V. M. Miyake, T. Hiramatsu, and M. Maeda, ‚emov—l of phosphorus —nd —ntimony in sili™on ˜y ele™tron ˜e—m melting —t low, Journal of the Japan Institute of Metals, vol.70, p.4346, 2006.

B. Mukashev, K. Abdullin, M. Tamendarov, T. Turmagambetov, B. Beketov et al., e met—llurgi™—l route to produ™e upgr—ded sili™on —nd monosil—ne, Solar energy materials and solar cells, pp.93-17851791, 2009.

J. P. Murray, G. Flamant, and C. J. , Roos, ƒili™on —nd sol—rEgr—de sili™on produ™tion ˜y sol—r disso™i—tion of si 3 n 4 , Solar energy, p.13491354, 2006.

N. Nakamura, H. Baba, Y. Sakaguchi, S. Hiwasa, and Y. Kato, foron remov—l in molten sili™on with ste—m —dded pl—sm— melting method, Journal of the Japan Institute of Metals, pp.67-583589, 2003.

E. F. Nordstrand and M. Tangstad, ‚emov—l of ˜oron from sili™on ˜y moist hydrogen g—s, Metallurgical and Materials Transactions B, vol.43, p.814822, 2012.

J. Pires, J. Otubo, A. Braga, and P. Mei, „he puri(™—tion of met—llurE gi™—l gr—de sili™on ˜y ele™tron ˜e—m melting, Journal of Materials Processing Technology, vol.169, p.1620, 2005.

J. Safarian and M. Tangstad, uineti™s —nd me™h—nism of phosphorus reE mov—l from sili™on in v—™uum indu™tion re(ning, High Temperature Materials and Processes, pp.31-7381, 2012.

D. Sarti and R. Einhaus, ƒili™on feedsto™k for the multiE™ryst—lline photoE volt—i™ industry, Solar energy materials and solar cells, p.2740, 2002.

W. Shockley and H. J. Queisser, het—iled ˜—l—n™e limit of e0™ien™y of pEn jun™tion sol—r ™ells, Journal of applied physics, vol.32, p.510519, 1961.

K. Suzuki, K. Sakaguchi, T. Nakagiri, and N. Sano, q—seous remov—l of phosphorus —nd ˜oron from molten sili™on, Journal of the Japan Institute of Metals, pp.54-161167, 1990.

R. B. Fair and J. Tsai, e qu—ntit—tive model for the di'usion of phosphorus in sili™on —nd the emitter dip e'e™t, Journal of the Electrochemical Society, pp.124-11071118, 1977.

M. Finetti, P. Negrini, S. Solmi, and D. Nobili, ile™tri™—l properties —nd st—˜ility of supers—tur—ted phosphorusEdoped sili™on l—yers, Journal of the Electrochemical Society, vol.128, p.13131317, 1981.

E. Fogarassy, R. Stuck, J. Muller, A. Grob, J. Grob et al., Siffert , i'e™ts of l—ser irr—di—tion on phosphorus di'used l—yers in sili™on, Journal of Electronic Materials, p.9, 1980.

B. Giessen and R. Vogel, …˜er d—s system siliziumEphosphor, Zeitschrift FuHhr Metallkunde, p.274277, 1959.

V. Glushko and L. Gurvich, „hermodyn—mi™ properties of individu—l m—teri—ls, Handbook [in Russian, 1978.

R. Hull, €roperties of ™ryst—lline sili™on, IET, issue.20, 1999.

J. C. Irvin, ‚esistivity of ˜ulk sili™on —nd of di'used l—yers in sili™on, Bell Labs Technical Journal, pp.41-387410, 1962.

K. Itoh, Y. Sasaki, T. Mitsuishi, M. Miyao, and M. Tamura, Thermal Behavior of B, P and As Atoms in Supersaturated Si Produced by Ion Implantation and Pulsed-Laser Annealing, Japanese Journal of Applied Physics, vol.21, issue.Part 2, No. 5, p.245, 1982.
DOI : 10.1143/JJAP.21.L245

M. Joshi and S. Dash, hislo™—tionEindu™ed devi—tion of phosphorusEdi'usion pro(les in sili™on, IBM Journal of Research and Development, vol.10, p.446454, 1966.

I. Jung and Y. Zhang, „hermodyn—mi™ ™—l™ul—tions for the dephosphoE riz—tion of sili™on using molten sl—g, JOM, pp.64-973981, 2012.

E. Kooi, porm—tion —nd ™omposition of surf—™e l—yers —nd solu˜ility limits of phosphorus during di'usion in sili™on, Journal of the Electrochemical Society

H. Kopp, snvestig—tions of the spe™i(™ he—t of solid ˜odies, Philosophical Transactions of the Royal Society of London, vol.155, p.71202, 1865.

S. Liang and R. Schmid-fetzer, wodeling of thermodyn—mi™ properE ties —nd ph—se equili˜ri— of the siEp system, Journal of Phase Equilibria and Diusion, vol.35, p.2435, 2014.

H. Lukas, E. T. Henig, and B. Zimmermann, yptimiz—tion of ph—se diE —gr—ms ˜y — le—st squ—res method using simult—neously di'erent types of d—t—, Calphad, pp.1-225236, 1977.

I. Mackintosh, „he di'usion of phosphorus in sili™on, Journal of The Electrochemical Society, vol.109, p.392401, 1962.

M. Margules, …˜er die zus—mmensetzung der ges—ttigten d—mpfe von misE ™hungen, Sitzungsber. Akad. Wiss. Wien, math.-naturwiss. Klasse, vol.104, p.12431278, 1895.

G. Masetti, D. Nobili, and S. Solmi, €ro(les of phosphorus predeposited in sili™on —nd ™—rrier ™on™entr—tion in equili˜rium with sip pre™ipit—tes9, Semiconductor silicon, p.648657, 1977.

T. Miki, K. Morita, and N. Sano, Thermodynamics of phosphorus in molten silicon, Metallurgical and Materials Transactions B, vol.255, issue.1, pp.937-941, 1996.
DOI : 10.2355/isijinternational.32.635

M. Miyao, K. Itoh, M. Tamura, H. Tamura, and T. Tokuyama, purE n—™e —nne—ling ˜eh—vior of phosphorus impl—ntedD l—ser —nne—led sili™on, Journal of Applied Physics, pp.51-41394144, 1980.

F. Mousty, P. Ostoja, and L. Passari, ‚el—tionship ˜etween resistivity —nd phosphorus ™on™entr—tion in sili™on, Journal of Applied Physics, pp.45-45764580, 1974.

D. Nobili, A. Armigliato, M. Finnetti, and S. Solmi, €re™ipit—tion —s the phenomenon responsi˜le for the ele™tri™—lly in—™tive phosphorus in sili™on, Journal of Applied Physics, pp.53-14841491, 1982.

R. Olesinski, N. Kanani, and G. , Abbaschian, „he pE si @phosphorusE sili™onA system, Journal of Phase Equilibria, vol.6, p.130133, 1985.

P. Ostoja, D. Nobili, A. Armigliato, and R. Angelucci, sso™hron—l —nne—ling of sili™onEphosphorus solid solutions, Journal of The Electrochemical Society, vol.123, p.124129, 1976.

F. Philipp and P. Schmidt, „he ™—tioni™ ™l—thr—te si RTE P xp P xtex ™ryst—l growth ˜y ™hemi™—l v—pour tr—nsport, Journal of Crystal Growth, pp.310-54025408, 2008.

O. Redlich and A. Kister, elge˜r—i™ represent—tion of thermodyn—mi™ propE erties —nd the ™l—ssi(™—tion of solutions, Industrial and Engineering Chemistry, pp.40-345348, 1948.

R. A. Robie and B. S. , Hemingway, „hermodyn—mi™ properties of miner—ls —nd rel—ted su˜st—n™es —t PWVFIS k —nd I ˜—r @IH¢ S p—s™—lsA pressure —nd —t higher temper—tures, US Geol, Survey Bull, vol.2131, pp.461-461, 1995.

J. Safarian and M. Tangstad, €h—se di—gr—m study of the si!p system in siEri™h region, Journal of Materials Research, vol.26, p.14941503, 2011.

P. Schmidt and R. Stickler, ƒili™on phosphide pre™ipit—tes in di'used silE i™on, Journal of the Electrochemical Society, vol.111, p.11881189, 1964.

F. Schwettmann and D. Kendall, g—rrier pro(le ™h—nge for phosphorusE di'used l—yers on lowEtemper—ture he—t tre—tment, Applied Physics Letters, vol.19, p.218220, 1971.

S. Solmi, A. Parisini, R. Angelucci, A. Armigliato, D. Nobili et al., hop—nt —nd ™—rrier ™on™entr—tion in si in equili˜rium with mono™lini™ sip pre™ipit—tes, Physical Review B, pp.53-7836, 1996.

H. Sunami, „herm—l oxid—tion of phosphorusEdoped poly™ryst—lline sili™on in wet oxygen, Journal of The Electrochemical Society, vol.125, p.892897, 1978.

M. Tamura, hislo™—tion networks in phosphorusEimpl—nted sili™on, Philosophical Magazine, vol.35, p.663691, 1977.

K. Tang, E. J. Ovrelid, G. Tranell, and M. Tangstad, „hermo™hemE i™—l —nd kineti™ d—t—˜—ses for the sol—r ™ell sili™on m—teri—ls, in Crystal growth of Si for solar cells, p.219251, 2009.

E. Tannenbaum, het—iled —n—lysis of thin phosphorusEdi'used l—yers in pEtype sili™on, Solid-State Electronics, p.123132, 1961.

H. Thurn and H. Krebs, …˜er struktur und eigens™h—ften der h—l˜met—lleF xxiiF die krist—llstruktur des hittorfs™hen phosphors, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, pp.25-125, 1969.

J. C. Tsai, ƒh—llow phosphorus di'usion pro(les in sili™on, Proceedings of the IEEE, p.14991506, 1969.

K. Uda and M. Kamoshida, enne—ling ™h—r—™teristi™s of highly pCEionE impl—nted sili™on ™ryst—lEtwoEstep —nne—l, Journal of Applied Physics, pp.48-1821, 1977.

Y. A. Ugai, A. Demidenko, V. Koshchenko, V. Yachmenev, L. Sokolov et al., „hermodyn—mi™ properties of sili™on —nd germ—nium monophosphides, Inorganic Materials, vol.15, p.578581, 1979.

Y. A. Ugai, L. Sokolov, and E. Goncharov, €EtEx st—te di—gr—m —nd thermodyn—mi™s of ph—se equili˜ri— in the sili™on E phosphorus system, Zhurnal Neorganicheskoi Khimii, vol.32, p.11981200, 1987.

Y. A. Ugai, L. I. Sokolov, E. G. Goncharov, and A. N. , Lukin, €rep—E r—tion of singleE™ryst—l sili™on phosphide, p.851852

Y. Wada and S. Nishimatsu, qr—in growth me™h—nism of he—vily phosphorusEimpl—nted poly™ryst—lline sili™on, Journal of The Electrochemical Society, vol.125, p.14991504, 1978.

T. Wadsten, gryst—l stru™tures of sipP si—sP —nd gep, 1967.

T. Wadsten, ƒynthesis of — pyriteEtype modi(™—tion of sipP

T. Wadsten, ƒynthesis —nd stru™tur—l d—t— of sip, 1969.

T. Wadsten, €rep—r—tive —nd ™ryst—lEstru™ture studies on orthorhom˜i™ sili™on monophosphide, Chemica Scripta, vol.8, p.6369, 1975.

D. Wagman, W. Evans, V. Parker, R. Schumm, I. Halow et al., „he n˜s t—˜les of ™hemi™—l thermodyn—mi™s, J. Phys. Chem. Ref. Data, p.11, 1982.

M. Yoshida, E. Arai, H. Nakamura, and Y. , Terunuma, ix™ess v—™—n™y gener—tion me™h—nism —t phosphorus di'usion into sili™on, Journal of Applied Physics, pp.45-14981506, 1974.

A. I. Zaitsev, A. D. Litvina, and N. E. Shelkova, „hermodyn—mi™ propE erties of si!p melts, High Temperature, pp.39-227232, 2001.

M. Zumbusch, M. Heimbrecht, and W. Biltz, feitr—ge zur system—tisE ™hen verw—ndts™h—ftslehreF WHF germ—niumphosphid, Zeitschrift fur anorganische und allgemeine Chemie, p.237248, 1939.

G. Honstein, C. Chatillon, and F. Baillet, „hermodyn—mi™ —ppro—™h to the v—poriz—tion —nd growth phenomen— of si™ ™er—mi™sF iiF the si™ surf—™e under oxid—tive ™onditions, Journal of the European Ceramic Society, pp.32-11371147, 2012.

M. Knudsen, hie m—xim—le verd—mpfungsges™hwindigkeit des que™ksil˜ers, Annalen der Physik, vol.352, p.697708, 1915.

T. Miki, K. Morita, and N. Sano, Thermodynamics of phosphorus in molten silicon, Metallurgical and Materials Transactions B, vol.255, issue.1, pp.937-941, 1996.
DOI : 10.2355/isijinternational.32.635

T. Narushima, K. Matsuzawa, Y. Mukai, and Y. Iguchi, yxygen soluE ˜ility in liquid sili™on, Materials Transactions, JIM, pp.35-522528, 1994.

G. Pound, ƒele™ted v—lues of ev—por—tion —nd ™ondens—tion ™oe0™ients for simple su˜st—n™es, Journal of Physical and Chemical Reference Data, vol.1, p.135146, 1972.

A. I. Zaitsev, A. D. Litvina, and N. E. Shelkova, „hermodyn—mi™ propE erties of si!p melts, High Temperature, pp.39-227232, 2001.

M. Beaudhuin, itude expériment—le et numérique de l— pré™ipit—tion d9impuretés et de l— form—tion des gr—ins d—ns le sili™ium photovolt—ïque, 2009.

M. Beaudhuin, K. Zaidat, T. Duffar, and M. Lemiti, ƒili™on purity ™ontrolled under ele™trom—gneti™ levit—tion @spy™eAX in)uen™es on under™ooling, Journal of materials science, pp.45-22182222, 2010.

J. Fouletier, G. Vitter, and M. Kleitz, we—surement —nd regul—tion of oxygen ™ontent in g—ses using solid ele™trolyte ™ellsF iiiF oxygen pumpEg—uge, Journal of Applied Electrochemistry, vol.5, p.111120, 1975.

E. Fromm and H. Jehn, Electromagnetic forces and power absorption in levitation melting, British Journal of Applied Physics, vol.16, issue.5, p.653, 1965.
DOI : 10.1088/0508-3443/16/5/308

R. Hull, €roperties of ™ryst—lline sili™on, IET, issue.20, 1999.

E. W. Lemmon and R. Jacobsen, †is™osity —nd therm—l ™ondu™tivity equ—E tions for nitrogenD oxygenD —rgonD —nd —ir, International journal of thermophysics, vol.25, p.2169, 2004.

O. Muck, †erf—hren und vorri™htung zum s™hmelzenD ins˜esondere von leitE ern uF dglF dur™h elektris™he induktionsstrohme @pro™ess —nd devi™e for meltingD espe™i—lly of ™ondu™tors —nd so on ˜y me—ns of ele™tri™—l indu™tion ™urrentsA, p.4, 1923.

P. R. Rony, „he ele™trom—gneti™ levit—tion of met—ls, tech. report, California, 1964.

P. Schetelat, wodélis—tion et simul—tion de l— ™—lorimétrie modulée indu™E tive, 2009.

. Worksheets, Cells(1 + J, 2)Value = "log xP" WorksheetsCells(1 + J, 3).Value

. Worksheets, Cells(1 + J, 4)Value

. Worksheets, Cells(1 + J, 5).Value

. Worksheets, Cells(1 + J, 6).Value

. Worksheets, Cells(1 + J, 7).Value = "log pSi(bar

. Worksheets, Cells(1 + J, 8).Value = "log pSi2(bar

. Worksheets, Cells(1 + J, 9).Value = "log pSi3(bar

. Worksheets, Cells(1 + J, 10).Value = "log pP3(bar

. Worksheets, Cells(1 + J, 11).Value = "log pO(bar

. Worksheets, Cells(1 + J, 12).Value = "log pO2(bar

. Worksheets, Cells(1 + J, 13).Value = "log pO3(bar

. Worksheets, Cells(1 + J, 14).Value = "log pP(bar

. Worksheets, Cells(1 + J, 15).Value = "log pP2(bar

. Worksheets, Cells(1 + J, 16).Value = "log pP4(bar

. Worksheets, Cells(1 + J, 17).Value = "log pPSi(bar

. Worksheets, Cells(1 + J, 18).Value = "log pPSi2(bar

. Worksheets, Cells(1 + J, 19).Value = "log pP2Si2(bar

. Worksheets, Cells(1 + J, 20).Value = "log pSiO(bar

. Worksheets, Cells(1 + J, 21).Value = "log pSiO2(bar

. Worksheets, Cells(1 + J, 22).Value = "log pSi2O2(bar

. Worksheets, Cells(1 + J, 23).Value = "log pPO(bar

. Worksheets, Cells(1 + J, 24).Value = "log pPO2bar

. Worksheets, Cells(1 + J, 25).Value = "log pP2O3(bar

. Worksheets, Cells(1 + J, 26).Value = "log pP2O4(bar

. Worksheets, Cells(1 + J, 27).Value = "log pP2O5(bar

. Worksheets, Cells(1 + J, 28).Value = "log pP4O6(bar

. Worksheets, Cells(1 + J, 29).Value = "log pP4O7(bar

. Worksheets, Cells(1 + J, 30).Value = "log pP4O8(bar

. Worksheets, Cells(1 + J, 31).Value = "log pP4O9(bar

. Worksheets, Cells(1 + J, 32).Value = "log pP4O10(bar

. Worksheets, Cells(1 + J, 33).Value = "log(NP_SiOP

. Worksheets, Cells(1 + J, 34).Value = "log(NSi_SiOP

. Worksheets, Cells(1 + J, 35).Value = "log(NO_SiOP

. Worksheets, Cells(1 + J, 36).Value =, log NP_SiOP / NSi_SiOP

. Worksheets, CellsValue = "log Flux P evapCells(1 + J, 38)Value = "log Flux Si evap" WorksheetsCells(1 + J, 39)Value = "log Flux O evap" WorksheetsCells(1 + J, 40)Value = "log Flux P/Flux Si evap" WorksheetsCells(1 + J, 41).Value = "log Flux O inc" WorksheetsCells(1 + J, 42).Value = "log Flux O evap, Cells(1 + J, 43).Value = "log x(O)" Worksheets("calc_four2").Cells(1 + J, 44).Value = "M" Line2

. Worksheets, CellsCellsCellsCellsCellsCells(1 + J, 7)Value = LogCells(1 + J, 8)Value = LogCells(1 + J, 9)Value = LogCells(1 + J, 10)Value = LogCells(1 + J, 11)Value = Log(pO) / Log(10) WorksheetsCells(1 + J, 12)Value = Log(pO2) / Log(10) WorksheetsCells(1 + J, 13)Value = Log(pO3) / Log(10) WorksheetsCells(1 + J, 14)Value = Log(pP) / Log(10) WorksheetsCells(1 + J, 15)Value = Log(pP2) / Log(10) WorksheetsCells(1 + J, 16)Value = Log(pP4) / Log(10) Worksheets("calc_four2")Cells(1 + J, 17)Value = Log(pPSi) / Log(10) Worksheets("calc_four2")Cells(1 + J, 18)Value = Log(pPSi2) / Log(10) Worksheets("calc_four2")Cells(1 + J, 19)Value = Log(pP2Si2) / Log(10) Worksheets("calc_four2")Cells(1 + J, 20)Value = Log(pSiO) / Log(10) Worksheets("calc_four2")Cells(1 + J, 21)Value = Log(pSiO2) / Log(10) WorksheetsCells(1 + J, 22)Value = Log(pSi2O2) / Log(10) WorksheetsCells(1 + J, 23)Value = Log(pPO) / Log(10) WorksheetsCells(1 + J, 24)Value = Log(pPO2) / Log(10) WorksheetsCells(1 + J, 25)Value = Log(pP2O3) / Log(10) WorksheetsCells(1 + J, 26)Value = Log(pP2O4) / Log(10) WorksheetsCells(1 + J, 27)Value = Log(pP2O5) / Log(10) WorksheetsCells(1 + J, 28)Value = Log(pP4O6) / Log(10) WorksheetsCells(1 + J, 29)Value = Log(pP4O7) / Log(10) WorksheetsCells(1 + J, 30)Value = Log(pP4O8) / Log(10) WorksheetsCells(1 + J, 36)Value = LogCells(1 + J, 37)Value = Log(fluxP) / Log(10) Worksheets("calc_four2").Cells(1 + J, 38)Value = Log(fluxSi) / Log(10) Worksheets("calc_four2").Cells(1 + J, 39)Value = Log(fluxO) / Log(10) Worksheets("calc_four2").Cells(1 + J, 25)Cells(1 + J, 33)Cells(1 + J, 34), Cells(1 + J, 5).Value = aSi WorksheetsCells(1 + J, 31).Value = Log(pP4O9) / Log(10) Worksheets("calc_four2").Cells(1 + J, 32).Value = Log(pP4O10) / Log(10) Worksheets("calc_four2").Cells(1 + J, 33).Value = Log(NP_SiOP) / Log(10) Worksheets("calc_four2").Cells(1 + J, 34).Value = Log(NSi_SiOP) / Log(10) Worksheets("calc_four2").Cells(1 + J, 35).Value = LogpP2O3) / Log(10) Worksheets("calc_four2").Cells(1 + J, 26).Value = Log(pP2O4) / Log(10) Worksheets("calc_four2").Cells(1 + J, 27).Value = Log(pP2O5) / Log(10) Worksheets("calc_four2").Cells(1 + J, 28).Value = Log(pP4O6) / Log(10) Worksheets("calc_four2").Cells(1 + J, 29).Value = Log(pP4O7) / Log(10) Worksheets("calc_four2").Cells(1 + J, 30).Value = Log(pP4O8) / Log(10) Worksheets("calc_four2").Cells(1 + J, 31).Value = Log(pP4O9) / Log(10) Worksheets("calc_four2").Cells(1 + J, 32).Value = LogCells(1 + J, 35).Value = Log(NO_SiOP) / Log(10) Worksheets("calc_four2").Cells(1 + J, 36).Value = Log(NP_SiOP / NSi_SiOP) / Log(10) Worksheets("calc_four2").Cells(1 + J, 37).Value = Log(fluxP) / Log(10) Worksheets("calc_four2").Cells(1 + J, 38).Value = Log(fluxSi) / Log(10) Worksheets("calc_four2").Cells(1 + J, 39).Value = Log(fluxO) / Log(10) Worksheets("calc_four2").Cells(1 + J, 40).Value = Log(fluxP / fluxSi) / Log(10) Worksheets("calc_four2").Cells(1 + J, 41).Value = Log(fluxO_inc) / Log(10) Worksheets("calc_four2").Cells(1 + J, 42).Value = Log(fluxO / fluxO_inc) / Log(10) Worksheets("calc_four2").Cells(1 + J, 43).Value = Log(xO) / Log(10) Worksheets("calc_four2").Cells(1 + J, 44).Value = M Next L

. Worksheets, Cells(1 + J, 1)Value WorksheetsCells(1 + J, 2).Value = "m0Si(kg)" WorksheetsCells(1 + J, 3)Value, p.0

. Worksheets, Cells(1 + J, 4).Value = "x0P(fraction molaire

. Worksheets, Cells(1 + J, 5)Value = "dxP (pas) WorksheetsCells(1 + J, 6)Value = "masse Si" WorksheetsCells(1 + J, 7).Value = "Delta mSi" Worksheets, Cells(1 + J, 8).Value = "Delta t

. Worksheets, Cells(1 + J, 9)Value = "XP (frac molaire à tout instant WorksheetsCells(1 + J, 10).ValueCells(1 + J, 11)Value = "Temps(h)

. Worksheets, Cells(1 + J, 12).Value =, log XP

. Worksheets, Cells(1 + J, 13).Value = "rayon

. Worksheets, Cells(1 + J, 14).Value =, Sbille

E. Tps, (. , and +. Tps, K -1) minitSi(K + 1) = minitSi(K) -dmSi rayon(K + 1) = (3 * minitSi

. Worksheets, CellsCells(1 + J, 2)Value = m0Si WorksheetsCells(1 + J, 3)Value = m0P WorksheetsCells(1 + J, 4)Value = x0P WorksheetsCells(1 + J, 5)Value = dxP WorksheetsCells(1 + J, 6)Value = minitSi(K) WorksheetsCells(1 + J, 7)Value = dmSi WorksheetsCells(1 + J, 8)Value = dt WorksheetsCells(1 + J, 9)Value = X(K) Worksheets("bille").Cells(1 + J, 10).Value = K Worksheets, Cells(1 + J, 11).Value = Tps(K) Worksheets("bille").Cells(1 + J, 12).Value = Log(X(K)) / Log(10) Worksheets("bille").Cells(1 + J, 13).Value = rayon(K) Worksheets("bille").Cells(1 + J, 14).Value = Sbille(K)

. Worksheets, Cells(1 + J, 1).Value

. Worksheets, Cells(1 + J, 2).Value = "m0Si(kg

. Worksheets, Cells(1 + J, 3).Value = "m0P(kg

. Worksheets, Cells(1 + J, 4).Value = "x0P(fraction molaire

. Worksheets, Cells(1 + J, 5).Value = "dxP (pas

. Worksheets, Cells(1 + J, 6)Value = "masse Si" WorksheetsCells(1 + J, 7).Value = "Delta mSi" WorksheetsCells(1 + J, 8)Value =, Delta t

. Worksheets, Cells(1 + J, 9)Value = "XP (frac molaire à tout instant WorksheetsCells(1 + J, 10).ValueCells(1 + J, 11)Value = "Temps(h)

. Worksheets, Cells(1 + J, 12).Value =, log XPP

. Worksheets, Cells(1 + J, 13).Value = "rayon

. Worksheets, Cells(1 + J, 14).Value =, Sbille

. Worksheets, Cells(1 + J, 15).Value = "log pSi(bar

. Worksheets, Cells(1 + J, 16).Value = "log pSi2(bar

. Worksheets, Cells(1 + J, 17).Value = "log pSi3(bar

. Worksheets, Cells(1 + J, 18).Value = "log pP3(bar

. Worksheets, Cells(1 + J, 19).Value = "log pO(bar

. Worksheets, Cells(1 + J, 20).Value = "log pO2(bar

. Worksheets, Cells(1 + J, 21).Value = "log pO3(bar

. Worksheets, Cells(1 + J, 22).Value = "log pP(bar

. Worksheets, Cells(1 + J, 23).Value = "log pP2(bar

. Worksheets, Cells(1 + J, 24).Value = "log pP4(bar

. Worksheets, Cells(1 + J, 25).Value = "log pPSi(bar

. Worksheets, Cells(1 + J, 26).Value = "log pPSi2(bar

. Worksheets, Cells(1 + J, 27).Value = "log pP2Si2(bar

. Worksheets, Cells(1 + J, 28).Value = "log pSiO(bar

. Worksheets, Cells(1 + J, 29).Value = "log pSiO2(bar

. Worksheets, Cells(1 + J, 30).Value = "log pSi2O2(bar

. Worksheets, Cells(1 + J, 31).Value = "log pPO(bar

. Worksheets, Cells(1 + J, 32).Value = "log pPO2bar

. Worksheets, Cells(1 + J, 33).Value = "log pP2O3(bar

. Worksheets, Cells(1 + J, 34).Value = "log pP2O4(bar

. Worksheets, Cells(1 + J, 35).Value = "log pP2O5(bar

. Worksheets, Cells(1 + J, 36).Value = "log pP4O6(bar

. Worksheets, Cells(1 + J, 37).Value = "log pP4O7(bar

. Worksheets, Cells(1 + J, 38).Value = "log pP4O8(bar

. Worksheets, Cells(1 + J, 39).Value = "log pP4O9(bar

. Worksheets, Cells(1 + J, 40).Value = "log pP4O10(bar

. Worksheets, CellsCells(1 + J, 42)Value = "xO1(K) WorksheetsCells(1 + J, 43)Value = "xP" WorksheetsCells(1 + J, 44)Value = "EpsilonOP" WorksheetsCells(1 + J, 45).Value = "EpsilonPP" WorksheetsCells(1 + J, 46).Value = "GammaInfiniP" Worksheets, Cells(1 + J, 47).Value = "GammaInfiniO" DEPHOSPHORIZATION If K = 0 Then Tps(K) = dt minitSi(K + 1) = m0Si -dmSi rayon(K + 1) = (3 * minitSi(K + 1) / (4 * Pi * dSi)) ^

E. Tps, (. , and +. Tps, K -1) minitSi(K + 1) = minitSi(K) -dmSi rayon(K + 1) = (3 * minitSi

. Worksheets, CellsCellsCells(1 + J, 6)Value = minitSiCells(1 + J, 7)Value = dmSi WorksheetsCells(1 + J, 8)Value = dt WorksheetsCells(1 + J, 9)Value = xP WorksheetsCells(1 + J, 10)Value = K WorksheetsCells(1 + J, 11)Value = Tps(K) WorksheetsCells(1 + J, 12)Value = Log(xPP(K)) / Log(10) WorksheetsCells(1 + J, 13)Value = rayon(K) WorksheetsCells(1 + J, 14)Value = Sbille(K) WorksheetsCells(1 + J, 15)Value = Log(pSi) / Log(10) Worksheets("billeO2")Cells(1 + J, 16)Value = Log(pSi2) / Log(10) Worksheets("billeO2")Cells(1 + J, 17)Value = Log(pSi3) / Log(10) Worksheets("billeO2")Cells(1 + J, 18)Value = Log(pP3) / Log(10) Worksheets("billeO2")Cells(1 + J, 19)Value = Log(pO) / Log(10) WorksheetsCells(1 + J, 20)Value = Log(pO2) / Log(10) WorksheetsCells(1 + J, 21)Value = Log(pO3) / Log(10) WorksheetsCells(1 + J, 22)Value = Log(pP) / Log(10) WorksheetsCells(1 + J, 23)Value = Log(pP2) / Log(10) WorksheetsCells(1 + J, 24)Value = Log(pP4) / Log(10) WorksheetsCells(1 + J, 25)Value = Log(pPSi) / Log(10) WorksheetsCells(1 + J, 26)Value = Log(pPSi2) / Log(10) WorksheetsCells(1 + J, 31)Value = Log(pPO) / Log(10) Worksheets("billeO2").Cells(1 + J, 32)Value = Log(pPO2) / Log(10) Worksheets("billeO2").Cells(1 + J, 33)Value = Log(pP2O3) / Log(10) Worksheets("billeO2").Cells(1 + J, 34), Cells(1 + J, 2).Value = m0Si WorksheetsCells(1 + J, 3).Value = m0P WorksheetsCells(1 + J, 4).Value = x0P WorksheetsCells(1 + J, 27).Value = Log(pP2Si2) / Log(10) Worksheets("billeO2").Cells(1 + J, 28).Value = Log(pSiO) / Log(10) Worksheets("billeO2").Cells(1 + J, 29).Value = Log(pSiO2) / Log(10) Worksheets("billeO2").Cells(1 + J, 30).Value = Log(pSi2O2) / Log(10) WorksheetspP2O4) / Log(10) Worksheets("billeO2").Cells(1 + J, 35).Value = Log(pP2O5) / Log(10) Worksheets("billeO2").Cells(1 + J, 36).Value = Log(pP4O6) / Log(10) Worksheets("billeO2").Cells(1 + J, 37).Value = Log(pP4O7) / Log(10) Worksheets("billeO2").Cells(1 + J, 38).Value = Log(pP4O8) / Log(10) Worksheets("billeO2").Cells(1 + J, 39).Value = Log(pP4O9) / Log(10) Worksheets("billeO2").Cells(1 + J, 40).Value = Log(pP4O10) / Log(10) Worksheets("billeO2").Cells(1 + J, 41).Value = Rapp Worksheets("billeO2").Cells(1 + J, 42).Value = xO1(K) Worksheets("billeO2").Cells(1 + J, 43).Value = xP Worksheets("billeO2").Cells(1 + J, 44).Value = EpsilonOP Worksheets("billeO2").Cells(1 + J, 45).Value = EpsilonPP Worksheets("billeO2").Cells(1 + J, 46).Value = GammaInfiniP Worksheets("billeO2").Cells(1 + J, 47).Value = GammaInfiniO Worksheets("billeO2").Cells(1 + J, 48).Value = GammaPter Worksheets("billeO2").Cells(1 + J, 49).Value = GammaOter Worksheets("billeO2").Cells(1 + J, 50).Value = aO Worksheets("billeO2").Cells(1 + J, 51).Value = Lmax Worksheets("billeO2").Cells(1 + J, 52).Value = pO2lim K = K + 1 'Next L 'Stop Next I Line3

N. Next, T. Next, ]. N. End-sub-bibliography, V. Abrikosov, L. Glazov et al., sndividu—l —nd joint solu˜ilities of —luminium —nd phosphorus in germ—nium —nd sili™on, Russian journal of inorganic chemistry, vol.7, issue.1, p.429431, 1962.

N. Arutyunyan, A. Zaitsev, and N. Shaposhnikov, en—lysis of thermoE dyn—mi™ properties —nd ph—se equili˜ri— in the siEp system, Russian Journal of Physical Chemistry A, vol.85, p.911915, 2011.

M. Beaudhuin, itude expériment—le et numérique de l— pré™ipit—tion d9impuretés et de l— form—tion des gr—ins d—ns le sili™ium photovolt—ïque, 2009.

M. Beaudhuin, K. Zaidat, T. Duffar, and M. Lemiti, ƒili™on purity ™ontrolled under ele™trom—gneti™ levit—tion @spy™eAX in)uen™es on under™ooling, Journal of materials science, pp.45-22182222, 2010.

C. Beck and R. Stickler, gryst—llogr—phy of sip —nd si—s single ™ryst—ls —nd of sip pre™ipit—tes in si, Journal of Applied Physics, vol.37, p.46834687, 1966.

A. Bentzen, J. Christensen, B. Svensson, and A. Holt, …nderst—nding phosphorus emitter di'usion in sili™on sol—r ™ell pro™essing, Proceedings of the 21th European Photovoltaic Solar Energy Conference, p.13881391, 2006.

V. Borisenko and S. Yudin, ƒte—dyEst—te solu˜ility of su˜stitution—l impuE rities in sili™on, physica status solidi (a), p.123127, 1987.

A. Carabelas, D. Nobili, and S. Solmi, qr—in ˜ound—ry segreg—tion in sili™on he—vily doped with phosphorus —nd —rseni™, Le Journal de Physique Colloques, pp.43-1187, 1982.

A. Dinsdale, ƒgte d—t— for pure elements, Calphad, pp.15-317425, 1991.

R. B. Fair and J. Tsai, e qu—ntit—tive model for the di'usion of phosphorus in sili™on —nd the emitter dip e'e™t, Journal of the Electrochemical Society, pp.124-11071118, 1977.

E. Fogarassy, R. Stuck, J. Muller, A. Grob, J. Grob et al., Siffert , i'e™ts of l—ser irr—di—tion on phosphorus di'used l—yers in sili™on, Journal of Electronic Materials, p.9, 1980.

R. Fouquet, e ˜rief history of energy, International Handbook on the Economics of Energy, 2009.

B. Giessen and R. Vogel, …˜er d—s system siliziumEphosphor, Zeitschrift FuHhr Metallkunde, p.274277, 1959.

K. Hanazawa, N. Yuge, and Y. Kato, iv—por—tion of phosphorus in molten sili™on ˜y —n ele™tron ˜e—m irr—di—tion method, Materials Transactions, pp.45-844849, 2004.

T. Ikeda and M. Maeda, Purification of Metallurgical Silicon for Solar-grade Silicon by Electron Beam Button Melting., ISIJ International, vol.32, issue.5, pp.635-642, 1992.
DOI : 10.2355/isijinternational.32.635

J. C. Irvin, ‚esistivity of ˜ulk sili™on —nd of di'used l—yers in sili™on, Bell Labs Technical Journal, pp.41-387410, 1962.

M. Joshi and S. Dash, hislo™—tionEindu™ed devi—tion of phosphorusEdi'usion pro(les in sili™on, IBM Journal of Research and Development, vol.10, p.446454, 1966.

I. Jung and Y. Zhang, „hermodyn—mi™ ™—l™ul—tions for the dephosphoE riz—tion of sili™on using molten sl—g, JOM, pp.64-973981, 2012.

E. Kooi, porm—tion —nd ™omposition of surf—™e l—yers —nd solu˜ility limits of phosphorus during di'usion in sili™on, Journal of the Electrochemical Society, vol.111, p.13831387, 1964.

S. Liang and R. Schmid-fetzer, wodeling of thermodyn—mi™ properE ties —nd ph—se equili˜ri— of the siEp system, Journal of Phase Equilibria and Diusion, vol.35, p.2435, 2014.

H. Lukas, E. T. Henig, and B. Zimmermann, yptimiz—tion of ph—se diE —gr—ms ˜y — le—st squ—res method using simult—neously di'erent types of d—t—, Calphad, pp.1-225236, 1977.

I. Mackintosh, „he di'usion of phosphorus in sili™on, Journal of The Electrochemical Society, vol.109, p.392401, 1962.

G. Masetti, D. Nobili, and S. Solmi, €ro(les of phosphorus predeposited in sili™on —nd ™—rrier ™on™entr—tion in equili˜rium with sip pre™ipit—tes9, Semiconductor silicon, p.648657, 1977.

T. Miki, K. Morita, and N. Sano, Thermodynamics of phosphorus in molten silicon, Metallurgical and Materials Transactions B, vol.255, issue.1, pp.937-941, 1996.
DOI : 10.2355/isijinternational.32.635

V. M. Miyake, T. Hiramatsu, and M. Maeda, ‚emov—l of phosphorus —nd —ntimony in sili™on ˜y ele™tron ˜e—m melting —t low, Journal of the Japan Institute of Metals, vol.70, p.4346, 2006.

T. Narushima, K. Matsuzawa, Y. Mukai, and Y. Iguchi, yxygen soluE ˜ility in liquid sili™on, Materials Transactions, JIM, pp.35-522528, 1994.

R. Olesinski, N. Kanani, and G. , Abbaschian, „he pE si @phosphorusE sili™onA system, Journal of Phase Equilibria, vol.6, p.130133, 1985.

F. Philipp and P. Schmidt, „he ™—tioni™ ™l—thr—te si RTE P xp P xtex ™ryst—l growth ˜y ™hemi™—l v—pour tr—nsport, Journal of Crystal Growth, pp.310-54025408, 2008.

J. Pires, J. Otubo, A. Braga, and P. Mei, „he puri(™—tion of met—llurE gi™—l gr—de sili™on ˜y ele™tron ˜e—m melting, Journal of Materials Processing Technology, vol.169, p.1620, 2005.

J. Safarian and M. Tangstad, €h—se di—gr—m study of the si!p system in siEri™h region, Journal of Materials Research, vol.26, p.14941503, 2011.

F. Schwettmann and D. Kendall, g—rrier pro(le ™h—nge for phosphorusE di'used l—yers on lowEtemper—ture he—t tre—tment, Applied Physics Letters, vol.19, p.218220, 1971.

W. Shockley and H. J. Queisser, het—iled ˜—l—n™e limit of e0™ien™y of pEn jun™tion sol—r ™ells, Journal of applied physics, vol.32, p.510519, 1961.

S. Solmi, A. Parisini, R. Angelucci, A. Armigliato, D. Nobili et al., hop—nt —nd ™—rrier ™on™entr—tion in si in equili˜rium with mono™lini™ sip pre™ipit—tes, Physical Review B, pp.53-7836, 1996.

H. Sunami, „herm—l oxid—tion of phosphorusEdoped poly™ryst—lline sili™on in wet oxygen, Journal of The Electrochemical Society, vol.125, p.892897, 1978.

K. Suzuki, K. Sakaguchi, T. Nakagiri, and N. Sano, q—seous remov—l of phosphorus —nd ˜oron from molten sili™on, Journal of the Japan Institute of Metals, pp.54-161167, 1990.

M. Tamura, hislo™—tion networks in phosphorusEimpl—nted sili™on, Philosophical Magazine, vol.35, p.663691, 1977.

K. Tang, E. J. Ovrelid, G. Tranell, and M. Tangstad, „hermo™hemE i™—l —nd kineti™ d—t—˜—ses for the sol—r ™ell sili™on m—teri—ls, in Crystal growth of Si for solar cells, p.219251, 2009.

H. Thurn and H. Krebs, …˜er struktur und eigens™h—ften der h—l˜met—lleF xxiiF die krist—llstruktur des hittorfs™hen phosphors, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, pp.25-125, 1969.

J. C. Tsai, ƒh—llow phosphorus di'usion pro(les in sili™on, Proceedings of the IEEE, p.14991506, 1969.

Y. A. Ugai, L. Sokolov, and E. Goncharov, €EtEx st—te di—gr—m —nd thermodyn—mi™s of ph—se equili˜ri— in the sili™on E phosphorus system, Zhurnal Neorganicheskoi Khimii, vol.32, p.11981200, 1987.

T. Wadsten, gryst—l stru™tures of sipP si—sP —nd gep, 1967.

T. Wadsten, ƒynthesis of — pyriteEtype modi(™—tion of sipP

T. Wadsten, ƒynthesis —nd stru™tur—l d—t— of sip, 1969.

T. Wadsten, €rep—r—tive —nd ™ryst—lEstru™ture studies on orthorhom˜i™ sili™on monophosphide, Chemica Scripta, vol.8, p.6369, 1975.

M. Yoshida, E. Arai, H. Nakamura, and Y. , Terunuma, ix™ess v—™—n™y gener—tion me™h—nism —t phosphorus di'usion into sili™on, Journal of Applied Physics, pp.45-14981506, 1974.

N. Yuge, K. Hanazawa, K. Nishikawa, and H. , Terashima, ‚emov—l of phosphorusD —luminum —nd ™—l™ium ˜y ev—por—tion in molten sili™on, Journal of the Japan Institute of Metals, pp.61-10861093, 1997.

A. I. Zaitsev, A. D. Litvina, and N. E. Shelkova, „hermodyn—mi™ propE erties of si!p melts, High Temperature, pp.39-227232, 2001.

S. Zheng, W. Chen, J. Cai, J. Li, C. Chen et al., w—ss tr—nsfer of phosphorus in sili™on melts under v—™uum indu™tion re(ning, Metallurgical and Materials Transactions B, pp.41-12681273, 2010.

S. Zheng, T. A. Engh, M. Tangstad, and X. Luo, ƒep—r—tion of phosphorus from sili™on ˜y indu™tion v—™uum re(ning, Separation and purication technology, pp. 128137. LIST OF FIGURES 2.6 Reproduction of the experimental data observed by Giessen and Vogel, p.48, 2011.

. Arutyunyan, The dash lines are the data from Giessen and Vogel [17], and the points are experimental data of (1) Kooi

S. Favre, I. Nuta, G. Chichignoud, K. Zaidat, and C. Chatillon, Removing Phosphorus from Molten Silicon: A Thermodynamic Evaluation of Distillation, ECS Journal of Solid State Science and Technology, vol.5, issue.3, pp.129-137, 2016.
DOI : 10.1149/2.0361602jss

URL : https://hal.archives-ouvertes.fr/hal-01367839

. Abstract, Within the framework of purication of molten silicon for solar cells, phosphorus is one of few impurities that remains problematic. The present purpose is to develop a new method that leads to a nal phosphorus concentration around 0.5 wppm. We have rst focused on the main thermodynamic parameters that control the process: relevant thermodynamic parameters are taken from literature, such as activities, partial pressures and interaction coecients. According to our results, distillation of phosphorus under vacuum occurs at high temperatures. Yet, the residual oxygen present in the vacuum is a hindrance to the distillation, since it evaporates in the form of silicon oxides

. Chatillon, Removing phosphorus from molten silicon: solubility prediction of P in Si

. Abstract, After a thorough critical literature review of the available thermodynamic data, a Calphad assessment has been performed on the Si P binary system

I. Nuta, ‚emoving phosphorus from molten sili™onX — thermodyn—mi™ ev—lu—tion of distill—tionComputer Coupling of Phase Diagrams and Thermochemistry, the 45 th International Conference on

G. Chichignoud, ile™trom—gneti™ levit—tion method for sili™on puri(™—tion, the 18 th International Conference on "Crystal Growth and Epitaxy" (ICCGE18)