M. T. Abreu, Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function, Nature Reviews Immunology, vol.165, issue.2, pp.131-144, 2010.
DOI : 10.1016/S0002-9440(10)63304-4

M. Buettner and U. Bode, Lymph node dissection - understanding the immunological function of lymph nodes, Clinical & Experimental Immunology, vol.127, issue.3, pp.205-212, 2012.
DOI : 10.1001/archsurg.1992.01420040026003

A. Reboldi and J. G. Cyster, Peyer's patches: organizing B-cell responses at the intestinal frontier, Immunological Reviews, vol.46, issue.173-184
DOI : 10.1038/ng.3118

R. M. Chu and C. H. Liu, Morphological and functional comparisons of Peyer's patches in different parts of the swine small intestine, Veterinary Immunology and Immunopathology, vol.6, issue.3-4, pp.391-403, 1984.
DOI : 10.1016/0165-2427(84)90063-1

H. J. Rothkötter, R. Pabst, and M. Bailey, Lymphocyte migration in the intestinal mucosa: entry, transit and emigration of lymphoid cells and the influence of antigen, Veterinary Immunology and Immunopathology, vol.72, issue.1-2, pp.157-165, 1999.
DOI : 10.1016/S0165-2427(99)00128-2

M. Bailey, Z. Christoforidou, and M. C. Lewis, The evolutionary basis for differences between the immune systems of man, mouse, pig and ruminants, Veterinary Immunology and Immunopathology, vol.152, issue.1-2, pp.13-19, 2013.
DOI : 10.1016/j.vetimm.2012.09.022

J. K. Andersen, Systematic characterization of porcine ileal Peyer's patch, I. Apoptosis-sensitive immature B cells are the predominant cell type, Immunology, vol.98, issue.4, pp.612-621, 1999.
DOI : 10.1046/j.1365-2567.1998.00621.x

M. Yamamoto, Alternate Mucosal Immune System: Organized Peyer's Patches Are Not Required for IgA Responses in the Gastrointestinal Tract, The Journal of Immunology, vol.164, issue.10, pp.5184-5191, 2000.
DOI : 10.4049/jimmunol.164.10.5184

B. Levast, Differences in transcriptomic profile and IgA repertoire between jejunal and ileal Peyer's patches, Developmental & Comparative Immunology, vol.34, issue.2, pp.102-106, 2010.
DOI : 10.1016/j.dci.2009.09.002

P. Gourbeyre, Pattern recognition receptors in the gut: analysis of their expression along the intestinal tract and the crypt/villus axis, Physiological Reports, vol.22, issue.2, 2015.
DOI : 10.1016/S0165-2427(02)00228-3

URL : https://hal.archives-ouvertes.fr/hal-01194058

N. Mach, Extensive Expression Differences along Porcine Small Intestine Evidenced by Transcriptome Sequencing, PLoS ONE, vol.36, issue.2, p.88515, 2014.
DOI : 10.1371/journal.pone.0088515.s016

URL : https://hal.archives-ouvertes.fr/hal-01193806

A. M. Bolger, M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, vol.18, issue.15, pp.2114-2120, 2014.
DOI : 10.1101/gr.074492.107

A. Yates, Ensembl 2016, Nucleic Acids Research, vol.16, issue.D1, pp.710-716, 2016.
DOI : 10.1038/nprot.2009.97

URL : https://academic.oup.com/nar/article-pdf/44/D1/D710/9482757/gkv1157.pdf

S. Anders, P. T. Pyl, and W. Huber, HTSeq--a Python framework to work with high-throughput sequencing data, Bioinformatics, vol.13, issue.1, pp.166-169, 2015.
DOI : 10.1093/bioinformatics/btp616

M. D. Robinson, D. J. Mccarthy, and G. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.9, issue.2, pp.139-140, 2010.
DOI : 10.1093/bib/bbm046

M. D. Robinson and A. Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biology, vol.11, issue.3, p.25, 2010.
DOI : 10.1186/gb-2010-11-3-r25

A. Dobin, STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.28, issue.1, pp.15-21, 2013.
DOI : 10.1093/bioinformatics/btr712

URL : https://academic.oup.com/bioinformatics/article-pdf/29/1/15/17101697/bts635.pdf

G. A. Van-der-auwera, From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline, Curr Protoc Bioinformatics, vol.29, pp.11-21, 2013.
DOI : 10.1093/nar/29.1.308

P. Danecek, The variant call format and VCFtools, Bioinformatics, vol.11, issue.9, pp.2156-2158, 2011.
DOI : 10.1101/gr.107524.110

C. T. Harvey, QuASAR: quantitative allele-specific analysis of reads, Bioinformatics, vol.28, issue.8, pp.1235-1242, 2015.
DOI : 10.1038/nbt.1621

E. Eden, R. Navon, I. Steinfeld, D. Lipson, and Z. Yakhini, GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists, BMC Bioinformatics, vol.10, issue.1, p.48, 2009.
DOI : 10.1186/1471-2105-10-48

J. Vandesompele, Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol, vol.3, p.34, 2002.

J. K. Lunney, Advances in Swine Biomedical Model Genomics, International Journal of Biological Sciences, vol.3, pp.179-184, 2007.
DOI : 10.7150/ijbs.3.179

H. Rothkötter, Anatomical particularities of the porcine immune system???A physician's view, Developmental & Comparative Immunology, vol.33, issue.3
DOI : 10.1016/j.dci.2008.06.016

M. Boeker, R. Pabst, and H. J. Rothkötter, Quantification of B, T and Null Lymphocyte Subpopulations in the Blood and Lymphoid Organs of the Pig, Immunobiology, vol.201, issue.1, pp.74-87, 1999.
DOI : 10.1016/S0171-2985(99)80048-5

C. M. Dvorak, Gene discovery and expression profiling in porcine Peyer's patch, Veterinary Immunology and Immunopathology, vol.105, issue.3-4
DOI : 10.1016/j.vetimm.2005.02.006

J. G. Machado, K. A. Hyland, C. M. Dvorak, and M. P. Murtaugh, Gene expression profiling of jejunal Peyer???s patches in juvenile and adult pigs, Mammalian Genome, vol.87, issue.Suppl, pp.599-612, 2005.
DOI : 10.3748/wjg.v9.i12.2635

H. J. Rothkötter, T. Huber, N. N. Barman, and R. Pabst, Lymphoid cells in afferent and efferent intestinal lymph: lymphocyte subpopulations and cell migration, Clinical & Experimental Immunology, vol.3, issue.2, pp.317-322, 1993.
DOI : 10.1111/j.1365-2249.1992.tb07933.x

H. J. Rothkötter, H. Ulbrich, and R. Pabst, The Postnatal Development of Gut Lamina Propria Lymphocytes: Number, Proliferation, and T and B Cell Subsets in Conventional and Germ-Free Pigs, Pediatric Research, vol.29, issue.3, pp.237-242, 1991.
DOI : 10.1203/00006450-199103000-00004

T. Okada, Chemokine Requirements for B Cell Entry to Lymph Nodes and Peyer's Patches, The Journal of Experimental Medicine, vol.69, issue.1
DOI : 10.1038/88710

URL : http://jem.rupress.org/content/jem/196/1/65.full.pdf

W. W. Agace and K. D. Mccoy, Regionalized Development and Maintenance of the Intestinal Adaptive Immune Landscape, Immunity, vol.46, issue.4, pp.532-548, 2017.
DOI : 10.1016/j.immuni.2017.04.004

C. B. Jago, J. Yates, N. O. Câmara, R. I. Lechler, and G. Lombardi, Differential expression of CTLA-4 among T cell subsets, Clinical and Experimental Immunology, vol.183, issue.3, pp.463-471, 2004.
DOI : 10.1182/blood.V97.4.1134

B. A. Zabel, Human G Protein???Coupled Receptor Gpr-9-6/Cc Chemokine Receptor 9 Is Selectively Expressed on Intestinal Homing T Lymphocytes, Mucosal Lymphocytes, and Thymocytes and Is Required for Thymus-Expressed Chemokine???Mediated Chemotaxis, The Journal of Experimental Medicine, vol.162, issue.9, pp.1241-1256, 1999.
DOI : 10.1002/1521-4141(199810)28:10<3192::AID-IMMU3192>3.0.CO;2-E

O. Shea, J. J. Paul, and W. , Mechanisms Underlying Lineage Commitment and Plasticity of Helper CD4+ T Cells, Science, vol.129, issue.4, pp.1098-1102, 2010.
DOI : 10.1016/j.cell.2007.05.009

C. S. Ma and T. G. Phan, Here, there and everywhere: T follicular helper cells on the move, Immunology, vol.17, issue.Suppl 1, pp.382-387, 2017.
DOI : 10.1038/ni.3543

R. R. Ramiscal and C. G. Vinuesa, T-cell subsets in the germinal center, Immunological Reviews, vol.41, issue.1, pp.146-155, 2013.
DOI : 10.1016/j.humpath.2009.06.016

M. Tsuji, Preferential Generation of Follicular B Helper T Cells from Foxp3+ T Cells in Gut Peyer's Patches, Science, vol.204, issue.8, pp.1488-1492, 2009.
DOI : 10.1084/jem.20070602

L. Perruzza, T Follicular Helper Cells Promote a Beneficial Gut Ecosystem for Host Metabolic Homeostasis by Sensing Microbiota-Derived Extracellular ATP, Cell Reports, vol.18, issue.11, pp.2566-2575, 2017.
DOI : 10.1016/j.celrep.2017.02.061

H. J. Rothkötter, M. Geist, F. J. Fritz, and R. Pabst, Age-Dependence of Lymphocyte Production in Peyer???s Patch Follicles in Contrast to the Other Peyer???s Patch Compartments and the Thymus, Adv. Exp. Med
DOI : 10.1007/978-1-4684-5535-9_11

J. W. Müller-schoop and R. A. Good, Functional studies of Peyer's patches: evidence for their participation in intestinal immune responses, J. Immunol, vol.114, pp.1757-1760, 1975.

Y. He, B. Vogelstein, V. E. Velculescu, N. Papadopoulos, and K. W. Kinzler, The Antisense Transcriptomes of Human Cells, Science, vol.14, issue.2, pp.1855-1857, 2008.
DOI : 10.1038/nsmb0207-103

C. Chen, A Genome-Wide Investigation of Expression Characteristics of Natural Antisense Transcripts in Liver and Muscle Samples of Pigs, PLoS ONE, vol.4, issue.12, p.52433, 2012.
DOI : 10.1371/journal.pone.0052433.s005

A. J. Chamberlain, Extensive variation between tissues in allele specific expression in an outbred mammal, BMC Genomics, vol.15, issue.1, p.993, 2015.
DOI : 10.1186/1471-2164-15-478

J. J. Crowley, Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance, Nature Genetics, vol.14, issue.4, pp.353-360, 2015.
DOI : 10.1186/1471-2164-14-150

G. Consortium, The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans, Science, vol.55, issue.4, pp.648-660, 2015.
DOI : 10.1016/j.biopsych.2003.10.013

G. Consortium, The Genotype-Tissue Expression (GTEx) project, Nat. Genet, vol.45, pp.580-585, 2013.

G. Consortium, Genetic effects on gene expression across human tissues, Nature, vol.550, pp.204-213, 2017.

M. Ackermann, W. Sikora-wohlfeld, and A. Beyer, Impact of Natural Genetic Variation on Gene Expression Dynamics, PLoS Genetics, vol.452, issue.7, 2013.
DOI : 10.1371/journal.pgen.1003514.s030

R. Aguirre-gamboa, I. Joosten, P. C. Urbano, R. G. Van-der-molen, E. Van-rijssen et al., Differential Effects of Environmental and Genetic Factors on T and B Cell Immune Traits, Cell Reports, vol.17, issue.9, pp.2474-2487, 2016.
DOI : 10.1016/j.celrep.2016.10.053

R. Albers, J. Antoine, R. Bourdet-sicard, P. C. Calder, M. Gleeson et al., Markers to measure immunomodulation in human nutrition intervention studies, British Journal of Nutrition, vol.65, issue.03, pp.452-481, 2005.
DOI : 10.1086/313642

URL : https://hal.archives-ouvertes.fr/hal-00416307

W. K. Al-murrani, A. J. Al-rawi, M. F. Al-hadithi, and B. Tikriti, Association between heterophil/lymphocyte ratio, a marker of ???resistance??? to stress, and some production and fitness traits in chickens, British Poultry Science, vol.47, issue.4, pp.443-448, 2006.
DOI : 10.1080/00071660600829118

L. Andersson, C. S. Haley, H. Ellegren, S. A. Knott, M. Johansson et al., Genetic mapping of quantitative trait loci for growth and fatness in pigs, Science, vol.263, issue.5154, pp.1771-1774, 1994.
DOI : 10.1126/science.8134840

Y. Baran, M. Subramaniam, A. Biton, T. Tukiainen, E. K. Tsang et al., The landscape of genomic imprinting across diverse adult human tissues, Genome Research, vol.25, issue.7, pp.927-936, 2015.
DOI : 10.1101/gr.192278.115

D. Bates, M. Mächler, B. Bolker, and S. Walker, Fitting Linear Mixed-Effects Models Using lme4, J. Stat. Softw, vol.67, 2015.

A. Baud, M. Mulligan, F. Casale, J. Ingels, and C. Bohl, Genetic Variation in the Social Environment Contributes to Health and Disease, PLOS Genetics, vol.42, issue.4, p.1006498, 2017.
DOI : 10.1371/journal.pgen.1006498.s020

URL : https://hal.archives-ouvertes.fr/hal-01603345

M. C. Benton, R. A. Lea, D. Macartney-coxson, M. A. Carless, H. H. Göring et al., Mapping eQTLs in the Norfolk Island Genetic Isolate Identifies Candidate Genes for CVD Risk Traits, The American Journal of Human Genetics, vol.93, issue.6, pp.1087-1099, 2013.
DOI : 10.1016/j.ajhg.2013.11.004

M. Bidanel, La recherche de QTL à l'aide de marqueurs: Résultats chez le porc, numéro hors série « Génétique moléculaire : principes et application aux populations animales, pp.223-228, 2000.

D. Boichard, Sélection génomique chez les bovins laitiers : les raisons de son succès. Sélectionneur Fr, pp.11-20, 2015.

D. Boichard, V. Ducrocq, P. Croiseau, F. , and S. , Genomic selection in domestic animals: Principles, applications and perspectives, Comptes Rendus Biologies, vol.339, issue.7-8, pp.274-277, 2016.
DOI : 10.1016/j.crvi.2016.04.007

R. B. Brem, G. Yvert, R. Clinton, and L. Kruglyak, Genetic Dissection of Transcriptional Regulation in Budding Yeast, Science, vol.296, issue.5568, pp.752-755, 2002.
DOI : 10.1126/science.1069516

R. B. Brem, J. D. Storey, J. Whittle, and L. Kruglyak, Genetic interactions between polymorphisms that affect gene expression in yeast, Nature, vol.350, issue.7051, pp.701-703, 2005.
DOI : 10.1214/aos/1074290335

P. Brodin, V. Jojic, T. Gao, S. Bhattacharya, C. J. Angel et al., Variation in the Human Immune System Is Largely Driven by Non-Heritable Influences, Cell, vol.160, issue.1-2, pp.37-47, 2015.
DOI : 10.1016/j.cell.2014.12.020

C. D. Brown, L. M. Mangravite, and B. E. Engelhardt, Integrative modeling of eQTLs and cisregulatory elements suggests mechanisms underlying cell type specificity of eQTLs, PLoS Genet, vol.9, 2013.

J. Bryois, A. Buil, D. M. Evans, J. P. Kemp, S. B. Montgomery et al., Cis and Trans Effects of Human Genomic Variants on Gene Expression, PLoS Genetics, vol.35, issue.7, p.1004461, 2014.
DOI : 10.1371/journal.pgen.1004461.s016

P. C. Calder, Polyunsaturated fatty acids and inflammation, Biochemical Society Transactions, vol.33, issue.2, pp.423-427, 2005.
DOI : 10.1042/BST0330423

P. C. Calder, Immunological Parameters: What Do They Mean?, The Journal of Nutrition, vol.31, issue.2, pp.773-80, 2007.
DOI : 10.1097/00005176-200011000-00014

URL : https://academic.oup.com/jn/article-pdf/137/3/773S/23504983/773s.pdf

P. C. Calder and S. Kew, The immune system: a target for functional foods?, British Journal of Nutrition, vol.45, issue.S2, pp.165-177, 2002.
DOI : 10.1093/ajcn/45.3.602

D. F. Carlson, W. Tan, S. G. Lillico, D. Stverakova, C. Proudfoot et al., Efficient TALEN-mediated gene knockout in livestock, Proceedings of the National Academy of Sciences, vol.649, issue.1, pp.17382-17387, 2012.
DOI : 10.1007/978-1-60761-753-2_15

T. Casneuf, Y. Van-de-peer, and W. Huber, In situ analysis of cross-hybridisation on microarrays and the inference of expression correlation, BMC Bioinformatics, vol.8, issue.1, p.461, 2007.
DOI : 10.1186/1471-2105-8-461

S. E. Castel, A. Levy-moonshine, P. Mohammadi, E. Banks, and T. Lappalainen, Tools and best practices for data processing in allelic expression analysis, Genome Biology, vol.11, issue.1, 0195.
DOI : 10.1038/nmeth.2736

A. J. Chamberlain, C. J. Vander-jagt, B. J. Hayes, M. Khansefid, L. C. Marett et al., Extensive variation between tissues in allele specific expression in an outbred mammal, BMC Genomics, vol.15, issue.1, p.993, 2015.
DOI : 10.1186/1471-2164-15-478

D. Chaussabel, Assessment of immune status using blood transcriptomics and potential implications for global health, Seminars in Immunology, vol.27, issue.1, pp.58-66, 2015.
DOI : 10.1016/j.smim.2015.03.002

D. Chaussabel, V. Pascual, and J. Banchereau, Assessing the human immune system through blood transcriptomics, BMC Biology, vol.8, issue.1, 2010.
DOI : 10.1186/1741-7007-8-84

C. Chen, R. Wei, R. Qiao, J. Ren, H. Yang et al., A Genome-Wide Investigation of Expression Characteristics of Natural Antisense Transcripts in Liver and Muscle Samples of Pigs, PLoS ONE, vol.4, issue.12, 2012.
DOI : 10.1371/journal.pone.0052433.s005

X. Chen, M. Hasan, V. Libri, A. Urrutia, B. Beitz et al., Automated flow cytometric analysis across large numbers of samples and cell types, Clinical Immunology, vol.157, issue.2, pp.249-260, 2015.
DOI : 10.1016/j.clim.2014.12.009

URL : https://hal.archives-ouvertes.fr/pasteur-01341702

J. Cho, The heritable immune system, Nature Biotechnology, vol.33, issue.6, pp.608-609, 2015.
DOI : 10.1038/nature10213

I. Choi, H. Bao, A. Kommadath, A. Hosseini, X. Sun et al., Increasing gene discovery and coverage using RNA-seq of globin RNA reduced porcine blood samples, BMC Genomics, vol.15, issue.1, p.954, 2014.
DOI : 10.1016/S0022-2836(05)80360-2

M. Clapperton, S. C. Bishop, N. D. Cameron, and E. J. Glass, Associations of acute phase protein levels with growth performance and with selection for growth performance in Large White pigs, Animal Science, vol.151, issue.02, 2005.
DOI : 10.1016/S0165-2427(99)00025-2

M. Clapperton, E. J. Glass, and S. C. Bishop, Pig peripheral blood mononuclear leucocyte subsets are heritable and genetically correlated with performance, animal, vol.72, issue.11, pp.1575-1584, 2008.
DOI : 10.1111/j.1439-0450.2006.01002.x

M. Clapperton, A. B. Diack, O. Matika, E. J. Glass, C. D. Gladney et al., Traits associated with innate and adaptive immunity in pigs: heritability and associations with performance under different health status conditions, Genetics Selection Evolution, vol.41, issue.1, p.54, 2009.
DOI : 10.1186/1297-9686-41-54

L. Conde, P. M. Bracci, R. Richardson, S. B. Montgomery, and C. F. Skibola, Integrating GWAS and Expression Data for Functional Characterization of Disease-Associated SNPs: An Application to Follicular Lymphoma, The American Journal of Human Genetics, vol.92, issue.1, pp.126-130, 2013.
DOI : 10.1016/j.ajhg.2012.11.009

V. Costa, C. Angelini, I. De-feis, and A. Ciccodicola, Uncovering the complexity of transcriptomes with RNA-Seq, J. Biomed. Biotechnol, p.853916, 2010.

F. Crick, Molecular Biology in the Year 2000, Nature, vol.228, issue.5272, pp.613-615, 1970.
DOI : 10.1038/228613a0

F. H. Crick, On protein synthesis, Symp. Soc. Exp. Biol, vol.12, pp.138-163, 1958.

J. J. Crowley, V. Zhabotynsky, W. Sun, S. Huang, I. K. Pakatci et al., Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance, Nature Genetics, vol.14, issue.4, pp.353-360, 2015.
DOI : 10.1186/1471-2164-14-150

A. K. Davis, D. L. Maney, and J. C. Maerz, The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists, Functional Ecology, vol.125, issue.5, pp.760-772, 2008.
DOI : 10.7326/0003-4819-122-5-199503010-00003

H. D. Dawson, J. E. Loveland, G. Pascal, J. G. Gilbert, H. Uenishi et al., Structural and functional annotation of the porcine immunome, BMC Genomics, vol.14, issue.1, p.332, 2013.
DOI : 10.1093/nar/gkq1021

URL : https://hal.archives-ouvertes.fr/hal-01019897

D. Jager, P. L. Hacohen, N. Mathis, D. Regev, A. Stranger et al., ImmVar project: Insights and design considerations for future studies of ???healthy??? immune variation, Seminars in Immunology, vol.27, issue.1, pp.51-57, 2015.
DOI : 10.1016/j.smim.2015.03.003

O. Debaere, Ecoantibio : first plan for the reduction of the risks of antibiotic resistance in veterinary medicine, pp.2012-2016, 2016.

J. F. Degner, J. C. Marioni, A. A. Pai, J. K. Pickrell, E. Nkadori et al., Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data, Bioinformatics, vol.297, issue.24, pp.3207-3212, 2009.
DOI : 10.1126/science.1072545

E. Delanoue, A. C. Dockès, and A. Chouteau, Une étude auprès de, 2000.

M. S. Denyer, T. E. Wileman, C. M. Stirling, B. Zuber, and H. Takamatsu, Perforin expression can define CD8 positive lymphocyte subsets in pigs allowing phenotypic and functional analysis of Natural Killer, Cytotoxic T, Natural Killer T and MHC un-restricted cytotoxic T-cells, Veterinary Immunology and Immunopathology, vol.110, issue.3-4, pp.279-292, 2006.
DOI : 10.1016/j.vetimm.2005.10.005

B. Deveale, D. Van-der-kooy, and T. Babak, Critical Evaluation of Imprinted Gene Expression by RNA???Seq: A New Perspective, PLoS Genetics, vol.373, issue.3, 2012.
DOI : 10.1371/journal.pgen.1002600.s008

A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski et al., STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.28, issue.1, pp.15-21, 2013.
DOI : 10.1093/bioinformatics/btr712

D. Duffy, V. Rouilly, V. Libri, M. Hasan, B. Beitz et al., Functional Analysis via Standardized Whole-Blood Stimulation Systems Defines the Boundaries of a Healthy Immune Response to Complex Stimuli, Immunity, vol.40, issue.3, pp.436-450, 2014.
DOI : 10.1016/j.immuni.2014.03.002

URL : https://hal.archives-ouvertes.fr/pasteur-01384537

I. Edfors-lilja, E. Wattrang, L. Marklund, M. Moller, L. Andersson-eklund et al., Mapping quantitative trait loci for immune capacity in the pig, J. Immunol. Baltim. Md, pp.161-829, 1950.

V. Emilsson, G. Thorleifsson, B. Zhang, A. S. Leonardson, F. Zink et al., Genetics of gene expression and its effect on disease, Nature, vol.138, issue.7186, pp.423-428, 2008.
DOI : 10.1172/JCI20514

C. W. Ernst and J. P. Steibel, Molecular advances in QTL discovery and application in pig breeding, Trends in Genetics, vol.29, issue.4, pp.215-224, 2013.
DOI : 10.1016/j.tig.2013.02.002

B. P. Fairfax, P. Humburg, S. Makino, V. Naranbhai, D. Wong et al., Innate Immune Activity Conditions the Effect of Regulatory Variants upon Monocyte Gene Expression, Science, vol.3, issue.1, 2014.
DOI : 10.1186/gm217

H. Fan and P. S. Hegde, The Transcriptome in Blood: Challenges and Solutions for Robust Expression Profiling, Current Molecular Medicine, vol.5, issue.1, pp.3-10, 2005.
DOI : 10.2174/1566524053152861

X. Fang, Y. Mou, Z. Huang, Y. Li, L. Han et al., The sequence and analysis of a Chinese pig genome, GigaScience, vol.30, issue.Unit 4, p.16, 2012.
DOI : 10.1093/nar/gkf419

R. S. Fehrmann, R. C. Jansen, J. H. Veldink, H. Westra, D. Arends et al., Trans-eQTLs Reveal That Independent Genetic Variants Associated with a Complex Phenotype Converge on Intermediate Genes, with a Major Role for the HLA, PLoS Genetics, vol.5, issue.133, 2011.
DOI : 10.1371/journal.pgen.1002197.s020

L. Flori, Y. Gao, D. Laloë, G. Lemonnier, J. Leplat et al., Immunity Traits in Pigs: Substantial Genetic Variation and Limited Covariation, PLoS ONE, vol.5, issue.Suppl 1, 2011.
DOI : 10.1371/journal.pone.0022717.s003

URL : https://hal.archives-ouvertes.fr/hal-01000161

T. C. Freeman, A. Ivens, J. K. Baillie, D. Beraldi, M. W. Barnett et al., A gene expression atlas of the domestic pig, BMC Biology, vol.10, issue.1, p.90, 2012.
DOI : 10.1074/mcp.M500279-MCP200

J. Fujii, K. Otsu, F. Zorzato, S. De-leon, V. K. Khanna et al., Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia, Science, vol.253, issue.5018, pp.448-451, 1991.
DOI : 10.1126/science.1862346

Y. Gao, L. Flori, J. Lecardonnel, D. Esquerré, Z. Hu et al., Transcriptome analysis of porcine PBMCs after in vitro stimulation by LPS or PMA/ionomycin using an expression array targeting the pig immune response, BMC Genomics, vol.11, issue.1, 2010.
DOI : 10.1186/1471-2164-11-292

URL : https://hal.archives-ouvertes.fr/hal-01193696

Y. Gilad, S. A. Rifkin, and J. K. Pritchard, Revealing the architecture of gene regulation: the promise of eQTL studies, Trends in Genetics, vol.24, issue.8, pp.408-415, 2008.
DOI : 10.1016/j.tig.2008.06.001

M. E. Goddard, H. , and B. J. , Mapping genes for complex traits in domestic animals and their use in breeding programmes, Nature Reviews Genetics, vol.39, issue.6, pp.381-391, 2009.
DOI : 10.1186/1297-9686-37-S1-S11

H. H. Göring, J. E. Curran, M. P. Johnson, T. D. Dyer, J. Charlesworth et al., Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes, Nature Genetics, vol.11, issue.10, pp.1208-1216, 2007.
DOI : 10.1128/MCB.11.4.1883

P. Gourbeyre, M. Berri, Y. Lippi, F. Meurens, S. Vincent-naulleau et al., Pattern recognition receptors in the gut: analysis of their expression along the intestinal tract and the crypt/villus axis, Physiological Reports, vol.22, issue.2, 2015.
DOI : 10.1016/S0165-2427(02)00228-3

URL : https://hal.archives-ouvertes.fr/hal-01194058

M. A. Groenen, A. L. Archibald, H. Uenishi, C. K. Tuggle, Y. Takeuchi et al., Analyses of pig genomes provide insight into porcine demography and evolution, Nature, vol.475, issue.7424, pp.393-398, 2012.
DOI : 10.1038/nature10231

URL : https://hal.archives-ouvertes.fr/cea-00880676

E. Groeneveld, M. Kovac, and N. Mielenz, VCE User's Guide and Reference Manual Version 6, 2010.

J. K. Grubbs, J. C. Dekkers, E. Huff-lonergan, C. K. Tuggle, and S. M. Lonergan, Identification of potential serum biomarkers to predict feed efficiency in young pigs1, Journal of Animal Science, vol.10, issue.9, pp.1482-1492, 2016.
DOI : 10.1038/nsb943

G. Consortium, The Genotype-Tissue Expression (GTEx) project, Nat. Genet, vol.45, pp.580-585, 2013.

G. Consortium, The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans, Science, vol.55, issue.4, pp.648-660, 2015.
DOI : 10.1016/j.biopsych.2003.10.013

N. Nci, N. /. Nhgri, N. /. Nimh, and N. /. Nida, Data Analysis &Coordinating Center (LDACC)?Analysis Working Group, Statistical Methods groups?Analysis Working Group, Enhancing GTEx (eGTEx) groups, NIH Common Fund, 2017.

C. T. Harvey, G. A. Moyerbrailean, G. O. Davis, X. Wen, F. Luca et al., QuASAR: quantitative allele-specific analysis of reads, Bioinformatics, vol.28, issue.8, pp.1235-1242, 2015.
DOI : 10.1038/nbt.1621

M. Hasan, B. Beitz, V. Rouilly, V. Libri, A. Urrutia et al., Semi-automated and standardized cytometric procedures for multi-panel and multi-parametric whole blood immunophenotyping, Clinical Immunology, vol.157, issue.2, pp.261-276, 2015.
DOI : 10.1016/j.clim.2014.12.008

URL : https://hal.archives-ouvertes.fr/pasteur-01380961

K. Haverson, M. Bailey, C. R. Stokes, A. Simon, L. Leflufy et al., Monoclonal antibodies raised to human cells ??? specificity for pig leukocytes, Veterinary Immunology and Immunopathology, vol.80, issue.1-2, pp.175-186, 2001.
DOI : 10.1016/S0165-2427(01)00285-9

B. Hayes, Overview of Statistical Methods for Genome-Wide Association Studies (GWAS), Methods Mol. Biol. Clifton NJ, vol.1019, pp.149-169, 2013.
DOI : 10.1007/978-1-62703-447-0_6

B. J. Hayes, H. A. Lewin, and M. E. Goddard, The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation, Trends in Genetics, vol.29, issue.4, pp.206-214, 2013.
DOI : 10.1016/j.tig.2012.11.009

Y. He, B. Vogelstein, V. E. Velculescu, N. Papadopoulos, and K. W. Kinzler, The Antisense Transcriptomes of Human Cells, Science, vol.14, issue.2, pp.1855-1857, 2008.
DOI : 10.1038/nsmb0207-103

I. and I. Du-porc, Bilan d'activité, 2016.

R. C. Jansen and J. P. Nap, Genetical genomics: the added value from segregation, Trends in Genetics, vol.17, issue.7, pp.388-391, 2001.
DOI : 10.1016/S0168-9525(01)02310-1

R. Joehanes, X. Zhang, T. Huan, C. Yao, S. Ying et al., Integrated genome-wide analysis of expression quantitative trait loci aids interpretation of genomic association studies, Genome Biology, vol.39, issue.Suppl 1, p.16, 2017.
DOI : 10.1038/ng2142

H. Kadowaki, E. Suzuki, C. Kojima-shibata, K. Suzuki, T. Okamura et al., Selection for resistance to swine mycoplasmal pneumonia over 5 generations in Landrace pigs, Livestock Science, vol.147, issue.1-3, pp.20-26, 2012.
DOI : 10.1016/j.livsci.2012.03.014

S. Katayama, Y. Tomaru, T. Kasukawa, K. Waki, M. Nakanishi et al., Antisense transcription in the mammalian transcriptome, Science, vol.309, pp.1564-1566, 2005.

S. A. Kelly, D. L. Nehrenberg, K. Hua, T. Garland, and D. Pomp, Quantitative genomics of voluntary exercise in mice: transcriptional analysis and mapping of expression QTL in muscle, Physiological Genomics, vol.119, issue.16, pp.593-601, 2014.
DOI : 10.1534/genetics.110.116087

C. Kendziorski, W. , and P. , A review of statistical methods for expression quantitative trait loci mapping, Mammalian Genome, vol.105, issue.5, pp.509-517, 2006.
DOI : 10.1080/15427951.2005.10129111

K. R. Kukurba, M. , and S. B. , RNA Sequencing and Analysis, Cold Spring Harbor Protocols, vol.2015, issue.11, pp.951-969, 2015.
DOI : 10.1101/pdb.top084970

N. M. Laird and C. Lange, Family-based designs in the age of large-scale gene-association studies, Nature Reviews Genetics, vol.149, issue.Suppl. 1, pp.385-394, 2006.
DOI : 10.1093/oxfordjournals.aje.a009877

S. Lagarrigue, L. Martin, F. Hormozdiari, P. Roux, C. Pan et al., -eQTL Identified Using Genetic Linkage, Genetics, vol.195, issue.3, pp.195-1157, 2013.
DOI : 10.1534/genetics.113.153882

H. Landmark-høyvik, V. Dumeaux, D. Nebdal, E. Lund, J. Tost et al., Genome-wide association study in breast cancer survivors reveals SNPs associated with gene expression of genes belonging to MHC class I and II, Genomics, vol.102, issue.4, pp.278-287, 2013.
DOI : 10.1016/j.ygeno.2013.07.006

T. Lappalainen, M. Sammeth, M. R. Friedländer, P. A. Hoen, J. Monlong et al., Transcriptome and genome sequencing uncovers functional variation in humans, Nature, vol.447, issue.7468, pp.506-511, 2013.
DOI : 10.1371/journal.pcbi.1000770

N. B. Larson, S. Mcdonnell, A. J. French, Z. Fogarty, J. Cheville et al., Comprehensively Evaluating cis-Regulatory Variation in the Human Prostate Transcriptome by Using Gene-Level Allele-Specific Expression, The American Journal of Human Genetics, vol.96, issue.6, pp.869-882, 2015.
DOI : 10.1016/j.ajhg.2015.04.015

L. Cao, K. Martin, P. G. Robert-granié, C. Besse, and P. , Sparse canonical methods for biological data integration: application to a cross-platform study, BMC Bioinformatics, vol.10, issue.1, p.34, 2009.
DOI : 10.1186/1471-2105-10-34

URL : https://hal.archives-ouvertes.fr/hal-00323818

C. Liew, J. Ma, H. Tang, R. Zheng, and A. A. Dempsey, The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool, Journal of Laboratory and Clinical Medicine, vol.147, issue.3, pp.126-132, 2006.
DOI : 10.1016/j.lab.2005.10.005

H. Liu, Y. T. Nguyen, D. Nettleton, J. C. Dekkers, and C. K. Tuggle, Post-weaning blood transcriptomic differences between Yorkshire pigs divergently selected for residual feed intake, BMC Genomics, vol.37, issue.3, 2016.
DOI : 10.1079/BJN19770039

H. Liu, T. P. Smith, D. J. Nonneman, J. C. Dekkers, and C. K. Tuggle, A high-quality annotated transcriptome of swine peripheral blood, BMC Genomics, vol.10, issue.5, p.479, 2017.
DOI : 10.1186/1471-2105-10-421

J. K. Lunney, Advances in Swine Biomedical Model Genomics, International Journal of Biological Sciences, vol.3, pp.179-184, 2007.
DOI : 10.7150/ijbs.3.179

D. G. Macarthur, S. Balasubramanian, A. Frankish, N. Huang, J. Morris et al., A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes, Science, vol.30, issue.7, pp.823-828, 2012.
DOI : 10.1002/humu.21040

N. Mach, Y. Gao, G. Lemonnier, J. Lecardonnel, I. P. Oswald et al., The peripheral blood transcriptome reflects variations in immunity traits in swine: towards the identification of biomarkers, BMC Genomics, vol.14, issue.1, 2013.
DOI : 10.1148/radiol.2291010898

URL : https://hal.archives-ouvertes.fr/hal-01019583

N. Mach, M. Berri, J. Estellé, F. Levenez, G. Lemonnier et al., Early-life establishment of the swine gut microbiome and impact on host phenotypes, Environmental Microbiology Reports, vol.17, issue.3, pp.554-569, 2015.
DOI : 10.22358/jafs/66470/2008

URL : https://hal.archives-ouvertes.fr/hal-01168456

T. F. Mackay, Epistasis and quantitative traits: using model organisms to study gene???gene interactions, Nature Reviews Genetics, vol.155, issue.1, pp.22-33, 2014.
DOI : 10.1186/gb-2007-8-10-r231

T. F. Mackay, E. A. Stone, and J. F. Ayroles, The genetics of quantitative traits: challenges and prospects, Nature Reviews Genetics, vol.97, issue.8, pp.565-577, 2009.
DOI : 10.1038/nmeth1084

K. H. Mair, C. Sedlak, T. Käser, A. Pasternak, B. Levast et al., The porcine innate immune system: An update, Developmental & Comparative Immunology, vol.45, issue.2, pp.321-343, 2014.
DOI : 10.1016/j.dci.2014.03.022

P. Maisonnasse, E. Bouguyon, G. Piton, A. Ezquerra, C. Urien et al., The respiratory DC/macrophage network at steady-state and upon influenza infection in the swine biomedical model, Mucosal Immunology, vol.45, issue.4, pp.835-849, 2016.
DOI : 10.1016/j.vetimm.2011.08.002

B. A. Mallard and B. N. Wilkie, Phenotypic, genetic and epigenetic variation of immune response and disease resistance traits of pigs, Adv. Pork Prod. Proc. Banff Pork Semin, 2007.

B. A. Mallard, B. N. Wilkie, B. W. Kennedy, Q. , and M. , Use of estimated breeding values in a selection index to breed Yorkshire pigs for high and low immune and innate resistance factors, Animal Biotechnology, vol.10, issue.2, pp.257-280, 1992.
DOI : 10.1016/0165-2427(87)90160-7

B. A. Mallard, M. Emam, M. Paibomesai, K. Thompson-crispi, and L. Wagter-lesperance, Genetic selection of cattle for improved immunity and health, Jpn. J. Vet. Res, vol.63, pp.37-44, 2015.

L. A. Marraffini, CRISPR-Cas immunity in prokaryotes, Nature, vol.232, issue.7571, pp.55-61, 2015.
DOI : 10.1016/S0378-1097(04)00041-2

J. S. Mattick, Non-coding RNAs: the architects of eukaryotic complexity, EMBO reports, vol.62, issue.11, pp.986-991, 2001.
DOI : 10.1146/annurev.physiol.62.1.439

J. S. Mattick and I. V. Makunin, Non-coding RNA, Human Molecular Genetics, vol.15, issue.suppl_1, pp.17-29, 2006.
DOI : 10.1126/science.1117389

D. Mehta, K. Heim, C. Herder, M. Carstensen, G. Eckstein et al., Impact of common regulatory single-nucleotide variants on gene expression profiles in whole blood, European Journal of Human Genetics, vol.21, issue.1, pp.48-54, 2013.
DOI : 10.1016/j.lab.2005.10.005

A. Menke, M. Rex-haffner, T. Klengel, E. B. Binder, and D. Mehta, Peripheral blood gene expression: it all boils down to the RNA collection tubes, BMC Research Notes, vol.5, issue.1, 2012.
DOI : 10.1186/1756-0500-5-1

T. R. Mercer, M. E. Dinger, and J. S. Mattick, Long non-coding RNAs: insights into functions, Nature Reviews Genetics, vol.72, issue.3, pp.155-159, 2009.
DOI : 10.1093/oxfordjournals.molbev.a003951

F. Meurens, A. Summerfield, H. Nauwynck, L. Saif, and V. Gerdts, The pig: a model for human infectious diseases, Trends in Microbiology, vol.20, issue.1, pp.50-57, 2012.
DOI : 10.1016/j.tim.2011.11.002

T. H. Meuwissen and M. E. Goddard, Prediction of identity by descent probabilities from marker-haplotypes, Genetics Selection Evolution, vol.33, issue.6, pp.605-634, 2001.
DOI : 10.1186/1297-9686-33-6-605

URL : https://hal.archives-ouvertes.fr/hal-00894392

J. D. Mills, Y. Kawahara, and M. Janitz, Strand-Specific RNA-Seq Provides Greater Resolution of Transcriptome Profiling, Current Genomics, vol.14, issue.3, pp.173-181, 2013.
DOI : 10.2174/1389202911314030003

J. L. Min, J. M. Taylor, J. B. Richards, T. Watts, F. H. Pettersson et al., The Use of Genome-Wide eQTL Associations in Lymphoblastoid Cell Lines to Identify Novel Genetic Pathways Involved in Complex Traits, PLoS ONE, vol.5, issue.7, 2011.
DOI : 10.1371/journal.pone.0022070.s009

S. Mohr and C. Liew, The peripheral-blood transcriptome: new insights into disease and risk assessment, Trends in Molecular Medicine, vol.13, issue.10, pp.422-432, 2007.
DOI : 10.1016/j.molmed.2007.08.003

G. A. Moyerbrailean, A. L. Richards, D. Kurtz, C. A. Kalita, G. O. Davis et al., High-throughput allele-specific expression across 250 environmental conditions, Genome Research, vol.26, issue.12, pp.1627-1638, 2016.
DOI : 10.1101/gr.209759.116

URL : http://genome.cshlp.org/content/26/12/1627.full.pdf

Y. Nédélec, J. Sanz, G. Baharian, Z. A. Szpiech, A. Pacis et al., Genetic Ancestry and Natural Selection Drive Population Differences in Immune Responses to Pathogens, Cell, vol.167, issue.3, pp.657-669, 2016.
DOI : 10.1016/j.cell.2016.09.025

A. Neumaier and E. Groeneveld, Restricted maximum likelihood estimation of covariances in sparse linear models, Genetics Selection Evolution, vol.30, issue.1, pp.3-26, 1998.
DOI : 10.1186/1297-9686-30-1-3

URL : https://hal.archives-ouvertes.fr/hal-00894192

V. Orrù, M. Steri, G. Sole, C. Sidore, F. Virdis et al., Genetic Variants Regulating Immune Cell Levels in Health and Disease, Cell, vol.155, issue.1, pp.242-256, 2013.
DOI : 10.1016/j.cell.2013.08.041

A. A. Pai, J. K. Pritchard, and Y. Gilad, The Genetic and Mechanistic Basis for Variation in Gene Regulation, PLoS Genetics, vol.103, issue.1, 2015.
DOI : 10.1371/journal.pgen.1004857.g003

C. Palmer, M. Diehn, A. A. Alizadeh, and P. O. Brown, Cell-type specific gene expression profiles of leukocytes in human peripheral blood, BMC Genomics, vol.7, issue.1, p.115, 2006.
DOI : 10.1186/1471-2164-7-115

T. Pastinen, Genome-wide allele-specific analysis: insights into regulatory variation, Nature Reviews Genetics, vol.358, issue.8, pp.533-538, 2010.
DOI : 10.1007/978-1-59745-538-1_13

G. Pawelec, R. Solana, E. Remarque, and . Mariani, Impact of aging on innate immunity, Journal of Leukocyte Biology, vol.64, issue.6, pp.703-715, 1998.
DOI : 10.1002/jlb.64.6.703

E. Petretto, J. Mangion, N. J. Dickens, S. A. Cook, M. K. Kumaran et al., Heritability and Tissue Specificity of Expression Quantitative Trait Loci, PLoS Genetics, vol.11, issue.10, p.172, 2006.
DOI : 10.1371/journal.pgen.0020172.st001

F. Phocas, C. Belloc, J. Bidanel, L. Delaby, J. Y. Dourmad et al., Review: Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes: I-selection goals and criteria, animal, vol.33, issue.11, 2016.
DOI : 10.3168/jds.S0022-0302(04)73390-1

URL : https://hal.archives-ouvertes.fr/hal-01533895

B. L. Pierce, L. Tong, L. S. Chen, R. Rahaman, M. Argos et al., Mediation analysis demonstrates that trans-eQTLs are often explained by cismediation: a genome-wide analysis among 1,800 South Asians, PLoS Genet, vol.10, 2014.

H. Quach, M. Rotival, J. Pothlichet, Y. E. Loh, M. Dannemann et al., Genetic Adaptation and Neandertal Admixture Shaped the Immune System of Human Populations, Cell, vol.167, issue.3, pp.643-656, 2016.
DOI : 10.1016/j.cell.2016.09.024

URL : https://hal.archives-ouvertes.fr/pasteur-01385620

Y. Ramayo-caldas, N. Mach, P. Lepage, F. Levenez, C. Denis et al., Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits, The ISME Journal, vol.123, issue.12, pp.2973-2977, 2016.
DOI : 10.1093/bioinformatics/btn482

A. M. Ramos, R. P. Crooijmans, N. A. Affara, A. J. Amaral, A. L. Archibald et al., Design of a High Density SNP Genotyping Assay in the Pig Using SNPs Identified and Characterized by Next Generation Sequencing Technology, PLoS ONE, vol.10, issue.5715, p.6524, 2009.
DOI : 10.1371/journal.pone.0006524.s002

G. Reiner, J. Eckert, T. Peischl, S. Bochert, T. Jäkel et al., Variation in clinical and parasitological traits in Pietrain and Meishan pigs infected with Sarcocystis miescheriana, Veterinary Parasitology, vol.106, issue.2, pp.99-113, 2002.
DOI : 10.1016/S0304-4017(02)00041-9

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Research, vol.15, issue.7, p.47, 2015.
DOI : 10.1186/s13059-014-0465-4

M. V. Rockman and L. Kruglyak, Genetics of global gene expression, Nature Reviews Genetics, vol.28, issue.53, pp.862-872, 2006.
DOI : 10.1038/nature02698

H. Rothkötter, Anatomical particularities of the porcine immune system???A physician's view, Developmental & Comparative Immunology, vol.33, issue.3, 2009.
DOI : 10.1016/j.dci.2008.06.016

M. Rotival, T. Zeller, P. S. Wild, S. Maouche, S. Szymczak et al., Integrating Genome-Wide Genetic Variations and Monocyte Expression Data Reveals Trans-Regulated Gene Modules in Humans, PLoS Genetics, vol.23, issue.12, 2011.
DOI : 10.1371/journal.pgen.1002367.s014

URL : https://hal.archives-ouvertes.fr/inserm-00711658

S. Henri, ;. Bull, and . Acad, Vet France ? 2011 Tome 164 n°3 http://www.academie-veterianiredefrance .org/ Transmission of maternal immunity in pigs and ruminants after birth, 2011.

M. Sanchez, T. Tribout, N. Iannuccelli, M. Bouffaud, B. Servin et al., A genome-wide association study of production traits in a commercial population of Large White pigs: evidence of haplotypes affecting meat quality, Genetics Selection Evolution, vol.46, issue.1, 2014.
DOI : 10.1017/S0016672307008701

URL : https://hal.archives-ouvertes.fr/hal-01193779

D. Sasayama, H. Hori, S. Nakamura, R. Miyata, T. Teraishi et al., Identification of Single Nucleotide Polymorphisms Regulating Peripheral Blood mRNA Expression with Genome-Wide Significance: An eQTL Study in the Japanese Population, PLoS ONE, vol.6, issue.1, p.54967, 2013.
DOI : 10.1371/journal.pone.0054967.s004

R. V. Satya, N. Zavaljevski, and J. And-reifman, A new strategy to reduce allelic bias in RNA-Seq readmapping, Nucleic Acids Research, vol.25, issue.16, p.127, 2012.
DOI : 10.1093/bioinformatics/btp352

E. E. Schadt, S. A. Monks, T. A. Drake, A. J. Lusis, N. Che et al., Genetics of gene expression surveyed in maize, mouse and man, Nature, vol.143, issue.6929, pp.297-302, 2003.
DOI : 10.1016/S0092-8674(00)00015-5

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray, Science, vol.270, issue.5235, pp.467-470, 1995.
DOI : 10.1126/science.270.5235.467

D. T. Schomberg, A. Tellez, J. J. Meudt, D. A. Brady, K. N. Dillon et al., Miniature Swine for Preclinical Modeling of Complexities of Human Disease for Translational Scientific Discovery and Accelerated Development of Therapies and Medical Devices, Toxicologic Pathology, vol.70, issue.510149, pp.299-314, 2016.
DOI : 10.1093/gbe/evu113

K. Schramm, C. Marzi, C. Schurmann, M. Carstensen, E. Reinmaa et al., Mapping the Genetic Architecture of Gene Regulation in Whole Blood, PLoS ONE, vol.7, issue.4, p.93844, 2014.
DOI : 10.1371/journal.pone.0093844.s006

M. Schroyen and C. K. Tuggle, Current transcriptomics in pig immunity research, Mammalian Genome, vol.14, issue.Suppl 3, pp.1-20, 2015.
DOI : 10.3390/ijms140510626

N. J. Schurch, P. Schofield, M. Gierli?ski, C. Cole, A. Sherstnev et al., How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA N, pp.839-851, 2016.

D. Serre, S. Gurd, B. Ge, R. Sladek, D. Sinnett et al., Differential allelic expression in the human genome: a robust approach to identify genetic and epigenetic cis-acting mechanisms regulating gene expression, PLoS Genet, vol.4, 2008.

F. Seyednasrollah, A. Laiho, and L. L. Elo, Comparison of software packages for detecting differential expression in RNA-seq studies, Briefings in Bioinformatics, vol.10, issue.5, pp.59-70, 2015.
DOI : 10.1093/bib/bbp033

H. Shen and J. Z. Huang, Sparse principal component analysis via regularized low rank matrix approximation, Journal of Multivariate Analysis, vol.99, issue.6, pp.1015-1034, 2008.
DOI : 10.1016/j.jmva.2007.06.007

S. T. Sherry, M. Ward, M. Kholodov, J. Baker, L. Phan et al., dbSNP: the NCBI database of genetic variation, Nucleic Acids Research, vol.29, issue.1, pp.308-311, 2001.
DOI : 10.1093/nar/29.1.308

T. Shimazu, L. Borjigin, Y. Katayama, M. Li, T. Satoh et al., Genetic selection for resistance to mycoplasmal pneumonia of swine (MPS) in the Landrace line influences the expression of soluble factors in blood after MPS vaccine sensitization, Animal Science Journal, vol.72, issue.4, pp.365-373, 2014.
DOI : 10.1016/S0165-2427(99)00136-1

H. Shin, C. P. Shannon, N. Fishbane, J. Ruan, M. Zhou et al., Variation in RNA-Seq Transcriptome Profiles of Peripheral Whole Blood from Healthy Individuals with and without Globin Depletion, PLoS ONE, vol.11, issue.3, 2014.
DOI : 10.1371/journal.pone.0091041.s004

M. A. Siemelink and T. Zeller, Biomarkers of Coronary Artery Disease: The Promise of the Transcriptome, Current Cardiology Reports, vol.34, issue.36, p.513, 2014.
DOI : 10.1093/eurheartj/eht392

M. Siwek, A. Slawinska, M. Rydzanicz, J. Wesoly, M. Fraszczak et al., Identification of candidate genes and mutations in QTL regions for immune responses in chicken, Animal Genetics, vol.10, issue.3, 2015.
DOI : 10.2202/1544-6115.1730

D. A. Skelly, J. Ronald, and J. M. Akey, Inherited Variation in Gene Expression, Annual Review of Genomics and Human Genetics, vol.10, issue.1, pp.313-332, 2009.
DOI : 10.1146/annurev-genom-082908-150121

R. M. Smith, A. Webb, A. C. Papp, L. C. Newman, S. K. Handelman et al., Whole transcriptome RNA-Seq allelic expression in human brain, BMC Genomics, vol.14, issue.1, p.571, 2013.
DOI : 10.1093/nar/gkq603

G. Stefani and F. J. Slack, Small non-coding RNAs in animal development, Nature Reviews Molecular Cell Biology, vol.3, issue.3, pp.219-230, 2008.
DOI : 10.1128/MCB.17.3.1490

K. Strimbu and J. A. Tavel, What are biomarkers?, Current Opinion in HIV and AIDS, vol.5, issue.6, pp.463-466, 2010.
DOI : 10.1097/COH.0b013e32833ed177

W. Tan, D. Carlson, C. Lancto, J. Garbe, D. Webster et al., Efficient nonmeiotic allele introgression in livestock using custom endonucleases, Proceedings of the National Academy of Sciences, vol.39, issue.12, pp.16526-16557, 2013.
DOI : 10.1093/nar/gkr218

S. Thomas, V. Rouilly, E. Patin, C. Alanio, A. Dubois et al., The Milieu Int??rieur study ??? An integrative approach for study of human immunological variance, Clinical Immunology, vol.157, issue.2, pp.277-293, 2015.
DOI : 10.1016/j.clim.2014.12.004

C. Trapnell, L. Pachter, and S. L. Salzberg, TopHat: discovering splice junctions with RNA-Seq, Bioinformatics, vol.18, issue.9, pp.1105-1111, 2009.
DOI : 10.1101/gr.074492.107

URL : https://academic.oup.com/bioinformatics/article-pdf/25/9/1105/16892242/btp120.pdf

T. Tribout, C. Larzul, and F. Phocas, Efficiency of genomic selection in a purebred pig male line, Journal of Animal Science, vol.43, issue.12, 2012.
DOI : 10.1186/1297-9686-43-23

URL : https://hal.archives-ouvertes.fr/hal-01001279

T. Tribout, C. Larzul, and F. Phocas, Economic aspects of implementing genomic evaluations in a pig sire line breeding scheme, Genetics Selection Evolution, vol.45, issue.1, p.40, 2013.
DOI : 10.1186/1297-9686-42-2

A. Urrutia, D. Duffy, V. Rouilly, C. Posseme, R. Djebali et al., Standardized Whole-Blood Transcriptional Profiling Enables the Deconvolution of Complex Induced Immune Responses, Cell Reports, vol.16, issue.10, pp.2777-2791, 2016.
DOI : 10.1016/j.celrep.2016.08.011

URL : https://hal.archives-ouvertes.fr/pasteur-01367555

G. A. Van-der-auwera, M. O. Carneiro, C. Hartl, R. Poplin, D. Angel et al., From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline, Curr. Protoc. Bioinforma, vol.29, pp.111-144, 2013.
DOI : 10.1093/nar/29.1.308

A. H. Visscher, L. L. Janss, T. A. Niewold, and K. H. De-greef, Disease incidence and immunological traits for the selection of healthy pigs A review, Veterinary Quarterly, vol.70, issue.1, pp.29-34, 2002.
DOI : 10.1016/S0165-2427(99)00136-1

X. Wang, H. Tang, M. Teng, Z. Li, J. Li et al., Mapping of hepatic expression quantitative trait loci (eQTLs) in a Han Chinese population, Journal of Medical Genetics, vol.21, issue.(Suppl 2), pp.319-326, 2014.
DOI : 10.1002/jbt.20179

Z. Wang, M. Gerstein, and M. Snyder, RNA-Seq: a revolutionary tool for transcriptomics, Nature Reviews Genetics, vol.328, issue.1, pp.57-63, 2009.
DOI : 10.1038/nrg2484

N. S. Watson-haigh, H. N. Kadarmideen, and A. Reverter, PCIT: an R package for weighted gene co-expression networks based on partial correlation and information theory approaches, Bioinformatics, vol.24, issue.21, pp.411-413, 2010.
DOI : 10.1093/bioinformatics/btn482

A. R. Whitney, M. Diehn, S. J. Popper, A. A. Alizadeh, J. C. Boldrick et al., Individuality and variation in gene expression patterns in human blood, Proceedings of the National Academy of Sciences, vol.18, issue.2, pp.1896-1901, 2003.
DOI : 10.1038/ng0298-91

B. Wilkie and B. Mallard, Selection for high immune response: an alternative approach to animal health maintenance?, Veterinary Immunology and Immunopathology, vol.72, issue.1-2, pp.231-235, 1999.
DOI : 10.1016/S0165-2427(99)00136-1

R. B. Williams, E. K. Chan, M. J. Cowley, and P. F. Little, The influence of genetic variation on gene expression, Genome Research, vol.17, issue.12, pp.1707-1716, 2007.
DOI : 10.1101/gr.6981507

K. Wimmers, E. Murani, K. Schellander, and S. Ponsuksili, QTL for traits related to humoral immune response estimated from data of a porcine F2 resource population, International Journal of Immunogenetics, vol.62, issue.3, pp.141-151, 2009.
DOI : 10.3382/ps.0620565

D. L. Wood, K. Nones, A. Steptoe, A. Christ, I. Harliwong et al., Recommendations for Accurate Resolution of Gene and Isoform Allele-Specific Expression in RNA-Seq Data, PLOS ONE, vol.14, issue.80-, 2015.
DOI : 10.1371/journal.pone.0126911.s027

T. Würschum, Mapping QTL for agronomic traits in breeding populations, TAG Theor. Appl. Genet, 2012.

W. Xia, X. Zhu, and X. Mo, Integrative multi-omics analysis revealed SNP-lncRNA-mRNA (SLM) networks in human peripheral blood mononuclear cells, Human Genetics, vol.7, issue.4, pp.451-00439, 2017.
DOI : 10.1186/1471-2105-7-166

L. Xiao, J. Estellé, P. Kiilerich, Y. Ramayo-caldas, Z. Xia et al., A reference gene catalogue of the pig gut microbiome, Nature Microbiology, vol.1, 2016.
DOI : 10.1093/nar/gkr313

URL : https://hal.archives-ouvertes.fr/hal-01607746

Y. Yang, Z. Tang, X. Fan, K. Xu, Y. Mu et al., Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle, Scientific Reports, vol.6, issue.1, p.29039, 2016.
DOI : 10.1371/journal.pone.0021800

X. Zhao and G. Qin, Identifying Biomarkers with Differential Analysis Prognosis and Treatment of Complex Diseases, In Bioinformatics for Diagnosis, pp.17-31, 2013.

F. Zou, H. S. Chai, C. S. Younkin, M. Allen, J. Crook et al., Brain Expression Genome-Wide Association Study (eGWAS) Identifies Human Disease-Associated Variants, PLoS Genetics, vol.26, issue.6, 2012.
DOI : 10.1371/journal.pgen.1002707.s010

J. Rogel-gaillard, I. Estellé, M. Maroilley, G. Ballester, M. Lemonnier et al., An eGWAS ananlysis of the porcine whole blood transcriptome Etude de la capacité immunitaire chez le porc Large White : recherche de marqueurs génétiques liés à l'expression des gènes dans le sang, Estellé Journées de la Recherche Porcine 2016, 2015.

J. Rogel-gaillard and I. Estellé, RNA-Seq analysis of gut-associated lymphoid tissue in pigs revealed few differences in transcription profiles of ileal and jejunal Peyer's patches, 2017.

Y. Mercat, P. Billon, C. Lepage, J. Gaillard, and . Estellé, Allele specific expression analysis of the porcine blood transcriptome reveals extensive cis-regulation in immunity-related genes, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01532670

. Etude-de-la-capacité-immunitaire-chez-le-porc-large and . White, recherche de marqueurs génétiques liés à l'expression des gènes dans le sang

T. Maroilley, G. Lemonnier, J. Lecardonnel, D. Esquerré, Y. Ramayo-caldas et al., Deciphering the genetic regulation of peripheral blood transcriptome in pigs through expression genome-wide association study and allele-specific expression analysis, BMC Genomics, vol.15, issue.1, 2017.
DOI : 10.1186/1471-2105-15-293

T. Maroilley, M. Berrri, C. Chevaleyre, S. Mélo, F. Meurens et al., Immunome differences between porcine ileal and jejunal Peyer's patches revealed by global transcriptome sequencing of gut-associated lymphoid tissues, Mercat, C. Rogel-Gaillard and J. Estellé