J. Aach, M. George, and . Church, Aligning gene expression time series with time warping algorithms, Bioinformatics, vol.17, issue.6, pp.495-508, 2001.
DOI : 10.1093/bioinformatics/17.6.495

URL : https://academic.oup.com/bioinformatics/article-pdf/17/6/495/760358/170495.pdf

S. Mohammed, . Ahmed, R. Allen, and . Cook, Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Number 722, 1979.

C. Alexander, . Aitken, J. Iv-muhammad-tayyab-asif, C. Y. Dauwels, A. Goh et al., Spatiotemporal patterns in large-scale traffic speed prediction. Intelligent Transportation Systems Low-dimensional models for missing data imputation in road networks, Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pp.42-48794, 1936.

A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances, Data Mining and Knowledge Discovery, vol.10, issue.1???2, pp.1-55, 2016.
DOI : 10.1038/nmeth.2560

A. Bagnall, J. Lines, J. Hills, and A. Bostrom, Time-Series Classification with COTE: The Collective of Transformation-Based Ensembles, IEEE Transactions on Knowledge and Data Engineering, vol.27, issue.9, pp.2522-2535, 2015.
DOI : 10.1109/TKDE.2015.2416723

Q. R. Mohammad-taha-bahadori, Y. Yu, and . Liu, Fast multivariate spatiotemporal analysis via low rank tensor learning, Advances in neural information processing systems, pp.3491-3499, 2014.

B. Yu, X. Kun, X. , and Y. , Forecasting method of parkingdemand based on capacity-of-network [j], Journal of Traffic and Transportation Engineering, vol.4, issue.4, pp.49-52, 2004.

M. Bá-nbura and M. Modugno, MAXIMUM LIKELIHOOD ESTIMATION OF FACTOR MODELS ON DATASETS WITH ARBITRARY PATTERN OF MISSING DATA, Journal of Applied Econometrics, vol.23, issue.3, pp.133-160, 2014.
DOI : 10.1016/0304-4076(83)90066-0

E. Gustavo, M. C. Batista, and . Monard, An analysis of four missing data treatment methods for supervised learning, Applied Artificial Intelligence, vol.17, pp.5-6519, 2003.

G. Mustafa-gokce-baydogan, E. Runger, and . Tuv, A Bag-of-Features Framework to Classify Time Series, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.11, pp.2796-2802, 2013.
DOI : 10.1109/TPAMI.2013.72

S. Ben, T. , and R. Hyndman, Boosting multi-step autoregressive forecasts, Proceedings of The 31st International Conference on Machine Learning, pp.109-117, 2014.

S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, Scheduled sampling for sequence prediction with recurrent neural networks, Advances in Neural Information Processing Systems, pp.1171-1179, 2015.

Y. Bengio, Neural net language models, Scholarpedia, vol.3, issue.1, p.3881, 2008.
DOI : 10.4249/scholarpedia.3881

URL : http://doi.org/10.4249/scholarpedia.3881

J. Donald, J. Berndt, and . Clifford, Using dynamic time warping to find patterns in time series, KDD workshop, pp.359-370, 1994.

S. Bourigault, C. Lagnier, S. Lamprier, L. Denoyer, and P. Gallinari, Learning social network embeddings for predicting information diffusion, Proceedings of the 7th ACM international conference on Web search and data mining, WSDM '14, 2014.
DOI : 10.1145/2556195.2556216

URL : https://hal.archives-ouvertes.fr/hal-01211783

E. George, . Box, M. Gwilym, . Jenkins, C. Gregory et al., Time series analysis : forecasting and control, 2015.

J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. Lecun et al., Signature verification using a "siamese" time delay neural network, IJPRAI, vol.7, issue.4, pp.669-688, 1993.

F. Caicedo, C. Blazquez, and P. Miranda, Prediction of parking space availability in real time, Expert Systems with Applications, vol.39, issue.8, pp.7281-7290, 2012.
DOI : 10.1016/j.eswa.2012.01.091

K. Chakraborty, K. Mehrotra, K. Chilukuri, S. Mohan, and . Ranka, Forecasting the behavior of multivariate time series using neural networks Neural es maladresses ou des imprudences. Le vol de données personnelles, l'usurpation d'identité, les intrusions et les piratages sont de plus en plus cités dans l'actualité.Pour évitenetworks, 1992.

C. Chatfield, Time-series forecasting, 2000.

H. Chen, F. Tang, P. Tino, X. Chen, B. Hu et al., Model-based kernel for efficient time series analysis Dtw-d : time series semi-supervised learning from a single example, Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.392-400, 2013.

Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall et al., The ucr time series classification archive, 2015.

Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall et al., The ucr time series classification archive, 2015.

K. Cho, B. Van-merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares et al., Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint, 2014.
DOI : 10.3115/v1/d14-1179

URL : https://hal.archives-ouvertes.fr/hal-01433235

S. Chopra, R. Hadsell, and Y. Lecun, Learning a Similarity Metric Discriminatively, with Application to Face Verification, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.539-546, 2005.
DOI : 10.1109/CVPR.2005.202

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, Empirical evaluation of gated recurrent neural networks on sequence modeling, 2014.

J. Chung, K. Kastner, L. Dinh, K. Goel, C. Aaron et al., A recurrent latent variable model for sequential data, Advances in neural information processing systems, pp.2962-2970, 2015.

T. Jerome, D. Connor, . Martin, E. Les, and . Atlas, Recurrent neural networks and robust time series prediction, Neural Networks IEEE Transactions on, vol.5, issue.2, pp.240-254, 1994.

G. Contardo, L. Denoyer, T. Artieres, and P. Gallinari, Learning states representations in pomdp. arXiv preprint arXiv :1312, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01222594

A. C. Noel, C. K. Cressie, and . Wikle, Statistics for spatio-temporal data. Wiley series in probability and statistics, 2011.

Z. Cui, W. Chen, and Y. Chen, Multi-scale convolutional neural networks for time series classification. arXiv preprint, 2016.

V. Jason, B. Davis, P. Kulis, S. Jain, . Sra et al., Information-theoretic metric learning, Proceedings of the 24th international conference on Machine learning, pp.209-216, 2007.

R. Corrado-de-fabritiis, G. Ragona, and . Valenti, Traffic Estimation And Prediction Based On Real Time Floating Car Data, 2008 11th International IEEE Conference on Intelligent Transportation Systems, pp.197-203, 2008.
DOI : 10.1109/ITSC.2008.4732534

J. G. , D. Gooijer, and R. J. Hyndman, 25 years of time series forecasting, International journal of forecasting, vol.22, issue.3, pp.443-473, 2006.

G. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio et al., Optimizing spatio-temporal filters for improving brain-computer interfacing, 2005.
DOI : 10.1109/tbme.2006.883649

B. Ludovic-dos-santos, P. Piwowarski, and . Gallinari, Multilabel classification on heterogeneous graphs with gaussian embeddings, ECML- KDD, 2016.

S. Mark, . Dougherty, R. Mark, and . Cobbett, Short-term inter-urban traffic forecasts using neural networks, International journal of forecasting, vol.13, issue.1, pp.21-31, 1997.

T. Durand, N. Thome, and M. Cord, WELDON: Weakly Supervised Learning of Deep Convolutional Neural Networks, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
DOI : 10.1109/CVPR.2016.513

URL : https://hal.archives-ouvertes.fr/hal-01343785

D. Erhan, Y. Bengio, A. Courville, P. Manzagol, P. Vincent et al., Why does unsupervised pre-training help deep learning, Journal of Machine Learning Research, vol.11, issue.Feb, pp.625-660, 2010.

G. Ganeshapillai, J. Guttag, and A. Lo, Learning connections in financial time series, Proceedings of the 30th International Conference on Machine Learning (ICML-13), pp.109-117, 2013.

J. Gao, S. Giri, . Emre-can, M. Kara, and . Bergés, PLAID: a public dataset of high-resoultion electrical appliance measurements for load identification research, Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, BuildSys '14, pp.198-199, 2014.
DOI : 10.1145/2674061.2675032

A. Graves, A. Mohamed, and G. Hinton, Speech recognition with deep recurrent neural networks, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013.
DOI : 10.1109/ICASSP.2013.6638947

URL : http://learning.cs.toronto.edu/~hinton/absps/RNN13.pdf

D. Gunopulos and G. Das, Time series similarity measures and time series indexing, Proceedings of the 2001 ACM SIGMOD international conference on Management of data , SIGMOD '01, p.624, 2001.
DOI : 10.1145/375663.375808

V. Guralnik and J. Srivastava, Event detection from time series data, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '99, pp.33-42, 1999.
DOI : 10.1145/312129.312190

R. Hadsell, S. Chopra, and Y. Lecun, Dimensionality Reduction by Learning an Invariant Mapping, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2 (CVPR'06), pp.1735-1742, 2006.
DOI : 10.1109/CVPR.2006.100

URL : http://www.cs.nyu.edu/~raia/docs/cvpr06.pdf

N. Hammami and M. Sellam, Tree distribution classifier for automatic spoken Arabic digit recognition, 2009 International Conference for Internet Technology and Secured Transactions, (ICITST), pp.1-4, 2009.
DOI : 10.1109/ICITST.2009.5402575

J. Himberg, K. Korpiaho, H. Mannila, J. Tikanmaki, T. Hannu et al., Time series segmentation for context recognition in mobile devices, Proceedings 2001 IEEE International Conference on Data Mining, pp.203-210, 2001.
DOI : 10.1109/ICDM.2001.989520

S. Hochreiter and J. Schmidhuber, Long Short-Term Memory, Neural Computation, vol.4, issue.8, pp.1735-1780, 1997.
DOI : 10.1016/0893-6080(88)90007-X

J. Honaker and G. King, What to Do about Missing Values in Time-Series Cross-Section Data, American Journal of Political Science, vol.80, issue.389, pp.561-581, 2010.
DOI : 10.1201/9781439821862

B. Hu, Y. Chen, and E. Keogh, Time Series Classification under More Realistic Assumptions, Proceedings of the 2013 SIAM International Conference on Data Mining, pp.578-586, 2013.
DOI : 10.1137/1.9781611972832.64

URL : http://www.cs.ucr.edu/%7Eeamonn/SDM_RealisticTSClassifcation_cameraReady.pdf

J. Hu, J. Lu, and Y. Tan, Discriminative Deep Metric Learning for Face Verification in the Wild, 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.1875-1882, 2014.
DOI : 10.1109/CVPR.2014.242

F. Islam, M. Shahbaz, U. Ashraf, and . Ahmed, Financial development and energy consumption nexus in Malaysia: A multivariate time series analysis, Economic Modelling, vol.30, pp.435-441, 2013.
DOI : 10.1016/j.econmod.2012.09.033

Y. Jacob, L. Denoyer, and P. Gallinari, Classification and annotation in social corpora using multiple relations, Proceedings of the 20th ACM international conference on Information and knowledge management, CIKM '11, pp.1215-1220, 2011.
DOI : 10.1145/2063576.2063752

URL : https://hal.archives-ouvertes.fr/hal-01286078

S. Jacobgoldberger and R. Geoffhinton, Neighbourhood components analysis, 2004.

G. Jagadeesh, X. Srikanthan, and . Zhang, A Map Matching Method for GPS Based Real-Time Vehicle Location, Journal of Navigation, vol.57, issue.3, pp.429-440, 2004.
DOI : 10.1017/S0373463304002905

Y. Jeong, K. Myong, . Jeong, A. Olufemi, and . Omitaomu, Weighted dynamic time warping for time series classification, Pattern Recognition, vol.44, issue.9, pp.2231-2240, 2011.
DOI : 10.1016/j.patcog.2010.09.022

Y. Kamarianakis and P. Prastacos, Forecasting Traffic Flow Conditions in an Urban Network: Comparison of Multivariate and Univariate Approaches, Transportation Research Record: Journal of the Transportation Research Board, vol.1857, issue.1, p.1857, 2003.
DOI : 10.3141/1857-09

A. Kazem, E. Sharifi, F. Khadeer-hussain, M. Saberi, and O. K. Hussain, Support vector regression with chaos-based firefly algorithm for stock market price forecasting, Applied Soft Computing, vol.13, issue.2, pp.947-958, 2013.
DOI : 10.1016/j.asoc.2012.09.024

E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, Locally adaptive dimensionality reduction for indexing large time series databases, ACM SIGMOD Record, vol.30, issue.2, pp.151-162, 2001.
DOI : 10.1145/376284.375680

URL : http://www.ics.uci.edu/~pazzani/Publications/tods.pdf

E. Keogh, S. Chu, D. Hart, and M. Pazzani, An online algorithm for segmenting time series, Proceedings 2001 IEEE International Conference on Data Mining, pp.289-296, 2001.
DOI : 10.1109/ICDM.2001.989531

URL : http://www.ics.uci.edu/~selina/icdm-01.ps

D. Kingma and J. Ba, Adam : A method for stochastic optimization

G. Koch, Siamese neural networks for one-shot image recognition, 2015.

H. Koppula and A. Saxena, Learning spatio-temporal structure from rgb-d videos for human activity detection and anticipation, Proceedings of ICML, 2013.

T. Kuremoto, S. Kimura, K. Kobayashi, and M. Obayashi, Time series forecasting using a deep belief network with restricted Boltzmann machines, Neurocomputing, vol.137, pp.47-56, 2014.
DOI : 10.1016/j.neucom.2013.03.047

G. Christopher, . Lamoureux, D. William, and . Lastrapes, Persistence in variance, structural change, and the garch model, Journal of Business & Economic Statistics, vol.8, issue.2, pp.225-234, 1990.

M. Längkvist, L. Karlsson, and A. Loutfi, A review of unsupervised feature learning and deep learning for time-series modeling, Pattern Recognition Letters, vol.42, pp.11-24, 2014.
DOI : 10.1016/j.patrec.2014.01.008

M. T. Law, N. Thome, and M. Cord, Quadruplet-Wise Image Similarity Learning, 2013 IEEE International Conference on Computer Vision, 2013.
DOI : 10.1109/ICCV.2013.38

URL : https://hal.archives-ouvertes.fr/hal-01094069

M. T. Law, N. Thome, and M. Cord, Fantope Regularization in Metric Learning, 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014.
DOI : 10.1109/CVPR.2014.138

URL : https://hal.archives-ouvertes.fr/hal-01094074

M. T. Law, Y. Yu, M. Cord, and E. P. Xing, Closed-Form Training of Mahalanobis Distance for Supervised Clustering, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
DOI : 10.1109/CVPR.2016.424

Y. Lecun and Y. Bengio, Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, p.3361, 1995.

Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, Gated graph sequence neural networks, 2015.

T. Warren and L. , Clustering of time series data???a survey, Pattern Recognition, vol.38, issue.11, pp.1857-1874, 2005.
DOI : 10.1016/j.patcog.2005.01.025

Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Wang, Traffic Flow Prediction With Big Data: A Deep Learning Approach, IEEE Transactions on Intelligent Transportation Systems, 2014.
DOI : 10.1109/TITS.2014.2345663

L. Van-der-maaten and G. Hinton, Visualizing data using t-sne, Journal of Machine Learning Research, vol.9, pp.2579-2605, 2008.

M. Mathieu, C. Couprie, and Y. Lecun, Deep multi-scale video prediction beyond mean square error, 1511.

R. Martin, L. Min, Z. Maaten, . Yuan, J. Anthony et al., Deep supervised t-distributed embedding, Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp.791-798, 2010.

P. Mirowski and Y. Lecun, Dynamic Factor Graphs for Time Series Modeling, Machine Learning and Knowledge Discovery in Databases, pp.128-143, 2009.
DOI : 10.1145/1068009.1068315

URL : http://yann.lecun.com/exdb/publis/pdf/mirowski-ecml-09.pdf

C. Douglas, C. L. Montgomery, M. Jennings, and . Kulahci, Introduction to time series analysis and forecasting, 2015.

K. R. Muller, A. J. Smola, G. Ratsch, B. Scholkopf, J. Kohlmorgen et al., Using support vector machines for time series prediction Advances in kernel methods?support vector learning, 1999.

J. Paparrizos and L. Gravano, k-shape : Efficient and accurate clustering of time series, Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp.1855-1870, 2015.

I. Pratama, A. E. Permanasari, I. Ardiyanto, and R. Indrayani, A review of missing values handling methods on time-series data, 2016 International Conference on Information Technology Systems and Innovation (ICITSI), pp.1-6, 2016.
DOI : 10.1109/ICITSI.2016.7858189

T. Rajabioun and P. Ioannou, On-street and off-street parking availability prediction using multivariate spatiotemporal models. Intelligent Transportation Systems, IEEE Transactions on, vol.16, issue.5, pp.2913-2924, 2015.
DOI : 10.1109/tits.2015.2428705

T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover et al., Searching and mining trillions of time series subsequences under dynamic time warping, Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '12, pp.262-270, 2012.
DOI : 10.1145/2339530.2339576

Y. Ren and Y. Wu, Convolutional deep belief networks for feature extraction of EEG signal, 2014 International Joint Conference on Neural Networks (IJCNN), pp.2850-2853, 2014.
DOI : 10.1109/IJCNN.2014.6889383

S. Rendle, Factorization Machines with libFM, ACM Transactions on Intelligent Systems and Technology, vol.3, issue.3, p.57, 2012.
DOI : 10.1145/2168752.2168771

M. Richtel, Now, to find a parking spot, drivers look on their phones. The New York Times (Technology, p.95, 2011.

P. Rodriguez, J. Wiles, L. Jeffrey, and . Elman, A Recurrent Neural Network that Learns to Count, Connection Science, vol.11, issue.1, pp.5-40, 1999.
DOI : 10.1080/095400999116340

B. Romera-paredes and M. Pontil, A new convex relaxation for tensor completion, Advances in Neural Information Processing Systems, pp.2967-2975, 2013.

S. Roweis, G. Hinton, and R. Salakhutdinov, Neighbourhood component analysis, Adv. Neural Inf. Process. Syst.(NIPS), vol.17, pp.513-520, 2004.

H. Rue and L. Held, Gaussian Markov random fields : theory and applications, 2005.
DOI : 10.1201/9780203492024

H. Sak, A. Senior, and F. Beaufays, Long short-term memory recurrent neural network architectures for large scale acoustic modeling, Fifteenth Annual Conference of the International Speech Communication Association, 2014.

R. Salakhutdinov, E. Geoffrey, and . Hinton, Learning a nonlinear embedding by preserving class neighbourhood structure, AISTATS, 2007.

P. Schäfer, The BOSS is concerned with time series classification in the presence of noise, Data Mining and Knowledge Discovery, vol.38, issue.11, pp.1505-1530, 2015.
DOI : 10.1109/ICDM.2012.26

P. Schäfer, Scalable time series classification, Data Mining and Knowledge Discovery, vol.29, issue.6, pp.1273-1298, 2016.
DOI : 10.1109/ICDM.2013.52

A. Schuster, On the Periodicities of Sunspots, Containing Papers of a Mathematical or Physical Character, pp.69-100, 1906.
DOI : 10.1098/rsta.1906.0016

J. Shang, Y. Zheng, W. Tong, E. Chang, and Y. Yu, Inferring gas consumption and pollution emission of vehicles throughout a city, Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '14, 2014.
DOI : 10.1145/2623330.2623653

J. Shang, Y. Zheng, W. Tong, E. Chang, and Y. Yu, Inferring gas consumption and pollution emission of vehicles throughout a city, Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '14, 2014.
DOI : 10.1145/2623330.2623653

W. Shi, Y. Zhu, Y. Philip, T. Huang, C. Wang et al., Temporal Dynamic Matrix Factorization for Missing Data Prediction in Large Scale Coevolving Time Series, IEEE Access, vol.4, pp.6719-6732, 2016.
DOI : 10.1109/ACCESS.2016.2606242

Y. Song, M. Liu, S. Tang, and X. Mao, Time series matrix factorization prediction of internet traffic matrices, 37th Annual IEEE Conference on Local Computer Networks, pp.284-287, 2012.
DOI : 10.1109/LCN.2012.6423629

S. Sridevi, C. Rajaram, . Parthiban, C. Sibiarasan, and . Swadhikar, Imputation for the analysis of missing values and prediction of time series data, 2011 International Conference on Recent Trends in Information Technology (ICRTIT), pp.1158-1163, 2011.
DOI : 10.1109/ICRTIT.2011.5972466

N. Srivastava, E. Mansimov, and R. Salakhudinov, Unsupervised learning of video representations using lstms, Proceedings of the 32nd ICML-15, 2015.

A. Stathopoulos, G. Matthew, and . Karlaftis, A multivariate state space approach for urban traffic flow modeling and prediction, Transportation Research Part C: Emerging Technologies, vol.11, issue.2, pp.121-135, 2003.
DOI : 10.1016/S0968-090X(03)00004-4

L. Michael and . Stein, Interpolation of spatial data : some theory for kriging, 2012.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton, On the importance of initialization and momentum in deep learning, Proceedings of the 30th ICML, 2013.

I. Sutskever, J. Martens, and G. E. Hinton, Generating text with recurrent neural networks, Proceedings of the 28th International Conference on Machine Learning, 2011.

Z. Tang, . Chrys-de-almeida, A. Paul, and . Fishwick, Time series forecasting using neural networks vs. Box- Jenkins methodology, SIMULATION, vol.57, issue.5, pp.303-310, 1991.
DOI : 10.1177/003754979105700508

H. Tong, Non-linear time series : a dynamical system approach, 1990.

L. Vilnis and A. Mccallum, Word representations via gaussian embedding, ICLR, 2015.

K. Taras and . Vintsyuk, Speech discrimination by dynamic programming, Cybernetics and Systems Analysis, vol.4, issue.1, pp.52-57, 1968.

O. Vinyals, C. Blundell, T. Lillicrap, and D. Wierstra, Matching networks for one shot learning, Advances in Neural Information Processing Systems, pp.3630-3638, 2016.

X. Wang, D. Nie, and B. Lu, Emotional state classification from EEG data using machine learning approach, Neurocomputing, vol.129, pp.94-106, 2014.
DOI : 10.1016/j.neucom.2013.06.046

S. Weerasinghe, A missing values imputation method for time series data: an efficient method to investigate the health effects of sulphur dioxide levels, Environmetrics, vol.3, issue.2, pp.162-172, 2010.
DOI : 10.1002/env.990

L. Wei, N. Kumar, . Venkata-nishanth-lolla, J. Eamonn, S. Keogh et al., ) Ratanamahatana. Assumption-free anomaly detection in time series, SSDBM, pp.237-242, 2005.

K. Christopher and . Wikle, Modern perspectives on statistics for spatio-temporal data, Wiley Interdisciplinary Reviews : Computational Statistics, vol.7, issue.1, pp.86-98, 2015.

K. Christopher, . Wikle, B. Mevin, and . Hooten, A general science-based framework for dynamical spatio-temporal models, Test, vol.19, issue.3, pp.417-451, 2010.

B. Williams, P. Durvasula, and D. Brown, Urban freeway traffic flow prediction : application of seasonal autoregressive integrated moving average and exponential smoothing models Transportation Research Record Fast time series classification using numerosity reduction, Proceedings of the 23rd international conference on Machine learning, pp.132-141, 1644.

Z. Shi-xingjian, H. Chen, D. Wang, W. Yeung, W. Wong et al., Convolutional lstm network : A machine learning approach for precipitation nowcasting, Advances in Neural Information Processing Systems, pp.802-810, 2015.

Y. Xiong and D. Yeung, Mixtures of arma models for model-based time series clustering, Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on, pp.717-720, 2002.

J. Yuan, Y. Zheng, X. Xie, and G. Sun, Driving with knowledge from the physical world, Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '11, pp.316-324, 2011.
DOI : 10.1145/2020408.2020462

J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie et al., T-drive, Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS '10, pp.99-108, 2010.
DOI : 10.1145/1869790.1869807

G. Peter and Z. , Time series forecasting using a hybrid arima and neural network model, Neurocomputing, vol.50, pp.159-175, 2003.

Y. Zheng, Q. Liu, E. Chen, Y. Ge, and L. Zhao, Time Series Classification Using Multi-Channels Deep Convolutional Neural Networks, International Conference on Web-Age Information Management, pp.298-310, 2014.
DOI : 10.1007/978-3-319-08010-9_33

Y. Zheng, T-drive trajectory data sample, 2011.