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Abstract

Reconstructing the 3D shape of objects from multiple images is an important goal in computer
vision and has been extensively studied for both rigid and non-rigid (or deformable) objects.
Structure-from-Motion (SfM) is an algorithm that performs the 3D reconstruction of rigid
objects using the inter-image visual motion from multiple images obtained from a moving
camera. SfM is a very accurate and stable solution. Deformable 3D reconstruction, however,
has been widely studied for monocular images (obtained from a single camera) and still
remains an open research problem. The current methods exploit visual cues such as the
inter-image visual motion and shading in order to formalise a reconstruction algorithm. This
thesis focuses on the use of the inter-image visual motion for solving this problem. Two
types of scenarios exist in the literature: 1) Non-Rigid Structure-from-Motion (NRSfM) and

2) Shape-from-Template (SfT). The goal of NRSfM is to reconstruct multiple shapes of a
deformable object as viewed in multiple images while SfT (also referred to as template-based
reconstruction) uses a single image of a deformed object and its 3D template (a textured 3D
shape of the object in one con guration) to recover the deformed shape of the object.

We propose an NRSfM method to reconstruct the deformable surfaces undergoing iso-
metric deformations (the objects do not stretch or shrink under an isometric deformation)
using Riemannian geometry. This allows NRSfM to be expressed in terms of Partial Di er-
ential Equations (PDE) and to be solved algebraically. We show that the problem has linear
complexity and the reconstruction algorithm has a very low computational cost compared to
existing NRSfM methods. This work motivated us to use di erential geometry and Cartan's
theory of connections to model NRSfM, which led to the possibility of extending the solution
to deformations other than isometry. In fact, this led to a uni ed theoretical framework for
modelling and solving both NRSfM and ST for various types of deformations. In addition, it
also makes it possible to have a solution to SfT which does not require an explicit modelling
of deformation. An important point is that most of the NRSfM and SfT methods reconstruct
the thin-shell surface of the object. The reconstruction of the entire volume (the thin-shell
surface and the interior) has not been explored yet. We propose the rst SfT method that
reconstructs the entire volume of a deformable object.

Vii






Resune

La reconstruction 3D d'objetsa partir de plusieurs images est un objectif important de la
vision par ordinateur. Elle aet largementetudee pour les objets rigides et non rigides (ou
ceformables). Le Structure-from-Motion (SfM) est un algorithme qui e ectue la reconstruc-
tion 3D d'objets rigides en utilisant le mouvement visuel entre plusieurs images obtenuesa
l'aide d'une canera en mouvement. Le SfM est une solution tes pecise et stable. La recon-
struction 3D deformable aek largementetudee pour les images monoculaires (obtenuesa
partir d'une seule canera) mais reste un probeme ouvert. Les nethodes actuelles exploitent
des indices visuels tels que le mouvement visuel inter-image et I'ombrage a n de construire
un algorithme de reconstruction. Cette tlese se concentre sur l'utilisation du mouvement
visuel inter-image pour esoudre ce probeme. Deux types de s@narios existent dans la
literature: 1) le Non-Rigid Structure-from-Motion (NRSfM) et 2) le Shape-from-Template
(SfT). L'objectif du NRSfM est de reconstruire plusieurs formes d'un objet deformable tel
qu'il apparat dans plusieurs images, alors que le SfT ggalement appek reconstruction a
partir d'un mockle de etrence) utilise une seule image d'un objet ceforrme et son mocele 3D
de ekrence (une forme 3D textuee de I'objet dans une con guration) pour estimer la forme
ceformee de l'objet.

Nous proposons une nethode de NRSfM pour reconstruire les surfaces deformables
soumisesa des ceformations isonetriques (les objets ne sktirent pas ou ne se contractent
pas sous une ceformation isonetrique) en utilisant la geonetrie riemannienne. Cela per-
met d'exprimer le NRSfM en termes dequations aux cerivees partielles et de le esoudre
algebriguement. Nous montrons que le probeme a une complexit lireaire et que l'algorithme
de reconstruction propos a un colt de calcul tes bas compae aux nmethodes existantes de
NRSfM. Ce travail nous a motivea utiliser la geonetrie dierentielle et la theorie des con-
nexions de Cartan pour mockliser le NRSfM, ce qui nous a permis detendre la solutiona
des deformations autres que l'isonetrie. En fait, cela a conduita un cadre treorique unie
pour moctliser et esoudre le NRSfM et le SfT pour dierents types de deformations. Ce
cadre permetegalement d'avoir une solution au SfT qui ne recessite pas de moctlisation
explicite de la ceformation. Un point important est que la plupart des methodes de NRSfM
et de SfT reconstruisent la surface de l'objet (hypottese coque mince). La reconstruction de
I'ensemble d'un volume (la surface et l'inerieur d'un objet) n'avait pas encoreet exploee.
Nous proposons la premere methode de SfT qui reconstruit le volume complet d'un objet
ckeformable.
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Chapter

Introduction

1.1 Background

An important task in 3D computer vision is to recover 3D information from 2D images
obtained by the camera. This task is widely termed as 3D reconstruction. Although there
are active image sensors such as the Kinect and Time-of-Flight (ToF) cameras available which
can obtain the depth of the view under consideration, passive 3D reconstruction from images
remains an interesting topic for researchers because the scope of 3D sensors is limited due to
the various constraints of size, cost and accuracy. 3D reconstruction methods rely on various
visual cues from images (such as shading, texture, silhouettes, contours and motion) in order
to nd 3D descriptors such as the depth map and local surface orientation (or normals) of
the objects.

The objects found in nature can be roughly classied into rigid or non-rigid (or de-
formable) objects. The 3D reconstruction of rigid objects using motion cues, also known
as Structure-from-Motion (SfM) [ , ] (see gure 1.1a), has been
widely studied for the past few decades and there are solutions available which are stable
and accurate. SfM exploits the inter-image visual motion information in order to reconstruct
3D from multiple 2D images taken from di erent views of a rigid object. Rigidity allows
the inter-image visual motion to be expressed in terms of the rotation and translation of the
camera coordinate frames of the images. However, SfM cannot be extended to deformable
objects as between any two images, the deformable object may undergo a deformation and
therefore, the inter-image visual motion cannot be expressed only in terms of the camera
rotation and translation.

In the past decade, the deformable 3D reconstruction problem has been studied exten-
sively in over a hundred research papers. Some of the methods combine motion with other
visual cues to disambiguate the problem and make it well-posed. For example, [ ,

; : ; : ] combine shading with motion, [
, , ] combine shading and contours with motion and [ ,
] combine shading with texture. However, the existing solu-

’ ’
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tions are not close to SfM in terms of accuracy and stability. Deformable 3D reconstruction
is an important problem to solve as it has a wide range of applications such as in the medical,
sports, entertainment and advertising domains. Some applications are explored in augmented
reality: 1) [ , ] shows how to study the impact of a soft ball on various sur-
faces. This is useful in designing and testing sports equipments?) [ , ,

; : ; : ] show how to augment the deformations of
the body organs in order to aid minimally invasive medical surgeries.3) [

, ; , ] recover the deformation of the objects in real-time which can be
useful in various industries. For example, they can be used by online shopping companies to
enable the customers to try clothes and accessories virtually. Figure 1.2 shows some of these
applications.

NN
_ . K

Figure 1.1: 3D reconstruction methods. For rigid objects, SfM is a widely used method (Images
taken from [ , 1). The 3D reconstruction of deformable objects can be performed by
either NRSfM or SfT methods.

This thesis focuses on the monocular deformable 3D reconstruction methods that use
motion as a visual cue in monocular imaging conditions. We now de ne the problem in detail
and describe our contributions.



1.1. BACKGROUND

# $ $  $%
$ $ $ % " &$
"'$ ( % 11 $" % ) $
$ $" 1o $ * S
g S
+ , % Il $" % - " !
" " -$ $ " $
$ ! " $ I %

Figure 1.2: Some applications of the deformable 3D reconstruction methods.
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1.2 3D Reconstruction of Deformable Objects

As mentioned earlier, the 3D reconstruction of rigid objects by SfM cannot be directly ex-
tended to deformable objects. As these objects may undergo deformations, the inter-image
visual motion (strictly induced by the change in camera coordinate frame in the case of SfM)
is now dependent on both camera motion and object deformation. Exploiting this visual
motion (coupled with deformations) becomes a challenging task as the constraints are weaker
in this case.

The goal of this thesis is to propose a general framework for modelling and solving de-
formable 3D reconstruction. At this point, we classify deformable objects as thin-shell (ob-
jects with an in nitesimal thickness, such as a piece of cloth, paper, etc.) and volumetric
objects (objects with non-negligible thickness such as a sponge, cushion, etc.). Volumetric
objects can be considered as thin-shell objects in cases they are represented by their outer-
shells only but at the price of losing inner constraints. We now discuss the two categories of
deformable 3D reconstruction problems that arise in computer vision.

1.2.1 Shape-from-Template

SIT (see gure 1.1b) is the generic name for a set of methods which perform the monocular
3D reconstruction of deformable objects using a 3D template of the object. It is also called
template-based (or model-based) reconstruction in the literature. The inputs of SfT are a
single image and the object's template, and its output is the object's deformed shape. The
template (sometimes also called model) is a very strong object-speci ¢ prior as it includes a
reference shape, a texture-map and a deformation model. Some SfT problems, such as the
reconstruction of isometric thin-shell objects, have been extensively studied. Some of these
methods are | , ; , ; , X
, X , ]. SfT methods with real-time implementation

are [ , ; : 1

Most of the SfT methods use the thin-shell isometric deformation model which implies
that the geodesic distances between any two points on the object do not change due to the
deformation. Isometry can be seen as local rigidity. Isometry is a very good approximation as
most of the objects in nature undergo near-isometric deformations. Mathematically, it is also
relatively easier to model isometry than other deformations. Our work focuses on isometry
but we do explore other deformations as well and present a general modelling framework
which makes it easier (and practical) to express various deformations.

1.2.2 Non-Rigid Structure-from-Motion

NRSfM (see gure 1.1b) is the generic name for a set of methods which perform the monocular
3D reconstruction of deformable objects from multiple images only. It is also called template-
free (or model-free) reconstruction in the literature. The inputs to NRSfM are multiple images
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and its output is the object's 3D shape for every image. In NRSfM, the rigidity constraint of
SfM is replaced by constraints on the object's shape and deformation model. NRSfM methods

were proposed initially with the low-rank shape basis [ , ], the trajectory
basis [ , ], isometry [ , ; : ;
, ], inextensibility [ , ] and elasticity [ , 1.

Existing methods su er from one or several limitations amongst solution ambiguities, low
accuracy, ill-posedness, inability to handle missing data and high computation cost. NRSfM
thus still exists as an open research problem.

Based on the modelling framework, existing NRSfM methods can be divided into two
main categories: 1) methods with statistics-based modelling and2) methods with physics-
based modelling. physics-based modelling is the most recent. Most of the NRSfM methods
use a statistics-based modelling. While statistics-based modelling does not take the object's
nature into account, physics-based modelling is usually limited to thin-shell objects only.

1.2.3 Current Limitations

With this discussion, we want to emphasize the following limitations of existing SfT and
NRSfM methods:

1) Methods with physics-based modelling are capable of handling more complex defor-
mations than methods with statistics-based modelling and they proved to be very successful
in SfT. However, physics-based modelling is seldom used in NRSfM.

2) Most of the existing thin-shell NRSfM methods work with the orthographic projection
model which su ers from ip ambiguities. Therefore, the focus of the new techniques should
be towards solving NRSfM using perspective projection as these solutions are more accurate.

3) Most of the methods deal with isometry or near-isometry which is relatively easier to
model. Other deformations have been less explored.

4) Volumetric SfT has not been explored yet. There are some methods that recover the
closed thin-shell of the object but a complete 3D reconstruction of a deformable object has
not been achieved yet.

Now we discuss our contributions to SfT and NRSfM in detail.

1.3 Contributions

This thesis has three main contributions. Our rst contribution is about solving NRSfM with

the use of Riemannian geometry. This is a local formulation which means that the points
on a surface can be reconstructed independently. The particles on an object are attached to
each other and therefore the force causing deformation acts globally. However, the impact
of the force is not necessarily uniform throughout the object which makes it interesting to
study the deformations locally. This local formulation using Riemannian Geometry allows
NRSfM to be expressed in terms of polynomial expressions whose variables are independent
of the number of images under consideration. Our second contribution is about proposing a
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modelling framework for NRSfM and SfT (using di erential geometry) which is general and
makes it convenient to handle various kinds of deformations. These solutions are obtained
in terms of the dierential or local quantities expressed at a surface, as a set of Partial
Di erential Equations (PDE) that hold at each point on the surface. In order to solve the
PDE, we convert them to algebraic expressions by replacing the di erentials in the PDE with
algebraic variables. Given enough constraints, these algebraic equations yield a local solution.
This solution can be obtained independently for each point. However, it may not always be
possible to nd such a solution. We discuss such conditions. The third contribution is a
solution to SfT for volumetric objects.

To sum up, this thesis contributes in nding an answer to the following questions:

1) Is it possible to the extend the dierential physics-based modelling of ST [

, ] for isometric deformations to NRSfM? Can we solve NRSfM locally from a

PDE formulation?

2) Is it possible to the extend the local formulation of NRSfM to deformations other than
isometry?

3) Can we reconstruct the entire volume of a deformable object in a model-based scenario?

A fundamental assumption. Our framework relates the 3D shapes using the inter-image
warps. These are the functions that register one image to another. Registering wide-baseline
images can be accomplished by Scale Invariant Feature Transform (SIFT) [ : ] which
is a sparse-registration method. Dense or semi-dense registration can be achieved using
SIFT Flow [ , ] and DeepFlow [ , ] respectively. In order
to register short-baseline images (for example, images from a video sequence), optical ow
methods can be used. It usually gives a dense-registration. Some of the e cient methods
are [ , : , ; , ]. These methods yield a
dense registration. The rst and higher order derivatives of the registration can be computed
from the keypoint correspondences (obtained from the previous methods) using [ ,
: , ]. We make the assumption that in SfT and in NRSfM, the image
registration can be established by using existing methods. Nevertheless, we only need to nd
these warps locally at each point. We use the rst and the second-order derivatives of the
warps in the rst two contributions while in the third we only need the rst order derivatives.
The second-order derivatives are usually noisy, we correct them using Schwarps [ ,
]. We show that the use of Schwarps is theoretically justi ed as well.

Contribution 1: Non-Rigid Structure-from-Motion using Riemannian geometry.
We present a solution to NRSfM using the thin-shell isometric deformation model, that we
hereinafter denote as Iso-NRSfM. We model Iso-NRSfM using concepts from Riemannian
geometry.

We model the object's 3D shape for each image as a Riemannian manifold and deforma-
tions as isometric mappings. We parametrise each manifold by embedding the corresponding
retinal plane. This allows us to reason on advanced surface properties, hamely the metric
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tensor and the Christo el Symbols (CS), directly in retinal coordinates, and in relationship to
the warps. These metric properties allow us to express the di erential properties of surfaces,
such as length, which are to be preserved under isometric deformations.

We formulate Iso-NRSfM locally with ve variables which are functions of the rst and
the second-order derivatives of the inverse-depth of the surface undergoing deformation. We
write the metric tensor and the CS in terms of these variables. We prove two new theorems
showing that for isometric deformations, the metric tensor and the CS may be transferred
between views using only the warps. This limits the number of variables to only ve for any
number N of views.

First, we solved Iso-NRSfM in [ , ] (see gure 1.3) by assuming that
the surface is planar in the in nitesimal neighbourhood of each point. This is the assumption
of In nitesimal Planarity (IP) which lets us get rid of the second-order derivatives in the
expression of the CS. This limits the variables to only two. These variables correspond to
the ratio of rst-order derivatives of the inverse-depth function to the inverse-depth function.
We obtained a system of two cubics in two variables that involve the rst and the second-order
derivatives of the warps. This system holds at each point on the surface.

Then, we extended the solution to Iso-NRSfM without the assumption of IP. Our solution
is obtained in two steps. 1) We solve for the rst-order derivatives assuming that the second-
order derivatives are known. This is initialised using the solution with IP. 2) We solve for
the second-order derivatives with the rst-order derivatives obtained in the previous step.
We obtain a system of N 4 linear equations in three variables which is solved using Linear
Least Squares (LLS). We iterate these two steps until the rst-order derivatives converge.
The solution gives an estimate of the metric tensor eld, and thus of the surface's normal
eld, in all views. The shape is nally recovered by integrating the normal eld for each
view. The proposed method has the following features.1) It has a linear complexity in

E =264 E =28.6 E =555

n # $% &' # 3% & #("
Figure 1.3: Comparison of Iso-NRSfM (with and without IP) with [ , ].

the number of views and number of points.2) It uses a well-posed point-wise solution from
N 3 views, thus covering the minimum data case.3) It naturally handles missing data
created by occlusions. 4) It substantially outperforms existing methods in terms of speed
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and accuracy, as we experimentally veri ed using synthetic and real datasets.

Contribution 2: a unied framework for the 3D reconstruction of deformable

objects using Cartan's connections. Unlike SfM which is modelled using algebraic pro-
jective geometry, there is no consensus on the modelling framework of NRSfM yet. We
present a modelling framework for NRSfM using the di erential geometry of surfaces. In
mathematics, di erential geometry is the basis to study the properties of curves and surfaces.
Recently, [ , ] proposed to solve SfM using the di erential geometry of
3D curves. | : ] proposed pose estimation and camera calibration using di erential
geometry of 3D curves. However, it is not widely used in modelling surfaces for deformable
3D reconstruction. Recently, [ : ] proposed solutions to SfT using di erential
geometry. These solutions are analytic and therefore, they are very fast and need not be
initialised. The success of our rst contribution where we solve NRSfM with Riemannian
geometry (which is a special case of di erential geometry) is a motivation for us to use dif-
ferential geometry to propose a general framework to model NRSfM and SfT. Riemannian
geometry is limited to isometric (geodesic-distances preserving) and conformal (angles pre-
serving) deformations whereas di erential geometry is more general and can model a wider
range of deformations.

This framework can therefore handle a wide variety of deformation models (including
isometry) in a convenient way and therefore is a practical approach towards NRSfM. We
model surfaces as smooth manifolds [Lee, ] and extract di erential properties of the
surfaces using di erential geometry. Our work is essentially based on Cartan's theory of
connections [ , , , ] devised using the di erential geometry of smooth
manifolds and the theory of moving frames [ , ]. The connections were at rst
formalised as the entities that enable movement along the curves as a parallel transport i.e.,
the orientation of a vector on the curve or surface does not change when it moves in a closed
curve. This is known as a Levi-Civita connection [Lee, ]. Cartan generalised the idea
of connections as the entities that transport tangent plane vectors along the curve. Cartan's
connections are not limited to parallel transport along the curves and therefore, they are
more generic. In this thesis, we always work with Cartan's connections.

A moving frame is de ned as a local frame of reference de ned at a point on a surface (or a
manifold). The di erential properties of the surfaces such as lengths, angles and areas can be
described using the moving frames. The connections are derived using the moving frame and
its derivatives. They are related to the rst, second and the third fundamental forms of the
surfaces [ , ]. Cartan proved that connections are necessary and su cient to study
the properties of 3D surfaces. From these properties, we derive di erential constraints on the
surfaces that lead to a solution to NRSfM and SfT. We solve these constraints algebraically.

We use moving frames and connections to design a modelling framework for the study of
thin-shell deformable objects. Our framework has the following characteristics.

1) Our framework relies on the In nitesimal Linearity (IL) assumption [ , ]
Under this assumption, any smooth deformation may be considered to be linear in the in-
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nitesimal neighbourhood of a point while globally it could still be non-linear. This allows
us to express the moving frame and the connections in terms of two variables (the rst-order
derivatives of the inverse-depth) only.

2) We prove a theorem stating that connections on any two surfaces can be related to
each other for any kind of smooth (IL) deformation they undergo. This allows the number
of variables to be only two for any number of views used in the reconstruction.

3) We express the physical properties of surfaces (such as lengths, angles and areas) locally
in terms of the moving frames. We express deformation constraints as the physical properties
they preserve. For example, isometry preserves both lengths and angles. We express isometric
deformation constraints as the preservation of lengths and angles de ned using moving frames.
We express constraints for other deformations such as conformal (angles made by any three
points on a surface do not change under deformation) and equiareal (areas are preserved under
deformations). We propose a deformation that is a combination of anisotropic scaling (along
surfaces' frame-basis) and a conformal deformation. We call it the skewless deformation. We
explain it further in chapter 5.

4) These physical properties are related by the image warps across surfaces.

This theoretical framework leads to local solutions to deformable 3D reconstruction in
terms of PDE which we solve algebraically (see gure 1.4 for more details). This frame-
work represents surfaces analytically. Therefore, it is very easy to change surface de nition
which makes it very easy for this framework to adapt for di erent representations. By ex-

Figure 1.4: A broad overview of the problem. Moving frames and connections are the generalisa-
tion of the concepts of metric tensors and CS from Riemannian geometry. We use them to express
di erential constraints in terms of PDE. The manipulation of these constraints with or without the

IL assumption leads to reconstruction equations that are also PDE. IL is not necessary to nd these
equations, however we use it to simplify the problem. These reconstruction equations may or may
not have an algebraic solution. Here, an algebraic solution implies that the equations can be solved
locally at each point. In this thesis, we solve the equations with possible algebraic (or local) solution.

pressing the deformation constraints in terms of the moving frame and using our theorem
of transfer of connections, we present solutions to deformable 3D reconstruction for various
deformations like isometry, conformity, skewless or equiareal. The solution to NRSfM under
a) isometric/conformal deformations is given by solving a system of two cubicsh) skewless
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deformations is given by solving a system of two septics (exploiting the rst and second-order
derivatives of the warps) in terms of two variables only.

We show that Iso-NRSfM (our rst contribution) can be obtained using this framework as
well. In this solution, we chose isometry to be solved as conformity as it makes the problem
simpler to solve.

Our framework is directly extended to SfT. The existing solutions to isometric and
conformal SfT [ , ] can be derived using this framework. We obtain an SfT
solution to a) isometric/conformal and equiareal deformation as two linear expressionsb)
skewless deformation as a system of two cubics in terms of two variables. These expressions
exploit the rst and the second-order derivatives of the warps.

Due to our theorem of transfer of connections across smooth surfaces using the inter-image
warps, we propose a solution to SfT which is independent of the deformation constraints
and only imposes deformation to be locally smooth. SfT has previously been solved under
the assumption of smooth deformation in [ , ]. We compare it with
our results of SfT. [ , ] discussed that such a solution is not well-posed,
however, we show that our solution to smooth deformations is well-posed. We discuss the
reasons which make it well-posed.

Summing up, the proposed framework has the following featuresl) It is a uni ed mod-
elling framework for NRSfM (and SfT) using di erential geometry assuming IL, which can
be extended to various deformations.2) It brings the solutions to isometric/conformal and
skewless NRSfM as a set of two cubic and septic polynomials respectively in terms of two
variables for any number of views. 3) It brings the solutions to isometric/conformal and
equiareal SfT using a linear system of two equations in two variables only4) It brings the
solution to skewless SfT by solving a cubic system of two equations in two variables onlyb)

It also brings a solution to SfT for smooth deformations which is also a system of two linear
equations in two variables only.

Contribution 3: Shape-from-Template for volumetric objects. As discussed earlier,
existing SfT methods are thin-shell SfT essentially, as they are designed for thin objects such
as a piece of paper. However, while thin-shell SfT handles thicker objects such as the woggle
of gure 1.5 or a foam ball, it does not fully exploit the strong constraints induced by the
object's non-empty interior.

We bring ST one step further by introducing volumetric SfT, de ned as an SfT method
which uses a deformation constraint on the object's outer surface and interior. An example
is shown in gure 1.5. Volumetric SfT reconstructs the object's interior deformation, which
is not reconstructed by thin-shell SfT, and reconstructs the object's outer surface more accu-
rately than thin-shell SfT thanks to the stronger deformation constraint it uses. Volumetric
SIT is challenging as only the front part of the object's surface is visible in the image: the
object's back surface and interior have to be inferred with no direct visual observations.

It is important to note that strictly speaking, isometry leads to rigidity in volumes. Only
rigid volumetric objects can preserve geodesic-distances while undergoing deformation. We

10
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Figure 1.5: Volumetric SfT versus thin-shell SfT. Existing methods are thin-shell SfT. They use
deformation constraints on the object's surface. For instance, [ , ] uses isometric
constraints on the object's visible (front) surface and reconstructs the object partially, while [

, ] uses isometric constraints on the object's whole closed outer surface and reconstructs
it entirely. Volumetric SfT uses deformation constraints on the object's surfaceand interior. This
greatly improves reconstruction accuracy and facilitates reconstructlon of the object's interior. In this
example, the thin-shell SfT methods [ , ] reach a 3D error of
20 mm and 13 mm respectively on the visible surface Whlle the proposed volumetric SfT method
reaches a 3D error of 7 mm. It reconstructs the non-visible (back) surface, for which no visual data is
available, with a 3D error of 17 mm.

propose to instantiate volumetric SfT using the As-Rigid-As-Possible (ARAP) deformation
model (a relaxation of isometry), which has been used extremely successfully in Computer
Graphics [ , ; , ]. The ARAP model maximises local
rigidity while penalising stretching, sheering and compression. More speci cally, ARAP has
been widely used to perform mesh editing of animated characters [ , ;

, ] because the resulting deformations locally preserve the object's structure.

Contrary to thin-shell SfT, volumetric SfT is largely unexplored. Recently, [

, ] proposed a method that reconstructs the closed thin-shell surface of the de-
formable object in real-time. This method is named \VolumeDeform" however it does not
reconstruct the interior of the object. The closest method to volumetric ST is perhaps |

, ], where SfT has been combined with silhouette-based reconstruction.
However this method requires stronger image cues, including silhouette and point correspon-
dences, and recovers two-way ambiguous shape solutions. In contrast, we solve volumetric
ST without restricting the topology of the object and using the perspective camera. By using
ARAP, our method preserves the object's interior structure while jointly reconstructing the
deformation of the object's full outer surface and interior, as illustrated in gure 1.6. ARAP
volumetric SfT involves solving a non-convex constrained variational optimisation problem.
We discretise the object's volume and relax the constraints to convert the variational problem
into an unconstrained non-linear least-squares optimisation problem. This problem can then
be solved with standard numerical solvers such as Levenberg-Marquardt. We propose two

11
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Figure 1.6: As opposed to thin-shell SfT, volumetric SfT reconstructs the object's interior deforma-
tion. In this example using the data from gure 1.5, a virtual cylinder is placed inside the woggle's
template. It is then deformed using the deformation reconstructed by volumetric SfT to aid visual-
ization of the object's reconstructed interior deformation. The second deformation is the one shown
in gure 1.5.

initialisation methods. These methods use isometric thin-shell SfT and propagate the result
through the object's volume.

The proposed contribution has the following features. 1) We show that isometry in
volumes is essentially a local rigidity or inextensibility constraint. 2) We solve volumetric
SfT in two steps: initialisation and re nement. 3) We propose two methods for initialisation.
4) We perform re nement in two ways: minimising L1 and L2 norms. 5) Experimental
results on synthetic and real data show that volumetric SfT improves accuracy to a large
extent compared to state-of-the-art thin-shell SfT methods.

Thesis layout. We have divided this thesis into 7 chapters. We discuss the state of the
art in chapter 2, mathematical preliminaries in chapter 3. Chapters 4, 5 and 6 give our
rst, second and third contributions. Chapter 7 presents our conclusions and perspectives
for future work.

12



Chapter

Related Work

In this chapter we discuss the existing works on SfT and NRSfM that use motion as a visible
cue in two sections. We sub-categorise these methods based on the constraints they use.
Most of these methods are designed for thin-shell objects but we also discuss the works that
are related to volumetric objects.

2.1 Shape-from-Template

The SfT methods were introduced much later than NRSfM but they evolved quickly. Now
there are stable and real-time SfT methods [ , : , ].
In general, SfT uses a 3D template of a thin-shell object. This is a very strong prior and
makes ST a better-posed problem than NRSfM. We classify current SfT methods into two
categories: initialisation and re nement methods. The initialisation methods are the ones
which achieve a fast solution to SfT using deformation constraints. They do not employ
a heavy non-convex optimisation to minimise a cost which consists of a set of constraints
such as deformation, smoothness or reprojection which is the case with re nement methods.
Re nement methods are computationally expensive but more accurate. However, they need
to be initialised. The performance of these methods depends on the accuracy of initialisation.
A good initialisation can signi cantly reduce their computation time. We recall that the
current SfT solutions are for thin-shell objects only, SfT for volumetric objects has not been
proposed however, we discuss some of the works that use non thin-shell models.

Most of the SfT methods exploit physics-based modelling. Most of them use isometry
as a physical prior but there are some solutions that use elasticity [ , ;
, ], the particle model [ , ] or smoothness |
, ]. We organise these two categories of initialisation and re nement into methods
that employ isometric and non-isometric constraints. We now discuss these two categories of
methods.

13
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2.1.1 Thin-Shell Initialisation Methods
2.1.1.1 Isometric Constraints

Most of the initialisation methods use isometry as a deformation prior. Isometry is a physi-
cal prior on deformation which can be seen as local rigidity. Isometry preserves the geodesic
distances between points on a surface undergoing deformations. Therefore stretching or
shrinking of the surfaces is not allowed. Inextensibility is a relaxation of isometry. It means
that the Euclidean distances between the neighbouring points on the deformed surfaces are
always lower than or equal to the corresponding geodesic distances on the original surface.
Figure 5.1 shows two surfaces$s; and S, related by a deformation. The isometric and inex-

Figure 2.1: A surface S; transforms to surfaceS, due to a deformation. The points (P1;P;) on S;
transform to (Q1;Q2) on S;.

tensibility constraints on the points (P1;P2) on S; and (Q1; Q2) on Sy in terms of distances
between the points can be written as

kQ2 Qikg= kP2 Pikg isometry constraint

2.1
kQ2 Qika k P> Pikg inextensibility constraint 2.1)

where k:ky represents the Euclidean distance and:ky represents the geodesic distance be-
tween two points on a surface. Therefore, we can see that intextensibility is a relaxed form
of isometry. However, expressing geodesics on an arbitrary surface is not easy. Therefore,
most of the methods approximate the geodesics with euclidean distances by assuming that
the points are very close to each other. For example, the geodesic oR(; Q) on S, can be
written as the Euclidean distance between them given thatQ- is close enough toQ;. The
sense of closeness or neighbourhood of these points are de ned by the methods. Inextensibil-
ity needs to be combined with maximum depth in order to prevent the reconstructed surface
from shrinking. This is called as Maximum Depth Heuristics (MDH).

We now discuss the initialisation methods that use inextensibilty and isometry constraints
in two sections.

2.1.1.2 Inextensibility Constraints

[ : ] was the rst method to model isometry using the inextensibility
constraint (2.1). It is based on the MDH. It nds a solution to SfT by maximising depth
heuristically while imposing inextensibility constraints. Figure 2.2 shows two surfaces related
with an isometric mapping. Consider Q; at a distance ; from the camera. Assuming that
Q2 is a neighbouring point of Qy, it can be parametrised with the angle 1, between their

14
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St Sa

Figure 2.2: A surface S; transforms to surface S, due to an isometric deformation. The points
(P1;P2) on S; transform to (Qg; Q2) on S;. The sightlines of the two points (Q1; Q2) from the camera
C pass through (@ ; @) on the image plane.

sightlines from the cameraC. Therefore, we can write

2 3 2
1 2€0s( 12)
Q1= 2 Og; Q2= 9 2Sin ( 12)%1 (2.2)
0 0

Using this parametrisation of the points, the inextensibility constraint in equation (2.1) gives
the upper bound of ; as

di> .
sin 12’ (23)

where di» is the geodesic distance between the 3D pointB; and P, in the template. This is
the upper bound on the depth of each point. It is chosen to be the minimum upper bound
of all the neighbouring points such that the inextensibility constraint (2.1) is satis ed.

[ , ] made an improvement by modelling this problem as an Second-
order Cone Program (SOCP) which can be globally solved using convex optimization. The
method parametrises 3D points as the back-projection of 2D image points. Therefore any
point Q; can be expressed as "oy

Qi=1z 1 (2.4)
where z; is the depth at the i" point and g is the normalized image point. The idea is to
maximise the sum of all the depthsz; such that the inextensibility constraint (2.1) is satis ed.
This method uses a learned space of deformations using linear local models for small patches.
This limits the applicability of this method to surfaces whose linear local models are known.
However, it shows good performance when there is enough perspective in the images. [

, ] proposed an initialization method based on inextensibility constraints solved
using MDH. It used a parametric representation of surfaces using cubic B-splines [ ,
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] which reduces the dimensionality of the problem and provides a solution faster.

[ , ] proposed a modi ed approach, where the method uses a laplacian
smoothness prior along with inextensibility constraints. The laplacian of the template is
calculated which is assumed to be preserved under the deformation. The laplacian is linearly
parametrised and therefore, the problem can be solved using LLS. Itis used as an initialisation
method to the real-time solution to SfT proposed in [ , 1.

The above-mentioned methods use inextensibility constraints which is a relaxation on
isometry and therefore, it is not a strict physical constraint. A more accurate representation
of deformation constraints is possible by using di erential modelling which we discuss next.

2.1.1.3 First-Order Di erential Isometric Constraints

Recently, [ : ] proposed a local analytical solution to SfT using a warp and
rst-order di erential isometric constraints. It shows that SfT is a well-posed problem for
isometric deformations. It expresses the constraints in terms of rst-order PDE and nds an
algebraic solution to it. Since the method is analytical, it is very fast. However, it su ers with

instabilities under near-a ne conditions. [ , ] proposed an improvement
on these solutions to nd an analytical stable solution to depth using the gradient of the
depths which were otherwise discarded in [ , I

The success of these SfT methods inspires us to extend the physics-based di erential
modelling of deformation to NRSfM as well. We use di erential geometry to formulate the
NRSfM and SfT problems in terms of PDE and we nd algebraic solution to them.

2.1.1.4 Non-Isometric Constraints

[ , ] proposed to solve ST by using only smoothness as a deformation
prior. The solution is unique and obtained by solving an LLS problem. It nds the solution

to SfT using reprojection constraints and a smoothness constraint for a xed scale. The
problem with this method is that smoothness is a very weak constraint which can make this
method unstable.

[ , ] also proposed an analytical solution to conformal SfT. This solution
was also formulated using PDE and solved algebraically. Even though this method su ers
form instabilities, it usually performs better or as well as isometric SfT [ : 1.

Therefore, di erential modelling proves to be a good tool for non-isometric deformations as
well.

2.1.2 Thin-Shell Re nement Methods

These methods formulate global deformation constraints and solve them by using a non-
convex optimisation. Therefore, these methods need to be initialised. The initialisation
methods discussed in the previous section can be used to initialise these methods. In fact,
initialisation methods should always be combined with re nement methods in order to get
the best possible reconstruction. The accuracy of initialisation methods makes the re nement
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signi cantly faster. [ , ] showed results by initialising [ , ]
with their result. They achieved an almost real-time reconstruction. [ ,

] made an improvement on this and achieved a real-time reconstruction. We now discuss
the re nement methods that use isometric and non-isometric constraints in the next two
sections.

2.1.2.1 Isometric Constraints

[ , ] proposed the rst solution to SfT which optimises a statistically opti-
mal cost. The cost is composed of three errors: 3D back-projection, di erential isometric
constraints and smoothness. The 3D back-projection error Eeprojection ) accounts for the
di erence when the 3D points of the deformed shape project back to the corresponding in-
put image points. The di erential isometric constraint error ( Eisometry ) forces that isometry
holds at in nitesimal level. It ensures that the deformed shape is isometric. The smoothness
error (Esmooth ) forces the solution to be smooth. This problem is non-convex and relies on
iterative local optimization such as Levenberg-Marquardt which requires to be initialised and
has a high computation time. The cost is written as

Cost = Ereprojection + lisometry Eisometry *+ lsmooth Esmooth ; (2.5)

where the two parameterslisometry and Ismooth are weights to the isometric and smoothness
constraints and need to be tuned. We use a similar cost in order to nd a solution to
volumetric SfT.

[ , ] introduced a temporal smoothness constraint in addition to the above
mentioned constraints in order to improve the re nement.

2.1.2.2 Non-lsometric Constraints

[ : ; , ] model deformation as conformal and use the pixel intensity
error instead of the reprojection error. | , ] is initialised with [ , ]
and handles occlusions and poorly textured surfaces.

[ , ] proposed a solution to SfT by expressing the object as a set of
particles where deformation acts as a set of forces on it. It uses deformation and reprojection
constraints and nds a solution by evolving particles to achieve a global equilibrium due to
the action of various forces (including gravity). It uses boundary points to x the solution.

[ , ; : ] proposed a solution to SfT for extensible
surfaces by modelling deformation with elasticity. The idea is to minimise the stretching
energy such that the reprojection constraint and boundary points are satis ed.

SfT methods using non-isometric constraints are mostly solved using non-convex optimi-
sation.
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2.1.3 Shape-from-Template for Volumetric Objects

Volumetric objects have non-zero thickness. SfT methods using elasticity [ ,
; , ] require the surface model to include thickness, which must however be
“small' so that extension along normal direction may be neglected. In continuum mechanics,
this means that the thickness is at least ten times smaller than the object's largest dimension.
Therefore, these methods are categorised as thin-shell methods. They require one to provide
the Young modulus of the object's material and, more importantly, boundary conditions
expressed as a set of known 3D point coordinates, which may restrict their applicability.

A related goal was pursued in [ , ] where a silhouette-based
method was combined with SfT. The template is also reconstructed from a reference image
using a silhouette-based method inspired from [ , ]. This method recon-
structs objects that have a plane of symmetry parallel to the image plane and does not infer
concavities, which is also a limitation of most silhouette-based methods | , :

: ]. The template is then deformed using a data term based on silhouette,
area and orthographic reprojection constraints. The deformation model extends thin-shell
isometry by placing virtual nodes in the object's interior, with the objective of preserving the
object's volume.

2.1.4 Relationship to our Work

In chapter 4, we propose a modelling framework for SfT using di erential geometry. This
framework is coherent with methods based on di erential modelling [ : ] and
is general, therefore, other deformation models can be used. We also propose a solution to
SfT assuming that the deformation is smooth. This means that SfT can be solved analytically
for any kind of deformation without explicitly modelling the deformations.

In chapter 5, we propose volumetric SfT which, in contrast to thin-shell SfT, recovers the
deformation of the object's outer surface and interior. It formulates the deformation globally
in terms of a cost function and minimises it using non-convex optimisation.
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2.2 Non-Rigid Structure-from-Motion

The rst solution to NRSfM for thin-shell objects was proposed in [ , ] which
modelled deformation using a low-rank shape-basis. It assumes that the shape of an object
can be represented as a linear combination of a low-dimensional shape-basis. We discuss
the two categories of NRSfM methods based on the modelling framework: statistics-based
modelling and physics-based modelling.

2.2.1 Methods with Statistics-based Models

Starting from the work of | : ], the low-rank shape-basis has been the most
commonly used shape prior in NRSfM. It is a statistical prior on a set of 3D point cor-
respondences expressed in terms of point correspondences in images that forces the matrix
containing these correspondences to have a xed low-rank. This matrix can be further de-
composed into a shape-basis and their weights. Inspired from this method, [ :

] proposed NRSfM which modelled deformation as a set of trajectory basis. We discuss
statistics-based methods under these two categories.

2.2.1.1 Low-Rank Shape-Basis

For N images, the image observation matrix consisting of theP matched point correspon-
dences across the images is written as

2
ui ud
vi ool
W=g: . 17 (2.6)
ul up
vl vy

where (U! ;v{) represents the image coordinates of thé" point on the j image. Any shape
can be written as a linear combinations of theK shape-basisB;. Therefore the shapeS' of

the i image can be written as
X
S = I{Bt- (27)
t=1
where each shape-basiB; is 3 P matrix and |} is the set of weights that decide the scale.
Projecting these shape-basis on images under a scaled orthographic projection, we can write

the observation matrix as

2
1 ...
up iU, o 32 3
vioinovE 1R 0 LR B,
W=4g: " =§5 Eégfé:QB; (2.8)
U? Ug |?RN .. |}’2‘RN Bk
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where R' consists of the rst two rows of the camera projection matrix. The goal is to
decomposeW into two matrices Q and B which contain the information of the scale and
the set of shape-basis respectively. Onc® and B are found any shape can be written using
eqguation (2.7). Q can be further decomposed in order to nd the pose.

[ , ] used Singular Value Decomposition (SVD) to decompos#’ into Q
and B by xing K as a low positive integer. Q and B are called the coe cient matrix and
shape-basis matrix respectively. This problem is non-convex and su ers from ambiguities
in the solution to the shape-basis. [ : ] proposed a non-linear re nement
to improve the solution. However in order to deal with these ambiguities, di erent kinds of
priors were proposed by various methods:

[ , ] proposed to use shape-basis priors to constrain tH& matrix. The
idea is to estimate the shape-basis for some known 3D shapes and use them along with the
unknown shape basis in order to estimate the shapes for all the images. This means that some
of the basis inB are already calculated using few known 3D shapes and/ is decomposed in
a way that these known shape bases do not change. Given that the rsb elements ofB are
known, the shape priorL according to [ : ] is given by

2 3
Bi1

LzNggé:NB: (2.9)
Bp

The joint decomposition of W and L into Q, N and B improves the conditioning of the
shape. [ : ] extended this idea to allow shapes to have non-linear
deformations by allowing L to be non-linear. B is found from a manifold whose embeddings
are learnt from a representative training dataset of the deformable object under consideration.
This is not a traditional NRSfM method (as it heavily relies on training to nd B), however

it does highlight the success of manifold learning.

2) [ , ] solves this problem by adding a shape regulariser term that
imposed spatial smoothness in the observed shape using an iterative optimisation.

3 , ] solves this problem by optimising the shape-basis using spatial
and temporal smoothness priors.

4) [ , ] uses deformation modes and closeness of points in the mean shape
as priors. It solves the ambiguity by using a low-rank coarse-to- ne shape model which
prioritises the deformation modes that give the coarsest deformations.

5 [ , ] proposed to model the deformations (patch-wise) with quadratic
models where the linear modes allow shearing and stretching, quadratic modes allow bending
and the mixed modes allow the twisting of the surfaces. These modes are optimised for each
(overlapping) patch using the temporal smoothness priors. Then they are stitched together
to obtain a global surface.

5 [ , ] shows that an ambiguity in the SVD does not necessarily lead to
an ambiguous reconstruction. They introduced a correction matrix that can be used to obtain
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a unique solution. They showed that the camera orthonormality conditions are su cient to

nd the correction matrix. [ , ] proposed a more e cient solution to nd this
matrix by minimising the trace of the shape-basis. Trace-minimisation is a tighter constraint
than rank-minimisation (used in [ , D[ , ] also used trace

minimisation of the correction matrix in order to nd the low-rank shapes. They formulated
the problem as a global variational energy minimisation problem. The goal is to minimise
the trace of the shape-basis, reprojection error and the total spatial variation. This method
performs dense reconstruction and yields good results for faces. However, this algorithm is
computationally very expensive.

Most of these methods express shapes as a linear combinations of shape-basis. This forces
the deformations to be linear. Therefore these methods are applicable to simple deformations
such as a talking face. They do not cope up with the larger deformations such as a walking
man or a tree moving due to the wind unless more constraints are provided.

2.2.1.2 Low-Rank Trajectory-Basis

[ : ] proposed to replace the shape-basis by a trajectory-basis in the formu-
lation suggested by [ , ]. This method can easily reconstruct larger defor-
mations than the above-mentioned methods. The fundamental idea behind this method is
to express the trajectory of a point on an image as a linear combination of the trajectory-
basis. The trajectory-basis are obtained using a Discrete Cosine Transformation (DCT)
basis. [ , ] proposed to decompose the image observation matri%/ in equa-
tion (2.6) into R and T using SVD, whereR contains the R' (the rst two rows of camera
projection matrix for the i™ image) and T is the trajectory-basis matrix.

[ , ] proposed a solution that uses additional higher frequencies
of the DCT basis in order to estimate large deformations better than [ , I
This method rst estimates the 3D using trajectory-basis. It then estimates the shape-basis
by applying a kernel transformation which generalises the inner product with a radial basis
function.

[ : ] also uses a parametric representation of shape and trajectory-
basis and nds 3D by estimating these parameters using Probabilistic Principal Component
Analysis.

These methods can handle large deformations better than the low-rank shape model
methods but they still need video-sequences or short-baseline data to achieve good results.

Table 2.1 summarises the statistics-based NRSfM methods. All these methods use the or-
thographic projection model. All these methods solve NRSfM with a non-convex formulation
except [ : ] which uses a convex relaxation.

Most of the statistics-based methods use orthographic camera projection which may lead
to ip ambiguities in the reconstruction. Also, these methods are designed for short-baseline
images and therefore, they cannot handle large deformations. For good results, these methods
need a large number of views.
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Method Type of basis Additional priors Complexity of basis
[ , ] Shape - Linear

[ 1 Shape Shape Linear

[ , ] Shape Shape Non-linear
[ ] Shape - Linear

[ ] Shape Spatial smoothness Linear

[ , ] Shape Spatio-temporal smoothness Linear

[ ] Shape Deformation modes, point closeness Linear

[ ] Trajectory - Linear

[ ] Shape, trajectory Spatio-temporal smoothness Linear

[ ] Shape, trajectory - Non-Linear

Table 2.1: Summary of statistics-based NRSfM methods

2.2.2 Methods with Physics-based Models

For a long time, the focus of the research community has been on the statistics-based mod-
elling of deformation. Physics-based modelling for NRSfM is rather recent. In general, these
methods use the physical properties of thin-shell objects to model deformation as in SfT.
They can handle more complex deformations and work with fewer images than methods with
statistics-based modelling. Most of these methods, for example [ , , ;
: ] use isometry as a deformation model except [ : ] which
models deformations using elasticity. [ , ] rst reconstructs the surface by as-
suming that there are no deformation acting on it (basically SfM) and then uses this solution
the predict the deforming shapes. Therefore, this method resembles SfT even though it is
presented as a NRSfM method by the authors.
[ , ; , ] approximate isometry with a rigid rotation
and translation at a local (or piecewise) level. For example, [ , ;

, ] solved NRSfM by expressing isometry as local rigidity with an orthographic
camera projection. [ , ] nds sets of 3 rigid points reconstructed using SfM
whereas [ , ] performs automatic clustering of point sets. These meth-
ods rely on nding the 3 points in a close neighbourhood in order to make sure that the
assumption of rigid transformation holds. Another approximation was made by |

, ; , ], they exploited isometry as piecewise-rigidity. [ ,
] computes fundamental matrices | : ] to obtain the solution
to surface normals. However, fundamental matrices may be unstable in case of small patches.

An improvement on [ , ] was proposed by | , ] which
de nes isometric constraints between points that are in nitesimally close to each other
while [ , ] de nes these constraints on a small patch (assuming piecewise-
rigidity). Both of them assume perspective projection. [ , ] assumes the
surface to be a set of in nitesimal planes while [ , ] assumes the surfaces to be
represented as a set of planar patches. They then obtain a homography between the corre-
sponding normalised image points of the planes and use homography decomposition |
] to obtain the surface normals. The surface normals thus obtained have
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a two-fold ambiguity which is resolved by using spatial smoothness in [ , ]
while [ , ] uses additional views to disambiguate the normals. The surface
normals thus obtained are integrated to obtain an up-to-scale representation of the surface.

[ , ] expressed the deformation using isometric constraint (see
equation (2.1)) and proposed a global solution to NRSfM by performing a discrete non-
convex optimisation based on energy minimization of isometry constraints of all the points
considered. They provided solutions for both orthographic and perspective projection. The
method does not yield a globally optimal solution. The solution assuming orthographic
projection su ers from ip ambiguities.

Recently, [ : ] proposed a solution to NRSfM by modelling defor-
mation with the inextensibility constraint (2.1) using the perspective camera model. Relax-
ing isometry to inextensibility makes the problem convex and a globally optimal solution
is obtained using second-order cone programming. The problem is formulated using the
MDH [ , ] where the goal is to maximise the point depth for each image
correspondence in the retinal frame under the inextensibility constraints. The point depths
are bounded by the sum of the unknown template distances in order to make sure that a
global minimum is reached.

[ , ] solves NRSfM using a mix of physics-based deformation prior and
statistics-based priors. [ , ] solves NRSfM for potentially extensible surfaces.
It requires the surface to be represented as a thin-plate (a surface with considerable thickness),
however it does not reconstruct the volumes. It represents the object's mechanics in terms of
in-plane stress and out of plane bending. It models the deformation using Navier's equation
which are solved by using Finite Element Method. However, this method works only for video
sequences. | : , ] require an initialisation which is obtained by using SfM
on the rst few frames. Therefore these methods resemble SfT in their approach rather than
NRSfM.

Table 2.2 summarises the NRSfM methods using physical priors. The use of physical
priors in NRSfM is limited to isometry. Other deformation priors are unexplored. Most of
these methods are applicable to both short-baseline and wide-baseline data except [

, , ] which break on short-baseline data.

NRSfM methods based on physics-based modelling of deformations (for example, isometry
can be modelled with a rotation and translation at a local level, which incorporates camera's
rotation and translation as well) do not decouple camera motion and deformation unlike
the NRSfM methods based on statistics-based modelling. The motion of the object or the
camera are both treated as a deformation and hence, camera-motion is not recoverable. A
deformation is therefore regarded as the change in the object from one view to another.

2.2.3 Relationship to our Work

Most of the current NRSfM methods su er from ambiguities and poor performance in re-
construction. Deformations other than isometry are very rarely explored. The success of
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Table 2.2: Summary of physics-based NRSfM methods

Method Physical prior Constraint Camera model

[ , ] Local rigidity Local Perpective

[ , ] Local rigidity Piecewise Perspective

[ : ] Local rigidity Piecewise Orthographic
[ , ] Local rigidity Local Orthographic
[ , ] Local rigidity Local Orthographic
[ : ] Isometry Global Orthographic
[ , ] Inextensibility Global Perspective

[ : ] Elasticity Global Perspective

physics-based methods in SfT inspires us to explore NRSfM with the same modelling. We
use di erential geometry and Cartan's theory of connections to model this problem and pro-
pose a modelling framework that extends NRSfM to deformations other than isometry.
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Chapter

Mathematical Formulation

3.1 Notation

We de ne a set of rules that we follow in the next chapters in order to make them easier to
understand. We describe here the general rules and the exceptions we make.

1) We use small-case Latin letters to denote scalarsException: In chapter 6, we use
and to denote scalars.

2) Bold Latin letters denote 2D and 3D vectors.

3) We use Greek letters to denote functions. We express the inverse-depth function in
chapters 4, 5 as (in the case of planar surfaces) and (in the case of non-planar surfaces).
Exception: In chapters 4 and 5, we use to express CS and components of a connection
respectively. In chapter 5,f is a multi-valued smooth function de ned in R" with the coor-
dinates f ' and their respective basis as wherei 2 [1;::::n].

4) We use a subscript to index the images and a superscript to index the coordinates of
a point.

5) We use calligraphic letters for objects and images. In chapter 6, we use calligraphic
letters for sets, andjAj for the size of setA.

6) We use the operatorJ: for the Jacobian of a function' .

7) In chapter 4, we useg to denote the metric tensor and to denote the CS matrix.

8) In chapter 5, di erential 1-forms are represented asw. d is the operator for exterior
di erentiation. The origin is denoted as O.

9) In chapters 4 and 5, we give our modelling for a pair of views. It straightforwardly
generalises to any number of views. We consider two surfacéd ; and M j, which are rep-
resented by images; and Ij. A pointin | is denoted by x and the corresponding one in
I} by y. We name the points this way to avoid the subscripts in the equations. Similarly, a
point on the surface M ; is denoted by z and the corresponding point onM j by w.

10) In chapter 6, the 3D points on the template and object are given byP and Q. Their
corresponding points on the images are given bp and q respectively. A tetrahedron attached
to a 3D point, for example, P is given as a set of 3D points Pn1;Pn2;Pn3; Pna).
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11) In chapters 4 and 5 we omitx and just write the functions described atx as j, i
and ; (instead of ;(x), i(x)and ;(x)) in order to make the equations compact.
@i @j @i @ |

12) In chapters 4 and 5, we also erte@( as i, @ as i, % as jt, @x@x

s s @iiﬁ as iy and @@i@' -
13) In chapters 4 and 5, we write Ki;Ko; Ks; ks; ks) as the expressions that represent

the ratio of rst and second-order derivatives of the inverse-depth of the surfaceM ; to the
inverse-depth, (p1; p2; p3) which are known quantities on M ;, written in terms of the second-
order derivatives and (Cy; Cz; C3; C4; Cs; Cg) Which represent the CS atM ;. On M j, we write
these expressions with a bar ask{; ko; ks; ka; ks), (p1; p2; p3) and (cy; Cz; C3; C4; Cs; Cg).

We remind some of these notations in the chapters.

as s

3.2 Manifolds and Surfaces

In general, a manifold is a topological space that resembles the Euclidean spa& locally.
Therefore, at each point of the manifold one can nd a neighbourhood that is homeomorphic
to the Euclidean space of dimensiom. 2D manifolds represent surfaces. If embedded in 3D,
they represent 3D surfaces.

3.2.1 Innitesimal Planarity

IP refers to the assumption that a surface at each point is approximately planar in its in-
nitesimal neighbourhood. This is fundamentally di erent from piece-wise planarity: in IP,
the surface is globally curved, but in an in nitesimal neighbourhood, it may be represented
by a plane. In other words, each in nitesimal model agrees with the global surface at the
point where IP is assumed, but this agreement holds only at the zeroth order. We de ne
the IP approximation of any surface as the IP surface where at each point the in nitesimal
plane is the tangent plane of the original surface. Note that while the surface can be globally
curved, the IP approximation is point-wise planar. It is a very interesting concept as it makes
it simpler to derive properties of surfaces.

3.2.2 Innitesimal Linearity

IL refers to the assumption that a smooth mapping between two surfaces can be represented
by a set of linear mappings which map the in nitesimal neighbourhoods of the correspond-
ing points on the surfaces. Figure 3.1 shows two curves related by a smooth mapping.
According to the formulation of IL in synthetic di erential geometry [ , ] (it uses

IL to formalise theory of connections), given that mapsP to Q, there exists at least one
linear function | that maps the in nitesimal neighbourhood of P to Q. Therefore, is
represented with an in nite set of linear mappings | that map in nitesimal neighbourhoods

of the curves. | has the same rst-order di erentials as . It only assumes that the second
or higher-order di erentials are zero as it is a linearization of
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Figure 3.1: |lllustration of IL. Two smooth curves are related by a mapping . According to IL,
there exists a linear map | that relates P and Q and agrees with at zeroth and rst-order.

3.3 Projection

A surface is mathematically related to an image with an image projection function. Figure 3.2
shows a surfaceM 2 R3 being projected into the imagel 2 R? with the function : RS3!
R?. We model projection with the perspective camera, where takes as input the point
z= 7zt 22 28 g on the surfaceM and outputs its retinal coordinates x = x! x2 ” in
the image:

X = Xl X2>:(Z): - = : (31)

Figure 3.2: An image embedding that relates the 3D surfaceM with its image | .
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3.4 Image Embedding

The image embedding, denoted as : I ! M (see gure 3.2), represents the inverse of
restricted to the surfaceM 2 RS, as it maps retinal coordinates to the 3D surface. It must
satisfy the following identity:
X =( )(X): (3.2)
Smooth functions that comply with equation (3.2) can be expressed with a depth function
2 C! (I ;R), where:
>
x)= (x) x 1 (3.3)
Alternatively, let = 1 pe the inverse-depth function. This allows us to re-de ne the

image embedding in equation (3.3) as:

1 >
) x 1 (3.4)

where is a function that represents the inverse of the depth of the surface at a point
x = (x%;x?)in | . A point on the surface M is given by

(x) =

>

z= = 1 xl x2 1 (3.5)

For general surfaces, is a non-linear function but for planar surfaces it is linear. Due to the
assumption of IP, the restriction of to a point becomes linear.

In chapter 4, we will show that working with the inverse-depth for de ning the image
embedding has an important role while de ning the di erential properties of surfaces.
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Chapter

Non-Rigid Structure-from-Motion with
Riemannian Geometry

Summary
In this chapter, we propose Isometric Non-Rigid Structure-from-Motion (Iso-NRSfM) using
a theoretical framework based on the Riemmanian manifold to represent the unknown 3D sur-

faces as embeddings of the camera's retinal plane. This allows us to use the manifold's metric
tensor and CS elds. These are expressed in terms of the inverse-depth of the 3D surfaces and
its rst and second-order derivatives. These are the unknowns for Iso-NRSfM. We prove that
the metric tensor and the CS are related across images by simple rules depending only on the
warps. We show that 1so-NRSfM is solvable from local image warps. It proves that NRSfM
can be solved locally from a PDE formulation. We propose two solutions to Iso-NRSfM: with
and without the assumption of IP. This chapter is based on our published work [

: 1.
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4.1 Introduction

Research in NRSfM is still at an early stage. As we discussed in chapter 2, statistics-based
modelling in NRSfM limits the applicability to short-baseline images only. Also, the use of
orthographic camera projection leads to ip ambiguities. Physics-based modelling in NRSfM
is very recent. It is widely used in SfT [ , ] and recent works [

, ; : ] show that the di erential modelling of surfaces results in
local analytical solution to SfT and makes is a well-posed problem for isometric deformations.
Therefore, local SfT methods are powerful and computationally cheap.

The success of di erential modelling in ST is our motivation for this work. Our goal is
to extend this modelling to NRSfM. We use Riemannian geometry for di erential modelling
of NRSfM. The dierential quantities metric tensors and CS, de ned in this geometry,
represent the properties of surfaces such as length, angles, areas and curvature. For isometric
deformations, we found that these properties are preserved across surfaces. This leads to a
solution for NRSfM using isometry as a deformation prior which we present in this chapter.
This solution performs signi cantly better than the compared state-of-the-art methods.
The method handles missing data and occlusions, needs very few images to perform recon-
struction, handles large images conveniently without a ecting the computation time and
works for both short and wide-baseline images.

Chapter outline. We present the mathematical background of our solution in section 4.2.
It describes the modelling of NRSfM, the concepts of metric tensor and CS, the e ect of
the IP assumption on these quantities, the preservation of these quantities under isome-
try. Section 4.3 shows how to use these concepts to write the reconstruction equations for
NRSfM under isometric deformations with and without the assumption of IP. Section 4.4
explains the algorithms and analyses their computational complexity. Section 4.5 discusses
the experiments and section 4.6 concludes.

4.2 Mathematical Background

4.2.1 General Model

the projection of di erent isometric deformations of the same surface. The registration warps

( ij and ji) between the pair of images (j, |j) are known. In this framework, we compute
these warps using [ , ]. This choice is explained and justi ed by theorem 4.
Abusing notation, we also usel ; to denote an image's retinal plane, withl; R2. Surfaces
in 3D are modeled as Riemannian manifolds. This allows us to de ne lengths, angles and
tangent planes on the surface [Lee, ]. We denotd ; R3 as thei™ manifold, which can
be seen as a two-dimensional subset embedded in 3D. We use the extrinsic de nition bf i,
where a function embeds a subset of the plan&? into R2. With embedding functions, one
can easily compute manifold characteristics [Lee, ] such as the metric tensor and the CS.
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Figure 4.1: The proposed model of NRSfM, where each surfadd ; is a Riemannian manifold de ned
by embedding the corresponding retinal planel ;.

However, these characteristics change according to the coordinate frame. We use the retinal
plane|; as coordinate frame forM ; and de ne as ; 2 C! (I;; R®) the image embedding for
M. We de ne as j the isometric mapping between manifoldsM ; and M ;.

4.2.2 The Metric Tensor

The metric tensor (see appendix A for more details) is a di erential quantity used to de ne
lengths, angles and areas on the surface [Lee, 1997]. The metric tensor qf (in gure 4.2)

is denoted asgmn[ i]- We use the standard Einstein tensor notation and thusgmn[ i] is a
combined reference to all elements of the metric tensor, a 22 matrix in this case. According

to the Einstein summation convention, the summation is done over the indices appearing twice
in the expression. Also, the free indices in an expression (the ones that do not appear twice
in the expression) can be seen as both the indexed element or the whole arrangement. The
indicesm and n refer to the components of the coordinate frame of ;. In gure 4.2, we have

M; Mj

Y -
T ¢ T 0;

s

Figure 4.2: Simpli ed notation for two images.
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z= i(x)and:
0 @t @2 @%1>
a@* @% O@*
J, = (4.1)
@z @z @32
@*% @R @%
The metric tensor of ; is then:
G-, _ @ @%
gmn[ |]— -J iJ P @@ sk (42)

with g¢ the Kronecker delta function. We recall that according to the Einstein summation
convention, the summation in equation (4.2) is done over indices and k. The inverse of the
metric tensor is expressed with raised indiceg™"[ ;]. Given the change of coordinates:

x= (y) with y= yl y2 43)
the metric tensor of is obtained as:
5 s @L @X
i =J7J°J . J = 4.4
Ost[ i ] J @9 @ygmn[ il: (4.4)

4.2.3 Christo el Symbols

CS (see appendix B for more details) of the second kind are function arrays that describe
several properties of a Riemannian manifold, such as the curvature tensor, the geodesic
equations of curves and the parallel transport of vectors on surfaces [Lee, ]. We denote
the CS of embedding ; as hn[ i]. It is useful to represent the CS of ; as two 2 2

matrices L [ i]and 2,[ i], where the upper indices 1 and 2 make reference to the 2D

>
image coordinatesx = x! x2 , where ; is de ned. The CS are given by:

mn [ 1= %g"'[ 1@mn i1+ Gnm [ 3] Gmna [ 1D); (4.5)

wheregim:n = @9im. Given a change of coordinatex = (y), the CS in the new coordinates
are given as:

iU ]= @X @% [ ]@9 @y @x'

@y @y mn @R @kx@F@Y

Note that even though CS are expressed with tensor notation, they are not tensors and thus
equation (4.6) does not correspond to the way tensors change coordinates. The CS of the
image embedding, de ned via the inverse-depth in equation (3.4), has a special structure
given in Theorem 1.

(4.6)
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Theorem 1 (CS Structure). Let x 21, then hn[ i(x)] is given by:
! !
1 241 2 (DA i i

1 - ;
[i)]= — +
mnt i iz O Di 12 Q22
! ) ! 4.7)
1 0 N ( 1)?B; - -
2 _ i;1 i i i;11 i;12
[ix)]= — + ;
mnt ! i i1 22 D; i;12 i;22
@i @ |
h b, = — " = - :
where @k @R@X and
A = Xl i+ 1+ X:L 2 i1t X1X2 )
Bi = X2 i + 1+ X2 2 2t XlX2 il (4-8)
2
Di= i x' i1 X2 i2 T+ i0)?+( 2%

Proof. From the de nition of ;(x) in equation (3.4), we can write the Jacobian matrix of
i(x) as:

0
_ 1B e 2 €.
Ji = = X% i1 i XS oAl (4.9
|

Next we compute the metric tensor by substituting the Jacobian matrix from equation (4.9)
in equation (4.2). The metric tensor is given by

gul (001= & 2( 0P+ ( 07 24 g
gr2[ i(X)] = i_4 212 X2 X2 (4.10)
g22[ i(X)]= i4 2022+ )% 22 iz

2 2 : : o
where 2=1+ x! “+ x2 “. The inverse of metric tensor is given by

ey 9220 1001 _ (%22l i(X)]
970N Get(or 00 D
e 92l _ ()% guel ()]
ST Gogl 60D~ D, 41
20 o 9ul 01 _ ()°gul i(x)],
A TR D,

The derivatives of the metric tensor are given by

Gzal 1(X)] = 4:;1911[ i(X)] + 2?_;411
g1za[ ()] = 4 :;1912[ (] (Hi)4+ Ei i;1(2 f)fi 11
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gooal (0= gl ()] + (ZF)‘4+ 2?,)“4“
9az2[ 1(X)] = : :;2911[ i(X)] + (ZH)i4 + 2?;412
guoal 1(00]=  E2gu[ (x)] oL+ SLEZ2T R 2
i (i) (i)
g222 i(X)] = : "2 900l 1 (X)] + 2'(:i _)i;422; (4.12)
whereE; = 1+ x! 2y X22 i1 x! i F= 1+ x12+ X2 2 2 X2 i
Hi= x2( )%+ i k2 X' i1 iz andLi=x2( 2% i1 i+ X% i1 iz
According to equation (4.5), the CS are given hy
hnl 1 00] = égpl[ i) (Gamn [ 10O+ Ganm [ i(X)]  Gmn;al 1 (X)])
(4.13)

+ %gpz[ i1 (G2min [ i OGO+ G2nm [ i(X)] Gmn;2 i (X)])

Using the metric tensor and its derivatives from equations (4.10) and (4.12) in the expression
for the CS given in equation (4.13), gives the result in equation (4.7). For example, 1,[ (X)]
is given by

L 001 = 50 1001 @l 100D+ 5621 1001 @aaal 1] gsal 1)

8 . ) o
_ () gézl[ i(X)] 2 ';1911[ ()] + Ei .|;il

( 08w 1(X)] 4

gl ()] 2

Di i ( i)4
\8 _ o . , )2 A,
(i) gl:l)Z[ i(x)] F(I ';4111"- 2 I-:2911[ ix)] = 2 L ( ')_AI' (4.14)
O

4.2.4 Commutativity under Isometry

Images and surfaces in Iso-NRSfM follow the commutative diagram shown in gure 4.2.
Therefore,

i =i T

(4.15)
J,=J3,3.3,;:
The metric tensor of ; can be written according to equation (4.2). It is given by
373,=0,370.3,33,=3,333,;: (4.16)

j J ji i ij ] 1 L

The fact that mappings between manifolds are isometric 0>ij J, =1ls33)]
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] allows us to derive the following fundamental result:in Iso-NRSfM, both metric tensors
and CS commute between surfaces with a change of variable given by the image wafpjss
result is formalised with Theorem 2 and Corollary 1.

Theorem 2 (Metric Tensor Commutation) . Let j be an isometric mapping between the

manifolds M j and M j, then gmn[ j1= 9mn[ i il with (i;j) 2 [I,N] [L;N].
Proof. We rst write j interms of ; using the isometric mapping j :

P= T (4.17)
From equations (4.4) and (4.17) we have:

mnl j mn ij i ji @y] @9 stl jj il .
By de nition, isometric mappings do not change the local metric and sog[ j il =gl il,
which applied to equation (4.18) gives:
@x @%
1= =2 =2 1 4.19
mnl j] @y @ygst[ i] ( )

Identifying equation (4.4) with equation (4.19) gives the equality gmn[ j1= Omn[ i il O
Corollary 1 (CS Commutation). Let j be an isometric mapping between the manifolds
MiandMj, then Rn[l1= Bl lwith (i;j)2 [LN] [LN].

Proof. As described in equation (4.5), hnl j] is a function of gmn[ j] and its derivatives.
From Theorem 2 we have thatgmn[ j1 = gmn[ i ji]. By multiplying this expression in
both sides byg™"[ ], we get:

gmn[ j]gmn[ j] = gmn[ j]gmn[ i ji]: mn (4.20)
from which we deduce thatg™[ ;] = g™[ i ;]. Also, by dierentiating gmn[ j] =
Omnl i ji] on both sides we have:

@Imn [ j] = @Imnl i ji]; (4.21)
giving 9mni [ j1= 9mny[ i ji]- By substitution of these identities in equation (4.19) we
obtain:

p =1 .
mnl 1= 50700 il@mnl i i1+ Omml i il Gmali D
and thus the equality hn[ j1= Rn[i ji] holds. O

These results show that, given the metric tensor and the CS for one image embedding, they
can be transferred to the rest of the embeddings using the warps, which are known entities
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in 1so-NRSfM. Note that this result cannot be generalised to non-isometric mappings. This

establishes the ground rules for developing a local solution to Iso-NRSfM where the number
of unknowns does not grow with the number of images. The main idea is to de ne the

unknowns in a reference image and to use the warps to transfer all constraints into it.

4.2.5 In nitesimal Planarity

We study the di erential properties of the image embedding when the surface is a plane. We
then invoke IP to extend these properties point-wise to non-planar surfaces. In this regard
we present Theorem 3 and Corollary 2.

Theorem 3 (Linear Inverse-Depth of a Plane) If M is a plane then its image embedding
atx 21l is (x)= (x) Y(x 1)> with a linear function.

Proof. Suppose M is a plane described by the equationn®z + d = 0, where z =
>
z! z2 z3 andn is the plane's normal. From equation (3.3), the embedding is expressed

>
with a depth function (x)= (xX) x 1 . By combining the depth parametrisation with
the plane equation, we have:

>
n> (x) x 1 +d=0; (4.22)

from which we compute as:

(x) = %: (4.23)

n> x 1
By dening (x)=( (x)) ! is written as:

)= () 'x 17 (4.24)
where (x) is linear in x. 0

Corollary 2 (CS of a Plane) Let M be a plane and (x) the image embedding ak 2 | ,
the CS hn[ (x)] are given by:

! !
2 1(x) 2(x) 1 0 1(X)

1 — 2 - =
mn[ (X)] ) »(X) 0 mn [ (X)] ) 0 2 200
(4.25)
where 1(X) = @?@(:) and o(x) = @@(;).
Proof. From the de nition of (x) in equation (4.24), we can write the Jacobian matrix of
(x) as:
1 (x) x' a(x) x1 2(x)
1= 5@ 20 0 X 00K: (4.26)
(x)
1(x) 2(x)
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Using equation (4.2), the metric tensor at (x) can be written asJ>(X)J (x) - The expression
is given by

gul (1= & 2( 0%+ 2 2
g2 (X)] = % 21 xt o, %2 (4.27)
g22[ (X)] = i4 2(2%+ 2 2% 5

where 2=1+ x® %+ x2 2, The derivatives of the metric tensor are given by:

gua[ (X)]= ﬂ911[ (]

x2( )%+ 2 x' g
()

2 x1( 2% 1+ X211,
()*

2
2 xX2( )%+ 2 xtaio

g12a[ (X)] = ﬂ912[ (x)]

9221[ (X)] = ﬂ922[ (x)] +

g112[ (X)] = 2911[ (x)] +

()
4, x1(2)% 1+ x2 1,
O122[ (X)]= —=0g12[ (X)] ()
ool (1= 2gal (X): (4.28)

Note that there are no second-order derivatives in the above expression because they vanish
in the case of planes. This leads to the CS in equation (4.25). O

Theorem 3 shows that the inverse-depth of a planar surface is a linear function. Corol-
lary 2 is derived from Theorem 1 and Theorem 3. It shows that the CS have a simpli ed
structure under in nitesimal planarity, where at any point they have 3 degrees of freedom:
and its rst-order derivatives. Moreover this also shows that both the metric tensor and the
CS share the same 3 unknowns.

From Corollary 2 we nd the following constraints over the elements of the CS:

LLOOI= 4L (1=0 2 4] ()= 5[ (X)] W 01=2 4 () (4.29)

We derive Theorem 4 from equation (4.29). It shows that the warps must comply with the
2D Schwarzian derivatives [ , ], which are second-order bilinear PDE
that arise in the eld of projective di erential geometry.

Theorem 4 (2D Schwarzian Equations for Planes) Given that M ; with i 2 [1;N] are
planes, the registration warps j with (i;j ) 2 [1;N] [1;N] are point-wise solutions of the
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2D Schwarzian equations.

must comply with the following algebraic constraints:

lil= hl1=0 2 Hlil= %1 hlid=2 Ll (4.30)
From Corollary 1 we have hn| il= hnl i ii]. Now we use equation (4.6) to compute
bl i ji ] from bm[ i] given in equation (4.25). Given that x = i (¥), we write

Pali sil=@P 2-Za@xt@xt 2 @xl@x?+ @x’@xt +

@ 22a@xk@x ! axiax’+ @x’@xt + @yPd,x'+ @yPd,x=
(4.31)

By forcing conditions in equation (4.30) in [ ; ;i ] we obtain the following four second-order
PDE only in j

@ xt @x? @ x> @x! =0
@x' @x? @x> @x' =
@xt @  @x® @x? +2 @x' @x®* @x* @x' =0
@x! @x? @x? @x! +2 @x' @x®> @x° @x* =0: (4.32)

These are the 2D Schwarzian equations introduced in [ , ], where point-wise
projective warps were investigated. O
The 2D Schwarzian derivatives were used in [ , ] as a penalty to com-

pute “Schwarps', smooth warps that preserve the deformation's local projective structure.
Schwarps were shown to improve accuracy in both SfT and NRSfM with respect to other
smoothing penalties based on the bending energy. Theorem 4 theoretically justi es our
choice to use Schwarps for computing our image warps. Nonetheless our method can also be
used with any means to compute the local image warps.

4.3 Reconstruction Equations

We study local solutions to I1so-NRSfM, based on the di erential properties derived in the
previous section. We show that 1so-NRSfM can be posed as a non-linear PDE system and
that we can nd non-holonomic solutions of this system. We do not deal with boundary
conditions in the PDE as we nd algebraic solutions of the system in terms of the non-
holonomic variables. This follows the same path as | , ] for nding local
solutions in Iso-SfT.
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For planes, there is a unique linear relationship between the metric tensor and the CS,
which is why Iso-NRSfM is solvable under the assumption of IP. Corollary 2 shows that both
of them can be expressed in terms of the rst-order derivatives of the inverse-depth of the
surface only. We explore this relationship for non-planar surfaces, where we need the rst
and the second-order derivatives of the inverse-depth of the surface to express the metric
tensor and the CS. We argue that there is no uniqueness in the relationship between the
metric tensor and the CS anymore, and therefore, there is not a unique solution to Iso-NRSfM
locally. Then, we propose to solve 1so-NRSfM by solving for the rst and the second-order
derivatives separately.

4.3.1 Relating the Metric Tensor and the Christo el Symbols

For a non-planar surface, the CS atz 2 M ; are given by equation (4.7). We de ne them as:

C C - C; C. .
S R 100 R (4.33)
s s ct G

nl (X)) =

wherec, ¢, C3, C4, C5 and cg are expressed in terms of the rst and second-order derivatives
of (x) de ned in equation (3.4). The expressions in equation (4.7) are:

c1 = 2ki+ k3Aj Cy = k3Bi 3= ko + kiAj

(4.3)
Cs= kit k4Bj Cs = KsA, Cs = 2Kp+ ksBj;
with:
A= xr+ 1+ xE? kg + x2x%ks
Bi= x2+ 1+ %22 ko+ x'x%; (4.35)
Di= 1 xtkg x%ke *+ (ko) +(k2)?;
whereky = —1 k= "2 k3= "1y, = 512 andks = —“22 The jacobian and hence
i iDi iDi iDi

the metric tenlsor at z can be written in terms of (ki; kz). Our goal is to nd a relationship
between the metric tensor parametrised with k1; kz) and the CS (c;; ¢; C3; C4; C5; Cg). Having
such a relationship, we can formulate a system of equations exploiting the transfer of variables
in the CS and metric tensor from one surface to another. Fronc; and ¢, in equation (4.34),
we can write:

¢ +2kg A
- = — 4.36
% B. (4.36)
Similarly, from cs and cg in equation (4.34), we can write:
Cs A;
— =L 4.37
Cs+2ky B (4.37)
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i - Ai _ 3t ka LA _
From c3 and ¢4 in equation (4.34), we nd B = oK We substitute B in equations (4.36)
. 4+ Ky :
and (4.37), we obtain: | |
(c1+2kg)(ca + ki) = ca(c3+ K2)  (Cs+2kz)(c3 + kz) = cs5(Ca + Ki): (4.38)

(1 +2kg)(cq + K1)

C2
substitute it in the second expression. We obtain the following quartic inkj:

From the rst expression in equation (4.38), we nd k; = cs and

(ca+ ki) 8k3+8(cr+ c))kZ+2(ci(Cr+4c)+ Ca(Cs 203)) Ky +2¢5¢s + €16 (Cs  263) G365 =0:
(4.39)

This gives up to four possible solutions toks, which means that there is not a unique rela-
tionship between the CS and the metric tensor.

Combining equation (4.38) with equation (4.34), we can expresski; k) in terms of the
CS (c1;¢2;C3;C4;C5; Cg) as a rational expression of degree two. This gives a system of two
polynomials of degree 8 in 6 variables for each pair of views. Existing solvers such as [

: ] cannot solve such high degree polynomial systems. We conclude that the
rst and second-order derivatives of (x) cannot be solved jointly via estimating the CS.
However, we see that the expressions of the CS in equation (4.34) are linear in terms & k)
and (ks; k4; ks). By assuming (ks; k4; ks) to be known, we can nd a unique relationship
between the metric tensor and the CS and vice versa. Therefore, splitting the problem in
two steps of solving for the rst and the second-order derivatives of j(x) separately leads to
a solution to Iso-NRSfM.

4.3.2 Solving for the First-Order Derivatives

We assume that the second-order derivatives of j(x) are known. They can be assumed to
be zero (as in the case of the in nitesimal planarity assumption) or they can be obtained
by the method we describe next. We show how to solve for the rst-order derivatives of

i(x). We also show that this solution has a similar structure as the solution to 1so-NRSfM
under IP assumption. We rst select a pair of surfaces M i, M j) (see gure 4.2) and a
point x = (x%;x?)> 2 1;. We evaluate Mn[ i] at x, namely hn[ i(X)]. According to
equation (4.7), it is given by:

! !

2+ Aipr ko + Aips Bip1 ki+ Bipz

[ (] = | | fnl 1(0)] = | o
ko + Ajpz Aips ki+ Bipz  2ka+ Bips

(4.40)

wherek; = 1(X) and ko = Z(X). The expressions py; p2; p3) are functions of second-order

(x) (x)

derivatives of (x) and therefore, they are known. Aj and B; are linear expressions inkz; k)
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according to equation (4.8). Next we computeJ , in terms of (ky; k»):

1
1 k]_Xl k2X1
J(x)= 7%9 ki 1 kox2i (4.41)
1 ka
By substitution of equation (4.41) in equation (4.2) we have:
guf i(X)] = = ki2+ kixt 17+ kox?
(x)?
1
g12[ i(x)] = x)2 kikz 1+ x2 %+ x22  kox! kyx? (4.42)
1 2 12 2 2
i = + + .
922 i(X)] )2 ko® + kox kox? 1

We dene Gmn[ i(X)] = (X)2gmn[ i(X)], which only depends on ki;kz). Let x = i (y).
We use equation (4.6) and Corollary 1 to compute K. [ j(Y)]= Kal( i ji)(y)] as:

!
2k + Ajpr ko + Ajp2

1 _
mnlC i i )(Y)] ke + A P2 A; ps

! (4.43)
Bjp1 ki+ Bjp

2 . . =
mn [( I JI )(y)] kl + BJ P2 2k2 + BJ P3

where according to equation (4.6), k1; ko) are linear combinations of (k1; k2) and (pz; p2; p3)-
(p1; p2; p3) are known. Aj and B; are linear expressions inKz; ko) according to equation (4.8).
From equation (4.42) one can nd gst[ j(y)] in function of (ki;kz), and thus in function of
(k1; k2).

Alternatively, from equation (4.4) and using the de nition of Gmn[ i(x)] and Gmn[ j(Y)]
we have the following identity:

1 @R @R,
(¥)? @y @y ©m

Gal j(¥)]= i(X)]: (4.44)

1
(x)?

We cancel (x) and (y) by converting system (4.44) into the following two equations:

. @%ex | . @raeR _

Gul (1] By @gGml (0] Gual ;0] DL D Gml ] =0 »
P @R P @R ’

Gol ;)] EXPRG 00 Gul v EE@ i) =o:

@y @y @y @y

We recall that both Gmn[ i(X)] and Gg[ j(y)] are only functions of (kq;k2) and x.

Equation (4.45) is a system of two cubics in variables K;; k,) modeling I1so-NRSfM for
manifolds M ; and M j at point x 21 ;. We denote the two equations afQj (X; 1j (X); K1; k2).
By keeping the rst index as the reference manifold, for instancei = 1, and obtaining the
polynomials for the rest of the views we have R 2 polynomial equations in two vari-
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ablesQi(ki; ko) = fQ 15 (x; 15 (X);Kq; kz)ngzz. The solution (kq; k) to the polynomial system
Qi(ki; ko) at the point x = x; allows us to reconstruct the metric tensor, the CS and the
tangent plane for point x1 in view | 1. Using equation (4.41) we can reconstruct) ,(X1) up
to an unknown scale (x1) 1. It is not necessary to recover this scale to estimate a unit
normal, which is computed by taking the cross product of the two columns ofJ ,(x1) and
normalising.

We solve systemQ;(ksi;kz) by nding the values of (ki;ky) that minimise the sum-of-
squares of all polynomials in the system. This optimisation is solved globally using moment
based convex optimisation [ : ]. Giverk(; k»), we calculate (k1; k>)
by using equation (4.6) at each point.

Notice that the structure of the CS given in equation (4.25) for planes is very similar to
equation (4.40) with (p1; p2; p3) as zeros. This shows that the solution to Iso-NRSfM with the
IP assumption is a special case of this solution. We express the system with zero second-order
derivatives asP1(ky; kz), which is solved in a similar way asQi(kz; k2).

4.3.3 Solving for the Second-Order Derivatives

We now show how to solve for the second-order derivatives of;(x), assuming that the rst-
order derivatives of ;(x) are known from the previous step (we start by solving for the
rst-order derivatives assuming that second-order derivatives are null). The expressions for
the CS in equation (4.40) become linear in the second-order derivatives of;(x). This means

that fn[ i(X)]is a linear function of (k3; ks; ks). Given that x = ji (y) and equation (4.6),
mn[( i ji)(y)]is given by:
! !
c1 C C2 C
mlC o= o mlCaom= 20 (@49

where (C1; C2; C3; Cs; Cs; Cg) are expressed as a linear combination ofkiz; ks; ks). Therefore, at
M j, (ka;ks; ks) are given by the following expressions:

¢ +2k; Aj +Csz K, = c+ ko Aj + 1+ kg Bj

_ C5Aj+ Cs + 2k Bj_
Af + Bf ) Af + Bf |

AZ+ B
(4.47)

3= Ks =

These expressions show that K3; ks; ks) can be expressed as a linear combination of
(k3; Ka; ks).

In order to solve for the second-order derivatives of j(x), we di erentiate the rst-order
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reconstruction equations (4.45). The expressions are given in equation (4.48).

@ul j(y)] @X @R

@512 j(y)l

@R @R

@* @ﬁ/ @?Gmn[ i(X)] @* @9 @9Gmn[ i(X)]
2 @R 2 @R
eul i 0gs oy a0ml W Gul Mgy oy gyCml I =0
@ul j(y)) @X @R _ @ j(y)] @X @R ,
@% @y @§Gmn[ i(X)] @z @y @9Gmn[ i(X)]
2 @R 2 @R
+eul 0l gy oy agCml i) Gul ;0)lgy or e Gml (] =0
@2l j(y)] @R @R _ @1of j(y)] @R @R _
2 @R 2 @R
+Gal Mgy o osGml (] Gul gy oo Gml ] =0
@2 j(y)] @R @R , @1 j(y)] @R @R _
S 6y ggCml i) S Gy @gCml i)
@ @%@ . @ @ e o
+Goof | (y)]@% @y @9Gmn[ i(X)] GlZ[J(y)]@% @7 @9Gmn[ i(x)] =0:
(4.48)
The derivatives of G [ i(X)] in equation (4.45) are given in equation (4.49).
@Blé)){(x)]:z|<1 xtki 1 +2 ky x!' kD kg2
@Elék(x)] =ky 2%y 1+ ko x% kaD K? + ki x' (kD Kiko)
W:2x1k22+2 ko x? (kaD  kiko)
@Blééé(x)] =2x%k*+2 ki x' (kaD  Kikp) (4.49)
@Blég(x)] =k 2%, 1+ ky X2 (kaD kiko)+ ki x' ksD ko2
@Ezéﬁ(x)] =2k, x%o 1 +2 ky X2 ksD  ko?
with D= 1 xk; x%k» 2+ ki?+ ko2and =1+ x% 2+ x272:

Equation (4.49) shows that the derivatives are linear functions of ks; ka; ks). Using equa-
tion (4.47), the reconstruction equations (4.48) form a linear system in three variables only,
which can be solved using LLS. Therefore, for each pair of manifoldsM i;M ;) at point
X 2 1, equation (4.48) is a system of four linear equations in variables kiz; ks; ks). We
denote the four equations asS;; (x;y; ks; ka; ks). Fixing the i manifold as a reference, for
instance i = 1, we obtain 4N 4 linear equations in three variables which are written as
Si(ka;karks) = fSqj(X; 15 (X); ks Ka; k5)ng:2. The solution (ks; ks; ks) to the linear system
Si1(ks; ks; ks) for the point x = X1 gives the second derivatives of ;(x). We use them to
compute a better estimate of the CS in equation (4.7). Using equation (4.47), we can obtain
(k3; Ka; ks) using (ks; ka; Ks).
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4.4  Algorithms

We describe our solutions to Iso-NRSfM based on the theoretical results from the previous
sections. First, we describe the algorithm for solving Iso-NRSfM with the IP assumption and
then we describe the algorithm for the general solution. This uses the solution with the IP
assumption as initialisation. The inputs to our system are N images of a deforming object
and their inter-image warps with respect to the rstimage ;1 and i. The outputs of our
system are the 3D points and normals corresponding to the point correspondences for thi¢
images. In our formulation, our goal is to nd the jacobian of the image embedding. The
normals are then obtained from the jacobian and the 3D points are calculated by integrating
the normal eld as in [ , ]

4.4.1 Solution under In nitesimal Planarity

With the assumption of IP, we can write the metric tensor of equation (4.40) and the CS of
equation (4.42) on a manifoldM ; in terms of two variables which correspond to the ratio
of rst-order derivatives of the inverse-depth  of the image embedding ; with the inverse-
depth function. We can also write the metric tensor and the CS on the rest of the images
in terms of the variables in the rst image (equations (4.4) and (4.6) respectively), which
leads to two variables for N images. We solve the system of two cubics in two variables
of equation (4.45) for all images by minimising the sum-of-squares of the polynomials. The
algorithm takes the following steps:

Inputs: Warps j1,j 2 [2;N].

1) Find point correspondences. Select a grid of points on the rst image and using the
warps jj, nd the corresponding grid of points on the rest of the images. We evaluated our
method on a 20 20 grid of points.

2) Find (ki;k2). Evaluate the polynomial Py(ki; k) and solve by minimising the sum
of squares using [ : ]. This giveki ky). Find (ki; k) in terms of
(k1; ko) and the 1 warps,j 2 [2,N], using equation (4.6).

3) Find normals and 3D points. Find the jacobian in terms of (ki; k) using equa-
tion (4.41). Compute the normals by taking the cross-product of the jacobian's columns
and normalising it. Use the method in [ , ] to recover the 3D surfaces by
integrating the normal elds.

Outputs: Points and normals on 3D surfaces.

4.4.2 General Solution

We still have the metric tensors on a manifoldM ; in terms of two variables but the CS are
now written in terms of ve variables, ratio of the rst and the second-order derivatives of the
inverse-depth ; of the image embedding ; with the inverse-depth function. We iteratively

solve for the rst and the second-order derivatives alternatively until the rst-order derivatives

of i(x) converge. Our algorithm is:
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Inputs: Warps j1,] 2 [2;N].

1) Find point correspondences. This step is the same as stefl) from the previous algo-
rithm.

2) Initialise (ki;k2) using the solution under IP. Run step 2) from the previous algorithm.

3) Find the second-order derivatives(ks,ks,ks). Evaluate the linear system S;(ks; ka; Ks)
and solve using LLS. This gives ks; ks; ks). Find (ks; ks; ks) using equation (4.47).

4) Find (kq;k2). Evaluate the sum-of-squares polynomials of the systen®;(ks; k2) and
nd ( k1;kz) by minimising it using [ , ]. Find ki1; k2) in terms of
(k1;k2) and the warps j1, ] 2 [2;N], using equation (4.6).

5) Repeat steps 3) and 4) until the solution to(k1; ko) converges.The maximum number
of iterations is set to 5.

6) Find normals and 3D points. Run step 3) from the previous algorithm.

Outputs: Points and normals on 3D surfaces.

4.4.3 Complexity Analysis

We discuss the complexity of the algorithm under the IP assumption and in the general
solution. For both solutions, we assume that the warps are provided. We calculate the
warps using schwarps | , ], that impose the Schwarzian equations (4.29) as
a soft constraint. However we would like to point out that we do not require warps between

all possible pairs of images in the sequence. We use a reference view and thus require the
computation of N 1 warps only, not N 2.

Solution with In nitesimal Planarity

The solution to Iso-NRSfM under IP solves only one sextic polynomial forN images. This
polynomial is formed by computing the sum-of-squares of 2y 1) cubic polynomials (4.45).
Forming this sextic polynomial has a linear complexity but solving it is independent of N .

General Solution

The solution to the general case solves for the rst and the second-order derivatives of;(x)
in parts. The approach for solving for the rst-order derivatives of (x) is similar to the
solution under IP assumption. It also solves one sextic polynomial and therefore, the solution
is independent of N. For the second-order derivatives of j(x), we obtain 4(N 1) linear
equations and they are solved using LLS. Therefore, there is a linear complexity in forming
these equations and solving them as well.

4.5 Experimental Results

We tested Iso-NRSfM on synthetic and real datasets. Figure 4.3 shows some images from real
datasets on which the methods were evaluated. For quantitative comparison, we measured
the normal error (mean di erence between computed and ground truth normals in degrees)
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Figure 4.3: Some images of the rug, table mat, kinect paper and tshirt datasets. The ve rightmost
images of the table mat dataset are zoomed in to improve visibility.

and the depth error (mean di erence between computed and ground truth 3D coordinates
in mm). We denote 1so-NRSfM with IP as infP and asiso otherwise. We compared our

method with six other NRSfM methods: diH | , ], mdhl [
: ].kerF [ : l.plaH [ : ], piecel [
, ], inextl [ , ]. All the codes for these methods were

obtained from the authors' websites exceptplaH which we re-implemented.

4.5.1 Synthetic Datasets

We simulated random views of a cylindrical surface deforming isometrically. The image size
is 640 48Q and the focal length is 40@. We tracked 400 points. We compared all methods
by varying the number of views and noise in the imageskerF needs a temporal sequence, 10
views are not enough for reconstruction especially for short-baseline viewpoints. It therefore
did not do well. Also, mdhl needs the views to be very di erent and therefore, it also gave
very bad results on this sequence. | , ] mentioned that their method
fails on such sequences. The results are shown in gure 4.4. The results are obtained after
averaging the errors over 50 trials (the default is b noise and 10 views).

4.5.1.1 Varying the Number of Views

infP gives a very good reconstruction for three views which improves when more images
are added. iso performs much better than infP as it does not assume IP; this helps in
reconstructing the high curvature deformations more accurately. The errors ofiso are almost
half of infP . plaH and diH give higher errors thaninfP and iso with plaH being better
than diH . However,diH improves faster with the number of views and gives better results
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Noise (in pixels)!

B-spline control points 2 3 4 S

10 53 .92 155 194 246
20 99 200 294 3.93 4.90
30 1.00 2.06 3.02 4.07 5.14

Table 4.1: Performance of warps in noisy conditions. The average pixel error due to added noise
w.r.t. the B-spline control points are shown. The warps reduce the noise only when fewer control
points are used, but then signi cantly degrade their derivatives.

than plaH for 8-10 views. The performance of these methods is o by almost 5 degrees
compared with infP . piecel and inextl give decent results only with 8-10 views but their
performance is worst amongst the compared methods. OverallnfP and iso consistently
show lower errors than all other methods.

4,5.1.2 Varying Noise

For the 10 images of the synthetic dataset, we observe that all methods degrade linearly
when noise varying between 1-5 pixels is addednextl and piecel show a good tolerance to
noise, even though their performance is worse than all other methodsdiH and plaH give a
slightly better performance than inextl and piecel . Their performance degrades faster with
noise compared toinextl and piecel . Even though the normal errors ofdiH and plaH are
comparable toinextl and piecel , their depth errors are lower because they smooth normals
while calculating the depth. infP and iso give best performance with noise.iso performs
better than infP and degrades more slowly tharinfP . The normal error for infP and iso is
almost half compared to other methods.

We also made an experiment to study the in uence of noise on the warps. This is because
we use warps to represent the image transformation and that estimating these could be
reducing some of the noise applied to the correspondences. We simulated two synthetic
images (I11 and 12) and added a 1-5 pixels noise to point correspondences in 12. We computed
the schwarps [ , ] (using B-splines) between 11 and [2 using our default
setup (30 control points and a xed value for the hyperparameter controlling the Schwarps
smoothing). We then computed the standard deviation of the pixel noise after computing
the warps. The result is given in the last row of table 4.1, where we can see that the amount
of noise is almost una ected. We did the same experiment with fewer control points, which
resulted in improved noise values (see the table 4.1). However, we found that using fewer
points has an impact on the nal accuracy as they degrade the derivatives, which directly
in uence the output of our method. We conclude that the warps do not remove the noise
from the point correspondences.
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4,5.1.3 Varying Curvature

We simulated a cylindrical surface with a varying radius. The curvature is the inverse of
the radius. We simulated 10 surfaces with the radius varying from 2 to 11 and used 10
di erent views of each surface for the experiment. We see that the performance oifso and
infP is best amongst the compared methods. Their performance is very similar when the
surfaces are almost at or less bent. As the curvature of the surfaces increase, we can see
that iso performs much better than infP . iso handles high deformations better thaninfP
because it estimates the second-order derivatives of the surface whiiefP assumes them to
be zero. diH and plaH need wide baseline views with di erent deformations, therefore,
their performance is worse or comparable withinextl and piecel .

45.2 Real Datasets

We conducted experiments with the four datasets shown in gure 4.3 and performed two
types of experiments. The tshirt dataset is a wide baseline dataset and the rest of them are
short baseline datasets. Our observations are summarised below.

45.2.1 Short Sequences

The rug, table mat and kinect paper datasets are long sequences (159, 60 and 191 images
with 350, 300 and 1500 point correspondences) and the t-shirt is a short dataset (10 images,
85 point correspondences). The long sequences are uniformly reduced by picking 10 images
at regular intervals in the sequence. The results are shown in gure 4.5. The results for the
tshirt dataset are averaged over 20 trials of randomly sampled images. The gure clearly
shows that iso works best among the compared methods while the performance ahdhl

and infP is quite good as well.

Rug dataset. iso and infP have the best performance on this datasetjso being better
than infP . mdhl improves with the number of views and gives comparable results tonfP
for 7-10 views. diH and plaH show a worse performance thammdhl , with plaH being
better. inextl and piecel are orthographic methods and therefore, they did not do well
on this dataset as it has too much perspective in the deformations.inextl 's depth error is
comparable to plaH but normal error is much higher. This indicates attening of surfaces
during the reconstruction.

Table mat dataset. iso has the best performance on this datasetinfP and mdhl show a
similar performance in this dataset, and they are closest taso compared with other methods.
diH and plaH show a worse performance thaimdhl , with plaH being a little bit better

than diH .inextl and piecel are orthographic methods and therefore, they did not do well.

Kinect paper dataset. mdhl has the best performance on this datasetinfP andiso are
very close tomdhl . inextl and piecel have the worst normal error as compared to other
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Figure 4.5: Experiments on short sequences. The average normal and depth error for each exper-
iment with number of views varying between 3-10 is shown. The views of the rug, table mat and
kinect paper datasets are selected by uniform sampling the long sequences. The views of the tshirt
dataset are selected by randomly sampling the dataset and the results are averaged over 20 trials.
Best viewed in colour.
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methods. Their errors are almost twice as the best performing methodsndhl , infP and
iso. diH and plaH show better performance in terms of normals as compared tinextl
and piecel . The performance ofdiH , plaH , inextl and piecel in terms of depth error is
similar.

Tshirt dataset. iso has the best performance on this dataset withinfP and mdhl being
very close toiso. diH s slightly worse than infP and mdhl . plaH follows a similar trend
asdiH , but its performance is worse.inextl and piecel have poor results on this dataset
because they cannot handle such deformations.

Summary of experiments on short sequences iso and infP give the best performance
on the rug and table mat datasets whilemdhl gives best results on the kinect paper dataset.
It is important to note that iso and infP converge quickly as compared to the rest of the
methods. They show very good results for as few as three viewsso converges much quicker
than infP ; the errors seem to have been stabilised with four views only. Figure 4.6 shows
3D reconstruction error maps for the rug, table mat, kinect paper and tshirt datasets. We
showed results foriso, infP and mdhl only because they are the most competitive methods
amongst the compared methods. In case of occlusioiso and infP can reconstruct the entire
surface as long as the surface is visible in at least three images, therefore, even if the kinect
paper dataset is occluded by a hand, it can be reconstructed by them. Howevemndhl
reconstructs only the visible part of each surface. Therefore we observe the occlusion in the
reconstruction and rendering as well.

4.5.2.2 Long Sequences

The rug, table mat and kinect paper datasets are long sequences with 60, 159 and 191 images.
Since our method can easily handle a large nhumber of images, it is important to show results
on large sequences by considering all images in the dataset. A limitation of current NRSfM
methods is that they cannot handle a large number of views. Also, several NRSfM methods
such asdiH andplaH [ , ; : ] reconstruct the reference
image only and are computationally expensive to recover the other shapekerF reconstructs
the entire image set in one execution and therefore, we compare our method witkerF on long
sequences. The cat dataset is a relatively short sequences (60 images) therefore, we added the
results of inextl for this dataset on the entire sequence. Figure 4.7 shows the comparison of
our method with others. It is very clearly visible that our method performs much better than

the compared methods. mdhl and infP show good results as well. Table 4.2 summarises
the results of these methods.

Rug dataset. iso gives the best results among the compared methods on this dataset.
infP 's performance is slightly worse thaniso. mdhl shows better performance thankerF ,
but it is worse than iso and infP .
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E =264 E =164 E=6.1 E=51
E =286 E=93 E=6.6 E=6.7
E =555 E =116 E =38 E=6.6

Figure 4.6: Reconstruction error maps and renderings for the rug, table mat, kinect paper and
tshirt datasets. We remind that mdhl reconstructs only the visible part of the surface. Therefore,
the rendering and error map for the kinect paper dataset is broken for this method. Best viewed in
colour.
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Figure 4.8: Images (1Q20; 30;40;50) of a partially stretched rubber like surface. The rst image
has the least deformation and the last one has the most.

Rug Table mat Kinect paper
iso 129 272 105 82 7.8 6.1
infP 16.7 349 123 96 96 7.1
mdhl 188 423 164 105 438 4.4
kerF 2000 66.6 19.0 20.0 18.7 2438
inextl - - 224 19.0 - -

Table 4.2: Summary of experiments on long sequences. The average normé& {) and depth error
(Eq), are measured in degrees and mm respectively and shown over the entire sequences.

Table mat dataset. iso has the best performance withinfP being very close to it. mdhl
shows better performance thankerF , but both of them are worse thaniso and infP . diH

and plaH need to compute homographies between image pairs, therefore, they grow non-
linearly with the number of views. For 60 images, the execution time goes upto 45 min for
a single reconstruction. Therefore, we did not compare with them. piecel breaks on this
sequence, therefore we did not include it. The comparison withinextl is done only for this
sequence as it is a relatively smaller sequence. One must also note thaextl, piecel grow
with the number of views and point correspondences, therefore, they are not very e cient
with a large number of views.

Kinect paper dataset. mdhl shows the best results on this datasetiso and infP have
similar performance but they are worse thanmdhl . kerF has the worst performance; the
errors are almost double of the rest of the methods. It is because this sequence has outliers;
and therefore the performance ofkerF is a ected. One must note that iso, infP and kerF
reconstruct the occluded part of the paper whilemdhl only recovers the visible paper in
each frame.

Summary of experiments on long sequences. Table 4.2 summarises the results of
the compared methods on the rug, table mat and kinect paper datasetsiso and infP give
the best performance on rug and the table mat datasets whilendhl gives the best results
on the kinect paper dataset. kerF gives decent results on the rug and table mat datasets
but does not do well on the kinect paper dataset. However, its performance is always worse
than iso, infP and mdhl . inextl was only compared on the table mat dataset; it gives the
worst results compared to the other methods.
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Experiment 1 2 3 4 5

No. of images 10 20 30 40 50
infP 19.1 26.6 29.3 327 36.1
iSO 141 227 27.0 283 3438

Table 4.3: Mean shape error (in degrees) for the experiment with partially stretched surface. The
error increases with the number of images as the deformation increasesso performs better than
infP .

Summary of experiments. In the experiments that we performed, we observed that
iso and infP show the best results amongst all compared methodsmdhl shows a good
performance. Its results are comparable to ours for the tshirt and kinect paper datasets. This
method is based on the MDH, it usually requires a lot of images with di erent viewpoints
to give good results.diH and plaH are based on homography decomposition. They su er
from ambiguities in the normals. They disambiguate the normals assuming the smoothness
of the surfaces which is not a strong assumption to make. These methods work well with
wide baseline datasets. kerF is a method based on statistical modeling designed to work
for video sequences. It needs a good estimation of the radius of the kernel in which the
similarities between the two shapes are measuredpiecel and inextl are methods based on
orthographic projection. They su er from convex-concave ip ambiguities.

4.5.3 Elastic Objects

Our methods model deformations with isometry. In case of non-isometric deformations,
theorem 2 and corollary 1 do not hold and therefore, there is no meaningful theoretical
solution guaranteed. However, we solve Iso-NRSfM by nding a set of CS that minimise
the sum of squares of polynomials in equation (4.45). Therefore, we made an experiment
to test Iso-NRSfM with objects deforming non-isometrically in order to test the limitation

for our methods infP and iso. We used the partially stretched surface dataset introduced
in [ , ]- 1t consists of 50 shapes of an elastic surface partially stretched
from its longest side in a sequential order. The images are shown in gure 4.8. We made
ve experiments on this dataset. These experiments include 10, 20, 30, 40 and 50 images
respectively. The experiment with 10 images has the least elastic deformation (this can be
seen in gure 4.8) and the one with 50 images has the most elastic deformation. For each
experiment, we calculate the shape error for each image. The mean shape error calculated
over the entire image set in each experiment increases about linearly with the degree of
extension. Therefore, we see that the method does not collapse completely for non-isometric
deformations but gracefully degrades. Table 4.3 summarises the results of this experiment.

4.5.4 Computation Time Comparison

We compared the performance of our methods with the others in terms of computation time
on a standard computer with 16 GB RAM. Ours and the rest of the methods are implemented
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Figure 4.9: Experiment with an almost stationary object. The rst ve images of the table mat
sequence are used. The reconstruction dso is shown in red. The ground truth is indicated with
black. Es represents the mean shape error (in degreesk 4 represents the mean depth error (in mm).
The performance ofiso is almost the same asnfP on these ve images. Best viewed in colour.

infP iso mdhl kerF plaH diH piecel inextl

10 112 51 89 141 65 86 180 210
30 13.1 524 213 263 3090 2280 850 1299
60 14.8 551 658 448 - - - -

Table 4.4: Comparison of computation time (in seconds) for 10, 30 and 60 views. The best performing
method is highlighted in bold. infP and iso show a much lower increase in computation time while
plaH , diH , piecel and inextl show a drastic increase. They could not be evaluated for 60 views.

in MATLAB. infP takes 10 seconds for any number of imagesso is initialised with infP ,
and the solution to the rst and the second-order derivatives of (x) is found iteratively
upto 5 iterations. Solving for the rst-order derivatives takes a similar duration as infP
while solving for second-order derivatives and integrating normals have a linear complexity
but they are very fast. We made an experiment with 10, 30 and 60 views. We observed
that the computation time of iso (60 seconds) andnfP ( 10 seconds) is almost the same
(very small increase) in the three experiments.mdhl and kerF also are very fast but the
computation time increases signi cantly as the number of images increasesplaH , diH ,
piecel and inextl show a drastic increase in computation time on changing the number of
images from 10 to 30. We did not compute these timings for 60 images. Table 4.4 summarises
the results.

455 Nearly-Stationary Objects

We made an experiment with a nearly-stationary object. In the table mat dataset, we picked
the rst 5 frames which are shown in gure 4.9. The mat is nearly-stationary. We observed
that our methods iso and infP did get a decent reconstruction for these datasets. The errors
are higher as compared to the experiments with the full sequence, as expected. Figure 4.9
shows the images and the reconstruction. The results are shown faso. The performance of
infP  was almost the same ag$so. This shows that the solution to Iso-NRSfM is well-posed.
There is always a solution forN 3, as long as the images are not exactly the same.
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4.6 Conclusions

We proposed a theoretical framework for modelling and solving NRSfM locally for surfaces
deforming isometrically. It uses Riemannian manifolds and applies to the minimal and re-
dundant cases ofN 3 views. Unlike existing methods, the proposed method has only ve
variables to solve forN views. Therefore, it can handle a large humber of views without a
signi cant increase in the computation time. The complexity is linear, which is a substantial
improvement from the current state-of-the-art. Since the method is local, it handles missing
data and occlusions. However, it does not handle self-occlusions but they could be inferred
a posteriori. We proposed two methods that solve NRSfM with and without the assumption
of IP. The performance of these methods is quite similar (except in computation time). This
shows that IP is a good assumption to make. We tested our methods on datasets with wide-
baseline and short-baseline viewpoints, large and small deformations. Our results show that
the proposed methods consistently give signi cantly better results than the state-of-the-art
methods even for as few as three views.
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Chapter

A Modelling Framework for Deformable 3D
Reconstruction

Summary
In this chapter, we propose a generic modelling framework for deformable 3D reconstruction
using di erential geometry and Cartan's theory of connections. We express the properties of
surfaces in terms of di erential quantities such as moving frames and connections and show
how to express the deformation constraints in terms of these quantities. With the assumption
of IP, we derive PDE for the reconstruction of surfaces with isometric, conformal, skewless,
equiareal deformations and solve them algebraically. We show that NRSfM is not solvable
for equiareal deformations. We also obtain a solution for SfT without modelling deformation
explicitly. This solution is derived under the assumption of IL.
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5.1 Introduction

In the previous chapter, we obtained a solution to NRSfM (Iso-NRSfM) for deformable thin-
shell objects undergoing isometric deformations. It uses the di erential quantities of metric
tensor and CS to model NRSfM. It is a signi cant improvement on the state-of-the-art. It
is a local solution which has limited variables for any number of images, which makes it
computationally very cheap. However, it gives very good results with very few images. It
handles missing data and occlusions implicitly and works with both short and wide-baseline
images. It shows that physics-based modelling in NRSfM leads to better solutions than
existing ones.

In this chapter, we extend NRSfM to deformations other than isometry. Our goal is to pro-
pose local solutions which maintain the strengths of Iso-NRSfM. We generalise the concepts
of metric tensor and CS from Riemannian geometry (de ned for isometry and conformity
only) to moving frames and connections in di erential geometry. Di erential geometry is
a very good tool for physics-based modelling as in pure mathematics, it is well-established
that it is the comprehensive study of surfaces. Cartan's theory of connections not only gen-
eralises the concept of CS on surfaces but also gives the laws that combine moving frames
and connections in order to completely describe the properties of surfaces. It then leads to
interesting results. With di erential geometry and Cartan's connections, we propose a uni ed
framework for modelling NRSfM and SfT. This framework is local and coherent with other
solutions to NRSfM (Iso-NRSfM) and SfT [ : ] with di erential modelling.

This framework allows us to go one step further in NRSfM and SfT and to model these
problems for various types of deformations in terms of PDE. With the assumption of IP,
we show that these PDE can be solved algebraically. We show that nonetheless equiareal
NRSfM cannot be solved locally.

An interesting result in this chapter is the solvability of SfT using geometric constraints
instead of deformation constraints. We show that the solution is unique and well-posed.

This chapter contributes a modelling framework for deformable 3D reconstruction. It is
general, practical and easy to use.

Chapter outline. We present the mathematical background of this framework in sec-
tion 5.2. It describes the connections, moving frames and shows how to express deformation
constraints using these quantities. Section 5.3 proposes a framework for model-based recon-
struction of deformable objects (SfT) and the reconstruction algorithm. Section 5.4 proposes
a framework for model-free reconstruction of deformable objects (NRSfM) and the recon-
struction algorithm. Section 5.5 discusses the experiments and section 5.6 concludes.

5.2 Mathematical Background

We describe surfaces and deformations using concepts from di erential geometry and the
theory of manifolds. We discuss next some of the deformations relevant to this framework.
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5.2.1 A ne Connections

In di erential geometry, a connection is a geometric object attached to a point on a smooth
manifold. It transports some of the geometric properties (such as lengths, angles and areas)
of the surface at this point to its neighbourhood.

De nition 1.  Cartan's a ne connection is a set of geometric relations (expressed in terms
of the a ne moving frame de ned locally at a point in space) that relate a point to its in-
nitesimal neighbourhood.

In order to de ne an ane connection in an n-dimensional space, we x an origin O

frame at f as
f=0+fleg+f2e+ i+ f ey (5.1)

wheref ! are the coordinates of the pointf on the manifold. An a ne connection is described
using the following rst order di erential system which represents the vectorial variations of
f and the coordinate basis:

df = wle + wler + 111+ w'e,

(5.2)
de = wlep + wler + i+ wlen;

where the 1-forms (see appendix C for detailsy' and w# are known asdual and connection
forms respectively. Note that this formulation of connections is applicable to any kind of
frame. In case of moving frames, a connection 1-form describes the change in the moving
frame as one moves to the in nitesimal neighbourhood of a point on the manifold. An a ne
connection de nes the local geometric and physical properties (such as unit lengths and areas)
of the a ne space around a point in the manifold. Cartan's vision behind connections [ ,
: : ] was to de ne geometric properties on an object without de ning the object

itself. He derived these laws using the theory of moving frames [ , ] which we
describe next.

5.2.2 Moving Frames on Surfaces

The moving frame in a 3D surfaceM is a set of 3 linearly independent vectors. It can be
de ned in several ways. The connection forms de ned in equation (5.2) are dependent on the
particular choice of the moving frame. In general we assume that any point on the surface
(manifold) admits a local parametrisation described by the functionf (x*;x?) (see gure 5.1).
A natural choice is to use the tangent vectors of the surface to de ne the moving frame:

_ Of _ @f _ @f of,
€1

= @f ez—@ %_@ oz (5.3)
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Figure 5.1: A moving frame on a surfaceM de ned using a local parametrisation (x*; x?).

with e e3 = 0 and e;e3 = 0. The expression of the total derivative of f in terms of the
moving frame is given by

@f ., @f ,

f= ——dx*+ —5dx*; 4
d @*dx @%dx ; (5.4)
By identifying the terms in equation (5.4) with equation (5.2), we obtain the dual forms
wl = dx!, w? = dx? and w® = 0. The connection forms can be found by taking the total

derivative of the basis vectors

@e @e

der = —dxt+ =Zdx?; 5.5
&= ax ™ * @™ (5.5)
and nding the representation of equation (5.5) in the basis formed by the moving frame
(1;€2; €3):
de = wlep + wler + wies; (5.6)
wherewf = $dx!+ $dx? and § are scalar functions. In case of the frame used in

equation (5.3), § fors;t;k 2f 1;2g are CS of the surface and § with s=3and t;k 2 1;2g
contain the coe cients of the second fundamental form of the surface.

Example 1. Given the following surface of a plane:
f (x5 x%) = uxt+ vx?+ o; (5.7)

where u and v are three-dimensional unit vectors that de ne the plane ando is a three-
dimensional displacement vector, we de ne the moving frame of equatiofb.3):

€=U &=V e=Uu V. (5.8)
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The total derivative is given by
df= dx! dx2 u v = 1112 ¢ e (5.9)

As e; and e, are constant vectors thende; = 0 and de; = 0. This makes all connection forms
wi =0 fort2f1;2gands 2 f 1;2;3g. We remind that this result is correct for the particular
parametrization of the plane given in equation(5.7) and the moving frame in equation(5.8).

Example 2. If the plane of equation (5.7) is projected into the image with coordinates
(X1;X2), it can be alternatively parametrised using the image embedding from equation (3.3)
as

0 11
1 X g
- ) 2K - A
oty K (5.10)
1
with 0 1
1
n> %ng
(x*;x?) = b n=u v: (5.11)
' n>o ' '

The moving frame on the surfaceM described by the image embedding.11) is given by

1 1 2 >
e1= 1= — X7, X711
1 1 2 >
&= 2= — X 2 X% 2, 2 (5.12)
1 1 2 >
€= 1 2= —3 1L, 2 X" 1 X7 2

Using the frame and its rst-order derivatives, we obtain the connection formsw; related to
. We write w§ = § dx* and obtain

1
1

0 0
1 2 0 0
%%1 51 %12: *%D 2 1 Og

1 2 3 0 0 3
31 31 31 1
o, L 0 1 (5.13)
2 12 12 1p 2 1 0
% 32 5 HK= = ?@0 2, 0 g( :
%2 %2 gz 0 0 32

As expected, the connections in equation (5.13) are di erent from those of Example 1.
Equation (5.13) plays an important role in this paper as it shows the general structure of
the connection's coe cients for planar surfaces and by extension the IP approximation of
surfaces described by their image embeddings.

We now show how to write moving frames and connections on planar surfaces.
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5.2.3 Moving Frames and Parametrisations

Figure 5.2 shows a surfaceM de ned using two di erent parametrizations f (x) and gk ).
The domains of f and g are mutually homeomorphic and is the di eomorphic mapping
that expresses the change of coordinates:

!
1
X= k)= 22 i ; (5.14)

By di erentiating, we obtain the relation between the dual forms of the two parametrisations
as

dx! = gjlkdx1+ gﬁdx2
(5.15)
dx? = gidx1+ gﬁdxz:
M
€3 €
.Z\z -

Figure 5.2: A moving frame on a surfaceM ; de ned using local parametrisations (x*;x?) and
(x%; x2) related by

Given that g = f in gure 5.2, we obtain Jg = J¢J . Therefore, the moving frames
vectors (e1; e; €3) and (er; e; e3) de ned using (x1;x?) and (x*; x?) respectively are related
by the following relationship

e & = e e J
es=€ e=jljler e)=]jJjes (5.16)
e & e = e e J jljes

Di erentiating the above relation and expressing the derivatives of frame bases according to
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equation (5.2), we obtain

0 1 0 1
wi w3 Wi w3
elegegg)w% W§£= elezegg)w% W%RJ‘*‘ e e dJ
3 w3 3 w3
Wi W3 Wi w3
0 1 0 1 (5.17)
W3 W3
e1 & 63 %)Nég= e1 & €3 &N%ngHesde j:

w3 w3
3 3

!
1

In these equations, we expresse; e e as e e J |jJ jes 31 and using
J
equation (5.16), we write the relation between the connection forms as
! !
1wl 1wl
Wp W Wi W
o2 =3t Y g+
Wi W3 Wi W3
3 w3 =i7i ! wd w3
wy ws = ]J ] wy ows J
1 2! 1 W2 (5.18)
1
W3 1 S
=J - wi wi jJ
w2 3 W3 JJ)

wi=wi+d(d ™

Equations (5.16) and (5.18) show that the moving frame and the connections of the 3D
surfaceM (in gure 5.2) derived using the functions f and g are linearly related in terms
of the rst and second-order derivatives of . We refer to these equations as the change of
variable equations of moving frames and connections. In the next section, we show how to
draw relations between di erent surfaces.

M,y Mo
€3 e P a2
0\ e - ;\L»él
z
f g
(z',2?)

Figure 5.3: Two surfacesM ; and M , related by are parametrised using &*; x?).
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5.2.4 Smooth Mappings between Surfaces

Mappings are de ned by functions that connect points between two surfaces. Figure 5.3
shows a mapping :M 1 !M , between surfaceM ; and M », respectively parametrized by
embeddingsf (x) and g(x). The mapping takes a pointz on M ; and transports it to z
on M ». Therefore,z = (z). We assume that mappings between surfaces are di eomorphic
which implies that they are smooth, bijective and with a smooth inverse.

Among this general class of mappings we study the following types:1) isometric
(distances-preserving), 2) conformal (angle-preserving),3) equiareal (area-preserving) and
4) skewless (orthogonal frame basis' angle-preserving). The set of isometric mappings is a
subset of 2), 3) and 4) and is also given by the intersection of 2) and 3). The set of skewless
mappings includes 1), 2) and a subset of 3). These properties are described in gure 5.4. All
these kinds of mappings are identi ed by how they a ect the metric tensor ( rst fundamental
form) between the two surfaces. They are thus de ned with rst order di erential constraints.

Figure 5.4: Classi cation of various types of smooth mappings.
Given that g and g are the metric tensors ofM 1 and M , respectively, where:
g=J7J¢ g= JSJg (5.19)
the four categories of mappings are described by the following invariants:

Type of mapping Invariant

Isometric g=g
Conformal g/ ¢ (5.20)
Equiareal igj = jgi
Skewless (@)= (9)
where 2
_ 91
= —= 5.21
(@ 0110922 ( )

Given the moving frames (e1; ex;e3) at M 1 and (e1; &;e3) at M » from equation (5.3), the
coe cients of the metric tensor can be described as follows from equation (5.19):
! !
ege e ee e

9= 9= S
ge e

5.22
ee e ( )
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From equations (5.22) and (5.20), the four categories of mappings can be transferred to
constraints on the frames.

Isometric Mappings

Isometric mappings preserve the lengths and angles of the moving frames on the corresponding
points on the two surfaces. The constraints are

g e =€6e 6&=66 €6=Eee6 (5.23)

Conformal Mappings

Conformal mappings preserve the angles of the moving frames on the corresponding points on
the two surfaces but the lengths of the frame vectors are isotropically scaled. The constraints
are

e ge g6 | ge ge €6 ! (5.24)

Equiareal Mappings

Equiareal mappings preserve the area (expressed as the squared norm of the cross product
of tangent vectors) of the tangent plane de ned by the moving frames on the corresponding
points on the two surfaces. The constraint is

2
: 22 _ > > >
j&r € = €6 66 €&
_ > > > 2_- 22
= ee e €16 =& €.

(5.25)

Skewless Mappings

Skewless mappings preserve the angles along the orthogonal frame basis on the surface. It
is composed of two local anisotropic scaling along the orthogonal frame basis followed by a
conformal mapping (see gure 5.5 for more details). Next we prove a theorem to formalise
the construction of these mappings.

Theorem 5 (Skewless Mappings) A mapping is skewless i it can be only decomposed into
a conformal mapping and two anisotropic scaling along the orthogonal frame basis.

Proof. First we prove the reverse implication of the theorem, i.e., two anisotropic scaling and
a conformal mapping lead to a skewless mapping. In gure 5.5, we have

e = ¢y X (5.26)

Since x and  are anisotropic local scaling along the orthogonal frame basis, they preserve
the angles along the orthonormal frame basis. Therefore, x, y and their composition is a
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Y

L. L.

Maye

Ye

w

Figure 5.5: An example of skewless deformation. A surface grid undergoes anisotropic scaling in
two orthogonal directions and then undergoes a conformal transformation. Therefore, only the angles
between the basis are preserved.

skewless mapping. . is a conformal mapping and therefore, it is skewless too, which makes
xyc @ skewless mapping.
Notethat . y xand ¢ x y are both skewless mappings as the anisotropic
scalings are commutative. However, x ¢y is not a skewless mapping anymore due to
the non-commutativity of the conformal mapping.

In order to prove the forward implication, we need to show that a skewless mapping xyc
can always be decomposed into a conformal mapping. and two anisotropic local scalings
along the orthogonal frame basis.

We can always express yyc as
xy¢= ¢y X us (5.27)

where  is an unknown mapping. On decomposing xyc as in equation (5.27), we have
that y x 4 must be a skewless mapping. , cannot be a conformal mapping as it is
non-commutative with anisotropic scalings. , can be expressed as

u= xo yo x0y0; (5.28)

where o and yo are transformations along the orthogonal frame basis. yo0 represents a
transformation that is not along the orthogonal frame basis and therefore it does not preserve
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the angles along the orthogonal frame basis.

Therefore y x y can only be a skewless mapping if yo,0 is identity. Otherwise, it
causes a scaling which is not along the orthogonal frame basis which makes x , a
non-skewless mapping.

Hence a skewless mapping can only be de ned as a combination of anisotropic scaling
followed by a conformal mapping.

O

The constraint for skewless mappings is

g’ ge
a2 . 4% . (5.29)
&1 66 e e &

It is possible to propose more kinds of mappings and express the properties they preserve in
terms of the moving frames. In the next section we will show how to exploit these properties
(expressed in terms of moving frames) for the reconstruction of deformable objects.

5.2.5 Innitesimally Linear Mappings between Surfaces

In this section we show that linear mappings preserve the connection forms across surfaces.
This is a very important property that we use in this chapter to propose a reconstruction algo-
rithm (without having to categorise the mapping according to equation (5.20)) by extending
these properties to the so-called in nitesimally linear maps.

Theorem 6. (Linear Mappings) A linear mapping between two planes preserves the connec-
tion forms (wi; wi; w?; w3).

Proof. Given that g = f in gure 5.3, we have Jg = 0. The moving frames (e1; €; €3) and

(e1; €2;€3) on the planesM 1 and M , are related by

e €& =J i et & = J fe J je (530)
Equation (5.30) shows the relation between the moving frames d;;e;e3) at M ; and
(e1;e2;€3) at M ,. Therefore, on di erentiating this relation we obtain

de; deo =J ¢ deg dey +dJ ¢ € e (5.31)

Given that is a linear mapping, dJ ¢ = 0 in the previous equation. We multiply the
two expressions obtained in the above equation witte; and expand the expression using the
connection relations in equation (5.2) and obtain

wieie] + wlere; = J ¢ wie + wiep €

(5.32)
wieie] + wiepe; = J ¢ wiep + wier €
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Since w! are scalar functions (they are di erential forms), we employ equation (5.30) and
rewrite the above expression as
wieie] + wiexe] = wiee; + wiese;

(5.33)
wiele] + Wieoe] = wiere; + wiese;

Since (1; &) are linearly independent, on expressingw$ in terms of § dx* in the above
equation we obtain § = § and therefore, wi w3 w? w3 = wi wi w? wi : O

We use the concept of IL mappings which allows us to extend the result of Theorem 6
for mappings between two generic surfaces. To summarise, it is possible to nd constraints
on smooth mappings (with an assumption of IL) without adding a deformation prior (like
isometry or conformity).

In the next section, we show how to use theorem 6, the moving frame constraints derived
for smooth mappings in equations (5.23)-(5.25) and the change of variable for moving frames
in equation (5.16) and connections in equation (5.18) for 3D reconstruction of deformable
objects.

5.3 Model-Based 3D Reconstruction

We now propose a general framework based on the theory of connections presented in the
previous section to model and to solve SfT for thin-shell objects.

es GQT v & __ M
;\L.el/\ >L>él

0

®1 2] | 2

IL

T 7z

Figure 5.6: Modelling of model-based 3D reconstruction of deformable objects from a single view.

Figure 5.6 shows the general modelling of SfT. Given a 3D model (template) of the
object, our goal is to nd the surface M as observed in the imagd . is the image warp
from | to the attened 3D model T¢. is known and can be estimated in practice with dense
image registration methods. is the deformation function between T and M . For rigid
objects is a Euclidean transformation. We model the surfaceM and the model T using
image embeddings ; and »:
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01 01

%x 2K e %x 2 (5.34)

1(x*; x?

(X1 2(xh; X2)

Following equation (5.3) the moving frames €}; €); €,) and (e;;&2;e3) on T and M respec-
tively are given as

1 >
t— — 1. 42 .
€= 1= —» 1 X 11, X" 11, 11
1
t— _ 1 1. 2 . >
€= 12= — X 12, 1 X" 12; 12 (5.35)
1
I — 1 oo 1 2 >,
€= 1n 2= —3 11, 12, 1 X7 11 X" 12
1
- 1 1. g2 . >
€= 21= — 2 X7 213 X" 21, 21
2
— 1 1. 2 . >
€= 2= —5 X 22, 2 X" 22, 22 (5.36)
2
— 1 .o 1 2 >
€= 21 22= —3 215 22, 2 X7 21 X" 22
2

Using equation (5.22) we compute the elements of the metric tensor iT as:

> 1 Et
e "= 2 K2 +1 2k = @
1 G
e e = 7 k3 +1  2x%ky = k72t (5.37)
1 F
&= ik xke Xk = 5
where 2= 1+ x' %+ x22 k= 1 ki= * andk, = —*2. Under the assumption of

1 1
in nitesimal planarity, the rst-order derivatives of these expressions are given by

@E _ @F _ @G _
or- 2k, E¢ % koEt  KkiFt @x 2k, Fy (5.38)
gg = 2kiF¢ gg = kiGt koFy gg = 2koGy:

Similarly, we can write (E; F; G) and their rst-order derivatives for ( e1; ez;e3) at M in terms
of (k1; k2, k).

In order to compare the moving frames at the two surfacesT and M , we need to de ne
them in the same parametrisation space. Therefore, we deriveH;F;G) at M ; in terms of
(x1; x?) by using the change of variable as suggested in equation (5.16)
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2 2
E = g Et+zg)}?£|:t+ ?@f Gt
a@x @ @% @% _ @% @* @% °
e eetere N e @
x Z *X @% % °
G= g{z Et+Zg(zngt+ g{z Gi: (5.39)

The derivatives of (E; F; G) according to equation (5.38) are given by

E * X ! %
g(lz 2 g{lk1+g(l 2 E+2@@;X1)2A1+2@@Xl)2A2
1
g(zEz 2 gkl+ g’i‘kz F +2@(@‘?%(ZA1+2@G?C§2A2
gfz 2 gékﬁ gfk F +2@(@?§@(2c1+2@%é(2c2
gf: 2 gékﬁ g{’;‘ 2 G+2£X) c1+ 2@(@’%) c2
g= ggikl g?kz F g§k1+ ggkz E
@x @% @x! @3 (5.40)
" ae™ " ae™ gyt @(xl)2C2
@x* @% @x’ @%
* @62t @1aeC? g™t @
where
@x_ , @% @*%_ . @%
Al= @(i +@(;F;A2=@(iF @(;G
Cl= gz + ngt’ C2= ngt ngt:

Now that we have both (E;F;G) and (E; F; G) with respect to (x1;X2), we write the con-
straints for various kinds of deformations expressed in equations (5.23)-(5.25). Sincé&{; k2; k)
are known, our goal is to nd (ki; k2; k) in order to obtain the normal and depth at M .

5.3.1 Reconstruction Equations for Smooth Mappings

We now derive the reconstruction equations for the various types of deformations we discussed
in section 5.2.
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Isometric Mappings

Given that is an isometric mapping, the relationship between the moving frames aM and
T are described in equation (5.23). This gives the following three constraints:

E E F _F G_G.

ek et ke et i (541)

We di erentiate these constraints under the assumption of IP (using the expressions in equa-
tions (5.38) and (5.40)) and obtain the following equations

ke = gf;k1+ g’i‘kz % @@;Xl;zAl+ @ixl;Az
ke = g()l(kl+ gﬁkz % @%‘z;cu @%‘;202 :
where (5.42)
Al= g’lﬂ; g’iﬂ:; A2 = gi(':* gi(G;
Cl= géEJ“ ?.;F? C2= gép + ng:

These expressions are linear ink(; kz), independent of (k; k) and exploit the rst and the
second-order derivatives of the warp . k can be recovered from equation (5.41) usingk}; k»)
obtained from the solution of equation (5.42).

Conformal Mappings

Given that is a conformal mapping, the relationship between the moving frames aM and
T are described in equation (5.24). This gives the following three constraints:

1 / 1
2 E G F 2 E G F
) 1 (5.43)

where 2 is the scale of conformity. On di erentiating these expressions, we obtain equa-
tion (5.42) with (ki;k») replaced with 2(kq;ks). We get rid o the ( k:k) and / in equa-
tion (5.43) by taking ratios of (E; F; G) with (E; F; G). This leads to

EG=EG FG=FG: (5.44)

Using (k1; k2) obtained from the solution of equations (5.42) in this equation, we obtain a
quadratic equation in 2 which leads to two possible solutions (upto ambiguity) for conformal
mappings. k can be recovered from equation (5.43) usingky; ko) and 2.

[ , ] proposed an analytical solution for isometric and conformal mappings
by solving the quadratic expressions in (5.41).
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Equiareal Mappings

Given that is an equiareal mapping, the relationship between the moving frames a1 and
T is described in equation (5.25). This is the only constraint due to the equiareal mappings.
By di erentiating this constraint, we obtain two rst-order constraints.

EG F?_ EG F?

K+ kT KA KA

@ E G E @ G F @ F

— = —+ —— = 2——

@I k2 k2 k2 @I kZ k2 @I kZ
@ E @9<+ @ E @x G

@ G @k+ @ G @x E
@% k2 @ @% k2 @ k2
,F @ F @t @ F @% g, ..,

k2 @)'k k2 @i @% kZ @i

Using the expressions of di erentials from equations (5.38) and (5.40), the above-mentioned
constraints are written as

EG F? E:G: Fi? EG F?2
o O E E e e
EG F2 E:G: F(? % %
k1 F W = lt(4t F; det(J )2 klgl+ kzgl
EG R? ., @ @2 @%@
k4 @ € @@1@2 @(@1)2
E:G: F? @% @x! @% @x?
+ It<4t thl detJ & ala? + @(@(1)2 (5.46)
EG F?2 E:G F? % %
ke 7 @ T @ @ 9et@)’? klg(z+ kzg(z
EG RT o, @ @ @R éx
k4 k4 @' (@2 @2@'@?
E:G: F;? @% @x! @% @x?
+ It<4t thl detJ @(@2)2 + @ aia?

Using the rst constraint in the rest, we end up with the following expressions

@% @x> @x @x! @x @x' @x @x?
erere @ (@) = @ @ed @@y’
@% @x
@ “ae

kidetJ =detJ kq

kodetJ =detJ kq
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@% @x2 . @% ©@x! . @% @x! . @% @x2

@) @ae = @@ e 547

Given that (ki;k») and the rst and second-order derivatives of are known, these ex-
pressions are linear in K1; k2). k can be found by using ki1; ko) obtained from equation (5.47)
in equation (5.45).

Skewless Mappings

Given that is a skewless mapping, the relationship between the moving frames &l and
T is described in equation (5.29). We write the constraint as

F?EG = F%EG: (5.48)
This expression is independent of K; k). This constraint can be rewritten as

EG F2 F2=(detJ )® EG F? F?

EG F2 EG=(detJ)? EG F2? EG: .
By di erentiating the skewless constraint in equation (5.48), we get
2F gg(& g;gf EG+ F?2 C%G+ Eg?
2F giEG + F2 gfgf + g;gj‘ G (5.50)
+ F2E gfgf + &GC@?(’? 8i 2 (1;2)

We expand these expressions using equations (5.38) and (5.40) and obtain

EF EG F? (gék1+ g’z) FE(EG F?kp=
@x* @% @x* @%
@x! @% @x* @%
F2 E ——_5Cl+ ——,C2 Al A2
@1@2C * @1@2C * G @x1)? * @xb)?
GF EG F? (g()l(k1+ gj‘) FG(EG F?)k=
@x! @% @x! @%
FEG ——5C1 2 Al A2
G @1@20 + @1@2C + @(XZ)Z + @XZ)Z
@x* @% @x* @%
F2 G e Gage™? *E @(Xz)zc1+ @(Xz)zcz
where
@*_  @% @%_  @%
Al = @E+ @F; A2 = @F + @G;
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@%_  @% @%_ @%
Cl= @2E @F C2= @zF @2G
Using equations (5.48) and (5.49) in the above expressions, we obtain the following two
constraints for skewless deformation

EGFk, EFG klg;+ kzgi( + B1G+detJ 'D1EGG =0
EGFk;, GFE klg:}+ kzgj‘ + B,E +det J 'D,EGE =0:
where
Ap= giEt g{’th Az = ngt g(’fet
_ @, @%_. @%_,, @X
Cl_ @ZE + @ZF C - @F + @ZG (551)
@x! @x? @x! @x>
By = E .
126 Aanz T Mz TF “eret “erer
_ @x! @x? @x?! @x?
B=F Al@*@%"‘Az@*@% + E Cl(@%)z*'cz(@%)z ;
b, = @%@  ax@d’ @f éx et @
T @2(@n? @?(@%? @l@r@r @!er@R’
D, = @% @x!t @9( @x2 @)’( @xt @* @x?
)=

@2 @%@%  @2@%@R @l (@)’ @ (@A)

Given that (ki;k2) and the rst and second-order derivatives of are known and E; F; G)
are guadratic in (ky; k») (written according to equation (5.37)), these expressions are cubic
in (ki;k2). These expressions are independent ok(k) and therefore, k cannot be found for
skewless mappings.

5.3.2 Reconstruction Equations for In nitesimally Linear Mappings

Given that an in nitesimally linear mapping, according to theorem 6, the connection forms
( wf 1; wf ;; wf i; f g) de ned using 1 at T are the same as the respective connection
forms (wi; w3; w?;w) de ned using at M. Using equation (5.18), the connection forms
at M de ned using are related by a change of variable with the CS at the same surface

de ned using ».

Therefore, the connections atT (parametrised with x* and x?) are related to the connec-
tions at M (parametrised with x* and x2) by a change of variable suggested in equation (5.18)
for any smooth and IL mapping between them. The components of these connection forms
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under a change of variable are given by

! !
1

1
- 11 12
21 22 @* %1 %2
) . (5.52)
R EETN
@ 21 22 @
0@(1 @11

wherek = (1;2) andJ 1= %}@ @i{ These components of the connection forms for

the image embedding described in equation (3.4) are evaluated in equation (5.12). FofF
and M , these expressions are written only in terms ofK1; ko) and (ky; ky) respectively. This
leads to the following two constraints

@t . @% @ @x' @ @x*
k= &kt a2 @iai? aiand
@ @ @%@x2 @R @x (5.53)
o= O, OF @ G @ @
Ted @’ ere? ere
Since (1;ky) are known, these equations are linear in terms ofK;; ky). These expressions
are independent of k; k) and therefore, k cannot be found for IL mappings.

We rewrite this solution as
Lo K " 0@27@’(1 +@(27@3X21
1 - K ot xix2 @2 xix2G .
L @2 @x; ) %%sz X (5.54)
@)’k @1)(2 @g @1)(2

The right hand side of the expression is known and therefore we see that there is a unique
solution for IL mappings. This is coherent with the solution in [ , ]
(which also shows that non-isometric SfT has a unique solution). [ , ]
argued that it is not possible to solve SfT at zeroth-order without using a deformation prior.
Warps provide additional priors in terms of the rst and the second-order derivatives which
leads to additional constraints and makes our solution well-posed.

5.3.3 Reconstruction Algorithm

We wrote reconstruction equations for various kinds of smooth deformations in equa-
tions (5.42), (5.47), (5.51) and (5.53). All of these equations are expressed in terms of the
unknowns (k1; ko). We present the following algorithm to solve these equations.

Inputs: The warp and (k;kz; k) on the corresponding points of T and M .

1) Find (k1; k). For isometric and conformal deformations, the solution to equation (5.42)
gives (ki;k2). These equations are linear in ki;k2). For skewless deformations, equa-
tions (5.51) are cubic in (ki;kz). We solve them by minimising the sum-of-squares us-
ing [ , ]. For equiareal and in nitesimally linear deformations, equa-
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Deformation Assumption Degree of constraints Scale Normals
Isometric IP 1 Yes Yes
Conformal P 1 Yes Yes
Skewless IP 3 No Yes
Equiareal IP 1 Yes Yes
Smooth IL 1 No Yes
Isometric [ ] - 2 Yes Yes
Conformal [ ] - 2 No Yes
Table 5.1: Summary of model-based 3D reconstruction of deformable thin-shell objects. For each

deformation we obtain two constraints in (ki;ky). The degree of these constraints is shown in the
table and discuss whether depths and normals for deformation are recoverable.

tions (5.47) and (5.53) are also linear in k1; ky) and therefore easily solvable.

3) Find normals at M . Compute unit normal at each point on M according to equa-
tion (5.12) in terms of (kq; k2).

4) Find depth at M . For isometric, conformal and equiareal deformations, the scale can
be evaluated by using k1; k) in equations (5.41), (5.43) and (5.45) respectively. For skewless
deformations, the scale cannot be recovered.

Outputs: Points (for isometric and equiareal deformations) and normals on 3D surfaces.

Model-based 3D reconstruction of deformable thin-shell objects is summarised in table 5.1.

5.4 Model-Free 3D Reconstruction

We propose local solutions to 3D reconstruction of a deformable thin-shell object from multi-
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Figure 5.7: Modelling N views of a deforming 3D surface.

goal is to reconstruct the surfaces viewed in theN images. j represents the image warp
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between the pair of images (i, 1). j is the deformation function betweenM ; and M |
modelled using the image embedding described in equation (3.4). We write the constraints
for a pair of viewsi and j. This modelling can be extended to any number of image pairs.
The moving frames @€; €,; €5) and (e1; €2;e3) on M j and M  are written according to equa-
tion (5.12). The expressions Ei; Fi; Gi), (E; F; G) and their rst-order derivatives are ex-
pressed according to equations (5.37) and (5.38). Using equation (5.39), we can write; ;)
at M ; which allows us to write (E; G; F ) and its derivatives with respect to (x1;x2). In this
case, we can write the reconstruction equations in a similar fashion to the previous section
but the unknowns are both (ki; ks; k) and (ki; ko; k). Under the assumption of IL, we can
express Ki; ko; k) in terms of (kj; ko; k) using equation (5.53) which allows us to restrict the
unknowns to (k1; ko; k) only.

5.4.1 Reconstruction Equations

Now we derive the reconstruction equations for the various types of smooth deformations we
discussed in this chapter.

Isometric/Conformal Mappings

Given that is an isometric/conformal mapping (with the isometric and conformal mapping
constraints in equations (5.41) and (5.43) respectively), the reconstruction equations for a
pair of views|; and | are given in equation (5.44) as a set of two cubic expressions in terms of
(k1; ko) and (kz; ko). Using equation (5.53) in equation (5.44), we obtain two cubic equations
in terms of (k1; k2) only. We proposed a solution to these equations for isometric deformations
in chapter 4. It is important to note that the solution in previous chapter uses metric tensors
and CS. Using the proposed framework it becomes clear that isometry and conformity share
the same constraints in the context of NRSfM. This result was straightforward from the
theory developed in chapter 4.

Equiareal Mappings

Given that is an equiareal mapping, the reconstruction equations are given in equa-
tion (5.47) in terms of (ki; k2) and (ki; k2). Using equation (5.53) in equation (5.47) leads
to a system of equations independent of K1; ko) and (ki; k). Therefore, these expressions
cannot be used to solve for K1; ko). Next we prove that equiareal NRSfM cannot be solved
algebraically.

Theorem 7 (Non-solvability of Equiareal NRSfM) . Equiareal NRSfM is not locally solvable.

Proof. The constraint in equiareal mappings is given by equation (5.45). Without the as-
sumption of IP, these expressions are in terms of , and their rst and second-order
derivatives. Using equation (5.53), this results in 7 variables (, and the rst and second-
order derivatives of ) in 3 equations. This system is not solvable. Even if we di erentiate
equation (5.45) further, it always results in higher number of variables than equations.
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Deformation Assumption Degree of constraints Scale Normals

Isometric IL 3 No Yes
Conformal IL 3 No Yes
Skew-less IL 7 No Yes
Equiareal IL 3 No No
Smooth IL 1 No No
Isometric - 3 No Yes
Conformal - 3 No Yes
Skew-less - 7 - -
Equiareal - 3 No No
Smooth - 1 No No

Table 5.2:  Summary of model-free 3D reconstruction of deformable thin-shell objects. For each
deformation we obtain two constraints in (ki;k2). The degree of these constraints is shown in the
table and discuss whether depths and normals for deformation are recoverable.

Under the assumption of IP, the simpli ed constraint is given in equation (5.47). Using
equation (5.53) in this constraint leads to expressions independent ofkg; ko) and (ki; ko).
Therefore, it is not solvable. Di erentiating equation (5.47) to nd more constraints under
the assumption of IP does not make sense as it contradicts the assumption of IP. Hence, we
show that the PDE (5.45) for equiareal NRSfM does not possess a local solution.

O

Skewless Mappings

Given that is a skewless mapping, the reconstruction equations are given in equation (5.51)
in terms of (ky; k2) and (kp;k2). Using equation (5.53) in equation (5.51), we obtain two

septic equations in terms of k1;kz) only. These equations can be solved by minimising the
sum-of-squares.

Smooth Linear Mappings

Given that is a smooth in nitesimal mapping, there can only be two constraints obtained
from equation (5.53) in terms of (ki; k») and (ki; ky) respectively. Therefore, a solution for
(k1; k2) cannot be obtained. This is an important result as it becomes clear that NRSfM
cannot be solved based only on deformation smoothness.

5.4.2 Reconstruction Algorithm

We wrote reconstruction equations for various kinds of smooth deformations in equa-
tions (5.44), (5.47), (5.51) and (5.53). All of these equations are expressed in terms of the
unknowns (k1; k2). We present the following algorithm to solve these equations.

Inputs: Warps j1,] 2 [2;N]. The index 1 corresponds to the rstimage in the sequence.
It can be chosen randomly.
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1) Find point correspondences. Select a grid of points on the rst image and using the
warps 15, hd the corresponding grid of points in the rest of the images. We evaluated our
method on a 20 20 grid of points.

2) Find (ki;k2). For isometric, conformal and skewless deformations, the solution to
equations (5.44) and (5.51) gives K;1; ko). We solve these equations by minimising the sum-
of-squares using [ : 1

3) Find (ki;k2). (k1; kz) can be written in terms of (kq; ky) and the rst and second order
derivatives of j;i using equation (5.53).

4) Find normals at M . Compute unit normal at each point on M according to equa-
tion (5.12) in terms of (ki;k2) and (ki; k).

5) Find depth at M. The depth can be evaluated by using the method described
in [ , ].

Outputs: Points (for isometric deformations only) and normals on 3D surfaces.

Model-free 3D reconstruction of deformable thin-shell objects is summarised in table 5.2.

Figure 5.8: Images from the sock and balloon datasets. Some of the tracked points are shown. Best
viewed in colour.

5.5 Experiments and Discussion

We tested our proposed methods for model-based and model-free reconstruction of thin-shell
deformable objects on two synthetic and four real datasets. These datasets show objects
undergoing di erent types of deformations according to the properties of their material.
The Cylinder dataset is a synthetic dataset which consists of isometric deformations of a
cylindrical surface viewed in images of the size 640 480(p with a focal length of 400p. 400
points are tracked across the isometrically deformed surfaces. Thieaper dataset (introduced
in| , ]) consists of 190 images (with 1500 tracked points) of a paper deforming
isometrically. The synthetic Rubber dataset (introduced in | : ]) consists
of 50 partially-stretched surfaces of a rubber with 400 tracked points. TheTissue dataset is a
piece of elastic tissue with 100 points matched to a undeformed model of the tissue. It has only
one image. This dataset was introduced in [ , ]. The Balloon dataset
consists of 20 surfaces (3000 point tracks) of a balloon deformed conformally. This dataset
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was recorded using Kinect2.0 and the point tracks were obtained using [ ,

]. The Sock dataset consists of 20 surfaces (3500 point tracks) of a sock that undergoes
elastic deformations on one direction only. This dataset was recorded using Kinect2.0 and
the point tracks were obtained using [ , ]. A few images of thBalloon
and Sock datasets are shown in gure 5.8.

For quantitative comparison, we measured the normal error (mean di erence between
computed and ground-truth normals in degrees) and the depth error (mean di erence between
computed and ground-truth 3D coordinates in mm).

In the model-free scenario (NRSfM), we proposed solutions using isometric, conformal
and skewless deformation constraints. Our solution for conformal and isometric deforma-
tions is obtained by solving same equations. Therefore, our methodsoConN represents a
solution to NRSfM assuming that the object undergoes isometric or conformal deformation
and SkewN represents the solution to NRSfM assuming skewless deformations. We com-
pare our results with MDHN  (maximum depth heuristics based NRSfM method proposed
in [ , ]) and KerN (low-dimensional shape-basis based NRSfM method
proposed in [ , D.

In the model-based scenario (SfT), we proposed solutions using isometric|spS), con-
formal (ConS), skewless EkewS) and equiareal (EgArS ) deformation constraints. We also
proposed a solution NoDefS ) which does not need deformation to be modelled explicitly.
It assumes IL. We compare our results with isometric (soFS) and conformal (ConFS)

SfT proposed in [ , ] andLinModS (also an isometry based SfT proposed
in [ , ]). We also compare our results wittNolsoS (a smoothness
based SfT proposed in{ , D. [ , ] proposed ve

solutions, we report only the best working solution for this method asNolsoS . We now
discuss the results of these methods on each dataset separately.

5.5.1 Synthetic Datasets

We evaluated the performance of the compared methods on two synthetic datasets: Cylinder
and Rubber.

5.5.1.1 Cylinder Dataset

The cylinder dataset consists of images of a cylindrical surface deforming isometrically. We
added a random noise with a Gaussian distribution of 1 pixel of standard deviation to the
images of the dataset. The mean normal and depth error of each compared method is eval-
uated by averaging the result of the experiment over 20 trials. For evaluating SfT methods,
the results are shown in gure 5.9. The rst four methods (IsoConN , SkewN , MDHN and
KerN ) are NRSfM methods. IsoConN shows the best performance amongst the NRSfM
methods in this dataset. The images of this dataset do not come from a video sequence,
therefore KerN did not do well for this dataset. In this dataset, the object and the camera
do not move while deforming. This makes the problem ill-posed. [ , ]
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Figure 5.9: Normal and depth errors on all datasets. The errors shown are evaluated by averaging
the errors on the entire imageset. The rst four methods shown are NRSFM methods and the rest
are SfT methods. In general, the performance of SfT methods is better than NRSfM methods on
these datasets. The methods ending with N and S are NRSfM and SfT methods respectivelilolsoS
represents the best performing SfT method in [Bartoli and©Ozgar, 2016]. Best viewed in colour.
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reported this as a failure scenario foMDHN and therefore, it did not perform well for this
dataset. The model-based (SfT) methods, however, showed a much better performance as
compared to NRSfM methods on this dataset. IsoS, ConS, EqArS , NoDefS , IsoFS and
ConFS are all analytical solutions to SfT. Our methods (IsoS, ConS, EqArS , NoDefS )
are linear solutions to SfT (exploiting the rst and second-order derivatives of the warp )
while the solutions for IsoFS and ConFS are obtained by solving quadratic equations (see
equation (5.20)) consisting of only the rst-order derivatives of the warp and the embedding.
The constraints in our methods are obtained by using equation (5.20) and its derivatives
which forces the solution to be locally smooth implicitly. Therefore, IsoS, ConS, EgArS
and NoDefS show better performance thanlsoFS and ConFS . SkewS (assumes the defor-
mation to be skewless) does not show good results on this dataset. This is probably because
it is less-constrained than other deformation models.IsoFS, ConFS and LinModS show

a similar performance on this dataset. The performance of these methods is very good.
NolsoS is the best performing method out of the ve methods proposed in [

, ]. It needs high perspective in images and therefore it performed very well in this
dataset. The performance of this method is quite close to other SfT methodsl$¢oS, ConS,
IsoFS, ConFS and LinModS ). In general, this method is unstable in the sense that the
performance of the proposed methods in [ , ] is usually very di erent
from each other. We picked the best performing method for each image in the dataset by
comparing the reconstruction with the ground truth.

Performance of methods under noisy conditions. We evaluated the performance of
the methods under noisy conditions. We added 1-5 pixel noise to the images of the dataset
and obtain the results for each method. We report the normal and depth errors for each
experiment averaged over 20 trials. Figure 5.10 shows our results. Our SfTlI0S, ConS,
SkewS, EqArS , NoDefS ) and NRSfM (IsoConN , SkewN ) methods show a very stable
performance in noisy conditions. The performance of other methods is very stable as well.
Our methods (both SfT and NRSfM) exploit the rst and second-order derivatives of the
warps. These derivatives (especially the second-order ones) may be largely a ected by the
noise. Therefore, the methodsEqArS , NoDefS , IsoConN (which solve SfT/NRSfM in
terms of the rst and second-order derivatives of the warp only) show a larger increase in
the errors compared to other methods (such assoFS and ConFS ) that use the rst-order
derivatives of the warps only. LinModS , NolsoS, ConS and IsoS are very stable in the
presence of noise. The skewless metho&kewN and SkewS also show a good tolerance to
noise even though their performance on this dataset is not so goodMDHN and KerN do
not perform well on this dataset and therefore it is largely a ected by noise as well.
Curvature test of our methods. The best performing methods on this dataset ardeqArS
and NoDefS (with NoDefS being better). These solutions (like the rest of our methods)
are dependent on the rst and second-order derivatives of the warps. The second-order
derivatives may be unstable however they can be corrected by warp re nement methods such
as | , ]. However it may be di cult to nd them in some cases, therefore it

is interesting to see the performance of these methods without second-order derivatives. We
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Figure 5.10: Normal and depth errors on the cylinder dataset by varying the noise from 1 to 5

pixels. The mean of errors on the entire imageset of each dataset is reported. Best viewed in colour.
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make an approximation to the solution of NoDefS (SfT under IL assumption) by disregarding
the second-order derivatives. The new solution is calledNoDefSO . Figure 5.11 shows the
results of all methods with respect to the varying curvature of the surface. The curvature is
the inverse of the radius. In this experiment we show reconstruction for 10 surfaces of the
cylinder with the radius varying from 2 to 10. In general the reconstruction errors increase
with bending. However, IsoConN , SkewN and NoDefS do not show a sharp increase in
errors due to bending. NoDefS0O is a ected by bending (especially with strong bending),
however it still shows decent reconstruction for highly bent surfaces.

The interesting thing about NoDefS is the simplicity of the solution. The reconstruction
algorithm is only two lines of code given that (k1; k) in equation (5.53) are obtained from
the template. This means that the computational cost of this method is very low as it
involves simple addition and multiplications only. Even by ignoring second-order derivatives,
NoDefS0O gives decent results.

5.5.1.2 Rubber Dataset

We evaluated all compared SfT and NRSfM methods on the rst 20 images of this dataset.
The rubber is partially stretched from its longest side in a sequential order. Figure 5.9
summarises the performance of di erent methods on this dataset. The reconstruction of
surfaces 10 and 20 by the compared methods are shown in gure 5.12. Amongst NRSfM
methods, IsoConN shows the best performance. The rest of the NRSfM methods do not
perform well. Amongst SfT methods, LinModS shows the best performance withEgArS
and NoDefS being close (in terms of depth). Figure 5.12 shows that the curvature of
the surface 10 is best captured byEgArS with NoDefS whereas surface 20 is decently
reconstructed by LinModS only. For low deformations of this dataset, EQArS with NoDefS
show better results than LinModS but they cannot cope up with the higher deformations
of this dataset.

5.5.2 Real Datasets

Now we discuss the results of the compared methods on real datasets.

5.5.2.1 Paper Dataset

This dataset consists of 191 images. We picked 20 images by uniformly sampling the dataset.
This makes the dataset more closer to wide-baseline and therefor&erN does not have good
results. Figure 5.9 summarises the performance of the compared methods on this dataset.
Amongst NRSfM methods, MDHN shows the best performance, withisoConN being very
close to it. SkewN also shows good results on this dataset. Our SfT methods show a very
good performance on this dataset.NolsoS also leads to decent reconstruction in this dataset.
However, LinModS shows the best performance. The reconstructions of two surfaces of this
dataset are shown in gure 5.13.IsoFS and ConFS do not show a good performance on the
selected images of this dataset. We recall that in order to compare them with our methods,
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Figure 5.11: Normal and depth errors on the cylinder dataset by varying the radius from 2 to 10.
The surface with radius 2 is the most curved. The mean of errors on the entire imageset of each
dataset is reported. Best viewed in colour.
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Figure 5.12: Error maps for surfaces 10 and 20 from the rubber dataset. The second image shows
the maximum stretch of the rubber. The depth error maps show the di erence in the reconstruction
and ground truth. Best viewed in colour.
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we do not perform the re nement step proposed for these methods. This is because our goal
is to compare the analytical solutions of these methods to ours.

5.5.2.2 Balloon Dataset

This dataset consists of 20 images uniformly sampled from a video sequence of 80 images.
We observe that the mean normal error for all NRSfM methods on this dataset is around 20
degrees which is very high as compared to the performance of these methods on other datasets.
However, the mean depth error for these methods is quite comparable to the rest of the
datasets. This indicates to the attening of the reconstructed surface. However,lsoConN
shows the best performance amongst compared NRSfM methods. Our SfT methods except
SkewS show a very good performance on this dataset and their results are very similar.
The reconstruction from SkewS is quite at. IsoFS, ConFS and NolsoS, all of these
methods also lead to at reconstructions. LinModS performed quite well on this dataset.

Its performance is quite close toEgArS and NoDefS which are the best performing methods
on this dataset. This dataset is near-a ne and therefore, most of the methods did not do
well. The reconstructions of two surfaces of this dataset using the compared methods are
shown in gure 5.14.

5.5.2.3 Sock Dataset

This dataset consists of 20 images from a video sequence of a sock being stretched in one
direction only. Analytical methods show a very good performance on this dataset. Amongst
NRSfM methods, SkewN showed the best performance as the sock is undergoing almost
skewless deformation. The reconstruction of normals bysoConN is quite good but it cannot
cope with the stretching of the surface and therefore, it leads to a higher depth errorMDHN

and KerN did not do well on this dataset. SfT methods exceptNolsoS (it completely broke
on this dataset) showed a very good reconstruction even though the object was stretched.
NoDefS shows the best performance. However, the rest of the methods are quite competitive.
An important thing to note is that even though IsoFS and ConFS show the best performance
in computing normals, their computation of depth is not as good aslsoS and ConS. This is
becauselsoS and ConS use the constraints oflIsoFS and ConFS (given in equation (5.20))
along with additional constraints obtained by di erentiating equation (5.20) which gives IsoS
and ConS the liberty to reconstruct stretched surfaces better. The reconstructions of two
surfaces of this dataset using the compared methods are shown in gure 5.15.

5.5.2.4 Tissue Dataset

This dataset contains a single image and therefore only SfT methods could be compared
for this dataset. NoDefS shows the best performance on this dataset with the rest of the
methods (exceptSkewS, ConS and NolsoS ) being close enough to the best solution. The
reconstructions of the tissue using the compared methods are shown in gure 5.16.
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Figure 5.13: Error maps for two surfaces the paper dataset. The depth error maps show the
di erence in the reconstruction and ground truth. Best viewed in colour.
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Figure 5.14: Error maps for two surfaces the balloon dataset. The depth error maps show the
di erence in the reconstruction and ground truth. Best viewed in colour.
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Figure 5.15: Error maps for two surfaces the sock dataset. The depth error maps show the di erence
in the reconstruction and ground truth. Best viewed in colour.
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Figure 5.16: Error maps of reconstruction from all SfT methods of the tissue dataset. Best viewed
in colour.

Discussion on smoothness. An important point to note here is that NolsoS and NoDefS
both reconstruct the surface without modelling deformation explicitly. However, we found
NolsoS to be unstable. [ , ] proposed ve solutions to cope with the
stability issue. Also, it needs the input image to have a high amount of perspective in order
to give decent results. The main idea of this method is to use smoothness (expressed in terms
of the second-order di erentials of the surface) in order to reconstruct surfaces. Our solution
to NoDefS (along with other solutions) also relies on the second-order derivatives of the
surfaces under the assumption of IL. Our experiments show that our solution taNoDefS is
not unstable. We discuss the di erence between the two solutions now. [ ,

] exploit smoothness by minimising the second order derivatives of the surface. For a
function f described in equation (5.1), it tries to minimise d?f . Using equations (5.3),(5.4)
and (5.5), we write

d’f =d edx!+ exdx? =deydx! +deydx?: (5.55)

Therefore, this solution tries to minimise (dep; de;) whereas our solution (NoDefS ) is ob-
tained by imposing a structure to the components of (dk;; de») (connection forms in equa-
tion (5.6)). This is the underlying di erence between the two methods. This structure of
(de;; dey) cannot be studied without di erential geometry which makes this framework a
comprehensive study of deformations.
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5.5.3 Summary of Experiments

The results of all the compared methods on each dataset are summarised in gure 5.9. On
these datasets, the best performing NRSfM methods arésoConN and MDHN . For SfT
methods, our methods (exceptSkewS) showed a very good performance on all the datasets.
NoDefS showed the best performance on most of the datasetsLinModS showed a very
good performance on these datasets, it showed the best performance in the rubber and
paper datasets. HoweverNoDefS and EQArS have been very competitive with LinModS .
SkewN gives very good results on the sock dataset. This is because the sock is undergoing
a skewless deformation. An important point to note about skewless deformation is that it
should be along the two directions of the orthogonal frame basis of the surface. Therefore,
SkewN and SkewT can perform better if the basis is orthogonal and is aligned to the
direction of deformation. This means that the frame basis on a surface should be aligned
to the direction of deformation which needs to be known apriori. Our SfT methods (except
SkewS) are linear and therefore, computationally very cheap. In general, for 50 images and
400 points, it takes 2-5 seconds for these methods to evaluate the results. The computation
time for our NRSfM methods is about 15-20 seconds for around 100 points tracked over 30
images. These computation times are reported on a standard PC.

5.6 Conclusions

We presented a theoretical modelling framework for deformable 3D reconstruction using
di erential geometry and Cartan's theory of connections. This includes the model-based
and model-free cases. We showed how to obtain solutions to isometric, conformal (same as
the isometric solution) and skewless NRSfM under the assumption of IP using this framework.
We showed that equiareal NRSfM cannot be solved locally. We used this framework to nd
solutions to isometric, conformal, skewless and equiareal SfT under the assumption of IP.
These solutions are computationally very cheap. Using this framework, we also proposed a
solution to SfT (under the assumption of IL) without modelling the deformation explicitly.
Our methods rely on the rst and second-order derivatives of the warp function which are
known to be unstable when obtained using sparse registration algorithms. We used a warp
re nement method presented in [ : ]. As discussed in the previous chapter,
it is a theoretical requirement for our methods to comply with the Schwarzian equations
presented in [ : ]. Therefore, it makes sense to use this method for warp
correction. Our NRSfM methods solve the minimum data case, have linear complexity in the
number of points, handle missing data, work for both short and wide-baseline datasets, work
with both large and small number of images. Our experiments showed that the proposed
NRSfM and SfT methods outperform most of the compared methods in terms of accuracy
and computation time.
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Chapter

Volumetric Shape-from-Template

Summary
In this chapter we propose a solution to SfT for deformable volumetric objects. The objective
is to infer an object's shape from a single image and a 3D object template. It uses the object's
full volume to express the deformation constraints and reconstructs the object's surface and
interior deformation. This is a challenging problem because for opaque objects, only a part of
the outer surface is visible in the image. Inspired by mesh-editing techniques, we use an ARAP
deformation model that softly imposes local rigidity. We formalise ARAP isometric SfT as

a constrained variational optimisation problem which we solve using iterative optimisation.
This chapter is based on our published work [ : 1
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6.1 Introduction

The objective in SfT is to obtain the object's deformed shape in the camera coordinate frame
using a deformation constraint formulated from the object's physical material. Existing
SfT methods use deformation constraints on the object's outer surface, whose thickness is
considered in nitesimal. We thus call them thin-shell SfT methods. Thin-shell SfT is very
well adapted to thin objects, such as a piece of paper or a balloon, whose outer surfaces may
be well approximated by an open or a closed surface. Even though thin-shell SfT methods
can handle thicker objects such as a foam ball, they do not fully exploit the strong constraints
induced by the object's non-empty interior.

Volumetric SfT reconstructs the object's interior deformation (which is not reconstructed
by thin-shell SfT) and reconstructs the object's outer surface more accurately than thin-shell
SfT due to the stronger deformation constraint it uses. The biggest challenge for volumetric
SfT is to reconstruct the object's back surface and interior.

We solve volumetric ST using the ARAP deformation model. It maximises local rigidity
while penalising stretching, sheering and compression. It helps in preserving the object's
interior structure and enables to reconstruct the object's full outer surface and interior.

We present volumetric SfT as an unconstrained non-linear least-squares optimisation
problem which can be solved using standard numerical solvers such as Levenberg-Marquardt.
We propose two heuristic initialisation methods. Experimental results on synthetic and real
data show that volumetric SfT improves accuracy to a large extent compared to state-of-the-
art thin-shell SfT methods.

Chapter outline. We present the mathematical modelling of volumetric SfT in section 6.2.

It describes the modelling of volumetric SfT model and the deformation. Section 6.3 de nes
volumetric SfT and proposes a solution. Section 6.4 discusses the experiments and section 6.5
concludes.

6.2 Mathematical Modelling

6.2.1 Geometric Model

Figure 6.1 shows a general diagram of volumetric SfT extending a thin-shell framework de-
scribed in the previous chapter. We denote the 3D template as the volum&/r RS, the
unknown deformed volume asVs RS3, and their respective outer surfaces ag®/r and @/s.
We denote asS @/s the deformed object's visible surface part,i.e., the part which is
directly observed in the input image | R?, and T @/ the corresponding part in the
template surface. We use a 2D surface parameterisation spade, called the attened tem-
plate. This allows us to represent the template's outer surface@/r by a known invertible
embedding 2 C?(F:R3). In practice, F and may be computed from @/ by any at-
tening method; we use conformal attening [ : ]. UsingF, the unknown
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6.2. MATHEMATICAL MODELLING

deformed surfaceS may be represented by an embedding 2 C2(F;R®). The deformation
betweenVr and Vs is the unknown mapping 2 C2?(Vt;R3).

Figure 6.1: General diagram of volumetric SfT. The visible surface part is shown in blue.

The task in volumetric SfT is not only to compute the volume Vs of the deformed object,
but to nd a full volume deformation function 2 C2(Vr;R®), matching points between the
object's template and deformed states. This is a challenging task, as most &fs is not directly
observed in the image: assuming the object is opaque, the only visual information comes from
the outer surface's visible part. The surface embedding may of course be directly recovered

from the volume deformation computed by volumetric ST as' = . Depending on the
formulation, thin-shell SfT computes either the surface embedding | , ] or
a 3D surface deformation, which is a restriction of to @/t [ , ]. The full

volume deformation cannot be directly recovered in either case. Our initialisation strategy
through two new solutions which we name

for volumetric SfT involves inferring  from
volume interpolation.

A point in the 3D template is given by P and the corresponding point on the at template
isp. In a similar way, a point on the deformed object is given byQ. The corresponding point
in the image is given byq. Finally, we de ne 2 C?(F;R?) as the registration warp between
F and the image. Estimating the warp directly gives two pieces of information. First,
it identi es the subset G F corresponding to the surface's visible part in the attened
template. Second, it establishes the reprojection constraint ol and as:

= "= ; (6.1)
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where denotes perspective projection in coordinates normalised with respect to the camera's

intrinsics ( Q) = %(Q1 Q%> with Q = (Q1Q?Q3)".

6.2.2 Deformation Model

Thin-shell isometry allows SfT to resolve the visible surface part uniquely [ ,
] and to extrapolate the non-visible surface part , ]. Applied to an
object's interior volume, isometry yields the following di erential constraint on the mapping

J7J = I3 3 (6.2)

According to the Mazur-Ulam theorem | , ], equation (6.2) constrains
to be a rigid transformation. So as to model deformations, one must relax equation (6.2).
One possibility is the so-called ARAP heuristic | , ], which means

2
searching for such that J>J I3 3 (p denotes the type of norm) is minimised over

p
V1. We propose to combine ARAP with the reprojection constraint to preserve the object's
local structure while driving its deformation to comply with the image constraints.

6.3 Volumetric Shape-from-Template

We present ARAP volumetric SfT, which nds the deformation  that transforms the volume
V1 into the unknown volume Vs whose surface is partially observed il .

6.3.1 Formulation and Non-Convex Solution

Problem formulation. Combining the reprojection constraint (6.1) with ARAP leads to
the following variational problem:
Z ) 4
min JJ 1 dy,+@ ) Kk ks dg: (6.3)
|z |1 — )
ARAP penalty Reprojection

The reprojection constraint is convex, but the ARAP penalty is not. Problem (6.3) is thus
di cult to solve, as it involves integrals and equality constraints. Local analytical solutions,
as the ones proposed in the previous chapter and in [ , ] for thin-shell SfT,
are not applicable at non-visible points since they do not have a data term. This is because
the reprojection constraint applies on the visible surface partS only, corresponding to the
subsetG of the attened template.
Discretisation and optimisation. We evenly discretise the template volumeVy with a
set of 3D points Py, . We de ne the deformation functional [ ]:

1 X

2
1= Py, TP O ey (6.4
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where jPy, j represents the size of sePy, .
We write ([ ] over a regular discretisationPg of G;

1 X
fl 1= oy k (®) ( (( p))ks: (6.5)

IFal p2P o

Finally, we optimise the following unconstrained non-linear least-squares problem:
=argmin [ ]+(@ )] O0< < L (6.6)

where is a weight that balances the ARAP penalty and the reprojection constraint.

In order to nd a numerical solution to problem (6.6), we use a parametric representation
of the solution =2 C?(Vt R";R®), where n is the dimension of the parameter space. Let
L 2 R" be the parameter vector andQ 2 Vt, we have 7(Q;L) 2 Vs. We have multiple
choices for ~ such as the popular linear basis expansion representations (the NURBS |

], the Thin-Plate Splines (TPS) [ , ], the B-Spline [ , 1,
tetrahedron mesh displacements, etc.). We use the TPS representation.

Problem (6.6) is then optimised using Levenberg-Marquardt. Iterative methods can be
highly accurate but because problem (6.6) is non-convex due to the ARAP penalty, the
iterations may converge to a non-global minimum. Therefore, it is important to provide an
initial solution close to the global minimum.

6.3.2 Convex Initialisation

Our initialisation strategy nds an approximate solution o to problem (6.3) in two main
steps.

1) Isometric thin-shell SfT. We rst compute the embedding ' that represents the
visible surfaceS. We approximate the deformation from T to S by thin-shell isometry, giving
the following problem reformulation:

Find' s.t. ' on G; (6.7)

whereJ: isa 3 2 matrix. Problem (6.7) has an analytical solution given in [ ,
I
2) Volume interpolation. We use' toinfer representing the full volume deformation.
We propose two strategies.

i) Global Smoothness (GS). Our rst strategy is based on the assumption that the de-
formation of the volume is smooth. We can, therefore, formulate the problem as nding the
smoothest volumetric deformation such that the deformation at the surface agrees with the
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solution from thin-shell SfT. We write the discretised transport error:

1 X

- - 1 2.
el | Pa pszk (P)  (( pP)k:: (6.8)

Because was computed in stepl), this is a linear least-squares cost in . We then compute
o as the solution of the following system:

o=argmin ¢ ]+(1 )] O0< < I (6.9)

where ¢ = RRk%;k%dp is a smoothing term called the bending energy and is a weight
balancing the transport error and smoothness. As in the non-convex solution, we use a
TPS representation of . The bending energy is then a quadratic function of the TPS
parameters [ , ], making problem (6.9) linear least-squares, thus convex and
easily solvable. GS is a natural way of initialising from ' , but as smoothness is the only
constraint it uses to propagate the visible surface deformation, it may spoil the object's
inner local structure by causing local shear, shrinking and extension. Our second volume
interpolation method addresses this issue.

ii) Local Rigidity (LR). This method is based on the idea that from thin-shell SfT,
we can compute a local rigid transform at every point on the visible surface to propagate
shape through the object's volume, in an ARAP manner. The key idea is to initialise
on the surface's visible part from' , and use local rigidity to iteratively “‘complete' . This
is implemented by iteratively drawing local rigid transformations to locally extrapolate the
deformation. Concretely, we rst nd correspondences to all points in Py, (which may be
seen as a discretisation of ) and then t a continuous parametric representation of . We
write the corresponding point of P 2 Py, as Q(P).

We rst use a Delaunay triangulation of the point set Py, to de ne a tetrahedral mesh.

A given tetrahedron has four vertices, which we denote a®,, Pn,, Pn,; and P,,. Drawing

Figure 6.2: Volume interpolation using Local Rigidity.

a local rigid transformation is achieved by selecting a tetrahedron which has three vertices,
say the rst three ones, lying in the "completed' domain of , for which Q,, = Q(Pp,) exist
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in the surface's visible part, and that Q,, = ' ( X(Pn,)), i = 1;:::;3. From these three
correspondencesPn, $ Qn,0, 1 =1;:::;3, we t arigid transform in the least-squares
sense using [ , ]. Completing by local rigidity is then simply done by setting

Q(Pn,) = ( Pn,). Ateach iteration, we cycle through all tetrahedra with three vertices lying
in the completed domain of . This obviously causes the fourth vertex of many tetrahedra
to receive multiple predictions, as several tetrahedra may share it as their single unknown
vertex. In order to approximate ARAP as best as possible, we keep the prediction for which

was tted with the lowest error. We stop the iterations when all points in Py, have been
given a correspondence. We nally de ne the discretised transport error:

1
jPVTj

kQ(P)  (P)k3; (6.10)

P2Py,

el 1=

and obtain ( as the solution of the following optimisation problem:
o=argmin J ]+(1 )] 0< < 1 (6.11)

where is a weight balancing the transport error and smoothness. Equation (6.11) is linear
least-squares, thus convex and easily solved.

6.4 Experimental Results

We report experiments with synthetic data and three sets of real data with di erent ge-
ometries and materials: a woggle, a sponge and an arm. The re nement solution (6.3) is
tested using the L1 and L2 norms, and is then called L1-re nement and L2-re nement re-
spectively. The two initialisation solutions are called GS-initialisation and LR-initialisation.
We also compare with two isometric thin-shell SfT methods [ , X

, ], which were discussed as being representative of the state-of-the-art in the in-
troduction. We use a constant weight = 0:005 in the re nement problem (6.6) (for both
L1-re nement and L2-re nement) and a constant weight = 0:0001 in both equation (6.9)
for GS-initialisation and equation (6.11) for LR-initialisation. We noticed that the algorithms
were not very sensitive to these values up to an order of magnitude.

6.4.1 Synthetic Datasets

We test our method for volumetric SfT in various conditions of noise, deformation and corre-
spondences. We simulate a box of dimension 2020 10cm?® and deform it by bending each
of its layers along a vertical rule with some varying bending angle. The higher the bending
angle, the more important the box's deformation. If the bending angle is zero, the box is
undeformed. We then create a virtual image of the box by projecting it using a perspective
camera and add noise to the pixels. The default bending angle is 10 degrees. The results are
shown in gure 6.3, and are averaged over multiple runs for each geometric con guration.
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Figure 6.3: Synthetic data experiments.The graphs on the left show the 3D volume error and the
ones on the right show the error on the 3D visible surface. Best viewed in colour.
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The three graphs on the left column of gure 6.3 show the 3D volume error in mm, computed
as the Root Mean Square Error (RMSE) over a dense grid of points sampled over the ob-
ject's outer surface and interior. The results on these graphs thus only concern the proposed
volumetric SfT methods. We observe that the re nement methods all do signi cantly better
than all initialisation methods. LR-initialisation does consistently and substantially better
than GS-initialisation. This is explained by the fact that LR-initialisation follows the ARAP
methodology for local propagation, while GS-initialisation simply uses smoothness, which is
a weaker constraint. L2-re nement does generally better than L1-re nement, except when
the deformation increases beyond a certain point. All methods degrade with the amount of
deformation and noise. Increasing the number of points improves the re nement methods
but slightly degrades the initialisation methods. The three graphs on the right column of
gure 6.3 show the visible surface error inmm, computed as the RMSE over a dense grid of
points sampled over the object's visible surface.

Figure 6.4: Results on the woggle. The green boxes show the best performing algorithm for each
deformation level.

The same observations which we made for the re nement methods on the 3D volume error
can be made, and the general trends also apply to the two tested thin-shell SfT methods. Im-
portantly, we observe that volumetric SfT does consistently and in several case substantially
better than thin-shell SfT, even if the measured error concerns only the visible surface part,
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which is theoretically handled well by both types of methods. This means that the extra
constraints used in volumetric ST compared to thin-shell SfT have a very positive in uence
on this part of the reconstruction too.

Figure 6.5: Results on the sponge. The green boxes show the best performing algorithm for each
deformation level.

6.4.2 Real Datasets

We evaluate the performance of the methods with three real-world objects captured across a
range of deformed states.

6.4.2.1 Test Data and Ground Truth Acquisition

The three objects are a foam tube called a woggle ( gure 6.4), a sponge (gure 6.5) and a
human arm ( gure 6.6). We construct the 3D template of each object using Photoscan, a
dense rigid SfM package | , ]. To achieve this we photograph the objects in a
rigid pose from a number of di erent viewpoints in order to capture the full 3D geometry
(we use 47, 55 and 78 images for the three objects respectively). We apply a small amount of
manual post-processing to Il holes and make the templates watertight. Then we physically
apply forces to the real objects to obtain a set of deformed shapes, which we grouped into
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Error Analysis Tube Data Sponge Data Arm Data

(in mm) Low Med. High | Low Med. High | Low Med. High
Thin-shell SfT? 118 16.0 19.8|8.0 153 318|185 201 334
Thin-shell SfT? 104 114 127/6.0 255 354|155 189 357
GS-initialisation 111 135 173|169 151 316] 15 18.3 31.6
LR-initialisation 108 11.3 138|6.9 13.0 285|135 142 256
L1-renement+ GS | 2.1 6.7 11054 52 70 |34 41 5.2
Ll-renement+ LR | 1.8 6.4 90 |53 51 6.9 29 41 51
L2-renement+ GS | 2.2 5.6 71 |34 49 85 |30 45 7.3
L2-renement+ LR | 21 5.6 7.1 | 3.6 45 83 |27 4.2 6.8

Table 6.1: 3D visible surface errorE; for the datasets shown in gures 6.4, 6.5 and 6.6. Thin-shell
ST [ , ] and Thin-shell SfT? [ , 1

three levels: low, medium and high deformation. For each level we compute the ground truth
shape by photographing again the deformed object from approximately 50 viewpoints and
then running Photoscan. Because Photoscan provides the reconstructed object and the pose
for each camera image, this provides us with the ground truth shape of the object's outer
surface (including the back surface) in camera coordinates.

Similarly to the vast majority of previous SfT methods, ours takes as input point corre-
spondences between the 3D template and the input image. These can be computed auto-
matically using for instance SIFT combined with outlier detection [ , ;

: ]. However, to keep the results independent of the matching algorithm, we
de ne correspondences manually. For the three objects this gives between 50 to 350 corre-
spondences per image. We click between 30 and 40 correspondences per image and create
the others using TPS interpolation [ , ].

6.4.2.2 Performance Metrics and Method Comparison

We calculate two types of 3D errors, Ef and Ep, both expressed inmm, for the visible
and non-visible surface parts respectively, as the RMSE discrepancy between the true and
reconstructed 3D points at the correspondences. For each of the three datasets, and each of
the three deformation levels, the top of each gure shows the template, the input image and
the ground truth shape. On each gure, the deformation goes through low, medium and high
level from left to right. The rows then show the results of both initialisation methods and
their use to initialisation both re nement methods, giving a total of six combinations.

The 3D errors E;, including the two thin-shell methods, are nally summarised in ta-
ble 6.1.

We observe that LR-initialisation gives consistently better results than GS-initialisation,
which is in accordance with our observations made on simulated data. The di erence becomes
very important for stronger deformations. This has a very small impact on the re nement
results, for both re nement methods. We can observe small di erences between the two
re nement methods. However, re nement+LR converges faster than re nement+GS because
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Figure 6.6: Results on the arm. The green boxes show the best performing algorithm for each
deformation level.
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LR-initialisation is closer to the correct solution. However, none of them is consistently better
than the other, even if for the woggle L2-re nement is slightly more accurate, whereas for the
sponge and arm L1-re nement is slightly more accurate. The 3D errorE; for volumetric SfT
for both re nement methods is consistently smaller than for thin-shell SfT. Depending on
the dataset and the deformation level, it is between two and ten times smaller. This con rms
our observations made on simulated data that, even if the surface's visible part is handled
naturally by both volumetric and thin-shell SfT, the stronger volume deformation constraints
used by the former allows it to obtain a much more accurate result.

Figure 6.7: Testing with the top image led to the local minimum shown in the bottom image.

The results shown in gures 6.4, 6.5 and 6.6 show that the reconstructed object shape
is visually close to the true shape. This means that volumetric SfT could allow a user to
handle a physical object as a proxy interactor in applications such as virtual shape editing.
Quantitatively, the woggle, sponge and arm are 37cm, 15 cm and 20 cm long, respectively.
The relative highest error over the whole reconstructed volume deformation, for the highest
level of deformation, is thus smaller than 5%, 7% and 5% of the objects' size, respectively.
Our unoptimised MATLAB implementation on a standard desktop with 3.1GHz processor
takes between 10 - 25 seconds for the re nement to converge. The computation time for
LR-initialisation is 3-5 seconds while for GS-initialisation it is 1-2 seconds.

In practice, volumetric SfT always converges with LR or GS-initialisation. But, in order
to create conditions of failure, we initialised the re nement at equation (6.11) very far from
the optimal solution. Figure 6.7 shows a failure case in the sponge dataset.

6.5 Conclusions

We presented volumetric SfT, which reconstructs an object from a single image and a 3D
template, by using deformation constraints on the object's outer surface and interior. Pre-
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vious thin-shell SfT methods use constraints on the object's outer surface only. Volumetric
SfT is thus to be used with non-empty and non- at objects. We proposed an implementation
of volumetric SfT using ARAP. Our implementation uses non-convex re nement and has an
initialisation procedure following an ARAP propagation of a surface deformation obtained
by thin-shell SfT through the object's volume. Our method has signi cantly more accurate
results than state-of-the-art isometric thin-shell SfT, reducing the error of an order of mag-
nitude in some cases. Experiments with synthetic and real data show that our method has a
typical maximum relative error of 5% in reconstructing the deformation of an entire object,
including its back and interior for which no visual data is available. ARAP volumetric SfT
opens the way to doing Human-Computer Interaction using a proxy object such as a cush-
ion and a simple monocular webcam. Volumetric SfT may also be instantiated with other
deformation models, such as biomechanical models.
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Conclusions

In this thesis, we presented solutions to thin-shell deformable 3D reconstruction in both
model-based (SfT) and model-free (NRSfM) cases. We also proposed an SfT solution for
reconstructing volumetric objects. We conclude the deformable 3D reconstruction for thin-
shell and volumetric objects and also discuss the future prospects.

7.1 Thin-Shell Deformable 3D Reconstruction

We proposed a uni ed framework for modelling NRSfM and SfT using di erential geometry
and Cartan's theory of connections. This framework is general and easy to use for the
physics-based modelling of various kinds of deformations. We also proposed a deformation
model (skewless deformation) and showed how to perform deformable 3D reconstruction with
the skewless deformation prior. We presented a solution to SfT which does not require an
explicit modelling of deformation. We also showed that this framework is coherent with
existing SfT solutions [ , ]. It is also coherent with our solution to NRSfM
(proposed in chapter 4) for objects undergoing isometric deformations, which was developed
using Riemannian geometry. This method, in fact, served as an inspiration to look beyond
isometry in deformable 3D reconstruction.

Our methods are a signi cant improvement on the state-of-the-art in terms of accuracy,
simplicity, computational complexity and applicability to wider situations. These methods
are applicable to both wide and short-baseline images, handle a large number of images,
yield a very accurate reconstruction with very few images and deal with missing data and
occlusions implicitly.

These methods are local and can be solved analytically. Therefore, one can conclude
that local and analytical methods are very quick and accurate. They are capable of playing
a very important role in achieving real-time solutions to NRSfM and SfT without using
high-performance computing devices.

This thesis is a new step towards local and analytical construction of NRSfM and SfT
solutions. However there is still a lot to be explored about this local framework and its
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applicability to real-life 3D reconstruction scenarios. Now we discuss future prospects:

1) Image embedding. We have proposed an embedding to describe the surface. This
embedding is very e cient but one needs to explore more embeddings in order to nd an
e cient way to model the surfaces.

2) Warp issue. We use warps in all the solutions we proposed. Warps can be a source of
error (especially when higher order derivatives are required). We re ne the warps according
to [ , ]. However, they are the bottleneck of our methods. We suspect that
higher accuracy in warps can be achieved by using learning methods such as Convolutional
Neural Networks.

3) Warp correction. Our methods rely on the second-order derivatives of the warps which
are usually a big source of error. Like [ , ] presented a warp correction
method based on Schwarzian equations, other methods are also possible in the model-based

scenario.
4) Combining visual cues. So far, our framework only exploits inter-image motion. Some
of the deformable reconstruction methods like [ , ] use other visual cues, such

as shading and are capable of reconstructing challenging objects. It would be interesting to
nd out if other cues, like contours and shading can also be used in our framework.

5) Non-smooth objects. Since our methods are local, they need the surfaces to be locally
smooth only. Our methods could be extended to non-smooth objects and a reconstruction
similar to [ , ] be achieved. Obtaining warps for non-smooth objects should be
explored.

6) Real-time NRSfM and SfT solutions. Since the local methods are computationally very
e cient, making real-time applications with these methods should be explored.

7.2 \olumetric Deformable 3D Reconstruction

The challenge for volumetric reconstruction is to reconstruct the parts of the objects that
are not seen in the camera: the interior and the back surface. It is, therefore, not possible to
reconstruct volumes in a model-free case. We presented the rst SfT solution to reconstruct
volumes. It involved a non-convex optimisation which could be initialised by two of our
proposed methods. We also showed that volumetric SfT yields a better reconstruction than
the thin-shell SfT methods. This is because volumetric constraints are much stronger than
the constraints on the surfaces.

A complete volumetric reconstruction should yield a more accurate registration of objects
that lie in the interior, such as tumours inside the body organs. However most of the body
organs do not deform near-isometrically, therefore it is important to model volumetric SfT
with a deformation model less strict than ARAP. One such deformation model is conformity.
In future, we intend to explore volumetric SfT with incompressibility (volume-preserving)
deformations. This constraint is widely used in biomechanical modelling. [ , ]
discussed the aptness of this constraint for modelling soft body organs.
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Appendix

The Metric Tensor

In order to describe a physical surface, one must de ne a coordinate system where mea-
surements like lengths, angles and areas can be de ned. The metric tensor [Lee, ]is
a function which is de ned on a physical surface to obtain these measurements. We use a
simple example to develop a better understanding of the metric tensor. For this purpose, we
consider an in nitesimal vector v in the Euclidean 3-space.

If we use a Cartesian coordinate system, we can de ne the lengttis of ¥ using Pythagoras'
law for distances as:
10 1

dx
By : (A1)
dz

ds? = dx?+ dy?+ dz?= dx dy dz

o
o &
o +— O
I—‘%O

where dx, dy and dz represent the components ofv in X, y and z coordinates respectively
and the identity matrix in equation (A.1) is the metric tensor. The metric tensor is denoted
as g. The identity metric tensor implies that the distances remain constant as one moves
along the coordinate frame. Now if we measure the length of the same in nitesimal vectow
in a spherical coordinate system{, , ), we have:

0 10 1
1 0

0 dr
ds?= dr2+r2d 2+ r2%sin?d 2= dr d d @0 r2 0 X@dX: (A2
0 0 r2sin? d

Here, the metric tensorg is not the identity and changes at each point. This is necessary in
order to measure the same distances at various locations in the coordinate frame. Fig. A.1
shows two points A and B represented on a spherical coordinate system. Moving these
points to A® and B in the direction of the r coordinate, will also change the distance
between them. However, this does not happen in a Cartesian coordinate system. On further
elaboration, we see that the change of coordinates from Cartesian to spherical (described by
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Figure A.1: Translating points A and B in spherical coordinates.

the transformation function f), results in the following expression for the metric tensor:
xy;2)=f(n; ) g=3fJ (A3)

In this case g depends only onJs as the metric tensor in the Cartesian coordinate system is
the identity.

Moving on to the application of this theory in our work, we have a surfaceM ; (see
Fig. 4.2) undergoing an isometric deformation which leads toM j. A point z 2 M ; becomes
w 2 M ;. Since j is an isometric deformation, the in nitesimal distances around w will
be the same as that ofz, as both of them represent the same point on di erent isometric
surfaces. This is analogous to equations (A.1) and (A.2).
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Appendix

Christo el Symbols

In the previous section we saw that the metric tensor in a Cartesian coordinate system
(equation (A.1)) is written as an identity matrix, but this may not be true for the metric
tensors in other coordinate systems (equation (A.2)). In such coordinate systems, since the
metric tensor keeps on changing with the coordinates, we can de ne its change using CS.
Therefore, CS is a set of numbers which are the components of vectors that represent the
change in metric tensor. They are de ned as the CS of rst kind ( .ap) and the CS of second
kind ( gb) related by the expression cap = Ocd gb. Therefore it is very easy to recover the
CS of one kind given the other ones. In our work, we found that the expressions of the CS
of second kind were simpler and therefore, we use only these. In the Cartesian coordinate
system, the metric tensor is the identity and therefore, all the CS of second kind are zero.
However, in the spherical coordinate system, the metric tensor is variable and the CS of
second kind are:

0 1 0 1 0 1
0O O 0 0o r!1? 0 0 0 rl
=@ 0o X =@t o 0o X =Bo o cot%: (B
0 O r sin? 0 0 sin cos r 1 cot 0

They are expressed in terms of the metric tensor and its rst-order derivatives. Therefore,
we can de ne them at various surfaces and use them in our framework, just like the metric
tensor. The CS are given by:

1
pmn = égpl (9mn + Gnm  Imnil ) 5 (B.2)

wheregim:n = @gm and g” = (gp1) 1. We write the derivatives of the metric tensor for the
spherical coordinate system as:

0 1 0 1 0 1
0 0 0 00 0 000

@=f0 r 0 X @=800 0 X@g=@0 0 OX: (B.3)
0 0 2sin? 0 0 r?sin2 000
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APPENDIX B. CHRISTOFFEL SYMBOLS

0 1
1 O 0

Given gP! = E@O r2 0 g and gim:n (obtained in equation (B.3)), we obtain the CS
0 0 r %in?
of the spherical coordinate system given in equation (B.1) using equation (B.2). For example,
", according to equation (B.2) is given by

1 1 1
=§9rr(gr;+gr; g;r)‘*‘égr(g;"'g; g;)"’égr (9. +9;: g )

= }(O+O 2r)+0+0=
2
(B.4)
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Appendix

Di erential K -forms

A dierential K -form represents a smooth section on the in nitesimal tangent space of the
manifold. For example, a O-form describes a point on the manifold, a 1-form describes a line
element, a 2-form describes an area element, a 3-form describes a volume element, and so on.

In dierential geometry, dierential forms [ : ; , ] are used to
perform the multivariate calculus independently of the coordinates. A scalar functionf,
parametrised with m variables (x';x?;:::x™) such that a point f = f(x%;x?%;:::x™) is a
O-form. In this case, the exterior derivative off is the same as the total derivative off .

Now, the di erential 1-form expressing the exterior derivative of f is given by

xXn of

df = ——dx'; (C.1)
=1 @%

where dx! are the 1-forms andg; represents a linear function on the tangent space of the
function f in R".

Di erential forms are de ned locally, in terms of the local coordinates. Hence they are
easily transferable from one coordinate system to another and therefore, very useful for
de ning local properties of the surfaces.
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