F. Brech and L. Cross, Optical microemission stimulated by a ruby maser, Appl. Spectrosc, vol.16, issue.59, 1962.

J. Debras-guédon and N. Liodec, De l'utilisation du faisceau issu d'un amplificateur à ondes lumineuses par emission induite de rayonnement (laser à rubis), comme source énergétique pour l'excitation des spectres d'emission des éléments, C.R. Acad. Sci, vol.257, pp.3336-3339, 1963.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, 2006.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy: Fundamentals and applications, 2006.
DOI : 10.1017/CBO9780511541261

L. J. Radziemski and T. R. Loree, Laser-induced breakdown spectroscopy: Time-resolved spectrochemical applications, Plasma Chemistry and Plasma Processing, vol.59, issue.3, pp.281-293, 1981.
DOI : 10.1007/BF00568836

D. A. Cremers and L. J. Radziemski, Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry, Analytical Chemistry, vol.55, issue.8, pp.55-1252, 1983.
DOI : 10.1021/ac00259a017

L. J. Radziemski, D. A. Cremers, and T. R. Loree, Detection of beryllium by laser-induced-breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.38, issue.1-2, pp.349-355, 1983.
DOI : 10.1016/0584-8547(83)80133-5

D. A. Cremers and L. J. Radziemski, Direct Detection of Beryllium on Filters Using the Laser Spark, Applied Spectroscopy, vol.45, issue.1, pp.57-63, 1985.
DOI : 10.1021/es60127a003

L. J. Radziemski, T. R. Loree, D. A. Cremers, and N. M. Hoffman, Time-resolved laser-induced breakdown spectrometry of aerosols, Analytical Chemistry, vol.55, issue.8, pp.55-1246, 1983.
DOI : 10.1021/ac00259a016

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith et al., Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star, Journal of Analytical Atomic Spectrometry, vol.19, issue.9, pp.106-108, 2004.
DOI : 10.1039/b400355c

S. Pandhija, N. Rai, A. Rai, and S. Thakur, Contaminant concentration in environmental samples using LIBS and CF-LIBS, Applied Physics B, vol.42, issue.1, pp.231-241, 2010.
DOI : 10.1017/CBO9780511541261

R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, Detector for Trace Elemental Analysis of Solid Environmental Samples by Laser Plasma Spectroscopy, Analytical Chemistry, vol.66, issue.18, pp.66-2964, 1994.
DOI : 10.1021/ac00090a026

M. Z. Martin, N. Labbé, N. André, R. Harris, M. Ebinger et al., High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.62, issue.12, pp.1426-1432, 2007.
DOI : 10.1016/j.sab.2007.10.046

R. Noll, V. Sturm, Ü. Aydin, D. Eilers, C. Gehlen et al., Laser-induced breakdown spectroscopy???From research to industry, new frontiers for process control, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.63, issue.10, pp.1159-1166, 2008.
DOI : 10.1016/j.sab.2008.08.011

N. K. Rai and A. K. Rai, LIBS???An efficient approach for the determination of Cr in industrial wastewater, Journal of Hazardous Materials, vol.150, issue.3, pp.835-838, 2008.
DOI : 10.1016/j.jhazmat.2007.10.044

P. Werheit, C. Fricke-begemann, M. Gesing, and R. Noll, Fast single piece identification with a 3D scanning LIBS for aluminium cast and wrought alloys recycling, Journal of Analytical Atomic Spectrometry, vol.385, issue.6, pp.2166-2174, 2011.
DOI : 10.1007/s00216-006-0389-2

J. L. Gottfried, R. S. Harmon, F. C. De-lucia-jr, and A. W. Miziolek, Multivariate analysis of laser-induced breakdown spectroscopy chemical signatures for geomaterial classification, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.64, issue.10, pp.1009-1019, 2009.
DOI : 10.1016/j.sab.2009.07.005

N. J. Mcmillan, S. Rees, K. Kochelek, and C. Mcmanus, Geological Applications of Laser-Induced Breakdown Spectroscopy, Geostandards and Geoanalytical Research, vol.122, issue.75, pp.329-343, 2014.
DOI : 10.1039/a704782g

J. M. Anzano, M. A. Villoria, A. Ruíz-medina, and R. J. Lasheras, Laser-induced breakdown spectroscopy for quantitative spectrochemical analysis of geological materials: Effects of the matrix and simultaneous determination, Analytica Chimica Acta, vol.575, issue.2, pp.230-235, 2006.
DOI : 10.1016/j.aca.2006.05.077

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo et al., Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy, Applied Physics Letters, vol.17, issue.6, p.63901, 2006.
DOI : 10.1088/0022-3727/31/10/019

URL : https://hal.archives-ouvertes.fr/ineris-00963001

L. C. Trevizan, D. Santos, R. E. Samad, N. D. Vieira, L. C. Nunes et al., Evaluation of laser induced breakdown spectroscopy for the determination of micronutrients in plant materials, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.64, issue.5, pp.369-377, 2009.
DOI : 10.1016/j.sab.2009.04.003

V. Motto-ros, L. Sancey, X. Wang, Q. Ma, F. Lux et al., Mapping nanoparticles injected into a biological tissue using laser-induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.87, pp.168-174, 2013.
DOI : 10.1016/j.sab.2013.05.020

URL : https://hal.archives-ouvertes.fr/hal-00968550

K. Müller and H. Sterge, EVALUATION OF THE ANALYTICAL POTENTIAL OF LASER-INDUCED BREAKDOWN SPECTROMETRY (LIBS) FOR THE ANALYSIS OF HISTORICAL GLASSES*, Archaeometry, vol.37, issue.11, pp.421-433, 2003.
DOI : 10.1016/S0026-265X(00)00155-7

N. Carmona, M. Oujja, E. Rebollar, H. Römich, and M. Castillejo, Analysis of corroded glasses by laser induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.60, issue.7-8, pp.1155-1162, 2005.
DOI : 10.1016/j.sab.2005.05.016

A. Giakoumaki, K. Melessanaki, and D. Anglos, Laser-induced breakdown spectroscopy (LIBS) in archaeological science???applications and prospects, Analytical and Bioanalytical Chemistry, vol.61, issue.220, pp.749-760, 2007.
DOI : 10.1016/j.aca.2005.08.081

C. M. Bridge, J. Powell, K. L. Steele, and M. E. Sigman, Forensic comparative glass analysis by laser-induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.62, issue.12, pp.1419-1425, 2007.
DOI : 10.1016/j.sab.2007.10.015

E. M. Rodriguez-celis, I. B. Gornushkin, U. M. Heitmann, J. R. Almirall, B. W. Smith et al., Laser induced breakdown spectroscopy as a tool for discrimination of glass for forensic applications, Analytical and Bioanalytical Chemistry, vol.5, issue.5, pp.391-1961, 2008.
DOI : 10.1002/0470093013

B. E. Naes, S. Umpierrez, S. Ryland, C. Barnett, and J. R. , A comparison of laser ablation inductively coupled plasma mass spectrometry, micro X-ray fluorescence spectroscopy, and laser induced breakdown spectroscopy for the discrimination of automotive glass, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.63, issue.10, pp.1045-1050, 2008.
DOI : 10.1016/j.sab.2008.07.005

A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, Characterization of laserinduced breakdown spectroscopy (LIBS) for application to space exploration, Appl. Spectrosc, pp.54-331, 2000.

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri et al., Investigation of LIBS feasibility for in situ planetary exploration: An analysis on Martian rock analogues, Planetary and Space Science, vol.52, issue.1-3, pp.117-123, 2004.
DOI : 10.1016/j.pss.2003.08.012

B. Sallé, D. A. Cremers, S. Maurice, R. C. Wiens, and P. Fichet, Evaluation of a compact spectrograph for in-situ and stand-off Laser-Induced Breakdown Spectroscopy analyses of geological samples on Mars missions, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.60, issue.6, pp.805-815, 2005.
DOI : 10.1016/j.sab.2005.05.007

S. Maurice, R. C. Wiens, and M. Saccoccio, The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description, Space Science Reviews, vol.53, issue.1, pp.95-166, 2012.
DOI : 10.1109/TIM.2003.821487

URL : https://hal.archives-ouvertes.fr/hal-00732883

R. C. Wiens, S. Maurice, and B. Barraclough, The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests, Space Science Reviews, vol.46, issue.E12, pp.167-227, 2012.
DOI : 10.1111/j.1945-5100.2011.01241.x

URL : https://hal.archives-ouvertes.fr/hal-00717246

M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.57, issue.4, pp.701-709, 2002.
DOI : 10.1016/S0584-8547(01)00403-7

. Belbeze, Development of a mobile system based on laser-induced breakdown spectroscopy and dedicated to in situ analysis of polluted soils, Spectrochim Acta B, vol.63, pp.1085-1090, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00641405

B. Salle, P. Mauchien, and S. Maurice, Laser-Induced Breakdown Spectroscopy in open-path configuration for the analysis of distant objects, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.62, issue.8, pp.739-768, 2007.
DOI : 10.1016/j.sab.2007.07.001

Y. Groisman and M. Gaft, Online analysis of potassium fertilizers by Laser-Induced Breakdown Spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.65, issue.8, pp.744-749, 2010.
DOI : 10.1016/j.sab.2010.03.019

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.57, issue.7, pp.1115-1130, 2002.
DOI : 10.1016/S0584-8547(02)00053-8

V. Motto-ros, L. Sancey, Q. L. Ma, F. Lux, X. S. Bai et al., Mapping of native inorganic elements and injected nanoparticles in a biological organ with laser-induced plasma, Applied Physics Letters, vol.40, issue.22, p.223702, 2012.
DOI : 10.1063/1.3689300

URL : https://hal.archives-ouvertes.fr/hal-00797906

M. Hoehse, A. Paul, I. Gornushkin, and U. Panne, Multivariate classification of pigments and inks using combined Raman spectroscopy and LIBS, Analytical and Bioanalytical Chemistry, vol.98, issue.4, pp.402-1443, 2012.
DOI : 10.1016/j.microc.2010.12.007

X. K. Shen and Y. F. Lu, Detection of uranium in solids by using laser-induced breakdown spectroscopy combined with laser-induced fluorescence, Applied Optics, vol.47, issue.11, pp.47-1810, 2008.
DOI : 10.1364/AO.47.001810

S. C. Jantzi, V. Motto-ros, F. Trichard, Y. Markushin, N. Melikechi et al., Sample treatment and preparation for laser-induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.115, pp.52-63, 2016.
DOI : 10.1016/j.sab.2015.11.002

D. W. Hahn and N. Omenetto, Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma???Particle Interactions: Still-Challenging Issues within the Analytical Plasma Community, Applied Spectroscopy, vol.69, issue.12, pp.335-366, 2010.
DOI : 10.1016/j.sab.2007.11.004

D. A. Cremers and R. C. Chinni, Laser-Induced Breakdown Spectroscopy???Capabilities and Limitations, Applied Spectroscopy Reviews, vol.41, issue.6, pp.457-506, 2009.
DOI : 10.1366/0003702963906519

S. Musazzi and U. Perini, Laser-induced breakdown spectroscopy: theory and applications, 2014.
DOI : 10.1007/978-3-642-45085-3

A. De-giacomo, M. Dell-'aglio, R. Gaudiuso, S. Amoruso, and O. D. Pascale, Effects of the background environment on formation, evolution and emission spectra of laser-induced plasmas, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.78, pp.78-79, 2012.
DOI : 10.1016/j.sab.2012.10.003

F. F. Al-adel, M. A. Dastageer, K. Gasmi, and M. A. , Optimization of a Laser Induced Breakdown Spectroscopy Method for the Analysis of Liquid Samples, Journal of Applied Spectroscopy, vol.136, issue.4, pp.80-767, 2013.
DOI : 10.1007/s10661-007-9694-2

L. L. Shi, Q. Y. Lin, and Y. X. Duan, A novel specimen-preparing method using epoxy resin as binding material for LIBS analysis of powder samples, Talanta, vol.144, pp.1370-1376, 2015.
DOI : 10.1016/j.talanta.2015.07.085

L. Sancey, V. Motto-ros, B. Busser, S. Kotb, J. M. Benoit et al., Laser spectrometry for multi-elemental imaging of biological tissues, Scientific Reports, vol.34, issue.1, p.6065, 2014.
DOI : 10.1016/j.biomaterials.2012.09.029

URL : https://hal.archives-ouvertes.fr/hal-01058689

Q. Ma, Structure et dynamique du plasma induit par laser en propagation dans un gaz ambiant d'argon, Thèse Université Lyon, vol.1, 2012.

X. Bai, Laser-induced plasma as a function of the laser parameters and the ambient gas, Thèse Université Lyon, vol.1, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01127499

Q. Ma, V. Motto-ros, W. Lei, M. Boueri, X. Bai et al., Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.65, issue.11, pp.896-907, 2010.
DOI : 10.1016/j.sab.2010.08.005

Q. Ma, V. Motto-ros, F. Laye, J. Yu, W. Lei et al., Ultraviolet versus infrared: Effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas, Journal of Applied Physics, vol.257, issue.5, p.53301, 2012.
DOI : 10.1016/j.sab.2007.03.024

URL : https://hal.archives-ouvertes.fr/hal-00676482

Q. Ma, V. Motto-ros, X. Bai, and J. Yu, Experimental investigation of the structure and the dynamics of nanosecond laser-induced plasma in 1-atm argon ambient gas, Applied Physics Letters, vol.103, issue.20, 2013.
DOI : 10.1063/1.321383

X. Bai, Q. Ma, V. Motto-ros, J. Yu, D. Sabourdy et al., Convoluted effect of laser fluence and pulse duration on the property of a nanosecond laser-induced plasma into an argon ambient gas at the atmospheric pressure, Journal of Applied Physics, vol.113, issue.1, p.13304, 2013.
DOI : 10.1016/j.sab.2009.06.002

X. Bai, Q. Ma, M. Perrier, V. Motto-ros, D. Sabourdy et al., Experimental study of laser-induced plasma: Influence of laser fluence and pulse duration, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.87, pp.27-35, 2013.
DOI : 10.1016/j.sab.2013.05.019

X. Bai, V. Motto-ros, W. Lei, L. Zheng, and J. Yu, Experimental determination of the temperature range of AlO molecular emission in laser-induced aluminum plasma in air, Spectrochim, Acta B, pp.99-193, 2014.

X. Bai, F. Cao, V. Motto-ros, Q. Ma, Y. Chen et al., Morphology and characteristics of laser-induced aluminum plasma in argon and in air: A comparative study, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.113, pp.158-166, 2015.
DOI : 10.1016/j.sab.2015.09.023

J. Xiu, X. Bai, E. Negre, V. Motto-ros, and J. Yu, Indirect laser-induced breakdown of transparent thin gel layer for sensitive trace element detection, Applied Physics Letters, vol.32, issue.24, 2013.
DOI : 10.1016/j.sab.2010.08.005

J. Xiu, V. Motto-ros, G. Panczer, R. Zheng, and J. Yu, Feasibility of wear metal analysis in oils with ppm and sub-ppm sensitivity using laser-induced breakdown spectroscopy of thin oil layer on metallic target, Spectrochim. Acta Part B, pp.91-115, 2014.

L. Zheng, F. Cao, J. Xiu, X. Bai, V. Motto-ros et al., On the performance of laser-induced breakdown spectroscopy for direct determination of trace metals in lubricating oils, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.99, pp.1-8, 2014.
DOI : 10.1016/j.sab.2014.06.005

URL : https://hal.archives-ouvertes.fr/hal-01070740

J. Menneveux, F. Wang, S. Lu, X. Bai, V. Motto-ros et al., Direct determination of Ti content in sunscreens with laser-induced breakdown spectroscopy: Line selection method for high TiO 2 nanoparticle concentration, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.109, pp.9-15, 2015.
DOI : 10.1016/j.sab.2015.04.010

URL : https://hal.archives-ouvertes.fr/hal-01186952

J. Yu, Q. Ma, W. Lei, X. Wang, and X. Bai, Generation and expansion of laser-induced plasma as a spectroscopic emission source, Front, pp.649-669, 2012.

M. Capitellia, A. Casavola, G. Colonna, and A. D. Giacomo, Laser-induced plasma expansion: theoretical and experimental aspects, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.59, issue.3, pp.271-289, 2004.
DOI : 10.1016/j.sab.2003.12.017

G. Callies, P. Berger, and H. Hugel, Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation, Journal of Physics D: Applied Physics, vol.28, issue.4, pp.28-794, 1995.
DOI : 10.1088/0022-3727/28/4/026

A. V. Gusarov, A. G. Gnedovets, and I. Smurov, Two-dimensional gas-dynamic model of laser ablation in an ambient gas, Applied Surface Science, vol.154, issue.155, pp.66-72, 2000.
DOI : 10.1016/S0169-4332(99)00389-X

R. G. Root, Modeling of post-breakdown phenomena, Laser-induced Plasmas and Applications, pp.69-103, 1989.

R. E. Russo, X. L. Mao, C. Liu, and J. Gonzalez, Laser assisted plasma spectrochemistry: laser ablation, Journal of Analytical Atomic Spectrometry, vol.19, issue.9, pp.1084-1089, 2004.
DOI : 10.1039/b403368j

URL : http://lib3.dss.go.th/fulltext/Journal/J.Anal. Atom.Specto/2004/2004v19no9/1084-1089.pdf

G. Cristoforetti, G. Lorenzetti, P. A. Benedetti, E. Tognoni, S. Legnaioli et al., Effect of laser parameters on plasma shielding in single and double pulse configurations during the ablation of an aluminium target, Journal of Physics D: Applied Physics, vol.42, issue.22, pp.42-225207, 2009.
DOI : 10.1088/0022-3727/42/22/225207

D. W. Bäuerle, Laser processing and chemistry, 2013.

M. Stafe, C. Negutu, and I. M. Popescu, Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime, Applied Surface Science, vol.253, issue.15, pp.6353-6358, 2007.
DOI : 10.1016/j.apsusc.2007.01.060

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, Initiation of an early-stage plasma during picosecond laser ablation of solids, Applied Physics Letters, vol.39, issue.16, p.77, 2000.
DOI : 10.1115/1.2911377

J. Richter and C. , 1: Radiation of hot gases, in Plasma Diagnostics Lochte- Holtgreven, 1968.

X. Mao, S. B. Wen, and R. E. Russo, Time resolved laser-induced plasma dynamics, Applied Surface Science, vol.253, issue.15, pp.6316-6321, 2007.
DOI : 10.1016/j.apsusc.2007.01.053

C. Aragon and J. A. Aguilera, Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.63, issue.9, pp.893-916, 2008.
DOI : 10.1016/j.sab.2008.05.010

R. W. Mcwhirter, Spectral intensities, Plasma Diagnostic Techniques, 1965.
URL : https://hal.archives-ouvertes.fr/jpa-00227584

J. B. Simeonsson and A. W. Miziolek, Time-resolved emission studies of ArF-laser-produced microplasmas, Applied Optics, vol.32, issue.6, pp.939-947, 1993.
DOI : 10.1364/AO.32.000939

X. L. Mao, M. A. Shannon, A. J. Fernández, and R. E. Russo, Temperature and Emission Spatial Profiles of Laser-Induced Plasmas during Ablation Using Time-Integrated Emission Spectroscopy, Applied Spectroscopy, vol.48, issue.7, pp.49-1054, 1995.
DOI : 10.1063/1.458540

C. Aragón, J. Bengoechea, and J. A. Aguilera, Influence of the optical depth on spectral line emission from laser-induced plasmas, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.56, issue.6, pp.619-628, 2001.
DOI : 10.1016/S0584-8547(01)00172-0

H. R. Griem, Spectral Line Broadening by Plasmas, 1974.
DOI : 10.1109/tps.1975.4316912

A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti et al., New Procedure for Quantitative Elemental Analysis by Laser-Induced Plasma Spectroscopy, Applied Spectroscopy, vol.53, issue.8, pp.53-960, 1999.
DOI : 10.1366/0003702971941638

J. A. Aguilera and C. Aragón, Multi-element Saha???Boltzmann and Boltzmann plots in laser-induced plasmas, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.62, issue.4, pp.378-385, 2007.
DOI : 10.1016/j.sab.2007.03.024

?. Yalçin, D. R. Crosley, G. P. Smith, and G. W. Faris, Influence of ambient conditions on the laser air spark, Appl. Phys. B, vol.68, pp.121-130, 1999.

G. J. Bastiaans and R. A. Mangold, The calculation of electron density and temperature in Ar spectroscopic plasmas from continuum and line spectra, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.40, issue.7, pp.885-892, 1985.
DOI : 10.1016/0584-8547(85)80059-8

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, Excitational, vibrational, and rotational temperatures in Nd:YAG and XeCl Laser-Induced plasmas, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.52, issue.13, pp.1929-1935, 1997.
DOI : 10.1016/S0584-8547(97)00092-X

J. M. Mermet, P. Mauchien, and J. L. Lacour, Processing of shot-to-shot raw data to improve precision in laser-induced breakdown spectrometry microprobe, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.63, issue.10, pp.999-1005, 2008.
DOI : 10.1016/j.sab.2008.06.003

J. M. Mermet, Calibration in atomic spectrometry: A tutorial review dealing with quality criteria, weighting procedures and possible curvatures, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.65, issue.7, pp.509-523, 2010.
DOI : 10.1016/j.sab.2010.05.007

K. Danzer, L. A. Currie, and I. , Guideline for calibration in analytical chemistry, Pure Appl. Chem, vol.70, pp.993-1014, 1998.

J. C. Miller and J. N. Miller, Statistics and Chemometrics for Analytical Chemistry, 2005.

J. Haddad, L. Canioni, and B. Bousquet, Good practices in LIBS analysis: Review and advices, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.101, pp.171-182, 2014.
DOI : 10.1016/j.sab.2014.08.039

URL : https://hal.archives-ouvertes.fr/hal-01094344

A. Tropsha, P. Gramatica, and V. K. Gombar, The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models, QSAR & Combinatorial Science, vol.38, issue.1, pp.69-77, 2003.
DOI : 10.6028/jres.090.043

A. Golbraikh and A. Tropsha, Beware of q2!, Journal of Molecular Graphics and Modelling, vol.20, issue.4, pp.269-276, 2002.
DOI : 10.1016/S1093-3263(01)00123-1

J. M. Mermet, Limit of quantitation in atomic spectrometry: An unambiguous concept?, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.63, issue.2, pp.166-182, 2008.
DOI : 10.1016/j.sab.2007.11.029

A. Menditto, M. Patriarca, and B. Magnusson, Understanding the meaning of accuracy, trueness and precision, Accreditation and Quality Assurance, vol.18, issue.1, pp.45-47, 2007.
DOI : 10.1007/s00769-006-0191-z

G. L. Long and J. D. Winefordner, Limit of detection: a closer look at the IUPAC definition, Anal. Chem, pp.55-713, 1983.

C. and E. Guide, Guide to quality in analytical chemistry, An Aid to Accreditation, 2002.

D. W. Hahn and N. Omenetto, Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields, Applied Spectroscopy, vol.8, issue.4, pp.66-347, 2012.
DOI : 10.1016/0584-8547(95)01360-1

S. Zhang, M. He, Z. Yin, E. Zhu, W. Hang et al., Elemental fractionation and matrix effects in laser sampling based spectrometry, Journal of Analytical Atomic Spectrometry, vol.15, issue.2, pp.31-358, 2016.
DOI : 10.1021/ac2012448

P. W. Boumans, Theory of Spectrochemical Excitation, 1966.
DOI : 10.1007/978-1-4684-8428-1

L. Zheng, S. Niu, A. Q. Khan, S. Yuan, J. Yu et al., Comparative study of the matrix effect in Cl analysis with laser-induced breakdown spectroscopy in a pellet or in a dried solution layer on a metallic target, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.118, pp.66-71, 2016.
DOI : 10.1016/j.sab.2016.02.007

M. Thompson and S. L. Ellison, A review of interference effects and their correction in chemical analysis with special reference to uncertainty, Accreditation and Quality Assurance, vol.112, issue.2, pp.82-97, 2005.
DOI : 10.1007/s00769-004-0871-5

W. B. Barnett, V. A. Fassel, and R. N. Kniseley, Theoretical principles of internal standardization in analytical emission spectroscopy, Spectrochim, Acta B, vol.23, pp.643-664, 1968.

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.65, issue.8, pp.65-642, 2010.
DOI : 10.1016/j.sab.2010.04.009

E. C. Jung, D. H. Lee, J. I. Yun, J. G. Kim, J. W. Yeon et al., Quantitative determination of uranium and europium in glass matrix by laser-induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.66, issue.9-10, pp.761-764, 2011.
DOI : 10.1016/j.sab.2011.09.002

I. Choi, G. C. Chan, X. Mao, D. L. Perry, and R. E. Russo, Line Selection and Parameter Optimization for Trace Analysis of Uranium in Glass Matrices by Laser-Induced Breakdown Spectroscopy (LIBS), Applied Spectroscopy, vol.91, issue.5, pp.67-1275, 2013.
DOI : 10.1086/156461

X. Wang, V. Motto-ros, G. Panczer, D. De-ligny, J. Yu et al., Mapping of rare earth elements in nuclear waste glass-ceramic using micro-laser induced breakdown spectroscopy (LIBS), Spectrochim, Acta B, vol.87, pp.139-146, 2013.

M. S. Krzemnicki, H. A. Hänni, and R. A. Walters, A new method for detecting Be diffusiontreated sapphires: laser-induced breakdown spectroscopy (LIBS), Gems Gemology, pp.40-314, 2004.

N. J. Mcmillan, C. E. Mcmanus, R. S. Harmon, F. C. Delucia, and A. W. Miziolek, Laser-induced breakdown spectroscopy analysis of complex silicate minerals???beryl, Analytical and Bioanalytical Chemistry, vol.60, issue.2, pp.385-263, 2006.
DOI : 10.1007/s00216-006-0374-9

G. Agrosì, G. Tempesta, E. Scandale, S. Legnaioli, G. Lorenzetti et al., Application of laser induced breakdown spectroscopy to the identification of emeralds from different synthetic processes, Spectrochim, Acta B, vol.102, pp.48-51, 2014.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli et al., Three-dimensional analysis of laser induced plasmas in single and double pulse configuration, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.59, issue.5, pp.723-735, 2004.
DOI : 10.1016/j.sab.2004.02.001

J. A. Aguilera and C. Aragon, Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions., Spectrochimica Acta Part B: Atomic Spectroscopy, vol.59, issue.12, pp.1861-1876, 2004.
DOI : 10.1016/j.sab.2004.08.003

A. De-giacomo, M. Dell-'aglio, R. Gaudiuso, G. Cristoforetti, S. Legnaioli et al., Spatial distribution of hydrogen and other emitters in aluminum laser-induced plasma in air and consequences on spatially integrated Laser-Induced Breakdown Spectroscopy measurements, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.63, issue.9, pp.980-987, 2008.
DOI : 10.1016/j.sab.2008.06.010

G. Cristoforetti, G. Lorenzetti, S. Legnaioli, and V. Palleschi, Investigation on the role of air in the dynamical evolution and thermodynamic state of a laser-induced aluminium plasma by spatial- and time-resolved spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.65, issue.9-10, pp.787-796, 2010.
DOI : 10.1016/j.sab.2010.07.002

C. Barnett, E. Cahoon, and J. R. , Wavelength dependence on the elemental analysis of glass by laser induced breakdown spectroscopy, Spectrochim, Acta B, vol.63, pp.1016-1023, 2008.

E. M. Cahoon and J. R. , Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy, Applied Optics, vol.49, issue.13, pp.49-49, 2010.
DOI : 10.1364/AO.49.000C49

V. Burakov, N. Tarasenko, M. Nedelko, and S. Isakov, Time-resolved spectroscopy and imaging diagnostics of single pulse and collinear double pulse laser induced plasma from a glass sample, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.63, issue.1, pp.63-82, 2008.
DOI : 10.1016/j.sab.2007.10.050

M. Milan and J. J. Laserna, Diagnostics of silicon plasmas produced by visible nanosecond laser ablation, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.56, issue.3, pp.275-288, 2001.
DOI : 10.1016/S0584-8547(01)00158-6

C. Gerhard, J. Hermann, L. Mercadier, L. Loewenthal, E. Axente et al., Quantitative analyses of glass via laser-induced breakdown spectroscopy in argon, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.101, pp.32-45, 2014.
DOI : 10.1016/j.sab.2014.07.014

URL : https://hal.archives-ouvertes.fr/hal-01418546

V. Motto-ros, Q. Ma, S. Grégoire, W. Lei, X. Wang et al., Dual-wavelength differential spectroscopic imaging for diagnostics of laser-induced plasma, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.74, issue.75, pp.74-75, 2012.
DOI : 10.1016/j.sab.2012.07.007

A. Sainz, A. Diaz, D. Casas, M. Pineda, F. Cubillo et al., Abel Inversion Applied to a Small Set of Emission Data from a Microwave Plasma, Applied Spectroscopy, vol.51, issue.3, pp.60-229, 2006.
DOI : 10.1017/S0022377802001988

J. A. Aguilera, C. Aragon, and J. Bengoechea, Spatial characterization of laser-induced plasmas by deconvolution of spatially resolved spectra, Applied Optics, vol.42, issue.30, pp.5938-5946, 2003.
DOI : 10.1364/AO.42.005938

O. H. Nestor and H. N. Olsen, Numerical Methods for Reducing Line and Surface Probe Data, SIAM Review, vol.2, issue.3, pp.200-207, 1960.
DOI : 10.1137/1002042

S. S. Harilal, C. V. Bindhu, V. P. Nampoori, and C. P. Vallabhan, Influence of ambient gas on the temperature and density of laser produced carbon plasma, Applied Physics Letters, vol.72, issue.2, pp.72-167, 1998.
DOI : 10.1088/0032-1028/16/3/002

A. S. Eppler, D. A. Cremers, D. D. Hickmott, M. J. Ferris, and A. C. Koskelo, Matrix Effects in the Detection of Pb and Ba in Soils Using Laser-Induced Breakdown Spectroscopy, Applied Spectroscopy, vol.1, issue.9, pp.50-1175, 1996.
DOI : 10.1366/000370273774333777

B. Bousquet, J. B. Sirven, and L. Canioni, Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.62, issue.12, pp.1582-1589, 2007.
DOI : 10.1016/j.sab.2007.10.018

URL : https://hal.archives-ouvertes.fr/hal-01552896

A. Segnini, A. A. Xavier, P. L. Otaviani-junior, E. C. Ferreira, A. M. Watanabe et al., Physical and Chemical Matrix Effects in Soil Carbon Quantification Using Laser-Induced Breakdown Spectroscopy, American Journal of Analytical Chemistry, vol.05, issue.11, pp.722-729, 2014.
DOI : 10.4236/ajac.2014.511080

A. Stankova, N. Gilon, L. Dutruch, and V. Kanicky, A simple LIBS method for fast quantitative analysis of fly ashes, Fuel, vol.89, issue.11, pp.3468-3474, 2010.
DOI : 10.1016/j.fuel.2010.06.018

D. , S. Jr, L. C. Nunes, G. G. De-carvalho, M. D. Gomes et al., Laser-induced breakdown spectroscopy for analysis of plant materials: A review, Spectrochim, pp.71-72, 2012.

G. G. De-carvalho, D. S. Jr, M. S. Gomes, L. C. Nunes, M. B. Guerra et al., Influence of particle size distribution on the analysis of pellets of plant materials by laser-induced breakdown spectroscopy, Spectrochim, Acta B, vol.105, pp.130-135, 2015.

A. Khumaeni, M. Ramli, Y. Deguchi, Y. I. Lee, N. Idris et al., Laser-Induced Gas Plasma, Applied Spectroscopy, vol.62, issue.12, pp.62-1344, 2008.
DOI : 10.1016/j.cap.2006.11.035

A. Khumaeni, Z. S. Lie, H. Niki, K. H. Kurniawan, E. Tjoeng et al., Direct analysis of powder samples using transversely excited atmospheric CO2 laser-induced gas plasma at 1 atm, Analytical and Bioanalytical Chemistry, vol.65, issue.10, pp.400-3279, 2011.
DOI : 10.1366/10-06035

W. Lei, J. Haddad, V. Motto-ros, N. Gilon-delepine, A. Stankova et al., Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy, Analytical and Bioanalytical Chemistry, vol.94, issue.10, pp.400-3303, 2011.
DOI : 10.1007/s00340-008-3343-5

URL : https://hal.archives-ouvertes.fr/hal-00981685

J. B. Sirven, A. Pailloux, Y. M-'baye, N. Coulon, T. Alpettaz et al., Towards the determination of the geographical origin of yellow cake samples by laser-induced breakdown spectroscopy and chemometrics, Journal of Analytical Atomic Spectrometry, vol.57, issue.4, pp.24-451, 2009.
DOI : 10.1039/b821405k

E. J. Judge, J. E. Barefield, I. , J. M. Berg, S. M. Clegg et al., Laser-induced breakdown spectroscopy measurements of uranium and thorium powders and uranium ore, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.83, issue.84, pp.28-36, 2013.
DOI : 10.1016/j.sab.2013.03.002

X. Li, Z. Wang, Y. Fu, Z. Li, J. Liu et al., Application of a Spectrum Standardization Method for Carbon Analysis in Coal Using Laser-Induced Breakdown Spectroscopy (LIBS), Applied Spectroscopy, vol.68, issue.9, pp.68-955, 2014.
DOI : 10.1021/ac303524d

S. Yao, J. Xu, X. Dong, B. Zhang, J. Zheng et al., Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters, Spectrochim, Acta B, pp.110-146, 2015.

M. A. Gondal, M. A. Dastageer, A. A. Naqvi, A. A. Isab, and Y. W. Maganda, Detection of toxic metals (lead and chromium) in talcum powder using laser induced breakdown spectroscopy, Applied Optics, vol.51, issue.30, pp.51-7395, 2012.
DOI : 10.1364/AO.51.007395

L. St-onge, E. Kwong, M. Sabsabia, and E. B. Vadasb, Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.57, issue.7, pp.1131-1140, 2002.
DOI : 10.1016/S0584-8547(02)00062-9

H. Zheng, F. Y. Yueh, T. Miller, J. P. Singh, K. E. Zeigler et al., Analysis of plutonium oxide surrogate residue using laser-induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.63, issue.9, pp.968-974, 2008.
DOI : 10.1016/j.sab.2008.06.005

B. Lal, H. Zheng, F. Y. Yueh, and J. P. Singh, Parametric study of pellets for elemental analysis with laser-induced breakdown spectroscopy, Applied Optics, vol.43, issue.13, pp.43-2792, 2004.
DOI : 10.1364/AO.43.002792

M. A. Gondal, T. Hussain, Z. H. Yamini, and M. A. Baig, The role of various binding materials for trace elemental analysis of powder samples using laser-induced breakdown spectroscopy, Talanta, vol.72, issue.2, pp.642-649, 2007.
DOI : 10.1016/j.talanta.2006.11.039

N. Gilon, J. El-haddad, A. Stankova, W. Lei, Q. Ma et al., A matrix effect and accuracy evaluation for the determination of elements in milk powder LIBS and laser ablation/ICP-OES spectrometry, Analytical and Bioanalytical Chemistry, vol.18, issue.9, pp.401-2681, 2011.
DOI : 10.2116/analsci.18.1105

URL : https://hal.archives-ouvertes.fr/hal-00879938

S. I. Gornushkin, I. B. Gornushkin, J. M. Anzano, B. W. Smith, and J. D. Winefordner, Effective Normalization Technique for Correction of Matrix Effects in Laser-Induced Breakdown Spectroscopy Detection of Magnesium in Powdered Samples, Applied Spectroscopy, vol.56, issue.4, pp.56-433, 2002.
DOI : 10.1016/0584-8547(92)80056-M

J. N. Miller and J. C. Miller, Statistics and chemometrics for analytical chemistry, Pearson Education, 2005.

H. Hopfer, J. Nelson, T. S. Collins, H. Heymann, and S. E. Ebeler, The combined impact of vineyard origin and processing winery on the elemental profile of red wines, Food Chemistry, vol.172, pp.486-496, 2015.
DOI : 10.1016/j.foodchem.2014.09.113

V. S. ?elih, M. ?ala, and V. Drgan, Multi-element analysis of wines by ICP-MS and ICP-OES and their classification according to geographical origin in Slovenia, Food Chemistry, vol.153, pp.414-423, 2014.
DOI : 10.1016/j.foodchem.2013.12.081

P. P. Coetzee, F. P. Van-jaarsveld, and F. Vanhaecke, Intraregional classification of wine via ICP-MS elemental fingerprinting, Food Chemistry, vol.164, pp.485-492, 2014.
DOI : 10.1016/j.foodchem.2014.05.027

S. Frías, J. E. Conde, J. J. Rodríguez-bencomo, F. García-montelongo, and J. P. Pérez-trujillo, Classification of commercial wines from the Canary Islands (Spain) by chemometric techniques using metallic contents, Talanta, vol.59, issue.2, pp.335-344, 2003.
DOI : 10.1016/S0039-9140(02)00524-6

P. Kment, M. Mihaljevi?, V. Ettler, O. ?ebek, L. Strnad et al., Differentiation of Czech wines using multielement composition ??? A comparison with vineyard soil, Food Chemistry, vol.91, issue.1, pp.91-157, 2005.
DOI : 10.1016/j.foodchem.2004.06.010

A. Jos, I. Moreno, A. G. González, G. Repetto, and A. M. Cameán, Differentiation of sparkling wines (cava and champagne) according to their mineral content, Talanta, vol.63, issue.2, pp.377-382, 2004.
DOI : 10.1016/j.talanta.2003.11.015

M. P. Fabani, R. C. Arrúa, F. Vázquez, M. P. Diaz, M. V. Baroni et al., Evaluation of elemental profile coupled to chemometrics to assess the geographical origin of Argentinean wines, Food Chemistry, vol.119, issue.1, pp.372-379, 2010.
DOI : 10.1016/j.foodchem.2009.05.085

A. Gonzálvez, A. Llorens, M. L. Cervera, S. Armenta, M. De et al., Elemental fingerprint of wines from the protected designation of origin Valencia, Food Chemistry, vol.112, issue.1, pp.26-34, 2009.
DOI : 10.1016/j.foodchem.2008.05.043

P. P. Coetzee, F. E. Steffens, R. J. Eiselen, O. P. Augustyn, L. Balcaen et al., Multi-element Analysis of South African Wines by ICP???MS and Their Classification According to Geographical Origin, Journal of Agricultural and Food Chemistry, vol.53, issue.13, pp.5060-5066, 2005.
DOI : 10.1021/jf048268n

P. Serapinas, P. R. Venskutonis, V. Aninkevi?ius, ?. E?erinskis, A. Galdikas et al., Step by step approach to multi-element data analysis in testing the provenance of wines, Food Chemistry, vol.107, issue.4, pp.1652-1660, 2008.
DOI : 10.1016/j.foodchem.2007.09.003

I. Geana, A. Iordache, R. Ionete, A. Marinescu, A. Ranca et al., Geographical origin identification of Romanian wines by ICP-MS elemental analysis, Food Chemistry, vol.138, issue.2-3, pp.1125-1134, 2013.
DOI : 10.1016/j.foodchem.2012.11.104

I. M. Moreno, D. González-weller, V. Gutierrez, M. Marino, A. M. Cameán et al., Determination of Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Sr and Zn in red wine samples by inductively coupled plasma optical emission spectroscopy: Evaluation of preliminary sample treatments, Microchemical Journal, vol.88, issue.1, pp.56-61, 2008.
DOI : 10.1016/j.microc.2007.09.005

W. N. Santos, G. C. Brandao, L. A. Portugal, J. M. David, and S. L. Ferreira, A photo-oxidation procedure using UV radiation/H2O2 for decomposition of wine samples ??? Determination of iron and manganese content by flame atomic absorption spectrometry, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.64, issue.6, pp.601-604, 2009.
DOI : 10.1016/j.sab.2009.04.012

J. B. Sirven, B. Salle, P. Mauchien, J. L. Lacour, S. Maurice et al., Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods, Journal of Analytical Atomic Spectrometry, vol.112, issue.12, pp.22-1471, 2007.
DOI : 10.1093/petrology/36.5.1251

Y. Tian, Z. Wang, X. Han, H. Hou, and R. Zheng, Comparative investigation of partial least squares discriminant analysis and support vector machines for geological cuttings identification using laser-induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.102, pp.52-57, 2014.
DOI : 10.1016/j.sab.2014.10.014

R. Sattmann, I. Mönch, H. Krause, R. Noll, S. Couris et al., Laser-Induced Breakdown Spectroscopy for Polymer Identification, Applied Spectroscopy, vol.84, issue.3, pp.52-456, 1998.
DOI : 10.1007/978-94-009-5758-9

M. Boueri, V. Motto-ros, W. Lei, Q. Ma, L. Zheng et al., Identification of polymer materials using laser-induced breakdown spectroscopy combined with artificial neural networks, Appl. Spectrosc, pp.65-307, 2011.

F. C. De-lucia-jr and J. L. Gottfried, Influence of variable selection on partial least squares discriminant analysis models for explosive residue classification, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.66, issue.2, pp.122-128, 2011.
DOI : 10.1016/j.sab.2010.12.007

J. L. Gottfried, F. C. De-lucia-jr, and A. W. Miziolek, Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy, Journal of Analytical Atomic Spectrometry, vol.62, issue.3, pp.24-288, 2009.
DOI : 10.1039/b818481j

P. Lucena, A. Doña1, L. M. Tobaria, and J. J. Laserna, New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.66, issue.1, pp.12-20, 2011.
DOI : 10.1016/j.sab.2010.11.012

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J. P. Wolf et al., Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy, Applied Physics Letters, vol.89, issue.16, pp.89-163903, 2006.
DOI : 10.1016/j.sab.2005.03.017

URL : https://hal.archives-ouvertes.fr/ineris-00963029

F. Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.64, issue.10, pp.1059-1067, 2009.
DOI : 10.1016/j.sab.2009.07.025

A. De-giacomo, M. Dell-'aglio, O. De-pascale, and M. Capitelli, From single pulse to double pulse ns-Laser Induced Breakdown Spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.62, issue.8, pp.721-738, 2007.
DOI : 10.1016/j.sab.2007.06.008

P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy, Analytica Chimica Acta, vol.429, issue.2, pp.269-278, 2001.
DOI : 10.1016/S0003-2670(00)01277-0

P. Yaroshchyk, R. J. Morrison, D. Body, and B. L. Chadwick, Quantitative determination of wear metals in engine oils using LIBS: The use of paper substrates and a comparison between single- and double-pulse LIBS, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.60, issue.11, pp.1482-1485, 2005.
DOI : 10.1016/j.sab.2005.09.002

J. Bocková, Y. Tian, H. Yin, N. Gilon, Q. Ma et al., Determination of Metal Elements in Wine Using Laser-Induced Breakdown Spectroscopy (LIBS), Applied Spectroscopy, vol.71, issue.8, pp.71-1750, 2017.
DOI : 10.1016/j.sab.2010.04.009

M. A. Aguirre, S. Legnaioli, F. Almodóvar, M. Hidalgo, V. Palleschi et al., Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid???liquid microextraction, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.79, issue.80, pp.79-80, 2013.
DOI : 10.1016/j.sab.2012.11.011

V. Lazic, A. Palucci, S. Jovicevic, and M. Carpanese, Detection of explosives in traces by laser induced breakdown spectroscopy: Differences from organic interferents and conditions for a correct classification, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.66, issue.8, pp.644-655, 2011.
DOI : 10.1016/j.sab.2011.07.003

Z. Abdel-salam, J. Sharnoubi, and M. A. Harith, Qualitative evaluation of maternal milk and commercial infant formulas via LIBS, Talanta, vol.115, pp.422-426, 2013.
DOI : 10.1016/j.talanta.2013.06.003

A. Metzinger, ?. Kovács-széles, I. Almási, and G. Galbács, An Assessment of the Potential of Laser-Induced Breakdown Spectroscopy (LIBS) for the Analysis of Cesium in Liquid Samples of Biological Origin, Applied Spectroscopy, vol.72, issue.9, pp.68-789, 2014.
DOI : 10.1016/S0003-2670(01)95205-5

M. A. Aguirre, E. J. Selva, M. Hidalgo, and A. Canals, Dispersive liquid???liquid microextraction for metals enrichment: A useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis, Talanta, vol.131, pp.348-353, 2015.
DOI : 10.1016/j.talanta.2014.07.090

S. Moncayo, J. D. Rosales, R. Izquierdo-hornillos, J. Anzano, and J. O. Caceres, Classification of red wine based on its protected designation of origin (PDO) using Laser-induced Breakdown Spectroscopy (LIBS), Talanta, vol.158, pp.185-191, 2016.
DOI : 10.1016/j.talanta.2016.05.059

M. G. Volpe, F. L. Cara, F. Volpe, A. De-mattia, V. Serino et al., Heavy metal uptake in the enological food chain, Food Chemistry, vol.117, issue.3, pp.553-560, 2009.
DOI : 10.1016/j.foodchem.2009.04.033

M. J. Anjos, R. T. Lopes, E. F. De-jesus, S. Moreira, R. C. Barroso et al., Trace elements determination in red and white wines using total-reflection X-ray fluorescence, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.58, issue.12, pp.2227-2232, 2003.
DOI : 10.1016/j.sab.2003.07.004

A. I. Kuznetsova and T. E. Morgulis, Investigation of internal standardisation for atomic emission spectrometric analysis with direct current arc excitation, Journal of Analytical Atomic Spectrometry, vol.3, issue.7, pp.973-977, 1988.
DOI : 10.1039/ja9880300973

L. Breiman, Random forests, Machine Learning, vol.45, issue.1, pp.5-32, 2001.
DOI : 10.1023/A:1010933404324

L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and regression tree, 1984.

L. Zheng, D. G. Watson, B. F. Johnston, R. L. Clark, R. Edrada-ebel et al., A chemometric study of chromatograms of tea extracts by correlation optimization warping in conjunction with PCA, support vector machines and random forest data modeling, Analytica Chimica Acta, vol.642, issue.1-2, pp.257-265, 2009.
DOI : 10.1016/j.aca.2008.12.015

J. Remus and K. S. Dunsin, Robust validation of pattern classification methods for laser-induced breakdown spectroscopy, Applied Optics, vol.51, issue.7, pp.49-56, 2012.
DOI : 10.1364/AO.51.000B49

L. Sheng, T. Zhang, G. Niu, K. Wang, H. Tang et al., Classification of iron ores by laser-induced breakdown spectroscopy (LIBS) combined with random forest (RF), Journal of Analytical Atomic Spectrometry, vol.53, issue.2, pp.30-453, 2015.
DOI : 10.1364/AO.53.000544

H. Tang, T. Zhang, X. Yang, and H. Li, Classification of different types of slag samples by laser-induced breakdown spectroscopy (LIBS) coupled with random forest based on variable importance (VIRF), Analytical Methods, vol.3, issue.21, pp.7-9171, 2015.
DOI : 10.1039/c3ra44946g

T. Zhang, L. Liang, K. Wang, H. Tang, X. Yang et al., A novel approach for the quantitative analysis of multiple elements in steel based on laser-induced breakdown spectroscopy (LIBS) and random forest regression (RFR), J. Anal. At. Spectrom., vol.2, issue.75, pp.29-2323, 2014.
DOI : 10.1364/AO.51.000B49

S. Adusumilli, D. Bhatt, H. Wang, P. Bhattacharya, and V. Devabhaktuni, A low-cost INS/GPS integration methodology based on random forest regression, Expert Systems with Applications, vol.40, issue.11, pp.40-4653, 2013.
DOI : 10.1016/j.eswa.2013.02.002

A. Liaw and M. Wiener, Classification and regression by randomForest, pp.18-22, 2002.

Y. Freund and R. E. Schapire, A desicion-theoretic generalization of on-line learning and an application to boosting, Lect. Notes Comput. Sci, vol.904, pp.23-37, 1995.
DOI : 10.1007/3-540-59119-2_166

Y. Tian, E. B. Sokolova, R. Zheng, Q. Ma, Y. Chen et al., Characteristics of the ablation plume induced on glasses for analysis purposes with laser-induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.114, pp.7-14, 2015.
DOI : 10.1016/j.sab.2015.09.024

Y. Tian, H. Cheung, R. Zheng, Q. Ma, Y. Chen et al., Elemental analysis of powders with surface-assisted thin film laser-induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.124, pp.16-24, 2016.
DOI : 10.1016/j.sab.2016.08.016

URL : https://hal.archives-ouvertes.fr/hal-01569760

Y. Tian, C. Yan, T. Zhang, H. Tang, H. Li et al., Classification of wines according to their production regions with the contained trace elements using laser-induced breakdown spectroscopy, Spectrochim, Acta B, vol.135, pp.91-101, 2017.

H. Hou, Y. Tian, Y. Li, and R. Zheng, Study of pressure effects on laser induced plasma in bulk seawater, J. Anal. At. Spectrom., vol.64, issue.75, pp.29-169, 2014.
DOI : 10.1016/j.sab.2009.07.015

B. Thornton, T. Takahashi, T. Sato, T. Sakka, A. Tamura et al., Development of a deep-sea laser-induced breakdown spectrometer for in situ multi-element chemical analysis, Deep Sea Research Part I: Oceanographic Research Papers, vol.95, pp.95-115, 2015.
DOI : 10.1016/j.dsr.2014.10.006

Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker et al., Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.59, issue.7, pp.987-999, 2004.
DOI : 10.1016/j.sab.2004.05.004

D. A. Cremers, Space Applications of LIBS, Laser-Induced Breakdown Spectroscopy, pp.257-291, 2014.
DOI : 10.1007/978-3-642-45085-3_10