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Résumé

Le concept de �Business Rule Management System� (BRMS) a été introduit

pour faciliter la création, la véri�cation, le déploiement et l'exécution des politiques

commerciales propres à chaque compagnie.

Basée sur une approche d'intelligence arti�cielle symbolique, l'idée générale est

de permettre aux utilisateurs métier de gérer les changements des règles métier dans

un système sans avoir besoin de recourir à des compétences techniques. Il s'agit

donc de fournir à ces derniers la possibilité de formuler des politiques commerciales

et d'automatiser leur traitement tout en restant proche du langage naturel.

De nos jours, avec l'expansion des systèmes de décision automatique, il faut

faire face à des logiques de décision de plus en plus complexes et à de larges volu-

mes de données. Il n'est pas toujours facile d'identi�er les causes conduisant à une

décision. On constate ainsi un besoin grandissant de justi�er et d'optimiser les déci-

sions dans de courts délais qui induit l'intégration à ces systèmes d'une composante

d'explication évoluée.

Le principal enjeu de ces recherches est de fournir une approche industrialisable

de l'explication des processus de décision d'un BRMS et plus largement d'un système

à base de règles. Cette approche devra être en mesure d'apporter les informations

nécessaires à la compréhension générale de la décision, de faire o�ce de justi�cation

auprès d'entités internes et externes ainsi que de permettre l'amélioration des règles

existantes.

La ré�exion se porte tant sur la génération des explications en elles-mêmes que

sur la manière et la forme sous lesquelles elles sont délivrées.

Il est à noter que l'approche proposée s'applique à tout moteur decisionnel rai-

sonnant sur des relations de cause à e�et notamment des moteurs de work�ow . . .



Abstract

The concept of �Business Rule Management System� (BRMS) has been introdu-

ced in order to facilitate the design, the management and the execution of company-

speci�c business policies. Based on a symbolic arti�cial intelligence approach, the

main idea behind these tools is to enable the business users to manage the business

rule changes in the system without requiring programming skills. It is therefore a

question of providing them with tools that enable to formulate their business poli-

cies in a near natural language form and automate their processing. Nowadays, with

the expansion of intelligent systems, we have to cope with more and more complex

decision logic and large volumes of data. It is not straightforward to identify the

causes leading to a decision. There is a growing need to justify and optimize auto-

mated decisions in a short time frame, which motivates the integration of advanced

explanatory component into its systems. Thus, the main challenge of this research

is to provide an approach for explaining rule based decisions with respect of client

production requirements. This approach should be able to provide the necessary

information for enabling a general understanding of the decision, to serve as a jus-

ti�cation for internal and external entities as well as to enable the improvement of

existing rule engines. To this end, the focus will be on the generation of the expla-

nations in themselves as well as on the manner and the form in which they will be

delivered.
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Chapter 1

Introduction

This Ph.D. thesis deals with the generation of explanations for business rule-

based systems. Our main objective is the development of a framework for the con-

struction of generic explanations for business rule-based decisions. This introduction

is structured as follows. In section 1.1 we present the context of our study. In section

1.2 we discusses the motivations and the objectives of this research work. Finally

we present the structure of this thesis document in section 1.3.

1.1 Context

1.1.1 A brief history of decision-making systems

Arti�cial intelligence and decision theory take their roots in the research on sy-

stematic methods for problem solving and decision making that made signi�cant

breakthrough in the forties. Notably, in 1943 the logician Emil Post proved that

mathematical or logical systems could be written as some sort of production sy-

stem, building on the idea that such a system can be seen as a set of rules specifying

how a string of symbols (antecedent) can be turned into another set of symbols

(consequent) (Post, 1943). At that period, Alan Turing aimed to understand the

thinking mechanisms of the human intellect. In 1948, Turing writes (Turing, 2004),

an attempt to model the brain, and sets out some preliminary ideas on arti�cial

neural networks. Two years later, he publishes (Turing, 1950) and discusses the con-
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Chapter 1. Introduction

cept of a thinking machine and emphasizes that �building a mind� requires su�cient

knowledge about the world to represent its states and a set of rules to model a be-

havior (which cannot be as complex as human behavior). This is perhaps one of the

earliest leads of rule-based systems. A few years later, the term arti�cial intelligence

was o�cially coined.

Thus, the works of Alan Turing and Emil Post set out the �rst ideas of decision-

making systems as we know them today. It is also important to emphasize older

contributions like the lambda calculus of Alonzo Church, the recursive function of

Kurt Gödel and Jacques Herbrand and the �Entscheidungsproblem� posed by David

Hilbert and Wilhelm Ackermann that help in laying the foundations for these rese-

arch works. Since their contributions, mathematicians and computer scientists have

anticipated (sometimes with careless promises) the day when decision-making would

be delegated to machines. After the seventies, thanks to the continuous development

of computers and arti�cial intelligence techniques, decision-making systems have be-

come more accessible and a rise in decision automation has been observed. At that

time, these systems are mainly arti�cial intelligence programs using knowledge base

and heuristics to emulate the thought process of a human expert. For companies

which perpetually look for tools to improve their organizational performance, the

idea to use these �intelligent systems� to automate the application of their business

policies come naturally. In practice automated decision-making systems present

strong advantages:

• they combine multiple human expert intelligences and centralize the decision

process,

• they increase the reliability and visibility of the decision process,

• they can deal with huge amount of information,

• they minimize the employee training cost and reduce human errors,

• they increase the e�ciency by reducing the time needed to solve problems.

16



Chapter 1. Introduction

Because of that, most of these systems are used for automating the application of

business policies but also as �intelligence augmentation� tools for supporting the

decision makers. Thus, automated decision are widely adopted by corporations and

public organizations and �nd applications in a variety of business areas. For example,

in medicine, they are used for diagnosis of di�erent forms of human disease. In banks,

they found applications in fraud detection and loan agreement. They are often used

for pricing purposes in insurance companies. These are just a small sample of the

possible applications and automated decision systems are actually used to solve

complex problems in many other industrial and technical areas. Because of their

very broad scope, these systems encompass a wide range of software technologies

which fall in two categories according to their use of �symbolic� or �non-symbolic�

approaches. In the �symbolic� approaches, the knowledge about the reasoning logic

is explicitly stored and can be used to make inferences about various information

and data. It includes methods like case-based reasoning or heuristic and normative

expert systems. Unlike these approaches, the �non-symbolic� ones doesn't explicitly

represent their reasoning logic in a straightforward way. This is the case in particular

of methods like neural networks. Each of these methods has its own characteristics

and thus its own �eld of applications. Indeed, whereas �non-symbolic� approaches are

very popular for image recognition and found many social applications, �symbolic�

ones, as the heuristic expert systems using business rules, are preferred for critical

applications requiring high levels of accuracy and transparency.

1.1.2 Business rule management systems

In order to be commercially viable, an automated decision-making system has

to demonstrate a high level of performance and reliability, and also has to show

good transparency and �exibility. For example, in trading or security applications,

there is a possibility of great �nancial loss if the system malfunctions and cannot be

updated quickly and regularly. For these reasons, such a system must be e�cient

and reliable, but it also has to be transparent and �exible enough to allow an easy

17



Chapter 1. Introduction

maintenance by the organization using it. Among these systems, the symbolic ones

and more particularly those using business rule approaches, which are �exible and

o�er a great accuracy in decisioning, are fairly widespread to deal with �critical-

applications� in companies. In fact, rule-based representations of knowledge have

been widely used by organizations because they express situation-action heuristics

in a natural way and allow to reason by making deductive inferences that make

naturally sense for human users. Because of that, the correctness of the problem-

solving method used by a rule-based system can be veri�ed more easily. Moreover,

monitoring rule-based decisions allows to develop learning procedures capable of

inferring rules from experience. These newly learned rules can then be incorporated

into the knowledge base of the system to improve the quality its reasoning.

In practice, the building and maintenance of rule-based systems are managed by

Business Rule Management Systems (aka. BRMS). A Business Rule Management

System is a speci�c implementation that encompasses the rule-based systems them-

selves together with the environment dedicated to their development. It provides to

business analysts and experts the capability to author, test, simulate and run their

decision logic in a �near natural language way�. Using Business Rule Management

Systems allows companies to capture, re�ne and reproduce human expertise by buil-

ding business rule-based systems that automate problem solving and are proving to

be easily maintainable and commercially viable Hayes-Roth (1985b). Because of

that, Business Rule Management Systems have changed how organizations think

business processes and IT but have also transformed the way they address applica-

tions development needs. The IBM corporation, which provides IBM Operational

Decision Manager, is the market leader in business rule management systems and

cares about increasing the value and the acceptance of its software solutions thanks

to augmented explanation capabilities.
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Chapter 1. Introduction

1.1.3 Explanation in rule-based systems

Indeed, a critical point for a business rule-based system to be used is the accep-

tance of its automated decisions by human users. A decision is recognized as correct

by a human user only if the reasoning process associated to this decision is un-

derstandable and makes sense for him. In practice, the decision logic of business

rule-based systems can be highly complex. As a consequence, the decisions taken

by these systems can seem unclear and hard to accept and a system that cannot

convince about the accuracy of its decisions has very little chance of being fully

accepted and thus in end may not be used by companies which doubt about its

reliability. That is why, being able to explain its reasoning is one of the most im-

portant abilities of a decision-making system. This means that rule-based systems

must be able to explain their knowledge of the domain and the reasoning processes

they employ to produce results and recommendations. Expert system researchers

have identi�ed several reasons why explanation capabilities are not only desirable,

but crucial to success of expert systems. These reasons may vary depending on the

type of user targeted:

• Understanding how the systems works by revealing the reasoning process and

providing information about the contents of the system knowledge base (Trans-

parency).

• Facilitating the debugging of the system during the development stages (Scru-

tability).

• Educating users both about the domain and the capabilities of the system

(E�ectiveness/E�ciency).

• Persuading users that the system's conclusions are correct so that they can

ultimately accept these conclusions and trust the system's reasoning powers

(Persuasiveness/Trust).

• Assessing the system's appropriateness for a given task. The scope of an expert

19



Chapter 1. Introduction

system may be quite narrow and explanation can help a user discover when a

system is being pushed beyond the limits of its knowledge (E�ectiveness).

1.2 Motivations and objectives

IBM Operational Decision Manager is widely used in the industry and notably

in the insurance and banking sectors. In this thesis work, we aim at presenting

a generic framework of explanation that could be used to increase the value of

business-rule based applications in an industrial context. As IBM's clients need

to use these systems in real time, the framework has to obey strict constraints on

performance, the explanation capabilities we have to design must not be memory-

consuming or greedy for computation time during the decision-process. Our proposal

builds upon a simpli�ed causal model of the system, which we show how to engineer

in our industrial setting, and to how to exploit in a perspective of explanation. We

believe this �case study� can be of interest beyond our speci�c system. Indeed, the

underlying principles of the proposed framework can be extended to all devices that

automate decisions based on heuristics or logical artifacts.

1.3 Thesis outlines

The rest of this thesis is structured as follows. Chapter 2 focuses on the rule-

based systems. In this context, it describes what is a rule-based system, presents

the IBM's BRMS. The chapter 3 states an overview of the explanation in rule-based

systems. It studies in particular why causality is important for our purpose, and

how it is accounted for in rule-based systems. Chapter 4 provides a method for

mechanically constructing and reducing a set of simpli�ed causal models that can

be used for explaining a rule-based system and its decisions, and for reducing the

size of the decision traces. Chapter 5 presents the implementation of the propo-

sed method and an experimental protocol to measures and evaluate the obtained

results. Finally, Chapter 6 proposes a generic explanation model that can be used
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to construct explanations for business rule-based decisions and Chapter 7 discusses

our results and opens perspectives.
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Chapter 2

Rule-Based systems, BRMS and

decision automation

2.1 General information about rule-based systems

According to Engelmore (1987), Arti�cial intelligence was primarily a �eld of aca-

demic research that looked for generic approaches to solve various complex problems

and found its niche in �heuristic symbolic computing�, where the data was largely

symbolic and the problems not well-structured, requiring the use of heuristic techni-

ques to reach good enough solutions. Practical applications of arti�cial intelligence

gave rise to several sub-�elds, such as natural language processing, computer vision,

knowledge representation and reasoning, machine learning (the list is far from being

exhaustive of course).

Among them, our interest lies in the area of knowledge-based systems that has

been one of the �st areas of the arti�cial intelligence to be commercially fruitful

and received a lot of attention as stated in (Lucas and van der Gaag, 1991). The

early knowledge based-systems have been mostly used to replace or assist human

experts in the solving of complex problems and are so called expert systems. The

idea behind these systems is to provide a tool that emulates the thought process of

human experts to automate business decisions. Automating decisions requires that

su�cient knowledge about the business domains of the human experts has been

acquired by the system. Under this perspective, several methods have been deve-
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loped for building knowledge-based systems capable of making complex automated

decisions. The main ones, according to Sun (1999) and Darlington (2013), fall into

two categories :

(1) Symbolic approaches (aka. classical AI or GOFAI for Good Old-Fashioned

Arti�cial Intelligence (Haugeland, 1989)) that explicitly store symbols and lo-

gically manipulate them during the reasoning process. These approaches con-

stitute the branch of arti�cial intelligence that attempts to explicitly represent

human knowledge in a declarative form (like facts and rules) in order to mimic

the intelligence of a human expert. The idea behind this is to reproduce the me-

chanism of thought at a high level. The General Problem Solver presented by

Newell et al. (1959), the Logic Theorist presented by Newell and Simon (1956)

and later the �rst famous rule-based systems like Digitalis Advisor (Swartout,

1977) and MYCIN (Buchanan and Shortli�e, 1984) have been foundational to

the symbolic arti�cial intelligence.

(2) Non-Symbolic approaches (essentially represented connectionist approaches)

that do not use explicit knowledge but rather encode implicit knowledge that

have a priori no meaning for a human reader. The works presented in (Rosen-

blatt, 1961) and (Smolensky, 1988) have been foundational for these approaches

that have been less successful than the symbolic ones at the beginning of ap-

plied arti�cial intelligence but gain lot of importance in the last two decades.

This success is explained by the increase of computing power and the memory

but also because of the complementarity of the two approaches as depicted in

(Harnad, 1990). Neural networks (Prieto et al., 2016) are good examples of

this paradigm. The idea behind these approaches is to simulate the working of

a human brain.

Business rule-based systems fall in the �rst category and are particularly popular

with banks and insurance companies because the accuracy of their automated decisi-

ons and their �exibility make them great tool for dealing with �critical-applications�.
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Indeed, Hayes-Roth (1985b) claims that �these systems automate problem-solving

know-how, provide a means for capturing and re�ning human expertise, and are

proving to be commercially viable�. In other words, it means that these systems can

automate the problem-solving providing that su�cient knowledge about the heuris-

tics (what method is applied in what situation) used by human expert is available.

One of the most important aspect in these systems are the business rules them-

selves. Business rules constitutes a kind of declarative programming language that

provides an easy way to capture and maintain the expert knowledge about heuris-

tics and methods used to solve complex problems in a speci�c domain. As such,

they can be seen as statements that de�ne or constraint some aspects of a deci-

sion, which means that business rules are intended to assert a business structure

that constrains and in�uence possible behaviors of an automated decision-making

system. In Hayes-Roth (1985a), Frederick Hayes-Roth claims that intelligent sys-

tems are a critical part of an organization's information system and describes a rule

as a relatively independent piece of know-how that speci�es �a chunk of analytic

problem-solving knowledge� and also states that �from an architectural perspective,

rules are data that generally conform to highly specialized grammars capable of

using symbolic expressions to de�ne conditions and actions". Ross (2003) describes

them as �A directive intended to in�uence or guide business behavior", von Halle

(2001) as a �set of conditions that govern a business event so that it occurs in a

way that is acceptable to the business� and Group (2008) as a �proposition that is

a claim of obligation or of necessity". In fact, there is no standard de�nition for

business rules but the BRG (Business Rules Group), as the most known peer group

in business rules area, provides the following de�nition in the Guide Business Rules

Project Report published in 2000:

�A business rule is a statement that de�nes or constrains some aspect of

the business. It is intended to assert business structure or to control or

in�uence the behavior of the business. It is atomic in that it cannot be

broken down or decomposed further into more detailed business rules. If
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reduced any further, there would be loss of important information about

the business."

In practice, business rules form a declarative language that explicitly states the bu-

siness logic of a particular category of knowledge-based systems called rule-based

systems. Researches focusing on building rule-based systems for industry have re-

sulted in standard of software architecture that we describe in the next section.

2.2 Rules in decision automation

The rules are commonly speci�ed by means of an ontology language, and often

a description logic language. Depending on the contexts and uses, they have taken

di�erent form whose the most known are the following:

• Logical Rules. In propositional logic, a logical rule (aka. rule of inference

or transformation rule) is a logical form that consists in a function which takes

premisses and analyze their syntax to return conclusions. Such rules of infe-

rence include modus ponens (argument form: ((p→ q)∧p) ` q), modus tollens

(argument form: ((p → q) ∧ ¬q) ` ¬p), and contraposition (argument form:

(p → q) → (¬q → ¬p)). In practice, a logical rule is used to infer new facts

when premisses are satis�ed.

Example 2.1. IF humans are mortal AND Socrate is a human THEN Socrate

is mortal

• Production Rules. The production rule formalism Lucas and van der Gaag

(1991) constitutes a �rst attempt to adapt the logical rules to industrial ap-

plications and has been used in the �rst expert systems (MYCIN Buchanan

and Shortli�e (1984), EMYCIN van Melle et al. (1984), DENDRAL Lindsay

et al. (1993)...) A production rule represents the necessary conditions to make

a state transition or an action. It means that the rule describes a set of states

in its premisses, representing the initial situations that may occur and its con-
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clusions modify this set of state by using an operation that can be a procedure

or a method.

Example 2.2. IF the patient has a sti� neck on �exion AND the patient has

a headache THEN recommend medical check

• Probabilistic Rules. The probabilistic rule formalism constitutes a �rst

attempt to deal with uncertainty when using production rules. It augments

the production rule formalism by assigning certainty factors (CF) to the con-

clusions of rules. This formalism is in�uenced by the probability theory but

makes strong simplifying assumption concerning the independence of di�erent

rules. In practice, it has been shown that these simpli�cations could lead to

erroneous conclusions.

Example 2.3. IF the patient has a sti� neck on �exion AND the patient has

a headache THEN there is suggestive evidence that the patient's infection is

meningitis (CF=0.5)

• Fuzzy Rules. The fuzzy rule formalism constitutes an attempt to provide the

rule-based systems with commonsense knowledge. In this formalism, a fuzzy

rule de�nes a furry patch and connects commonsense knowledge to state-space

geometry. This approach relies to the fuzzy Approximation Theorem (FAT)

and is described in Kosko (1994) In practice, the fuzzy rules allow to represent

fuzzy sets by using terms that can be interpreted in several way depending on

the context.

Example 2.4. IF fever THEN recommend paracetamol

• Business Rules. The business rule formalism is an attempt to adapt the

production rule formalism in order to make it more compatible with the bu-

siness needs of companies and organizations. The objective is to o�er a more

�exible and practical programming language than the production rule forma-

lism. A business rule is a statement, taking the form of a customized �near
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natural language� text, which de�nes a business aspect that allows to describe

the decision criteria and the actions to apply for a given situation of a decision

process.

Example 2.5. IF 'the loan report' is approved AND 'the grade' is one of "A"

, "B" , "C" THEN in 'the loan report', accept the loan with the message

"Congratulations! Your loan has been approved" ;

Among these rules, business rules are widely used in the industry and especi-

ally for critical business applications. Actually, as business rules have a business

meaning and take the form of statements in a near natural language, manipulate

them is very easy and do not require any programming skill or technical knowledge.

Indeed, as statements in a near natural language, business rules can vary depen-

ding on the verbalization that has been arbitrarily adopted by the designer of the

rule-based system. For these reasons, business rules can be easily used by domain

experts to precisely de�ne and maintain the problem-solving logic of an automated

decision-making system and have been preferred by industrial, especially by banks

and insurances.

2.2.1 Business rules: basic de�nitions

The most fundamental notion in Business Rule-based systems (BRBS) is the one

of business rule. Business rules are commonly speci�ed by means of an ontology,

often represented by means of a description logic language. Each business rule can

be seen as a statement, taking the form of a customized near natural language text,

which de�nes a business aspect that allows to precisely describe the decision criteria

and the actions to apply for a given situation of a decision process. Consequently,

business rules provide a simple way to set the behavior of an intelligent system. For

this reason, business rules are widely used in the industry and especially for critical

business applications. Actually, as business rules have a business meaning and take

the form of statements in a near natural language, manipulate them do not require

any programming skill or technical knowledge. That is why, business rules can be

28



Chapter 2. Rule-Based systems, BRMS and decision automation

easily used by domain experts to precisely de�ne and maintain the problem-solving

logic of an automated decision-making system.

De�nition 2.1 (Business Rule). A business rule takes the form of a statement

written in a business rule language and whose the logical structure is described as

follow:

IF 〈premisses〉 THEN 〈consequent〉

The premisses is a disjunction of conjunction of conditions and the consequent is a

sequence of actions, thus the general structure is :

IF 〈c1 AND · · · AND cm〉 OR ... OR 〈c1 AND · · · AND cn〉 THEN 〈a1; · · · ; an〉

The actions in the consequent are typically business rule language statements

corresponding to variable assignments, and can involve various arithmetic operati-

ons whereas the conditions in the premisses are business rule language statements

corresponding to expressions that can be evaluated.

De�nition 2.2 (Eligibility and Triggering). Based on the satisfaction of the condi-

tions in its premisses, a rule is eligible for being triggered. When a rule is triggered,

the sequence of actions corresponding to the consequences is executed.

We shall see later on the procedure governing the triggering of the rules.

Example 2.6. (Example of business rule )

A rule having the business rule language form:

if the score of the Borrower is higher or equal to 10 then set the rate of the Loan

to (the score of the Borrower+ the bonus of the Borrower) divided by

100 ;

and corresponds to the conditions-actions statement:

IF 〈c1〉 THEN 〈a1〉, where �c1� refers to the condition statement �the score of the Borrower

is higher or equal to 10� and �a1� refers to the action statement �set
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the rate of the Loan to (the score of the Borrower+the bonus of the Borrower)

divided by 100�

De�nition 2.3 (Rule-based system). A rule-based system is composed of : (1) a

collection of business rules, (2) business variables, which may be input and output

variables, and (3) an inference mechanism.

User interactions with such systems take the form of requests whose the content

depends on the application.

De�nition 2.4 (Request). A request amounts to ask the value of a speci�c (output)

variable.

In practice, the working of a such system consists in three steps: (i) the rule-based

system receives a request, (ii) based on this request, it solves a speci�c problem and

(iii) it returns the results obtained as outputs.

2.2.2 Basic architecture for rule-based systems

Business rule-based systems have been shaped by many in�uences that go from

computing theory to psychology research. As previously described in the symbolic

approaches, these systems are the result of e�orts to apply general concepts from

cognitive and computer sciences to the simulation of expertise. They mostly derive

from the production system model used in automation theory where the main idea

was to associate stimulus and responses under the form of IF-THEN propositions

modeling the problem solving knowledge of a human expert Lucas and van der

Gaag (1991), Ross (2003). In this perspective, computing theorists have found it

convenient to describe all computational behavior in terms of state transition tables

that de�ne rules for moving between states. Each of such rules contains a small

chunk of the domain knowledge that could be used to infer reasoning and solve a

part of the problem in speci�c situations. Finally, using these rules and an inference

mechanism was su�cient to mimic human expert problem-solving abilities. Thus,
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the basic rule-based system was just a knowledge base and an inference mechanism

but was too simplistic to be used in industrial purposes.

The usefulness of automated decision-making systems is related to their capa-

bility to guarantee strong run-time performances and their �exibility. Thus, the

working of the system have to be optimized and its knowledge base shall be main-

tained up-to-date. To this purpose, the automated decision-making system requires

a knowledge base editor. This component allows the human expert to explore and

modify the knowledge base in a straightforward way. Finally, an interface is needed

for providing interaction between the system and its users in a simple way. This

interface is called the user interface. For all those reasons, more sophisticated ar-

chitectures have been designed and re�ect a global trend toward more consistent

rule-based systems.

Today, most of business rule-based systems are complete computing systems

and embed at least the essential components depicted in the �gure Fig. 2.1 which

describes a basic architecture of a rule-based system.

Figure 2.1: Basic Architecture: essential components of a Rule-Based System

We describe more precisely the essential components and their functions bellow.
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2.2.2.1 The Knowledge Base

A rule-based system holds a collection of general principles and concepts that

can potentially be applied to solve problems or answer the user requests. This

static information is stored in a knowledge base which consists in a speci�c database

representing a wide variety of knowledge and containing various kinds of data. For

example, in the context of an application for banks and insurances, a user can ask

the system if a particular loan request has been accepted. Then, Depending on the

automated decision results, he may ask the system to explain its reasoning. In order

to answer to the user request, both the inference mechanism and the explanation tool

need general information that are contained in the knowledge base. Consequently,

the design and the organization of a knowledge base is a very important point

that requires special caution. Increasing the expressibility and the intelligibility

of this knowledge base makes more e�cient the knowledge exchanges between the

experts and the rule-based system and facilitates the management (modi�cation and

extension) of the knowledge base.

In this perspective, a knowledge base is often decomposed into three kinds of

knowledge depending on their role.

• The domain knowledge that encompasses facts and rules considered by the

system for problem solving,

• The technical knowledge that describes control procedures, meta-rules and

other knowledge required for the working of the inference mechanism,

• The explanatory knowledge that contains at least the traces of the automated

decision taken by the rule-based system. Moreover, it may also include addi-

tional knowledge about the domain as justi�cations that could be needed to

produce explanations.

In resume, a Knowledge Base, sometimes referred as Domain Knowledge, contains

all the essential knowledge about the concepts and the heuristics used by the engine
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to make inferences. It encompasses:

• the concepts manipulated in the domain: that can be represented as object

classes,

• and the laws used in the domain to manipulate these objects: that take the

form of business-rules.

However, characterizing more precisely the exact nature of the knowledge enco-

ded in the knowledge base will be very important for us for, as noticed in (Chandrase-

karan and Mittal, 1983), one very important aspect in the perspective of explanation

is the �depth at which a rule-based system represents its knowledge and uses it to

solve problems�.

Deep vs. compiled knowledge. As knowledge-based systems, rule-based systems

aim to represent enough knowledge about a domain and a problem to solve in it to

automate the problem-solving. Moreover, as an expert system is commonly dedi-

cated to a speci�c problem domain, it is only designed for making decisions in the

speci�c problem context and thus presents its own features that meet the speci�c

needs of a particular application. Consequently, the content, as well as the structure

and the form of a rule-based system knowledge may change depending on its problem

domain, on its users' needs and on the technical choices of its designer. For this rea-

son, the knowledge embedded in such systems can highly vary from one to another.

In the same way, this knowledge may be more or less precise or even represented at

di�erent levels depending on the human experts that provided the expertise used to

solve the problem and depending how this expertise has been transcribed for being

used by the system. In our explanation perspective, we would examine how the

changes in the knowledge used by these systems to reason could change the quality

of the information that they contain.

Intuitively, we feel that, in addition to a�ect the capability of a system to solve

problems, the depth and the structure of a knowledge will a�ect the accuracy and the
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quality of the information that could be extracted from it for explanation purposes.

Thus, as the �depth of the knowledge represented in a rule-based system seems to

have an impact on its capabilities, it could be wise to examine this measure/concept

more precisely.� In their contributions, Michie (1982) and Brown (1984) refer to

�high road", �middle road" and �low road" approaches. In the same way, in its

study, Hart (1982) makes a distinction between what he calls �deep" and �surface"

systems that refer to similar concepts.

Surface systems (or low road approaches) have been mostly used for designing

�rst generation expert systems. The knowledge they use has been compiled through

experience in a highly re�ned form which is very concise and can be easily used

by the system to automate its problem solving in an e�cient. In practice, surface

knowledge consists at best in a database of pattern-decision pairs that is eventually

provided with a simple control structure allowing the navigation in it. Due to

their compact form and their simplicity, these approaches are highly e�cient but

encounter practical issues in the variety of problems they can solve. Indeed, as their

solving capabilities are limited to the pattern-decision pairs that have been explicitly

described in the knowledge, they can only solve the speci�c cases for which their

data base contain the related data associations. This limitation constrains their uses

to the problems for which it is doable to describe all the possible cases and exposes

them to �combinatorial explosion�.

Conversely, deep systems correspond to high road approaches and directly use

domain principles or models in their less re�ned forms. These principles and models

come from a complete domain theory that has been picked up to be used in the expert

system. In practice, such knowledge may contain �rst principles, basic relationships,

and knowledge about functions that are applicable in a wide variety of situations.

Nonetheless, there is no consensus on the content, the form and the structure that

deep knowledge should have. Due to their generic knowledge about the domain,

they can use it to solve more complex problems than the surface ones and do not

encounter the same limitations. Their main weaknesses are their high complexity
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and their ine�ciency to solve simple problems.

Example 2.7. A basic electrical problem:

Imagine you have to analyze an electrical circuit and your �rst task consists in

�nding the current produced I through an ohmic device with a resistance R = 1kω

when you apply an electromotive force U = 9V . In this case, the system could address

the problem with two di�erent methods: (1) applying the Ohm's law (I = U ÷ R)

to �nd a current I = 9mA or (2) checking in a table to return the value of the

current I = 9mA associated to the couple of values 〈R = 1kΩ, U = 9V 〉. In this

case, the method (1) which applies the Ohm's law to deduct the current through the

ohmic device would rely on a �deep knowledge� and the method (2) would rely on a

�surface knowledge�. Nonetheless, as the notion of �deep knowledge� is subjective,

someone could claim that there is deeper knowledge and that the system should rely

on the generalized form of the Ohm's law using impedance to deal with non-ohmic

device. The basic idea is more your knowledge about a domain will be deep, more

the approach you'll apply will be general and will be able to deal with more cases.

From this perspective a �deep knowledge� should rely on the more general principles

you can express about a domain and which can be used to address the problem.

The fact is that these two kinds of systems have di�erent utilities. The systems

using surface knowledge provide an e�cient way to solve quickly simple problems

but encounter issues to deal with problems that have not been anticipated, while

the systems using deep knowledge are less e�cient but are supposed to handle any

problem of the domain, even the more complex. In fact, deep and surface knowledge

are relative terms, a deep knowledge may not be very deep (not based on quite

�rst principles) but it can be considered as deep relative to some other pieces of

knowledge which are more readily usable or re�ned. From this perspective, deep

and surface knowledge represent the two extremes.

Between these two extremes, there are other approaches using compiled kno-

wledge, called middle roads, which propose compromise solutions that compile less

re�ned knowledge in order to be more general than the surface ones but less complete
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than the deep ones. The underlying idea is to provide that use compiled knowledge

that reconstruct and re�ne some chunks of the deep knowledge to apply them on

more speci�c cases. This statements are depicted in Figure 2.2.

Figure 2.2: Compiled knowledge: from deep to surface knowledge

According to Anderson (1986), behind any compiled knowledge, there is a com-

pilation process that aims to reduce the amount of knowledge used by the system

during the problem-solving process. Moreover, as depicted by Pazzani (1986), such

compilation of knowledge may also involve the addition of relevant pieces of know-

ledge which alter the problem solving process and even imply changes in the repre-

sentation level of the source knowledge. For example, a chunk of knowledge can be

changed from a deeper context-independent level to a more easily usable form that

�t only to a speci�c part of the problem.

From this perspective, the knowledge compilation can be seen as the ability of a

compilation process to re�ne the knowledge used to solve problem in order to enhance

the performance of an expert system. Another important aspect to consider is the

common idea that deep knowledge structures are needed for providing explanation.

In fact, this idea relies on the fact that more the knowledge of a system will be

re�ned less it will be able to provide useful information for building the explanation.

In the light of the above, we can see that the process of compiling knowledge

for designing expert systems is quite near to the process of building knowledge

for devising explanation features with the di�erence that the process of compiling

knowledge is based on the deep knowledge and occurs before the process of building

explanation knowledge that is based on this compiled knowledge. This means that
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not enough information in the compiled knowledge systematically leads to a lack of

information in the explanation knowledge. As a last resort this missing information

could be obtained directly from deep knowledge when constructing the explanation.

One point worth mentioning is that a knowledge base is a static memory which

provides general principles and concepts that are used by the inference mechanism

but it is not su�cient to make reasoning about speci�c inputs. In this perspective,

a dynamic memory, called the working memory, expand this knowledge base and

allows the rule-based system to reason about speci�c data.

Moreover, the access and the maintenance of a knowledge base is often facilitated

by the means of a Knowledge Base Editor that allows to manipulate the information

contained in the knowledge base at high level.

2.2.2.2 The Working Memory

A rule-based system also holds a collection of speci�c details that apply to the

current problem. This dynamic information encompasses temporary data correspon-

ding to the current decision and includes details about the inputs, the progression of

the reasoning process, the triggered rules and the outputs. A Working Memory that

contains the facts base where each fact is a concept of the domain that has been

instantiated with a de�ned value and represents a speci�c object. Its role is to hold

these dynamic information in order to support the working of inference mechanism

during the whole reasoning process.

2.2.2.3 The Inference Mechanism

An inference mechanism processes domain and technical knowledge to make de-

ductive inferences about the temporary data contained in the working memory.

In rule-based systems, such a mechanism is typically referred as the inference

engine or rule engine.

Inference engines have been used to deal with logical rules in the �rst expert
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systems and work in a simple way. Logical rules are applied to the facts in the

working memory and new facts are deduced. This process would iterate as each new

fact in the working memory could trigger additional rules in the knowledge base.

A basic engine cycle has the three following phases:

(1) Detection (�lter relevant rules): creation of the con�ict set. Given the state of

the working memory, an interpreter selects the executable [N: eligible?] rules

in the knowledge base (ie. the business rules whose the conditions in the

premisses are satis�ed) and stores them into an agenda. This set of executable

[N: eligible] business rules is called the con�ict set.

(2) Selection (select the rule with the highest priority): con�ict resolution and

selection of a rule to be executed (control strategy). The technical knowledge

is used to establish priority among the business rules.

(3) Execution (execute an instance of this rule): execution of the rule and modi�-

cation of the working memory.

Based on the above description of an engine cycle, inference engines work pri-

marily in the three following way. The forward chaining approach starts with the

known facts and asserts new facts. This approach is based on the application of

the modus ponens and makes deductive inferences (each inference involves an en-

gine cycle). The backward chaining approach starts with goals and works backward

to determine what facts must be asserted so that the goals can be achieved. This

approach consists of a tree exploration and makes inductive inferences. A mixed

approach that combines deductive and inductive inferences is sometimes used.

Contrary to the term inference engine which is clearly de�ned, the term Rule

Engine is quite ambiguous in that it can designate any inference mechanism in a

system that uses rules, in any form, that can be applied to data to produce outcomes

and often refers to more recent engines that manipulate more complex rules (like

fuzzy or business rules) and work on the same principles but provide a richer set of

mechanisms to work with.
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In practice, an engine (rule engine or inference engine) is used to simulate the

expert reasoning by evaluating the state of the working memory, looking for some

applicable rules, applying one rule instance on the working memory and then upda-

ting the working memory and repeating the process until the �nal decision has been

determined.

2.2.2.4 The Tracing Tool

As industrial applications of automated decision making require to be monitored,

it is necessary to keep track of the decisions taken in order to understand them and

ensure their transparency. Indeed, monitoring the decisions taken by a rule-based

system allows the experts to understand, accept and optimize its reasoning. In this

perspective, tracing tools are essential for most of rule-based applications, according

to Darlington (2013), such components are essential to decision understanding, mo-

nitoring and acceptation. It means that an automated decision-making system needs

to embed a tracing tool, which typically simply applies a set of observers to trace

basic information about speci�c data modi�cations or operations occurred during a

decision. As we will later, this is not su�cient though if the objective is to explain

the decisions.

2.2.2.5 The User Interface

A user interface is a means of communication between a rule-based system and

its users. Thanks to this interface, the users interact with the rule-based system in

a straightforward way. It is an important component to make a rule-based system

because the more ergonomic a user interface is, and the more it enhances the ease

of use of the rule-based system.

2.3 The IBM business rules management system

Business Rule Management Systems, often abbreviated as BRMS, have emer-

ged from the convergence of production systems mainly used as reasoning tools for

39



Chapter 2. Rule-Based systems, BRMS and decision automation

problem-solving and business rules essentially seen by their users as a knowledge

representation tool.

In fact, a BRMS consists in a software that provides a way to manage variety

and complexity of the decision logic used by operational systems within organizati-

ons. The decision logic takes the form of a declarative language, expressed through

business rules as described in the previous section, that enables the description of

business policies, business requirements and conditional statements that are used to

determine the business actions that occur during an operational decision. By using

business rules, an operational decision associated to them can be de�ned, deployed,

executed, monitored and maintained separately from its core application code.

In this perspective, BRMS provide robust platforms dedicated to the manage-

ment of business rule-based systems and allow the companies to increase the reada-

bility of their knowledge base, reduce operational and maintenance costs and react

more quickly to the market changes.

The �eld of business rule management systems is characterized by a number of

normative, open source or proprietary technologies and languages that makes them

far e�cient than classical approaches. The key players include IBM (IBM Ope-

rational Decision Manager), Bosch Software Innovations (Visual Rules), Progress

Software (Corticon), Oracle (Oracle Business Rules), Red Hat (JBoss Drools), SAP

(SAP NetWeaver DSM) and FICO (FICO Blaze Advisor).

In the context of this thesis about automated decision-making and explanation,

we are interested by the business rule management system provided by IBM, cal-

led IBM Operational Decision Manager. This product is the evolution of the well

known ILOG JRules. As IBM Operational Decision Manager separates decision ma-

nagement from application code, the business experts can de�ne and manage the

business logic without the support of IT experts. By adopting this way of mana-

ging decisions, there is a huge reduction in the amount of time and e�ort that is

required to update the business logic in production systems. Thus, by using this

approach, organizations increase their ability to respond to changes in their business
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environment.

For a better understanding of how IBM Operational Decision Manager works

and what are its speci�cities, we introduce some important concepts and de�nitions

thereafter.

2.3.1 Hierarchy of decision service in IBM ODM

The business rule applications designed by using IBM ODM rely on two key

aspects:

• the establishment of a hierarchy among the elements of a business rule project.

The hierarchy of a decision service (i.e. rule project) allows the decision service

behavior to be governed and deployed consistently.

• the de�nition of the vocabulary that is used for authoring business rules. This

vocabulary is used to refer to the business objects and functions that are ma-

nipulated during the decision process.

De�nition 2.5 (Ruleset). A ruleset is a set of coherent business rules, in the sense

that each set represents a speci�c aspect of the decision logic and takes the form

of an executable decision unit. A ruleset uses input and output parameters to pass

data to and from the client application. Each ruleset must have a unique signature

that describes the sets of input and output parameters that are used by this speci�c

ruleset to communicate with the rest of the client application. In a decision service,

the decision operations de�ne the content and signature of each ruleset.

Each of these rulesets having its own dedicated resources and form a decision

unit that has a all the necessary materials to be parsable and executable by the rule

engine. These decision units can then be referred in tasks which are responsible for

splitting the reasoning process. More concretely, each task embeds an independent

chunk of the decision-making.

Based on that, a decision process encompasses one or more tasks whose the
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executions result in the di�erent reasoning steps of the corresponding decision. The

orchestration of these reasoning steps is managed by the rule�ows.

De�nition 2.6 (Rule�ow). A rule�ow speci�es a �ow of execution of the tasks.

In this sense, the rule�ow de�nes the problem-solving strategy. The operations

permitted in a rule�ow are: (1) branches and (2) fork and joins. A (1) branch

is an operation that organizes conditional transitions between the tasks and a (2)

fork and joins splits the execution �ow in several parallel paths (without using

conditional test) and then combine all the transitions created when the parallel

paths are completed.

Example 2.8. In Figure 2.3, there is a good example of branch operation from the

task �eligibility� to the task �pricing� and the end node. The condition associated to

this task, labeled rental agreement accepted, checks is the approval status of the loan

is true after the execution of the task �eligibility�. If it is, then the task �pricing� will

be next, if it is not the case, then the execution will be ended and the loan request

will be rejected.

Thus, rule�ow are a way of controlling rule executions. They are made of linked

tasks that contain the instructions for which rules to execute and in what order.

The links between the tasks are called transitions. A rule�ow speci�es how tasks are

chained together: how, when, and under what conditions they are executed. It also

deals with ruleset parameters that are variables used to transfer information from

one rule�ow task to another one, to determine which path to follow through the

transitions and to transfer information between the rule�ow and your application.

For example, you can transfer a status variable, such as isEligible, to determine

which task to go to next. The diagram presented in Figure 2.3 shows the main parts

of a rule�ow where (1) represents the start node, (2) a task, (3) a transition and (4)

the end node:
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Figure 2.3: Example of rule�ow for a loan application usecase (source)

2.3.2 IBM Operational Decision Manager: platform and architecture

The BRMS called IBM Operational Decision Manager (ODM) is provided by

IBM and can be seen as an environment for designing, developing, deploying and

maintaining business rule applications. In practice, IBM Operational Decision Ma-

nager simply consists in a platform which includes a set of tools allowing to produce

and maintain various business rule applications that are called decision services.

This platform can be accessed by two ways:

• A decision server allowing IT specialists to design, author and test the business

rules (functional requirements), and

• A decision center allowing business users to author, manage, validate and de-

ploy business rule services without speci�c knowledge in informatics (business

requirements).

The scheme depicted in the �gure 2.4 gives a global view of this platform.

Whereas the decision server focuses on the functional requirement and provides a

set of components that allows IT developers to design, author and test the business

rules by the way of business rule projects, the decision center stores these business

rule projects to let the business users manage decisions that are directly based on

organizational knowledge and best practices with limited dependence on the IT
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Figure 2.4: Operational Decision Manager Global View (source)

department.

This means that two cycles can evolve in parallel:

• The IT cycle: it encompasses the actions which consist of developing and

maintaining the infrastructure through the decision server, and

• the business cycle: it refers to all the actions that consist of the de�nition

and maintenance of the decision logic. This operations are supported by the

decision center.

In practice, the business cycle is supported by the infrastructure provided by the

IT teams and allows distributed business teams to collaborate through a web-based

environment to create and maintain the decision logic.

One of the strength of this approach is that decisions can evolve as required by the

business context without putting an extra load on the development of the business

rule service. Each time a business rule service evolves, the decision management

environment synchronizes with the development environment. With this separation,

decisions and application architecture can be managed asynchronously. For example,
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application developers can develop a new application version in response to changing

application infrastructure and core business requirements. At the same time, policy

managers can work on new decisions that are delivered in response to an evolving

market, changing regulatory environment, or new patterns of events.

Figure 2.5: IBM ODM global view (derived from (source 1) and (source 2))

The upper part of Figure 2.5 gives a global view of the decision server which

supports the development environment. As we can see on the scheme, the decision

server provides the development and runtime components that are involved in the

development and maintenance of rule-based solutions used to automate the response

of highly variable decisions required by client applications.

To this end, the decision server uses two components:
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• the Rule Designer : this component consists in an Eclipse-based development

environment that allows to design, author, test and deploy the business rule

applications. The design of a business rule application encompasses several

aspects. The implementation of the necessary infrastructure for editing rules

and producing the set of rules that are used as decision units. Moreover, the

development of an Execution Object Model (XOM) aims to de�ne program

against which the business rules are run and the development of a Business

Object Model (BOM) aims to de�ne the elements and relationships in the

vocabulary. A business rule language is then built by mapping the elements

of the Business Object Model (BOM) to those of the Execution Object Model

(XOM). Based on that, the con�guration and the customization of tests and

simulations allow to set up business user validation tools.

• The second component is the Rule Execution Server. This component is re-

sponsible for providing the runtime environment for running and monitoring

decision services.

In short, the decision server provides the runtime (in the Rule Execution Server)

and development components (in the rule designer) that are required to automate

the response of highly variable decisions that are based on the speci�c context of a

process, transaction, or interaction.

In addition to the decision server that allows the IT teams to work on the functi-

onal aspects of a decision project, the decision center provides an environment de-

dicated to the management of the business logic by the business experts. The lower

part of the scheme presented in �gure 2.5 gives a global view of the decision center

by illustrating the components that support this decision management environment.

The decision center includes a rule repository and some collaborative web consoles

allowing business users to author, manage, validate, and deploy rules. Thanks to

the web console, business users can author business rules used in decision services.

Testing and simulation features that enable business users to validate the behavior
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of rules are also included in the decision center because business users must be

con�dent that business rules are written correctly and that any update does not

break the business logic encapsulated in the ruleset. When a business application is

ready for production, business users can deploy decision services directly from the

business console and then manage them.

As previously explained, the business rules used in IBM Operational Decision

Manager are based on two essential concepts: the Business Object Model abbreviated

as BOM and the Execution Object Model abbreviated as XOM.

The BOM is used to make business rule editing user-friendly by providing tools to

set up a natural language vocabulary that allows business experts to describe their

business logic in a business rule language. This business rule language relates on a

business ontology which can be verbalized in more than one expression in order to

provide a richer language or in order to deal with several locales including English,

Chinese or Spanish. The BOM contains the classes that rule artifacts act on and

consists of classes grouped into packages where each class has a set of attributes,

methods and, possibly, other nested classes. Thus, the BOM constitutes the basis for

the vocabulary used in business rules and takes the form of an object model which

is similar to a Java object model. The �gure 2.6 illustrates how the vocabulary used

in a business rule is connected to the business object model.

Figure 2.6: Business Objet Model and Vocabulary (source)
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Whereas the BOM is an object model used to deal with the vocabulary aspect,

the XOM is an object model used to deal with the functional aspect that determines

rule execution. The implementation of this model relies on classes that are expressed

in Java or by an XSD schema as depicted in the �gure 2.7. Thus, this is the XOM

that allows the rule engine to access the application objects and methods.

Figure 2.7: Execution Object Model (XOM) (source)

Based on that, the business rules are written against the Business Object Model

(BOM) by human users, then translated into the ILOG Rule Language (IRL - when

using the classical rule engine) / Advanced Rule Language (ARL - when using the

decision engine) and run against the XOM (the element which is manipulated by

the rule engine). Moreover, the elements in the BOM correspond to those in the

XOM and are mapped together based on the �BOM to XOM mapping �le� (.b2x)

that de�nes the correspondence between the business object model (BOM) and the

execution object model (XOM) used at runtime. The scheme presented in �gure 2.8

described these statements.

Based on the previous de�nitions, it is possible to complete the picture of the

content of a decision service. The �gure 2.9 provides a view of the elements encom-

passed in a decision service.

In it, a decision service is composed of one or more rule projects that can be

used together and establishes a hierarchy among them. Each of these rule projects

can contain rulesets, variables, business object model, execution object model, bom
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Figure 2.8: Relation between BOM and XOM (source)

to xom mapping �les and decision operations that can be used when the decision

service is running. The �gure 2.10 shows an example of a decision service structure.

Such decision services can then be used by rule-based applications to automate

decisions.

2.3.3 The rule engine of IBM ODM

Based on the elements contained in such decision services, the rule engine used

by IBM ODM evaluates the rules against the application objects and executes them

when appropriate. This mechanism operates on Java platforms and has three mo-

des of execution (RetePlus, Sequential, FastPath). While the details of the

implementation might not be really important (how is the �priority� property deter-

mined etc.), it might be interesting to understand exactly what they are and how

they are di�erent.

There are mainly two classes of algorithms.
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Figure 2.9: Components of a Decision Service (source)

Figure 2.10: Example of Decision Service architecture (source)

• inferential : An inferential algorithm rely on an inference mechanism that

automatically resolves rule ordering problems. The Rete-algorithm is the most

known example of inferential algorithm.

• non-inferential : A non-inferential algorithm simply rely on explicitly speci�ed
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sequencing of rules and rule sets. Actually, non-inferential engines are quite

successful because in many practical applications manual rules sequencing is a

su�cient and frequently preferred option. The IBM Sequential algorithm is a

good example of non-inferential algorithm.

Let us describe in detail the three execution mode.

A basic version of the �rst execution mode, called the Reteplus mode, is pre-

sented in Algorithm 1.

Algorithm 1 RetePlus

1: Find all the eligible rules in the ruleset (evaluate all the conditions of all the rules by
using a pattern matching approach based on the RETE algorithm)

2: Add them to an Agenda which order them dynamically by using their "priority" pro-
perty

3: Select the �rst Rule (the highest priority Rule) and �re it (run the actions part of the
rule). It becomes uneligible until one of its conditions becomes false.

4: Repeat from 1. until there are no more eligible Rules or one of the actions ends the
execution.

The second execution mode is the Sequential mode. The important di�erence

with RetePlus is that each Rule is only evaluated once. Thus, it is much simpler,

has no risk of looping and is described as presented in Algorithm 2.

Algorithm 2 Sequential

1: Order the Rules in the RuleSet according to their priority property
2: for each rule do
3: evaluate its conditions
4: if the rule is eligible then
5: �re this rule
6: end if

7: end for

The third execution mode is the FastPath mode. The important di�erence with

the Sequential mode is that actions from a Rule cannot in�uence the eligibility of

another Rule from the same RuleSet. It can be described by the process described

in Algorithm 3.

Example 2.9. To highlight the di�erences between each algorithm, let's consider a
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Algorithm 3 FastPath

1: Order the Rules in the RuleSet according to their priority property
2: for each rule do
3: if the rule is eligible then
4: add the rule to the list of eligible rules
5: end if

6: end for

7: Fire all the eligible rules in the order of the list

very simpli�ed Model with a small RuleSet. The only object is F. It is an integer with

an initial value of 10. It is both the input and the output. There are only four Rules,

with respective priority 1, 2, 3 and 4: Rule 1: IF lessthan(F, 4) THEN set(F, 0),

Rule 2: IF greaterthan(F, 9) THEN set(F, 0.5∗F ), Rule 3: IF lessthan(F, 9) THEN

set(F, 3), Rule 4: IF greaterthan(F, 4) THEN set(F, 3 ∗ F ).

The Table 2.1 shows the di�erent rule engine execution modes applied to a simple

usecase using the rules below.

2.3.4 Applications

The systems we are interested in are widely used in the �elds of bank, insurance

and health and can perform functions like loan applications, fraud detection, pricing

or even medical diagnosis. These examples are just a few of the wide range of applica-

tions that are solved using rule-based systems. The last decades have demonstrated

the commercial viability as well as the strong maintainability of these systems and

so they have now lots of applications. In particular, the Business Rules Management

System of IBM is used by a huge variety of clients and partners. For example, most

frequent business usecases of ODM are �credit and loan approvals�, �claims proces-

sing�, �Underwriting�, �compliance and reporting�, �dynamic pricing and bundling�,

�fraud detection�, �eligbility determination�, �cross-sell, up-sell product recommen-

dations�, �customer insight and loyalty programs�, �customs and border control�,

�passenger pro�ling� and �medical decision support�1 In this document we do not

1As reported in (http://www-01.ibm.com/software/decision-management/operational-decision-
management/scenarios/,https://developer.ibm.com/odm/2015/06/02/odm-business-rules-samples-for-
healthcare-and-government/).
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RetePlus

The RetePlus goes:
Iteration 1:
F = 10
Rules eligibility:
1: (F < 4) = false, 2: (F > 9) = true, 3: (F < 9) = false, 4: (F > 4) = true
First eligible Rule: 2.
Actions: F := 0.5*F = 5
Iteration 2:
F = 5
Rules Eligibility:
1: (F < 4) = false, 2: (F > 9) = false (reset eligibility), 3: (F < 9) = true, 4: (F > 4) = true
First Eligible Rule: 3.
Actions: F := 3
Iteration 3:
F = 3
Rules Eligibility:
1: (F < 4) = true, 2: (F > 9) = false, 3: (F < 9) = true (ineligible due to having �red), 4:
(F > 4) = false
First Eligible Rule: 1.
Actions: F := 0
Iteration 4:
F = 0
Rules Eligibility:
1: (F < 4) = true (ineligible due to having �red), 2: (F > 9) = false, 3: (F < 9) = true (ineligible
due to having �red), 4: (F > 4) = false
First Eligible Rule: None.
Actions: Stop Execution
RESULT: F = 0

Sequential

The Sequential goes:
Rule 1: F = 10, Eligibility: (F < 4) = false, Actions: None
Rule 2: F = 10, Eligibility: (F > 9) = true, Actions: F := 0.5*F = 5
Rule 3: F = 5, Eligibility: (F < 9) = true, Actions: F := 3
Rule 4: F = 3, Eligibility: (F > 4) = false, Actions: None
RESULT: F = 3

FastPath

The FastPath goes:
F = 10
Rules Eligibility:
1: (F < 4) = false, 2: (F > 9) = true, 3: (F < 9) = false, 4: (F > 4) = true
Eligible Rules:
Rule 2: F = 10, Actions: F := 0.5*F = 5
Rule 4: F = 5, Actions: F := 3*F = 15
RESULT: F = 15

Table 2.1: Usecase: Rule Engine Execution Modes
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focus on a speci�c �eld or application but rather look for generic approaches that

are independent of the application domains.

In bank and insurances, all decisions taken by the rule-based systems must be

stored and available at any time for monitoring because of legal constraints. More

broadly, to be acceptable, maintainable and commercially viable, they need more

transparency. Indeed, the content and the form of the information provided to

the user must be adapted to his individual requirements and depending on the

application context a wide range of users can be involved. For all these reasons,

automated decision making systems require the capability to explain their decisions.

2.4 Discussion and conclusions

The knowledge-based system we consider belong to the class of symbolic ex-

pert systems, are used to automate business decisions and can be built by using a

Business Rule Management Systems (BRMS) called IBM Operational Decision Ma-

nager. IBM Operational Decision Manager allows to build rule-based sytems that

automate problem solving with the knowledge of the �how� and according to Hayes-

Roth (1985b) they provide a means for capturing and re�ning business expertise and

are proving to be easily maintainable and commercially viable.

Nonetheless, as the decision logic of these systems can be strongly complex, their

decisions can seem unclear and hard to accept. That is why they require a way

of making their decision logic more transparent and understandable by their users.

That is why, in order to help their decisions to be considered as useful and acceptable

but also to monitor and continuously improve their quality, rule-based systems must

be able to explain their knowledge of the domain and the reasoning processes they

employ to produce results and recommendations and using a causal model can be

a starting point to do that. Moreover, as IBM's clients need to use these systems

in real time, our system will have strong constraints on performance. Consequently

the explanation capabilities we have to design must not be memory-consuming or

greedy for computation time especially at decision time. In the next chapter we will
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detail further these motivations for explanation in rule-based systems and present

more broadly the concept of explanation, and its application to rule-based systems.
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Chapter 3

An overview of explanation in

rule-based Systems

In this chapter, we start by discussing the need for explanation in general and in

rule-based systems in particular (Section 3.1), then we explore the notion of expla-

nation (Section 3.2), present an overview of the current proposals in the literature

(Section 3.3), we give an historical overview of proposals for rule-based systems

(Section 3.4), and detail in particular the notion of causality (Section 3.5) upon

which our proposal is built. Finally, we conclude this chapter by emphasizing the

requirements we have for the envisioned IBM ODM feature (Section 3.6).

3.1 The need for explanation

The following quote, taken from the website https://www.reasoncode.org/1, il-

lustrates a typical kind of explanation provided when someone obtains his credit

score in the U.S.:

�No matter where you get your score, the documents that accompany

it will include up to four or �ve statements explaining why your score

wasn't higher. These statements are called reason codes and sometimes

go by several other names. Some people call them score factors; others

call them adverse action codes. They're all the same thing.
1Retrieved on the 2017-09-26.
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The next time you see your credit score, regardless of where it comes from,

look for the reason codes. They'll be worded and displayed something like

this:

Your Credit Score Is: 705

• 32: Balances on bankcard or revolving accounts too high compared

to credit limits

• 16: The total of all balances on your open accounts is too high

• 85: You have too many inquiries on your credit report

• 13: Your most recently opened account is too new

�

Citizens concerned by algorithmic decisions may soon be allowed to ask justi�-

cations. Recent regulations, like the General Data Protection Regulation, (GDPR)

have put forward the topic of explanation as a hot topic in A.I. Indeed, by explicitly

stating a �right to explanation� for algorithmic decisions, they constitute a challenge

for many A.I. systems, which have no built-in explanatory feature. In the words of

Goodman and Flaxman (2016) �In its current form, the GDPR's requirements could

require a complete overhaul of standard and widely used algorithmic techniques. The

GDPR's policy on the right of citizens to receive an explanation for algorithmic

decisions highlights the pressing importance of human interpretability in algorithm

design�. While there is some debate as to how bidding such regulation would be

(Wachter et al., 2017), there is clear citizen concern that needs to be addressed.

However, there are several other reasons why we want to equip systems with

explanatory capabilities (such objectives may change depending on the application).

Tintarev and Mastho� (2007) identi�ed (in the context of recommender systems) the

most important objectives that should be considered when designing an explanation.
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Aim Description

Transparency Explain how the system works

Scrutability Allow users to tell the system it is wrong

Trust Increase users condence in the system

E�ectiveness Help users make good decisions

Persuasiveness Convince users to (try or buy)

E�ciency Help users make decisions faster

Satisfaction Increase the ease of usability or enjoyment

Table 3.1: Explanation Aims Table (Tintarev and Mastho�, 2007)

From this, the need for explanation in our industrial context is clear: Business

Rule Management Systems have been widely adopted by �nancial services and public

organizations to process, manage and record their decisions for later reference. More

speci�cally, the decision systems provided by IBM are mainly used for commercial

application, their acceptance and continuous improvement is a strong constraint.

Moreover, as these systems are often used in the �elds of banking and insurance,

their decision have to be highly deterministic and clear. Large organizations have to

serialize and store billions of decisions in �decision warehouses� for legal or analytic

purposes. The ultimate objective of such tools is to present clear and precise expla-

nations to business analysts, citizens and consumers. Delivering such explanation

capabilities means that all the useful and necessary information about each decision

is traced.

But is there an actual need to explain rule-based systems? After all, such systems

symbolically encode expert knowledge which is quite interpretable. In fact, this que-

stion emerged at the very beginning of the history of expert system: while MYCIN

had been equipped with basic explanatory capabilities allowing to trace back the

reasoning steps of the system, using it in practice in a tutoring setting turned out

to be a much more challenging task than expected:

� The seemingly straightforward task of converting a knowledge-based

system into a computer-aided instruction program has led to a detailed

reexamination of the rule base and the foundations on which rules are
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constructed, an epistemological study. �

In this chapter we will see why this is the case, and what solutions can be put forward.

But before we get into these details, let us clarify what is meant by `explanation'.

3.2 Philosophical background on the theory of explanation

The philosophy of science presents formal descriptions and requirements of the

relationships entailed by explanations that di�er from common understanding and

that give us �rst basic knowledge about the very notion of explanation. In this

context, it is interesting to look at the past two centuries of philosophical discussion

that have produced a complex set of theories and models of explanation from which

Woodward (2014) extracted �ve major types, also described by (Hovorka et al.,

2008) in Table 3.2:

Given that, the common traits of these models and theories is that an expla-

nation can be seen as a statement that increases somebody's understanding about

something by providing him further information. Moreover, with the knowledge of

these theories and models, we are able to extract some important elements we should

consider when constructing an explanation.

An explanation is based on two kinds of elements:

• the explanandum, which is the phenomenon that needs to be explained

• and its explanans, which constitute the explanation content of that phenome-

non.

The explanans contain:

• the cause, which is a set of elements compatible with the explanandum, required

and su�cient to enable its to occur and also minimal.

• the causal information, which described relationships between the elements of

the cause and the explanandum.
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• some descriptive information, which provide general information about con-

cepts/elements of the causes (description, taxonomy...)

Another speci�c aspect of the explanation is its rendering. A well exploitation of the

explanans is needed to render an explanation which shapes to the aims, the user and

the context. Moreover, we consider that the generality and the objectivity of the

theory and the impact on the understanding as the essential requirements that our

formal theory of explanation should address (Friedman, 1974). Some reasearchers

attempted to provide a general de�nition of the explanation in a causal context.

In particular, Halpern and Pearl (2001b) stated that a general explanation of an

explanandum ϕ has the form ( Ψ , ~X = ~x ), where

• Ψ is an arbitrary formula in its causal language which consists of some causal

information

• ~X = ~x is a conjunction of primitive events representing the cause of the expla-

nandum ϕ.

Moreover, faced with the variety of explanatory theories and models, Johnson

and Johnson (1993) recommend the use of an unifying theory that provides the basis

for judging the quality of an explanation. The proposition of Johnson and Johnson

(1993) is followed by a great deal of empirical researches, for instance as in (Gregor

and Benbasat, 1999), describing the factors a�ecting explanation usage linked to

their theoretical foundations. In fact, this uni�ed theory developed by Johnson and

Johnson (1993) and then examined Gregor and Benbasat (1999) mainly use four

components which are (i) the cognitive e�ort perspective proposed by Payne et al.

(1993), (ii) the production paradox discussed by Carroll and Rosson (1987), (iii)

the Toulmin's theory (Toulmin, 1958) and (iv) the ACT-R theory of skill expertise

acquisition defended by Anderson (1990) and Ausubel (1985).

An important point to note here is that all these processes of providing explana-

tion strongly depend on the aims that motivate their presence. We shall now focus

on the aims and explanations that may be useful in rule-based systems.
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3.3 Explanations in rule-based systems

Friedrich and Zanker (2011) suggest to categorize explanation depending on three

dimensions which whose the �rst one refers to the nature of the exploited informa-

tion (user model, recommended item, ...) , the second one refers to the paradigm

used by the system (collaborative, content-based, knowledge-based) and the last one

refers to the kind of reasoning model (white box explanations or black box explana-

tions). Whilst Gregor and Benbasat (1999) categorize an explanation based on three

criteria: (1) its content type, (2) its presentation format and (3) its provision mecha-

nism. The (1) content type corresponds to what is usually referred as �explanation

type� or �question type�. For example, the content type can be either trace/line of

reasoning, justi�cation/support, control/strategic or terminological whereas the (2)

presentation format refers to the shape of the presented information. For example,

the presentation format can take the form of a simple and in this case it is classi�ed

as text-based but it can also provides graphical other other ways to deliver the in-

formation like graphics and in this case it is classi�ed as multimedia. The last way

to classify the explanation is to look at its (3) provision mechanism which can be

classi�ed as either �user-invoked� or �automatic� or �intelligent�.

We chose to present explanations along four dimensions. As we shall see, some

of them are not independent; but they nevertheless to intuitive ways to approach

the notion of explanation.

• timing� explanations can be given before or after the decision or recommenda-

tion took place;

• question types� in Rule-Based Systems, the explanation comes down to a pro-

blem of question-answering where the most frequently asked questions have

been compiled to identify the most important categories of questions for which

an explanation was required and worthy.

• content types� the actual content of the explanation, and what it refers to.
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• context sensitivity� whether the explanation

3.3.1 Categorization by temporal context / explanation orientation

A natural way to categorize explanation consists in looking at the explanation

availability time. In fact, depending on constraints related to the resources used

and on the question there are three possible cases. For an explanation using only

domain knowledge, there is no temporal constraint and so the explanation to a que-

stion regarding some domain knowledge can be generated at anytime. But some

explanations incorporate knowledge related to speci�c decisions. For these expla-

nations there are two hypothetical situations: the explanation is required during

the decision process or the explanation is generated after the decision process. In

the literature, this notion has been discussed in terms of explanation orientation.

From this perspective an explanation required during a decision process is referred

as feedforward because it looks ahead to provide information about what the system

is doing while an explanation generated after the decision has been taken is referred

as feedback because it looks behind to explain what happened. Obviously, a generic

explanation about some terms or concepts used by the system does not have any

speci�c orientation and can be used either in feedforward or in feedback.

In the light of the above and based on the previous work on explanation orien-

tation done by Arnold et al. (2006) and Dhaliwal (1993), looking at the explanation

orientation criterion allows to categorizes the explanation in two distinct classes

whose function can change depending on the content type of the explanation.

• Feedbacks can be seen as post-advice explanations and usually provide a record

of problem solving action to enable the user to see how a conclusion was reached

when the data has been completely input. These explanations are more likely

to be used by experts than novices.

• Feedforwards can be seen as pre-advice explanations. They provide a means to

�nd out why a question is being asked during a consultation and are mostly not
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speci�c to any particular output case. These explanations are often used by

novices who want learn about the domain or clarify some information they may

misunderstand about the nature of a question or a term used by the system

but they are seldom used by experts.

3.3.2 Type of questions

As the explanation comes down to a problem of question-answering where the

most frequently asked questions have been compiled to identify the most important

categories of questions.

• How / Descriptive Explanation: These explanations answer to a �How-Question�

and are process-driven. They are used to allow the user to better understand

the methods used by the system to achieve its goal. This can be done by

displaying the execution steps and events of a decision process which lead to

the decision output. As these explanations describe decision processes, they

mainly use trace-based information to provide some schemes, graphs or text

that clari�es the decision process. The main aim of these explanations is to

provide more transparency and scrutability.

Example 3.1. Answer to a �How-Question� from MYCIN (Wallis and Short-

li�e, 1977):

[HOW was established that the aerobicity of ORGANISM-1 is facultative?]

The following were used:

[3.1] RULE027 indicated there is strongly suggestive evidence(. 8) that the

aerobicity of ORGANISM-1 is facultative

[3.2] RULE027 indicated there is weakly suggestive evidence(. 2) that the that

the aerobicity of ORGANISM-1 is anaerobic

Since this gave a cumulative CF (.8) for facultative, and( .2) anaerobicity has

been established that the aerobicity of ORGANISM-1 is facultative
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• Why / Reason-Happening Explanation: These explanations answer to a �Why-

Question� and give more information to the user about why a certain result has

been obtained. The idea behind this explanation is to provide enough infor-

mation about the behavior of an expert system to justify its decisions. These

explanations are commonly constructed by using a backward approach which

provides the genuine causes, some causal information and further knowledge

about the domain to understand the explanandum.

Example 3.2. Answer to a �Why-Question� from REX (Wick and Thompson,

1992):

[Why erosion was the cause of the excessive load?]

I attempted to �nd the cause of an excessive load on a concrete dam. Based on

the broken pipes in the foundation, the sliding of the dam, the uplift pressures,

and the slow drainage, I was able to make an initial hypothesis. In studying

causal relations, l found that the erosion of soil from under the dam would cause

broken pipes. resulting in slow drainage, thereby creating increased uplift pres-

sures and eventually sliding of the dam downstream. This led me to conclude

erosion was the cause of the excessive load.

• Why not / Reason-Not-Hapening Explanation: These explanations answer to

a �Why not-Question� and give more information to the user about why a

certain result is not the expected result and can provide some clues about the

variables that should be changed to obtain the expected result. The approach

is similar to that used for �Why� explanation but requires to process more

causal information and to handle counterfactual information.

Example 3.3. Answer to a �WhyNot-Question� from (Sterling and Lalee,

1986)

solve(place_in_oven(dish3 ,X))?

The goal place_in_oven(dish3 ,X) fails

Would you like a �why not� explanation? yes.
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Place_in_oven(dish3, top) causes the following goals to be reduced: pastry(dish3),

size(dish3 ,small)

*pastry(dish3) can be successfully solved? size(dish3,small) is a missing fact.

End of the explanation.

• What / Interpretive Explanation: These explanations answer to a �What-

Question� and provide descriptive information about characteristics and ter-

minologies of the elements used by the system. They allow to communicate

about the meaning of the concepts used by the system by providing detailed

descriptions of them and their relationships within the domain. They can be

made either by a specialist of the domain or a knowledge engineer. These

explanations mainly use terminological information.

Example 3.4. Answer to a �What-Question� from EES (Neches et al., 1985)

[What does adder mean?]

An adder is a primitive system and binary operator. (identi�cation)

The expected value of its output terminal is equal to the sum of the expected

values of its �rst binary input and its second binary input. (attribute)

A problem is that this criterion of question type is very ambiguous. Indeed, di�erent

questions may correspond to the same actual explanation, while on the hand the

same question may be interpreted very di�erently, the best example being `why-

questions', which can have various readings. For example, Clancey (1983b) notes

that �MYCIN's explanations described by Shortli�e et al. (1975) are entirely in terms

of its rules and goals. The question WHY means �Why do you want this informa-

tion?� or �How is this information useful?" and is translated internally as �In what

rule does this goal appear, and what goal does the rule conclude about?� �
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3.3.3 Content types of explanations

This criterion has been clearly identi�ed at the end of the eighties by Swartout

and Smoliar (1989) and Chandrasekaran (1990). In their scienti�c researches on

the generation of explanations for expert systems, they contributed to identify four

types of content.

• Trace-based explanations (Chandrasekaran, 1990) (also refered to as �Type 1

explanation� Chandrasekaran and Tanner (1986)) aim to explain why a decision

was made or not made by reference to the rules and data contained in the

related trace or line of reasoning.

Example 3.5.

User: Why is the loan allowed?

System: Because the borrower is a gold client, and that the amount of the loan

is less than 50K.

• Justi�cation Knowledge (Chandrasekaran, 1990) (also refered as �Type 2 ex-

planation" by Chandrasekaran and Tanner (1986)) aim to explain or justify

a part of a reasoning process by linking it to the deep knowledge (see Section

2.2.2.1) from which it was derived.

Example 3.6.

User: Why is it that �the borrower is a gold client, and that the amount of the

loan is less than 50K then the credit should be accepted?�

System: Because gold clients provide very strong guarantees of credit solvabi-

lity, and for moderate credit loan we do not require further conditions.

Here, what is sought is a justi�cation of the rule. In fact, depending on how

the knowledge is encoded, it may be possible or not to retrieve such kind of

explanations. In our example, we also see that some knowledge remain implicit:
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for instance, a justi�cation of this rule might be that it is important to maintain

a high level of con�dence between a gold client and the bank.

• Strategic explanation (Chandrasekaran, 1990) (also refered as �Type 3 expla-

nation" by Chandrasekaran and Tanner (1986)) aims to explain the system's

control behavior and problem-solving strategy. As we have seen in Section 2.2,

di�erent control strategies are available for the system, and the answer has to

refer to the order in which rules are considered. Such explanations are very

typical of a diagnosis context.

Example 3.7. In this example, we suppose that the system is helping users to

diagnose why their credit loan may have been rejected by some other instituti-

ons.

User: Why did my loan got rejected?

System: Do you currently have another credit?

User: No.

System: Did you provide all the documents in due time?

User: No.

System: Then it is likely that your loan was rejected because you failed

User: Why did you ask me about the other loan �rst?

• De�nition and terminological knowledge refered in Swartout and Smoliar (1989)

and Neches et al. (1985), aim to provide terminological of de�nitional informa-

tion to the user.

Example 3.8.

User: What is a N12RF document?

System: This is document of certi�cation provided by institution X.
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3.3.4 Context sensitivity

What we call context refers to the variables that are not related to the decision or

even the expert system but that have an in�uence on the e�ciency of the explanation.

In fact, when constructing an explanation, the context can be considered to make

it more relevant and understandable by the user. As result, an explanation can

also be categorized by whether or not it is context-tailored, that is, whether its

structure and content take into account the user's knowledge of the domain, the

current goals, or the current requirements. In this research, we are only interested

about the user-sensitivity.
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Explanation
Type

Description

Descriptive/
Structural
Explanation

Knowledge that a phenomenon occurs, a description of a phenomena, taxo-
nomies and classi�cation scheme. Work involving no theoretical grounding
or interpretation of the phenomena; presentation of "objective, factual"
account of events to illustrate an issue of interest Orlikowski and Baroudi
(1991). � gives rise to what explanation
Example: What is the credit score? The credit score of a borrower is a

measure which evaluates his reliability.

Covering-Law
Explanation

An explanation of either the D-N or I-S (Hempel, 1965b) type can be
"described as an argument to the e�ect that the event to be explained was
to be expected by virtue of certain explanatory facts" (Salmon et al., 1989).
The explanatory facts must contain at least one universal or statistical law
Hempel (1965a). � gives rise to how explanation based on causality
Example (D-N case): How was it found that Tom has a Down's syndrome?

Tom's cells have three copies of chromosome 21 and any human whose cells

have three copies of chromosome 21 has a Down's syndrome, thus Tom has

a Down's syndrome.

Statistical
Relevance
Explanation

"An explanation of a particular fact is an assemblage of facts statistically
relevant to the fact-to-be-explained regardless of the degree of probability
that results" (Salmon, 2006).
Example: Why John is in late? The probability for john to be in late was

high given (P1) the factor of the bad weather, (P2) the factor of the poor

road conditions, (P3) the factor of its late departure, (P4) the factor he got

an accident, ...

Pragmatic
Explanation

An explanation is a context dependent answer to a �why-question� and dif-
ferent explanations of the same instance will result from di�erent questions
(Fraassen, 1988). � gives rise to why explanation
Example: Why does Samy have a persistent lack of energy? Samy's persis-

tent lack of energy could be mainly explained by his hypothyroidism.

Functional
Explanation

These Explanations are framed in terms of ends or goals. A given social
practice[factor] has a certain e�ect. When it has that e�ect, there is come
causal mechanism that ensure a goal A continues to exist.When the practice
stops having that e�ect, that mechanism stops working. (Lombrozo and
Carey, 2006) � gives rise to another kind of how and why explanation based
on causal chains
Example: Why does Cedric's cell phone plan includes data? Because cell

phone plans with data can access to the internet.

Table 3.2: Explanation Types Table (Hovorka et al., 2008)
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Table 3.3: Categorization of existing solutions based on our explanation criteria (* limited capabilities)

Explanation Orientation Content Type Question Type Context-Sensitivity Genericity
System Feedforward Feedback Trace Justi�cation Strategic De�nition Why How What Why not User-Sensitive Genericity

DENDRAL Lindsay et al. (1993) 7 3 3 7 7 7 7 3 7 7 7 7
CENTAUR Aikins (1980), Clancey (1983a) 3 3 3 7 3 3 7 3 3 7 7 7
MYCIN Buchanan and Shortli�e (1984) 3 3 3 7 7 3 7 3 3 7 7 7
EMYCIN van Melle et al. (1984) 3 3 3 7 7 3 7 3 3 7 7 3
NEOMYCIN Clancey (1983b), Dept et al. (1982) 3 3 3 3 3 3 3 3 3 7 7* 3
Digitalis Advisor Swartout (1977) 3 3 3 7 7 3 7 3 3 7 7 7
XPLAIN Swartout (1981, 1983) 3 3 3 3 3 3 3 3 3 7 7* 7
EES Neches et al. (1985), Paris (1991), Swartout and Smoliar (1989) 3 3 3 3 3 3 3 3 3 3 3 3
BLAH Weiner (1980) 7 3 3 7 7 7 7 3 7 7 7 3*
PROSE DOMINGUEZ (1990) 7 3 3 3 3 3 3 3 7 3 7 3*
REX Wick and Thompson (1992) 7 3 3 3 3 3 3 3 7 7 3 3*
ODM Explanation Service 7 3 3 3 3* 3 3 3 3 7 3 3
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3.4 A quick historical overview of expert systems with expla-

nation capabilities

As one of the greatest success of the arti�cial intelligence, the expert system's

technology has seen an increasing use of its applications at the end of the eighties and,

although these systems may seem less popular nowadays, this technology is in fact

still widely used in banking and insurance and more broadly by any large company

which needs to automate its business policies. As claimed by (Oz et al., 1993), the

success of expert systems can be explained by their capability to improve decision

reliability as well as performance in term of decision-making time. Moreover, as their

decision logic could be complex and needed to be kept up to date, there was a need for

monitoring, transparency and trust that prompted the �rst explanation capabilities.

From this point onwards, numerous researches have been conducted to answer the

problem of explanation generation in an automated decision context. As solving

this problem goes through empirical approaches, some of these systems provided

their own solution, making their contribution to the research. We detail in the

chronological order the main steps and progress that have been done during the forty

last years below. The �rst attempts to provide programs with explanation facilities

take their roots in tools designed to the monitoring and debugging of softwares. From

this point of view, debugging tools can be seen as the ancestor of the explanation

capabilities we know because they constitute a �rst attempt to investigate the results

provided by a computer system.

Explanations from canned-texts or templates. In these approaches the program-

mers have to anticipate what questions are likely to be asked by user to prepare

explanatory texts, that can be either canned-text or templates, and associate them

to the corresponding parts of the program that need to be explained. What we call

a canned-text refers to an explanatory text that can be written by the programmers

when programming the expert system and what we call templates corresponds to

a structure that mixes canned-text with variables that can be �lled in with values
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from a speci�c execution of the program. Then, based on this preparation, when a

user requests an explanation about some aspects of the program's behavior, the text

associated with that portion of the program is simply displayed. Although expla-

nation facilities using these approaches are easy to perform there is an issue in the

fact that they produce explanations that can be inconsistent and inextensible. To

answer this problem, researchers �gured solutions that produce explanation directly

from the system's code and give rise to the systems that have been referred as �rst

generation expert systems.

Explanations by Code Translation. Often referred as �rst generation expert sys-

tems, these systems have been designed in order to deal with the limitations of the

previous approaches. In this perspective, the idea to generate explanations by sim-

ply translating the code. The principles used by these approaches are very simple:

the structure of their explanations follows exactly the structure of the program code

and the names of the variables in their explanation are those used in the program.

Based on this method, they can generate some texts in a near natural language that

can be seen as explanations. These approaches give rise to what we called descrip-

tive explanations. Such systems can generate trace-based explanations to answer

�how� questions. To some extent, the consistency and extensibility problems have

been solved. Indeed, as the explanations are produced directly from the code, any

change in the code is re�ected in the system's explanations automatically. Moreo-

ver, the explanations produced by this way have been described as very useful for

system builders. However, as these systems are only trace-based, they do not have

enough knowledge to support more complete explanations including justi�cations

that could be more pro�table to business users. The following expert systems are

good representatives of this generation: MYCIN (Buchanan and Shortli�e, 1984),

Digitalis Advisor (Swartout, 1977), DENDRAL (Lindsay et al., 1993) and CEN-

TAUR (Clancey, 1983a).
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Explanations using additional knowledge about the system. Commonly refer-

red as second generation expert systems, these systems have been designed in order to

deal with the limitations of the previous approaches. In this perspective, they have a

more complex architecture designed to deal with explanation in an e�cient way and

integrate justi�cation, strategic and/or terminological knowledge, in addition to the

trace-based knowledge. As they use their own knowledge to produce explanation,

they are able to produce abstract descriptions of their problem-solving strategies and

describe their behavior or the concepts of the domain. Based on that, they can pro-

vide more complete explanations and answer more kinds of questions. The following

systems are good representatives of this generation: NEOMYCIN (Dept et al., 1982)

which is an evolution of MYCIN (Buchanan and Shortli�e, 1984), XPLAIN (Swar-

tout, 1983) which is an evolution of Digitalis Advisor (Swartout, 1977) and PROSE

(DOMINGUEZ, 1990). Still, these systems still encounter problems to deal with

di�erent users or context. In fact, they are in�exible and have limited capabilities

to tailor explanation to di�erent classes of users or in di�erent contexts.

Explanation using additional knowledge about the user and the situation. These

systems, that we refer as context-responsive expert systems contain additional know-

ledge about the user and the context in addition to the previous knowledge. As

an evolution of the systems described in the previous approaches, they usually

have strong knowledge base about domain, problem-solving, users, languages. They

also could have knowledge about the situation and enhanced capability for dialog.

Thanks to this, these systems can tailor explanations to di�erent users in di�erent

contexts but they are limited their knowledge about the user and by the research

in natural language. Moreover, they are hard to design and produce. Good repre-

sentatives of this type of expert systems are: REX (Wick and Thompson, 1992),

EES (Paris, 1991, Swartout and Smoliar, 1989) which is an evolution of XPLAIN

(Swartout, 1983).

The proposal is often made that deep knowledge should represent �causal know-
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ledge but Chandrasekaran and Mittal (1983) claims that using only a collection of

cause-e�ect relations as deep knowledge is debatable and that deep reasoning should

also come from other properties of the system. In fact, this intuition come from the

fact that causal reasoning is important because of the frequent need to establish

causal connections at di�erent levels of detail for reasoning and explanation.

For example, if the knowledge compilation results in the approximation of a set

of operations contained in the deep model by associating some data states to other

data states, the is a loss of information as the system is not able to provide both the

intermediate data states and the corresponding step of the reasoning. In this case,

the (1) trace-based knowledge loses the information about the intermediate data

states, the (2) justi�cation knowledge loses the information about the corresponding

steps of the reasoning and underlying operations and the (4) de�nition knowledge

may eventually lose information about the existence of intermediate variables and

methods. Concerning the (3) strategic knowledge, as it relies on the capability to

describe what the system is doing or will do next and to navigate at di�erent levels of

the model, its content is highly dependent from the compiled knowledge structure. If

a knowledge structure is easy to navigate and encompasses several levels of details, it

will be easy to obtain such information. For example, if the structure of a compiled

knowledge consists in a tree of tasks, where each task embeds its own set of rules.

The strategic information will rely on the hierarchy established among these di�erent

elements. Thus, the decision could be described at the level of the tree, at the level

of the tasks, at the levels of the rules and even at the level of their conditions and

actions.

3.5 Causality in rule-based systems

As we have seen, expert systems like MYCIN (Buchanan and Shortli�e, 1984) and

XPLAIN (Swartout, 1983) have demonstrated that considering causality is key for

justifying automated decisions and increasing the transparency of decision-making

systems and so the con�dence of their users. This fact motivates a more detailed
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study of the causality in rule-based systems. There are several reasons for using

causal models when trying to form causal knowledge in a rule-based system. It

goes from practical aspects that are related to the implementation to more theo-

retical aspects coming from explanation theory and psychology (focus on human

understanding):

• business rule approaches o�er favorable conditions to causal ascription and

thus to represent the causal model of a rule-based system and its decisions.

The decisions taken by using business rule approaches are known to follow

causal processes. Indeed, the automated decisions taken by rule-based systems

are based on inferences and consequently the related decision processes have

a causal meaning and so a corresponding causal model can be found. Based

on that, enabling a rule-based system to present the events occurred during a

decision with their underlying causal mechanisms could greatly help to improve

its transparency. Moreover, as business rules are declarative, they explicitly

represent their reasoning logic. This reasoning logic can be easily understood

by humans readers. Indeed, the premises and actions of a business rule take the

form of near natural language statements and the IF THEN ELSE structure

makes a clear split between the premises and action parts. Based on that, each

rule describes causal relationships by linking its local causes and consequences.

• causal models o�er a formal representation which is non-ambiguous, indepen-

dent from the domain of application and can be implemented with classical

methods and tools. Because of that, these models guarantee more reliability

than ad-hoc methods.

• qualitative information, and especially causal one, is known to enhance the

understanding of automated decisions. Indeed, revealing a decision-making

process is not su�cient to make it understandable. A collaboration between

a human user and a rule-based system requires a mutual understanding and

consequently such a system must take into account human cognitive proces-
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ses in order to explain their reasoning to human users. For instance, Tversky

and Kahneman (1975) and Pennington and Hastie (1988) have shown that the

human brain tends to interpret events in terms of cause-e�ect relations and,

from this perspective, using causal models to support explanation seems na-

tural and presents several interests. The state of the art also shown that the

notion of causation is closely tied to the concept of scienti�c explanation which

essentially focus on �nding the causes of the observed facts (explanandum) and

the laws that link them together. Based on that, some explanation methods

used in rule-based systems and so called �causal explanations� have been spe-

ci�cally designed for causal models and assume that a causal interpretation

of the reasoning process can be used to justify the decision results. Besnard

et al. (2014b) and Clancey (1983b) even claim that enabling rule-based sys-

tems to identify and present causal dependencies between the elements of their

decisions is a prerequisite to provide explanations increasing their acceptance,

their maintainability and their continuous improvement. These statements are

illustrated by the survey of Moore and Swartout (1988b) where most of the

expert system explanation capabilities consider causation. Finally, Besnard

et al. (2014a) and Halpern and Pearl (2005c) also highlight that causal models

have a strong role in the construction of explanations.

As causal models can be built by using generic methods and allow to determine

the implications of events occurred during a decision on the outputs, using the infor-

mation o�ered by such models for augmenting tracing tools seems pertinent. Based

on that, as we have seen, some explanation methods used in rule-based systems

and so called �causal explanations� have been speci�cally designed for dealing with

causal information and assume that a causal interpretation of the reasoning process

can be used to justify the decision results, one of the �rst successful implementation

of causal explanation features in a rule-based system�see e.g. (Clancey, 1983b).

Thus, enabling a rule-based system to provide causal explanations implies the use

of a causal model that captures the relations de�ned by the left hand side and right
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hand side of each business rule and also the rule chaining and data modi�cations

that drives to the �nal outcome.

3.5.1 Causal explanations in rule-based systems

The Stanford Heuristic Programming Project (Buchanan and Feigenbaum, 2017)

has been one of the �rst laboratories to bring the use of A.I. programs into the re-

search on modeling the nature of scienti�c reasoning processes. In this perspective,

various computer programs, formalizing and embedding the human expertise in pro-

duction rules, have been developed and used to simulate the behavior of human

experts. The idea behind this methodology was to investigate the nature of ex-

pert reasoning processes within software in order to develop a deep understanding

of its. In this perspective, the Stanford Heuristic Programming Project has con-

ducted researches on �ve key scienti�c problems of arti�cial intelligence: knowledge

representation, knowledge acquisition, knowledge utilization, explanation and tool

construction. There is a strong connection between this �ve key points and some

of the most in�uential attempts to provide rule-based systems capable of explai-

ning their reasoning processes and decision results have emerged from the Stanford

Heuristic Programming Project Buchanan and Feigenbaum (2017).

For most of the systems developed in the Stanford Heuristic Project (Buchanan

and Shortli�e, 1984, Clancey, 1983b, Dept et al., 1982, Lindsay et al., 1993, Mark

and Clancey, 1985, Wallis and Shortli�e, 1984), embedding causal knowledge has

been a key point for explaining their reasoning processes and their decision results.

It is important to note that the form and the content of this causal knowledge are

not well de�ned and can greatly vary depending on the vision of the system designer.

The content of this causal knowledge has a direct in�uence on the related explanation

features. In a similar vein and as argued in (Swartout and Smoliar, 1988), one key

point to provide explanations that increase the con�dence in the behavior of a rule-

based system is the notion of justi�cation. The idea behind this notion is that the

user needs to understand the connections between the reasoning steps to accept the
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statements provided by the system as reasonable explanations. The production of

justi�cations mainly relies on the abstraction of the causal reasoning followed by the

system. This means that a justi�cation has to provide, at least, the references to the

causal relationships on which the rules are based. More broadly, the raw material

for justifying the behavior of a rule-based system is mainly the causal knowledge.

What it changes from a system to another is how this causal knowledge is acquired,

represented and then used. For example:

• in the case of GUIDON-WATCH (Mark and Clancey, 1985), the causal know-

ledge consists in a set of causal links between �ndings and hypothesis where the

�ndings correspond to the observed or measured data (used in the premises of a

rule but also can be requested or inferred from other rules) and the hypothesis

are only the data resulting from rule inferences (in conclusions). This causal

knowledge is completed by an etiological taxonomy which represents a hier-

archy among the possible diagnoses (�ndings) that can be displayed in a tree

of possible diagnoses. Thanks to this mechanism, GUIDON is able to provide

a set of graphs and trees presenting links between a sequence of hypothesis

and �ndings in order to display qualitative information in graphical views that

increase the understanding about the consultation strategy of the system.

• the work of Dept et al. (1982) on NEOMYCIN includes explicit causal kno-

wledge consisting in a set of meta-rules that represents a direct association

between the premises (observed data) and the conclusions (hypotheses in the

etiological taxonomy) of rules marked as being causal and a taxonomy of disea-

ses which aims to make the user understand both the model and the reasoning.

Whereas the etiological taxonomy gives a hierarchy of links representing spe-

cialization of cause, the causal rules associate incoming data to hypotheses in

the taxonomy.

• the research work done by Wallis and Shortli�e (1984) and Wallis and Shortli�e

(1981) proposes a prototype system that includes a conceptual knowledge base
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taking the form of a semantic network. This semantic network describes a

hierarchy between rules, objects, parameters and values nodes while providing

further static and dynamic information about them. The information provided

inside the semantic network about the complexity and the importance of values

nodes as well as the information about the type and the complexity of rule

nodes allows to provide causal knowledge about the reasoning process of the

system. This causal knowledge takes the form of a causal chain which alternates

between rule and value nodes and describes the reasoning sequence. Moreover,

when this causal chain is used to generate tailored explanations, a threshold

can be set to associate text justi�cations to the rules and values that are

complicated (the complexity is higher than the threshold).

• in XPLAIN (Swartout, 1983), the causal knowledge is contained in a domain

model that embeds some descriptive facts of the domain such as causal and

classi�cation links similar to those described in Weiss et al. (1978) but non-

weighted. These relations can then be used to justify the action of the rule-

based system. Similarly, ABEL (Patil et al., 1981) is based on the same idea

than XPLAIN but also de�nes aggregation links that allow to provide a view of

the causal model at di�erent levels of granularity (pathological-intermediate-

clinical).

In fact, in all these attempts, the use of causal information reveal to the human

users how the cause and e�ect are linked and provide them with a better under-

standing of the cognitive process than the previous approaches like (Lindsay et al.,

1993) or (Wallis and Shortli�e, 1977). The causal information can thus be used as

justi�cations to explicitly describe the links between some e�ects and their causes.

Nonetheless, representing a causal model of such processes is not necessary straig-

htforward. Many parameters, such as the characteristics of the inference mechanism

used, the priorities of the business rules and other system preferences, the business

rules themselves and the state of the working memory must be considered and choo-

sing the good representation and determining what should be represented in it is
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not easy. Moreover, as discussed by Dubois and Prade (2003), it is di�cult to de�ne

what should be considered as a causal relation or to determine what kind of causal

model should be used because of the unclear nature of the notion of causality. This

statement is also emphasized in (Benferhat et al., 2008) which describes the causality

as as a �protean and complex notion� and propose a comparative study of the main

causal models that have been developed by arti�cial intelligence community. In the

next subsection we discuss the choice of a causal model that could be e�ciently used

to describe the reasoning processes of a rule-based system.

3.5.2 Choosing a causal model / formal model for causal ascription

Since business rules are declarative it enables to represent their reasoning logic

without precise knowledge of the working of the inference engine and the declara-

tive readings of the corresponding logical formulas can thus be exploited to generate

causal models that provide a global and qualitative vision of the decision which of-

fers more readability and understandability as claimed by Korver and Lucas (1993).

However, there is one major remaining question. The scienti�c literature about

causal modeling gives us several types of causal models, each one has its own spe-

ci�cities and choosing one over another is not obvious and should depends on the

application. Indeed, the concept of causality covers some important problems of

A.I. Among them are the diagnosis of the potential causes from observed e�ects, the

inductions of causal laws from series of observations, the qualitative simulation of

complex systems and others.

Accordingly, the comparative study made by Benferhat et al. (2008) presents

several formal models used to represent causality and describes their strengths and

weaknesses (to which we add a popular neural network): .

Structural equations (Halpern and Pearl, 2005a). This approach proposes a

causal model that aims to identify the �actual causes� of an observed event. To do

that, it distinguishes two kinds of variables: �endogenous� and �exogenous� variables.
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The �endogenous variables� (in V ) are used to model events, represented by speci�c

values, that can be causes or caused. The �exogenous variables� (in U) are assumed

to be known and out of control. Causal relations between events are represented by

using a set of structural equations and contexts. Whereas the structural equations

describe dependencies between �endogenous variables�, the contexts represent some

settings of the �exogenous variables� that make them true. A causal model is denoted

M(S, F ) where S = (U, V,R) is the signature of the system and F is a causal function

which assigns to each variable in V a value depending on its parents and a context

given by the variables in U . R is the non empty set of possible values for the variables

in U ∪ V .

Nonmonotonic logic. Causal explanations and nonmonotonic inferences are con-

nected, the intuition behind this is that the causal explanations provided by humans

tend to privilege abnormal facts. In nonmonotonic logic there is an assumption that

some conclusions can be invalidated by adding more knowledge. The non-monotonic

logic is devised to capture and represent defeasible inferences. Non-monotonic logic

is useful for several arti�cial intelligence applications like default reasoning (where

each de�ned rule can be used unless it is overridden by an exception), abductive

reasoning (where the consequences are only deduced as most likely explanations),

belief revision (where new knowledge may contradict the old one) or more broadly for

reasoning about knowledge. The three methods below are based on non-monotonic

logic and are used for causal ascription.

• Nonmonotonic consequence is based on pieces of default knowledge, and privi-

leges the role of abnormal events in a given context.

• Trajectory-based preference relations starts with the idea that counter-factuality

involves the computation of two kinds of evolutions of the world, namely extra-

polation and update. Compute the most normal evolution of the world (called

trajectory).

82



Chapter 3. Explanation in rule-based systems

• Norm-based approaches rely on the idea that norms are crucial for people to

�nd causes of events. If the event is considered normal then its cause is the

norm itself but if it is abnormal then its cause is traced back to the violation

of a norm.

Thagard's explanatory theory of coherence and its connectionist implementa-

tion (ECHO). This approach views causal ascriptions as attempts to maximize

explanatory coherence between propositions. The basic idea of this approaches is

that maximizing coherence would lead to accept the most plausible hypotheses that

explain the accident and reject the alternative hypotheses.

Graphical models and intervention. This line of research is based on the idea that

the causality becomes easier to observe when experimenting and then observing the

e�ects of a speci�c manipulation on the system. In fact, graphical causal models

help make explicit the assumptions needed by allowing inference from interventions

as well as observations.

Neural Networks for causal learning. Also called Feed Forward Network, are able

to approximate complicated functions as long as they are single-valued and follow a

causal relationship that takes the form of an input-output relation.

The bene�ts and limitations of neural networks are described by Hall (2007), Hit-

chcock (2007) who argues for the superiority of structural equations. In addition,

Halpern (2014) demonstrates the strong resilience of these models while Halpern and

Hitchcock (2011) emphasizes the importance of the choice of the variables during

their de�nition. Moreover, as described in Halpern and Pearl (2001a, 2005a), struc-

tural equations allows to represent causality in comprehensible networks that can

easily improve the understanding of how a phenomenon occurred by displaying the

relations between the elements involved in the causal process. Another account of

causal explanation using the structural equations has been done in the �eld of data-
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base. Actually, the structural equation approach tends to be highly explainable and

can be applied in a mechanistic way. For these reasons, our choice is oriented towards

the tool proposed by Halpern and Pearl (2005a) which is particularly well suited to

describe the causality in rule-based systems because our business rule formalism is

easily transferable in a structural equation form as �Y ⇐ X� as demonstrated with

the logic representation of our business rule formalism.

3.6 Requirements for an IBM ODM explanation feature

In this section we discuss some speci�cities of the explanation feature targeted in

the context of IBM ODM. The idea behind recording the traces of automated deci-

sions is to give Business Rule Management Systems the ability to provide regulatory

justi�cations and analytics about their decision-making processes. For most of the

organizations, this is a prerequisite for monitoring and optimizing their business. In

practice, most of decision traces are composed of:

1. a request that contains the input data and potential states to take the decisions,

2. a sequence of executed rules, with optionally details about the algorithm eva-

luation,

3. an answer/decision that contains the output data of the decision with the

modi�ed states.

In our industrial context, we are interested in decision services generated by the

IBM Operational Decision Manager which is the BRMS provided by IBM. For such

decision services, decisions are entirely automated so they do not require any human

interaction and cannot be interrupted. Once a decision has been taken, a basic trace

of the corresponding decision process is stored on a server database. Later, based on

this trace, the information related to the corresponding decision have to be displayed

in an explanative way. IBM needs the information provided in the explanation to

allow to monitor the decision taken by such a decision service and to make them
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transparent for the user. Because the decision processes can involve a large number

of rules and data, we need to �nd a way to �lter out non-necessary elements and

to provide only the useful information to the user. Furthermore, the production

of the trace has to be e�cient to minimize the engine instrumentation and extra

resource consumption of RAM and CPU cycles. In addition, the tool should not

require any ad-hoc development speci�c to each rule project because it could have

a negative impact on its maintainability. Moreover, as this useful information needs

to be understandable by a human user, we need to enrich it with further knowledge

that make it more meaningful. In fact, when an explanation is rendered to the user

it should take into account the kind of user, its level of expertise, what information

he can access. In the light of the above comments and in regards of our industrial

context, we will discuss the requirements of our solution for each criterion.

• Explanation orientation. As the decisions taken by the decision services ge-

nerated by the IBM BRMS cannot be interrupted and as the explanation are

only provided for decision results that have been already stored in a server

database. Thus our explanations have to be feedback explanations.

• Content type. As we want to explain decision results, our explanations ob-

viously need trace-based knowledge as basic requirement. But as we need to

provide further information about causality, we seek Type 2 explanations, as

a kind of justi�cation knowledge. We naturally provide further information

about concepts and methods used, that can be considered as terminological

knowledge. However, we will not get to the level of procedural reasoning, in-

volving for instance the choice of the algorithm. Our proxy to this strategical

level will be o�ered by the related task corresponding to a step of reasoning.

To make this clear we talk about limited strategical explanation.

• Question type. In fact, in our context we do not want to answer these questions

separately. We need to provide an explanative view that allows to navigate and

explore the decision. This explanative view should provide information about
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the step of the reasoning process (that corresponds to a �How� question) but it

also should provide qualitative information allowing to understand how the the

inputs and outputs of a decision are connected (that corresponds to a �Why�

question) Moreover, when navigating the decision the user should be able to

display information about the concepts used by the system in order to provide

them more meaning (that corresponds to a �what� question). Optionally, the

user would know why a result is not the result he expected, in this case we

could display a counterfactual solution based on our static knowledge of the

decision service.

• Context-sensitivity. As described above, the only thing we need to handle is

the user, but there may be several types of users (business user, knowledge

engineer). To account for this, a user model could be used to adapt the display

and the content of our explanative view.

• Genericity. In fact, as lot of di�erent decision services can be generated from

the IBM BRMS, we would to design an explanation service that could handle

all the decision services that already exist and that can be created in future.

Indeed, it would be so costly to design a di�erent explanation system for each of

these decision services. For this reason, our system has to be generic enough to

deal with a wide variety of very di�erent decision services that can be generated

by IBM ODM.

However, it is important to note that there are no standards, or at least well-

established form and content criteria, for decision traces and so each rule-based

system proposes ad-hoc traces whose the form and content depend upon the goodwill

of the developers. Thus, some challenges remain for the production and exploitation

of common rule engine traces to generate feedback explanations.

(1) readability � As simple logs of events occurred during decision processes, traces

su�er from a lack of intelligibility and are not well suited for human readers.
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(2) su�ciency � Common rule engine traces may not be complete enough to answer

�Why� questions. In a trace, a sequence of executed rules is captured but not

the information revealing the genuine causes of their eligibility.

(3) minimality � In reverse some rule engine traces may contain information that

are unnecessary to justify a decision. For example, modi�cation of data or

rule agenda that have no impact on the outcome of a decision have no interest

for the explanation. This point is important because the instrumentation of

a rule engine to produce traces may signi�cantly burden execution resources

including CPU cycles and memory. Indeed, the more thorough is the tracing,

the more data and rule engine internal structure will be visited, thus resulting

in the serialization of larger amount of data into the traces.

(4) maintainability � Some common practices rely on ad-hoc messages added to

the rules, or additional descriptions speci�c to the domain. These approaches

induce a signi�cant cost in the development of the business rules and a recurrent

maintenance cost to keep in sync the explanation material with the modi�ed

business rules.

In the light of the discussion above, we guess that the content of the explanation

may be our main research interest, but it may not be the only one. Following

(Moore and Swartout, 1988a), the scienti�c research on explanation generation in

expert systems is mainly focused on the three axis:

1. Basic Explanation Content Generation,

2. Responsiveness,

3. Human Computer Interface (HCI).

As IBM works with a huge variety of organizations, each one having its own

practices and habits with the human-computer interfaces they used to use, we choose

not to address this HCI aspect. On the other hand, we do consider responsiveness

because we would like to provide an explanation capability which could take into

account some user's characteristics when rendering explanations.
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But in fact, our industrial context and the fact that the Business Rule Manage-

ment System provided by IBM can be used to generate decisions services for a huge

variety of companies and applications, it induces some new issues that leads us to

consider other aspects like:

1. Genericity,

2. Overcost at runtime (in CPU and memory),

3. Overcost at exploitation and maintenance time (additional �nancial cost for

maintenance and exploitation).

Thus, it is important to note that any explanation facility actually has to take into

account the costs for companies that are looking for enhanced solutions to explain

their automated decisions. For these organizations, saving resources in the develop-

ment, execution and storing phases makes a signi�cant di�erence due to the volume

of decisions processed and recorded. These costs encompass the additional �nancial

costs at development and maintenance required for each rule-based applications, the

additional cost in memory required to store the explanation material, and the addi-

tional cost in CPU during the decision process which is related to the augmentation

of the tracing tool. In this perspective, the construction of such explanations needs

to take into account some theoretical and technical aspects to reach industrialization

(i.e. meet the constraints for an industrial application). They have to rely on generic

methods to be applied on a large variety of rule-based services with limited extra-

cost in conception and development. It it possible to answer this need with a causal

approach because the conception of a causal model which supports the explanation

and the ascription of its causal relations can be done by using generic methods. It

means that the method used to construct a causal model can be entirely automa-

ted and applied to various rule-based services with no regard for their application

domains.
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A simpli�ed causal model for

rule-based systems

4.1 Introduction

In this chapter, we present a set of causal models and methods that can be used

to support explanation capabilities in a business rule context. It is composed of: (i)

a causal model of the business rule-based system, (ii) a method for minimizing the

traces of its decisions and (iii) a causal model of each decision. The remainder of this

chapter is as follows. In Section 4.2, we present the overall concepts and principles of

business rule-based systems. In Section 4.3, we introduce the notion of causality and

propose an approach to handle causality in business rule-based systems. Finally, the

Section 4.4 describes the construction of our causal models and "minimized trace".

4.2 Concepts and de�nitions

4.2.1 Business rules

As we have seen before, the most fundamental notion in Business Rule-based

systems (BRBS) is the one of business rule. Business rules are commonly speci�ed

by means of an ontology language, and often a description logic language. Each

business rule can be seen as a statement, taking the form of a customized near natural

language text, which de�nes a business aspect that allows to precisely describe the
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decision criteria and the actions to apply for a given situation of a decision process.

Recall that a business rule takes the form of a statement written in a business rule

language and whose logical structure is described as follow:

IF 〈premisses〉 THEN 〈consequent〉

where the premisses is a disjunction of conjunction of conditions and the consequent

is a sequence of actions:

IF 〈c1 AND · · · AND cm〉 OR ... OR 〈c1 AND · · · AND cn〉 THEN 〈a1; · · · ; an〉

The actions in the consequent are typically variable assignments, and can involve

various arithmetic operations whereas the conditions in the premisses are expressions

that can be evaluated. Based on the satisfaction of the conditions in its premisses, a

rule is eligible for being triggered. When a rule is triggered, the sequence of actions

corresponding to the consequences is executed.

Example 4.1. (Example of business rule )

A rule having the business rule language form:

if the score of the Borrower is higher or equal to 10 then set the rate of the Loan

to (the score of the Borrower+ the bonus of the Borrower) divided by

100 ;

and corresponds to the conditions-actions statement:

IF 〈c1〉 THEN 〈a1〉, where �c1� refers to the condition statement �the score of the Borrower

is higher or equal to 10� and �a1� refers to the action statement �set

the rate of the Loan to (the score of the Borrower+the bonus of the Borrower)

divided by 100�

Based on this, a rule-based system is essentially a collection of rules, together

with some input and output variables, called business variables, and an inference

mechanism that aims to solve a speci�c problem. User interactions with such systems
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take the form of requests whose content depends on the application. A request

amounts to ask the value of a speci�c (output) variable. In practice, the working

cycle of such a system consists in three steps: (i) the rule-based system receives a

request, (ii) based on this request, it solves a speci�c problem and (iii) it returns the

results obtained as outputs. More details about the basic structure of a rule-based

system are given in the chapter 2.

4.2.2 Towards a normalized business rule formalism

As statements are given in a near natural language, the description of the business

rules can vary depending on the verbalization that has been arbitrarily adopted by

the designer of the rule-based system. Providing a generic approach for explaining

business rule decisions requires that the information contained in the business rules

can be extracted and represented in a normalized form which is independent from

the syntax and the vocabulary used in the business rules. In this perspective, a

formalism that describes each element contained in a business rule and that can

be used to represent the business logic of any rule-based system has to be clearly

de�ned. Thus, the normalized business rules in our representation uses a regular

expression formalism that is based on the work done by Lucas and van der Gaag

(1991) on the production rules and on the nature of the business rule used by IBM

Operational Decision Manager. As the formalism given by Lucas and van der Gaag

(1991) to describe production rules assumes to work only with constants and does

not handle variables and business functions, we adapt it to represent business rules

in our business and causal contexts. The adaption is described in what follows.

4.2.2.1 Object-Oriented vs. variable-oriented formalism

De�ning a normalized business rule formalism based only on the manipulation

of variables is too simple and does not capture the business meaning of the concepts

manipulated by recent business rule applications that establish a taxonomy between

the manipulated elements. In fact, most of modern business rule-based systems
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apply these object-oriented methods. Using an object-oriented approach means

that the system represents �objects� that explicitly group some properties which

are mentioned in the business rules. For example, in a business rule application

dedicated to answer loan requests, a �borrower� having a name, an age, some �nancial

resources and monthly incomes can be represented as an object that models all its

characteristics and which has a business meaning. In these approaches, the objects

themselves are exploited for directing the inference process and so are considered

when designing the business rules. We take the object-orientation into account

We obtain business rule formalism that can be used to normalize business rules in

object-oriented applications. This object-oriented business rule formalism is de�ned

in the table 4.1.

〈business rule〉 := IF 〈premisses〉 THEN 〈consequent〉
〈premisses〉 := 〈conjunction〉{ or 〈conjunction〉 }∗
〈conjunction〉 := 〈condition〉{ and 〈condition〉 }∗
〈condition〉 := 〈predicate〉( 〈object〉, 〈attribute〉, 〈value〉 )
〈predicate〉 := equal|notequal|greaterthan|lessthan||known|notknown|...
〈consequent〉 := 〈conclusion〉 {; 〈conclusion〉 }∗
〈conclusion〉 := 〈action〉( 〈object〉, 〈attribute〉, 〈business result〉 )
〈business result〉 := 〈business function〉 ( { 〈value〉 }∗ )
〈action〉 := remove|set|...
〈value〉 := {〈object〉, 〈attribute〉}|constant

Table 4.1: A Business Rule Formalism for object-based applications

In predicates and actions, the tuples we consider are "object-attribute-value",

where a pair (obj, att) represents the value of the attribute att of an object obj and a

value val represents either the value of a constant or another pair (object, attribute).

The reference to the attribute att of an object obj is abbreviated as obj.att. Based

on these statements, the predicates and actions tables of Table 4.3 are obtained.

We present a normalized business rule illustrating the object-oriented business rule

formalism in the example 4.2.

Example 4.2. Let us consider the following business rule statement:

IF equal(Borrower,gold,true) and lessthan(Loan,amount,500000) ) or
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(greaterthan(Borrower,salary,Loan.yearlyRepayment) and lessthan(Loan,amount,50000))

THEN set(Loan,status,accepted)

where equal(Borrower,gold,true) and lessthan(Loan,amount,500000) is a conjunction

of two conditions which is true if the attribute gold of a borrower has the value true

and the amount of the loan is less than 500000 and greaterthan(Borrower,salary,〈

Loan,yearlyRepayment〉) and lessthan(Loan,amount,50000) is a conjunction which

is true if the salary of a borrower is greater than the yearly repayment of the asked

loan and its amount is lower than 50000. The action set(Loan, status, accepted)

sets the status of the loan to accepted.

Predicate noun Logic representation for single-valued attributes

equal(obj,att,val) obj.att = val
notequal(obj,att,val) obj.att 6= val
greaterthan(obj,att,val) obj.att > val
greaterthaneq(obj,att,val) obj.att ≥ val
lessthan(obj,att,val) obj.att < val
lessthaneq(obj,att,val) obj.att ≤ val
known(obj,att) obj.att 6= ∅
notknown(obj,att) obj.att = ∅

Table 4.2: Predicates and their meaning

Action noun Logic representation for single-valued attributes

set(obj,att,val) obj.att← v
remove(obj,att,val) obj.att← ∅

Table 4.3: Actions and their meaning

4.2.3 Orchestration and execution of the business rules

Once the rules are de�ned, they can be executed by the rule engine (if their con-

ditions are satis�ed), as described in Section 2.2. The main parameters in�uencing

their orchestration are: (1) the priority among the business rules, (2) the rule engine

algorithm and (3) the rule�ow.

Example 4.3 presents a business rule-based system evaluating the eligibility of

somebody for a loan request based on a set of input variables. In the rest of this
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chapter we will refer to this example.

Example 4.3. The decision is taken based on the values of �ve business variables

namely: �bankruptcy", �score", �bonus", �rate" and �eligibility". These business

variables can be grouped under two business objects, respectively called �Borrower"

and �Loan". A �rst task called "compute" is de�ned for computing a rate, with the

ruleset RS1 attached to it. Another task called `evaluate" is de�ned for evaluating

a loan, with the ruleset RS2 attached to it.

Business Variables:

variable bankruptcy : bankruptcy = {false,true} %input

variable score : score = [0,100] %input

variable bonus : bonus = [0,80] %input

variable eligibility : elibility = {false,true} %output

variable rate : rate = [0,1] %output

Task compute: compute(RS1)

RS1 in ODM form (before normalization):

Rule A: if it is not true that `the borrower' has �led a bankruptcy then increase the

credit score of the borrower' by 5;

Rule B: if the credit score of 'the borrower' is at least 10 then set the rate of accep-

tance in 'the loan report' to (the credit score of 'the borrower' + the bonus of 'the

loan')/100 ;

Rule C: if the rate of acceptance in 'the loan report' is at least 0.2 and the credit score

of 'the borrower' is at least 12 then set the rate of acceptance in 'the loan report' to

the rate of acceptance in 'the loan report' * 2;

RS1 in normalized form:

Rule A:

IF equals(〈Borrower, bankruptcy〉, false)

THEN set(〈Borrower, score〉, 〈Borrower, score〉+ 5) ;
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Rule B:

IF greaterthaneq(〈Borrower, score〉, 10)

THEN set(〈Borrower, rate〉, (〈Borrower, score〉+ 〈Loan, bonus〉)/100 ;

Rule C:

IF greaterthaneq(〈Loan, rate〉, 0.2) AND greaterthaneq(〈Borrower, score〉, 12)

THEN set(〈Loan, rate〉, 〈Loan, rate〉 ∗ 2);

Task evaluate: evaluate(RS2)

RS2 in ODM form (before normalization):

Rule D: if the rate of acceptance in 'the loan report' is less than 0.6 then decrease

the credit score of 'the borrower' by 5;

Rule E: if the bonus of 'the loan' is less than 20 then decrease the rate of acceptance

in 'the loan report' by 0.01 ; decrease the credit score of 'the borrower' by 1;

Rule F: if the rate of acceptance in 'the loan report' is at least 0.5 then make it true

that 'the loan' is approved;

RS2 in normalized form:

Rule D:

IF lessthan(〈Loan, rate〉, 0.6)

THEN set(〈Borrower, score〉, 〈Borrower, score〉 − 5) ;

Rule E:

IF lessthan(〈Loan, bonus〉)

THEN set(〈Loan, rate〉, 〈Loan, rate〉 − 0.01);

set(〈Borrower, score〉, 〈Borrower, score〉 − 1) ;

Rule F:

IF greaterthaneq(〈Loan, rate〉, 0.5)

THEN set(〈Loan, eligibility〉, true) ;
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4.2.4 Tracing the process: what should be in the decision trace?

Most of decision traces simply provide the complete list of rules triggered and

even if they translate the execution of triggered rules, however their content may

be arbitrary and not fully reliable. For instance, such traces may contain irrelevant

information that can be seen as noise or even su�er from a lack of information

resulting in a reduced capability to establish links between the inputs, the di�erent

rules and the outputs. Indeed, as it was emphasized for instance by Alvarez (2004),

a trace of execution, unfortunately does not always hold the right or necessary

information that is needed to understand and accept the outputs (decisions).

In our context, the tracing tool aims to record enough information to enable the

representation of causal dependencies between the events occurred during a decision.

Being able to do that means that the data recorded in the trace must inform about

several important characteristics.

(i) What has been triggered : Having some knowledge about the nature of the

event that occurred allows to infer information about its behavior. In this

perspective, the trace has to contain information about the triggered decision

artifact (a business rule or a task);

(ii) What has been considered to trigger the decision artifact : knowing the parame-

ters that have been taken into account in the premisses of a decision artifact

is a part of the knowledge required to infer the potential causes of its occur-

rence. In practice, the business variable(s) evaluated by the decision artifact

are su�cient;

(iii) What has been modi�ed by the triggering of the decision artifact : knowing what

are the consequences of the triggering of a decision artifact allows to evaluate

what could be caused by its e�ects. Recording the business variable(s) that have

been modi�ed by a decision artifact is a prerequisite for establishing causation;

(iv) When the decision artifact has been triggered : knowing the temporal position
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of a decision artifact allows to constraint what could be a cause or what could

be caused by a such decision artifact. In practice, this temporal order is given

by the step (order of execution).

Adopting the formatting syntax

�Dec. artifact instance (dec. artifact ID, evaluated variable(s), modi�ed variable(s),

step number)� for a recorded line, Example 4.4 presents the decision trace obtained

by using the input parameters (bankruptcy = false , score = 8, bonus = 15

) for the rule-based application described in the Example 4.3.

Example 4.4. (Ex. 4.3 Cont.)

BEGIN DECISION

-> INPUTS (bankruptcy=false,score=8,bonus=15)

TaskInstance(compute ; <bankruptcy=false,score=8,bonus=15>;

... ; step 1)

RuleInstance(Rule A ; bankruptcy=false ; score=13 ; step 2)

RuleInstance(Rule B ; score=13 ; rate=0.28 ; step 3)

RuleInstance(Rule C ; <rate=0.28,score=13>; rate=0.56 ; step 4)

TaskInstance(evaluate; rate=0.56 ; ... ; step 5)

RuleInstance(Rule D ; rate=0.56; score=13 ; step 6)

RuleInstance(Rule E; bonus=15; <rate=0.55, score=7>; step 7)

RuleInstance(Rule F ; rate=0.55; eligibility=true ; step 8)

-> OUTPUTS (eligibility=true,rate=0.55)

END DECISION

Our ambition is to go beyond such traces by proposing a proper account of

causality that could be used to support explanation capabilities.

4.3 Representing causality in business rule-based systems

Being able to extract and present the causal relations described by business rules

could allow one to apply a causal �ltering and reduce the obtained traces while
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keeping all the valuable information. The idea is to get a richer structure, than

a simple trace, on how the rules have been executed and in�uenced to achieve a

result. Thanks to this method, a reduced trace that guarantees no loss of essential

justi�cative information could be given as output during the decision process (at

execution time). Moreover, this causal knowledge could also be used to present this

reduced trace in a more meaningful way. To represent causality in a rule-based

system we will in fact consider two causal models:

• Causal model of the system: it models the relations between the business rules

of the BRBS (before any execution). The aim through this level is to reduce

the size of the decision trace and to provide a qualitative view of the decision

logic used by a BRBS;

• Minimal causal model of the decision: it represents the links between rules

instances that have been traced for a speci�c decision of the RBRS. This model

will be useful for the perspective of explaining a decision for such a system.

The contribution of Halpern and Pearl (2005b) on the notion of causality has

been in�uential in many domains, including databases (Meliou et al., 2010) and

speci�cation (Chockler et al., 2008). It relies on three fundamental ideas:

1. the counterfactual nature of causation: A causes B if event A and event B

occurred and if, had A not occurred, B would not have occurred either. Behind

this notion, there is the idea that a cause should be necessary and su�cient.

2. the idea of contingency : an event is an actual cause if one can �nd a contingency

(a context), where A could be a counter-factual cause for B.

3. minimality : no subset of A is an actual cause of B.

Halpern and Pearl (2005b) makes this formal by introducing a setting where systems

are a�ected by variables, either exogeneous (�xed by factors external to the systems)
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or endogeneous (which can serve as causes). Together, they de�ne the signature S

of the system. The behavior of the system is captured via structural equations.

In this work, we partially rely on the work of (Halpern and Pearl, 2005b) in order

to ascribe the causal knowledge about links and relationships that may exist between

the di�erent parameters of a rule-based system. This causal representation mainly

builds on structural equations. Intuitively and based on the concepts presented in

Section 4.2.3, dealing with the execution and orchestration of the business rules, i.e.

de�ning the structural equations of a rule-based system, is very challenging though:

as we have seen, there are many parameters that may a�ect the output: the rules

themselves, the rule�ow, the ordering of rules within a rule set, and the algorithm

used.

4.3.1 Events typology in a business rule decision

We �rst approach this di�cult problem by studying a notion of causality which

will make a number of simplifying assumptions. One important question to ask is

what events can occur in a rule-based system, i.e. how the working memory can be

a�ected. We identify several possible events:

• (v) "variable x is assigned value α",

• (c) "condition c is evaluated" (satis�ed or not),

• (a) "action a is applied",

• (r) "rule R is triggered",

• (t) "task T is triggered".

The need, in principle, to di�erentiate events (c) and (r) can be understood by

recalling that some procedures do not directly trigger a rule upon evaluation of their

premises (eg. FastPath). This would allow to provide causal relations mentioning

this procedural level (see the notion of strategic explanation discussed in Section
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3.3). For instance: �the fact that this procedure is used was a cause for triggering

this rule".

In the same way, we di�erentiate theoretically events (a) and (v) because the

application of an action does not always result in the same value assignment. (i.e.

the same event (a) does not correspond to a speci�c (v), it can relate to various (v)

depending on the context).

However, we shall abstract away from this level and assume that only events (a),

(v) and (c) and are meaningful to the decision-maker. Considering this, we propose

an analysis which remains independent from the ordering of the rules, and from the

algorithm used.

In our context, we aim to describe some connections between the business rules

that occurred during a decision process. This requires to look at their actions and

conditions. It goes back to observe how the occurrence of an event (a) or (c) can

a�ect the occurrence of another event (a) or (c). As they do not directly relate to

business rules, (v) events are not considered in our representation. Moreover, to be

able to represent all the aspects of the decision process in a business rule perspective,

we have to de�ne a new type of event:

• (a') "the business variable modi�cation resulting from the application of an

action a is changed." (ie. "the value of a business variable x used as parameter

by an action a is modi�ed".)

Based on some dependencies between events (a) and (a′), the fact that the appli-

cation of an action can a�ect the modi�cation resulting from the application of

another action can be represented. The idea behind this is that an event of type (a′)

allows to observe how an event of type (v) corresponding to the occurrence of an

event of type (a) changes another event of type (v) corresponding to another event

of type (a). In fact, the introduction of an event (a′) allows to represent how the

modi�cation of the working memory by an action can a�ect the modi�cation this

working memory resulting from another action. It is important to note that our
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causal model is rule-centric and so we observe only the events corresponding to the

states of rule elements. Thus, the business variables are exogenous and so the events

of type (v) are not represented in our causal representation. Nonetheless they are

used to provide a contingency for the relations between events of type (a),(a′),(c)

and (t).

4.3.2 De�ning the signature of a rule-based system

In (Halpern and Pearl, 2005b), a formal setting to capture the causality, where

systems are a�ected by variables, is presented. More precisely, they de�ne the

signature S = (U, V,R) of the system, where U is a �nite set of exogenous variables

(�xed by factors external to the system), V is a �nite set of endogenous variables

which can serve as causes) and R associates to each variable Y ∈ U ∪V a non empty

set of possible values for Y . The behavior of a system is captured via a set of causal

functions F taking the form of structural equations which state causal relations

between its endogenous variables. Based on this and as de�ned by (Halpern and

Pearl, 2005b) a system can be represented by its causal model M(S, F ). In our

context, the signature of a rule-based system is described thanks to the sets of

endogenous and exogenous variables presented below.

The set of endogenous variables (V ) contains variables of the forms:

• ci is a boolean variable representing the state of a condition i. This variable is

set to true if the condition is satis�ed and false otherwise.

• aj is a boolean variable representing the state of an action j. It is set to true

if the action is triggered and false otherwise.

• a′k is a boolean variable representing the state of an action k. This variable is

set to true if any business variable used as parameter by the action is modi�ed

and false otherwise.

• tl is a boolean variable representing the state of a task l. This variable is true

if the task is triggered and false otherwise.
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Based on that, we propose to de�ne an event X as a particular setting of a set

of endogenous variables of the form described above. We note that an event of the

form Xi = xi is called a primitive event and represents the assignment of a particular

value xi to a variable Xi.

De�nition 4.1. (Event)

X =
[
(X1 = x1) ∧ . . . ∧ (Xi = xi) ∧ . . . ∧ (Xn = xn)

]
, where Xi ∈ V and

xi ∈ {true, false}.

For a clarity of reading we abbreviate the events of the form x = true as x and

those of the form x = false as ¬x in the rest of the chapter.

Considering such events, some causal relations can be established to describe how

the occurrence of an event can a�ect the occurrence of another one. The validity

of these relations may depend on some other �external" factors that are modeled by

exogenous variables. The setting of exogenous variables gives a contingency (or a

context) under which the �rst event can be considered as a counterfactual cause of

second one.

The set of exogenous variables (U) contains the business variables. For instance,

in example 4.3, U = {banckruptcy, score, bonus, rate, eligibility}. Some values of

these variables make a relation between two events counterfactual. This notion is

described in the next section. In our case, we have chosen to limit the exogenous

variables to the rule-based system business variables. This choice has been motivated

because the business variables make sense in the decision domain and thus can have a

meaning for the user. Nonetheless, technical parameters (priority among the rules,

selected engine algorithm,...) could be added to the exogenous variables to take

into account the in�uence of technical factors that are external to the decision logic

described by the business rules. This technical variables should be see at a higher

level of exogeneity than the business variables. Taking these variables into account

could be interesting for more technical users who would observe how the rule engine

settings a�ect the decision process or for simulating alternative paths at speci�c
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steps of a decision in order to handle �why-not� explanation. As explained before,

this kind of explanation is out of the scope of this work.

Considering the variables in U and V , R associates to each of these variables a non

empty set of possible values. For all the variables in V the associated sets always

contains the values {false, true} whereas the sets associated to each exogenous

variable depend on the nature of the business variable which is represented. Based

on the set of exogenous variables U , the set of endogenous variables V and their

possible values R that we previously de�ned, the signature of a business-rule based

system is given by the tuple S = (U, V,R).

4.3.3 Causality between events

During the reasoning process of a business rule-based system, the primitive events

corresponding to speci�c settings of variables in V occur sequentially and under their

own contexts (setting of variables in U). As each primitive event occurs alone, it is

possible to isolate them and look for �local causation" between two primitive events.

This allows us to simplify the problem of capturing and representing causality in a

rule-based system. Hence, we propose to introduce the notion of local cause, based

on the notion of counterfactual cause. The idea behind the local cause is to represent

the fact that an event may contribute to cause another event in a speci�c situation

and without the consideration of other events.

De�nition 4.2. (Local cause) Let X and Y two primitive events, and Z an event

that forces the value of all the variables in V \ {X, Y } to false. X is a local cause

of Y if there is a context uX,Y such that X ∧ Z → Y and ¬X ∧ Z → ¬Y .

In other terms, X is a local cause of Y if X is an actual cause of Y without

considering the other endogenous variables. This de�nition of causality is more per-

missive than the one given by (Halpern and Pearl, 2005b) and allows us to evaluate

couples of primitive events in order to know if one may have a causal contribution

on the occurrence of another. Moreover, this relation is transitive, i.e. if X is a

local cause of Y and Y is a local cause of Z than we assume that X contributes
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to cause Z. Moreover, we associate to this notion what we call the validity domain

of a relation between two primitive events X and Y , noted UX,Y , which represents

the set of all possible contexts (contingencies) uX,Y for which X is a local cause of

Y . Therefore, in our context a causal relation between two primitive events can be

described as follows.

De�nition 4.3. (Causal relation) Let X and Y two primitive events, a causal

relation between X and Y , noted X
UX,Y−−−→ Y , is a tuple (X, Y, UX,Y ) such that X is

a local cause of Y under the validity domain UX,Y .

Moreover, following (Halpern and Pearl, 2005b) this causal relation can be des-

cribed by a structural equation of the form Y ← X. It can also be instantiated

under a speci�c situation by replacing its validity domain UX,Y with a context uX,Y

that matches with this situation (uX,Y is a particular setting included in UX,Y ).

This instance is called a causal link, represented by the tuple (X, Y, uX,Y ) and noted

X
uX,Y−−−→ Y .

It is clear that depending on the nature of the events (see 4.3.1 and 4.3.2) involved

in a causal relation, the relation may represent something di�erent and may have

a di�erent meaning. In what follows we propose several types of causal relations

allowing to describe the connections and links between events in a business rule-

based system.

4.3.4 Typology of the relations

In this section, we describe the types of causal relations that exist in our system.

Moreover, we note that all types of relations can be translated in terms of business

rules. Indeed, for practical purpose, we de�ned an operator rule() which takes an

event as parameter and returns the related business rule. This operator can be

used to represent relations and links at a higher level of granularity by replacing the

events by the corresponding rules.
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Execution Relation. An execution relation models the dependence between a con-

dition and an action of the same rule. It is a causal relation between (c) and (a)

events.

De�nition 4.4. (Execution Relation)

Let ci and ak be two primitive events. An execution relation is the causal relation

of the form: ci
Uci,ak−−−→ ak which is valid for all the settings of Uci,ak .

Execution links of the form (ci
uci,ak−−−→ ak) can be derived from this causal relation.

Example 4.5 (Ex 4.3 cont.). The rule C has the following execution relations:

• c1
Uc1,a1−−−→ a1, where Uc1,a1= rate ∈ [0.2, 1]; c1= (rate >= 0.2) and a1= (rate =

rate ∗ 2).

• c2
Uc2,a1−−−→ a1, where Uc2,a1 = score ∈ [12, 100], c2 = (score >= 12) and a1 =

(rate = rate ∗ 2).

(In)eligibility relation. An (in)eligibility relation describes the existing connection

between the modi�cation of a parameter resulting from the action of a business rule

and a state change in the satisfaction of the condition of another business rule. It

can be extracted by verifying if there is a validity domain Uak,(¬)ci allowing the causal

relation between an event ak and an event (¬)ci.

De�nition 4.5. ((In)Eligibility Relation)

Let ak and ci two primitive events. An (in)eligibility relation is the causal relation

of the form: ak
Uak,(¬)ci−−−−−→ (¬)ci which is valid for all the settings of validity domain

Uak,(¬)ci .

(In)Eligibility links of the form (ak
uak,ci−−−→ ci) can be derived from this causal

relation.

Example 4.6 (Ex 4.3 cont. ). The rules A and B have the following eligibility

relation:
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a1
Ua1,c1−−−→ c1 where Ua1,c1 = score ∈ [10, 14], a1 = score = score + 5 and c1 =

score >= 10.

The rules E and F have the following ineligibility relation:

a1
Ua1,¬c1−−−−→ ¬c1 where Ua1,¬c1 = rate ∈ [0.1, 0.2[, a1 = rate = rate − 0.1 and c1 =

score >= 10.

We note that we will not take into account ineligibility relations for building the

causal model of a decision (see Section 4.4.3). More precisely, we are interested,

for the moment, by capturing what really happened during the decision process.

Nonetheless, ineligibility relations may be included when dealing with events that

have not occurred and are interested by explaining why not considering such events.

An example of why not explanation is given in (Martincic, 2003).

Computation relation. It represents how the modi�cation of a parameter used

by an action can change the modi�cation resulting from another action. It can be

extracted by analyzing if an action (ai) modi�es a business variable that is used as

parameter by another action (aj) to compute its modi�cation.

De�nition 4.6. (Computation Relation)

Let ai and a′j two primitive events. A computation relation is the causal relation of

the form: ai
Uai,a

′
j−−−→ a′j which is valid for all the settings of the validity domain Uai,a′j .

In Fig 4.4.3, as an event a′j relates to a corresponding event aj, we replace the

relations ai
Uai,a

′
j−−−→ a′j by ai

Uai,a
′
j−−−→ aj

Example 4.7 (Ex 4.3 cont. ). The rules B and C have the following computation

relation:

a1
Ua1,a

′
1−−−→ a′1 with Ua1,a′1 = rate ∈ [0, 1]

We note that by using the rule() operator on example 4.7, where rule(a1) =

Rule B and rule(a1) = Rule C)), we are able to identify the rules involved in the

relation and deduce the relation: Rule B
Ua1,a

′
1−−−→ Rule C.
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Based on these di�erent relations, the next section is devoted to describe the

construction of causal models for business rule-based systems.

4.3.5 Hierarchical causal model

We are now in a position to present our two-level causal model. Indeed, as

previously discussed, a causal representation of a BRBS can be expressed at two

levels. First, we have a rule�ow causal model which describes relations between

tasks (as tasks are associated to rulesets they constrain the relations between rules

of di�erent rulesets). Indeed, the rule�ow is responsible for scheduling the tasks

and so describes some causal relations between the tasks which are responsible for

selecting the sets of business rules that can be applied at each step of the reasoning

process (for information, a rule�ow can be seen as a micro-work�ow which is usable

in a rule context, it consists in a simpli�ed work�ow that enables only sequential

working). Second, a rule causal model which describes relations between business

rules (thanks to events related to their conditions and their actions). For each model,

we propose to associate a causal model M(S, F ) (see section 4.3 ) described in what

follows.

A rule�ow causal model M(S, F ). is represented by, on the one hand, its signature

S = (U, T,RUT ), such that U represents the set of exogenous variable representing

the business variables used by the Business Rule Based System and T = {ti|i =

1, . . . , l} is the set of endogenous variables which relates to tasks. Thus, U is used as

context to make deterministic the relations de�ned between the endogenous variable

in T . Finally, RUT associates to each variable Y ∈ U ∪ T a non empty set RUT (Y )

of possible values for Y . On the other hand, we have the causal function F which

associates to each couple of variables (X, Y ) ∈ T × T a causal function:

FX,Y : (×U ′ ∈ U.RUT (U ′))× (X.RUT (X))→ RUT (Y ) (4.1)

This �rst causal model is used to take into account the fact that a rule A that

belongs to a task ti can a�ect another rule B that belongs to a task tj only if ti is
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a local cause of tj (see Def 4.2) or by considering transitivity ti is an indirect local

cause of tj.

A rule causal model M(S, F ) models causal relations between rules and is repre-

sented by its signature S = (U, V ′, RUV ′) , such that U is the same set as previously

and V ′ = {ci, aj, a‘k|i = 1, . . . , n; j = 1, . . . ,m; k = 1, . . . , l} is the set of endogenous

variables which relates to business rule conditions and actions. The associated cau-

sal function F which associates to each couple of variables (X, Y ) ∈ V ′×V ′ a causal

function is :

FX,Y : (×U ′ ∈ U.RUV ′(U ′))× (X.RUV ′(X))→ RUV ′(Y ) (4.2)

We note that the two causal functions describe how some values of X contributes

to cause some other values of Y given some settings of the exogenous variables.

As it was previously stated, studying the causality in a Business Rule Based

System has the aim to provide at the end a minimal causal model of a decision that

has the advantage to include more relevant information than a decision trace. To

obtain such a model, we need, as it is depicted in Figure4.1, to construct a minimal

causal model of the system, and the minimal decision trace. In what follows, we

describe the process to do that.

4.4 Process of construction of a minimal causal model

We now describe the whole process leading to the construction of the causal

model. Figure 4.1 provides a general overview of the di�erent stages, which we

describe now.

4.4.1 Causal model of the system and list of relevant events

The �rst process (Fig. 4.1a) aims to produce the minimal causal model of the

business rule-based system and its associated list of relevant decision artifacts. For
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(a) Subprocess 1

(b) Subprocess 2 (c) Subprocess 3

Figure 4.1: Method overview: Constructing a minimal causal model of the decision

this purpose, we construct �rst a causal model of the system by analyzing the busi-

ness rule-based system and extracting the di�erent causal relationships. After that,

this model can be reduced by removing all the relationships that have no path lea-

ding to an output parameter (a relationship has a path to an output parameter if it

belongs to an oriented chain of relationships that are connected between their right

and left parts and lead to a relationship whose the action in the right part modi�es

an output parameter). After this reduction we obtain a minimal causal model of the

system. Based on this, a list of the decision artifacts (it can be either business rules

or tasks) having an in�uence on the output parameters can be established. More

precisely, the causal model of the system is built in two steps. The �rst step

aims to represents dependencies between the tasks of a business rule-based system.

Representing such dependencies is important because it allows us to constrain the

couples of events that can be considered as candidate for �causal relation".

Indeed, the rules of two independent tasks have no in�uence on each other. More

restrictively, the rules associated to a task ti can only have a causal in�uence on the

rules associated to any task tj if the occurrence of tj is in�uenced by the occurrence

of ti. On other terms, given two events (t1) and (t2) with (a1) relates to (t1), and

(a′2) and (c2) relate to (t2), then an event (a1) may have a causal in�uence on
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another event (a′2) or (c2) only if (t1) has a causal in�uence on (t2). At the end, we

obtain a causal model under the form of a graph such that the nodes corresponds

to the endogenous variables of the causal model, and it exists an edges between two

variables X and Y if it exists a causal function FX,Y that changes the value of Y

depending on the value of X for at least one setting of the exogenous variables (i.e.

Ux,y is not empty).

De�nition 4.7. (Business Rule Based System Causal Network)

A business rule based system causal network is a graph G = (V,E) where V is the set

of endogenous variables of the causal model and E = {(X, Y ) ∈ V ×V | X
UX,Y−−−→ Y }

The second step aims at reducing that graph by deleting the nodes having no

path to a rule modifying an output parameter. After this, it is possible to extract

a list of relevant events, which is obtained by indexing the nodes of this minimal

causal network.

4.4.2 Minimal decision trace

The second process (Fig. 4.1b) consists at determining what events of a decision

should be traced and even what information should be kept about these events.

More precisely, at a decision time, the minimal trace of a decision can be obtained by

tracing only the events contained in the list of pertinent decision artifacts (obtained

at the previous step) and �ltering out the others. This minimal trace is shorter than

the original trace and has the advantage to keep only the the elements that could

be required to understand the output parameters. For illustration, we give below

the minimal trace obtained for the example 4.4.

Example 4.8 (Ex.4.4 Cont.).

BEGIN DECISION

-> INPUTS (bankruptcy=false,score=8,bonus=15)

TaskInstance(compute ;<bankruptcy=false,score=8,bonus=15>;...; step 1)

RuleInstance(Rule A ; bankruptcy=false ; score=13 ; step 2)
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RuleInstance(Rule B ; score=13 ; rate=0.28 ; step 3)

RuleInstance(Rule C ; <rate=0.28,score=13>; rate=0.56 ; step 4)

TaskInstance(evaluate ; rate=0.56 ; ... ; step 5)

RuleInstance(Rule E; bonus=15; rate=0.55; step 6)

RuleInstance(Rule F ; rate=0.55; eligibility=true ; step 7)

-> OUTPUTS (eligibility=true,rate=0.55)

END DECISION

The obtained trace can then be transformed in a causal graph that provides a

qualitative view of the decision, revealing its reasoning. We call this causal graph,

the minimal causal model of the decision and we present it in the next sub-section

(Sub-Section 4.4.3).

4.4.3 Minimal causal model of the decision

The last process (Fig. 4.1c) aims to produce the minimal causal model of a

decision. In order to do that, the minimal causal model of the system and the

reduced trace of the decision can be exploited to derive a causal model that �ts to

this speci�c decision. More precisely, On the one hand, the trace of the decision

provides the events that occurred during the decision with some useful information

like their corresponding step and the context. On the other hand, the Business

Rule Based System causal network gives information about the relations between

these events. For instance, if an event (a) occurred under a context (u(a),(c)) causing

the occurrence of an event (c), determining a link between (a) and (c) goes back

to check if there is a relation "(a)
U(a),(c)−−−−→ (c)" in the Business Rule Based System

causal network where u(a),(c) is included in U(a),(c).

Example 4.9 (Exemple 4.8 cont.). minimal causal model of the decision - links list
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Eligibility links:

(1) Rules A and B: a1
ua1,c1−−−→ c1, with ua1,c1 : score = 13

(2) Rules A and C: a1
ua1,c2−−−→ c2, with ua1,c2 : score = 13

(3) Rules B and C: a1
ua1,c1−−−→ c1, with ua1,c1 : rate = 0.28

(4) Rules C and F: a1
ua1,c1−−−→ c1, with ua1,c1 : rate = 0.56

Computation links:

(5) Rules A and B: a1
ua1,a′1−−−→ a′1, with ua1,a′1 : score = 13

(6) Rules B and C: a1
ua1,a′1−−−→ a′1, with ua1,a′1 : rate = 28

(7) Rules B and E: a1
ua1,a′1−−−→ a′1, with ua1,a′1 : rate = 0.28

(8) Rules C and E: a1
ua1,a′1−−−→ a′1, with ua1,a′1 : rate = 0.56

Execution links:

(9) Rule A: c1
uc1,a1−−−→ a1, with uc1,a1 : banckruptcy = false

(10) Rule B: c1
uc1,a1−−−→ a1, with uc1,a1 : score = 13

(11) Rule C: c1
uc1,a1−−−→ a1, with uc1,a1 : rate = 0.28

(12) Rule C: c2
uc2,a1−−−→ a1, with uc2,a1 : score = 13

(13) Rule E: c1
uc1,a1−−−→ a1, with uc1,a1 : bonus = 15

(14) Rule F: c1
uc1,a1−−−→ a1, with uc1,a1 : rate = 0.55

At the end the decision causal model can be represented by a graph where the

nodes correspond to the endogenous variables of the causal model and it exists an

edges between two nodes X and Y if the causal function FX,Y changes the value of

Y depending on the value of X for the setting uX,Y (see Eq 4.2).

De�nition 4.8. (Decision Causal Network)

A decision causal network is a graph G = (V,E) where V is the set of endogenous

variables of the causal model and E = {(X, Y ) ∈ V × V | X
uX,Y−−−→ Y }.

We provide below an algorithm that can be used for building the decision causal

network based on a trace of the decision and a Business Rule Based System causal

model. The complexity of this algorithm is o(n2), where n is the number of events

in the trace. In the algorithm:

• TraceElement[int i] is the function that outputs the ith event (condition or

action) occurred during the decision;
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• Responsible[TraceElement element,OutputParameter ϕ] is the function that

outputs a boolean which is true if the observed value of the explainable output

ϕ results from element (i.e. when occurred, the corresponding action set ϕ to

its �nal value) and false otherwise;

• checkCausality(TraceElement element1, T raceElement element2) is the function

which is in charge for building the causal links. To do this, the function checks

�rst, in the causal model of the decision service, whether a relation (computa-

tion, execution, eligibility) exists from element1 to element2, and second if this

relation is valid for the values of the business variables associated to element1.

If it is the case, the function adds element1 to the set of causes and creates

the corresponding causal link.

Algorithm 4 Build the causal model of the decision for the output parameters φ based
on the trace

Require: Trace 6= ∅, Cause = ∅, φ 6= ∅.
Ensure: Cause contains the actual causal network presenting all the local causes of φ at
the end of the algorithm.
for all ϕ ∈ φ do
set(n,N) % number of elements in Trace
while n 6= 0 and Cause = ∅ do
if Responsible[TraceElement[n], ϕ] then
add(Cause, TraceElement[n])
if step(currentElement) < n then
set(currentElement, TraceElement[n])

end if

end if

set(n, n− 1)
end while

end for

while currentElement 6= ∅ and step(currentElement) > 1 do
set(currentElement, higherUnmarkedElement(Cause))
for i = step(currentElement)− 1 to i = 0 do

checkCausality(TraceElement[i], currentElement)
end for

mark(currentElement)
end while

Based on this algorithm and on the causal model of rule-based system, the causal
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model of the decision can be built. The Figure 4.2 illustrates the decision causal

network for example 4.4. It can be read as follows. At step 2, there is an execution

link (9) between an event c1 and an event a1 related to the instance of �Rule A"

belonging to the instance of the task �compute". There is an eligibility link (1)

between the same event a1(occurred at step 2) and the event c1 (occurred at step

3) that relates to an instance of �Rule B". There is a computation link (8) between

a1(occurred at step 4) which relates to an instance of �Rule C" and a1(corresponding

to a′1, occurred at step 6) which relates to an instance of �Rule E". Here the event

a1 of �Rule E" and the event a1 of �Rule F" are responsible for the outputs settings

(rate=0.55, eligibility=true) the other nodes are causally added to build the causal

graph of the decision.

Figure 4.2: Causal network of the decision under a decision artifact perspective

Figure 4.2 presents the causal model of the decision at a rule level by grouping

the rule elements in their corresponding rules. Consequently the intrinsic relations

are not represented. The algorithm �rstly found rule instances E and F which are

connected to the outputs parameters �rate" and �eligibility", the other rule instan-

ces are added to the causal network with the corresponding links by checking the
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causality with a background approach as described in the algorithm.

Figure 4.3: An example of causal network at rule level for example 4.4

4.4.4 Conclusion

The causal models presented in this chapter are designed as IBM ODM decision

services, but are generic enough to �t with other business rule-based applications.

They can be used to create a trace of your business decisions in a minimalistic and

meaningful way. Despite the additional cost of such causal models, as they allows

the tracing tools to trace only the pertinent information, minimal traces can save

space in memory. Moreover, because of their causal nature they guarantee to keep

all the information needed to provide a complete qualitative view of the decision

process and constitute a good material for explanation generation. This is very

useful for business rule-based systems used by insurances and banks which usually

have to limit the extra-cost of their tracing tools and store billions of decision traces

for later consultations. In addition to the utilities presented above, the proposed

causal models may have other applications. Whereas the causal representation of a

business rule-based system may be used to increase its transparency and understan-

dability or allows one to provide some explanation capabilities at the system level,
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the causal model of the decisions could be a good material to construct more speci�c

explanations. They may contribute to increase the transparency and acceptance of

such systems.
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Engineering the causal model

In the previous chapter we presented a methodology to generate causal networks

for a Business Rule-Based System (BRBS), either for the system (in that case it

captures the relations between the business rules of the BRBS, prior to any execu-

tion) in order to reduce the size of the decision trace and to provide a qualitative

view of the decision logic used by the system to make its reasoning; or for a speci�c

decision.

Each of these models is supported by a causal representation that can be expres-

sed at di�erent levels:

• at the rule�ow level: a decision process can be guided by at most one main

rule�ow.

• at the task level: the tasks are used for selecting the sets of business rules that

can be applied at each step of the reasoning process. A directed graph of tasks,

called the rule�ow, is responsible for scheduling these tasks. As a result, some

causal relations between the tasks can be extracted from the rule�ow and used

to constraint the possible causal relations between the business rules of two

di�erent tasks.

• at the business rule level: the business rules describes the business logic of the

system and, for this reason, they can be analysed to ascribe causal relations.

• at the business rule element level: Split the business rule based on their ato-
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mic element allows to ascribe and represent their causal dependencies more

precisely. Based on this, a business rule element can be either an action or a

condition that belongs to a business rule.

The following scheme gives an overview of the di�erent levels of granularity that

may be encountered in a Business Rule-Based System. It can be read in following

way. Conditions and action form the atomic level and one business rule can have

several conditions and actions. A business rule belongs to a ruleset which is associ-

ated to a task and the tasks are managed by a rule�ow which represent the higher

level of granularity.

Figure 5.1: Levels of granularity

In practice, as the rule�ow is associated to the higher level of the decision logic,

the causal model of the decision corresponds to the rule�ow and captures the causa-

lity at the three lower levels which are: the task level, the business rule level and the

business rule element level. As it was described in Chapter 4, the construction of

these causal models relies on a process that takes the rule-based system to analyse

as input and returns several causal models as output (see Figure 4.1).

In this chapter, we describe how we engineer this solution. The implementation

of this framework takes place in a Java environment and is tested against decision

services developed by using IBM Operational Decision Manager, the Business Rules

Management System provided by IBM (see Chapter 2 for more details).
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5.1 A Framework for Causal Ascription and Representation

in Rule-Based System

As previously described, this framework is based on a global process that can be

decomposed into three sub-processes (see Fig.4.1). Each of these process is done at a

di�erent time and aims to produce speci�c materials that are involved in the process

of representing causality for a business rule-based system and for its decisions. In

practice, the �rst process, described by Fig. 4.1a, statically analyses the business

logic and the Business Object Model of a decision project (ie. rule project) in

order to represent the di�erent classes of events that may be involved in automated

decisions and ascribe the underlying causal relationships. At the end of this process

the material obtained encompasses: (1) a minimal causal model of the decision

service (i.e. business rule application) and (2) a list of the relevant classes of events.

In what follows, we describe our implementation of the main steps for constructing

a minimal causal model of the decision for a BRBS.

5.1.1 Encoding business rules (BR) into BR-Objects

Before analyzing a decision project (ie. rule project), it is important to identify,

�rst, what information contained in a business rule should be captured and how

to represent them. Such a representation should be su�cient to capture any infor-

mation about a business rule that could be used for causal ascription. Moreover,

as business rule-based decisions involves instances of business rules, there is a dis-

tinction between a business rule and each of its instances. Whereas a business rule

represent a class of events having similar properties, each of its instances refers to

a speci�c event of this class that occurred during a decision. Therefore, the events

corresponding to di�erent instances of a business rule share common characteristics

that are de�ned in the business rule representation. This distinction is taken into

account by using an object-oriented formalism that can be used in order to represent

each business rule and each of its instances. We propose to represent a business rule

by the UML model depicted in Figure 5.2. Thus, a business rule is represented by
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an object �BusinessRule (BR)� that is characterized by:

• an identi�er (id), which is used to identify the business rule and typically

contains the business rule name;

• a list of conditions, containing �BusinessRuleCondition� objects;

• a list of actions, containing �BusinessRuleAction� objects.

Figure 5.2: UML model: Representing a BR-object (ie. business rule object)

The �BusinessRuleCondition� and �BusinessRuleAction� objects both represent

business rule elements and so inherit from a �BusinessRuleElement� class which

provides them the following common properties:

• an identi�er (bussinessElementID) which identi�es the concerned business

rule element (it can identify either an action or a condition),
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• another identi�er that allows to �nd the associated business rule (business-

RuleID) and a business expression (businessExpression) which is a normalized

form1 of the part of the business rule statement corresponding to the represen-

ted business rule element that can be either a condition or an action.

In addition to these common properties, the BusinessRuleCondition and the Busi-

nessRuleAction provide speci�c information:

• A BusinessRuleCondition contains a condition type that indicates the type of

the represented condition (type) and a list of the business variables evaluated

by the condition (variables list).

• A BusinessRuleAction informs about the type of the represented action (type),

the business variable modi�ed by the corresponding action (modi�edVariable)

and the business variables used as arguments by the corresponding action (arg-

Variables list).

Moreover, a business expression is represented by a BusinessExpression object

that provides information about the type of the operator involved in the business

expression (ex: mult, minus, add, div...), the business variables (variables) used as

arguments in the current business expression. In addition, a business expression can

also uses another business expression (subExpression) as an argument in the current

business expression. The business variables refereed in the business expressions

are represented by BusinessVariable objects that contain information about: the

name of the corresponding business variable (name), the type of the corresponding

business variable (type), the type of the values of the corresponding business variable

(valType), the domain of the corresponding business variable (domain) and the

current value of the corresponding business variable (value).

For illustration, Example 5.1 presents some rules of a simple use-case of loan

agreement (the whole example is presented in Appendix A. In this example the

1Root form which is independent from the business rule language de�ned in the decision projects
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business rules are shown in their business rule language form (before normalization)

and in their normalized form (after normalization).

Example 5.1. Given a decision project (RuleSet Id: Miniloan Service, Number of

rules: 14), the list below represent some of the business rules as they can be read and

edited in the user interface. In other terms, the Business rules are in their Business

rule language.

rule 0: (..\Miniloan Service\rules\eligibility\bonusLowCreditScore.brl)

if the credit score of 'the borrower ' is at most 400

and the amount of 'the loan' is less than the yearly income of 'the

borrower '

then set the credit score of 'the borrower ' to the credit score of 'the

borrower ' + 100 ;

rule 1: (..\Miniloan Service\rules\eligibility\debt2IncomeRatio.brl)

if

the yearly repayment of 'the loan' is more than the yearly income of 'the

borrower ' * (0.3 + the credit score of 'the borrower ' / 10000)

or 10200 is more than the yearly income of 'the borrower ' * the yearly

repayment of 'the loan'

then

add "Too big Debt-To-Income ratio" to the messages of 'the loan' ;

reject 'the loan' ;

rule 2: (..\Miniloan Service\rules\eligibility\duration2Score.brl)

if

the duration of 'the loan' is at least 180

and the duration of 'the loan' is at most 480

then

set the credit score of 'the borrower ' to the credit score of 'the

borrower ' + the duration of 'the loan' / 8 ;

The list below describes the previous business rules after normalization.

rule 0 (Id: bonusLowCreditScore)

condition 0: [belongs to rule: bonusLowCreditScore]

isLessThan( miniloan.Borrower/creditScore/GETTER#0 , 400 )

condition 1: [belongs to rule: bonusLowCreditScore]

isLessThan( miniloan.Loan/amount/GETTER#0 ,

miniloan.Borrower/yearlyIncome/GETTER#0)

action 0: [belongs to rule: bonusLowCreditScore]

creditScore.SETTER( add( miniloan.Borrower/creditScore/GETTER#0 , 100) )

rule 1 (Id: debt2IncomeRatio)

condition 0: [belongs to rule: debt2IncomeRatio]

isGreaterThan( miniloan.Loan/yearlyRepayment/GETTER#0 , mult(

miniloan.Borrower/yearlyIncome/GETTER#0 , add( 0.3 , div(

miniloan.Borrower/creditScore/GETTER#0 , 10000 ) ) ) )

condition 1: [belongs to rule: debt2IncomeRatio]
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isGreaterThan( 10200 , mult( miniloan.Borrower/yearlyIncome/GETTER#0 ,

miniloan.Loan/yearlyRepayment/GETTER#0 ) )

action 0: [belongs to rule: debt2IncomeRatio]

addToMessage( Too big Debt-To-Income ratio )

action 1: [belongs to rule: debt2IncomeRatio]

approved.SETTER( false )

rule 2 (Id: duration2Score)

condition 0: [belongs to rule: duration2Score]

isGreaterThan( miniloan.Loan/duration/GETTER#0 , 180 )

condition 1: [belongs to rule: duration2Score]

isLessThan( miniloan.Loan/duration/GETTER#0 , 480 )

action 1: [belongs to rule: duration2Score]

creditScore.SETTER( add( miniloan.Borrower/creditScore/GETTER#0 , div(

miniloan.Loan/duration/GETTER#0 , 8 ) ) )

5.1.2 Extracting the business rules of a decision project

The second step of the process consists in the extraction of useful information

from the business rules contained in a decision project (i.e. a rule project). As previ-

ously described, the BR-object formalism provided in Fig. 5.2 states the properties

and the information that must be kept when representing a business rule. Based on

that, this step aims to generate and feed the BR-objects which correspond to the

business rules of a decision project (i.e. a rule project). Here we describe the process

of extracting business rule information from a decision project (i.e. a rule project)

to generate and feed the corresponding BR-objects. Figure 5.3 provides a global

view of the java classes involved in the extraction of the business rules information

contained in a decision project (i.e. a rule project).

Therefore, for the extraction and the representation of business rules, we propose

to follow the following steps:

• make an index of the business rules contained in a decision project (i.e. a rule

project). In IBM Operational Decision Manager, each business rule is modeled

by a brl-�le (�le with the extension .brl).

• for each indexed brl-�le (as it is illustrated in Fig. 5.4):
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Figure 5.3: UML model: Extract business rules from a decision project (i.e. a rule project)

� extract and clean the text content in order to keep only the business rule

statements written in the business rule language de�ned in the decision

project,

� parse the business rule statements (with parseRule(String)) to construct

the corresponding syntax tree (IlrSyntaxTree). This operation requires a

set of �les contained in the bom folder: the bom �le (it contains references

and information about the properties of the business objects, variables

and functions de�ned in the decision project), a voc �le (it contains the

vocabulary related to the use of the business objects, variables and functi-

ons referred in the bom �le and used in the business rule statement) and

a loc �le (it contains the locale that identi�es the language used in the

decision project to construct the business rule statements.),

� extract the relevant information from the business rule syntax tree that

has been previously obtained. Then, normalize the extracted information

(ie. put it in a root form which is independent from the verbalization

used in the business rule statements) and use it to feed the �elds of the

corresponding BR-object. This task requires the use of a condition parser

(that identi�es, extracts and normalizes the di�erent pieces of information

needed about of each condition in the business rule syntax tree) and an
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action parser (that identi�es, extracts and normalizes the di�erent pieces

of information needed about each action in the business rule syntax tree),

� add the obtained BR-object to the list representing the business rules

extracted from the decision project (ie rule project).

• create a ruleset with an identi�er and its associated list of BR-objects. It is

represented by an object �BusinessRuleSet�.

Figure 5.4: Example of BRL extraction

5.1.3 Ascribing causal relations between the business rule elements

This step aims to ascribe the causal relationships existing between the BR-objects

that have been created in the previous steps. Indeed, the causal ascription relies on

the evaluation of the business rule elements associated to each BR-object. The �gure

5.5 describes the di�erent classes involved in the construction of a minimal causal
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model of a decision project (i.e. a rule project). The �RuleSetRelationsAnalyzer�

uses a �RelationAnalyzer� to evaluate each possible relation, creates the correspon-

ding �CausalRelations� and returns them in a �RulesetCausalModel�. The user can

select some outputs for which he needs explanations among the business variables

used as outputs by the decision service. We call them explainable outputs. Based on

a list of explainable outputs (business variables), the causalFiltering function is then

used to reduce the model and generate the corresponding list of relevant elements

(i.e. pertinent elements) (�pertinentElements�).

Figure 5.5: RelationsAnalyzer

The process of constructing and reducing a causal model of the decision service

can be split into several sub-steps:

• Make a preliminary analysis of the business rule elements (conditions and acti-

ons) to �lter out the �bad candidates�, ordered couples of business rule elements

that have no chance to have causal relationships. This preliminary analysis

only evaluates the references contained in the business rule elements. These

references correspond to business rules, business objects and business variables

accessed by the business rule elements. Based on this:

� It is possible to model how the satisfaction of a condition can impact

the triggering of an action that belongs to the same business rule. This

in�uence is modeled by an execution relation (see Section 4.3.4). Thus,

determining the ascription of an execution relation boils down to verify if
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the condition and the action involved in this relation belong to the same

BR-object. Such a relation is valid for all possible settings of the business

variables manipulated or evaluated by the concerned condition and action.

� It is possible to model the impact of the modi�cation resulting from an

action on the result of another action. This in�uence is represented by a

computation relation (see Section 4.3.4). The determination of a compu-

tation relation relies on an analysis of the variable modi�ed in the �rst

action (cause) and used as argument in the second action (consequence).

In practice, it is su�cient to verify that the variable, referred as �modi-

�edVariable� in the �rst action, is included in the variables referred as

�argVariables� in the second action. Such a relation is valid for all pos-

sible settings of the business variables manipulated or evaluated by the

concerned condition and action.

� it is possible to model how the triggering of an action can change the

satisfaction of a condition. This in�uence can be represented either by

an eligibility or an ineligibility relation. For these kinds of relations, the

raw analysis allows to select good candidates for (in)eligibility relation

(see Section 4.3.4). It amounts to verify if the business variable or object

modi�ed by the action is evaluated by the condition. If it is the case,

the couple 〈action, condition〉 is added to the list of potential (�good�)

candidates. Each of these candidates need to be tested against the di�erent

settings of its exogenous variables (i.e. the di�erent combination of values

that could be taken by the business variables involved in the relation)

to capture its causal function (see Eq. 4.2) and discriminate the wrong

candidates.

• Make a more precise analysis of the �good candidates� that aims to �nd capture

the causal function of each candidates and �lter out the wrong candidates,

those for which no causal relation has been found. In the case of execution

and computation relations, the raw causal analysis is su�cient but, in the case
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of eligibility and ineligibility relations, a more precise evaluation is required

in order to determine if a selected candidate presents an ineligibility relation,

an eligibility relation or none of those. Figure 5.6 gives a global view of the

approach. In it, the system aims to evaluate if a candidate {a1, c1} presents an

ineligibility and/or an eligibility relation or none of those. The �rst step is to

�nd the set of business variables 〈x1, ..., xn〉 involved in the potential relation.

The δ corresponds to the sampling step that we have to set for a variable x, xmin

and xmax correspond to the lower and upper bounds of the variable domain

and m allows to size for the sampling. Thus, for a set of n variables, the size

of the corresponding sampling will be mn. Based on that, for each generated

sampling, the e�ect corresponding to the function that should be applied by

a1 is computed. Then the conditional test of c1 is test against the values of

the sampling and against the values of the sampling update by a1. From that

we look for the state of c1 and we have three possibilities: (1) If it goes from

true to false it is an ineligibility relation, (2) if it goes from false to true it is an

eligibility relation, (3) if it does not change there is no (in)eligibility relations

for the values of the sampling.

As we described above, this ascription of causality is supported by testing the

couple 〈 action, condition 〉 for each settings of the business variables referred

in the condition and in the action. If the modi�cation that results from the

application of the action changes the state of satisfaction of the condition then

the relation can be added with its type (eligibility or ineligibility) and its

corresponding settings of business variables is added to its �validityDomain.

Other relations that involved the same couple 〈 action, condition 〉 and which

are of the same type but with di�erent settings of business variables can then

be grouped with the others by adding the new settings to the �validityDomain�

of the causal relation. Based on this �validityDomain�, the causal function of

the relation is approximated.

This mechanism of causal ascription relies on a testing of the action and the
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Figure 5.6: Global view of the causal ascription of candidate for (in)eligibility relation

condition for a given setting of the business variables involved.

� Figure 5.7 describes the classes associated to the process of simulating the

application of an action. The �ActionInterpreter� aims to interpret the bu-

siness expression given by the �BusinessRuleAction� object and to extract

the business variables referenced in this business expression to enable the

computation of the corresponding action. Based on this interpretation,

the �ActionSimulator� can simulate the treatment of the corresponding

action for all the possible settings of the business variables referenced in

it (whose the values are given by �testSample�).

� In the same way, Figure 5.8 describes the classes associated to the process

of simulating a condition. The �ConditionInterpreter� aims to interpret

the business expression given by the �BusinessRuleCondition� object and

to extract the business variables referenced in this business expression to

enable the computation of the corresponding condition. Based on this
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Figure 5.7: Action simulation

interpretation, the �ConditionSimulator� can simulate the treatment of

the corresponding condition for all the possible settings (whose the values

are given by �testSample� which corresponds to a sampling of the possible

combinations of values allowed by the business variable domains).

Figure 5.8: Condition simulation

• Based on all the causal relations that have been ascribed and represented, a

causal model is built (�RulesetCausalModel�).

• A causal �ltering is applied to this causal model based on a list of explainable

outputs that is given by the user (�explainableOutputs�). After reduction,

a minimal causal model of the decision service and the corresponding list of

relevant elements (�pertinentElements�) are obtained.

Example 5.2 presents the list of causal relations from the static analysis before

and after reduction.
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Example 5.2. List of the causal relations ascribed before reduction of the business

rules presented in Example 5.1

BusinessRule left: bonusLowCreditScore

BusinessRule right: bonusLowCreditScore

Computation relation between: a0 and a0 on: miniloan.Borrower/creditScore/

GETTER #0

BusinessRule left: debt2IncomeRatio

BusinessRule right: debt2IncomeRatio

execution relation between: c1 and a0

BusinessRule left: bonusLowCreditScore

BusinessRule right: debt2IncomeRatio

ineligibility relation between: a0 and c0 on: miniloan.Borrower/creditScore

/GETTER #0

BusinessRule left: bonusLowCreditScore

BusinessRule right: score2Rate

eligibility relation between: a0 and c2 on: miniloan.Borrower/creditScore/

GETTER #0

...

Number of elements in causal model: 111

In the following, Examples 5.3 and 5.4 present the list of causal relations kept

after a reduction based on the explainable outputs. The �rst one considers the

variables: �year Interest Rate�, �the Credit score� and the �amount�. The second one

considers the �approved� variable.

Example 5.3. Causal model of the decision service after reduction on explainable

outputs: yearlyInterestRate, creditScore, amount

BusinessRule left: bonusLowCreditScore

BusinessRule right: bonusLowCreditScore

execution relation between: c0 and a0

BusinessRule left: bonusLowCreditScore

BusinessRule right: bonusLowCreditScore

execution relation between: c1 and a0

BusinessRule left: veryHighIncome2Score

BusinessRule right: score2Rate

eligibility relation between: a0 and c2 on: miniloan.Borrower/creditScore/

GETTER #0

BusinessRule left: veryLowIncome2Score
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BusinessRule right: score2Rate

ineligibility relation between: a0 and c2 on: miniloan.Borrower/creditScore

/GETTER #0

...

Number of elements in filtered causal model: 84 for explainable outputs:

miniloan.Borrower/creditScore/GETTER#0, miniloan.Loan/amount/GETTER#0,

miniloan.Loan/yearlyInterestRate/GETTER #0.

Example 5.4. Causal model of the decision service after reduction on explainable

output: approved

BusinessRule left: bonusLowCreditScore

BusinessRule right: bonusLowCreditScore

Computation relation between: a0 and a0 on: miniloan.Borrower/creditScore/

GETTER #0

BusinessRule left: debt2IncomeRatio

BusinessRule right: debt2IncomeRatio

execution relation between: c0 and a1

BusinessRule left: lowIncome2Score

BusinessRule right: debt2IncomeRatio

eligibility relation between: a0 and c0 on: miniloan.Borrower/creditScore/

GETTER #0

BusinessRule left: veryHighIncome2Score

BusinessRule right: bonusLowCreditScore

ineligibility relation between: a0 and c0 on: miniloan.Borrower/creditScore

/GETTER #0

...

Number of elements in filtered causal model: 88 for explainable outputs:

miniloan.Loan/approved/GETTER #0.

In the following, we present the list of the relevant classes of events that should

be considered when tracing the execution of a business rule-based decision, before

and after reduction. For the later we consider the same explainable outputs as in

the previous examples.

Example 5.5. List of relevant events before any reduction
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bonusLowCreditScore.c0 , bonusLowCreditScore.c1 , bonusLowCreditScore.a0

debt2IncomeRatio.c0 , debt2IncomeRatio.c1 , debt2IncomeRatio.a0 ,

debt2IncomeRatio.a1

duration2Score.c0 , duration2Score.c1 , duration2Score.a0

highIncome2Score.c0 , highIncome2Score.c1 , highIncome2Score.a0

lowAmountPenality.c0, lowAmountPenality.a0

lowIncome2Score.c0, lowIncome2Score.c1, lowIncome2Score.a0

messageElig.c0 , messageElig.a0

score2Rate.c0, score2Rate.c1 , score2Rate.c2 , score2Rate.a0

veryHighIncome2Score.c0, veryHighIncome2Score.a0

veryLowIncome2Score.c0 , veryLowIncome2Score.a0

maximumAmount.c0, maximumAmount.a0, maximumAmount.a1

minimumAmount.c0, minimumAmount.a0, minimumAmount.a1

minimumCreditScore.c0, minimumCreditScore.a0, minimumCreditScore.a1

minimumIncome.c0, minimumIncome.a0

Total number of elements before reduction: 39

Example 5.6. Relevant events based on the selected explainable outputs: yearlyIn-

terestRate, creditScore, amount

bonusLowCreditScore.a0 , bonusLowCreditScore.c0 , bonusLowCreditScore.c1

duration2Score.a0 , duration2Score.c0 , duration2Score.c1

highIncome2Score.a0 , highIncome2Score.c0 , highIncome2Score.c1

lowAmountPenality.a0, lowAmountPenality.c0

lowIncome2Score.a0, lowIncome2Score.c0, lowIncome2Score.c1

veryHighIncome2Score.a0, veryHighIncome2Score.c0

veryLowIncome2Score.a0 , veryLowIncome2Score.c0

score2Rate.a0, score2Rate.c0 , score2Rate.c1 , score2Rate.c2

Number of elements: 22 for explainable outputs:

miniloan.Borrower/creditScore/GETTER#0, miniloan.Loan/amount/GETTER#0,

miniloan.Loan/yearlyInterestRate/GETTER #0.

Example 5.7. Relevant events based on the selected explainable output: approved

debt2IncomeRatio.a1 , debt2IncomeRatio.c0 , debt2IncomeRatio.c1

maximumAmount.a1, maximumAmount.c0

minimumAmount.a1, minimumAmount.c0

minimumCreditScore.a1, minimumCreditScore.c0

minimumIncome.a0, minimumIncome.c0

bonusLowCreditScore.a0

duration2Score.a0

highIncome2Score.a0

lowAmountPenality.a0

lowIncome2Score.a0

veryHighIncome2Score.a0

veryLowIncome2Score.a0

bonusLowCreditScore.c0 , bonusLowCreditScore.c1

duration2Score.c0 , duration2Score.c1

highIncome2Score.c0 , highIncome2Score.c1
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lowAmountPenality.c0

lowIncome2Score.c0, lowIncome2Score.c1

veryHighIncome2Score.c0

veryLowIncome2Score.c0

Number of elements: 29 for explainable outputs:

miniloan.Loan/approved/GETTER #0.

5.1.4 Recording the minimal trace of a decision

In this step, we present our mechanism for recording a minimal trace of a decision.

It can be seen as an improvement of the classical rule engine traces. In fact, a

minimal trace is more compact and informative than a classical rule engine trace

because in the case of a minimal trace the system records only the minimal and

su�cient information that is required to justify the explainable outputs. This task

requires the use of the list of relevant elements that has been generated during the

previous step. The idea here, is to keep only the events whose forms are allowed

by the classes of events contained in the list of relevant business rule elements. If

a class of events is not in this list, it means that all the events of this type will

not have any impact on any causal process involved in an output that need to be

explained. The tracing of this minimal trace (�DecisionEventHistory�) is managed

by the classes represented in Figure 5.9.

Figure 5.9: Trace the execution

In this UML model, the class �DecisionRunner� is responsible for the creation and
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the con�guration of the rule engine that is used to run the decision. The information

about the rule engine con�guration and the rule project is contained in the .dsar

�le. The class �DecisionObserver� describes the behavior of the observers that can

be attached to the rule engine created in the �DecisionRunner� class by using the

function �addObservers(Engine)�. The running of the decision is managed by the

function �execute(String)� where the string used as parameter is a list of data inputs

and where the returned elements are the data outputs. A �DecisionEventHistory�

object is generated during the execution based on the events recorded thanks to the

decision observers.

Figure 5.10: Decision Event History Classes

Figure 5.10 provides more details about the structure of these �DecisionEven-

tHistory� objects. In this object, the events are captured thanks to the �Decisio-
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nEvents� list that summarizes the di�erent kinds of decision events that occurred

during a decision. These decision events can be of various nature ( �ActionExecu-

tion�, �ConditionSatisfaction�, �RuleInstanceExecutionStart�, �RuleInstanceExecuti-

onEnd�, �TaskExecutionStart� and �TaskExecutionEnd�) but all of them implement

the interface �DecisionEventInterface�. Each of the �DecisionEventHistory� objects

that have been created transcribes a corresponding decision process and can be sto-

red in the �DecisionEventHistoryRepository� for later use. Based on this material,

the next step focuses on the construction of causal models that explain speci�c deci-

sions or subsets of decisions upon request. Example 5.8 presents a minimal decision

trace for the loan agreement usecase previously presented.

Example 5.8. Minimal decision trace obtained for the business rules presented in

the example 5.1 and the inputs (borrowerName: "John Doe", borrowerCreditScore:

399, borrowerYearlyIncome: 180000, loanAmount: 110000, loanDuration: 240, ye-

arlyInterestRate: 0.05). This minimal decision trace for the explainable outputs:

yearlyInterestRate, creditScore, amount
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CausalScope miniloan(com.ibm.rules.generated.ruleflow.miniloan.

TaskDefinition@c7572720) {

CausalScope eligibility.bonusLowCreditScore(com.ibm.rules.engine.rete.

runtime.util.RuleInstanceImpl@13785ed) {

bonusLowCreditScore.a0(com.ibm.rules.engine.rete.runtime.util.

RuleInstanceImpl@13785ed)

bonusLowCreditScore.c0(com.ibm.rules.engine.rete.runtime.util.

RuleInstanceImpl@13785ed)

bonusLowCreditScore.c1(com.ibm.rules.engine.rete.runtime.util.

RuleInstanceImpl@13785ed)

}

CausalScope eligibility.highIncome2Score(com.ibm.rules.engine.rete.

runtime.util.RuleInstanceImpl@5dd720f5) {

highIncome2Score.a0(com.ibm.rules.engine.rete.runtime.util.

RuleInstanceImpl@5dd720f5)

highIncome2Score.c0(com.ibm.rules.engine.rete.runtime.util.

RuleInstanceImpl@5dd720f5)

highIncome2Score.c1(com.ibm.rules.engine.rete.runtime.util.

RuleInstanceImpl@5dd720f5)

}

CausalScope eligibility.duration2Score(com.ibm.rules.engine.rete.

runtime.util.RuleInstanceImpl@8cfed081) {

duration2Score.a0(com.ibm.rules.engine.rete.runtime.util.

RuleInstanceImpl@8cfed081)

duration2Score.c0(com.ibm.rules.engine.rete.runtime.util.

RuleInstanceImpl@8cfed081)

duration2Score.c1(com.ibm.rules.engine.rete.runtime.util.

RuleInstanceImpl@8cfed081)

}

CausalScope eligibility.messageElig(com.ibm.rules.engine.rete.runtime.

util.RuleInstanceImpl@43df4a67) {

}

}

List of decision events without causal �lter.

unfiltered events: (size = 11 )

bonusLowCreditScore.a0

bonusLowCreditScore.c0

bonusLowCreditScore.c1

highIncome2Score.a0

highIncome2Score.c0

highIncome2Score.c1

duration2Score.a0

duration2Score.c0

duration2Score.c1

messageElig.a0

messageElig.c0

List of decision events with a �lter on the explainable outputs: yearlyInterestRate,

creditScore, amount.
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filtered events: (size = 9 )

bonusLowCreditScore.a0

bonusLowCreditScore.c0

bonusLowCreditScore.c1

highIncome2Score.a0

highIncome2Score.c0

highIncome2Score.c1

duration2Score.a0

duration2Score.c0

duration2Score.c1

5.1.5 Constructing the minimal causal model of a decision

This step aims to build a minimal causal model of a speci�c decision (represented

by a �CausalInstanceModel� object) upon request, in the sense that only the paths

leading to explainable outputs are kept. Thus, the construction of this model mainly

relies on two elements built during the previous steps:

• the minimal causal model of the decision service (represented by a �Ruleset-

CausalModel� object) obtained in at the step 3 (see Section 5.1.3.).

• the history of the events that corresponds to this decision (represented by a

�DecisionEventHistory� object).

Figure 5.11 presents the classes involved in the construction of the causal model

of a decision (represented by a �CausalInstanceModel� object). In this UML model,

the causal model server (represented by a �CausalModelServer� object) is responsi-

ble for providing the causal model of the decision service (represented by a �Causal-

Model� object, a lighter version of the �RulesetCausalModel�), the decision history

(represented by a �DecisionEventHistory� object) selected in the histories repository

(represented by a �DecisionEventHistoryRepository� object) and the causal model of

the decision (represented by a �CausalInstanceModel� object). The causal model of

the decision service (represented by a �CausalModel� object) contains a list of cau-

sal relations (represented by a �CausalRelation� objects) that contains information

about the type of the relation (represented by the �eld �type�), the classes of the bu-

siness variables involved in the relation (represented by the �elds �originClasses� and
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Figure 5.11: Causal Model Server Classes

�destinationClasses�) and the rule elements involved in the relations (represented by

the �elds �originElementClass� and �destinationElementClass�). Based on that, a

causal model of a decision (represented by a �CausalInstanceModel� object) has: an

id, the related decision history (represented by a �DecisionEventHistoryRepository�

object) and a causal scope (represented by a �CausalScope� object) that is in charge

of the generation of a list of causal links (represented by a �CausalLink� objects).

Each causal link refers to the corresponding causal relation and provides the data

tuples (represented by �DataTuple� objects) corresponding to the business variable

values and rule elements instances (represented by �RuleElementInstance� objects)

corresponding to the two instances of business rule element involved in the causal

link. Example B.1 presents the relations of the minimal causal model of the decision

whose simpli�ed graphical representations are shown in Figure 5.12 and Figure 5.13.

For example, in Figure 5.12, the dashed arrow between the action �bonusLo-

139



Chapter 5. Engineering the causal model

Figure 5.12: Generated minimal causal graph of the decision at rule elements level

Figure 5.13: Generated minimal causal graph of the decision at rule level

wCreditScore.a0� and the action �duration2Score.a0� represents a computation re-

lation between and the plain arrow between �highIncome2Score.c1� and �highIn-

come2Score.a0� models an execution relation.

5.2 Experiments and assessment protocol

In this section, we describe an experimentation protocol that can be used to

evaluate the gain in reduction: (1) on the causal model of a rule-based system and

(2) on the traces of its decisions. To this end, we provide a measure that we call gain

in reduction which allows to estimate how many events are traced in the minimal
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traces (in comparison to usual traces).

5.2.1 Reduction for the business rule-based system's causal model

Given a graph (of business rule elements or rules) G = (N,A) where:

• N is a set of n nodes

• and A is a set of arrows de�ning ordered pairs of nodes.

and given X = 〈x1, ..., xi, ..., xm〉, the set of explainable outputs.

We de�ne ancestor(G,X) as the graph of all the ancestors of any node xi ∈ X

(that is, all nodes on a path leading to some explainable output). By |G| we mean the

number of nodes in a graph G. Our reduction measure simply consists in computing

the ratio, in terms of number of nodes, between the two graphs.

Re(G) =
|G| − |ancestors(G,X)|

|G|
(5.1)

and the participation rate:

τ(G) =
|ancestors(G,X)|

|G|
(5.2)

We note that the gain in reduction Re(G) and the participation rate τ(G) are

inversely proportional. Consequently, the interest in reducing the causal graph will

increase for graphs with a low participation rate τ(G).

Example 5.9. Computation of the causal model reduction for the example 5.1 with

the explainable outputs: (X1 = 〈creditScore, amount, yearlyInterestRate〉)

The number of business rule elements is |G| = 39 and based on the list of per-

tinent business rule elements obtained in the example 5.2, there are 22 nodes parti-

cipating to the causal process involved in the computation of the explainable outputs

so |ancestors(G,X1)| = 22. We notice that the |ancestors(G,X1)| is simply given

by the list of relevant events (i.e. pertinent events) associated to the corresponding
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reduced causal model of the decision service. Based on this, the estimated reduction

is

Re(G) =
|G| − |ancestors(G,X1)|

|G|
=

39− 22

39
≈ 43, 6% (5.3)

Example 5.10. Computation of the causal model reduction for the example 5.1 with

the explainable outputs: (X2 = 〈approved〉)

The number of business rule elements is |G| = 39 and based on the list of pertinent

business rule elements obtained in the example 5.2, there are 29 nodes participating

to the causal process involved in the computation of the explainable outputs. We

notice that the |ancestors(G,X2)| is simply given by the list of relevant events (i.e.

pertinent events) associated to the corresponding reduced causal model of the decision

service. Based on this, the estimated reduction is

Re(G) =
|G| − |ancestors(G,X2)|

|G|
=

39− 29

39
≈ 25, 6% (5.4)

5.2.2 Reduction for minimal traces of the decision

The idea behind this experimentation is to estimate the gain in reduction for

minimal decision traces. In this perspective, some important aspects need to be

considered. The �rst one is the distribution of the di�erent requests (a request

is characterized by a speci�c settings of the inputs). Such requests distribution

provides a global view of the possible requests and raises awareness about how

representative they actually are. Thus, considering the probability density associated

to each request allows to re�ect a more realistic view of the decisions taken by a

rule-based system. By default each request has the same weight (ie. probability)

but if a distribution is known (if enough data is available in a trace repository to

determine accurately the distribution or an expert can provide the distribution based

on its experience). The second one is the number of times that an event of a speci�c

class occurs during a decision. Combined with the previous aspect, it can be used to

estimate the probability that each class of events occurs during the decision taken

by a rule-based system.
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Thus, given P = 〈ρ1, ..., ρm〉, the set of possible requests and E = 〈e1, ..., en〉, the

set of classes of events, a request ρj has:

• a probability p(ρj) (that can be retrieved from the probability density obtained

from the multivariate normal law with the parameters described above),

• a table of integer values T = 〈Nρj(e1), ..., Nρj(en)〉 that counts the occurrences

for each class of events in E = 〈e1, ..., en〉. The value of the element Nρj(ei)

corresponds to the number of events belonging to the corresponding class ei

that occurred during a decision runs with the request ρj.

• the weight of an event ei for the request ρj is noted:

ω(ρj, ei) = p(ρj)×Nρ(ei) (5.5)

• the weight after reduction of an event ei for the request ρj is noted:

ω′(ρj, ei) = p(ρj)×Nρj(ei)× λi (5.6)

where λi =

{
1, if ei is in the list of relevant classes of events

0, otherwise

Based on that, the estimated gain in reduction of the minimal trace is noted:

Re(G) =

∑
ρj∈P

∑
ei∈E(ω(ρj, ei)− ω′(ρj, ei))∑
ρj∈P

∑
ei∈E ω(ρj, ei)

(5.7)

In our examples, we try to simulate a realistic distribution of requests for a

loan application. We generate the simulated data by using a multivariate Gaussian

distribution based on the data provided in (IDF: typical borrower pro�le). The

random variables of this distribution are: the credit score and the yearly income of

a borrower and, the amount and duration of the requested loan.

Based on that, the main characteristics of the distribution are its means (300,

45744, 224397, 234), its standard deviations (30, 300, 10000, 60) and its covariance

matrix where we consider the credit score and the yearly income of a borrower are
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correlated and, the amount and duration of the requested loan are correlated:
900 8000 0 0
8000 90000 0 0

0 0 100000000 50000
0 0 50000 3600


.

Example 5.11. Estimation of the traces global reduction for the example 5.1 with

the explainable outputs: (creditScore, amount, yearlyInterestRate)

For the given distribution, we estimate the gain in reduction Re(G) for the obtai-

ned traces based on simulations for the 8000000 inputs having the highest probability

among a set of 61824000 inputs taken in the con�dence interval:

Re(G) =

∑
ρj∈P

∑
ei∈E(ω(ρj, ei)− ω′(ρj, ei))∑
ρj∈P

∑
ei∈E ω(ρj, ei)

≈ 1.0− 0.31496454743397034

≈ 0, 68503545256602966 ≈ 68.5%

Example 5.12. Estimation of the traces global reduction for the example 5.1 with

the explainable outputs: (approved)

For the given distribution, we estimate the gain in reduction Re(G) for the obtai-

ned traces based on simulations for the 4000000 inputs having the highest probability

among a set of 61824000 inputs taken in the con�dence interval:

Re(G) =

∑
ρj∈P

∑
ei∈E(ω(ρj, ei)− ω′(ρj, ei))∑
ρj∈P

∑
ei∈E ω(ρj, ei)

≈ 1.0− 0.4461176337589732

≈ 0, 553823662410268 ≈ 55.4%

5.3 Conclusion

In this chapter we presented the implementation of a method for automatically:

(1.1) generating the minimal causal model of a rule-based system, (1.2) minimizing

a decision trace at execution and (1.3) generating the minimal causal model of a

decision. We shall see in the next chapter that this causal information will serve to

feed what we will call the conceptual model. It can be seen as an ontology describing
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the objects or variables manipulated by a rule based-system and will help in the

process of generating an explanation in our context.

We also proposed an experimental protocol in order to evaluate the bene�ts of

the proposed approaches for the reduction of traces. Due to the �customized� aspect

of a rule-based system, it is very di�cult to give general �gures about the obtained

reduction. Nonetheless the presented experimentation can be applied to any rule-

base system to check if there is any interest to use it. The potential reduction of the

traces will be highly dependent on the causal model reduction and on the distribution

of the users requests. Whereas the reduction of the causal model of the system can

give a global idea of the possible reduction on the trace, the request distribution

will impact the part of the causal model which is the most used. Consequently, a

highly reduced causal model may lead to ine�cient reduction on the traces if the

requests distribution solicit the less reduced part of the causal model. Conversely,

the opposite phenomenon can be observed on a marginally reduced causal model if

the most reduced part of the causal model are the most solicited by the requests

distribution. The main advantage of this protocol is to estimate for each rule-based

system (provided with enough traces of the past decisions) if applying the proposed

method could be useful. In the next chapter, we discuss how an explanatory model,

that encompasses the causal material provided in this chapter and augmented with

further knowledge to enable explanation capabilities, can be constructed.
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Chapter 6

Towards an architecture of an

explanation service for business

rule-based systems: basics and

insights

6.1 Introduction

This chapter is devoted to discuss and analyze what can be the concepts and

elements to put forward for constructing an explanation for a decision in a business

rule-based system. As it was discussed in the Chapter 3, the question of generating

explanation has received a great interest in di�erent domains. For our particular

purpose, we are interested by taking bene�ts form causality between events to induce

or construct a reasoning pattern based on rules in order to explain outputs. Under

such a perspective, Halpern and Pearl (2005c) provided a formal de�nition of an

explanation based on causality, named �generic explanation�. More precisely, the

explanation of an explanandum ϕ has the form (Ψ , ~X = ~x ), where Ψ is an arbitrary

formula in its causal language which consists of some causal information and ~X = ~x

is a conjunction of primitive events representing the cause of the explanandum ϕ. On

the other hand, Besnard et al. (2010, 2014b) proposed formalisms and techniques to

extend causal knowledge with domain knowledge for supporting an explicative model

from which explanation links can be inferred. In these propositions, an explanation
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link is based on causal and ontological links. The main idea is that an event can be

simply explained by revealing its causes and associated causal links substantiated

with the appropriate ontological links that can be either (is-a) links representing

specialization/generalization between classes of objects or (ded-ont) links applying

on literals and modeling some inherited characteristics between these objects. In

other terms, the information contained in a causal model and an ontological model

can be combined together with some background knowledge provided by the user

to provide explanatory satisfying arguments. Thanks to such approaches a user can

bene�t from the advantages of a causal representation combined with those of a

�taxonomy�.

For our context, we believe these two approaches being promising as a �rst at-

tempt to answer the question of constructing an explanation for the ODM rule-based

system. Indeed, whereas a causal model of the reasoning process reveals how the

events are chained together, it cannot express information about the events them-

selves, their underlying concepts, the potential links between theses concepts and

their place in the domain model. Such aspect can be handled by augmenting the

causal model with a kind of ontology �tting with our needs and goals. In the same

way, it can allow to deduce some common properties between the business rules, the

business object and their instances, thus applying properties that we found within

the level of a rule-based system at the level of its decisions. More precisely, we pro-

pose to extend the de�nition of Halpern and Pearl (2005c) by adding an ontology

with the aim of providing descriptive and relational information about the elements

of the causal model. Thus, we propose to have the following de�nition.

De�nition 6.1. (Generic Explanation (E))

A generic explanation of the explanandum ϕ is tuple E = {Ψ, ~X = ~x, Ω}, where

• Ψ is an arbitrary formula in a given causal language which consists of causal

information,

• ~X = ~x is a conjunction of primitive events representing the cause of the expla-

nandum ϕ.
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• Ω is an ontology of the elements of Ψ and ~X which consist in some descriptive

and relational information.

Moreover, as it was described in Chapter 3, we use four dimensions in order to

describe an explanation: (1) timing / temporal context, (2) question types, (3) con-

tent type, and (4) context-sensitivity. We propose to complete the De�nition 6.1 by

taking into account the fourth criterion in order to adapt an explanation to a speci�c

context. The idea is that the answer (explanation) can be customized according to

a speci�c user and a speci�c question. We will call this speci�c explanation (see the

De�nition 6.2).

De�nition 6.2. (Speci�c explanation (SE))

A speci�c explanation SE is an answer to a question Q asked by a user U about an

explanandum ϕ. Thus, this explanation is tuple SE = {E,C}, where:

• E = {Ψ, ~X = ~x,Ω} is a generic explanation tuple (according to de�nition 6.1)

and,

• C = {Q,U} is a tuple giving information about the context.

In practice, it means that the information contained in E is exploited with regards

to a given context C in order to produce the speci�c explanation.

In information systems, what we call generic and speci�c explanations can be

supported by a structure that organizes and stores information about the system, the

decision and the context in order to make them available for answering to di�erent

user requests provided that further treatments are appropriately applied (Gregor and

Benbasat, 1999). The idea behind this is to be able to provide enough meaningful

information about a decision result to enable the explanation system to answer to

any question of any user with only few additional treatments to adapt automatically

the shape and the content of the rendered explanations. Under such a perspective,

we propose in what follows an architecture for an explanation service that will allow

to extract and organize the information in such a way that replying to any question
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of a user about the decision is possible. This architecture will rely on our proposition

of causal model construction.

6.2 The basics towards a service architecture to support ex-

planatory models

As it was discussed previously, in order to shape an explanation we need to

obtain the causal model and conceptual knowledge about the corresponding rule

based system. We also need the traces of its decisions to be available. Moreover,

if further information about the user is available, the explanations can be improved

to better �t with the user needs and expectations. This choice leads us to look

for a systematic approach to extract knowledge related to the decision logic, the

domain objects manipulated by the system and the executed decision themselves.

Another point to consider is that, in ODM we have di�erent rule based systems (see

Chapter 2, section 2.3.2 ), thus, we would have for each rule based system computing

decisions it own explanation and then a user may request explanations for decisions

taken by any of these rule-based systems. Therefore, we propose, as it is illustrated

in Figure 6.1, and described in what follows, to design an explanation service as the

product of three sub-processes.

1. Decision service knowledge acquisition time. It consists in the acquisi-

tion of the decision service knowledge base. The construction of this knowledge

base is a prerequisite for the second and the third processes and must be done

each time the domain knowledge is updated. It contains:

• A causal Model built by analyzing the decision service logic. It will allow to

understand the causal relationships between the elements of the decision

and the reasoning behind. This model is a graph that can be reduced

to keep only the nodes and relations that have an impact on a set of

explainable outputs,

• A conceptual model extracted by analyzing the domain objects and functi-
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Figure 6.1: Explanation Service Architecture

ons of decision service. The conceptual knowledge (or ontology) which is

useful to understand the meaning of each element presented in a causal

model.

2. Decision knowledge acquisition time. It consists in tracing the minimal

causal history based on a decision and on a list of relevant elements obtained

from the causal model that has been built during the �rst step. What we call

the minimal causal history is a reduced trace obtained by the process described

in Chapter 4. The decision history acquisition is a prerequisite for the third

process and must be done each time a decision is taken by the decision service.

3. Question-answering time. The question answering step is based on the

material provided by the two previous steps and considers a query of the user

about a speci�c element of a decision to generate explanation content that can

be rendered in an explanation view. It is bases on the context knowledge which

contains:
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• a user model that provides information about the user helping the expla-

nation service to provide an explanation that suits to the user needs,

• Some information speci�c to the query submitted by the user.

Based on the above we de�ne the software architecture of the explanation ser-

vice by the Component Diagram, depicted in Figure 6.2. Moreover, the Sequence

Diagram depicted in Figure 6.3 gives an overview of the explanation service beha-

vior. This diagram provides a better understanding of how the system uses each

component exploit the explanatory models and render explanations.

Figure 6.2: Explanation Service Architecture

In summary, the explanation generation for rule-based systems in our industrial

context can be translated by using an explanation service embedding explanatory
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Figure 6.3: Explanation Service Architecture

models, such that each Explanatory Model is an articulation of:

• A causal model : it encompasses a minimal causal model of the decision service

and the minimal causal models of the decisions that need to be explained. This

model is responsible for organizing and making available any causal knowledge

that could be required in order to describe how some events of a decision are

linked.

• A conceptual model : it provides descriptive information about the elements of

the domain/decision and also does a taxonomy of relationships among them.

This model is required to describe the articulation (hierarchy/connections)

153



Chapter 6. Towards an architecture of an explanation service for Business Rule-Based

Systems

between elements of the domain, their meaning and their function.

• A contextual model : it is responsible for handling the context of an explanation.

In our case, it is limited to a user model and the explanation query. This

model allows to adapt the information contained in the causal and conceptual

models to the request of a speci�c user. To this end, it takes into account the

type, the expertise, the privacy and the spoken language of the user, and the

explanation(/question) query.

6.3 The components of an explanatory model

As it as described just before, an explanatory model in our context is the com-

bination of three distinct models: a causal one, a conceptual one and �nally a

contextual one. These models will be articulated generating generic (see de�nition

6.1) and speci�c (see de�nition 6.2) explanations. In what follows, we will describe

in detail the conceptual and the contextual model. Indeed, we refer the reader to

the Chapter 4 for the causal model.

6.3.1 Conceptual model as a part of the explanatory model

The purpose of this model is to provide further information about the objects or

variables manipulated by a rule-based system. In this perspective, the conceptual

model can be seen as an ontology describing the concepts manipulated in the domain.

In other terms, it contains information about types, properties and relationships

related to these concepts. It is an important part of the explanatory model as

it allows to give a "conceptual-meaning" to the elements manipulated by the rule-

based system with the aim to complete the information provided by the causal model.

Consequently, the comprehension of the domain concepts with the comprehension of

the causal relationships which link them, allows to obtain enough information about

the rule-based system and to provide an e�cient material for explanation.

Moreover, the conceptual model construction contains descriptive and relational

154



Chapter 6. Towards an architecture of an explanation service for Business Rule-Based

Systems

information about the elements of the related rule-based system (or decision service)

and it is premised on a static program analysis of it. Here, the term �static� means

the analysis of a software is performed without actually executing its programs.

What is considered in this analysis depends on the kind of the decisions taken by the

rule-based system and what is meant by the "kind of decisions" refers to the nature

of the parameters used by the rule-based system during its decision processes. If the

rule-based system use variables then its decisions will be seen as "variable-oriented",

while if the same system use objects and attributes then its decision will be seen as

"object-oriented". These two kinds of decision will not have the same informational

value because an object-oriented approach allows to extract more information about

the structure of the knowledge in the domain. For example, whereas a variable can be

described by its type and eventually by the formula and some related variables from

which it was derived, in the same way, an attribute or an object can be described

by its type and eventually the other objects or attributes from which it was derived

but it also can be described as a part of another object.

Therefore, we believe that at least three kinds of knowledge must exist in order

to enable a comprehensive description of the objects existing in the domain: (1)

knowledge about the nature of an element, (2) knowledge about a hierarchy between

the elements of the domain, (3) knowledge about the origin of the value of an element

of the domain. A fourth one can be considered to add a descriptive knowledge

informing about the meaning or the function of an element. We describe below each

of these types of knowledge.

1. Type knowledge. It provides information about the type of the element, in

an object perspective it means that this kind of knowledge gives information

about the type of either an object or an attribute or a variable. It is used to

make a link between an instance and the corresponding object class / business

rule. This information is available under a label "IS − A" attached to the

concerned element.

2. Hierarchy knowledge. The second kind of knowledge provides information
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about the structure of the information and specify a hierarchy between the

elements of the domain. It is used to describe a hierarchy between business

objects and business variables but also between tasks, business rules and bu-

siness rule elements (business rule actions and conditions). This information

is available under a label "IS − PART −OF" attached to the concerned ele-

ment. In the same way it contains the information to which task a business

rule belongs and to which business rule an action or a condition belongs.

3. Value knowledge. This knowledge describes the dependencies between the

values of the elements in the domain. For an attribute or a variable, this

knowledge informs about the attributes or variables from which it is derived and

describes how each of them in�uences its value based on the formula responsible

for computing its value. This information is available under a label "IS −

DERIV ED − FROM" attached to the concerned element.

4. Functional knowledge. This knowledge describes the function, or at least the

meaning, of an element in the domain. For an attribute or an object, it informs

about its meaning and for a task, a business rule, an action or a condition, it

informs about it underlying function. This information is available under a

label "IS −DESIGNED − FOR" attached to the concerned element.

Moreover, to these labels the two following complementary sub-labels can be

added.

• Language knowledge. This sub-label is annotated with the two �rst letters

of the referred language - for example, "−FR" for french and "−EN" for

english - and allows to duplicate the knowledge of the corresponding label to

handle several languages.

• Expertise knowledge. This sub-label is annotated with a letter which refers

to the user type and a number which refers to its level of expertise. For example,

−K1 refers to a knowledge engineer with no expertise about the domain and
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−B2 refers to a business user with an intermediate level about the domain.

If an information should not be available for a speci�c type of user then the

sub-label will not be available for this information. For example, if "IS −A−

FR−B2" is not available for an element, it means that an intermediate level

business user does not need this information. Another example, for the same

element, "IS − A − FR − B1" and "IS − A − FR − B3" can both exist but

have di�erent contents.

After de�ning the di�erent labels, we propose a representation of the conceptual

model. To illustrate our proposal we use the following example, which is represented

in Figure 6.4.

Example 6.1. [conceptual model for an attribute yearlyRepayment of the decision

presented in the object-oriented usecase]

In this example, for the attribute yearlyRepayment, we have the following labels: The

label "IS − A − EN : the yearly repayment" and the label "IS − A − FR : rem-

boursement annuel" contain a generic term used to describe the class in english and

french, the label "IS−DERIV ED−FROM : amount, yearlyInterestRate, duration

" contains references to the amount, the yearly interest rate and the duration of the

loan because they are in the formula used to compute the yearly interest rate value,

the label "IS−PART −OF −EN : Joe's loan" and "IS−PART −OF −FR: prêt

de Joe" give the reference to the instance of the object to which the yearlyRepayment

attribute belongs, the term describing the class of this instance can then be found

with the "IS − A" label of this instance.

Even if at �rst sight, this model seems to provide su�cient information to con-

struct explanations, there is an issue in using an explanatory model embedding only

causal and conceptual models. When the explanation is constructed, if it does not

care about the user and, consequently, it is not capable to adapt the shape of the

explanation or the vocabulary used in it to the recipient of the explanation. This

observation leads to think that the e�ectiveness of the explanations generated by
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Figure 6.4: Example part of conceptual model for attribute yearlyRepayment

using this model could be improved by adapting them to the user pro�le. That is,

what we try to do with our sub-labels but we need to obtain information about

the user to be able to use them in a good way. To do that, we propose to design

a user model allowing to capture the most important characteristics of the user in

our perspective of explanation. This model can then be added to the causal and

conceptual models to augment our explanatory model.

6.3.2 User model as a part of the explanatory model

Based on our observation, what should be considered in the user model are the

knowledge about user type (business user, knowledge engineer...), the knowledge

about his level of expertise (novice, intermediate, expert...), the privacy level of the

user which contains the knowledge about what information can be accessed by the

user and the user language which contains information about the language used by

the user, described in what follows and illustrated in the Example 6.2

• User Type. The user type is a parameter indicating the type of the user.

By default, we consider two types of user (business user, knowledge engineer)

but any type of user can be de�ned depending on the needs of the explanation

system.

• Expertise Level. The expertise level is a parameter indicating how the user
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masters the domain. By default, we consider tree values of user (novice, in-

termediate, expert) but other values can be de�ned depending on the needs of

the explanation system.

• Privacy Level. The privacy level is a parameter indicating what information

the level is allowed to know. By default, we consider tree values of privacy

(1, 2, 3). The value "1" means that the user can access the information that

everyone can access, the level of privacy 2 means that the user can access to

corporate information and the level of privacy 3 is restricted to a smaller group.

On the same principle other values can be de�ned depending on the needs of

the explanation system.

• User language. The user language is a parameter indicating what language

should be used to deliver the explanation to the user. This parameter ta-

kes the form of a list of language where the order indicate the level of prefe-

rence for the considered language. For example if the user language contains

"French,English,Chinese" it means that the user speak these three language

but prefer access the information in french and then English and then Chinese

depending on their availability.

Example 6.2. [User model]

UserID : Carlos

UserLanguage : {French(FR), English(EN), Portuguese(PO)},

ExpertiseLevel : {Novice},

PrivacyLevel : {1},

UserType : {BusinessUser}
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6.4 Exploitation of the explanatory model: discussion and

insights

As it was discussed in Chapter 3, di�erent characteristics can be de�ned to design

an explanation. In our context, we believe that, �rst, we must provide (1.1) feedback

explanations (explanation orientation criteria) as we seek to explain what happened

after a decision. After that the content of the explanation should correspond to (2.1)

trace-based, (2.2) justi�cation, (2.3) strategic and (2.4) de�nition / terminological.

Furhtermore, the types of questions that our explanatory model can handle are:

(3.1) How-Q, (3.2) Why-Q and (3.3) What-Q. In addtion, the proposed explanatory

model is (4) context-sensitive (limited to the user), as the explanation service is

not intended to provide dialog capabilities in its initial phase. And last but not

least, since IBM is a software provider, its clients can have highly various needs

and thus use its Business Rule Management System to develop and run wide range

of applications. Consequently, the explanation features should be generic enough

to limit the costs of the modi�cation required for being usable on to each client

application. Thus, the (5) genericity of the provided solution is a must have.

6.4.1 How we deal with each criterion

Concerning the explanation orientation, some (1.1) feedback explanations about

a speci�c decision or about the rule-based system itself can be asked at anytime.

Each explanation is constructed using the knowledge contained in the explanatory

model and the minimal trace of the concerned decision that has been stored in a

repository.

Concerning the (2.1) trace-based content, the explanation simply relates on the

stored decision traces. The (2.2) justi�cation content is obtained exploiting the kno-

wledge contained in the causal model. The (2.3) strategic content can be obtained

using the hierarchical knowledge of the conceptual model to explain the decision at

three di�erent levels (tasks / business rules / business rule elements). Using this

knowledge allows to set up the granularity of the explanation. Finally, the (2.4)
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de�nition content is obtained from the conceptual model and allows to provide me-

aningful descriptions about the elements (business objects, business variables, tasks,

business rules, actions and conditions) manipulated during the decision process.

The di�erent types of questions [(3.1) How-Q, (3.2) Why-Q and (3.3) What-Q]

handled relies on the explanation strategies prede�ned. Each explanation strategy

corresponds to a speci�c treatment that exploit the explanatory model to answer the

related question. A user can customize its own questions and associated explanation

strategies to enrich the list of possible questions.

In our case, the (4) context-sensitivity is limited to the user but can be extended

by adding additional knowledge to the contextual model. We deal with the user-

sensitivity by using the information contained in the user model (or user pro�le) to

determine what information in the conceptual and causal models should be presented

to the user.

We ensure a good genericity by using an explanatory model whose the feeding

of the content essentially relies on a generic method. Moreover the explanatory

models generated with this method are not stored in their corresponding rule-based

systems but rather centralized in an explanation service that is dedicated to their

exploitation.

6.4.2 A graphical representation for engineering the explanation

Along this chapter we proposed di�erent models composing our explanatory mo-

del for our business rule based system. Now, to derive an explanation, we propose

a graphical approach that exploits such di�erent models. The idea is that the ex-

planation corresponds to displaying a graph corresponding to the minimal causal

model of the decision that needs to be explained. In addition to this �causal graph�,

the information contained in the conceptual model are also retrieved with the aim

to augment the causal graph with it. The obtained graph will describe the causal

relations involved in the decision process while informing about the concepts under

use and can be navigated in a simple way.
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Based on that, each element of the decision is presented with additional des-

criptive and relational information. Whereas the descriptive information obtained

from type and functional knowledge (see Section 6.3.1) gives a better understanding

about the the concept behind the presented element and its function, the relational

information obtained from value and hierarchy knowledge allows to navigate through

the graph depending on the level of detail that the user wants to observe. Finally

the information that allows to understand how the decision is taken and what are

the relevant reasoning steps that should be observed to get it is given by the causal

relations.

Moreover, the information displayed by the graph is pre-selected by using the

user model. Based on that, the information displayed about the elements of the

graph will correspond to the language, level of expertise, the type and the privacy

level of the user who requests the explanation. The following example illustrates our

purpose.

Example 6.3. Node presentation

Let's consider a user Carlos having the user model presented below.

User:

{

UserID : Carlos;

UserLanguage : French(FR), English(EN), Portuguese(PO);

ExpertiseLevel : Novice;

PrivacyLevel : 1;

UserType : BusinessUser

}

Example of user model

The privacy level is based on a table which associates a boolean to each element of

the decision that could be referred in the explanation (task, rule, condition, action,

object or attribute). If the boolean is true then the corresponding element can be

referred but if it is false it cannot. In our example, the privacy level 1 refers to a

table which does not allow the access to the conditions (c0 and c1) and the action

(a0) of the rule duration2Score but allows the access to all the other element of the

decision.
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Table 1:

{

...

duration2Score.c0=false;
duration2Score.c1=false;
duration2Score.a0=false;

duration2Score=true;

duration=true;

Loan=true;

eligibility=true;

creditScore=true;

Borrower=true;

...

}

Privacy table for privacy level 1

The user Carlos displays the graph corresponding to Example 5.13 and looks at

the node representing the instance of �duration2Score�. The descriptive informa-

tion of this rule instance corresponds to its functional knowledge and informs about

the attributes evaluated and modi�ed by the rule. In our example, the descriptive

information about the rule duration2Score contains:

(1-en) �evaluates 〈 the duration of the loan 〉 to modify (the credit score of the

borrower)�;

(1-fr) �évalue 〈 la durée du prêt 〉 pour modi�er 〈 le score de Joe 〉 �;

(2-en) �evaluates if ( c0 desc. info and c1 desc. info) to set (a0 desc. info)�;

(2-en) �évalue si ( c0 desc. info et c1 desc. info) pour mettre (a0 desc. info)�; ...

As the privacy level of Carlos is 1, the information provided to him will be re-

stricted to (1). Moreover, as the �rst language of Carlos is the French, the descrip-

tion (1-fr) �évalue la durée du prêt pour modi�er le score de Joe� will be presented to

him. In addition, as the rule instance �duration2Score� is a part of the task �eligibi-

lity�, the system would be able to provide further information about the aim of this

rule at a higher level by using the descriptive information of the task �eligibility�:

(en) �aiming to determine the eligibility of the loan�, (fr) �dans le but de determi-

ner l'éligibilité du prêt�. Thus, the node will be presented with the information �la

163



Chapter 6. Towards an architecture of an explanation service for Business Rule-Based
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règle duration2Score évalue la durée du prêt pour modi�er le score de Joe dans le

but de déterminer l'éligibilité du prêt� to Carlos. We assume that in our example we

presented only the content corresponding to the novice (default) level of expertise.

Nonetheless, in addition to the proposed descriptive information, the user can

add more speci�c descriptions. The idea here is to provide the explanation material

with the most basic descriptions that the user can complete or modify depending on

its needs. In the same way, new expertise and privacy levels can be designed to �t

with the user needs.

This mechanism is supported by the structure presented in the �gure 6.5. In

it, the I-D-Fo links are used to associate the descriptions that we presented above,

whereas the IS-A links allows to refer corresponding items or classes to �nd the

adapted information and the I-P-O links establish a hierarchy between the elements

presented in the descriptions.

Figure 6.5: Example of a node information in the explanative model
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Conclusion

During the last decades, Business Rule Management Systems have been widely

used by various organizations and companies to enhance the management of their

automated decision-making systems. In this perspective, to gain their acceptance by

the industry, they received strong incentives to provide, at least, basic explanation

capabilities. The ultimate goal of such explanations was mainly to increase the

transparency and the scrutability of automated decisions by revealing meaningful

information about reasoning processes and knowledge base to the users, by educating

them about the decision domain and the system capabilities, by facilitating the

debugging and the monitoring of the system during the development stages.

Nonetheless, despite the bene�ts of explanation capabilities, since it is not straig-

htforward to develop and maintain useful explanation features, many of the current

industrial Business Rule Management Systems are still provided with poor explana-

tion capabilities, often limited to basic debugging and tracing tools (plus eventually

some monitoring tools).

More recently, governments show a growing interest for making it mandatory to

provide automated decision making systems with the ability to justify their decisions.

In this perspective, the European General Data Protection Regulation even mention

a �right for explanation� (and non-discrimination) as discussed by Goodman and

Flaxman (2016). Because of that, these systems receive even more incentives to

provide better explanation capabilities. Indeed, there is a growing interest from the
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scienti�c community on the topic of explanation generation in rule-based systems

and it is mainly focused on three axis: (1) basic explanation content generation, (2)

responsiveness and (3) human computer interface.

The work presented here is in line with the �rst axis, namely generating explana-

tion for decisions of business rules-based systems. More precisely, we were interested

by the IBM ODM system and discussed the opportunities to construct explanations

for decisions issued from such system. In order to reach the explanation feature, we

proposed in this work to take advantage from the fact that the reasoning process

behind a rule-based system can be described by the causal links that may exists be-

tween the rules that e�ectively played a role in generating the decision. A �rst step

toward this construction was to propose a framework (or a process) for mechanically

building a set of causal models that can be exploited to represent a rule-based sy-

stem and its decisions. These causal models encompass di�erent notion of causality

(between the rules and inside the same rule) with the aim to translate the logic

followed by the system to construct a decision. We provide after that a method for

minimizing them depending on the decision outputs that need to be explained. This

minimization has the aim to keep only the necessary and minimal information nee-

ded to produce the decision. Moreover, a method using these models for minimizing

the size of the histories obtained at execution by tracing only the pertinent events

is also provided. An implementation of these methods was provided and described.

This implementation was used to test the proposed framework and illustrate this

method with meaningful examples. We also provided an assessment protocol and

some measurement tools to evaluate the gain in reduction for a rule-based system

and estimate the average gain in reduction for its decision traces.

Now, to answer the explanation question for the ODM system, we discussed at

the end of this work the features that can be used to characterized an explanation

in our context. More precisely, we discussed an architecture for an explanatory

service consisting in a set of causal, conceptual and contextual models that could be

used together to provide complementary information supporting the construction of
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various kinds of explanations. This architecture relies on the analysis of a rule-based

system and its decision traces and aims to extract su�cient information from the

business rules, the business objects and the decision traces to construct the causal

and conceptual models, the user pro�le can then be obtained from the user or from

the rule-based system knowledge manager.

The research work presented through this manuscript opens up new directions

of research. In particular, the conception of e�cient algorithms dedicated to the

exploitation of the explanatory model for generating high level explanations that

answer to various user's questions is one of them. In fact the idea behind the

proposed explanation service is to provide an explanation model and a method to

generate generic answers to the most commons user questions. More speci�c and

complex strategies to answer other questions could then be added by the industrial

users depending on their domains, their habits and their needs.

Moreover, for our need, we limited the contextual model to the user model but

this contextual model can be extended by adding some knowledge concerning the

dialog between the user and the system (previous questions asked by the users)

could be added to extend the model in order to handle an interaction context when

providing answer to user questions. In that vein, as it was not in our scope we did

not focus on language generation aspects and natural language processing. This

issue could be considered to improve the communication between the system and

the user. In the same way, as each organization as its own interface formalism, the

research on human computer interface aspect was not in our focuses. Finally, some

machine-learning aspects could be added in the causal ascription phase but also for

completing the conceptual model with domain information that are not present in

the Business Object Model of a decision service and for improving the use of the

contextual model. Eventually, using collaborative �ltering approaches could help to

complete missing information in users models or to predict what information could

suit the most to a user needs based on the data about others similar users.
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Appendix A

Example of business rules

normalization

Example A.1. Normalize the business rule language contained in business rule �les

Given a decision project (RuleSet Id: Miniloan Service, Number of rules: 14),

the list below represent the business rules as they can be read and edited in the user

interface.

rule 0: (..\Miniloan Service\rules\eligibility\bonusLowCreditScore.brl)

if the credit score of 'the borrower ' is at most 400

and the amount of 'the loan' is less than the yearly income of 'the

borrower '

then set the credit score of 'the borrower ' to the credit score of 'the

borrower ' + 100 ;

rule 1: (..\Miniloan Service\rules\eligibility\debt2IncomeRatio.brl)

if

the yearly repayment of 'the loan' is more than the yearly income of 'the

borrower ' * (0.3 + the credit score of 'the borrower ' / 10000)

or 10200 is more than the yearly income of 'the borrower ' * the yearly

repayment of 'the loan'

then

add "Too big Debt-To-Income ratio" to the messages of 'the loan' ;

reject 'the loan' ;

rule 2: (..\Miniloan Service\rules\eligibility\duration2Score.brl)

if

the duration of 'the loan' is at least 180

and the duration of 'the loan' is at most 480

then

set the credit score of 'the borrower ' to the credit score of 'the

borrower ' + the duration of 'the loan' / 8 ;

rule 3: (..\Miniloan Service\rules\eligibility\highIncome2Score.brl)

if
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the yearly income of 'the borrower ' is at least 80000

and the yearly income of 'the borrower ' is less than 200000

then

set the credit score of 'the borrower ' to the credit score of 'the

borrower ' + 50 ;

rule 4: (..\Miniloan Service\rules\eligibility\lowAmountPenality.brl)

if the amount of 'the loan' is less than 10000

then set the credit score of 'the borrower ' to the credit score of 'the

borrower ' - 100 ;

rule 5: (..\Miniloan Service\rules\eligibility\lowIncome2Score.brl)

if

the yearly income of 'the borrower ' is more than 10000

and the yearly income of 'the borrower ' is less than 30000

then

set the credit score of 'the borrower ' to the credit score of 'the

borrower ' - 50 ;

rule 6: (..\Miniloan Service\rules\eligibility\messageElig.brl)

if

the yearly interest rate of 'the loan' is more than 0.015

then

add "ok rate" to the messages of 'the loan' ;

rule 7: (..\Miniloan Service\rules\eligibility\score2Rate.brl)

if

the amount of 'the loan' is more than 100000

and the duration of 'the loan' is more than 120

and the credit score of 'the borrower ' is more than 500

then

change the yearly interest rate of 'the loan' to 10 / the credit score of

'the borrower ' ;

rule 8: (..\Miniloan Service\rules\eligibility\veryHighIncome2Score.brl)

if

the yearly income of 'the borrower ' is more than 200000

then

set the credit score of 'the borrower ' to the credit score of 'the

borrower ' + 400 ;

rule 9: (..\Miniloan Service\rules\eligibility\veryLowIncome2Score.brl)

if

the yearly income of 'the borrower ' is less than 10000

then

set the credit score of 'the borrower ' to the credit score of 'the

borrower ' - 100 ;

rule 10: (..\Miniloan Service\rules\validation\maximumAmount.brl)

if

the amount of 'the loan' is more than 1.000.000

then

add "The loan cannot exceed 1,000,000" to the messages of 'the loan' ;

reject 'the loan' ;

rule 11: (..\Miniloan Service\rules\validation\minimumAmount.brl)
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if

the amount of 'the loan' is less than 1000

then

add "The loan cannot be lower than 1,000" to the messages of 'the loan' ;

reject 'the loan' ;

rule 12: (..\Miniloan Service\rules\validation\minimumCreditScore.brl)

if

the credit score of 'the borrower ' is less than 200

then

add "Credit score below 200" to the messages of 'the loan' ;

reject 'the loan' ;

rule 13: (..\Miniloan Service\rules\validation\minimumIncome.brl)

if

the yearly income of 'the borrower ' is less than 18000

then

reject 'the loan' ;

Business Rules in their Business Rule Language

The list below describes the business rules of the example after normalization.

rule 0 (Id: bonusLowCreditScore)

condition 0: [belongs to rule: bonusLowCreditScore]

isLessThan( miniloan.Borrower/creditScore/GETTER#0 , 400 )

condition 1: [belongs to rule: bonusLowCreditScore]

isLessThan( miniloan.Loan/amount/GETTER#0 ,

miniloan.Borrower/yearlyIncome/GETTER#0)

action 0: [belongs to rule: bonusLowCreditScore]

creditScore.SETTER( add( miniloan.Borrower/creditScore/GETTER#0 , 100) )

rule 1 (Id: debt2IncomeRatio)

condition 0: [belongs to rule: debt2IncomeRatio]

isGreaterThan( miniloan.Loan/yearlyRepayment/GETTER#0 , mult(

miniloan.Borrower/yearlyIncome/GETTER#0 , add( 0.3 , div(

miniloan.Borrower/creditScore/GETTER#0 , 10000 ) ) ) )

condition 1: [belongs to rule: debt2IncomeRatio]

isGreaterThan( 10200 , mult( miniloan.Borrower/yearlyIncome/GETTER#0 ,

miniloan.Loan/yearlyRepayment/GETTER#0 ) )

action 0: [belongs to rule: debt2IncomeRatio]

addToMessage( Too big Debt-To-Income ratio )

action 1: [belongs to rule: debt2IncomeRatio]

approved.SETTER( false )

rule 2 (Id: duration2Score)

condition 0: [belongs to rule: duration2Score]

isGreaterThan( miniloan.Loan/duration/GETTER#0 , 180 )

condition 1: [belongs to rule: duration2Score]

isLessThan( miniloan.Loan/duration/GETTER#0 , 480 )

action 0: [belongs to rule: duration2Score]

creditScore.SETTER( add( miniloan.Borrower/creditScore/GETTER#0 , div(

miniloan.Loan/duration/GETTER#0 , 8 ) ) )

rule 3 (Id: highIncome2Score)

condition 0: [belongs to rule: highIncome2Score]
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isGreaterThan( miniloan.Borrower/yearlyIncome/GETTER#0 , 80000 )

condition 1: [belongs to rule: highIncome2Score]

isLessThan( miniloan.Borrower/yearlyIncome/GETTER#0 , 200000 )

action 0: [belongs to rule: highIncome2Score]

creditScore.SETTER( add( miniloan.Borrower/creditScore/GETTER#0 , 50 ) )

rule 4 (Id: lowAmountPenality)

condition 0: [belongs to rule: lowAmountPenality]

isLessThan( miniloan.Loan/amount/GETTER#0 , 10000 )

action 0: [belongs to rule: lowAmountPenality]

creditScore.SETTER( minus( miniloan.Borrower/creditScore/GETTER#0 , 100 ) )

rule 5 (Id: lowIncome2Score)

condition 0: [belongs to rule: lowIncome2Score]

isGreaterThan( miniloan.Borrower/yearlyIncome/GETTER#0 , 10000 )

condition 1: [belongs to rule: lowIncome2Score]

isLessThan( miniloan.Borrower/yearlyIncome/GETTER#0 , 30000 )

action 0: [belongs to rule: lowIncome2Score]

creditScore.SETTER( minus( miniloan.Borrower/creditScore/GETTER#0 , 50 ) )

rule 6 (Id: messageElig)

condition 0: [belongs to rule: messageElig]

isGreaterThan( miniloan.Loan/yearlyInterestRate/GETTER#0 , 0.015 )

action 0: [belongs to rule: messageElig]

addToMessage(ok rate )

rule 7 (Id: score2Rate)

condition 0: [belongs to rule: score2Rate]

isGreaterThan( miniloan.Loan/amount/GETTER#0 , 100000 )

condition 1: [belongs to rule: score2Rate]

isGreaterThan( miniloan.Loan/duration/GETTER#0 , 120 )

condition 2: [belongs to rule: score2Rate]

isGreaterThan( miniloan.Borrower/creditScore/GETTER#0 , 500 )

action 0: [belongs to rule: score2Rate]

yearlyInterestRate.SETTER( div( 10 , miniloan.Borrower/creditScore/GETTER#0

) )

rule 8 (Id: veryHighIncome2Score)

condition 0: [belongs to rule: veryHighIncome2Score]

isGreaterThan( miniloan.Borrower/yearlyIncome/GETTER#0 , 200000 )

action 0: [belongs to rule: veryHighIncome2Score]

creditScore.SETTER( add( miniloan.Borrower/creditScore/GETTER#0 , 400 ) )

rule 9 (Id: veryLowIncome2Score)

condition 0: [belongs to rule: veryLowIncome2Score]

isLessThan( miniloan.Borrower/yearlyIncome/GETTER#0 , 10000 )

action 0: [belongs to rule: veryLowIncome2Score]

creditScore.SETTER( minus( miniloan.Borrower/creditScore/GETTER#0 , 100 ) )

rule 10 (Id: maximumAmount)

condition 0: [belongs to rule: maximumAmount]

isGreaterThan( miniloan.Loan/amount/GETTER#0 , 1000000 )

action 0: [belongs to rule: maximumAmount]

addToMessage( The loan cannot exceed 1,000,000 )

action 1: [belongs to rule: maximumAmount]

approved.SETTER( false )
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rule 11 (Id: minimumAmount)

condition 0: [belongs to rule: minimumAmount]

isLessThan( miniloan.Loan/amount/GETTER#0 , 1000 )

action 0: [belongs to rule: minimumAmount]

addToMessage( The loan cannot be lower than 1,000 )

action 1: [belongs to rule: minimumAmount]

approved.SETTER( false )

rule 12 (Id: minimumCreditScore)

condition 0: [belongs to rule: minimumCreditScore]

isLessThan( miniloan.Borrower/creditScore/GETTER#0 , 200 )

action 0: [belongs to rule: minimumCreditScore]

addToMessage( Credit score below 200 )

action 1: [belongs to rule: minimumCreditScore]

approved.SETTER( false )

rule 13 (Id: minimumIncome)

condition 0: [belongs to rule: minimumIncome]

isLessThan( miniloan.Borrower/yearlyIncome/GETTER#0 , 18000 )

action 0: [belongs to rule: minimumIncome]

approved.SETTER( false )

Business Rules in their Normalized Form
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Appendix B

Causal model of minimal decision

trace

Example B.1. Causal model of the minimal decision trace given in the example 5.3

for the explainable outputs: yearlyInterestRate, creditScore, amount

causal link:{"relation": {"type": "Computation","originClass": {"dataCauses

": ["miniloan.Borrower/creditScore/GETTER #0"]},"destinationClass": {"

dataCauses": ["miniloan.Borrower/creditScore/GETTER #0"]},"

originElementClass": {"name": "bonusLowCreditScore.a0"},"

destinationElementClass": {"name": "highIncome2Score.a0"}},"origin": {"

variablesMap": {"miniloan.Borrower/creditScore/GETTER #0": {"name": "

miniloan.Borrower/creditScore/GETTER #0","valType": "Float","type": "

Default","domain": "[100 ,1000]","min": 100.0,"max": 1000.0 ,"

defaultValue": 499}}} ,"destination": {"variablesMap": {"miniloan.

Borrower/creditScore/GETTER #0": {"name": "miniloan.Borrower/creditScore

/GETTER #0","valType": "Float","type": "Default","domain": "[100 ,1000]",

"min": 100.0,"max": 1000.0 ,"defaultValue": 549}}} ,"originElement": {"

className": "bonusLowCreditScore.a0","id": "com.ibm.rules.engine.rete.

runtime.util.RuleInstanceImpl@13785ed"},"destinationElement": {"

className": "highIncome2Score.a0","id": "com.ibm.rules.engine.rete.

runtime.util.RuleInstanceImpl@5dd720f5"}}

causal link: {"relation": {"type": "Computation","originClass": {"

dataCauses": ["miniloan.Borrower/creditScore/GETTER #0"]},"

destinationClass": {"dataCauses": ["miniloan.Borrower/creditScore/

GETTER #0"]},"originElementClass": {"name": "bonusLowCreditScore.a0"},"

destinationElementClass": {"name": "duration2Score.a0"}},"origin": {"

variablesMap": {"miniloan.Borrower/creditScore/GETTER #0": {"name": "

miniloan.Borrower/creditScore/GETTER #0","valType": "Float","type": "

Default","domain": "[100 ,1000]","min": 100.0,"max": 1000.0 ,"

defaultValue": 499}}} ,"destination": {"variablesMap": {"miniloan.

Borrower/creditScore/GETTER #0": {"name": "miniloan.Borrower/creditScore

/GETTER #0","valType": "Float","type": "Default","domain": "[100 ,1000]",

"min": 100.0,"max": 1000.0 ,"defaultValue": 579}}} ,"originElement": {"

className": "bonusLowCreditScore.a0","id": "com.ibm.rules.engine.rete.

runtime.util.RuleInstanceImpl@13785ed"},"destinationElement": {"

className": "duration2Score.a0","id": "com.ibm.rules.engine.rete.

runtime.util.RuleInstanceImpl@8cfed081"}}
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causal link: {"relation": {"type": "Execution","originClass": {"dataCauses"

: ["miniloan.Borrower/creditScore/GETTER #0"]},"destinationClass": {"

dataCauses": ["miniloan.Borrower/creditScore/GETTER #0"]},"

originElementClass": {"name": "bonusLowCreditScore.c0"},"

destinationElementClass": {"name": "bonusLowCreditScore.a0"}},"origin":

{"variablesMap": {"miniloan.Borrower/creditScore/GETTER #0": {"name": "

miniloan.Borrower/creditScore/GETTER #0","valType": "Float","type": "

Default","domain": "[100 ,1000]","min": 100.0,"max": 1000.0 ,"

defaultValue": 399.0}}} ,"destination": {"variablesMap": {"miniloan.

Borrower/creditScore/GETTER #0": {"name": "miniloan.Borrower/creditScore

/GETTER #0","valType": "Float","type": "Default","domain": "[100 ,1000]",

"min": 100.0,"max": 1000.0 ,"defaultValue": 499}}} ,"originElement": {"

className": "bonusLowCreditScore.c0","id": "com.ibm.rules.engine.rete.

runtime.util.RuleInstanceImpl@13785ed"},"destinationElement": {"

className": "bonusLowCreditScore.a0","id": "com.ibm.rules.engine.rete.

runtime.util.RuleInstanceImpl@13785ed"}}

causal link: {"relation": {"type": "Execution","originClass": {"dataCauses"

: ["miniloan.Loan/amount/GETTER #0","miniloan.Borrower/yearlyIncome/

GETTER #0"]},"destinationClass": {"dataCauses": ["miniloan.Borrower/

creditScore/GETTER #0"]},"originElementClass": {"name": "

bonusLowCreditScore.c1"},"destinationElementClass": {"name": "

bonusLowCreditScore.a0"}},"origin": {"variablesMap": {"miniloan.Loan/

amount/GETTER #0": {"name": "miniloan.Loan/amount/GETTER #0","valType": "

Float","type": "Default","domain": "[1000 ,100000]","min": 1000.0 ,"max":

500000.0 ,"defaultValue": 110000.0} ,"miniloan.Borrower/yearlyIncome/

GETTER #0": {"name": "miniloan.Borrower/yearlyIncome/GETTER #0","valType"

: "Float","type": "Default","domain": "[10000 ,50000]","min": 10000.0 ,"

max": 200000.0 ,"defaultValue": 180000.0}}} ,"destination": {"

variablesMap": {"miniloan.Borrower/creditScore/GETTER #0": {"name": "

miniloan.Borrower/creditScore/GETTER #0","valType": "Float","type": "

Default","domain": "[100 ,1000]","min": 100.0,"max": 1000.0 ,"

defaultValue": 499}}} ,"originElement": {"className": "

bonusLowCreditScore.c1","id": "com.ibm.rules.engine.rete.runtime.util.

RuleInstanceImpl@13785ed"},"destinationElement": {"className": "

bonusLowCreditScore.a0","id": "com.ibm.rules.engine.rete.runtime.util.

RuleInstanceImpl@13785ed"}}

causal link: {"relation": {"type": "Computation","originClass": {"

dataCauses": ["miniloan.Borrower/creditScore/GETTER #0"]},"

destinationClass": {"dataCauses": ["miniloan.Borrower/creditScore/

GETTER #0"]},"originElementClass": {"name": "highIncome2Score.a0"},"

destinationElementClass": {"name": "duration2Score.a0"}},"origin": {"

variablesMap": {"miniloan.Borrower/creditScore/GETTER #0": {"name": "

miniloan.Borrower/creditScore/GETTER #0","valType": "Float","type": "

Default","domain": "[100 ,1000]","min": 100.0,"max": 1000.0 ,"

defaultValue": 549}}} ,"destination": {"variablesMap": {"miniloan.

Borrower/creditScore/GETTER #0": {"name": "miniloan.Borrower/creditScore

/GETTER #0","valType": "Float","type": "Default","domain": "[100 ,1000]",

"min": 100.0,"max": 1000.0 ,"defaultValue": 579}}} ,"originElement": {"

className": "highIncome2Score.a0","id": "com.ibm.rules.engine.rete.

runtime.util.RuleInstanceImpl@5dd720f5"},"destinationElement": {"

className": "duration2Score.a0","id": "com.ibm.rules.engine.rete.

runtime.util.RuleInstanceImpl@8cfed081"}}

causal link: {"relation": {"type": "Execution","originClass": {"dataCauses"

: ["miniloan.Borrower/yearlyIncome/GETTER #0"]},"destinationClass": {"

dataCauses": ["miniloan.Borrower/creditScore/GETTER #0"]},"

originElementClass": {"name": "highIncome2Score.c0"},"
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destinationElementClass": {"name": "highIncome2Score.a0"}},"origin": {"

variablesMap": {"miniloan.Borrower/yearlyIncome/GETTER #0": {"name": "

miniloan.Borrower/yearlyIncome/GETTER #0","valType": "Float","type": "

Default","domain": "[10000 ,50000]","min": 10000.0 ,"max": 200000.0 ,"

defaultValue": 180000.0}}} ,"destination": {"variablesMap": {"miniloan.

Borrower/creditScore/GETTER #0": {"name": "miniloan.Borrower/creditScore

/GETTER #0","valType": "Float","type": "Default","domain": "[100 ,1000]",

"min": 100.0,"max": 1000.0 ,"defaultValue": 549}}} ,"originElement": {"

className": "highIncome2Score.c0","id": "com.ibm.rules.engine.rete.

runtime.util.RuleInstanceImpl@5dd720f5"},"destinationElement": {"

className": "highIncome2Score.a0","id": "com.ibm.rules.engine.rete.

runtime.util.RuleInstanceImpl@5dd720f5"}}

causal link: {"relation": {"type": "Execution","originClass": {"dataCauses"

: ["miniloan.Borrower/yearlyIncome/GETTER #0"]},"destinationClass": {"

dataCauses": ["miniloan.Borrower/creditScore/GETTER #0"]},"

originElementClass": {"name": "highIncome2Score.c1"},"

destinationElementClass": {"name": "highIncome2Score.a0"}},"origin": {"

variablesMap": {"miniloan.Borrower/yearlyIncome/GETTER #0": {"name": "

miniloan.Borrower/yearlyIncome/GETTER #0","valType": "Float","type": "

Default","domain": "[10000 ,50000]","min": 10000.0 ,"max": 200000.0 ,"

defaultValue": 180000.0}}} ,"destination": {"variablesMap": {"miniloan.

Borrower/creditScore/GETTER #0": {"name": "miniloan.Borrower/creditScore

/GETTER #0","valType": "Float","type": "Default","domain": "[100 ,1000]",

"min": 100.0,"max": 1000.0 ,"defaultValue": 549}}} ,"originElement": {"

className": "highIncome2Score.c1","id": "com.ibm.rules.engine.rete.

runtime.util.RuleInstanceImpl@5dd720f5"},"destinationElement": {"

className": "highIncome2Score.a0","id": "com.ibm.rules.engine.rete.

runtime.util.RuleInstanceImpl@5dd720f5"}}

causal link: {"relation": {"type": "Execution","originClass": {"dataCauses"

: ["miniloan.Loan/duration/GETTER #0"]},"destinationClass": {"dataCauses

": ["miniloan.Borrower/creditScore/GETTER #0"]},"originElementClass": {"

name": "duration2Score.c0"},"destinationElementClass": {"name": "

duration2Score.a0"}},"origin": {"variablesMap": {"miniloan.Loan/

duration/GETTER #0": {"name": "miniloan.Loan/duration/GETTER #0","valType

": "Integer","type": "Default","domain": "[12 ,240]","min": 12,"max":

500,"defaultValue": 240.0}}} ,"destination": {"variablesMap": {"miniloan

.Borrower/creditScore/GETTER #0": {"name": "miniloan.Borrower/

creditScore/GETTER #0","valType": "Float","type": "Default","domain": "

[100 ,1000]","min": 100.0 ,"max": 1000.0 ,"defaultValue": 579}}} ,"

originElement": {"className": "duration2Score.c0","id": "com.ibm.rules.

engine.rete.runtime.util.RuleInstanceImpl@8cfed081"},"

destinationElement": {"className": "duration2Score.a0","id": "com.ibm.

rules.engine.rete.runtime.util.RuleInstanceImpl@8cfed081"}}

causal link: {"relation": {"type": "Execution","originClass": {"dataCauses"

: ["miniloan.Loan/duration/GETTER #0"]},"destinationClass": {"dataCauses

": ["miniloan.Borrower/creditScore/GETTER #0"]},"originElementClass": {"

name": "duration2Score.c1"},"destinationElementClass": {"name": "

duration2Score.a0"}},"origin": {"variablesMap": {"miniloan.Loan/

duration/GETTER #0": {"name": "miniloan.Loan/duration/GETTER #0","valType

": "Integer","type": "Default","domain": "[12 ,240]","min": 12,"max":

500,"defaultValue": 240.0}}} ,"destination": {"variablesMap": {"miniloan

.Borrower/creditScore/GETTER #0": {"name": "miniloan.Borrower/

creditScore/GETTER #0","valType": "Float","type": "Default","domain": "

[100 ,1000]","min": 100.0 ,"max": 1000.0 ,"defaultValue": 579}}} ,"

originElement": {"className": "duration2Score.c1","id": "com.ibm.rules.

engine.rete.runtime.util.RuleInstanceImpl@8cfed081"},"
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destinationElement": {"className": "duration2Score.a0","id": "com.ibm.

rules.engine.rete.runtime.util.RuleInstanceImpl@8cfed081"}}

Minimal decision causal links
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