R. L. Klueh, P. J. Maziasz, I. S. Kim, L. Heatherly, D. T. Hoelzer et al., Tensile and creep properties of an oxide dispersionstrengthened ferritic steel, Journal of Nuclear Materials, vol.307, p.773777, 2002.

S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura et al., Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials, Journal of Nuclear Materials, vol.204, p.6573, 1993.
DOI : 10.1016/0022-3115(93)90200-I

. Maziasz, Atom probe tomography of nanoscale particles in ODS ferritic alloys, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, p.140145, 2003.

M. Klimiankou, R. Lindau, and A. Moslang, TEM characterization of structure and composition of nanosized ODS particles in reduced activation ferritic???martensitic steels, Journal of Nuclear Materials, vol.329, issue.333, p.347351, 2004.
DOI : 10.1016/j.jnucmat.2004.04.083

F. Geniv, Technology roadmap update for generation IV nuclear energy systems

P. Yvon and F. Carre, Structural materials challenges for advanced reactor systems, Journal of Nuclear Materials, vol.385, issue.2, p.217222, 2009.
DOI : 10.1016/j.jnucmat.2008.11.026

P. J. Cunat, Aciers inoxydables -Critères de choix et structure, p.117, 2000.

J. S. Benjamin, Dispersion strengthened superalloys by mechanical alloying, Metallurgical Transactions, vol.1, p.29432950, 1970.

J. Eckert, L. Schultz, and K. Urban, Formation of quasicrystals by mechanical alloying, Applied Physics Letters, vol.22, issue.2, p.117119, 1989.
DOI : 10.4028/www.scientific.net/MSF.22-24.517

L. Toualbi, M. Ratti, G. Andre, F. Onimus, and Y. De-carlan, Use of neutron and X-ray diraction to study the precipitation mechanisms of oxides in ODS materials, Journal of Nuclear Materials, vol.417, p.225228, 20011.

M. Hilger, I. Tegel, M. J. Gorley, G. P. , T. Weissgarber et al., The structural changes of Y2O3 in ferritic ODS alloys during milling, Journal of Nuclear Materials, vol.447, issue.1-3, p.242247, 2014.
DOI : 10.1016/j.jnucmat.2014.01.026

M. J. Alinger, G. R. Odette, and D. T. Hoelzer, On the role of allow composition and processing parameters in nanocluster formation and dispersion strengthening in nanostructured ferritic alloys, Acta Materalia, vol.57, p.392406, 2009.

M. Loyer-prost, J. S. Merot, J. Ribis, Y. Le-bouar, L. Charon et al., High resolution Transmission Electron Microscopy characterization of a milled oxide dispersion strengthened steel powder, Journal of Nuclear Materials, vol.479, p.7684, 2016.
DOI : 10.1016/j.jnucmat.2016.06.050

URL : https://hal.archives-ouvertes.fr/hal-01403043

M. Ratti, Développement de nouvelles nuances d'aciers ferritiques/martensitiques pour le gainage d'éléments combustibles des réacteurs à neutrons rapides au sodium

P. Miao, G. R. Odette, T. Yamamoto, M. Alinger, D. Hoelzer et al., Eects of consolidation temperature, strength and microstructure on fracture toughness of nanostructured ferritic alloys, Journal of Nuclear Materials, vol.367, p.208212, 2007.

M. Couvrat, Fabrication d'ODS à hautes performances : relation procédémicrostructure, Thèse de doctorat, 2011.

C. Estournes, Mise en forme de matériaux par frittage ash, p.18, 2006.

X. Boulnat, D. Fabregue, M. Perez, M. H. Mathon, and Y. Decarlan, High-Temperature Tensile Properties of Nano-Oxide Dispersion Strengthened Ferritic Steels Produced by Mechanical Alloying and Spark Plasma Sintering, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, p.24612465, 2013.
DOI : 10.1016/S0921-5093(01)01115-7

URL : https://hal.archives-ouvertes.fr/hal-01540104

H. X. Reece, P. S. Yan, and . Grant, Processing and microstructure characterisation of oxide dispersion strengthened Fe-14Cr-0,4Ti-0,25Y 2 O 3 ferritic steels fabricated by spark plasma sintering, Journal of Nuclear Materials, vol.464, p.6168, 2015.

A. Serrano, M. Garcia-junceda, R. Hernandez, and M. H. , On anisotropy of ferritic ODS alloys, Materials Science and Technology, vol.30, issue.13, p.16641668, 2014.
DOI : 10.1016/j.jnucmat.2008.12.265

A. Karch, Étude des évolutions microstructurales lors de la transformation à chaud d'aciers ferritiques renforcés par dispersion d'oxydes, Thèse de doctorat, 2014.

M. Brocq, B. Radiguet, S. Poissonnet, F. Cuvilly, P. Pareige et al., Nanoscale characterisation and formation mechanism of nanoclusters in an ODS steel elaborated by reactive-inspired ball-milling and annealing, Journal of Nuclear Materials, vol.409, p.8085, 2011.

X. Boulnat, M. Perez, D. Fabregue, S. Cazottes, and Y. De-carlan, Characterization and modeling of oxides precipitation in ferritic steels during fast non-isothermal consolidation On ball-milled ODS ferritic steel recrytallization : From as-milled powder particles to consolidated state, Acta Materialia Journal of Materials Science, vol.107, issue.50, p.39040322022217, 2015.

M. Ratti, D. Leuvrey, M. H. Mathon, and Y. De-carlan, Inuence of titanium on nanocluster (Y, Ti, O) stability in ODS ferritic materials, Journal of Nuclear Materials, pp.386-88540543, 2009.

M. C. Brandes, L. Kovarik, M. K. Miller, and M. J. Mills, Morphology, structure, and chemistry of nanoclusters in a mechanically alloyed nanostructured ferritic steel, Journal of Materials Science, vol.377, issue.388, p.39133923, 2012.
DOI : 10.1016/j.jnucmat.2008.02.042

D. J. Larson, P. J. Maziasz, I. S. Kim, and K. Miyahara, Three-dimensional atom probe observation of nanoscale titanium-oxygen clustering in an oxide-dispersionstrengthened Fe-12Cr-3W-0,4Ti+Y 2 O 3 ferritic alloy, Scripta Materialia, vol.44, p.359364, 2001.

M. K. Miller, D. T. Hoelzer, E. A. Kenik, and K. F. Russell, Nanometer scale precipitation in ferritic MA/ODS alloy MA957, Journal of Nuclear Materials, vol.329, issue.333, p.338341, 2004.
DOI : 10.1016/j.jnucmat.2004.04.085

M. K. Miller, C. M. Parish, and Q. Li, Advanced oxide dispersion strengthened and nanostructured ferritic alloys, Materials Science and Technology, vol.84, issue.4, p.11741178, 2013.
DOI : 10.1007/s11706-009-0001-8

J. Ribis and Y. De-carlan, Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials, Acta Materialia, vol.60, issue.1, p.238252, 2012.
DOI : 10.1016/j.actamat.2011.09.042

Y. R. Wen, Y. Liu, A. Hirata, F. Liu, T. Fujita et al., Innovative processing of high-strength and low-cost ferritic steels strengthened by Y???Ti???O nanoclusters, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, p.5969, 2012.
DOI : 10.1016/j.msea.2012.03.015

H. Sakasegawa, L. Charon, F. Legendre, L. Boulanger, T. Cozzika et al., Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy, Journal of Nuclear Materials, vol.384, issue.2, p.115118, 2009.
DOI : 10.1016/j.jnucmat.2008.11.001

A. Hirata, T. Fujita, Y. R. Wen, J. H. Schneibel, C. T. Liu et al., Atomic structure of nanoclusters in oxide-dispersion-strengthened steels, Nature Materials, vol.62, issue.12, p.922926, 2011.
DOI : 10.1016/S0304-3991(01)00145-0

K. Nogiwa, A. Nishimura, A. Yokoyama, S. Ohtsuka, T. Kaito et al., Characterization of the microstructure of dual-phase 9Cr-ODS steels using a laser-assisted 3D atom probe, Journal of Nuclear Materials, vol.417, issue.1-3, p.201203, 2011.
DOI : 10.1016/j.jnucmat.2010.12.053

M. K. Miller, K. F. Russell, and D. T. Hoelzer, Characterization of precipitates in MA/ODS ferritic alloys, Journal of Nuclear Materials, vol.351, issue.1-3, p.261268, 2006.
DOI : 10.1016/j.jnucmat.2006.02.004

C. A. Williams, G. D. Smith, and E. A. Marquis, The eect of Ti on the coarsening behavior of oxygen-rich nanoparticles in oxide-dispersion-strengthened steels after annealing at 1200 degrees C, Scripta Materialia, vol.67, p.108111, 2012.

E. A. Marquis, Core/shell structures of oxygen-rich nanofeatures in oxide-dispersion strengthened Fe???Cr alloys, Applied Physics Letters, vol.93, issue.18, p.93, 2008.
DOI : 10.1016/S0921-5093(97)00450-4

M. Klimenkov, R. Lindau, and A. Moslang, New insights into the structure of ODS particles in the ODS-Eurofer alloy, Journal of Nuclear Materials, vol.386, issue.388, pp.386-88553556, 2009.
DOI : 10.1016/j.jnucmat.2008.12.174

G. R. Odette, M. J. Alinger, and B. D. Wirth, Recent developments in irradiationresistant steels, Annual Review of Materials Research, vol.38, p.471503, 2008.

C. A. Williams, E. A. Marquis, A. Cerezo, and G. D. Smith, Nanoscale characterisation of ODS???Eurofer 97 steel: An atom-probe tomography study, Journal of Nuclear Materials, vol.400, issue.1, p.3745, 2010.
DOI : 10.1016/j.jnucmat.2010.02.007

S. Y. Zhong, J. Ribis, V. Klosek, Y. De-carlan, N. Lochet et al., Study of the thermal stability of nanoparticle distributions in an oxide dispersion strengthened (ODS) ferritic alloys, Journal of Nuclear Materials, vol.428, issue.1-3, p.154159, 2012.
DOI : 10.1016/j.jnucmat.2011.12.028

V. V. Lifshitz and I. M. Slyozov, The kinetics of precipitation from supersaturated solid solutions, Journal of Physics and Chemistry of Solids, vol.19, issue.1-2, p.3550, 1961.
DOI : 10.1016/0022-3697(61)90054-3

L. Barnard, N. Cunningham, G. R. Odette, I. Szlufarska, and D. Morgan, Thermodynamic and kinetic modeling of oxide precipitation in nanostructured ferritic alloys, Acta Materialia, vol.91
DOI : 10.1016/j.actamat.2015.03.014

N. J. Cunningham, M. J. Alinger, D. Klingensmith, Y. Wu, and G. R. Odette, On nano-oxide coarsening kinetics in the nanostructured ferritic alloy MA957: A mechanism based predictive model, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, p.355362, 2016.
DOI : 10.1016/j.msea.2015.12.074

Z. Oksiuta, M. Lewandowska, and K. J. Kurzydlowski, Mechanical properties and thermal stability of nanostructured ODS RAF steels, Mechanics of Materials, vol.67, pp.15-24, 2013.
DOI : 10.1016/j.mechmat.2013.07.006

T. S. Chou and H. Bhadeshia, Recrystallization temperatures in mechanically alloyed oxide-dispersion-strengthened MA956 and MA957 steels, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, p.229233, 1994.
DOI : 10.1016/0921-5093(94)90419-7

J. J. Shen, H. L. Yang, Y. F. Li, S. Kano, Y. Matsukawa et al., Microstructural stability of an as-fabricated 12Cr-ODS steel under elevated-temperature annealing, Journal of Alloys and Compounds, vol.695, 2017.
DOI : 10.1016/j.jallcom.2016.11.029

T. Grosdidier, E. Suzon, and F. Wagner, Primary recrystallization in an ODS FeAl alloy: an effective way to modify texture and microstructure, Intermetallics, vol.12, issue.6, pp.645-654, 2004.
DOI : 10.1016/j.intermet.2004.03.014

C. Capdevila, M. K. Miller, G. Pimentel, and J. Chao, Inuence of recrystallization on phase separation kinetics of oxide dispersion strengthened Fe-Cr-Al alloys, Scripta Materialia, vol.66, p.254257, 2012.

C. L. Chen, Y. M. Dong, and S. M. Fu, Strain Heterogeneity, Recovery and Recrystallization of Nanostructured ODS Alloys during Cold Deformation, MATERIALS TRANSACTIONS, vol.53, issue.10, p.17951800, 2012.
DOI : 10.2320/matertrans.M2012197

T. Narita, S. Ukai, T. Kaito, S. Ohtsuka, and T. Kobayashi, Development of two-step softening heat treatment for manufacturing 12Cr-ODS ferritic steel tubess, Journal of Nuclear Science and Technology, vol.41, p.10081012, 2004.

H. Réglé, Alliages ferritiques 14/20Cr renforcés par dispersion d'oxydes : eets des procédés de mise en forme sur les textures de déformation, la recristallisation et les propriétés de traction, Thèse de doctorat, 1994.

M. Dade, Plasticité d'alliages nanorenforcés pour le gainage combustible des réacteurs de 4ème génération : Compréhension et modélisation de l'inuence des diérents paramètres microstructuraux sur le comportement d'alliages modèles, Thèse de doctorat, 2015.

S. Y. Zhong, J. Ribis, T. Baudin, N. Lochet, Y. De-carlan et al., The eect of Ti/Y ratio on the recrystallisation behaviour of Fe-14%Cr oxide dispersion-strengthened alloys, Journal of Nuclear Materials, vol.452, p.359363, 2014.

Z. Oksiuta and N. Baluc, Optimization of the chemical composition and manufacturing route for ODS RAF steels for fusion reactor application, Nuclear Fusion, vol.49, issue.5, p.16, 2009.
DOI : 10.1088/0029-5515/49/5/055003

F. , D. Gabriele, S. Amore, C. Scaiola, E. Arato et al., Corrosion behaviour of 12Cr-ODS steel in molten lead, Nuclear Engineering and Design, vol.280, p.6975, 2014.

C. Fazio, D. G. Briceno, M. Rieth, A. Gessi, J. Henry et al., Innovative materials for Gen IV systems and transmutation facilities: The cross-cutting research project GETMAT, Nuclear Engineering and Design, vol.241, issue.9, p.35143520, 2011.
DOI : 10.1016/j.nucengdes.2011.03.009

M. Dade, J. Malaplate, F. Garnier, N. De-geuser, A. Lochet et al., Inuence of consolidation methods on the recrystallization kinetics of a Fe-14Cr based ODS steel, Journal of Nuclear Materials, vol.472, p.143152, 2016.

I. Hilger, F. Bergner, A. Ulbricth, A. Wagner, T. Weissgarber et al., Investigation of spark plasma sintered oxide-dispersion strengthened steels by means of small-angle neutron scattering, Journal of Alloys and Compounds, vol.685, p.927935, 2016.
DOI : 10.1016/j.jallcom.2016.06.238

A. Karch, D. Sornin, F. Barcelo, S. Bosonnet, Y. De-carlan et al., Microstructural characterizations of 14Cr ODS ferritic steels subjected to hot torsion, Journal of Nuclear Materials, vol.459, p.5361, 2015.
DOI : 10.1016/j.jnucmat.2014.12.104

URL : https://hal.archives-ouvertes.fr/hal-01110949

P. Olier, J. Malaplate, M. H. Mathon, D. Nunes, D. Hamon et al., Chemical and microstructural evolution on ODS Fe???14CrWTi steel during manufacturing stages, Journal of Nuclear Materials, vol.428, issue.1-3, p.4046, 2012.
DOI : 10.1016/j.jnucmat.2011.10.042

P. Unifantowicz, T. Plocinski, C. A. Williams, R. Schaublin, and N. Baluc, Structure of complex oxide nanoparticles in a Fe???14Cr???2W???0.3Ti???0.3Y2O3 ODS RAF steel, Journal of Nuclear Materials, vol.442, issue.1-3, pp.158-163, 2013.
DOI : 10.1016/j.jnucmat.2013.04.048

S. Ukai, T. Kaito, S. Ohtsuka, T. Narita, M. Fujiwara et al., Production and Properties of Nano-scale Oxide Dispersion Strengthened (ODS) 9Cr Martensitic Steel Claddings, ISIJ International, vol.43, issue.12, p.20382045, 2003.
DOI : 10.2355/isijinternational.43.2038

N. J. Cunningham, Y. Wu, A. Etienne, E. M. Haney, G. R. Odette et al., Eect of bulk oxygen on 14YWT nanostructured ferritic alloys, Journal of Nuclear Materials, vol.444, p.3538, 2014.

C. Zheng, Metallic oxide nano-clusters synthesis by ion implantation in high purity Fe-10Cr alloy, Thèse de doctorat, 2015.
DOI : 10.1016/j.nimb.2017.03.067

URL : https://hal.archives-ouvertes.fr/tel-01242211

S. Y. Zhong, J. Ribis, N. Lochet, Y. De-carlan, V. Klosek et al., The Eect of Y/Ti Ratio on Oxide Precipitate Evolution in ODS Fe-14 Wt Pct Cr Alloys, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, p.14131418, 2015.

S. Y. Zhong, J. Ribis, N. Lochet, Y. De-carlan, V. Klosek et al., Inuence of nano-particle coherency degree on the coarsening resistivity of the nano-oxide particles of Fe-14Cr-1W ODS alloys, Journal of Nuclear Materials, vol.455, p.618623, 2014.

S. Y. Zhong, Étude des évolutions microstructurales à haute température en fonction des teneurs initiales en Y, Ti et O et, de leur incidence sur les hétérogénéités de déformation dans les aciers ODS Fe-14Cr-1W, Thèse de doctorat, 2012.

B. Migaud, Le dosage de l???oxyg??ne par fusion r??ductrice sous courant d???argon. ??tude des blancs. Application ?? l???analyse des m??taux et alliages r??fractaires, Revue de M??tallurgie, vol.63, issue.2, p.137148, 1966.
DOI : 10.1051/metal/196663020137

J. Diaz, Étude et développement de la spectroscopie d'émission optique sur plasma induit par laser pour la réalisation d'analyses de terrain : application à l'analyse en ligne de métaux dans les liquides, Thèse de doctorat, 2013.

G. E. Bacon, Neutron diraction, 1975.

F. Nallet, Introduction à la diusion aux petits angles, Collection SFN, vol.11, p.1742, 2010.
DOI : 10.1051/sfn/201011003

URL : http://www.neutron-sciences.org/10.1051/sfn/201011003/pdf

M. H. Mathon, M. Perrut, S. Zhong, and Y. De-carlan, Small angle neutron scattering study of martensitic/ferritic ODS alloys, Journal of Nuclear Materials, vol.428, issue.1-3, p.147153, 2012.
DOI : 10.1016/j.jnucmat.2011.12.010

A. T. Aldred, Ferromagnetism in iron-chromium alloys .1. Bulk magnetization measurements Current trends in amorphous magnetism, Physical Review B IEEE Transactions on Magnetics, vol.14, issue.20, p.21922712781283, 1976.

V. F. Sears, Neutron scattering lengths and cross sections, Neutron News, vol.321, issue.3, p.2637, 1992.
DOI : 10.1007/BF01411978

M. H. Mathon, A. Barbu, F. Dunstetter, F. Maury, N. Lorenzelli et al., Experimental study and modeling of copper precipitation under electron irradiation in dilute FeCu binary alloys, Journal of Nuclear Materials, vol.245, p.224237, 1997.

M. H. Mathon, Étude de la précipitation et des mécanismes microscopiques de durcissement sous irradiation dans des alliages ferritiques dilués, Thèse de doctorat, 1995.

D. B. Williams and C. B. Carter, Transmission Electron Microscopy : A textbook for Materials Science, 2009.

E. A. Marquis and J. M. Hyde, Applications of atom-probe tomography to the characterisation of solute behaviours, Materials Science and Engineering: R: Reports, vol.69, issue.4-5, pp.37-62, 2010.
DOI : 10.1016/j.mser.2010.05.001

D. Vaumousse, A. Cerezo, and P. J. Warren, A procedure for quantication of precipitate microstructures from three-dimensional atom probe data, Ultramicroscopy, vol.95, p.215221, 2003.

C. A. Williams, P. Unifantowicz, N. Baluc, G. D. Smith, and E. A. Marquis, The formation and evolution of oxide particles in oxide-dispersion-strengthened ferritic steels during processing, Acta Materialia, vol.61, issue.6, p.22192235, 2013.
DOI : 10.1016/j.actamat.2012.12.042

R. Chinnappan, Thermodynamic stability of oxide phases of Fe-Cr based ODS steels via quantum mechanical calculations. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, p.188193, 2014.

K. Thompson, D. Lawrence, J. D. Larson, D. J. Olson, T. F. Kelly et al., In situ site-specic specimen preparation for atom probe tomography, Ultramicroscopy, vol.107, p.131139, 2007.

F. Brisset, M. Repoux, J. Ruste, F. Grillon, and F. Robaut, EBSD : historique, principe et exemples d'applications, Chapitre XVI, 2009.

T. Baudin, L'analyse EBSD Principe et cartographies d'orientations. Techniques de l'ingénieur, p.117, 2010.

A. L. Etter and T. Baudin, Représentation des orientations cristallines -Quelques exemples, Chapitre 6.1, Rayonnement synchrotron, rayons X et neutrons au service des matériaux, EDP SciencesCollection Science des matériaux, 2012.

H. Drescher, L. Reimer, and H. Seidel, Backscattering and secondary electron emission of 10-100 KeV electrons and correlations to scanning electron microscopy, Phys, vol.29, p.331340, 1970.

S. L. Dudarev, P. Rez, and M. J. Whelan, Theory of electron backscattering from crystals, Physical Review B, vol.24, issue.6, p.33973412, 1995.
DOI : 10.1080/13642812.1983.11643262

S. Zaeerer, On the formation mechanisms, spatial resolution and intensity of backscatter Kikuchi patterns, Ultramicroscopy, vol.107, p.254266, 2007.

D. P. Field, Recent advances in the application of orientation imaging, Ultramicroscopy, vol.67, issue.1-4, p.19, 1997.
DOI : 10.1016/S0304-3991(96)00104-0

M. Kamaya, Assessment of local deformation using EBSD: Quantification of accuracy of measurement and definition of local gradient, Ultramicroscopy, vol.111, issue.8, p.11891199, 2011.
DOI : 10.1016/j.ultramic.2011.02.004

Q. Liu, D. J. Jensen, and N. Hansen, Eect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium, Acta Materialia, vol.46, p.58195838, 1998.

Y. A. Betanda, A. L. Helbert, F. Brisset, M. H. Mathon, T. Waeckerle et al., Measurement of stored energy in Fe-48Ni alloys strongly cold-rolled using three approaches : Neutron diraction, Dillamore and KAM approaches. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2014.

E. J. Pavlina and C. J. Van-tyne, Correlation of Yield Strength and Tensile Strength with Hardness for Steels, Journal of Materials Engineering and Performance, vol.402, issue.143, pp.888-893, 2008.
DOI : 10.1007/BF02661365

S. Y. Zhong, V. Klosek, Y. De-carlan, and M. H. Mathon, Modeling of structural hardening in oxide dispersion-strengthened (ODS) ferritic alloys, Journal of Materials Science, vol.46, issue.7, p.25402549, 2016.
DOI : 10.1007/s11661-014-2683-5

G. Y. Taylor, Deformation and ow of solids, Grammel. R, 1956.

C. Zheng, A. Gentils, J. Ribis, O. Kaitasov, V. A. Borodin et al., The feasibility of Al-based oxide precipitation in Fe-10Cr alloy by ion implantation, Philosophical Magazine, vol.94, p.29372955, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01079120

A. J. London, S. Lozano-perez, S. Santra, S. Amirthapandian, B. K. Panigrahi et al., Comparison of atom probe tomography and transmission electron microscopy analysis of oxide dispersion strengthened steels, Journal of Physics: Conference Series, vol.522, 2013.
DOI : 10.1088/1742-6596/522/1/012028

A. J. London, S. Lozano-perez, M. P. Moody, S. Amirthapandian, B. K. Panigrahi et al., Quantication of oxide particle composition in model oxide dispersion strengthened steel alloys, Ultramicroscopy, vol.159, p.360367, 2015.

V. De-castro, E. A. Marquis, S. Lozano-perez, R. Pareja, and M. L. Jenkins, Stability of nanoscale secondary phases in an oxide dispersion strengthened Fe???12Cr alloy, Acta Materialia, vol.59, issue.10, p.39273936, 2011.
DOI : 10.1016/j.actamat.2011.03.017

A. Alamo, H. Regle, G. Pons, and J. L. Bechade, Microstructure and textures of ODS ferritic alloys obtained by mechanical alloying Slip systems interactions in alpha-iron determined by dislocation dynamics simulations, Mechanical Alloying International Journal of Plasticity, vol.88, issue.25, p.183190361377, 1992.

P. J. Cunat, Étude des métaux par microscopie électronique en transmission (MET) -Formation des images, p.113, 2008.

L. M. Huisman, A. E. Carlsson, C. D. Gelatt, and H. Ehrenreich, Mechanisms for energetic-vacancy stabilization: TiO and TiC, Physical Review B, vol.42, issue.2, p.9911006, 1980.
DOI : 10.1103/PhysRevLett.42.846

J. Ribis, M. A. Thual, T. Guilbert, Y. De-carlan, and A. Legris, Relaxation path of metastable nanoclusters in oxide dispersion strengthened materials, Journal of Nuclear Materials, vol.484, p.183192, 2017.
DOI : 10.1016/j.jnucmat.2016.12.007

S. Ohtsuka, S. Ukai, and M. Fujiwara, Nano-mesoscopic structural control in 9CrODS ferritic/martensitic steels, Journal of Nuclear Materials, vol.351, issue.1-3, p.241246, 2006.
DOI : 10.1016/j.jnucmat.2006.02.006

C. S. Obayi, R. Tolouei, C. Paternoster, S. Turgeon, B. A. Okorie et al., Inuence of cross-rolling on the microtexture and biodegradation of pure iron as biodegradable material for medical implants, Acta Biomaterialia, vol.17, p.6877, 2008.

M. L. Lescoat, J. Ribis, A. Gentils, O. Kaitasov, Y. De-carlan et al., In situ TEM study of the stability of nano-oxides in ODS steels under ion-irradiation, Journal of Nuclear Materials, vol.428, issue.1-3, p.176182, 2012.
DOI : 10.1016/j.jnucmat.2011.12.009

URL : https://hal.archives-ouvertes.fr/in2p3-00658301

B. Mazumder, C. M. Parish, H. Bei, and M. K. Miller, The role of processing route on the microstructure of 14YWT nanostructured ferritic alloy, Journal of Nuclear Materials, vol.465, p.204211, 2015.
DOI : 10.1016/j.jnucmat.2015.05.057

A. G. Certain, K. G. Field, T. R. Allen, M. K. Miller, J. Bentley et al., Response of nanoclusters in a 9Cr ODS steel to 1 dpa, 525 degrees C proton irradiation, Journal of Nuclear Materials, vol.407, p.29, 2010.

M. Klimiankou, R. Lindau, and A. Moslang, Direct correlation between morphology of (Fe,Cr) 23 C 6 precipitates and impact behavior of ODS steels, Journal of Nuclear Materials, vol.36, p.173178, 2007.

P. Olier, M. Couvrat, C. Cayron, N. Lochet, and L. Charon, Incidence of mechanical alloying contamination on oxides and carbides formation in ODS ferritic steels, Journal of Nuclear Materials, vol.442, issue.1-3, pp.106-111, 2013.
DOI : 10.1016/j.jnucmat.2013.03.090

G. Pimentel, J. Chao, and C. Capdevila, Recrystallization Process in Fe-Cr-Al Oxide Dispersion-Strengthened Alloy: Microstructural Evolution and Recrystallization Mechanism, JOM, vol.25, issue.5, p.780792, 2014.
DOI : 10.1023/A:1008668604733

G. Pimentel, I. Toda-caraballo, and C. Capdevila, Experimental and computational analysis of abnormal grain growth, Materials Science and Technology, vol.53, issue.13, p.16181626, 2015.
DOI : 10.1016/j.commatsci.2008.05.028

C. Hin and B. D. Wirth, Formation of Y2O3 nanoclusters in nano-structured ferritic alloys: Modeling of precipitation kinetics and yield strength, Journal of Nuclear Materials, vol.402, issue.1, p.3037, 2010.
DOI : 10.1016/j.jnucmat.2010.04.020

B. Hary, Compréhension et modélisation de l'inuence du taux de renforts et de la texture de déformation sur la recristallisation des aciers ODS ferritiques, Thèse de doctorat, 2017.