A. Kubono and N. Okui, Polymer thin films prepared by vapor deposition, Progress in Polymer Science, vol.19, issue.3, pp.389-438, 1994.
DOI : 10.1016/0079-6700(94)90001-9

R. Sreenivasan and K. K. Gleason, Overview of Strategies for the CVD of Organic Films and Functional Polymer Layers, Chemical Vapor Deposition, vol.18, issue.119, pp.77-90, 2009.
DOI : 10.1142/p336

M. E. Alf, Chemical Vapor Deposition of Conformal, Functional, and Responsive Polymer Films, Advanced Materials, vol.51, issue.18, pp.1993-2027, 2010.
DOI : 10.1002/3527600388

W. F. Gorham, A New, General Synthetic Method for the Preparation of Linear Poly-p-xylylenes, Journal of Polymer Science Part A-1: Polymer Chemistry, vol.4, issue.12, pp.3027-3039, 1966.
DOI : 10.1002/pol.1966.150041209

S. Rogojevic, J. A. Moore, and W. N. Gill, polymers: Parylene and polynaphthalene, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.17, issue.1, pp.266-274, 1999.
DOI : 10.1116/1.581544

K. M. Vaeth and K. F. Jensen, -phenylene vinylene) Prepared by Chemical Vapor Deposition:?? Influence of Monomer Selection and Reaction Conditions on Film Composition and Luminescence Properties, Macromolecules, vol.31, issue.20, pp.6789-6793, 1998.
DOI : 10.1021/ma9805755

P. Kramer, A. K. Sharma, E. E. Hennecke, and H. Yasuda, Polymerization of para-xylylene derivatives (parylene polymerization). I. Deposition kinetics for parylene N and parylene C, Journal of Polymer Science: Polymer Chemistry Edition, vol.22, issue.2, pp.475-491, 1984.
DOI : 10.1002/pol.1984.170220218

J. B. Fortin and T. Lu, -xylylene) (Parylene) Thin Films, Chemistry of Materials, vol.14, issue.5, pp.1945-1949, 2002.
DOI : 10.1021/cm010454a

J. R. Salem, F. O. Sequeda, J. Duran, W. Y. Lee, and R. M. Yang, Solventless polyimide films by vapor deposition, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.4, issue.3, pp.369-374, 1986.
DOI : 10.1116/1.573930

M. Iijima and Y. Takahashi, Vapor deposition polymerization: a study on film formation in reaction of pyromellitic anhydride and bis(4-aminophenyl) ether, Macromolecules, vol.22, issue.7, pp.2944-2946, 1989.
DOI : 10.1021/ma00197a011

Y. Takahashi, M. Iijima, K. Inagawa, and A. Itoh, Synthesis of aromatic polyimide film by vacuum deposition polymerization, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.5, issue.4, pp.2253-2256, 1987.
DOI : 10.1116/1.574429

S. J. Limb, D. J. Edell, E. F. Gleason, and K. K. Gleason, Pulsed plasma-enhanced chemical vapor deposition from hexafluoropropylene oxide: Film composition study, Journal of Applied Polymer Science, vol.67, issue.8, pp.1489-1502, 1998.
DOI : 10.1002/(SICI)1097-4628(19980222)67:8<1489::AID-APP14>3.0.CO;2-X

H. G. Lewis, D. J. Edell, and K. K. Gleason, Pulsed-PECVD Films from Hexamethylcyclotrisiloxane for Use as Insulating Biomaterials, Chemistry of Materials, vol.12, issue.11, pp.3488-3494, 2000.
DOI : 10.1021/cm0003370

A. Airoudj, F. Bally-le, V. Gall, and . Roucoules, Textile with Durable Janus Wetting Properties Produced by Plasma Polymerization, The Journal of Physical Chemistry C, vol.120, issue.51, pp.29162-29172, 2016.
DOI : 10.1021/acs.jpcc.6b09373

A. Dirani, F. Wieder, V. Roucoules, A. Airoudj, and O. Soppera, Nanopatterning of Plasma Polymer Thin Films by ArF Photolithography: Impact of Polymer Structure on Patterning Properties, Plasma Processes and Polymers, vol.235, issue.7, pp.571-581, 2010.
DOI : 10.1016/j.apsusc.2004.05.179

URL : https://hal.archives-ouvertes.fr/hal-00534572

K. K. Lau, H. G. Lewis, S. J. Limb, M. C. Kwan, and K. K. Gleason, Hot-wire chemical vapor deposition (HWCVD) of fluorocarbon and organosilicon thin films, Thin Solid Films, vol.395, issue.1-2, pp.288-291, 2001.
DOI : 10.1016/S0040-6090(01)01287-1

D. C. Borrelli, S. Lee, and K. K. Gleason, Optoelectronic properties of polythiophene thin films and organic TFTs fabricated by oxidative chemical vapor deposition, Journal of Materials Chemistry C, vol.15, issue.448, pp.7223-7231, 2014.
DOI : 10.1016/0379-6779(86)90084-6

N. J. Trujillo, M. C. Barr, S. G. Im, and K. K. Gleason, Oxidative chemical vapor deposition (oCVD) of patterned and functional grafted conducting polymer nanostructures, Journal of Materials Chemistry, vol.105, issue.7, pp.3968-3972, 2010.
DOI : 10.1039/b925736e

S. H. Baxamusa, S. G. Im, and K. K. Gleason, Initiated and oxidative chemical vapor deposition: a scalable method for conformal and functional polymer films on real substrates, Physical Chemistry Chemical Physics, vol.49, issue.112, pp.5227-5240, 2009.
DOI : 10.1002/1521-4095(200010)12:20<1481::AID-ADMA1481>3.0.CO;2-Z

S. G. Im and K. K. Gleason, Systematic Control of the Electrical Conductivity of Poly(3,4-ethylenedioxythiophene) via Oxidative Chemical Vapor Deposition, Macromolecules, vol.40, issue.18, pp.6552-6556, 2007.
DOI : 10.1021/ma0628477

K. K. Lau and K. K. Gleason, Initiated Chemical Vapor Deposition (iCVD) of Poly(alkyl acrylates):?? An Experimental Study, Macromolecules, vol.39, issue.10, pp.3688-3694, 2006.
DOI : 10.1021/ma0601619

K. K. Lau and K. K. Gleason, Particle functionalization and encapsulation by initiated chemical vapor deposition (iCVD), Surface and Coatings Technology, vol.201, issue.22-23, pp.9189-9194, 2007.
DOI : 10.1016/j.surfcoat.2007.04.045

K. Chan and K. K. Gleason, A Mechanistic Study of Initiated Chemical Vapor Deposition of Polymers:?? Analyses of Deposition Rate and Molecular Weight, Macromolecules, vol.39, issue.11, pp.3890-3894, 2006.
DOI : 10.1021/ma051776t

K. K. Lau and K. K. Gleason, Initiated Chemical Vapor Deposition (iCVD) of Poly(alkyl acrylates):?? A Kinetic Model, Macromolecules, vol.39, issue.10, pp.3695-3703, 2006.
DOI : 10.1021/ma0601621

T. P. Martin, Initiated chemical vapor deposition (iCVD) of polymeric nanocoatings, Surface and Coatings Technology, vol.201, issue.22-23, pp.9400-9405, 2007.
DOI : 10.1016/j.surfcoat.2007.05.003

J. Xu and K. K. Gleason, -Butyl Peroxybenzoate as an Initiator, ACS Applied Materials & Interfaces, vol.3, issue.7, pp.2410-2416, 2011.
DOI : 10.1021/am200322k

K. Chan and K. K. Gleason, Initiated CVD of Poly(methyl methacrylate) Thin Films, Chemical Vapor Deposition, vol.647, issue.10, pp.437-443, 2005.
DOI : 10.1002/masy.19940860106

M. Gupta and K. K. Gleason, Thin Solid Films, pp.1579-1584, 2006.

S. Nejati and K. K. Lau, Pore Filling of Nanostructured Electrodes in Dye Sensitized Solar Cells by Initiated Chemical Vapor Deposition, Nano Letters, vol.11, issue.2, pp.419-423, 2011.
DOI : 10.1021/nl103020w

P. D. Haller, R. J. Frank-finney, and M. Gupta, Vapor-Phase Free Radical Polymerization in the Presence of an Ionic Liquid, Macromolecules, vol.44, issue.8, pp.2653-2659, 2011.
DOI : 10.1021/ma102807n

R. Bakker, V. Verlaan, C. H. Van-der-werf, J. K. Rath, K. K. Gleason et al., Initiated chemical vapour deposition (iCVD) of thermally stable poly-glycidyl methacrylate, Surface and Coatings Technology, vol.201, issue.22-23, pp.9422-9425, 2007.
DOI : 10.1016/j.surfcoat.2007.03.058

K. K. Lau and K. K. Gleason, Thin Solid Films, pp.674-677, 2008.

N. Chen, X. Wang, and K. K. Gleason, Conformal single-layer encapsulation of PEDOT at low substrate temperature, Applied Surface Science, vol.323, pp.2-6, 2014.
DOI : 10.1016/j.apsusc.2014.06.123

J. B. You, Y. Yoo, M. S. Oh, and S. G. Im, Simple and Reliable Method to Incorporate the Janus Property onto Arbitrary Porous Substrates, ACS Applied Materials & Interfaces, vol.6, issue.6, pp.4005-4010
DOI : 10.1021/am4054354

J. B. You, S. Y. Kim, Y. J. Park, Y. G. Ko, and S. G. Im, A Vapor-Phase Deposited Polymer Film to Improve the Adhesion of Electroless-Deposited Copper Layer onto Various Kinds of Substrates, Langmuir, vol.30, issue.3, pp.916-921, 2014.
DOI : 10.1021/la404251h

S. G. Im, B. Kim, L. H. Lee, W. E. Tenhaeff, P. T. Hammond et al., A Directly Patternable, Click-Active Polymer Film via Initiated Chemical Vapor Deposition, Macromolecular Rapid Communications, vol.39, issue.20, pp.1648-1654, 2008.
DOI : 10.1002/marc.200800404

G. Chen, M. Gupta, K. Chan, and K. K. Gleason, Initiated Chemical Vapor Deposition of Poly(furfuryl methacrylate), Macromolecular Rapid Communications, vol.39, issue.23, pp.2205-2209, 2007.
DOI : 10.1002/marc.200700466

R. K. Bose and K. K. Lau, Thin Solid Films, pp.4415-4417, 2011.

G. O. Ince, E. Armagan, H. Erdogan, F. Buyukserin, L. Uzun et al., One-Dimensional Surface-Imprinted Polymeric Nanotubes for Specific Biorecognition by Initiated Chemical Vapor Deposition (iCVD), ACS Applied Materials & Interfaces, vol.5, issue.14, pp.6447-6452, 2013.
DOI : 10.1021/am401769r

R. K. Bose and K. K. Lau, Mechanical Properties of Ultrahigh Molecular Weight PHEMA Hydrogels Synthesized Using Initiated Chemical Vapor Deposition, Biomacromolecules, vol.11, issue.8, pp.2116-2122, 2010.
DOI : 10.1021/bm100498a

L. Montero, G. Gabriel, A. Guimerà, R. Villa, K. K. Gleason et al., Increasing biosensor response through hydrogel thin film deposition: Influence of hydrogel thickness, Vacuum, vol.86, issue.12, pp.2102-2104, 2012.
DOI : 10.1016/j.vacuum.2012.06.002

N. J. Trujillo, S. H. Baxamusa, and K. K. Gleason, Grafted Functional Polymer Nanostructures Patterned Bottom-Up by Colloidal Lithography and Initiated Chemical Vapor Deposition (iCVD), Chemistry of Materials, vol.21, issue.4, pp.742-750, 2009.
DOI : 10.1021/cm803008r

B. Chen, P. Kwong, and M. Gupta, Patterned Fluoropolymer Barriers for Containment of Organic Solvents within Paper-Based Microfluidic Devices, ACS Applied Materials & Interfaces, vol.5, issue.23, pp.12701-12707, 2013.
DOI : 10.1021/am404049x

S. G. Im, K. W. Bong, C. Lee, P. S. Doyle, and K. K. Gleason, A conformal nano-adhesive via initiated chemical vapor deposition for microfluidic devices, Lab Chip, vol.130, issue.3, pp.411-416, 2009.
DOI : 10.1021/ja806030z

J. B. You, K. Min, B. Lee, D. Kim, and S. G. Im, A doubly cross-linked nano-adhesive for the reliable sealing of flexible microfluidic devices, Lab on a Chip, vol.5, issue.7, pp.1266-1272, 2013.
DOI : 10.1063/1.3576780

J. Xu and K. K. Gleason, Conformal, Amine-Functionalized Thin Films by Initiated Chemical Vapor Deposition (iCVD) for Hydrolytically Stable Microfluidic Devices, Chemistry of Materials, vol.22, issue.5, pp.1732-1738, 2010.
DOI : 10.1021/cm903156a

G. Ozaydin-ince and K. K. Gleason, Tunable Conformality of Polymer Coatings on High Aspect Ratio Features, Chemical Vapor Deposition, vol.143, issue.1-3, pp.100-105, 2010.
DOI : 10.1002/masy.19991430106

N. Yamazoe, Sensors and Actuators B: Chemical, pp.2-14, 2005.

S. Fanget, Gas sensors based on gravimetric detection???A review, Sensors and Actuators B: Chemical, vol.160, issue.1, pp.804-821, 2011.
DOI : 10.1016/j.snb.2011.08.066

W. Wang, S. He, S. Li, M. Liu, and Y. , Advances in SXFA-Coated SAW Chemical Sensors for Organophosphorous Compound Detection, Sensors, vol.26, issue.12, pp.1526-1541, 2011.
DOI : 10.3390/s30700236

M. Boutamine, A. Bellel, S. Sahli, Y. Segui, and P. Raynaud, Thin Solid Films, pp.196-203, 2014.

J. W. Grate, Acoustic Wave Microsensor Arrays for Vapor Sensing, Chemical Reviews, vol.100, issue.7, pp.2627-2648, 2000.
DOI : 10.1021/cr980094j

J. W. Grate, S. N. Kaganove, and V. R. Bhethanabotla, Comparisons of Polymer/Gas Partition Coefficients Calculated from Responses of Thickness Shear Mode and Surface Acoustic Wave Vapor Sensors, Analytical Chemistry, vol.70, issue.1, pp.199-203, 1998.
DOI : 10.1021/ac970608z

A. Mirmohseni and V. Hassanzadeh, Application of polymer-coated quartz crystal microbalance (QCM) as a sensor for BTEX compounds vapors, Journal of Applied Polymer Science, vol.625, issue.6, pp.1062-1066, 2001.
DOI : 10.1016/0021-9673(92)85209-C

P. Si, J. Mortensen, A. Komolov, J. Denborg, and P. J. Møller, Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures, Analytica Chimica Acta, vol.597, issue.2, pp.223-230, 2007.
DOI : 10.1016/j.aca.2007.06.050

E. S. Mañoso, R. Herrera-basurto, B. M. Simonet, and M. Valcárcel, A quartz crystal microbalance modified with carbon nanotubes as a sensor for volatile organic compounds, Sensors and Actuators B: Chemical, vol.186, pp.811-816, 2013.
DOI : 10.1016/j.snb.2013.06.081

X. Xu, H. Cang, C. Li, Z. K. Zhao, and H. Li, Quartz crystal microbalance sensor array for the detection of volatile organic compounds, Talanta, vol.78, issue.3, pp.711-716, 2009.
DOI : 10.1016/j.talanta.2008.12.031

H. O. Finklea, M. A. Phillippi, E. Lompert, and J. W. Grate, for the Detection of Chlorinated and Aromatic Hydrocarbons with Quartz Crystal Microbalance Sensors, Analytical Chemistry, vol.70, issue.7, pp.1268-1276, 1998.
DOI : 10.1021/ac970652e

C. Fietzek, Soluble phthalocyanines as coatings for quartz-microbalances: specific and unspecific sorption of volatile organic compounds, Sensors and Actuators B: Chemical, vol.57, issue.1-3, pp.88-98, 1999.
DOI : 10.1016/S0925-4005(99)00167-7

J. W. Grate, S. J. Patrash, S. N. Kaganove, and B. M. Wise, Hydrogen Bond Acidic Polymers for Surface Acoustic Wave Vapor Sensors and Arrays, Analytical Chemistry, vol.71, issue.5, pp.1033-1040, 1999.
DOI : 10.1021/ac9810011

G. Sauerbrey, Verwendung von Schwingquarzen zur W???gung d???nner Schichten und zur Mikrow???gung, Zeitschrift f???r Physik, vol.155, issue.2, pp.206-222, 1959.
DOI : 10.1007/BF01337937

A. Hierlemann, E. T. Zellers, and A. J. Ricco, Use of Linear Solvation Energy Relationships for Modeling Responses from Polymer-Coated Acoustic-Wave Vapor Sensors, Analytical Chemistry, vol.73, issue.14, pp.3458-3466, 2001.
DOI : 10.1021/ac010083h

J. Tonneau, Tables de chimie: Un mémento pour le laboratoire, 2000.

Y. Wei, E. J. Connors, X. Jia, and C. Wang, Controlled free radical ring-opening polymerization and chain extension of the ?living? polymer, Journal of Polymer Science Part A: Polymer Chemistry, vol.36, issue.5, pp.761-771, 1998.
DOI : 10.1002/(SICI)1099-0518(19980415)36:5<761::AID-POLA9>3.0.CO;2-O

L. F. Cafferata and C. J. Manzione, Kinetics and Mechanism of Gas-Phase Thermolysis Using Headspace-Gas Chromatographic Analysis, Journal of Chromatographic Science, vol.39, issue.2, pp.45-48, 2001.
DOI : 10.1093/chromsci/39.2.45

G. Ozaydin-ince and K. K. Gleason, Transition between kinetic and mass transfer regimes in the initiated chemical vapor deposition from ethylene glycol diacrylate, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.27, issue.5, pp.1135-1143, 2009.
DOI : 10.1116/1.3168553

X. Chen and M. Anthamatten, Multicomponent vapor deposition polymerization of poly(methyl methacrylate) in an axisymmetric vacuum reactor, Polymer, vol.49, issue.7, pp.1823-1830, 2008.
DOI : 10.1016/j.polymer.2008.02.027

M. Gupta and K. K. Gleason, Thin Solid Films, pp.1579-1584, 2006.

T. P. Martin, K. Chan, and K. K. Gleason, Thin Solid Films, pp.681-683, 2008.

K. Nakanishi and P. H. Solomon, Infrared Absorption Spectroscopy, 1997.

J. E. Mark, Physical Properties of Polymers Handbook, 2007.
DOI : 10.1007/978-0-387-69002-5

O. Chiantore, M. Lazzari, M. Aglietto, V. Castelvetro, and F. Ciardelli, Photochemical stability of partially fluorinated acrylic protective coatings I. Poly(2,2,2-trifluoroethyl methacrylate) and poly(1H,1H,2H,2H-perfluorodecyl methacrylate-co-2-ethylhexyl methacrylate)s, Polymer Degradation and Stability, vol.67, issue.3, pp.461-467, 2000.
DOI : 10.1016/S0141-3910(99)00146-9

V. J. Bharamaiah-jeevendrakumar, B. A. Altemus, A. J. Gildea, and M. Bergkvist, Thermal properties of poly(neopentylmethacrylate) thin films deposited via solventless, radical initiated chemical vapor deposition, Thin Solid Films, vol.542, pp.81-86, 2013.
DOI : 10.1016/j.tsf.2013.06.056

S. Janakiraman, S. L. Farrell, C. Hsieh, Y. Y. Smolin, M. Soroush et al., Thin Solid Films, pp.244-250, 2015.

K. Chan, L. E. Kostun, W. E. Tenhaeff, and K. K. Gleason, Initiated chemical vapor deposition of polyvinylpyrrolidone-based thin films, Polymer, vol.47, issue.20, pp.6941-6947, 2006.
DOI : 10.1016/j.polymer.2006.07.068

K. Chan and K. K. Gleason, A Mechanistic Study of Initiated Chemical Vapor Deposition of Polymers:?? Analyses of Deposition Rate and Molecular Weight, Macromolecules, vol.39, issue.11, pp.3890-3894, 2006.
DOI : 10.1021/ma051776t

K. K. Lau and K. K. Gleason, Initiated Chemical Vapor Deposition (iCVD) of Poly(alkyl acrylates):?? An Experimental Study, Macromolecules, vol.39, issue.10, pp.3688-3694, 2006.
DOI : 10.1021/ma0601619

M. Gupta and K. K. Gleason, Thin Solid Films, pp.3547-3550, 2009.

K. K. Lau and K. K. Gleason, Initiated Chemical Vapor Deposition (iCVD) of Poly(alkyl acrylates):?? A Kinetic Model, Macromolecules, vol.39, issue.10, pp.3695-3703, 2006.
DOI : 10.1021/ma0601621

J. Xu and K. K. Gleason, -Butyl Peroxybenzoate as an Initiator, ACS Applied Materials & Interfaces, vol.3, issue.7, pp.2410-2416, 2011.
DOI : 10.1021/am200322k

K. Chan and K. K. Gleason, Initiated Chemical Vapor Deposition of Linear and Cross-linked Poly(2-hydroxyethyl methacrylate) for Use as Thin-Film Hydrogels, Langmuir, vol.21, issue.19, pp.8930-8939, 2005.
DOI : 10.1021/la051004q

T. P. Martin, K. L. Sedransk, K. Chan, S. H. Baxamusa, and K. K. Gleason, Solventless Surface Photoinitiated Polymerization:?? Grafting Chemical Vapor Deposition (gCVD), Macromolecules, vol.40, issue.13, pp.4586-4591, 2007.
DOI : 10.1021/ma070150v

S. H. Baxamusa and K. K. Gleason, Thin Polymer Films with High Step Coverage in Microtrenches by Initiated CVD, Chemical Vapor Deposition, vol.39, issue.9-10, pp.313-318, 2008.
DOI : 10.1007/978-1-4757-3901-5

G. Chen, M. Gupta, K. Chan, and K. K. Gleason, Initiated Chemical Vapor Deposition of Poly(furfuryl methacrylate), Macromolecular Rapid Communications, vol.39, issue.23, pp.2205-2209, 2007.
DOI : 10.1002/marc.200700466

K. Nakanishi and P. H. Solomon, Infrared Absorption Spectroscopy, 1997.

L. H. Lee and K. K. Gleason, Cross-Linked Organic Sacrificial Material for Air Gap Formation by Initiated Chemical Vapor Deposition, Journal of The Electrochemical Society, vol.30, issue.4, pp.78-86, 2008.
DOI : 10.1016/S0040-6090(02)00760-5

Y. Iizuka and M. Surianarayanan, -butyl Peroxide Using BatchCAD, Industrial & Engineering Chemistry Research, vol.42, issue.13, pp.2987-2995, 2003.
DOI : 10.1021/ie020687r

G. Ozaydin-ince and K. K. Gleason, Transition between kinetic and mass transfer regimes in the initiated chemical vapor deposition from ethylene glycol diacrylate, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.27, issue.5, pp.1135-1143, 2009.
DOI : 10.1116/1.3168553

S. Janakiraman, S. L. Farrell, C. Hsieh, Y. Y. Smolin, M. Soroush et al., Thin Solid Films, pp.244-250, 2015.

V. J. Bharamaiah-jeevendrakumar, B. A. Altemus, A. J. Gildea, and M. Bergkvist, Thermal properties of poly(neopentylmethacrylate) thin films deposited via solventless, radical initiated chemical vapor deposition, Thin Solid Films, vol.542, pp.81-86, 2013.
DOI : 10.1016/j.tsf.2013.06.056

M. Gupta and K. K. Gleason, Initiated Chemical Vapor Deposition of Poly(1H,1H,2H,2H-perfluorodecyl Acrylate) Thin Films, Langmuir, vol.22, issue.24, pp.10047-10052, 2006.
DOI : 10.1021/la061904m

K. K. Lau and K. K. Gleason, Initiated Chemical Vapor Deposition (iCVD) of Poly(alkyl acrylates):?? A Kinetic Model, Macromolecules, vol.39, issue.10, pp.3695-3703, 2006.
DOI : 10.1021/ma0601621

C. Guers, Rapport de stage Développement et caractérisation de copolymères en couches minces déposés par iCVD pour des applications en nanotechnologies

N. Sur, Conclusion et intégration d'une couche sensible de poly(npMa), p.140

W. Von-oettingen, P. Neal, and D. D. Donahue, THE TOXICITY AND POTENTIAL DANGERS OF TOLUENE, Journal of the American Medical Association, vol.118, issue.8, pp.579-584, 1942.
DOI : 10.1001/jama.1942.02830080011003

N. Kwok, S. Lee, H. Guo, and W. , Substrate effects on VOC emissions from an interior finishing varnish, Building and Environment, vol.38, issue.8, pp.1019-1026, 2003.
DOI : 10.1016/S0360-1323(03)00066-0

URL : http://hdl.handle.net/10397/10563

J. W. Grate, Determination of partition coefficients from surface acoustic wave vapor sensor responses and correlation with gas-liquid chromatographic partition coefficients, Analytical Chemistry, vol.60, issue.9, pp.869-875, 1988.
DOI : 10.1021/ac00160a010

M. H. Abraham, A. Ibrahim, and A. M. Zissimos, Determination of sets of solute descriptors from chromatographic measurements, Journal of Chromatography A, vol.1037, issue.1-2, pp.29-47, 2004.
DOI : 10.1016/j.chroma.2003.12.004

J. W. Grate, S. J. Patrash, S. N. Kaganove, and B. M. Wise, Hydrogen Bond Acidic Polymers for Surface Acoustic Wave Vapor Sensors and Arrays, Analytical Chemistry, vol.71, issue.5, pp.1033-1040, 1999.
DOI : 10.1021/ac9810011

C. F. Poole and S. K. Poole, Separation characteristics of wall-coated open-tubular columns for gas chromatography, Journal of Chromatography A, vol.1184, issue.1-2, pp.254-280, 2008.
DOI : 10.1016/j.chroma.2007.07.028

J. W. Grate, Acoustic Wave Microsensor Arrays for Vapor Sensing, Chemical Reviews, vol.100, issue.7, pp.2627-2648, 2000.
DOI : 10.1021/cr980094j

M. Ávila, M. Zougagh, Á. Ríos, and A. Escarpa, Molecularly imprinted polymers for selective piezoelectric sensing of small molecules, TrAC Trends in Analytical Chemistry, vol.27, issue.1, pp.54-65, 2008.
DOI : 10.1016/j.trac.2007.10.009

K. K. Lau and K. K. Gleason, Initiated Chemical Vapor Deposition (iCVD) of Poly(alkyl acrylates):?? An Experimental Study, Macromolecules, vol.39, issue.10, pp.3688-3694, 2006.
DOI : 10.1021/ma0601619

K. K. Lau and K. K. Gleason, Initiated Chemical Vapor Deposition (iCVD) of Poly(alkyl acrylates):?? A Kinetic Model, Macromolecules, vol.39, issue.10, pp.3695-3703, 2006.
DOI : 10.1021/ma0601621

K. Nakanishi and P. H. Solomon, Infrared Absorption Spectroscopy, 1997.

J. E. Mark, Physical Properties of Polymers Handbook, 2007.
DOI : 10.1007/978-0-387-69002-5

G. Sauerbrey, Verwendung von Schwingquarzen zur W???gung d???nner Schichten und zur Mikrow???gung, Zeitschrift f???r Physik, vol.155, issue.2, pp.206-222, 1959.
DOI : 10.1007/BF01337937

J. W. Grate and E. T. Zellers, The Fractional Free Volume of the Sorbed Vapor in Modeling the Viscoelastic Contribution to Polymer-Coated Surface Acoustic Wave Vapor Sensor Responses, Analytical Chemistry, vol.72, issue.13, pp.2861-2868, 2000.
DOI : 10.1021/ac991192n

D. S. Jr, Acoustic Wave Sensors: Theory, Design, & Physico-Chemical Applications, 1996.

P. Si, J. Mortensen, A. Komolov, J. Denborg, and P. J. Møller, Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures, Analytica Chimica Acta, vol.597, issue.2, pp.223-230, 2007.
DOI : 10.1016/j.aca.2007.06.050

H. P. Lang, A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors, Applied Physics A: Materials Science & Processing, vol.66, issue.7, pp.61-64, 1998.
DOI : 10.1007/s003390051100

A. Hierlemann, E. T. Zellers, and A. J. Ricco, Use of Linear Solvation Energy Relationships for Modeling Responses from Polymer-Coated Acoustic-Wave Vapor Sensors, Analytical Chemistry, vol.73, issue.14, pp.3458-3466, 2001.
DOI : 10.1021/ac010083h

C. Ton-that, A. G. Shard, D. O. Teare, and R. H. Bradley, XPS and AFM surface studies of solvent-cast PS/PMMA blends, Polymer, vol.42, issue.3, pp.1121-1129, 2001.
DOI : 10.1016/S0032-3861(00)00448-1

K. Chan and K. K. Gleason, Initiated CVD of Poly(methyl methacrylate) Thin Films, Chemical Vapor Deposition, vol.647, issue.10, pp.437-443, 2005.
DOI : 10.1002/masy.19940860106

A. K. Nathawat, XPS and AFM surface study of PMMA irradiated by electron beam, Surface and Coatings Technology, vol.203, issue.17-18, pp.2600-2604, 2009.
DOI : 10.1016/j.surfcoat.2009.02.054

I. Langmuir, THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS. PART I. SOLIDS., Journal of the American Chemical Society, vol.38, issue.11, pp.2221-2295, 1916.
DOI : 10.1021/ja02268a002

M. Matsuguchi, T. Uno, T. Aoki, and M. Yoshida, Chemically modified copolymer coatings for mass-sensitive toluene vapor sensors, Sensors and Actuators B: Chemical, vol.131, issue.2, pp.652-659, 2008.
DOI : 10.1016/j.snb.2007.12.052

H. Y. Yoo and S. Bruckenstein, A novel quartz crystal microbalance gas sensor based on porous film coatings. A high sensitivity porous poly(methylmethacrylate) water vapor sensor, Analytica Chimica Acta, vol.785, pp.98-103, 2013.
DOI : 10.1016/j.aca.2013.04.052

J. W. Grate, S. N. Kaganove, and V. R. Bhethanabotla, Comparisons of Polymer/Gas Partition Coefficients Calculated from Responses of Thickness Shear Mode and Surface Acoustic Wave Vapor Sensors, Analytical Chemistry, vol.70, issue.1, pp.199-203, 1998.
DOI : 10.1021/ac970608z

A. Hierlemann, A. J. Ricco, K. Bodenhöfer, A. Dominik, and W. Göpel, Conferring Selectivity to Chemical Sensors via Polymer Side-Chain Selection:?? Thermodynamics of Vapor Sorption by a Set of Polysiloxanes on Thickness-Shear Mode Resonators, Analytical Chemistry, vol.72, issue.16, pp.3696-3708, 2000.
DOI : 10.1021/ac991298i

J. W. Grate and M. H. Abraham, Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays, Sensors and Actuators B: Chemical, vol.3, issue.2, pp.85-111, 1991.
DOI : 10.1016/0925-4005(91)80202-U

H. O. Finklea, M. A. Phillippi, E. Lompert, and J. W. Grate, for the Detection of Chlorinated and Aromatic Hydrocarbons with Quartz Crystal Microbalance Sensors, Analytical Chemistry, vol.70, issue.7, pp.1268-1276, 1998.
DOI : 10.1021/ac970652e

X. Xu, H. Cang, C. Li, Z. K. Zhao, and H. Li, Quartz crystal microbalance sensor array for the detection of volatile organic compounds, Talanta, vol.78, issue.3, pp.711-716, 2009.
DOI : 10.1016/j.talanta.2008.12.031

. En-supposant and . Dans-le, que tout le polymère (d'une densité de 1) est mis en solution et une épaisseur de dépôt de 200 nm, la masse de polymère correspondante est de 6 mg. En pratique

. Dans-le-domaine-de-la-microélectronique, et en particulier pour les équipements industriels de CVD, les débits des précurseurs sont donnés en sccm « standart cubic centimeters per minute » ou centimètre cube par minute dans les conditions standards de pression (10 5 Pa) et de température (273K), soit noté cm 3 /min. Pour convertir cette unité en g.min -1 , cela revient à convertir des cm 3 en g, et l'équation des gaz parfaits est utilisée

P. Avec and . Pression, V le volume (m 3 ), n la quantité de matière (mol), R la constante des gaz parfaits (J.K -1 .mol -1 ) et T la température (K)

. Dans-notre-cas, échantillon analysé est le substrat de silicium sur lequel a été synthétisée la couche mince de polymère

R. Scarazzini, Thèse de doctorat " ToF-SIMS characterisation of fragile materials used in microelectronic and microsystem devices: validation and enhancement of the chemical information, p.2016