I. 1. Materials and .. , 45 II.2. Techniques for precursor preparation 45 II.2.1. Vacuum arc-melting (VAM) furnace, 46 II.2.2. Cold-crucible vacuum induction melting (CCVIM), p.49

.. Brunauer and T. Emmet, 50 II.3.1. Microstructural, elemental and thermal analysis 50 II.3.1.a. Scanning electron microscopy (SEM) 50 II.3.1.b. Transmission electron microscopy (TEM), II.3. Characterization techniques, p.54

C. Iii, . Experimental, and D. Results, 63 III.1. Materials precursors, synthesis and characterization of their nanoporous counterparts 63 III.1.1. Nanoporous copper surface from the chill-zone of bulk Cu 90 (ZrHf) 10 alloy, 63 III.1.2. NPCu from initially amorphous family of Cu-Ca alloys ....................... 66 III.1.2.a. Formation and microstructural characterization of as-spun Cu

X. Ca, 66 III.1.2.b. Dealloying of amorphous Cu 100-x Ca x ribbons, p.70

.. Of-npcu, Physical gas adsorption for porosity evaluation, III.2.2, p.99

M. Nic, J. Jirat, and B. Kosata, Compendium of Chemical Terminology Gold Book, 2014.

R. Society, R. A. Engineering, and . Of, Nanoscience and Nanotechnologies: Opportunities and Uncertainties, 2004.

A. Eliseev and A. Lykashin, Functional Nanomaterials

R. Murray, Method of Producing Finely-Divided Nickel, 1926.

Y. Ding and J. Erlebacher, Nanoporous Metals with Controlled Multimodal Pore Size Distribution, Journal of the American Chemical Society, vol.125, issue.26, pp.125-7772, 2003.
DOI : 10.1021/ja035318g

J. Zhang and C. M. Li, Nanoporous Metals: Fabrication Strategies and Advanced Electrochemical Applications in Catalysis, Sensing and Energy Systems, Chem. Soc. Rev, vol.2012, issue.1021, pp.41-7016

Y. Lei, W. Cai, and G. Wilde, Highly ordered nanostructures with tunable size, shape and properties: A new way to surface nano-patterning using ultra-thin alumina masks, Progress in Materials Science, vol.52, issue.4, pp.465-539, 2007.
DOI : 10.1016/j.pmatsci.2006.07.002

Y. Xie, D. Kocaefe, C. Chen, and Y. Kocaefe, Review of Research on Template Methods in Preparation of Nanomaterials, Journal of Nanomaterials, vol.43, issue.1, pp.1-10, 2016.
DOI : 10.1021/ja974025i

S. Pylypenko, S. Mukherjee, T. S. Olson, and P. Atanassov, Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles, Electrochimica Acta, vol.53, issue.27, pp.53-7875, 2008.
DOI : 10.1016/j.electacta.2008.05.047

Z. Zhang, Y. Wang, Z. Qi, W. Zhang, and J. Qin, and Cu) through Chemical Dealloying, Frenzel, J. Generalized Fabrication of Nanoporous Metals J. Phys. Chem. C, issue.1429, pp.113-12629, 2009.

P. Geslin, I. Mccue, B. Gaskey, J. Erlebacher, and A. Karma, Topology-generating interfacial pattern formation during liquid metal dealloying, Nature Communications, vol.236, issue.1, pp.2015-8887
DOI : 10.1103/PhysRevE.71.041609

URL : http://www.nature.com/articles/ncomms9887.pdf

E. Detsi, M. Van-de-schootbrugge, S. Punzhin, P. R. Onck, and J. T. De-hosson, On tuning the morphology of nanoporous gold, Scripta Materialia, vol.64, issue.4, pp.319-322, 2011.
DOI : 10.1016/j.scriptamat.2010.10.023

E. Seker, M. L. Reed, and M. R. Begley, Nanoporous Gold: Fabrication, Characterization, and Applications, Materials, vol.24, issue.4, pp.2188-2215, 2009.
DOI : 10.1109/JPROC.2003.820542

URL : http://www.mdpi.com/1996-1944/2/4/2188/pdf

Y. Ding, Y. J. Kim, J. Erlebacher, . Nanoporous, and . Gold, Ancient Technology, Adv. Mater, issue.1821, pp.16-1897, 2004.

Y. Ding and M. Chen, Nanoporous Metals for Catalytic and Optical Applications, MRS Bulletin, vol.38, issue.08, pp.569-576, 2009.
DOI : 10.1126/science.254.5032.687

T. Wada, A. D. Setyawan, K. Yubuta, and H. Kato, Nano- to submicro-porous ??-Ti alloy prepared from dealloying in a metallic melt, Scripta Materialia, vol.65, issue.6, pp.65-532, 2011.
DOI : 10.1016/j.scriptamat.2011.06.019

R. Vajtai and . Ed, Springer Handbook of Nanomaterials, 2013.
DOI : 10.1007/978-3-642-20595-8

G. Andreasen, Kinetics of Particle Coarsening at Gold Electrode/Electrolyte Solution Interfaces Followed by In Situ Scanning Tunneling Microscopy, Journal of The Electrochemical Society, vol.143, issue.2, p.466, 1996.
DOI : 10.1149/1.1836466

E. Seebauer, Estimating surface diffusion coefficients, Progress in Surface Science, vol.49, issue.3, pp.265-330, 1995.
DOI : 10.1016/0079-6816(95)00039-2

J. Weissmüller, R. C. Newman, H. Jin, A. M. Hodge, and J. W. Kysar, Nanoporous Metals by Alloy Corrosion: Formation and Mechanical Properties, MRS Bulletin, vol.27, issue.08, pp.34-577, 2009.
DOI : 10.1017/CBO9781139878326

I. Mccue, Frontiers Of Dealloying ? Novel Processing For Advanced Materials, 2015.

J. Erlebacher, An Atomistic Description of Dealloying, Journal of The Electrochemical Society, vol.10, issue.10, pp.151-614, 2004.
DOI : 10.1149/1.1784820

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, Evolution of Nanoporosity in Dealloying, Nature, issue.6827, pp.410-450, 2001.

A. J. Forty, Corrosion micromorphology of noble metal alloys and depletion gilding, Nature, vol.282, issue.5739, pp.597-598, 1979.
DOI : 10.1038/282597a0

M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. Chan et al., Preparation, Structure, and Optical Properties of Nanoporous Gold Thin Films, Preparation, Structure, and Optical Properties of Nanoporous Gold Thin Films, pp.2414-2422, 2007.
DOI : 10.1021/la062313z

K. Sieradzki, R. R. Corderman, K. Shukla, and R. C. Newman, Computer simulations of corrosion: Selective dissolution of binary alloys, Philosophical Magazine A, vol.62, issue.4, pp.713-746, 1989.
DOI : 10.1103/PhysRevLett.47.1400

K. Sieradzki, Curvature Effects in Alloy Dissolution, Journal of The Electrochemical Society, vol.140, issue.10, pp.140-2868, 1993.
DOI : 10.1149/1.2220924

A. J. Forty and G. Rowlands, A possible model for corrosion pitting and tunneling in noble-metal alloys, Philosophical Magazine A, vol.200, issue.1, pp.171-188, 1981.
DOI : 10.1002/zaac.19312000118

J. W. Cahn, On Spinodal Decomposition, Acta Metall, vol.1961, issue.99, pp.795-801
DOI : 10.1002/9781118788295.ch11

W. Carter, R. W. Balluffi, and S. Allen, Kinetics of Materials, 36) Erlebacher, J. Mechanism of Coarsening and Bubble Formation in High-Genus Nanoporous Metals, pp.106-225504, 2005.

H. W. Pickering and C. Wagner, Electrolytic Dissolution of Binary Alloys Containing a Noble Metal, Journal of The Electrochemical Society, vol.114, issue.7, pp.114-698, 1967.
DOI : 10.1149/1.2426709

E. S. Detsi, P. H. Emmett, and E. Teller, Metallic Muscles: Enhanced Strain and Electrolyte-Free Actuation Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc, issue.2, pp.60-309, 1938.

Y. H. Tan, J. A. Davis, K. Fujikawa, N. V. Ganesh, A. V. Demchenko et al., Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy, Journal of Materials Chemistry, vol.327, issue.333, pp.22-6733
DOI : 10.1126/science.1183591

J. D. Fritz, Selective Anodic Dissolution of Cu-Au Alloys: TEM and Current Transient Study, Journal of The Electrochemical Society, vol.138, issue.11, pp.138-3209, 1991.
DOI : 10.1149/1.2085394

J. R. Hayes, .. M. Hodge, J. Biener, .. V. Hamza, and K. Sieradzki, Monolithic nanoporous copper by dealloying Mn???Cu, Journal of Materials Research, vol.24, issue.10, pp.2611-2616, 2006.
DOI : 10.1366/0003702053641559

E. Detsi, Z. Vukovi?, S. Punzhin, P. M. Bronsveld, P. R. Onck et al., Fine-tuning the feature size of nanoporous silver, CrystEngComm, vol.89, issue.17, pp.14-5402
DOI : 10.1080/14786430903025708

Q. Zhang and Z. Zhang, On the electrochemical dealloying of Al-based alloys in a NaCl aqueous solution, Phys. Chem. Chem. Phys., vol.91, issue.7, pp.1453-1472, 2010.
DOI : 10.1063/1.2773757

D. Barsuk, M. Zhang, N. T. Panagiotopoulos, A. M. Jorge, K. Georgarakis et al., Fabrication of nanoporous copper surface by leaching of chill-zone Cu???Zr???Hf alloys, Scripta Materialia, vol.104, pp.64-66, 2015.
DOI : 10.1016/j.scriptamat.2015.03.026

URL : https://hal.archives-ouvertes.fr/hal-01216771

N. T. Panagiotopoulos, A. M. Jorge, I. Rebai, and K. Georgarakis, Nanoporous titanium obtained from a spinodally decomposed Ti alloy, Microporous and Mesoporous Materials, vol.222, pp.23-26, 2016.
DOI : 10.1016/j.micromeso.2015.09.054

URL : https://hal.archives-ouvertes.fr/hal-01381845

J. Erlebacher and R. Seshadri, Hard Materials with Tunable Porosity, MRS Bulletin, vol.24, issue.08, pp.561-568, 2009.
DOI : 10.1557/S0883769400052660

F. Scaglione, A. Gebert, and L. Battezzati, Dealloying of an Au-based amorphous alloy, Intermetallics, vol.18, issue.12, pp.2338-2342, 2010.
DOI : 10.1016/j.intermet.2010.08.005

R. Li, X. Liu, H. Wang, Y. Wu, and Z. P. Lu, Bendable nanoporous copper thin films with tunable thickness and pore features, Corrosion Science, vol.104, pp.227-235, 2016.
DOI : 10.1016/j.corsci.2015.12.015

L. Battezzati and F. Scaglione, De-alloying of rapidly solidified amorphous and crystalline alloys, Journal of Alloys and Compounds, vol.509, pp.8-12, 2011.
DOI : 10.1016/j.jallcom.2010.12.209

F. Scaglione, F. Celegato, P. Rizzi, and L. Battezzati, A comparison of de-alloying crystalline and amorphous multicomponent Au alloys, Intermetallics, vol.66, pp.82-87, 2015.
DOI : 10.1016/j.intermet.2015.06.022

P. Rizzi, F. Scaglione, and L. Battezzati, Nanoporous gold by dealloying of an amorphous precursor, Journal of Alloys and Compounds, vol.586, issue.56, pp.117-120, 2014.
DOI : 10.1016/j.jallcom.2012.11.029

M. Zhang, A. M. Junior, S. J. Pang, T. Zhang, and A. Yavari, Fabrication of nanoporous silver with open pores, Scripta Materialia, vol.100, pp.21-23, 2015.
DOI : 10.1016/j.scriptamat.2014.11.040

URL : https://hal.archives-ouvertes.fr/hal-01216772

A. Antoniou, D. Bhattacharrya, J. K. Baldwin, P. Goodwin, M. Nastasi et al., Controlled nanoporous Pt morphologies by varying deposition parameters, Applied Physics Letters, vol.133, issue.7, pp.95-73116, 2009.
DOI : 10.1016/0021-9991(85)90140-8

F. Scaglione, P. Rizzi, F. Celegato, and L. Battezzati, Synthesis of nanoporous gold by free corrosion of an amorphous precursor, Journal of Alloys and Compounds, vol.615, pp.1-6
DOI : 10.1016/j.jallcom.2014.01.239

L. J. Gibson and M. F. Ashby, Cellular Solids Structure and Properties, 1999.

M. D. Uchic, Sample Dimensions Influence Strength and Crystal Plasticity, Science, vol.305, issue.5686, pp.305-986, 2004.
DOI : 10.1126/science.1098993

J. R. Greer and W. Nix, Size dependence of mechanical properties of gold at the sub-micron scale, Applied Physics A, vol.71, issue.8, pp.1625-1629, 2005.
DOI : 10.1557/JMR.2000.0244

J. R. Greer, W. C. Oliver, and W. Nix, Size Dependence of Mechanical Properties of Gold at the Micron Scale in the Absence of Strain Gradients, Acta Mater, issue.6, pp.53-1821, 2005.

C. A. Volkert and E. Lilleodden, Size effects in the deformation of sub-micron Au columns, Philosophical Magazine, vol.2, issue.33-35, pp.33-35, 2006.
DOI : 10.1016/j.jmps.2005.07.005

URL : https://hal.archives-ouvertes.fr/hal-00513658

J. Biener, A. M. Hodge, A. V. Hamza, L. M. Hsiung, and J. H. Satcher, Nanoporous Au: A high yield strength material, Journal of Applied Physics, vol.38, issue.2, pp.97-24301, 2005.
DOI : 10.1016/S1359-6462(00)00519-4

F. Abraham, Size Effects on the Mechanical Behavior of Nanoporous Au, Nano Lett, vol.6, issue.10, pp.2379-2382, 2006.

R. Liu, J. Gruber, D. Bhattacharyya, G. J. Tucker, and A. Antoniou, Mechanical properties of nanocrystalline nanoporous platinum, Acta Materialia, vol.103, pp.624-632, 2016.
DOI : 10.1016/j.actamat.2015.10.050

G. Xu, X. Li, X. Feng, and H. Gao, Mechanical Properties and Scaling Laws of Nanoporous Gold, J. Appl. Phys, vol.2013, issue.1132, p.23505

M. Hodge, J. R. Hayes, J. Caro, and J. Biener, Characterization and Mechanical Behavior of Nanoporous Gold, Advanced Engineering Materials, vol.74, issue.9, pp.853-857, 2006.
DOI : 10.1116/1.588527

M. S. Bobji, P. Pendyala, P. Gupta, and P. Kalode, Effect of porosity on the indentation behaviour of nanoporous alumina films, International Journal of Surface Science and Engineering, vol.5, issue.1, p.51, 2011.
DOI : 10.1504/IJSURFSE.2011.039990

B. Jang and H. Matsubara, Influence of porosity on hardness and Young's modulus of nanoporous EB-PVD TBCs by nanoindentation, Materials Letters, vol.59, issue.27, pp.59-3462, 2005.
DOI : 10.1016/j.matlet.2005.06.014

D. Esqué-de-los-ojos, J. Zhang, J. Fornell, E. Pellicer, and J. Sort, Nanomechanical behaviour of open-cell nanoporous metals: Homogeneous versus thickness-dependent porosity, Mechanics of Materials, vol.100, issue.100, pp.167-174, 2016.
DOI : 10.1016/j.mechmat.2016.06.014

K. Gall, Y. Liu, D. Routkevitch, and D. S. Finch, Instrumented Microindentation of Nanoporous Alumina Films, Journal of Engineering Materials and Technology, vol.33, issue.2, p.225, 2006.
DOI : 10.1021/cm0303080

W. C. Oliver and G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of Materials Research, vol.522, issue.01, pp.3-20, 2004.
DOI : 10.1557/JMR.1992.0618

W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, vol.XI, issue.06, pp.1564-1583, 1992.
DOI : 10.1557/S0883769400054440

URL : https://hal.archives-ouvertes.fr/hal-01518596

R. Li and K. Sieradzki, Ductile-brittle transition in random porous Au, Physical Review Letters, vol.30, issue.8, pp.68-1168, 1992.
DOI : 10.1016/0001-6160(82)90021-9

D. Schampheleire, S. De-jaeger, P. De-kerpel, K. Ameel, B. Huisseune et al., How to Study Thermal Applications of Open-Cell Metal Foam: Experiments and Computational Fluid Dynamics, Materials, vol.8, issue.12, p.94
DOI : 10.1016/j.ijheatmasstransfer.2014.07.020

J. Banhart and . Manufacture, Manufacture, characterisation and application of cellular metals and metal foams, Progress in Materials Science, vol.46, issue.6, pp.559-632, 2001.
DOI : 10.1016/S0079-6425(00)00002-5

C. Haberling, J. Banhart, T. Hipke, R. Neugebauer, R. Kretz et al., Service Properties and Exploitability, Handbook of Cellular Metals, pp.299-354
DOI : 10.1002/3527600558.ch7

G. Wang and M. Coppens, Rational design of hierarchically structured porous catalysts for autothermal reforming of methane, Chemical Engineering Science, vol.65, issue.7, pp.65-2344, 2010.
DOI : 10.1016/j.ces.2009.09.079

C. Zhang, W. Zhu, J. Zheng, Z. Liang, and B. Wang, Catalytic Electrode with Gradient Porosity and Catalyst Density for Fuel Cells, US, vol.8703355, p.2, 2014.

B. Hammer and J. K. Norskov, Theoretical surface science and catalysis???calculations and concepts, Adv. Catal, vol.45, pp.71-129, 2000.
DOI : 10.1016/S0360-0564(02)45013-4

G. W. Cordonna, M. Kosanovich, and E. R. Becker, Gas Turbine Emission Control. Platinum and Platinum-Palladium Catalysts for Carbon Monoxide and Hydrocarbon Oxidation, Platin. Met. Rev, vol.33, issue.2, 1989.

J. Kua and W. A. Goddard, Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals Application to Direct Methanol Fuel Cells, J. Am. Chem. Soc, issue.8647, pp.121-10928, 1999.

L. Moskaleva, S. V-;-röhe, A. Wittstock, V. Zielasek, T. Klüner et al., Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold, Physical Chemistry Chemical Physics, vol.49, issue.10, pp.13-4529, 2011.
DOI : 10.1002/anie.200904688

J. Zhang, P. Liu, H. Ma, and Y. Ding, Nanostructured Porous Gold for Methanol Electro-Oxidation, The Journal of Physical Chemistry C, vol.111, issue.28, pp.111-10382, 2007.
DOI : 10.1021/jp072333p

C. Xu, Y. Li, F. Tian, and Y. Ding, Dealloying to Nanoporous Silver and Its Implementation as a Template Material for Construction of Nanotubular Mesoporous Bimetallic Nanostructures, ChemPhysChem, vol.21, issue.15, pp.11-3320, 2010.
DOI : 10.1557/mrs2009.156

X. Wang, Z. Qi, C. Zhao, W. Wang, and Z. Zhang, Influence of Alloy Composition and Dealloying Solution on the Formation and Microstructure of Monolithic Nanoporous Silver through Chemical Dealloying of Al???Ag Alloys, The Journal of Physical Chemistry C, vol.113, issue.30, pp.113-13139, 2009.
DOI : 10.1021/jp902490u

M. Kim and H. Nishikawa, Fabrication of nanoporous silver and microstructural change during dealloying of melt-spun Al???20??at.%Ag in hydrochloric acid, Journal of Materials Science, vol.130, issue.132, pp.48-5645
DOI : 10.1016/S0169-4332(98)00061-0

C. Zhang, J. Sun, J. Xu, X. Wang, H. Ji et al., Formation and microstructure of nanoporous silver by dealloying rapidly solidified Zn???Ag alloys, Electrochimica Acta, vol.63, pp.302-311, 2012.
DOI : 10.1016/j.electacta.2011.12.103

Z. Q. Li, B. Q. Li, Z. X. Qin, and X. Lu, Fabrication of porous Ag by dealloying of Ag???Zn alloys in H2SO4 solution, Journal of Materials Science, vol.97, issue.23, pp.45-6494, 2010.
DOI : 10.1007/s10853-010-4737-4

H. Ji, X. Wang, C. Zhao, C. Zhang, J. Xu et al., Formation, control and functionalization of nanoporous silver through changing dealloying media and elemental doping, CrystEngComm, vol.9, issue.I, pp.13-2617, 2011.
DOI : 10.1016/j.elecom.2006.12.003

Y. Jin, R. Li, and T. Zhang, Formation of nanoporous silver by dealloying Ca???Ag metallic glasses in water, Intermetallics, vol.67, pp.166-170, 2015.
DOI : 10.1016/j.intermet.2015.08.011

Q. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel et al., A selective and efficient electrocatalyst for carbon dioxide reduction, Nature Communications, vol.6, issue.101, pp.2014-3242
DOI : 10.1039/c3ee00045a

R. Pattabiraman, S. Muzhumathim, and K. I. Vasu, Electro-Oxidation of Formaldehyde and Glycol on Silver Alloys in Alkaline Solutions, Bull. Electrochem, vol.6, issue.1026, pp.590-591, 1990.

R. Li, X. J. Liu, H. Wang, Y. Wu, X. M. Chu et al., Nanoporous silver with tunable pore characteristics and superior surface enhanced Raman scattering, Corrosion Science, vol.84, issue.105, pp.159-164, 2014.
DOI : 10.1016/j.corsci.2014.03.023

W. L. Marsden, M. S. Wainwright, and J. B. Friedrich, Zinc-Promoted Raney Copper Catalysts for Methanol Synthesis, Industrial & Engineering Chemistry Product Research and Development, vol.19, issue.4, pp.551-556, 1980.
DOI : 10.1021/i360076a014

G. Patart, Procédé de Production D'alcools, D'aldéhydes et D'acides À Partir de Mélanges Gazeux Maintenus Sous Pression et Soumis À L'action D'agents Cat Aly Ligues, 1921.

P. Davies and F. Snowdon, Production of Oxygenated Hydrocarbons, U.S. Patent, vol.3326, issue.109, p.956, 1967.

D. S. Keir, The Dealloying of Copper-Manganese Alloys, Journal of The Electrochemical Society, vol.127, issue.10, p.2138, 1980.
DOI : 10.1149/1.2129360

J. R. Hayes, A. M. Hodge, J. Biener, A. V. Hamza, and K. Sieradzki, Monolithic nanoporous copper by dealloying Mn???Cu, Journal of Materials Research, vol.24, issue.10, pp.2611-2616, 2006.
DOI : 10.1366/0003702053641559

Z. Qi, C. Zhao, X. Wang, J. Lin, W. Shao et al., Formation and Characterization of Monolithic Nanoporous Copper by Chemical Dealloying of Al???Cu Alloys, The Journal of Physical Chemistry C, vol.113, issue.16, pp.113-6694, 2009.
DOI : 10.1021/jp810742z

W. Liu, C. Xin, L. Chen, J. Yan, N. Li et al., A facile one-pot dealloying strategy to synthesize monolithic asymmetry-patterned nanoporous copper ribbons with tunable microstructure and nanoporosity, RSC Advances, vol.80, issue.4, pp.2662-2670, 2016.
DOI : 10.1016/j.corsci.2013.11.043

C. Zhao, Z. Qi, X. Wang, and Z. Zhang, Fabrication and characterization of monolithic nanoporous copper through chemical dealloying of Mg???Cu alloys, Corrosion Science, vol.51, issue.9, pp.51-2120, 2009.
DOI : 10.1016/j.corsci.2009.05.043

S. Sattayasamitsathit, P. Thavarungkul, C. Thammakhet, W. Limbut, A. Numnuam et al., Fabrication of Nanoporous Copper Film for Electrochemical Detection of Glucose, Electroanalysis, vol.15, issue.21, pp.2371-2377, 2009.
DOI : 10.1021/ac961912f

B. Lin, L. Kong, P. Hodgson, and L. Dumée, Impact of the De-Alloying Kinetics and Alloy Microstructure on the Final Morphology of De-Alloyed Meso-Porous Metal Films, Nanomaterials, vol.03, issue.01, pp.856-878
DOI : 10.1016/j.pnsc.2012.11.012

X. Luo, R. Li, L. Huang, and T. Zhang, Nucleation and growth of nanoporous copper ligaments during electrochemical dealloying of Mg-based metallic glasses, Corrosion Science, vol.67, issue.117, pp.100-108, 2013.
DOI : 10.1016/j.corsci.2012.10.010

Z. Wang, J. Liu, C. Qin, H. Yu, X. Xia et al., Dealloying of Cu-Based Metallic Glasses in Acidic Solutions: Products and Energy Storage Applications, Nanomaterials, vol.7, issue.4, pp.697-721
DOI : 10.1179/1743294414Y.0000000318

L. Liu, R. Scholz, E. Pippel, U. Gösele, and . Microstructure, Microstructure, electrocatalytic and sensing properties of nanoporous Pt46Ni54 alloy nanowires fabricated by mild dealloying, Journal of Materials Chemistry, vol.75, issue.27, pp.20-5621, 2010.
DOI : 10.1557/mrs2009.157

H. Abe, K. Sato, H. Nishikawa, T. Takemoto, M. Fukuhara et al., Dealloying of Cu-Zr-Ti Bulk Metallic Glass in Hydrofluoric Acid Solution, MATERIALS TRANSACTIONS, vol.50, issue.6, pp.50-1255, 2009.
DOI : 10.2320/matertrans.ME200823

Z. Wang, L. Wang, C. Qin, J. Liu, Y. Li et al., Tailored Dealloying Products of Cu-based Metallic Glasses in Hydrochloric Acid Solutions, Materials Research, vol.148, issue.1, pp.1003-1009
DOI : 10.1149/1.1353566

Z. Dan, F. Qin, A. Makino, and Y. Sugawara, Fabrication of nanoporous copper by dealloying of amorphous Ti???Cu???Ag alloys, Journal of Alloys and Compounds, vol.586, issue.123, pp.134-138, 2014.
DOI : 10.1016/j.jallcom.2013.01.087

L. Y. Chen, J. S. Yu, T. Fujita, and M. W. Chen, Nanoporous Copper with Tunable Nanoporosity for SERS Applications, Advanced Functional Materials, vol.62, issue.8, pp.1221-1226, 2009.
DOI : 10.1002/adfm.200801239

S. Zhang, Y. Xing, W. Liu, and J. Zheng, Preparation of Nanoporous Copper through Chemical Dealloying and Its Application in Lithium Ion Battery, The 15th International Meeting on Lithium Batteries, 2010.

W. Liu, L. Chen, J. Yan, N. Li, S. Shi et al., Abstract, Corrosion Reviews, vol.41, issue.5, pp.33-203, 2015.
DOI : 10.1081/CR-100101171

URL : https://hal.archives-ouvertes.fr/hal-00129638

G. Grass, C. Rensing, and M. Solioz, ABSTRACT, Applied and Environmental Microbiology, vol.77, issue.5, pp.1541-1547, 2011.
DOI : 10.1128/AEM.02766-10

Z. Liu, Y. Hu, C. Liu, and Z. Zhou, Surface-independent one-pot chelation of copper ions onto filtration membranes to provide antibacterial properties, Chemical Communications, vol.57, issue.82, pp.52-12245
DOI : 10.1016/j.bios.2014.01.056

M. Hans, S. Mathews, F. Mücklich, and M. Solioz, Physicochemical properties of copper important for its antibacterial activity and development of a unified model, Biointerphases, vol.11, issue.1, p.18902
DOI : 10.1116/1.4935853

E. M. Hunt and M. L. Pantoya, Nanostructured Metallic Alloys: Synthesis, Properties and Applications, 2007.

F. Varíola, F. Vetrone, L. Richert, P. Jedrzejowski, J. H. Yi et al., Improving Biocompatibility of Implantable Metals by Nanoscale Modification of Surfaces: An Overview of Strategies, pp.996-1006, 2009.

S. H. Flint, J. D. Brooks, and P. J. Bremer, Properties of the stainless steel substrate, influencing the adhesion of thermo-resistant streptococci, Properties of the Stainless Steel Substrate, pp.235-242, 2000.
DOI : 10.1016/S0260-8774(99)00157-0

T. Nishizawa and K. Ishida, The Co?Cu (Cobalt-Copper) System. Bull. Alloy Phase Diagrams, pp.161-165, 1984.
DOI : 10.1007/bf02868953

M. Silberberg, Chemistry: The Molecular Nature Of Matter and Change, 2004.

A. Y. Khodakov, W. Chu, and P. Fongarland, Advances in the Development of Novel Cobalt Fischer???Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels, Chemical Reviews, vol.107, issue.5, pp.1692-1744, 2007.
DOI : 10.1021/cr050972v

A. A. Khassin, T. M. Yurieva, G. N. Kustova, I. S. Itenberg, M. P. Demeshkina et al., Cobalt???aluminum co-precipitated catalysts and their performance in the Fischer???Tropsch synthesis, Journal of Molecular Catalysis A: Chemical, vol.168, issue.1-2, pp.1-2, 2001.
DOI : 10.1016/S1381-1169(00)00529-X

K. Okabe, X. Li, and M. Wei, Fischer???Tropsch synthesis over Co???SiO2 catalysts prepared by the sol???gel method, Catalysis Today, vol.89, issue.4, pp.431-438, 2004.
DOI : 10.1016/j.cattod.2004.01.005

A. Roucoux, J. Schulz, and H. Patin, Reduced Transition Metal Colloids:?? A Novel Family of Reusable Catalysts?, Chemical Reviews, vol.102, issue.10, pp.3757-3778, 2002.
DOI : 10.1021/cr010350j

R. K. Herz, Chemical Engineering Design of CO Oxidation Catalysts, 1987.

V. Bérubé, G. Radtke, M. Dresselhaus, and G. Chen, Size Effects on the Hydrogen Storage Properties of Nanostructured Metal Hydrides: A Review, Int. J. Energy Res, issue.146, pp.31-37, 2007.

G. Ertl, Catalysis: Science and Technology, 1983.

X. Lang, P. Guan, L. Zhang, T. Fujita, and M. Chen, Characteristic Length and Temperature Dependence of Surface Enhanced Raman Scattering of Nanoporous Gold, The Journal of Physical Chemistry C, vol.113, issue.25, pp.113-10956, 2009.
DOI : 10.1021/jp903137n

L. Zhang, X. Lang, A. Hirata, and M. Chen, Wrinkled Nanoporous Gold Films with Ultrahigh Surface-Enhanced Raman Scattering Enhancement, ACS Nano, vol.5, issue.6, pp.4407-4413, 2011.
DOI : 10.1021/nn201443p

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements, Applied Physics Letters, vol.6, issue.15, pp.90-113, 2007.
DOI : 10.1007/3-540-33567-6_13

V. Ovchinnikov, Surface Enhanced Raman Scattering, The Sixth International Conference on Quantum, Nano and Micro Technologies, 2012.

D. L. Jeanmaire and R. P. Van-duyne, Surface raman spectroelectrochemistry, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.84, issue.1, pp.1-20, 1977.
DOI : 10.1016/S0022-0728(77)80224-6

M. G. Albrecht and J. A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, Journal of the American Chemical Society, vol.99, issue.15, pp.99-5215, 1977.
DOI : 10.1021/ja00457a071

N. Asao, Y. Ishikawa, N. Hatakeyama, . Menggenbateer, Y. Yamamoto et al., Nanostructured Materials as Catalysts: Nanoporous-Gold-Catalyzed Oxidation of Organosilanes with Water. Angew. Chemie -Int, pp.10093-10095, 2010.

C. Krause, New Probe Detects Trace Pollutants in Groundwater, Oak Ridge Natl. Lab. Rev, vol.26, issue.2, pp.65-67, 1993.

A. J. Mcquillan, The discovery of surface-enhanced Raman scattering, Notes and Records of the Royal Society, vol.110, issue.4, pp.105-109, 2009.
DOI : 10.1126/science.275.5303.1102

V. A. Tamma, F. Huang, D. Nowak, and H. Kumar-wickramasinghe, Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain, Applied Physics Letters, vol.108, issue.23, pp.108-233107
DOI : 10.1021/jp0751460

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan et al., Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS), Physical Review Letters, vol.46, issue.9, pp.78-1667, 1997.
DOI : 10.1103/PhysRevB.46.2821

F. J. García-vidal and J. B. Pendry, Collective Theory for Surface Enhanced Raman Scattering, Physical Review Letters, vol.267, issue.6, pp.1163-1166, 1996.
DOI : 10.1126/science.267.5204.1629

A. Campion and P. Kambhampati, Surface-enhanced Raman scattering, Chemical Society Reviews, vol.172, issue.4, p.241, 1998.
DOI : 10.1039/a827241z

S. Nie, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering, Science, vol.275, issue.5303, pp.275-1102, 1997.
DOI : 10.1126/science.275.5303.1102

J. A. Creighton and D. G. Eadon, Ultraviolet???visible absorption spectra of the colloidal metallic elements, J. Chem. Soc., Faraday Trans., vol.124, issue.24, pp.3881-3891, 1991.
DOI : 10.1016/0039-6028(83)90345-X

L. Zhang, X. Lang, A. Hirata, and M. Chen, Wrinkled Nanoporous Gold Films with Ultrahigh Surface-Enhanced Raman Scattering Enhancement, ACS Nano, vol.5, issue.6, pp.4407-4413, 2011.
DOI : 10.1021/nn201443p

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang et al., Can Graphene Be Used as a Substrate for Raman Enhancement? Nano Lett, pp.553-561, 2010.

C. Qiu, H. Zhou, H. Yang, M. Chen, Y. Guo et al., -Layer Graphenes as Substrates for Raman Enhancement of Crystal Violet, The Journal of Physical Chemistry C, vol.115, issue.20, pp.115-10019, 2011.
DOI : 10.1021/jp111617c

R. Livingstone, X. Zhou, M. C. Tamargo, J. R. Lombardi, L. G. Quagliano et al., Surface Enhanced Raman Spectroscopy of Pyridine on CdSe/ZnBeSe Quantum Dots Grown by Molecular Beam Epitaxy, The Journal of Physical Chemistry C, vol.114, issue.41, pp.114-17460, 2010.
DOI : 10.1021/jp105619m

L. H. Qian, A. Inoue, and M. W. Chen, Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold, Applied Physics Letters, vol.92, issue.9, pp.92-2006, 2008.
DOI : 10.1021/nl070616n

X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen, Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios, Applied Physics Letters, vol.94, issue.21, pp.94-104, 2009.
DOI : 10.1103/PhysRevB.6.4370

L. Chen, J. Yu, T. Fujita, and M. Chen, Nanoporous Copper with Tunable Nanoporosity for SERS Applications, Advanced Functional Materials, vol.62, issue.8, pp.19-1221, 2009.
DOI : 10.1002/adfm.200801239

L. Y. Chen, L. Zhang, T. Fujita, and M. W. Chen, Surface-Enhanced Raman Scattering of Silver@Nanoporous Copper Core???Shell Composites Synthesized by an In Situ Sacrificial Template Approach, The Journal of Physical Chemistry C, vol.113, issue.32, pp.113-14195, 2009.
DOI : 10.1021/jp904081s

L. Qian, B. Das, Y. Li, and Z. Yang, Giant Raman enhancement on nanoporous gold film by conjugating with nanoparticles for single-molecule detection, Journal of Materials Chemistry, vol.406, issue.33, pp.20-6891, 2010.
DOI : 10.1557/mrs2005.100

M. N. Helmus, Medical Devices Having Vapor Deposited Nanoporous Coatings For Controlled Therapeutic Agent Delivery, 2010.

D. Gombert and J. G. Richardson, Cold Crucible Induction Melter Technology: Results of Laboratory Directed Research and Development, 2001.
DOI : 10.2172/910987

R. C. Budhani, T. C. Goel, and K. L. Chopra, Melt-spinning technique for preparation of metallic glasses, Bulletin of Materials Science, vol.10, issue.5, pp.549-561, 1982.
DOI : 10.1103/PhysRevB.20.1640

F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 1988.

D. Vilador, M. Veron, M. Gemmi, F. Peiro, J. Portillo et al., Llorca- Isern, N.; Nicilopoulos, S. Orientation and Phase Mapping in the Transmission Electron Microscope Using Precession-Assisted Diffraction Spot Recognition: State-of-the-Art Results

E. P. Barrett, L. G. Joyner, and P. P. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical Society, vol.73, issue.1, pp.73-373, 1951.
DOI : 10.1021/ja01145a126

V. Boulos, L. Salvo, V. Fristot, P. Lhuissier, and D. Houzet, Investigating Performance Variations of an Optimized GPU-Ported Granulometry Algorithm, 18th International European Conference on Parallel and Distributed Computing, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00787861

J. J. Koenderink and A. J. Van-doorn, Surface shape and curvature scales, Image and Vision Computing, vol.10, issue.8, pp.557-564, 1992.
DOI : 10.1016/0262-8856(92)90076-F

J. W. Gibbs, K. A. Mohan, E. B. Gulsoy, A. J. Shahani, X. Xiao et al., The Three-Dimensional Morphology of Growing Dendrites, Scientific Reports, vol.22, issue.1, p.11824
DOI : 10.1016/j.cagd.2005.06.005

O. Maciejak and P. Aubert, Mesure de Dureté Par Nano-Indentation. Tech. l'Ingénieur, pp.1-12, 2007.

. Azom and . Com, Silver -Applications and Properties of Silver www

A. Zadick, L. Dubau, M. Chatenet, U. Demirci, A. Serov et al., Instability Of Commercial Pt/C And Pd/C Electrocatalysts In Alkaline Media, ECS Transactions, vol.69, issue.17, pp.69-553
DOI : 10.1149/06917.0553ecst

URL : https://hal.archives-ouvertes.fr/hal-01714063

A. Zadick, L. Dubau, N. Sergent, G. Berthomé, and M. Chatenet, Huge Instability of Pt/C Catalysts in Alkaline Medium, ACS Catalysis, vol.5, issue.8, pp.5-4819
DOI : 10.1021/acscatal.5b01037

URL : https://hal.archives-ouvertes.fr/hal-01218294

A. Zadick, L. Dubau, U. B. Demirci, and M. Chatenet, Effects of Pd Nanoparticle Size and Solution Reducer Strength on Pd/C Electrocatalyst Stability in Alkaline Electrolyte, Journal of The Electrochemical Society, vol.163, issue.8, pp.163-781
DOI : 10.1149/2.0141608jes

URL : https://hal.archives-ouvertes.fr/hal-01687187

S. Kabir, A. Zadick, P. Atanassov, L. Dubau, and M. Chatenet, Stability of carbon-supported palladium nanoparticles in alkaline media: A case study of graphitized and more amorphous supports, Electrochemistry Communications, vol.78, pp.2017-2050
DOI : 10.1016/j.elecom.2017.03.017

Y. Q. Wang, S. Ma, Q. Q. Yang, and X. J. Li, Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array, Applied Surface Science, vol.258, issue.15, pp.258-5881
DOI : 10.1016/j.apsusc.2012.02.129

H. Qiu, Z. Zhang, X. Huang, and Y. Qu, Dealloying Ag-Al Alloy to Prepare Nanoporous Silver as a Substrate for Surface-Enhanced Raman Scattering: Effects of Structural Evolution and Surface Modification, ChemPhysChem, vol.8, issue.11, pp.12-2118, 2011.
DOI : 10.1021/nl8015297

A. Inoue, Chill Zone Copper with the Strength of Stainless Steel and Tailorable Color, Acta Mater, vol.56, issue.8, pp.1830-1839, 2008.

K. Kanaya and S. Okayama, Penetration and energy-loss theory of electrons in solid targets, Journal of Physics D: Applied Physics, vol.5, issue.1, p.308, 1972.
DOI : 10.1088/0022-3727/5/1/308

J. Ai, Y. Chen, M. Urquidi-macdonald, and D. D. Macdonald, Electrochemical Impedance Spectroscopic Study of Passive Zirconium, Journal of The Electrochemical Society, vol.2, issue.1, p.43, 2007.
DOI : 10.1016/S0167-2738(02)00759-2

E. E. Stansbury and R. A. Buchanan, Fundamentals of Electrochemical Corrosion, 2000.

D. R. Holmes and W. Chang, Corrosion of Hafnium and Hafnium Alloys, In ASM Handbook; ASM International, pp.1-6, 2005.

. St, R. Amand, and B. C. Giessen, Easy Glass Formation in Simple Metal Alloys: Amorphous Metals Containing Calcium and Strontium. Scr. Metall, pp.12-1021, 1978.

Y. Jin, R. Li, and T. Zhang, Formation of nanoporous silver by dealloying Ca???Ag metallic glasses in water, Intermetallics, vol.67, pp.166-170, 2015.
DOI : 10.1016/j.intermet.2015.08.011

P. Walker and W. Tarn, Handbook of Metal Etchants, 1991.

V. Laporte and A. Mortensen, Intermediate temperature embrittlement of copper alloys, International Materials Reviews, vol.34, issue.31, pp.94-116, 2009.
DOI : 10.1007/BF02647506

X. Luo, R. Li, L. Huang, and T. Zhang, Nucleation and growth of nanoporous copper ligaments during electrochemical dealloying of Mg-based metallic glasses, Corrosion Science, vol.67, issue.211, pp.100-108, 2013.
DOI : 10.1016/j.corsci.2012.10.010

A. L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Physical Review, vol.74, issue.10, pp.56-978, 1939.
DOI : 10.1098/rspa.1938.0079

G. Williamson and W. Hall, X-Ray Line Broadening from Filed Aluminium and Wolfram. Acta Metall, pp.22-31, 1953.
DOI : 10.1016/0001-6160(53)90006-6

F. Izumi and T. Ikeda, Implementation of the Williamson ? Hall and Halder ? Wagner Methods into RIETAN-FP, Nagoya Inst. Technol. Adv. Ceram. Res. Cent. Annu. Rep. Adv. Ceram. Res. Cent. Nagoya Inst. Technol, vol.2014, issue.d, pp.3-33

J. Wang and I. R. Harrison, 6.2 Crystallite Size and Lamellar Thickness by X-Ray Methods, Methods in Experimental Physics, pp.128-184, 1980.
DOI : 10.1016/S0076-695X(08)60757-7

URL : https://hal.archives-ouvertes.fr/hal-00609808

D. B. Butrymowicz, J. R. Manning, and M. E. Read, Diffusion in Copper and Copper Alloys, Journal of Physical and Chemical Reference Data, pp.643-656, 1973.

U. Mizutani and K. Yoshino, Formation and low-temperature electronic properties of liquid-quenched Ag-Cu-X (X=Mg, Si, Sn and Sb) metallic glasses, Journal of Physics F: Metal Physics, vol.14, issue.5, pp.14-1179, 1984.
DOI : 10.1088/0305-4608/14/5/014

Z. Liu, X. Luo, G. Guo, C. He, G. Li et al., The Liquidus Of The Ternary Ag-Cu-Si Alloy System, Acta Metall. Sin, vol.1, 1999.

Y. Nakagawa, Liquid Immiscibility in Copper-Iron and Copper-Cobalt Systems in the Supercooled State. Acta Metall, pp.704-711, 1958.

E. S. Hedges and . Lxxix, LXXIX.???The action of nitric acid on some metals, J. Chem. Soc., vol.0, issue.0, pp.561-569, 1930.
DOI : 10.1039/JR9300000561

C. Hayzelden, J. J. Rayment, and B. Cantor, Rapid Solidification Microstructures in Austenitic Acta Metall, pp.31-379, 1983.

Z. Wronski and J. Boyd, Effect of Cooling Rate on Solidification Microstructures in Pseudoeutectics 304SS-Zr Alloys, J. Met, issue.7, pp.39-69, 1988.

S. C. Huang, R. P. Laforce, A. M. Ritter, and R. P. Goehner, Rapid solidification characteristics in melt spinning a Ni-base superalloy, Metallurgical Transactions A, vol.32, issue.10, pp.16-1773, 1985.
DOI : 10.1007/BF02645551

E. P. Ward, T. J. Yates, J. Fernández, D. E. Vaughan, and P. A. Midgley, Three-Dimensional Nanoparticle Distribution and Local Curvature of Heterogeneous Catalysts Revealed by Electron Tomography, The Journal of Physical Chemistry C, vol.111, issue.31, pp.111-11501, 2007.
DOI : 10.1021/jp072441b

K. R. Mangipudi, V. Radisch, L. Holzer, and C. A. Volkert, A FIB-nanotomography method for accurate 3D reconstruction of open nanoporous structures, Ultramicroscopy, vol.163, pp.38-47, 2016.
DOI : 10.1016/j.ultramic.2016.01.004

K. Hu, K. Wang, and E. T. Lilleodden, A Principle Curvatures Analysis of the Isothermal Evolution of Nanoporous Gold: Quantifying the Characteristic Length-Scales, Acta Mater, vol.120, pp.24-31, 2016.

W. E. Lorensen and H. Cline, Marching cubes: A high resolution 3D surface construction algorithm, ACM SIGGRAPH Computer Graphics, vol.21, issue.4, pp.163-169, 1987.
DOI : 10.1145/37402.37422

H. Rösner, S. Parida, D. Kramer, C. A. Volkert, and J. Weissmüller, Reconstructing a Nanoporous Metal in Three Dimensions: An Electron Tomography Study of Dealloyed Gold Leaf, Advanced Engineering Materials, vol.190, issue.288, pp.9-535, 2007.
DOI : 10.1016/j.scriptamat.2006.08.069

T. Fujita, L. Qian, K. Inoke, and J. Erlebacher, Three-dimensional morphology of nanoporous gold, Applied Physics Letters, vol.92, issue.25, pp.92-251902, 2008.
DOI : 10.1103/PhysRevLett.78.2248

L. Holzer, F. Indutnyi, P. Gasser, B. Munch, and M. Wedmann, Three-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography, Journal of Microscopy, vol.216, issue.1, pp.84-95, 2004.
DOI : 10.1111/j.0022-2720.2004.01397.x

P. Klobes, K. Meyer, and R. G. Munro, Porosity and Specific Surface Area Measurements for Solid Materials, 2006.

P. Klobes, K. Meyer, and R. Munro, Porosity and Specific Surface Area Measurements for Solid 151

J. Menk, Uncertainties and Errors in Nanoindentation, In Nanoindentation in Materials Science, issue.239, 2012.
DOI : 10.5772/50002

G. M. Pharr and W. C. Oliver, Nanoindentation of silver-relations between hardness and dislocation structure, Journal of Materials Research, vol.4, issue.01, pp.94-101, 1989.
DOI : 10.1557/JMR.1989.0094

W. D. Nix and H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, Journal of the Mechanics and Physics of Solids, vol.46, issue.3, pp.411-425, 1998.
DOI : 10.1016/S0022-5096(97)00086-0

D. R. Smith and F. Fickett, Low-Temperature Properties of Silver, Journal of Research of the National Institute of Standards and Technology, vol.100, issue.2, pp.119-171, 1995.
DOI : 10.6028/jres.100.012

N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson, Strain gradient plasticity: Theory and experiment, Acta Metallurgica et Materialia, vol.42, issue.2, pp.42-475, 1994.
DOI : 10.1016/0956-7151(94)90502-9

C. A. Jaska, K. Temple, and A. J. Lough, Manners, I. Transition Metal-Catalyzed Formation of Boron?Nitrogen Bonds: Catalytic Dehydrocoupling of Amine-Borane Adducts to Form Aminoboranes and Borazines, J. Am. Chem. Soc, issue.31, pp.125-9424, 2003.

K. Shimizu and A. Satsuma, Silver Cluster Catalysts for Green Organic Synthesis, Journal of the Japan Petroleum Institute, vol.54, issue.6, pp.347-360, 2011.
DOI : 10.1627/jpi.54.347

URL : https://www.jstage.jst.go.jp/article/jpi/54/6/54_6_347/_pdf

T. Spassov, L. Lyubenova, Y. Liu, S. Bliznakov, M. Spassova et al., Mechanochemical synthesis, thermal stability and selective electrochemical dissolution of Cu???Ag solid solutions, Journal of Alloys and Compounds, vol.478, issue.1-2, pp.232-236, 2009.
DOI : 10.1016/j.jallcom.2008.12.005

M. Chatenet, F. Micoud, I. Roche, E. Chainet, and J. Vondrák, Kinetics of Sodium Borohydride Direct Oxidation and Oxygen Reduction in Sodium Hydroxide Electrolyte, Electrochim. Acta, issue.25, pp.51-5452, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00333328

H. Cheng and K. Scott, Investigation of non-platinum cathode catalysts for direct borohydride fuel cells, Journal of Electroanalytical Chemistry, vol.596, issue.2, pp.117-123, 2006.
DOI : 10.1016/j.jelechem.2006.07.031

E. Sanli, H. Celikkan, B. Zuhtyuusal, and M. Aksu, Anodic behavior of Ag metal electrode in direct borohydride fuel cells, International Journal of Hydrogen Energy, vol.31, issue.13, pp.31-1920, 2006.
DOI : 10.1016/j.ijhydene.2006.04.003

M. H. Atwan, D. O. Northwood, and E. L. Gyenge, Evaluation of colloidal Ag and Ag-alloys as anode electrocatalysts for direct borohydride fuel cells, International Journal of Hydrogen Energy, vol.32, issue.15, pp.32-3116, 2007.
DOI : 10.1016/j.ijhydene.2005.12.022

E. Sanli, B. Z. Uysal, and M. L. Aksu, The oxidation of NaBH4 on electrochemicaly treated silver electrodes, International Journal of Hydrogen Energy, vol.33, issue.8, pp.33-2097, 2008.
DOI : 10.1016/j.ijhydene.2008.01.049

J. Durst, A. Siebel, C. Simon, F. Hasché, J. Herranz et al., New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism, Energy Environ. Sci., vol.15, issue.7, p.2255
DOI : 10.1039/c3cp51083b

URL : http://pubs.rsc.org/en/content/articlepdf/2014/ee/c4ee00440j

L. C. Nagle and J. Rohan, Nanoporous Gold Catalyst for Direct Ammonia Borane Fuel Cells, Journal of The Electrochemical Society, vol.26, issue.7, p.152
DOI : 10.1016/j.jpowsour.2006.12.007

URL : https://cora.ucc.ie/bitstream/10468/1079/4/LCN_NanoporousAV2011.pdf

D. Barsuk and A. Zadick, Nanoporous silver for electrocatalysis application in alkaline fuel cells, B772. PUBLICATIONS, pp.111-528, 2011.
DOI : 10.1016/j.matdes.2016.09.037

URL : https://hal.archives-ouvertes.fr/hal-01517194

D. Barsuk, M. Zhang, N. T. Panagiotopoulos, A. M. Jr, K. Georgarakisa et al., Fabrication of nanoporous copper surface by leaching of chill-zone Cu???Zr???Hf alloys, Scripta Materialia, vol.104, pp.104-64, 2015.
DOI : 10.1016/j.scriptamat.2015.03.026

URL : https://hal.archives-ouvertes.fr/hal-01216771

A. Barsuk, M. Zhang, N. T. Panagiotopoulos, A. M. Jr, K. Georgarakisa et al., Fabrication of nanoporous copper surface by leaching of chill-zone Cu???Zr???Hf alloys, Scripta Materialia, vol.104, p.2015, 2015.
DOI : 10.1016/j.scriptamat.2015.03.026

URL : https://hal.archives-ouvertes.fr/hal-01216771

D. Barsuk, Novel integral nanoporous silver for anode catalytic applications in alkaline fuel cellsOral presentation), 2016.

D. Barsuk and A. Zadick, Nanoporous Cobalt Catalyst For Direct Ammonia Borane Fuel Cells, 2016.

A. M. Jr, Nanoporous Cobalt and Silver Catalysts for Direct Ammonia-Borane Fuel Cells " Daria Barsuk, Anicet Zadick, p.32, 2016.

D. Barsuk, Nanoporous copper from binary Cu-Ca amorphous precursor by simple dealloying in water, 2017.

W. Lee, T. Yang, Y. Wu, and P. Peng, Nanoporous Biocompatible Layer on Ti???6Al???4V Alloys Enhanced Osteoblast-like Cell Response, Journal of Experimental & Clinical Medicine, vol.5, issue.3, pp.92-96, 2013.
DOI : 10.1016/j.jecm.2013.04.002

J. Weissmü-ller, R. Newman, H. Jin, A. Hodge, and J. Kysar, Nanoporous Metals by Alloy Corrosion: Formation and Mechanical Properties, MRS Bulletin, vol.27, issue.08, pp.577-586, 2009.
DOI : 10.1017/CBO9781139878326

L. Y. Chen, J. S. Yu, T. Fujita, and M. W. Chen, Nanoporous Copper with Tunable Nanoporosity for SERS Applications, Advanced Functional Materials, vol.62, issue.8, pp.1221-1226, 2009.
DOI : 10.1002/adfm.200801239

T. Jin, M. Yan, T. Menggenbateer, M. Minato, Y. Bao et al., Nanoporous Copper Metal Catalyst in Click Chemistry: Nanoporosity-Dependent Activity without Supports and Bases, Advanced Synthesis & Catalysis, vol.39, issue.17, pp.3095-3100, 2011.
DOI : 10.1039/b706926j

E. M. Hunt and M. L. Pantoya, Nanostructured Metallic Alloys: Synthesis, Properties and Applications, 2007.

S. H. Flint, J. D. Brooks, and P. J. Bremer, Properties of the stainless steel substrate, influencing the adhesion of thermo-resistant streptococci, Journal of Food Engineering, vol.43, issue.4, pp.235-242, 2000.
DOI : 10.1016/S0260-8774(99)00157-0

Z. Qi, C. Zhao, X. Wang, J. Lin, W. Shao et al., Formation and Characterization of Monolithic Nanoporous Copper by Chemical Dealloying of Al???Cu Alloys, The Journal of Physical Chemistry C, vol.113, issue.16, pp.6694-6698, 2009.
DOI : 10.1021/jp810742z

M. Li, Y. Zhou, and H. Geng, Fabrication of nanoporous copper ribbons by dealloying of Al-Cu alloys, Journal of Porous Materials, vol.22, issue.5, pp.791-796, 2012.
DOI : 10.1021/la061157t

A. R. Yavari, K. Ota, K. Georgarakis, A. Lemoulec, F. Charlot et al., Chill zone copper with the strength of stainless steel and tailorable color, Acta Materialia, vol.56, issue.8, pp.1830-1839, 2008.
DOI : 10.1016/j.actamat.2007.12.052

M. E. Bluhm, M. G. Bradley, R. Butterick, U. Kusari, and L. G. Sneddon, Amineborane-Based Chemical Hydrogen Storage:?? Enhanced Ammonia Borane Dehydrogenation in Ionic Liquids, Journal of the American Chemical Society, vol.128, issue.24, pp.7748-7749, 2006.
DOI : 10.1021/ja062085v

F. Baitalow, J. Baumann, G. Wolf, K. Jaenicke-rößler, and G. Leitner, Thermal decomposition of B???N???H compounds investigated by using combined thermoanalytical methods, Thermochimica Acta, vol.391, issue.1-2, pp.159-168, 2002.
DOI : 10.1016/S0040-6031(02)00173-9

C. A. Jaska, K. Temple, A. J. Lough, and I. Manners, Transition Metal-Catalyzed Formation of Boron???Nitrogen Bonds:?? Catalytic Dehydrocoupling of Amine-Borane Adducts to Form Aminoboranes and Borazines, Journal of the American Chemical Society, vol.125, issue.31, pp.9424-9434, 2003.
DOI : 10.1021/ja030160l

F. H. Stephens, R. T. Baker, M. H. Matus, D. J. Grant, and D. A. Dixon, Acid Initiation of Ammonia???Borane Dehydrogenation for Hydrogen Storage, Angewandte Chemie International Edition, vol.41, issue.5, pp.746-749, 2007.
DOI : 10.1002/anie.200603285

M. Chandra and Q. Xu, A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia???borane, Journal of Power Sources, vol.156, issue.2, pp.190-194, 2006.
DOI : 10.1016/j.jpowsour.2005.05.043

M. Chandra and Q. Xu, Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts, Journal of Power Sources, vol.168, issue.1, pp.135-142, 2007.
DOI : 10.1016/j.jpowsour.2007.03.015

J. Hannauer, O. Akdim, U. B. Demirci, C. Geantet, J. Herrmann et al., High-extent dehydrogenation of hydrazine borane N 2 H 4 BH 3 by hydrolysis of BH 3 and decomposition of N 2 H 4, Energy Environ. Sci, vol.4, issue.3355, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00866469

J. Hannauer, U. B. Demirci, C. Geantet, J. Herrmann, and P. Miele, Transition metal-catalyzed dehydrogenation of hydrazine borane N2H4BH3 via the hydrolysis of BH3 and the decomposition of N2H4, International Journal of Hydrogen Energy, vol.37, issue.14, pp.10758-10767, 2012.
DOI : 10.1016/j.ijhydene.2012.04.102

URL : https://hal.archives-ouvertes.fr/hal-00725755

A. Yousef, N. A. Barakat, M. H. El-newehy, M. M. Ahmed, and H. Y. Kim, Catalytic hydrolysis of ammonia borane for hydrogen generation using Cu(0) nanoparticles supported on TiO2 nanofibers, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.470, pp.194-201, 2015.
DOI : 10.1016/j.colsurfa.2015.02.004

A. Zadick, L. Dubau, M. Chatenet, U. Demirci, A. Serov et al., Instability Of Commercial Pt/C And Pd/C Electrocatalysts In Alkaline Media, ECS Transactions, vol.69, issue.17, pp.553-558, 2015.
DOI : 10.1149/06917.0553ecst

URL : https://hal.archives-ouvertes.fr/hal-01714063

A. Zadick, L. Dubau, N. Sergent, G. Berthomé, and M. Chatenet, Huge Instability of Pt/C Catalysts in Alkaline Medium, ACS Catalysis, vol.5, issue.8, pp.4819-4824, 2015.
DOI : 10.1021/acscatal.5b01037

URL : https://hal.archives-ouvertes.fr/hal-01218294

A. Zadick, L. Dubau, U. B. Demirci, and M. Chatenet, Effects of Pd Nanoparticle Size and Solution Reducer Strength on Pd/C Electrocatalyst Stability in Alkaline Electrolyte, Journal of The Electrochemical Society, vol.163, issue.8, pp.781-787, 2016.
DOI : 10.1149/2.0141608jes

URL : https://hal.archives-ouvertes.fr/hal-01687187

L. C. Nagle and J. F. Rohan, Ammonia Borane Oxidation at Gold Microelectrodes in Alkaline Solutions, Journal of The Electrochemical Society, vol.120, issue.170, 2006.
DOI : 10.1021/jp982116b

URL : https://cora.ucc.ie/bitstream/10468/3710/4/2608.pdf

E. H. Yu, X. Wang, U. Krewer, L. Li, and K. Scott, Direct oxidation alkaline fuelcells: from materials to systems, Energy Environ. Sci., vol.164, issue.2, pp.5668-5680, 2012.
DOI : 10.1016/j.jpowsour.2006.09.114

URL : http://edoc.mpg.de/get.epl?fid=101472&did=575718&ver=0

J. Durst, A. Siebel, C. Simon, F. Hasché, J. Herranz et al., New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism, Energy Environ. Sci., vol.15, issue.7, 2014.
DOI : 10.1039/c3cp51083b

P. Olu, F. Deschamps, G. Caldarella, M. Chatenet, and N. Job, Investigation of platinum and palladium as potential anodic catalysts for direct borohydride and ammonia borane fuel cells, Journal of Power Sources, vol.297, pp.492-503, 2015.
DOI : 10.1016/j.jpowsour.2015.08.022

L. C. Nagle and J. F. Rohan, Nanoporous Gold Catalyst for Direct Ammonia Borane Fuel Cells, Journal of The Electrochemical Society, vol.26, issue.7, 2011.
DOI : 10.1016/j.jpowsour.2006.12.007

URL : https://cora.ucc.ie/bitstream/10468/1079/4/LCN_NanoporousAV2011.pdf

M. Belén-molina-concha, M. Chatenet, F. H. Lima, and E. A. Ticianelli, In situ Fourier transform infrared spectroscopy and on-line differential electrochemical mass spectrometry study of the NH3BH3 oxidation reaction on gold electrodes, Electrochimica Acta, vol.89, pp.607-615, 2013.
DOI : 10.1016/j.electacta.2012.11.027

X. Zhang, S. Han, J. Yan, H. Shioyama, N. Kuriyama et al., Electrochemical oxidation of ammonia borane on gold electrode, International Journal of Hydrogen Energy, vol.34, issue.1, pp.174-179, 2009.
DOI : 10.1016/j.ijhydene.2008.09.083

K. Shimizu and A. Satsuma, Silver Cluster Catalysts for Green Organic Synthesis, Journal of the Japan Petroleum Institute, vol.54, issue.6, pp.347-360, 2011.
DOI : 10.1627/jpi.54.347

URL : https://www.jstage.jst.go.jp/article/jpi/54/6/54_6_347/_pdf

E. Detsi, M. S. Sellès, P. R. Onck, and J. T. De-hosson, Nanoporous silver as electrochemical actuator, Scripta Materialia, vol.69, issue.2, pp.195-198, 2013.
DOI : 10.1016/j.scriptamat.2013.04.003

T. Spassov, L. Lyubenova, Y. Liu, S. Bliznakov, M. Spassova et al., Mechanochemical synthesis, thermal stability and selective electrochemical dissolution of Cu???Ag solid solutions, Journal of Alloys and Compounds, vol.478, issue.1-2, pp.232-236, 2009.
DOI : 10.1016/j.jallcom.2008.12.005

M. Chatenet, F. Micoud, I. Roche, E. Chainet, and J. Vondrák, Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte, Electrochimica Acta, vol.51, issue.25, pp.5452-5458, 2006.
DOI : 10.1016/j.electacta.2006.02.014

URL : https://hal.archives-ouvertes.fr/hal-00333328

H. Cheng and K. Scott, Investigation of non-platinum cathode catalysts for direct borohydride fuel cells, Journal of Electroanalytical Chemistry, vol.596, issue.2, pp.117-123, 2006.
DOI : 10.1016/j.jelechem.2006.07.031

E. Sanli, H. Celikkan, B. Zuhtyuusal, and M. Aksu, Anodic behavior of Ag metal electrode in direct borohydride fuel cells, International Journal of Hydrogen Energy, vol.31, issue.13, pp.1920-1924, 2006.
DOI : 10.1016/j.ijhydene.2006.04.003

M. H. Atwan, D. O. Northwood, and E. L. Gyenge, Evaluation of colloidal Ag and Ag-alloys as anode electrocatalysts for direct borohydride fuel cells, International Journal of Hydrogen Energy, vol.32, issue.15, pp.3116-3125, 2007.
DOI : 10.1016/j.ijhydene.2005.12.022

E. Sanli, B. Z. Uysal, and M. L. Aksu, The oxidation of NaBH4 on electrochemicaly treated silver electrodes, International Journal of Hydrogen Energy, vol.33, issue.8, pp.2097-2104, 2008.
DOI : 10.1016/j.ijhydene.2008.01.049

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, Evolution of nanoporosity in dealloying, Nature, vol.82, issue.6827, pp.450-453, 2001.
DOI : 10.1103/PhysRevLett.82.121

J. Erlebacher, An Atomistic Description of Dealloying, Journal of The Electrochemical Society, vol.10, issue.10, 2004.
DOI : 10.1149/1.1784820

J. Zhang, H. Ma, D. Zhang, P. Liu, F. Tian et al., Electrocatalytic activity of bimetallic platinum???gold catalysts fabricated based on nanoporous gold, Physical Chemistry Chemical Physics, vol.125, issue.22, 2008.
DOI : 10.1039/b718192b

M. Zhang, M. P. Li, T. Yin, and T. Zhang, Fabrication of nanoporous bi-metallic Ag???Pd alloys with open pores, Materials Letters, vol.162, pp.273-276, 2016.
DOI : 10.1016/j.matlet.2015.10.014

C. Xu, R. Wang, M. Chen, Y. Zhang, and Y. Ding, Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties, Phys. Chem. Chem. Phys., vol.140, issue.568, pp.239-246, 2010.
DOI : 10.1039/B804591G

C. Xu, L. Wang, X. Mu, and Y. Ding, Nanoporous PtRu Alloys for Electrocatalysis, Langmuir, vol.26, issue.10, pp.7437-7443, 2010.
DOI : 10.1021/la9041474

S. Van-petegem, S. Brandstetter, R. Maass, A. M. Hodge, B. S. El-dasher et al., On the Microstructure of Nanoporous Gold: An X-ray Diffraction Study, Nanoporous plasmonic metamaterials, pp.1158-1163, 2008.
DOI : 10.1021/nl803799q

L. Liu, R. Scholz, E. Pippel, and U. Gösele, Microstructure, electrocatalytic and sensing properties of nanoporous Pt 46 Ni 54 alloy nanowires fabricated by mild dealloying, J. Mater. Chem, vol.20, issue.5621, 2010.

V. Zielasek, B. Jürgens, C. Schulz, J. Biener, M. M. Biener et al., Gold Catalysts: Nanoporous Gold Foams, Angewandte Chemie International Edition, vol.8, issue.48, pp.8241-8244, 2006.
DOI : 10.1557/S0883769400052660

A. Wittstock, B. Neumann, A. Schaefer, K. Dumbuya, C. Kübel et al., Nanoporous Au: An Unsupported Pure Gold Catalyst?, The Journal of Physical Chemistry C, vol.113, issue.14, pp.5593-5600, 2009.
DOI : 10.1021/jp808185v

M. Yan, Development of New Catalytic Performance of Nanoporous Metals for Organic Reactions, pp.978-982, 2014.
DOI : 10.1007/978-4-431-54931-4

D. Kramer, R. N. Viswanath, and J. Weissmüller, Surface-Stress Induced Macroscopic Bending of Nanoporous Gold Cantilevers, Nano Letters, vol.4, issue.5, pp.793-796, 2004.
DOI : 10.1021/nl049927d

J. Biener, L. Wittstock, M. M. Zepeda-ruiz, V. Biener, D. Zielasek et al., Surface-chemistry-driven actuation in nanoporous??gold, Nature Materials, vol.24, issue.1, pp.47-51, 2009.
DOI : 10.1021/jp0616213

L. Y. Chen, J. S. Yu, T. Fujita, and M. W. Chen, Nanoporous Copper with Tunable Nanoporosity for SERS Applications, Advanced Functional Materials, vol.62, issue.8, pp.1221-1226, 2009.
DOI : 10.1002/adfm.200801239

H. Qiu, Z. Zhang, X. Huang, and Y. Qu, Dealloying Ag-Al Alloy to Prepare Nanoporous Silver as a Substrate for Surface-Enhanced Raman Scattering: Effects of Structural Evolution and Surface Modification, ChemPhysChem, vol.8, issue.11, pp.2118-2123, 2011.
DOI : 10.1021/nl8015297

P. R. Reddy, K. Varaprasad, N. Narayana-reddy, K. Mohana-raju, and N. S. Reddy, Fabrication of Au and Ag Bi-metallic nanocomposite for antimicrobial applications, Journal of Applied Polymer Science, vol.318, issue.2, pp.1357-1362, 2012.
DOI : 10.1016/j.jcis.2007.10.014

L. Y. Chen, L. Zhang, T. Fujita, and M. W. Chen, Surface-Enhanced Raman Scattering of Silver@Nanoporous Copper Core???Shell Composites Synthesized by an In Situ Sacrificial Template Approach, The Journal of Physical Chemistry C, vol.113, issue.32, pp.14195-14199, 2009.
DOI : 10.1021/jp904081s

T. N. Martin, Nanoporous and Thin Film Gold and Silver Metal Alloys and Their Medical Applications in Drug Delivery and Antimicrobial Activity, 2012.

A. Zalineeva, A. Serov, M. Padilla, U. Martinez, K. Artyushkova et al., Bi Catalysts for the Electrooxidation of Glycerol in Alkaline Media, Journal of the American Chemical Society, vol.136, issue.10, pp.3937-3945, 2014.
DOI : 10.1021/ja412429f

A. Zalineeva, A. Serov, M. Padilla, U. Martinez, K. Artyushkova et al., Nano-structured Pd-Sn catalysts for alcohol electro-oxidation in alkaline medium, Electrochemistry Communications, vol.57, pp.48-51, 2015.
DOI : 10.1016/j.elecom.2015.05.006

URL : https://hal.archives-ouvertes.fr/hal-01368508

A. Zalineeva, A. Serov, M. Padilla, U. Martinez, K. Artyushkova et al., Glycerol electrooxidation on self-supported Pd1Snx nanoparticules, Applied Catalysis B: Environmental, vol.176, issue.177, pp.176-177, 2015.
DOI : 10.1016/j.apcatb.2015.04.037

URL : https://hal.archives-ouvertes.fr/hal-01368495

C. Xu, Y. Li, F. Tian, and Y. Ding, Dealloying to Nanoporous Silver and Its Implementation as a Template Material for Construction of Nanotubular Mesoporous Bimetallic Nanostructures, ChemPhysChem, vol.21, issue.15, pp.3320-3328, 2010.
DOI : 10.1557/mrs2009.156

C. Xu, Y. Liu, F. Su, A. Liu, and H. Qiu, Nanoporous PtAg and PtCu alloys with hollow ligaments for enhanced electrocatalysis and glucose biosensing, Biosensors and Bioelectronics, vol.27, issue.1, pp.160-166, 2011.
DOI : 10.1016/j.bios.2011.06.036

Y. Jin, R. Li, and T. Zhang, Formation of nanoporous silver by dealloying Ca???Ag metallic glasses in water, Intermetallics, vol.67, pp.166-170, 2015.
DOI : 10.1016/j.intermet.2015.08.011

M. Zhang, A. M. Junior, S. J. Pang, T. Zhang, and A. R. Yavari, Fabrication of nanoporous silver with open pores, Scripta Materialia, vol.100, pp.21-23, 2015.
DOI : 10.1016/j.scriptamat.2014.11.040

URL : https://hal.archives-ouvertes.fr/hal-01216772

E. Detsi, Z. Vukovi?, S. Punzhin, P. M. Bronsveld, P. R. Onck et al., Finetuning the feature size of nanoporous silver, CrystEngComm, vol.14, issue.5402, 2012.

W. S. Rasband and U. S. , Institutes Heal, 1997.

P. Klobes, K. Meyer, and R. G. Munro, Porosity and Specific Surface Area Measurements for Solid Materials, U.S. Government Printing Office, 2006.

U. Martinez, K. Asazawa, B. Halevi, A. Falase, B. Kiefer et al., Aerosol-derived Ni1???xZnx electrocatalysts for direct hydrazine fuel cells, Physical Chemistry Chemical Physics, vol.72, issue.16, 2012.
DOI : 10.1021/cr60277a003

A. Serov, U. Martinez, A. Falase, and P. Atanassov, Highly active PdCu catalysts for electrooxidation of 2-propanol, Electrochemistry Communications, vol.22, pp.193-196, 2012.
DOI : 10.1016/j.elecom.2012.06.023

T. Sakamoto, K. Asazawa, U. Martinez, B. Halevi, T. Suzuki et al., Electrooxidation of hydrazine hydrate using Ni???La catalyst for anion exchange membrane fuel cells, Journal of Power Sources, vol.234, pp.252-259, 2013.
DOI : 10.1016/j.jpowsour.2013.01.181

A. Serov, U. Martinez, and P. Atanassov, Novel Pd???In catalysts for alcohols electrooxidation in alkaline media, Electrochemistry Communications, vol.34, pp.185-188, 2013.
DOI : 10.1016/j.elecom.2013.06.003

T. Sakamoto, K. Asazawa, J. Sanabria-chinchilla, U. Martinez, B. Halevi et al., Combinatorial discovery of Ni-based binary and ternary catalysts for hydrazine electrooxidation for use in anion exchange membrane fuel cells, Journal of Power Sources, vol.247, pp.605-611, 2014.
DOI : 10.1016/j.jpowsour.2013.08.107

. Micromeritics, Accelerated Surface Area and Porosimetry System Operator's Manual, V4.01, ASAP2020 Operator's Manual.pdf, 2016.

M. C. Pourbaix68-]-l, J. F. Nagle, and . Rohan, Atlas d'équilibres électrochimiquesGauthier-V 1963 Nanoporous gold anode catalyst for direct borohydride fuel cell, Int. J. Hydrog. Energy, vol.36, pp.10319-10326, 2011.

P. Olu, C. R. Barros, N. Job, and M. Chatenet, Electrooxidation of NaBH4 in Alkaline Medium on Well-defined Pt Nanoparticles Deposited onto Flat Glassy Carbon Substrate: Evaluation of the Effects of Pt Nanoparticle Size, Inter-Particle Distance, and Loading, Electrocatalysis, vol.44, issue.139, pp.288-300, 2014.
DOI : 10.1016/S0013-4686(98)00254-0

D. A. Finkelstein, C. D. Letcher, D. J. Jones, L. M. Sandberg, D. J. Watts et al., Fuel Cells, The Journal of Physical Chemistry C, vol.117, issue.4, pp.1571-1581, 2013.
DOI : 10.1021/jp308677f