O. Agbulut, J. Destombes, D. Thiesson, and G. Butler-browne, Age-related appearance of tubular aggregates in the skeletal muscle of almost all male inbred mice, Histochem Cell Biol, vol.114, issue.6, pp.477-481, 2000.

L. Al-qusairi and J. Laporte, T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases, Skeletal Muscle, vol.1, issue.1, p.26, 2011.
DOI : 10.1093/hmg/ddp362

URL : https://hal.archives-ouvertes.fr/inserm-00614419

F. Antigny, S. Konig, L. Bernheim, and M. Frieden, Inositol 1,4,5 trisphosphate receptor 1 is a key player of human myoblast differentiation, Cell Calcium, vol.56, issue.6, pp.513-521, 2014.
DOI : 10.1016/j.ceca.2014.10.014

D. Kontrogianni-konstantopoulos, E. G. Sanoudou, and . Kranias, Histidine-rich Cabinding protein interacts with sarcoplasmic reticulum Ca-ATPase, Am J Physiol Heart Circ Physiol, vol.293, issue.3, pp.1581-1589, 2007.

A. D. Rudnicki, D. C. Hollenbach, and . Guttridge, IKK/NF-kappaB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis, J Cell Biol, vol.180, issue.4, pp.787-802, 2008.

D. Bakowski, M. D. Glitsch, and A. B. Parekh, in RBL-1 cells, The Journal of Physiology, vol.270, issue.1, pp.55-71, 2001.
DOI : 10.1074/jbc.270.24.14445

A. Beck, A. Fleig, R. Penner, and C. Peinelt, Regulation of endogenous and heterologous Ca2+ release-activated Ca2+ currents by pH, Cell Calcium, vol.56, issue.3, pp.235-243, 2014.
DOI : 10.1016/j.ceca.2014.07.011

N. A. Biro and A. E. Szent-gyorgyi, The effect of actin and physico-chemical changes on the myosin ATP-ase system, and on washed muscle, Hung Acta Physiol, vol.2, pp.1-4, 1949.

B. Blaauw, P. Del-piccolo, L. Rodriguez, V. H. Hernandez-gonzalez, L. Agatea et al., No evidence for inositol 1,4,5- trisphosphate-dependent Ca2+ release in isolated fibers of adult mouse skeletal muscleStructural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle, J Cell Biol, vol.107, issue.6 2, pp.2587-2600, 1988.

M. Deschauer, N. B. Romero, B. Eymard, and J. Laporte, Clinical, histological and genetic characterisation of patients with tubular aggregate myopathy caused by mutations in STIM1, J Med Genet, vol.51, issue.12, pp.824-833, 2014.

T. B. Bolton, Mechanisms of action of transmitters and other substances on smooth muscle., Physiological Reviews, vol.59, issue.3, pp.606-718, 1979.
DOI : 10.1152/physrev.1979.59.3.606

S. Boncompagni, F. Protasi, and C. Franzini-armstrong, Sequential stages in the age-dependent gradual formation and accumulation of tubular aggregates in fast twitch muscle fibers: SERCA and calsequestrin involvement, AGE, vol.31, issue.9, pp.27-41, 2012.
DOI : 10.1093/jnen/60.11.1032

C. F. Armstrong and . Perez, Triadin/Junctin double null mouse reveals a differential role for Triadin and Junctin in anchoring CASQ to the jSR and regulating Ca(2+) homeostasis, PLoS One, vol.7, issue.7, p.39962, 2012.

C. J. Brandl, N. M. Green, B. Korczak, and D. H. Maclennan, Two Ca2+ ATPase genes: Homologies and mechanistic implications of deduced amino acid sequences, Cell, vol.44, issue.4, pp.597-607, 1986.
DOI : 10.1016/0092-8674(86)90269-2

O. Brandman, J. Liou, W. S. Park, and T. Meyer, STIM2 Is a Feedback Regulator that Stabilizes Basal Cytosolic and Endoplasmic Reticulum Ca2+ Levels, Cell, vol.131, issue.7, pp.1327-1339, 2007.
DOI : 10.1016/j.cell.2007.11.039

URL : https://doi.org/10.1016/j.cell.2007.11.039

X. Cai, Y. Zhou, R. M. Nwokonko, N. A. Loktionova, X. Wang et al., The Orai1 Store-operated Calcium Channel Functions as a Hexamer, Journal of Biological Chemistry, vol.3, issue.50, 2016.
DOI : 10.1074/jbc.M111.303081

F. Carlsen and G. G. Knappeis, The anisotropic and isotropic bands of skeletal muscle in light- and electron microscopy, Experimental Cell Research, vol.8, issue.2, pp.329-335, 1955.
DOI : 10.1016/0014-4827(55)90144-0

M. A. Niemeyer, R. Valverde, and . Vicente, ORMDL3 modulates store-operated calcium entry and lymphocyte activation, Hum Mol Genet, vol.22, issue.3, pp.519-530, 2013.

M. Hantai and . Verdiere-sahuque, The origin of tubular aggregates in human myopathies, J Pathol, vol.207, issue.3, pp.313-323, 2005.

L. A. Chui, H. Neustein, and T. L. Munsat, Tubular aggregates in subclinical alcoholic myopathy, Neurology, vol.25, issue.5, pp.405-412, 1975.
DOI : 10.1212/WNL.25.5.405

C. Cognard, G. Romey, J. P. Galizzi, M. Fosset, and M. Lazdunski, Dihydropyridine-sensitive Ca2+ channels in mammalian skeletal muscle cells in culture: electrophysiological properties and interactions with Ca2+ channel activator (Bay K8644) and inhibitor (PN 200-110)., Proceedings of the National Academy of Sciences, vol.83, issue.5, pp.1518-1522, 1986.
DOI : 10.1073/pnas.83.5.1518

D. J. Cosens and A. Manning, Abnormal Electroretinogram from a Drosophila Mutant, Nature, vol.5, issue.5216, pp.285-287, 1969.
DOI : 10.1016/0003-3472(67)90016-4

N. B. Laugel, J. Romero, and . Laporte, Reducing dynamin 2 expression rescues X-linked centronuclear myopathy, J Clin Invest, vol.124, issue.3, pp.1350-1363, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01329329

J. Mandel and . Laporte, Increased expression of wild-type or a centronuclear myopathy mutant of dynamin 2 in skeletal muscle of adult mice leads to structural defects and muscle weakness, Am J Pathol, vol.178, issue.5, pp.2224-2235, 2011.

I. D. Craig and I. V. Allen, Tubular aggregates in murine dystrophy heterozygotes, Muscle & Nerve, vol.138, issue.2, pp.134-140, 1980.
DOI : 10.1212/WNL.25.5.405

B. Darbellay, S. Arnaudeau, C. R. Bader, S. Konig, and L. Bernheim, release, The Journal of Cell Biology, vol.80, issue.2, pp.335-346, 2011.
DOI : 10.1083/jcb.201012157.dv

B. Darbellay, S. Arnaudeau, S. Konig, H. Jousset, C. Bader et al., STIM1- and Orai1-dependent Store-operated Calcium Entry Regulates Human Myoblast Differentiation, Journal of Biological Chemistry, vol.31, issue.8, pp.5370-5380, 2009.
DOI : 10.1016/j.ceca.2005.06.026

URL : http://www.jbc.org/content/284/8/5370.full.pdf

S. Ayoola, S. L. Griffin, M. F. Atkin, S. Z. Gomez, and . Xu, High glucose enhances store-operated calcium entry by upregulating ORAI/STIM via calcineurin-NFAT signalling, 2015.

W. I. Dehaven, J. T. Smyth, R. R. Boyles, J. W. Putney, and J. , Calcium Inhibition and Calcium Potentiation of Orai1, Orai2, and Orai3 Calcium Release-activated Calcium Channels, Journal of Biological Chemistry, vol.71, issue.24, pp.17548-17556, 2007.
DOI : 10.1074/jbc.M302751200

P. Donoso and C. Hidalgo, Sodium-calcium exchange in transverse tubules isolated from frog skeletal muscle, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.978, issue.1, pp.8-16, 1989.
DOI : 10.1016/0005-2736(89)90491-4

A. G. Kumar, M. Obukhov, and . Sturek, Exercise training decreases store-operated Ca2+entry associated with metabolic syndrome and coronary atherosclerosis, Cardiovasc Res, vol.85, issue.3, pp.631-640, 2010.

S. Tanaka, R. Yamashita, M. Kizu, Y. Bamba, N. Goto et al., Dominant mutations in ORAI1 cause tubular aggregate myopathy with hypocalcemia via constitutive activation of store-operated Ca, Hum Mol Genet, vol.24, issue.23, pp.637-648, 2015.

W. K. Engel, MITOCHONDRIAL AGGREGATES IN MUSCLE DISEASE, Journal of Histochemistry & Cytochemistry, vol.12, issue.1, pp.46-48, 1964.
DOI : 10.1177/12.1.46

W. K. Engel, D. W. Bishop, and G. G. Cunningham, Tubular aggregates in type II muscle fibers: Ultrastructural and histochemical correlation, Journal of Ultrastructure Research, vol.31, issue.5-6, pp.5-6, 1970.
DOI : 10.1016/S0022-5320(70)90166-8

J. M. Feng, Y. K. Hu, L. H. Xie, C. S. Colwell, X. M. Shao et al., Golli Protein Negatively Regulates Store Depletion-Induced Calcium Influx in T Cells, Immunity, vol.24, issue.6, pp.717-727, 2006.
DOI : 10.1016/j.immuni.2006.04.007

URL : https://doi.org/10.1016/j.immuni.2006.04.007

M. Lewis, A. Daly, and . Rao, A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function, Nature, vol.441, issue.7090, pp.179-185, 2006.

M. Fill and J. A. Copello, Ryanodine Receptor Calcium Release Channels, Physiological Reviews, vol.49, issue.4, pp.893-922, 2002.
DOI : 10.1016/0143-4160(93)90079-L

URL : http://physrev.physiology.org/content/physrev/82/4/893.full.pdf

L. Fliegel, M. Ohnishi, M. R. Carpenter, V. K. Khanna, R. A. Reithmeier et al., Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing., Proceedings of the National Academy of Sciences, vol.84, issue.5, pp.1167-1171, 1987.
DOI : 10.1073/pnas.84.5.1167

M. Fosset, E. Jaimovich, E. Delpont, and M. Lazdunski, [3H]nitrendipine receptors in skeletal muscle, J Biol Chem, vol.258, issue.10, pp.6086-6092, 1983.
DOI : 10.1016/0014-2999(82)90414-9

C. Franzini-armstrong, L. J. Kenney, and E. Varriano-marston, The structure of calsequestrin in triads of vertebrate skeletal muscle: a deep-etch study, The Journal of Cell Biology, vol.105, issue.1, pp.49-56, 1987.
DOI : 10.1083/jcb.105.1.49

C. Franzini-armstrong and K. R. Porter, SARCOLEMMAL INVAGINATIONS CONSTITUTING THE T SYSTEM IN FISH MUSCLE FIBERS, The Journal of Cell Biology, vol.22, issue.3, pp.675-696, 1964.
DOI : 10.1083/jcb.22.3.675

S. Fucile, Ca2+ permeability of nicotinic acetylcholine receptors, Cell Calcium, vol.35, issue.1, pp.1-8, 2004.
DOI : 10.1016/j.ceca.2003.08.006

M. Fukushima, T. Tomita, A. Janoshazi, and J. W. Putney, Alternative translation initiation gives rise to two isoforms of Orai1 with distinct plasma membrane mobilities, Journal of Cell Science, vol.125, issue.18, pp.4354-4361, 2012.
DOI : 10.1242/jcs.104919

C. Galan, N. Dionisio, T. Smani, G. M. Salido, and J. A. Rosado, The cytoskeleton plays a modulatory role in the association between STIM1 and the Ca2+ channel subunits Orai1 and TRPC1, Biochemical Pharmacology, vol.82, issue.4, pp.400-410, 2011.
DOI : 10.1016/j.bcp.2011.05.017

J. Garcia and K. G. Beam, Calcium transients associated with the T type calcium current in myotubes, The Journal of General Physiology, vol.104, issue.6, pp.1113-1128, 1994.
DOI : 10.1085/jgp.104.6.1113

F. Vizzaccaro, N. B. Laschena, A. Romero, E. Genazzani, G. Bertini et al., A novel gain-of-function mutation in ORAI1 causes late-onset tubular aggregate myopathy and congenital miosis, Clin Genet, 2016.

J. M. Gilchrist, M. Ambler, and P. Agatiello, Steroid-responsive tubular aggregate myopathy, Muscle & Nerve, vol.51, issue.3, pp.233-236, 1991.
DOI : 10.1001/archneur.1985.04060090055014

T. Dirksen and J. D. Molkentin, Enhanced Ca(2)(+) influx from STIM1-Orai1 induces muscle pathology in mouse models of muscular dystrophy, Hum Mol Genet, vol.23, issue.14, pp.3706-3715, 2014.

M. Schulze, B. Nehls, and . Nieswandt, An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice, J Clin Invest, vol.117, issue.11, pp.3540-3550, 2007.

H. D. Grumer, [Metabolically conditioned forms of imbecility and their diagnosis, 1966.

F. Guharay and F. Sachs, Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle., The Journal of Physiology, vol.352, issue.1, pp.685-701, 1984.
DOI : 10.1113/jphysiol.1984.sp015317

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1984.sp015317/pdf

D. Guido, N. Demaurex, and P. Nunes, Junctate boosts phagocytosis by recruiting endoplasmic reticulum Ca2+ stores near phagosomes, Journal of Cell Science, vol.128, issue.22, pp.4074-4082, 2015.
DOI : 10.1242/jcs.172510

URL : http://jcs.biologists.org/content/joces/128/22/4074.full.pdf

Y. Gwack, S. Feske, S. Srikanth, P. G. Hogan, and A. Rao, Signalling to transcription: Store-operated Ca2+ entry and NFAT activation in lymphocytes, Cell Calcium, vol.42, issue.2, pp.145-156, 2007.
DOI : 10.1016/j.ceca.2007.03.007

T. Gwozdz, J. Dutko-gwozdz, V. Zarayskiy, K. Peter, and V. M. Bolotina, activation?, American Journal of Physiology-Cell Physiology, vol.295, issue.5, pp.1133-1140, 2008.
DOI : 10.1073/pnas.0603161103

M. Tulinius, A. Tartaglia, E. Oldfors, and . Bertini, Childhood onset tubular aggregate myopathy associated with de novo STIM1 mutations, J Neurol, vol.261, issue.5, pp.870-876, 2014.

T. Hewavitharana, X. Deng, Y. Wang, M. F. Ritchie, G. V. Girish et al., Entry Signals, Journal of Biological Chemistry, vol.1763, issue.38, pp.26252-26262, 2008.
DOI : 10.1016/j.cub.2005.06.035

S. E. Hitchcock, H. E. Huxley, and A. G. Szent-gyorgyi, Calcium sensitive binding of troponin to actin-tropomyosin: A two-site model for troponin action, Journal of Molecular Biology, vol.80, issue.4, pp.825-836, 1973.
DOI : 10.1016/0022-2836(73)90212-X

H. E. Huxley and J. Hanson, THE STRUCTURAL BASIS OF THE CONTRACTION MECHANISM IN STRIATED MUSCLE, Annals of the New York Academy of Sciences, vol.16, issue.suppl. to part, pp.403-408, 1959.
DOI : 10.1016/0006-3002(55)90235-3

G. Inesi, M. Kurzmack, C. Coan, and D. E. Lewis, Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles, J Biol Chem, vol.255, issue.7, pp.3025-3031, 1980.

T. S. Jacques, J. Holton, P. M. Watts, A. J. Wills, S. E. Smith et al., Tubular aggregate myopathy with abnormal pupils and skeletal deformities, Journal of Neurology, Neurosurgery & Psychiatry, vol.73, issue.3, pp.324-326, 2002.
DOI : 10.1136/jnnp.73.3.324

URL : http://jnnp.bmj.com/content/jnnp/73/3/324.full.pdf

S. L. Shi, L. Zhang, Y. Zhong, M. Q. Huang, C. L. Dong et al., Proteomic mapping of ER-PM junctions identifies STIMATE as a regulator of Ca, Nat Cell Biol, vol.17, issue.210, pp.1339-1347, 2015.

L. R. Jones, L. Zhang, K. Sanborn, A. O. Jorgensen, and J. Kelley, Purification, Primary Structure, and Immunological Characterization of the 26-kDa Calsequestrin Binding Protein (Junctin) from Cardiac Junctional Sarcoplasmic Reticulum, Journal of Biological Chemistry, vol.269, issue.51, pp.30787-30796, 1995.
DOI : 10.1016/0022-2836(82)90515-0

H. Jousset, M. Frieden, and N. Demaurex, ATPases (SERCA) Pumps Silently Refill the Endoplasmic Reticulum, Journal of Biological Chemistry, vol.258, issue.15, pp.11456-11464, 2007.
DOI : 10.1085/jgp.200609611

T. Kawasaki, T. Ueyama, I. Lange, S. Feske, and N. Saito, Channel, Journal of Biological Chemistry, vol.269, issue.33, pp.25720-25730, 2010.
DOI : 10.1038/nri2152

URL : https://hal.archives-ouvertes.fr/jpa-00224577

K. C. Kim, A. H. Caswell, J. P. Brunschwig, and N. R. Brandt, Identification of a new subpopulation of triad junctions isolated from skeletal muscle; Morphological correlations with intact muscle, The Journal of Membrane Biology, vol.336, issue.3, pp.221-235, 1990.
DOI : 10.1016/B978-0-12-524980-5.50031-4

Y. M. Kobayashi, B. A. Alseikhan, and L. R. Jones, Localization and Characterization of the Calsequestrin-binding Domain of Triadin 1, Journal of Biological Chemistry, vol.78, issue.23, pp.17639-17646, 2000.
DOI : 10.1038/nsb0698-476

J. Kockskamper, A. V. Zima, H. L. Roderick, B. Pieske, L. A. Blatter et al., Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes, Journal of Molecular and Cellular Cardiology, vol.45, issue.2, pp.128-147, 2008.
DOI : 10.1016/j.yjmcc.2008.05.014

M. K. Korzeniowski, I. M. Manjarres, P. Varnai, and T. Balla, Activation of STIM1-Orai1 Involves an Intramolecular Switching Mechanism, Science Signaling, vol.3, issue.148, p.82, 2010.
DOI : 10.1126/scisignal.2001122

G. Krapivinsky, L. Krapivinsky, S. C. Stotz, Y. Manasian, and D. E. Clapham, POST, partner of stromal interaction molecule 1 (STIM1), targets STIM1 to multiple transporters, Proceedings of the National Academy of Sciences, vol.3, issue.12, 2011.
DOI : 10.1038/nmeth968

R. W. Kuncl, A. Pestronk, J. Lane, and E. Alexander, The MRL +/+ mouse: a new model of tubular aggregates which are gender- and age-related, Acta Neuropathologica, vol.29, issue.6, pp.615-620, 1989.
DOI : 10.1007/BF00691288

E. Leberer, B. G. Timms, K. P. Campbell, and D. H. Maclennan, Purification, calcium binding properties, and ultrastructural localization of the 53, pp.0-000, 1990.

H. G. Lee, H. Kang, D. H. Kim, and W. J. Park, -Binding Protein) and Triadin in the Lumen of Sarcoplasmic Reticulum, Journal of Biological Chemistry, vol.258, issue.43, pp.39533-39538, 2001.
DOI : 10.1016/S0014-5793(00)02246-8

R. S. Lewis and M. D. Cahalan, Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells., Molecular Biology of the Cell, vol.1, issue.1, pp.99-112, 1989.
DOI : 10.1091/mbc.1.1.99

L. Li, S. Mirza, S. J. Richardson, E. M. Gallant, C. Thekkedam et al., A new cytoplasmic interaction between junctin and ryanodine receptor Ca2+ release channels, Journal of Cell Science, vol.128, issue.5, pp.951-963, 2015.
DOI : 10.1242/jcs.160689

URL : http://jcs.biologists.org/content/joces/128/5/951.full.pdf

P. Li, Y. Miao, A. Dani, and M. Vig, ??-SNAP regulates dynamic, on-site assembly and calcium selectivity of Orai1 channels, Molecular Biology of the Cell, vol.288, issue.16, pp.2542-2553, 2016.
DOI : 10.1074/jbc.M113.450254

G. Liu and I. N. Pessah, STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influxMolecular interaction between ryanodine receptor and glycoprotein triadin involves redox cycling of functionally important hyperreactive sulfhydryls, Curr Biol J Biol Chem, vol.269, issue.52, pp.33028-33034, 1994.

J. J. Lopez, G. M. Salido, J. A. Pariente, and J. A. Rosado, Stores, Journal of Biological Chemistry, vol.260, issue.38, 2006.
DOI : 10.1042/0264-6021:3560191

R. Ludatscher, M. Silbermann, D. Gershon, and A. Reznick, The effects of enforced running on the gastrocnemius muscle in aging mice, Experimental Gerontology, vol.18, issue.2, pp.113-123, 1983.
DOI : 10.1016/0531-5565(83)90004-9

R. M. Luik, M. M. Wu, J. Buchanan, and R. S. Lewis, entry: local activation of CRAC channels by STIM1 at ER???plasma membrane junctions, The Journal of Cell Biology, vol.23, issue.6, pp.815-825, 2006.
DOI : 10.1085/jgp.105.2.209

J. Lytton, transport, Biochemical Journal, vol.406, issue.3, pp.365-382, 2007.
DOI : 10.1042/BJ20070619

D. H. Maclennan, C. J. Brandl, B. Korczak, and N. M. Green, Amino-acid sequence of a Ca2+ + Mg2+ -dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence, Nature, vol.174, issue.6030, pp.696-700, 1985.
DOI : 10.1128/MCB.3.2.280

D. H. Maclennan and P. T. Wong, Isolation of a Calcium-Sequestering Protein from Sarcoplasmic Reticulum, Proceedings of the National Academy of Sciences, vol.68, issue.6, pp.1231-1235, 1971.
DOI : 10.1073/pnas.68.6.1231

S. S. Manji, N. J. Parker, R. T. Williams, L. Van-stekelenburg, R. B. Pearson et al., STIM1: a novel phosphoprotein located at the cell surface, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1481, issue.1, pp.147-155, 2000.
DOI : 10.1016/S0167-4838(00)00105-9

I. Marty, D. Thevenon, C. Scotto, S. Groh, S. Sainnier et al., Cloning and Characterization of a New Isoform of Skeletal Muscle Triadin, Journal of Biological Chemistry, vol.269, issue.11, pp.8206-8212, 2000.
DOI : 10.1093/nar/16.22.10881

S. Fuchs, C. Ehl, M. Romanin, M. Ikura, S. Prakriya et al., Missense mutation in immunodeficient patients shows the multifunctional roles of coiled-coil domain 3 (CC3) in STIM1 activation, Proc Natl Acad Sci, vol.112, pp.6206-6211, 2015.

A. Rao, S. Fischer, and . Feske, ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia, J Allergy Clin Immunol, vol.124, issue.6, pp.1311-1318, 2009.

. Jr, Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1, J Biol Chem, vol.281, issue.34, pp.24979-24990, 2006.

A. M. Miederer, D. Alansary, G. Schwar, P. H. Lee, M. Jung et al., A STIM2 splice variant negatively regulates store-operated calcium entry, Nature Communications, vol.2, issue.1, p.6899, 2015.
DOI : 10.1038/nprot.2007.160

URL : http://www.nature.com/articles/ncomms7899.pdf

O. Mignen, J. L. Thompson, and T. J. Shuttleworth, Entry Pathways, Journal of Biological Chemistry, vol.482, issue.38, pp.35676-35683, 2001.
DOI : 10.1074/jbc.M100327200

O. Mignen, J. L. Thompson, and T. J. Shuttleworth, -selective (ARC) channels without store depletion or translocation to the plasma membrane, The Journal of Physiology, vol.90, issue.3, pp.703-715, 2007.
DOI : 10.1073/pnas.90.13.6295

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2006.122432/pdf

O. Mignen, J. L. Thompson, and T. J. Shuttleworth, -selective (ARC) channels, The Journal of Physiology, vol.90, issue.1, pp.185-195, 2008.
DOI : 10.1073/pnas.90.13.6295

D. P. Millay, J. R. O-'rourke, L. B. Sutherland, S. Bezprozvannaya, J. M. Shelton et al., Myomaker is a membrane activator of myoblast fusion and muscle formation, Nature, vol.41, issue.7458, pp.301-305, 2013.
DOI : 10.1038/nature11139

D. Misceo, A. Holmgren, W. E. Louch, P. A. Holme, M. Mizobuchi et al., A Dominant STIM1 Mutation Causes Stormorken Syndrome, Human Mutation, vol.104, issue.3, pp.556-564, 2014.
DOI : 10.1016/j.bpj.2012.11.257

. Kurosaki, Transient receptor potential 1 regulates capacitative Ca(2+) entry and Ca(2+) release from endoplasmic reticulum in B lymphocytes, J Exp Med, vol.195, issue.6, pp.673-681, 2002.

K. Gignac, H. Hartmann, P. Sevestre, D. Deutz, P. Herent et al., Gain-of-Function Mutation in STIM1 (P.R304W) Is Associated with Stormorken Syndrome, Hum Mutat, vol.35, issue.10, pp.1221-1232, 2014.

R. K. Motiani, I. F. Abdullaev, and M. Trebak, A Novel Native Store-operated Calcium Channel Encoded by Orai3, Journal of Biological Chemistry, vol.179, issue.25, pp.19173-19183, 2010.
DOI : 10.1007/s00232-005-0782-3

URL : http://www.jbc.org/content/285/25/19173.full.pdf

H. D. Muller, S. Vielhaber, A. Brunn, and J. M. Schroder, Dominantly inherited myopathy with novel tubular aggregates containing 1-21 tubulofilamentous structures, Acta Neuropathol, vol.102, issue.1, pp.27-35, 2001.

F. M. Mullins, C. Y. Park, R. E. Dolmetsch, and R. S. Lewis, STIM1 and calmodulin interact with Orai1 to induce Ca2+-dependent inactivation of CRAC channels, Proceedings of the National Academy of Sciences, vol.1433, issue.1-2, pp.15495-15500, 2009.
DOI : 10.1016/S0167-4838(99)00149-1

V. Nesin, G. Wiley, M. Kousi, E. C. Ong, T. Lehmann et al., Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis, Proceedings of the National Academy of Sciences, vol.8, issue.4, 2014.
DOI : 10.1002/mus.880080406

L. C. Ng, D. Ramduny, J. A. Airey, C. A. Singer, P. S. Keller et al., entry in mouse pulmonary arterial smooth muscle cells, American Journal of Physiology-Cell Physiology, vol.280, issue.5, pp.1079-1090, 2010.
DOI : 10.1038/nature04147

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2009.172254/pdf

. Hosokawa, Tubular aggregates in the skeletal muscle of the senescence-accelerated mouse; SAM, Mech Ageing Dev, vol.114, issue.2, pp.89-99, 2000.

E. Carlier, N. B. Malfatti, T. Romero, and . Stojkovic, Tubular aggregate myopathy with features of Stormorken disease due to a new STIM1 mutation, Neuromuscul Disord, 2016.

M. Novotova, I. Zahradnik, G. Brochier, M. Pavlovicova, X. Bigard et al., Joint participation of mitochondria and sarcoplasmic reticulum in the formation of tubular aggregates in gastrocnemius muscle of CK mice, European Journal of Cell Biology, vol.81, issue.2, pp.101-106, 2002.
DOI : 10.1078/0171-9335-00230

H. L. Ong, S. I. Jang, and I. S. Ambudkar, Distinct Contributions of Orai1 and TRPC1 to Agonist-Induced [Ca2+]i Signals Determine Specificity of Ca2+-Dependent Gene Expression, PLoS ONE, vol.149, issue.10, p.47146, 2012.
DOI : 10.1371/journal.pone.0047146.s002

L. Orci, M. Ravazzola, M. L. Coadic, W. W. Shen, N. Demaurex et al., From the Cover: STIM1-induced precortical and cortical subdomains of the endoplasmic reticulum, 2009.

R. Palty, A. Raveh, I. Kaminsky, R. Meller, and E. Reuveny, SARAF Inactivates the Store Operated Calcium Entry Machinery to Prevent Excess Calcium Refilling, Cell, vol.149, issue.2, pp.425-438, 2012.
DOI : 10.1016/j.cell.2012.01.055

L. Pandit, G. Narayanappa, I. G. Bhat, and V. Thomas, Autosomal recessive tubular aggregate myopathy in an Indian family, European Journal of Paediatric Neurology, vol.13, issue.4, pp.373-375, 2009.
DOI : 10.1016/j.ejpn.2008.06.008

A. B. Parekh, Decoding cytosolic Ca2+ oscillations, Trends in Biochemical Sciences, vol.36, issue.2, pp.78-87, 2011.
DOI : 10.1016/j.tibs.2010.07.013

C. Y. Park, P. J. Hoover, F. M. Mullins, P. Bachhawat, E. D. Covington et al., STIM1 Clusters and Activates CRAC Channels via Direct Binding of a Cytosolic Domain to Orai1, Cell, vol.136, issue.5, pp.876-890, 2009.
DOI : 10.1016/j.cell.2009.02.014

N. J. Parker, C. G. Begley, P. J. Smith, and R. M. Fox, Molecular Cloning of a Novel Human Gene (D11S4896E) at Chromosomal Region 11p15.5, Genomics, vol.37, issue.2, pp.253-256, 1996.
DOI : 10.1006/geno.1996.0553

S. Parvez, A. Beck, C. Peinelt, J. Soboloff, A. Lis et al., STIM2 protein mediates distinct store-dependent and store-independent modes of CRAC channel activation, The FASEB Journal, vol.22, issue.3, pp.752-761, 2008.
DOI : 10.1042/bj3570673

R. L. Patterson, D. B. Van-rossum, and D. L. Gill, Store-Operated Ca2+ Entry, Cell, vol.98, issue.4, pp.487-499, 1999.
DOI : 10.1016/S0092-8674(00)81977-7

R. Fleig, J. P. Penner, and . Kinet, Amplification of CRAC current by STIM1 and CRACM1 (Orai1), Nat Cell Biol, vol.8, issue.7, pp.771-773, 2006.

M. Periasamy and A. Kalyanasundaram, SERCA pump isoforms: Their role in calcium transport and disease, Muscle & Nerve, vol.276, issue.4, pp.430-442, 2007.
DOI : 10.1042/bj3030979

T. T. Phuong, Y. H. Yun, S. J. Kim, and T. M. Kang, Positive feedback control between STIM1 and NFATc3 is required for C2C12 myoblast differentiation, Biochemical and Biophysical Research Communications, vol.430, issue.2, pp.722-728, 2013.
DOI : 10.1016/j.bbrc.2012.11.082

F. J. Barrientos and . Martin-romero, Phosphorylation of STIM1 at ERK1/2 target sites regulates interaction with the microtubule plus-end binding protein EB1, J Cell Sci, vol.126, pp.3170-3180, 2013.

E. Pozo-guisado and F. J. Martin-romero, The regulation of STIM1 by phosphorylation, Communicative & Integrative Biology, vol.2, issue.6, p.26283, 2013.
DOI : 10.1182/blood-2011-12-398438

M. Prakriya, Store-Operated Orai Channels, Curr Top Membr, vol.71, pp.1-32, 2013.
DOI : 10.1016/B978-0-12-407870-3.00001-9

URL : http://europepmc.org/articles/pmc3912698?pdf=render

M. Prakriya, S. Feske, Y. Gwack, S. Srikanth, A. Rao et al., Orai1 is an essential pore subunit of the CRAC channel, Nature, vol.2, issue.7108, pp.230-233, 2006.
DOI : 10.1038/86318

M. Prakriya and R. S. Lewis, CRAC channels: activation, permeation, and the search for a molecular identity, Cell Calcium, vol.33, issue.5-6, pp.5-6, 2003.
DOI : 10.1016/S0143-4160(03)00045-9

J. W. Putney and . Jr, A model for receptor-regulated calcium entry, Cell Calcium, vol.7, issue.1, pp.1-12, 1986.
DOI : 10.1016/0143-4160(86)90026-6

. Lewis, Alternative splicing converts STIM2 from an activator to an inhibitor of storeoperated calcium channels, J Cell Biol, vol.209, issue.5, pp.653-669, 2015.

J. P. Reeves and J. L. Sutko, Competitive interactions of sodium and calcium with the sodium-calcium exchange system of cardiac sarcolemmal vesicles, J Biol Chem, vol.258, issue.5, pp.3178-3182, 1983.

C. M. Ribeiro, J. Reece, J. W. Putney, and J. , Role of the Cytoskeleton in Calcium Signaling in NIH 3T3 Cells, Journal of Biological Chemistry, vol.263, issue.42, pp.26555-26561, 1997.
DOI : 10.1007/s004240050135

E. Rios and G. Brum, Involvement of dihydropyridine receptors in excitation???contraction coupling in skeletal muscle, Nature, vol.325, issue.6106, pp.717-720, 1987.
DOI : 10.1038/325717a0

S. L. Kozak, M. D. Wagner, G. Cahalan, K. A. Velicelebi, and . Stauderman, STIM1, an essential and conserved component of store-operated Ca2+ channel function, J Cell Biol, vol.169, issue.3, pp.435-445, 2005.

S. Sabbioni, G. Barbanti-brodano, C. M. Croce, and M. Negrini, GOK: a gene at 11p15 involved in rhabdomyosarcoma and rhabdoid tumor development, Cancer Res, vol.57, issue.20, pp.4493-4497, 1997.

. Negrini, Exon structure and promoter identification of STIM1 (alias GOK), a human gene causing growth arrest of the human tumor cell lines G401 and RD, Cytogenet Cell Genet, vol.86, pp.3-4, 1999.

R. Sacchetto, F. Turcato, E. Damiani, and A. Margreth, Interaction of triadin with histidine-rich Ca(2+)-binding protein at the triadic junction in skeletal muscle fibers, Journal of Muscle Research and Cell Motility, vol.20, issue.4, pp.403-415, 1999.
DOI : 10.1023/A:1005580609414

G. Salviati, S. Pierobon-bormioli, R. Betto, E. Damiani, C. Angelini et al., Tubular aggregates: Sarcoplasmic reticulum origin, calcium storage ability, and functional implications, Muscle & Nerve, vol.251, issue.4, pp.299-306, 1985.
DOI : 10.1212/WNL.28.5.447

N. Frieden and . Demaurex, STIM1L traps and gates Orai1 channels without remodeling the cortical ER, J Cell Sci, vol.128, issue.8, pp.1568-1579, 2015.

H. Schaballie, R. Rodriguez, E. Martin, L. Moens, G. Frans et al., A novel hypomorphic mutation in STIM1 results in a late-onset immunodeficiency, Journal of Allergy and Clinical Immunology, vol.136, issue.3, pp.816-819, 2015.
DOI : 10.1016/j.jaci.2015.03.009

S. Bonilla, M. P. Dimauro, and . Lisanti, Caveolin-1)-deficient mice both display numerous skeletal muscle abnormalities, with tubular aggregate formation, 2007.

S. Sharma, A. Quintana, G. M. Findlay, M. Mettlen, B. Baust et al., An siRNA screen for NFAT activation identifies septins as coordinators of store-operated Ca2+ entry, Nature, vol.260, issue.7457, pp.238-242, 2013.
DOI : 10.1038/ni1574

T. J. Shuttleworth and J. L. Thompson, Entry in HEK293 Cells Is Independent of Phospholipase C, Journal of Biological Chemistry, vol.269, issue.49, pp.32636-32643, 1998.
DOI : 10.1074/jbc.272.27.16709

J. T. Smyth, W. I. Dehaven, G. S. Bird, J. W. Putney, and J. , Role of the microtubule cytoskeleton in the function of the store-operated Ca2+ channel activator STIM1, Journal of Cell Science, vol.120, issue.21, pp.3762-3771, 2007.
DOI : 10.1242/jcs.015735

J. Soboloff, B. S. Rothberg, M. Madesh, and D. L. Gill, STIM proteins: dynamic calcium signal transducers, Nature Reviews Molecular Cell Biology, vol.16, issue.9, pp.549-565, 2012.
DOI : 10.1038/nrm3414

URL : http://europepmc.org/articles/pmc3458427?pdf=render

M. A. Spassova, J. Soboloff, L. P. He, W. Xu, M. A. Dziadek et al., STIM1 has a plasma membrane role in the activation of store-operated Ca2+ channels, Proceedings of the National Academy of Sciences, vol.434, issue.7029, pp.4040-4045, 2006.
DOI : 10.1038/nature03340

J. A. Spudich, H. E. Huxley, and J. T. Finch, Regulation of skeletal muscle contraction, Journal of Molecular Biology, vol.72, issue.3, 1972.
DOI : 10.1016/0022-2836(72)90180-5

S. Srikanth, M. Jew, K. D. Kim, M. K. Yee, J. Abramson et al., Junctate is a Ca2+-sensing structural component of Orai1 and stromal interaction molecule 1 (STIM1), Proceedings of the National Academy of Sciences, vol.106, issue.36, 2012.
DOI : 10.1073/pnas.0906781106

S. Srikanth, H. J. Jung, K. D. Kim, P. Souda, J. Whitelegge et al., A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells, Nature Cell Biology, vol.95, issue.5, pp.436-446, 2010.
DOI : 10.1074/jbc.M109.072736

P. B. Stathopulos and M. Ikura, Structurally delineating stromal interaction molecules as the endoplasmic reticulum calcium sensors and regulators of calcium release-activated calcium entry, Immunological Reviews, vol.20, issue.1, pp.113-131, 2009.
DOI : 10.1042/bj3120001

P. B. Stathopulos, G. Y. Li, M. J. Plevin, J. B. Ames, and M. Ikura, Depletion-induced Oligomerization of Stromal Interaction Molecule 1 (STIM1) via the EF-SAM Region, Journal of Biological Chemistry, vol.9, issue.47, 2006.
DOI : 10.1021/bi0350497

P. B. Stathopulos, L. Zheng, and M. Ikura, Stromal Interaction Molecule (STIM) 1 and STIM2 Calcium Sensing Regions Exhibit Distinct Unfolding and Oligomerization Kinetics, Journal of Biological Chemistry, vol.7, issue.2, pp.728-732, 2009.
DOI : 10.1016/j.jmb.2004.05.028

URL : http://www.jbc.org/content/284/2/728.full.pdf

P. B. Stathopulos, L. Zheng, G. Y. Li, M. J. Plevin, and M. Ikura, Structural and Mechanistic Insights into STIM1-Mediated Initiation of Store-Operated Calcium Entry, Cell, vol.135, issue.1, pp.110-122, 2008.
DOI : 10.1016/j.cell.2008.08.006

N. Finch, R. S. Malouf, J. P. Williams, P. Eu, and . Rosenberg, STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle, Nat Cell Biol, vol.10, issue.6, pp.688-697, 2008.

H. Stormorken, O. Sjaastad, A. Langslet, I. Sulg, K. Egge et al., A new syndrome: thrombocytopathia, muscle fatigue, asplenia, miosis, migraine, dyslexia and ichthyosis, Clinical Genetics, vol.92, issue.5, pp.367-374, 1985.
DOI : 10.1111/j.1399-0004.1985.tb02209.x

K. Ono, T. Iijima, and H. Ito, Essential role of the N-terminus of murine Orai1 in storeoperated Ca2+ entry, Biochem Biophys Res Commun, vol.356, issue.1, pp.45-52, 2007.

T. Tanabe, K. G. Beam, B. A. Adams, T. Niidome, and S. Numa, Regions of the skeletal muscle dihydropyridine receptor critical for excitation???contraction coupling, Nature, vol.346, issue.6284, pp.567-569, 1990.
DOI : 10.1038/346567a0

E. Ricci and . Bertini, Muscle imaging in patients with tubular aggregate myopathy caused by mutations in STIM1, Neuromuscul Disord, vol.25, issue.11, pp.898-903, 2015.

J. L. Thompson and T. J. Shuttleworth, How Many Orai's Does It Take to Make a CRAC Channel?, Scientific Reports, vol.120, issue.1, 1961.
DOI : 10.1085/jgp.20028601

URL : http://www.nature.com/articles/srep01961.pdf

J. G. Tidball, 12 Myotendinous Junction Injury in Relation to Junction Structure and Molecular Composition, Exercise and Sport Sciences Reviews, vol.19, issue.1, pp.419-445, 1991.
DOI : 10.1249/00003677-199101000-00012

S. Treves, G. Feriotto, L. Moccagatta, R. Gambari, and F. Zorzato, Molecular Cloning, Expression, Functional Characterization, Chromosomal Localization, and Gene Structure of Junctate, a Novel Integral Calcium Binding Protein of Sarco(endo)plasmic Reticulum Membrane, Journal of Biological Chemistry, vol.5, issue.50, 2000.
DOI : 10.1038/nsb0698-409

L. Tskhovrebova and J. Trinick, Roles of Titin in the Structure and Elasticity of the Sarcomere, Journal of Biomedicine and Biotechnology, vol.4, issue.3, p.612482, 2010.
DOI : 10.1152/ajpregu.00001.2007

M. Lunardi, I. Dewaard, and . Marty, Triadins are not triad-specific proteins: two new skeletal muscle triadins possibly involved in the architecture of sarcoplasmic reticulum, J Biol Chem, vol.280, issue.31, pp.28601-28609, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00380236

K. Venkatachalam and C. Montell, TRP Channels, Annual Review of Biochemistry, vol.76, issue.1, pp.387-417, 2007.
DOI : 10.1146/annurev.biochem.75.103004.142819

M. Vig, A. Beck, J. M. Billingsley, A. Lis, S. Parvez et al., CRACM1 Multimers Form the Ion-Selective Pore of the CRAC Channel, Current Biology, vol.16, issue.20, pp.2073-2079, 2006.
DOI : 10.1016/j.cub.2006.08.085

L. Wang, L. Zhang, S. Li, Y. Zheng, X. Yan et al., Retrograde regulation of STIM1-Orai1 interaction and store-operated Ca2+ entry by calsequestrin, Scientific Reports, vol.260, issue.1, p.11349, 2015.
DOI : 10.1002/pmic.200700688

S. Wang, M. Choi, A. S. Richardson, B. M. Reid, F. Seymen et al., Are Critical for Enamel Maturation, Journal of Dental Research, vol.93, issue.7_suppl, pp.94-100, 2014.
DOI : 10.1021/bi026982x

URL : http://europepmc.org/articles/pmc4107542?pdf=render

L. Wei, E. M. Gallant, A. F. Dulhunty, and N. A. Beard, Junctin and triadin each activate skeletal ryanodine receptors but junctin alone mediates functional interactions with calsequestrin, The International Journal of Biochemistry & Cell Biology, vol.41, issue.11, pp.2214-2224, 2009.
DOI : 10.1016/j.biocel.2009.04.017

URL : http://europepmc.org/articles/pmc2777989?pdf=render

R. T. Williams, P. V. Senior, L. Van-stekelenburg, J. E. Layton, P. J. Smith et al., Stromal interaction molecule 1 (STIM1), a transmembrane protein with growth suppressor activity, contains an extracellular SAM domain modified by N-linked glycosylation, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1596, issue.1, pp.131-137, 2002.
DOI : 10.1016/S0167-4838(02)00211-X

K. D. Wu, W. S. Lee, J. Wey, D. Bungard, and J. Lytton, Localization and quantification of endoplasmic reticulum Ca(2+)-ATPase isoform transcripts, American Journal of Physiology-Cell Physiology, vol.269, issue.78, pp.775-784, 1995.
DOI : 10.1083/jcb.113.5.1145

M. M. Wu, J. Buchanan, R. M. Luik, and R. S. Lewis, store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane, The Journal of Cell Biology, vol.269, issue.6, pp.803-813, 2006.
DOI : 10.1085/jgp.105.2.209

F. Wuytack, H. Papp, L. Verboomen, L. Raeymaekers, R. Dode et al., A sarco/endoplasmic reticulum Ca(2+)-ATPase 3-type Ca2+ pump is expressed in platelets, in lymphoid cells, and in mast cells, J Biol Chem, vol.269, issue.2, pp.1410-1416, 1994.

F. Wuytack, L. Raeymaekers, H. De-smedt, J. A. Eggermont, L. Missiaen et al., -Transport ATPases and Their Regulation in Muscle and Brain, Annals of the New York Academy of Sciences, vol.261, issue.1 Ion-Motive AT, pp.82-91, 1992.
DOI : 10.1042/bj2550855

B. Xiao, B. Coste, J. Mathur, and A. Patapoutian, Temperature-dependent STIM1 activation induces Ca2+ influx and modulates gene expression, Nature Chemical Biology, vol.11, issue.6, pp.351-358, 2011.
DOI : 10.1038/nn.2169

URL : http://europepmc.org/articles/pmc3097298?pdf=render

P. Xu, J. Lu, Z. Li, X. Yu, L. Chen et al., Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1, Biochemical and Biophysical Research Communications, vol.350, issue.4, 2006.
DOI : 10.1016/j.bbrc.2006.09.134

M. Yamashita, A. Somasundaram, and M. Prakriya, Channel Gating by STIM1 and 2-Aminoethyldiphenyl Borate, Journal of Biological Chemistry, vol.33, issue.11, pp.9429-9442, 2011.
DOI : 10.1074/jbc.M110.102582

V. Yarotskyy and R. T. Dirksen, Temperature and RyR1 Regulate the Activation Rate of Store-Operated Ca2+ Entry Current in Myotubes, Biophysical Journal, vol.103, issue.2, pp.202-211, 2012.
DOI : 10.1016/j.bpj.2012.06.001

A. V. Yeromin, S. L. Zhang, W. Jiang, Y. Yu, O. Safrina et al., Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai, Nature, vol.279, issue.7108, pp.226-229, 2006.
DOI : 10.1074/jbc.M312076200

F. Yu, L. Sun, and K. Machaca, channel Orai1 and its internalization during meiosis, The Journal of Cell Biology, vol.114, issue.3, pp.523-535, 2010.
DOI : 10.1083/jcb.201006022.dv

URL : http://europepmc.org/articles/pmc3003315?pdf=render

J. P. Yuan, W. Zeng, M. R. Dorwart, Y. J. Choi, P. F. Worley et al., SOAR and the polybasic STIM1 domains gate and regulate Orai channels, Nature Cell Biology, vol.169, issue.3, pp.337-343, 2009.
DOI : 10.1016/S0092-8674(03)00716-5

URL : http://europepmc.org/articles/pmc2663385?pdf=render

G. Zampighi, J. Vergara, and F. Ramon, On the connection between the transverse tubules and the plasma membrane in frog semitendinosus skeletal muscle, The Journal of Cell Biology, vol.64, issue.3, pp.734-740, 1975.
DOI : 10.1083/jcb.64.3.734

L. Zhang, J. Kelley, G. Schmeisser, Y. M. Kobayashi, and L. R. Jones, Complex Formation between Junctin, Triadin, Calsequestrin, and the Ryanodine Receptor, Journal of Biological Chemistry, vol.1, issue.37, pp.23389-23397, 1997.
DOI : 10.1016/S0006-291X(71)80257-7

URL : http://www.jbc.org/content/272/37/23389.full.pdf

K. B. Cornblath, D. H. Boylan, and . Maclennan, Characterization of cDNA and genomic DNA encoding SERCA1, the Ca(2+)-ATPase of human fast-twitch skeletal muscle sarcoplasmic reticulum, and its elimination as a candidate gene for Brody disease, Genomics, vol.30, issue.3, pp.415-424, 1995.

Y. Zhou, S. Mancarella, Y. Wang, C. Yue, M. Ritchie et al., The Short N-terminal Domains of STIM1 and STIM2 Control the Activation Kinetics of Orai1 Channels, Journal of Biological Chemistry, vol.284, issue.29, pp.19164-19168, 2009.
DOI : 10.1038/ni1574

A. Ikura, P. G. Rao, and . Hogan, Initial activation of STIM1, the regulator of storeoperated calcium entry, Nat Struct Mol Biol, vol.20, issue.8, pp.973-981, 2013.

A. Zweifach and R. S. Lewis, Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback, The Journal of General Physiology, vol.105, issue.2, pp.209-226, 1995.
DOI : 10.1085/jgp.105.2.209

A. Zweifach and R. S. Lewis, Slow Calcium-dependent Inactivation of Depletion-activated Calcium Current. STORE-DEPENDENT AND -INDEPENDENT MECHANISMS, Journal of Biological Chemistry, vol.150, issue.24, pp.14445-14451, 1995.
DOI : 10.1016/0014-5793(90)81285-V