Skip to Main content Skip to Navigation

Morpho-anatomie crânienne chez les rongeurs murinés : aspects fonctionnels, génétiques et écologiques

Abstract : The theme of this thesis is the anatomy and morphology of the cranio-mandibular complexin various species of murine rodents. The main objectives are to describe the morpho-functional link between the skull and bite force as a measure of performance, to identify the genetic sources of morphological and performance variation, and finally to understand how morpho-functional variation depends on a species diet and lifestyle. The first part describes the anatomy of the masticatory apparatus in the genus Mus. Differences were found, which could be interpreted functionally and linked to variation in diets. The first part also investigates the links between morpho-anatomy and function, and various morphological proxies used for estimating bite force. This is done by building a biomechanical model of masticatory muscles. The bite force estimates obtained match the in vivo measurements at the inter-specific level, but are less precise at the intra-specific level. Then, two osseous mandibular proxies of bite force are compared (lever arms and their mechanical advantage, and its shape data). In vivo and estimated bite force werewell related at the inter-specific level, but less at the intra-specific level, depending on the species. To explain these imprecisions, the ontogenetic variation of bite force and mandibular morphology isdescribed. Under controlled age, the bony development is slowing down earlier than bite force, whichcan partly explain the inconsistencies of estimated bite force.The second part focuses on the genetics of morphological and functional variation. In Musminutoides, changes in the sexual chromosomes entail size and performance changes. The feminized males found in this species are known to be more aggressive than other individuals, and they produce ahigher bite force, mainly due to an increase in skull size. The feminizing gene(s) therefore drive whole-organism-scale changes. Then, the links between inbreeding, asymmetry and performance areinvestigated in the house mouse. The most inbred mice do not experience an increase in the asymmetry of their mandibles. Contrary to expectations, the performance of the most inbred or most asymmetric mice do not decrease and differences in asymmetry levels have no influence on biting performance.The last section estimates the heritabilities of bite force and morphology. In vivo bite force is notheritable, but some morphological characters are. Given the functional link between morpho-anatomyand bite force shown in the first part, these results suggest that morphological changes represente volutionary pathways of least resistance, and drive changes in performance rather than behavioral or related traits.The last part took morphology and performance as linked to a species' niche. The first sectionexplores the differences between Apodemus sylvaticus and Mus spretus. Both share their habitat and food resources, in spite of a marked size difference. Results show great overlap between their bite force distributions supporting the hypothesis of a shared diet. The absence of shift in a trait related toresource use may be due to a large abundance of the food resources where both species are found insyntopy. In the final section the morphological variation in several rodents from Southeast Asia wasquantified. Less morphological variability is found in generalist and commensal rats by comparison toother species. At the community level, synanthropic species show frequent convergent responsesbetween localities in terms of bite force and morphology. These common patterns in response suggestthat synanthropic species tend to be very adaptable to regional environmental differences.The approaches used in this thesis enable us to show the link between genetic, phenotypic andecological variation. This link, sometimes difficult to describe, is nevertheless at the root of theappearance of new forms and species, and constitutes a crucial aspect of evolutionary biology.
Document type :
Complete list of metadatas

Cited literature [28 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Thursday, March 8, 2018 - 3:07:29 PM
Last modification on : Wednesday, October 14, 2020 - 3:44:04 AM
Long-term archiving on: : Saturday, June 9, 2018 - 2:47:41 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01726703, version 1



Samuel Ginot. Morpho-anatomie crânienne chez les rongeurs murinés : aspects fonctionnels, génétiques et écologiques. Biologie animale. Université Montpellier, 2017. Français. ⟨NNT : 2017MONTT152⟩. ⟨tel-01726703⟩



Record views


Files downloads