The role of homoacetogenic bacteria in anaerobic digester sludges, National Symposium of The Irish Research Council for Science, Engineering and Technology, p.318, 2005.

S. A. Hychico, Didema Wind Power Hydrogen Production Plant, Hychico Brochure, 2013.

A. E. Scheidegger, The Physics of Flow Through Porous Media, Soil Science, vol.86, issue.6, p.355, 1958.
DOI : 10.1097/00010694-195812000-00015

P. Smigá?, M. Greksak, J. Kozankova, F. Buzek, V. Onderka et al., Methanogenic bacteria as a key factor involved in changes of town gas stored in an underground reservoir, FEMS Microbiology Ecology, vol.6, issue.3, pp.221-224, 1990.

A. J. Stams, S. O. Elferink, and P. Westermann, Metabolic Interactions Between Methanogenic Consortia and Anaerobic Respiring Bacteria, In Biomethanation I, pp.31-56, 2003.
DOI : 10.1007/3-540-45839-5_2

URL : http://orbit.dtu.dk/en/publications/metabolic-interactions-between-methanogenic-consortia-and-anaerobic-respiring-bacteria(c3fe47e2-4487-4641-8e47-7232e2c2d74c).html

C. I. Steefel, C. A. Appelo, B. Arora, D. Jacques, T. Kalbacher et al., Reactive transport codes for subsurface environmental simulation, Computational Geosciences, vol.45, issue.2001, pp.445-478, 2015.
DOI : 10.1021/es1038276

URL : https://hal.archives-ouvertes.fr/hal-01223868

H. B. Stone, R. N. Richardson, and I. Veldhuis, An investigation into large-scale hydrogen energy storage in the UK, 2005.

T. Straube and C. Müller, How to do a proper cell culture quick check

M. R. Tek, Underground storage of natural gas: Theory and practice, 1989.
DOI : 10.1007/978-94-009-0993-9

R. E. Terry, Enhanced oil recovery. Encyclopedia of physical science and technology, pp.503-518, 2001.

R. K. Thauer, G. Fuchs, and . Methanogene-bakterien, Methanogene Bakterien, Naturwissenschaften, vol.99, issue.2, pp.89-94, 1979.
DOI : 10.1042/bj0990076

A. Toleukhanov, M. Panfilov, I. Panfilova, and A. Kaltayev, Bioreactive two-phase transport and population dynamics in underground storage of hydrogen: Natural self-organisation, ECMOR XIII-13th European Conference on the Mathematics of Oil Recovery, 2012.

E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: A practical introduction, 2013.

A. M. Turing, The Chemical Basis of Morphogenesis, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.237, issue.641, pp.37-72, 1952.
DOI : 10.1098/rstb.1952.0012

B. Unal, V. R. Perry, M. Sheth, V. Gomez-alvarez, K. Chin et al., Trace elements affect methanogenic activity and diversity in enrichments from subsurface coal bed produced water. Deep Subsurface Microbiology, p.262, 2015.

K. Vafai, Porous media: Applications in biological systems and biotechnology, 2010.
DOI : 10.1201/9781420065428

G. A. Van-voorn, Phd mini course: Introduction to bifurcation analysis, 2006.

V. A. Vavilin, L. Y. Lokshina, S. V. Rytov, O. R. Kotsyurbenko, and A. N. Nozhevnikova, Description of two-step kinetics in methane formation during psychrophilic H2/CO2 and mesophilic glucose conversions, Bioresource Technology, vol.71, issue.3, pp.71195-209, 2000.
DOI : 10.1016/S0960-8524(99)00083-8

R. Wilms, H. Sass, B. Köpke, H. Cypionka, and B. Engelen, Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea, FEMS Microbiology Ecology, vol.72, issue.3, pp.611-621, 2007.
DOI : 10.1099/00221287-148-11-3521

T. Xu, N. Spycher, E. Sonnenthal, G. Zhang, L. Zheng et al., TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions, Computers & Geosciences, vol.37, issue.6, pp.763-774, 2011.
DOI : 10.1016/j.cageo.2010.10.007

URL : https://digital.library.unt.edu/ark:/67531/metadc843802/m2/1/high_res_d/1000046.pdf

. Dans-cette-thèse, les différences majeures entre le stockage souterrain de l'hydrogène et le stockage conventionnel du gaz naturel sont alignées pourêtrepourêtre des bio-réactions

. Le-déplacement-dûdûà-la-gravité-lorsque, un réservoir stratifié et saturé en eau, a ´ eté analytiquement modélisé Un nouveau modèle mathématique a ´ eté développé pour décrire le couplage entre l'´ ecoulement bi-phasique multi-composants et des populations microbiennes qui consomment de l'hydrogène pour faire fonctionner leur métabolisme. Des scénarios oscillants, semblablesàsemblablesà l'instabilité de Turing, ontétéontété détecté. Le modèle mathématique a ´ eté implémenté numériquement sur la base de DuMu X . Les scénarios de stockage ontétéontété simulés en incluant une simulationàsimulationà l'´ echelle du champ, avec un modèle géologique réaliste. LesétudesLesétudes ont prouvé que la faible densité et viscosité de l'hydrogène estàestà l'origine du déplacement plus instable de l'eau comparécomparéà l'injection du méthane, De plus, il a ´ eté constaté que la dispersion mécanique et les réactions biochimiques ont une influence importante dans lesétudeslesétudes de prédiction. Les pertes notables d'´ energie peuvent appara??treappara??tre au travers des transformations biochimiques des gaz stockés