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Abstract 

Reuse of treated wastewater for irrigation purposes is worldwide accepted and implemented to 

face water scarcity and save high quality water resources. Although such practice has undoubtable 

advantages and is certainly more sustainable in respect to the use of fresh water, it is not exempt from 

severe concerns. Potentially harmful pollutants contained at trace levels in the reused water might 

indeed impact the receiving soil and crops. Among these pollutants, trace heavy metals (HMs) play 

a primary role due to their widespread presence in the used water and to their persistence once 

released into the environment. The fate of HMs in soils can be hardly predicted as mobility 

mechanisms through soils are extremely diverse and related to highly complex simultaneous 

phenomena and chemical equilibria. HMs, in fact, as many other contaminants, are not only 

partitioned between the solid immobile and the water mobile phases, but also colloids and 

nanoparticles act as a further mobile phase, with their own rheological properties and velocity. This 

latter component has been one of the main focus of the thesis. 

In details this thesis describes the results of several experimental tests conducted by irrigating 

the Organization for Economic Cooperation and Development (OECD) standard soil with real and/or 

synthetic wastewater, containing HMs in trace level concentrations. For each test a specific soil (e.g. 

with varying organic matter content) and wastewater composition (e.g. synthetic wastewater with 

varying trace metals concentrations, salinity, dissolved organic matter content, or real treated 

wastewaters) has been chosen in order to evaluate the effects of different conditions on the overall 

HMs fate. The increase of soil organic matter from 2.5 to 10% linearly enhanced the mobility of Cd, 

Cu and Ni. The maximum mobility increase obtained by comparing soils with 2.5 and 10 % of organic 

matter was of 35.6, 43.7 and 49.19 % for Cd, Cu and Ni, respectively. In most experiments, metals 

accumulated in the top soil layer (0 - 0.5 cm). Nevertheless, peaks of contamination were detected at 

different depths in the soil deeper layers and at different leaching time in the soil leachates depending 

on the metal and on the soil and wastewater characteristics. Peaks of metals in the leachate appeared 

simultaneously with release of organic matter and/or release of silicates, demonstrating outstanding 

involvement of colloids in metals transport. Sodium concentration (20 mM) was demonstrated to 

highly reduce colloidal mobilization whereas more than 95 % of the influent metal was detected in 

the soil top layer despite the soil organic matter content. Conversely, low sodium concentrations (1-

5 mM) enhanced colloidal and hence metals mobilization. Salinity displayed different effects. The 

irrigation with real treated wastewater with quite high content of Ca and Mg (111 and 134 mg/L, 

respectively) resulted in higher average release of silicon from the soil inorganic matrix (8.2 mg/L) 

compared to the low salinity artificial wastewater (1.9 mg/L). Consequently higher mobilization of 
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Cd, Cu, Ni and Zn was observed when the soil was irrigated with real treated wastewater. An 

advanced spectroscopic characterization of the soil leachates was performed to identify such colloidal 

aggregates with the aim of clarifying their nature, chemical properties and aggregation state. The 

observation of 3D excitation-emission matrix demonstrated in all the leachates samples the presence 

of fulvic (230-450 nm ex-em fluorescence area) and humic (330-445 nm ex-em) substances. Proton 

nuclear magnetic resonance (1HNMR) spectra of the leachates resulted poorly resolved in the 

�D�U�R�P�D�W�L�F���U�H�J�L�R�Q���������S�S�P�����/���������S�S�P�����G�X�H���W�R���K�\�G�U�R�S�K�R�E�L�F���L�Q�W�H�U�D�F�W�L�R�Q�V���L�Q���W�K�H���F�R�U�H���R�I���W�K�H���V�X�S�U�D�P�R�O�H�F�X�O�D�U��

structure of humic substances.  

In this context, a novel analytical method was developed to quantify phenolic substances in soil 

matrices allowing the monitoring of humic matter migration in soil profiles. The novel method was 

more accurate in respect to the traditional one, allowing to obtain higher recovery of total phenols in 

peat soil (15.5 % increase) with a decrease of the coefficient of variation (30.1% decrease).  

A novel migration physical-chemical model was qualitatively developed on the basis of the 

experimental results. The model considers a multiphase transport mechanism through the soil layers 

that includes : i) the effect of soil composition, in terms of organic and inorganic matter; ii) the 

generation of colloidal aggregates, responsible for the transport of a part of the metals at a velocity 

different from the one of the water flow; iii) the effect of different physical-chemical properties of 

the generated colloids, that determines their selectivity in binding metals; iv) the disaggregation of 

the complex aggregates composing soil organic matter, which results in the release of small molecular 

weight ligands which coordinate HMs accelerating the transport rate; v) the effect of wastewater 

characteristics, including salinity, sodium content, and presence of organic matter, which influences 

the mobilization of colloidal aggregates through soil. 

The proposed model represents a powerful tool to depict the fate of trace metals in the soil, and 

could be extended to describe the fate of other contaminants. In that sense, it could also become an 

important tool in the risk assessment of irrigation with reclaimed wastewater. 

 

Keywords: Trace heavy metals, Colloidal mobilization, Soil humic matter, Mineral organic 

association, Contaminants fate in the environment, Wastewater reuse 
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Résumé 

�/�D�� �U�p�X�W�L�O�L�V�D�W�L�R�Q�� �G�H�V�� �H�D�X�[�� �X�V�p�H�V�� �W�U�D�L�W�p�H�V�� �S�R�X�U�� �O�¶�L�U�U�L�J�D�W�L�R�Q�� �H�V�W globalement acceptée et pratiquée 

pour faire face à la pénurie d'eau et économiser les ressources en eau de haute qualité. Bien que cette 

pratique présente des avantages indéniables et contribue à un usage plus durable de l'eau douce, elle 

�Q�¶�H�V�W�� �S�D�V�� �H�[�H�P�St de problèmes liés à l'impact potentiel des micropolluants contenus dans l'eau 

réutilisée sur la qualité des sols récepteurs et sur les cultures. Parmi ces polluants, les métaux lourds 

(ML) en concentrations traces jouent un rôle primordial en raison de leur présence systématique dans 

l'eau utilisée et de leur persistance une fois libéré dans l'environnement. Le devenir des ML dans les 

sols peut difficilement être prédit parce que les mécanismes de mobilité à travers les sols sont 

extrêmement variés et liés à des phénomènes simultanés et très complexes impliquant différents 

équilibres chimiques. Les ML, comme beaucoup d'autres contaminants, ne sont pas seulement 

partagés entre la phase immobile (le sol) et la phase mobile que représente l'eau du sol. En effet, les 

colloïdes et les nanoparticules agissent comme une troisième phase mobile, avec leurs propres 

propriétés rhéologiques et des vitesses de migrations qui leur sont propres. Ce dernier aspect a été 

�O�
�X�Q���G�H�V���S�U�L�Q�F�L�S�D�X�[���R�E�M�H�F�W�L�I�V���G�¶�p�W�X�G�H���G�H���O�D���W�K�q�V�H�� 

Plusieurs essais expérimentaux ont été menés en irriguant un sol standard selon l'Organisation 

de coopération et de développement économiques (OCDE) avec une eau usée traitée réelle et / ou 

synthétiques, contenant des ML en concentrations traces. Pour chaque test, un sol spécifique (avec 

différentes teneurs en matière organique) et des eaux usées traitées de composition différente (avec 

différentes concentrations en métaux traces, de salinité, de teneur en matière organique pour les eaux 

usées synthétiques, ou des eaux usées traitées réelles) ont été choisi afin d'évaluer les effets des 

conditions différentes sur le devenir global des ML. L'augmentation de la matière organique du sol 

de 2,5 à 10% a linéairement amélioré la mobilité des Cd, Cu et Ni avec une augmentation de la 

mobilité maximum de 35,6, 43,7 et 49,19% pour le Cd, Cu et Ni, respectivement. Pour la plupart des 

expériences, les ML ont été capturés dans la couche superficielle du sol (0 à 0,5 cm). Néanmoins, des 

pics de contamination ont été détectés à des profondeurs différentes dans les couches plus profondes 

�G�X���V�R�O�����/�¶�p�W�X�G�H���G�H���O�D���F�R�P�S�R�V�L�W�L�R�Q���G�H�V���O�L�[�L�Y�L�D�W�V���P�R�Q�W�U�H���G�H�V���Y�D�U�L�D�W�L�R�Q�V���G�H���F�R�Q�F�H�Q�W�U�D�W�L�R�Q�V���I�R�Q�F�W�L�R�Q���G�X��

métal étudié et des caractéristiques du sol et des eaux usées. Des pics de métaux dans le lixiviat sont 

apparus en même temps que la libération de la matière organique et / ou la libération de silicates, ce 

qui démontre l'implication significative des colloïdes dans le transport des métaux. La concentration 

en sodium (20 mM) a été démontrée comme ayant un impact fort sur la réduction de la mobilisation 

colloïdale et que plus de 95% du métal apporté par irrigation a été détecté dans la couche superficielle 

du sol en dépit de sa teneur en matière organique. La salinité présente donc des effets significatifs. 
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L'irrigation avec des eaux usées traitées présentant une très haute teneur en Ca et Mg (111 et 134 mg 

/ L, respectivement) a abouti à une libération moyenne plus élevée de silicium à partir de la matrice 

inorganique du sol (8,2 mg / L) au contraire des eaux usées artificielle peu saline (1,9 mg / L). Par 

conséquent, la mobilisation ultérieure de Cd, Cu, Ni et Zn a été observée lorsque le sol a été irrigué 

avec des eaux usées traitées réelles. Une caractérisation spectroscopique avancée des lixiviats a été 

�U�p�D�O�L�V�p�H�� �S�R�X�U�� �L�G�H�Q�W�L�I�L�H�U�� �O�H�V�� �D�J�U�p�J�D�W�V�� �F�R�O�O�R�w�G�D�X�[�� �O�L�E�p�U�p�V�� �S�D�U�� �O�H�� �V�R�O�� �G�D�Q�V�� �O�H�� �E�X�W�� �G�¶�H�Q�� �G�p�W�H�U�P�L�Q�H�U�� �O�H�X�U��

�Q�D�W�X�U�H�����O�H�X�U�V���S�U�R�S�U�L�p�W�p�V���F�K�L�P�L�T�X�H�V���H�W���O�H�X�U���p�W�D�W���G�
�D�J�U�p�J�D�W�L�R�Q�����/�
�D�Q�D�O�\�V�H���G�H�V���O�L�[�L�Y�L�D�W�V���j���O�¶�D�L�G�H���G�H�V���P�D�W�U�L�F�H�V��

d'excitation et d'émission de fluoresce�Q�F�H���D���G�p�P�R�Q�W�U�p���G�D�Q�V���W�R�X�V���O�H�V���p�F�K�D�Q�W�L�O�O�R�Q�V���O�D���S�U�p�V�H�Q�F�H���G�¶�D�F�L�G�H�V��

fulviques (230-450 nm ex-em zone de fluorescence) et humiques (ex-em 330-445 nm). Les spectres 

RMN des lixiviats �V�R�Q�W�� �P�D�O�� �U�p�V�R�O�X�V�� �G�D�Q�V�� �O�D�� �U�p�J�L�R�Q�� �D�U�R�P�D�W�L�T�X�H�� ������ �S�S�P�� ���� �/�� ������ �S�S�P���� �H�Q�� �U�D�L�V�R�Q��

d'interactions hydrophobes dans le noyau de la structure supramoléculaire des substances humiques.  

Dans ce contexte, une nouvelle méthode analytique a été développée pour quantifier les 

substances phénoliques dans les matrices de sol permettant le suivi de la migration des matières 

humiques dans le profil du sol. La nouvelle méthode proposée est plus précise que la méthode 

traditionnelle, ce qui permet d'obtenir une meilleure quantification des phénols totaux dans le sol de 

tourbe (augmentation de 15,5%) avec une diminution du coefficient de variation (30,1% de baisse).  

Un nouveau modèle physico-chimique de migration des ML a été proposé sur la base des résultats 

expérimentaux. Le modèle considère un mécanisme de transport polyphasique à travers les couches 

de sol qui comprend: i) l'effet de la composition du sol, en termes de matière organique et inorganique; 

ii) la génération d'agrégats colloïdaux, responsable du transport d'une partie des métaux à une vitesse 

différente de celle de l'écoulement d'eau de vitesse; iii) l'effet des différentes propriétés physico-

chimiques des colloïdes générés, qui détermine leur sélectivité des métaux transportés; iv) la 

désagrégation des agrégats complexes qui composent la matière organique, ce qui conduit à la 

libération de ligands de faible poids moléculaire qui se lient aux ML et accélèrent la vitesse de 

transport; v) l'effet des caractéristiques des eaux usées, y compris la salinité, la teneur en sodium, et 

la présence de la matière organique, qui influence la mobilisation des agrégats colloïdaux dans le sol. 

Le modèle conceptuel proposé constitue un outil puissant pour représenter le devenir des métaux 

traces dans le sol, et pourrait être étendu pour décrire le sort des autres contaminants. En ce sens, il 

pourrait aussi devenir �X�Q���R�X�W�L�O���L�P�S�R�U�W�D�Q�W���G�D�Q�V���O�¶�p�Y�D�O�X�D�W�L�R�Q���G�H�V���U�L�V�T�X�H�V���O�L�p�V���j���O�
�L�U�U�L�J�D�W�L�R�Q���D�Y�H�F���G�H�V���H�D�X�[��

usées traitées. 
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Sommario 

Il riutilizzo di acque reflue trattate per scopi irrigui è diffusamente praticato al fine affrontare la 

scarsità d'acqua e risparmiare risorse idriche di alta qualità. Sebbene tale pratica presenti indubbi 

vantaggi e sia più sostenibile rispetto �D�O�O�¶�X�W�L�O�L�]�]�R�� �G�L�� �D�F�T�X�D�� �S�R�W�D�E�L�O�H, non è esente da gravi 

preoccupazioni relative al potenziale impatto di inquinanti potenzialmente nocivi contenuti nell'acqua 

riutilizzata sul suolo ricevente e sulle colture. Tra tali inquinanti, i metalli pesanti in tracce, (HMs) 

assurgono ad un ruolo di primaria importanza, legato alla loro ampia diffusione negli effluenti 

depurati e alla persistenza una volta rilasciati nell'ambiente. Il destino dei HMS nei terreni è 

decisamente arduo da prevedere. I meccanismi di mobilità attraverso i terreni sono infatti 

estremamente vari e collegati a fenomeni ed equilibri chimici simultanei altamente complessi. I HMs, 

infatti, come molti altri contaminanti, non si ripartiscono semplicemente tra le fasi solida immobile 

�G�H�O���V�X�R�O�R���H���P�R�E�L�O�H���G�H�O�O�¶�D�F�T�X�D�����&olloidi e nanoparticelle agiscono, infatti, come una terza fase mobile, 

con sue proprie caratteristiche reologiche e di velocità. Quest'ultimo aspetto è stato uno degli obiettivi 

principali della tesi. 

In particolare la tesi descrive i risultati di diverse prove sperimentali condotte irrigando il terreno 

standard dell'Organizzazione per la cooperazione e lo sviluppo economico (OCSE) con acque reflue 

sintetiche e / o reali contenenti HMs in tracce. Per ogni prova sono stati scelti specifici terreni (ad 

esempio variando il contenuto di sostanza organica) e composizioni delle acque reflue (ad esempio 

variando la concentrazione dei metalli, la salinità, il contenuto di materia organica, o utilizzando 

effluente da un impianto reale) al fine di valutare gli effetti di differenti condizioni sul destino dei 

HMs nel suolo. L'aumento di sostanza organica nel suolo dal 2,5 al 10% ha migliorato linearmente la 

mobilità dei Cd, Cu e Ni fino ad un aumento massimo del 35.6, 43.7 e del 49.2% per Cd, Cu e Ni, 

rispettivamente. Nella maggior parte degli esperimenti condotti, i metalli si sono accumulati nello 

strato di terreno superiore (0 �± 0,5 cm). A seconda del metallo e delle caratteristiche del suolo e delle 

acque di irrigazione utilizzati, sono stati tuttavia rilevati picchi di contaminazione al variare della 

profondità nel terreno e dei tempi di rilascio nei lisciviati. I picchi di concentrazione riscontrati nei 

lisciviati sono apparsi in contemporanea con il rilascio di sostanza organica e / o di silicati, 

dimostrando un notevole coinvolgimento dei colloidi nel trasporto dei metalli. �/�¶�� �D�X�P�H�Q�W�R�� �G�L��

concentrazione di sodio (20 mM) ha altamente ridotto la mobilizzazione colloidale, tanto che più del 

95% del metallo influente è stato rilevato nello strato superiore indipendentemente dal tenore di 

�V�R�V�W�D�Q�]�D���R�U�J�D�Q�L�F�D���G�H�O���V�X�R�O�R�����/�¶�D�X�P�H�Q�W�R���G�L salinità �K�D���L�Q�Y�H�F�H���F�D�X�V�D�W�R���O�¶�H�I�I�H�W�W�R���R�S�S�R�V�W�R. L'irrigazione 

con acque reflue trattate reali con non trascurabile contenuto di Ca e Mg (111 e 134 mg / L, 

rispettivamente) ha provocato un maggiore rilascio medio di silicio dalla matrice inorganica terreno 
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(8,2 mg / L) rispetto alle acque reflue artificiali a bassa salinità (1,9 mg / L). Parallelamente, quando 

il terreno è stato irrigato con acque reflue trattate reali si è osservata una maggiore mobilitazione di 

Cd, Cu, Ni e Zn. Una avanzata caratterizzazione spettroscopica dei lisciviati è stata effettuata per 

identificare tali aggregati colloidali rilasciati dal suolo con l'obiettivo di chiarirne la natura, le 

proprietà chimiche e lo stato di aggregazione. L'osservazione delle matrici di eccitazione-emissione 

3D ha evidenziato in tutti i campioni la presenza di sostanze fulviche (zona di fluorescenza ex-em 

230-450 nm) e umiche (ex-em 330-445 nm). Gli spettri NMR dei lisciviati sono apparsi mal risolti 

nella regione aromatica (6 ppm < �/���� 8 ppm) a causa di forti interazioni idrofobiche nel core della 

struttura supramolecolare.  

In tale contesto, è stato sviluppato un metodo analitico in grado di quantificare sostanze fenoliche 

in matrici solide consentendo il controllo della migrazione delle sostanze umiche nei profili di suolo. 

Il nuovo metodo è risultato più accurato e preciso rispetto a quello tradizionale, permettendo di 

ottenere una maggiore recupero dei fenoli totali analizzando un suolo torboso (aumento del 15,5%), 

con una diminuzione del coefficiente di variazione (diminuzione del 30,1%).  

Sulla base dei risultati sperimentali, è stato qualitativamente sviluppato un nuovo modello 

chimico-fisico di migrazione. Il modello considera un meccanismo di trasporto multifase attraverso 

gli strati di terreno che comprende: i) l'effetto della composizione del suolo, in termini di materia 

organica e inorganica; ii) la produzione di aggregati colloidali, responsabili del trasporto dei metalli 

ad una velocità diversa da quella del flusso dell'acqua; iii) l'effetto delle differenti proprietà chimico-

fisiche dei colloidi generati, che ne determina la selettività nel coordinare i metalli; iv) la 

disaggregazione degli aggregati complessi che compongono la sostanza organica, che provoca un 

continuo rilascio di molecole a basso peso molecolare che coordinano i HMs accelerandone il tasso 

di trasporto; v) l'effetto delle caratteristiche delle acque reflue, tra cui la salinità, il contenuto di sodio, 

e la presenza di sostanza organica, che governano la mobilitazione degli aggregati colloidali 

attraverso il suolo. 

Il modello proposto rappresenta un utile strumento per predire il destino di metalli in tracce nel 

terreno, e potrebbe essere esteso per descrivere il destino di altri contaminanti. In tal senso, potrebbe 

anche diventare uno strumento importante applicabile alla valutazione del rischio legato al riutilizzo 

di acque reflue a fini irrigui.  
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Samenvatting 

Hergebruik van gezuiverd afvalwater voor irrigatie wordt wereldwijd geaccepteerd en 

geïmplementeerd om waterschaarste geconfronteerd en opslaan van hoge kwaliteit middelen. Hoewel 

dergelijke praktijken heeft undoubtable voordelen en is zeker meer duurzaam ten opzichte van het 

gebruik van zoet water, het is niet vrijgesteld van ernstige bezorgdheid. Potentieel schadelijke stoffen 

bevatte op sporen niveaus in het water hergebruikt zou inderdaad invloed op de ontvangende bodem 

en op de gewassen. Onder deze stoffen, sporen zware metalen (HMS) een primaire rol spelen als 

gevolg van hun wijdverspreide aanwezigheid in het gebruikte water en hun doorzettingsvermogen 

eenmaal in het milieu terecht. Het lot van HMS in de bodem kan nauwelijks worden voorspeld als 

mechanismen mobiliteit door bodems zijn zeer divers en gerelateerd aan zeer complexe gelijktijdige 

verschijnselen en chemische evenwichten. HMS, in feite, vele andere verontreinigingen, niet alleen 

verdeeld tussen de vaste immobiele en mobiele fasen water. Inderdaad, colloïden en nanodeeltjes 

fungeren als derde mobiele fase, met hun eigen rheologische eigenschappen en snelheid. Dit laatste 

aspect is een van de belangrijkste focus van het proefschrift. 

In Dit proefschrift beschrijft de resultaten van verschillende experimentele tests uitgevoerd door 

de irrigatie van de Organisatie voor Economische Samenwerking en Ontwikkeling (OESO) standaard 

bodem met echte en / of synthetische afvalwater, met HMS in traceringsniveau concentraties. Voor 

elke test een bepaalde grond (het variëren van de organische stofgehalte) en afvalwater samenstelling 

(bijvoorbeeld variëren van de metalen concentratie, het zoutgehalte, de organische stof, of testen real 

behandeld afvalwater) is gekozen om de effecten van verschillende te evalueren op de totale HMS 

lot. De toename van de bodem organische stof 2,5-10% lineair versterkt de mobiliteit van Cd, Cu en 

Ni. De maximale verhoging mobiliteit verkregen vergelijking bodems op 2,5 en 10% van de 

organische stof was 35,6, 43,7 en 49,19% voor Cd, Cu en Ni, respectievelijk. In de meeste 

experimenten metalen opgebouwd in de bovenste bodemlaag (0 �± 0,5 cm). Niettemin pieken 

besmetting werden gedetecteerd op verschillende dieptes in de grond diepere lagen en op 

verschillende uitloging weer in de bodem percolaat afhankelijk van het metaal en de bodem en 

afvalwater kenmerken. Pieken van metalen in het percolaat verscheen gelijktijdig met de release van 

organische stof en / of het vrijkomen van silicaten, waaruit blijkt opmerkelijke betrokkenheid van 

colloïden in metalen transport. Natriumconcentratie (20 mM) werd aangetoond colloïdale mobilisatie 

sterk verminderen terwijl meer dan 95% van het influent metaal in de toplaag ondanks het gehalte 

aan organisch bodemmateriaal gedetecteerd. Omgekeerd, weinig natrium concentraties (1-5 mm) 

verbeterde colloïdale en dus metalen mobilisatie. Zoutgehalte weergegeven verschillende effecten. 

De irrigatie met echte behandeld afvalwater met een vrij hoog gehalte aan Ca en Mg (111 en 134 mg 
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/ l respectievelijk) resulteerde in hogere gemiddelde afgifte van silicium uit de bodem anorganische 

matrix (8,2 mg / L) in vergelijking met het lage zoutgehalte kunstmatige afvalwater ( 1,9 mg / l). 

Bijgevolg hogere mobilisatie van Cd, Cu, Ni en Zn werd waargenomen als de grond werd geïrrigeerd 

met echte gezuiverd afvalwater. Een geavanceerde spectroscopische karakterisering van de bodem 

percolaat uitgevoerd om deze colloïdale aggregaten identificeren teneinde hun aard en chemische 

eigenschappen aggregatietoestand verduidelijken. De waarneming van 3D excitatie-emissie matrix 

aangetoond in alle percolaat monsters de aanwezigheid van fulvic (230-450 nm ex-em fluorescentie-

gebied) en humus (330-445 nm ex-em) stoffen. NMR spectra van het percolaat resulteerde slechte 

�U�H�V�R�O�X�W�L�H���L�Q���K�H�W���D�U�R�P�D�W�L�V�F�K�H���J�H�E�L�H�G���������S�S�P�����/���������S�S�P�����G�R�R�U���K�\�G�U�R�I�R�E�H���L�Q�W�H�U�D�F�W�L�H�V���L�Q���G�H���N�H�U�Q���Y�D�Q���G�H��

supramoleculaire structuur van humusstoffen. 

In dit verband werd een nieuwe analytische methode ontwikkeld waarbij fenolische stoffen 

kwantificeren bodem matrices waarmee kan worden gecontroleerd humus materie migratie 

bodemprofielen. De nieuwe werkwijze is nauwkeuriger ten opzichte van de traditionele, waardoor 

hogere terugwinning van totale fenolen in veengrond (15,5% toename) met een afname van de 

variatiecoëfficiënt (30,1% afname) te verkrijgen. 

Een nieuwe migratie gysicochemische model kwalitatief ontwikkeld op basis van de 

experimentele resultaten. Het model beschouwt een uit meerdere transportmechanisme door de grond 

lagen die bestaat uit: i) het effect van de samenstelling van de bodem in termen van organische en 

anorganische stof; ii) het genereren van colloïdale aggregaten, voor het transport van een deel van de 

metalen bij een doorvoersnelheid verschilt van die van de waterstroom; iii) het effect van 

verschillende fysisch-chemische eigenschappen van de gegenereerde colloïden, bepaalt selectiever 

bij binding metalen; iv) de opsplitsing van het complex aggregaten samenstellen van organische stof, 

wat resulteert in het vrijkomen van kleine moleculair gewicht liganden die HMS het versnellen van 

de transportsnelheid te coördineren; v) het effect van afvalwater kenmerken, waaronder zoutgehalte, 

natrium, en de aanwezigheid van organische stof, die de mobilisatie van colloïdale aggregaten 

beïnvloedt in de bodem. 

Het voorgestelde model is een krachtig instrument om het lot van spoormetalen portretteren in 

de bodem, en kan worden uitgebreid tot het lot van de andere verontreinigende stoffen te beschrijven. 

In die zin kan het ook een belangrijk instrument bij de risicobeoordeling van irrigatie met afvalwater 

teruggewonnen worden. 
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1.1  Background 

 

1.1.1 Wastewater reuse in agriculture 

Water has been considered for decades as an inexhaustible good free for everybody. This concept 

is currently being overcome and water is more and more considered as a limited resource that requires 

to be properly managed because of the world population increase and the consequent growth of water 

demand. In the last decades, indeed, many water conservation and saving programs have been 

promoted, accompanied by relevant sensitization campaigns. A large part of these programs have 

been addressed to the correct use of water for agricultural purposes, as irrigation is certainly the most 

intense water-demanding sector (Seckler, 1998). In this scenario, wastewater recycling plays a 

prominent role. The economic advantage of such practice consists in providing alternative source for 

water supply, which otherwise would be completely wasted. Every year, new projects promoting 

wastewater recycling are being practiced in the Middle Eastern and Mediterranean countries, 

Southern American countries, United States, China and various islands in the world (Friedler, 2001). 

Historically the reuse of wastewater for irrigation purposes has been a very common practice dating 

ancient times back to the Greek and Roman history. With the growth of environmental sensitivity and 

in response to the pressing needs to increase the amount of water availability, the concept of water 

reuse has been gaining important focus also in countries with considerable resources of primary water 

(Jiménez & Asano, 2008). Municipal wastewater reuse is the most promising reuse prospect, since it 

improves the security of supply, reduces the resource constraints due to variable rainfalls, and the 

need for expensive water storage construction and freshwater supply infrastructure. Wastewaters 

often contain significant concentration of organic and inorganic nutrients, i.e. nitrogen and 

phosphorus (Toze, 2006) and therefore supply to the scarcity of these latter. Finally wastewater reuse, 

simultaneously solves water shortage and wastewater discharge problem (Oron et al., 1999). Despite 

the described advantages, several risks are attested worldwide concerning soil and groundwater 

pollution caused by the presence in the reused source of organic and inorganic pollutants (Lapworth 

et al., 2012). Moreover, raw wastewater reuse for crop production may cause health risks due the 

presence of bacteria, viruses and parasites (Navarro et al., 2015). Hence, as stated by the Hyderabad 

�G�H�F�O�D�U�D�W�L�R�Q���R�Q���:�D�V�W�H�Z�D�W�H�U���X�V�H���L�Q���$�J�U�L�F�X�O�W�X�U�H�����³�Z�L�W�K�R�X�W���S�U�R�S�H�U���P�D�Q�D�J�H�P�H�Q�W�����Z�D�V�W�H�Z�D�W�H�U���X�V�H���S�R�V�H�V��

�V�H�U�L�R�X�V���U�L�V�N�V���W�R���K�X�P�D�Q���K�H�D�O�W�K���D�Q�G���W�K�H���H�Q�Y�L�U�R�Q�P�H�Q�W�´�����,�Q���W�K�H���O�D�V�W���G�H�F�D�G�H�V���S�U�L�P�D�U�\���D�W�W�H�Q�W�L�R�Q��has been 

dedicated by the scientific community in measuring the concentration, monitoring the fate and finally 

removing the harmful chemicals brought to the soil (Lu et al., 2015) by irrigation with reclaimed 

wastewater. Even well treated wastewater represents a potential hazard. Many compounds of 
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anthropogenic origin, difficult to remove, in fact could be present in the wastewater below the allowed 

threshold values, but can increase in concentration in the environment as consequence of 

accumulation and biomagnification effect.  

 

1.1.2 Emerging contaminants from water discharged in soil and the case of heavy metals 

Although research conducted during the 1980s and early 1990s demonstrated that recycled water 

can elicit adverse responses in bioassays, such as the Ames test, the causative agents have not been 

identified (Sedlak et al., 2000). Quantification of chemical contaminants has been limited to priority 

pollutants and several well-studied compounds, such as disinfection byproducts and certain industrial 

products, including alkylphenol and polyethoxylate detergents. Concerns have been raised 

periodically about the possible presence of contaminants that are not routinely monitored, but little 

information about their occurrence has been available. Previously undetected effluent-derived micro-

contaminants have been identified in numerous wastewater effluents and in surface waters subjected 

to wastewater discharges. 

A great diversity of trace pollutants can be found in treated effluents from urban wastewater 

�W�U�H�D�W�P�H�Q�W���S�O�D�Q�W�V�����:�:�7�3�V������ �6�H�Y�H�U�D�O���H�[�D�P�S�O�H�V���R�I���³�Q�H�Z�´�� �R�U���³�H�P�H�U�J�L�Q�J�´�� �F�R�Q�W�D�P�L�Q�D�Q�W�V���D�U�H���L�G�H�Q�W�L�I�L�H�G��

and classified yearly. Emerging contaminants are unregulated contaminants, which may be 

candidates for future regulations depending on research on their potential health effects and 

monitoring data regarding their occurrence and fate (Petrovic et al., 2004). The properly called 

emerging contaminants include pharmaceuticals, UV filters, surfactants and fragrances, and are 

sometimes classified as endocrine disruptors contaminants (EDCs) or as pharmaceuticals and 

personal care products (PPCPs). EDCs are compounds which can impact the structure and function 

�R�I���D�Q���R�U�J�D�Q�L�V�P�¶�V���H�Q�G�R�F�U�L�Q�H���V�\�V�W�H�P���F�D�X�V�L�Q�J���H�I�I�H�F�W�V���R�Q���W�K�H���R�U�J�D�Q�L�V�P���L�W�V�H�O�I���R�U���L�W�V���S�U�R�J�H�Q�\�����.�Q�R�Z�Q���(�'�&�V��

that can be found in wastewaters and in the environment include the oestradiol compounds commonly 

present in the contraceptive pill, phytoestrogens, pesticides, industrial chemicals such as bisphenol A 

or nonyl phenol, and some heavy metals. The majority of PPCPs detected in environmental waters 

and waters are drugs used for a variety of therapeutic uses for both humans and animals. Examples 

include analgesics such as Ibuprofen, caffeine, antiepileptics, cholesterol reducing drugs, antibiotics 

and antidepressants as well as products of general daily use like surfactants, UV filters, synthetic 

fragrances, antiseptics, flame retardants. This group is mainly composed of products used in every-

day life and for most of them ecotoxicological data are not yet available, and is therefore difficult to 

predict which health effects they may have on humans and aquatic organisms. Moreover treated 
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wastewaters are often disinfected in order to remove pathogens prior to agricultural re-use and in this 

case another class of contaminants is emerging, embodied by the disinfection by-products (DBPs). 

This class of pollutants was widely studied since the early 1970s and found present in drinking waters 

subjected to disinfection treatment (Richardson, 2003). It is anyway attested how the formation of 

these by-products is strictly related to the concentration of dissolved organic matter in the influent 

water to the disinfection system. Clearly disinfecting the WWTPs effluents gives place to higher risk 

of DBPs formation. Disinfection by-products are in first analysis divided in chlorination by-products 

and ozonation by-products, depending by the used disinfection technology. Together with these 

classes there also other emerging contaminants also indicated as priority pollutants, which means that 

is already known their behaviour against human health at high concentrations. Risks related to this 

class of compounds are well attested and the hazard of having a bioaccumulation in crops can be very 

high even when the concentrations in the reclaimed water are below the law limits. Priority pollutants 

include HMs, pesticides and organohalogenated solvents. Although well known and widely regulated 

from most countries, these compounds are emerging in the sense that is not known what could be 

their evolution even at trace levels concentrations once discharged in the environment. 

A synthetic scheme of the most frequent classes of emerging contaminants (Muñoz et al., 2009; 

Richardson, 2003; Richardson & Kimura, 2016) in WWTPs effluents is reported below: 

 

 

Figure 1.1 Classes of emerging contaminants from WWTPs effluents 
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�± Heavy metals

�± Polyaromatic Hydrocarbons
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�‡ Carboxylic acids
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�‡ Trihalomethanes

�‡ Chloral Hydrate
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�‡ Unknown organic halogens
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All this compounds have completely different molecular structures as well as physical-chemical 

properties. It is thus impossible to generalize their behaviour in the environment and their affinity to 

soils and roots. Moreover, the concentration level would certainly vary from one plant to the other 

due the obvious differences of loads and operating conditions. The wide variability showed by 

different soils concerning their affinity with pollutants, makes the evaluating potential risks related 

to the release of such compounds in the environment and above all, to the use of wastewater in 

irrigation a challenging issue that requires a deep knowledge of the soil/water adsorption/release 

equilibria. On the other side the simple monitoring of this kind of contaminants requires advanced 

and sometime expensive analytical techniques being their concentration generally very low, down to 

trace and ultra-trace level. Heavy metals (HMs), as said, are of primary concern since they are able 

to accumulate in soil and crops and to mobilize and pollute groundwater. This class of elements 

displays a range of properties in soil including differences in mobility and bioavailability, leaching 

losses and plant uptake. These potentially toxic elements slowly accumulate in the soil profile over 

the period of time they are subjected to irrigation. Micro concentrations of heavy metals (HMs) are 

permitted by existing legislations all over the world, because they do not represent a short-term hazard 

for the environmental quality. Nonetheless, HMs can be accumulated in the soil and in the food chain 

(biomagnification), because they cannot be naturally degraded.  

Generally, the removal of specific heavy metals is scarcely considered in the reclamation of 

treated urban effluents. The major of the treatment plants, and even more those treating municipal 

wastewater, are not specifically designed to enhance the HMs removal. Research on the removal of 

HMs generally has its focus on specific industrial wastewater (Fu & Wang, 2011). The fate of heavy 

metals in the conventional biological wastewater treatment is described in several research studies. 

Karvelas et al. (2003), closed the balance for metal fractionation during the different phases of a 

conventional activated sludge plant in Thessaloniki, Greece. Ni and Manganese were found primarily 

in the dissolved phase of the wastewater Cu, Cr, Pb, Cd and Zn were mostly associated with the 

particulate phase and were removed already in the primary sedimentation. The relative distribution 

of individual heavy metals in the treated effluent and the sludge streams indicated that Mn and Cu 

were primarily (>70%) accumulated in the sludge, while 47-63% of Cd, Cr, Pb, Fe, Ni and Zn 

remained in the secondary treatment effluent. Chipasa (2003) studied the accumulation and removal 

of CD, Cu, Pb, Zn in the conventional activated sludge plant located in Gdansk, Poland. The author 

found that conventional biological treatment was not able to remove low metals concentrations from 

the influent while the removal rate was not negligible in case of high influent concentration values. 

Corresponding to the influent contents, in increasing order, the reduction in heavy metals content was 

Cd<Pb<Cu<Zn. The order of increase in metal accumulation in the digested sludge (Zn<Pb<Cu<Cd) 
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was opposite to that of the removed amounts from the influent wastewater. HMs, are very likely to 

be present in WWTP effluent, usually below the legislation threshold. A complete removal of such 

compounds would require very advanced and expensive tertiary treatments, scarcely applicable at 

large scale and even less in developing countries. For these reasons, trace HMs are included among 

the emerging contaminants (Bolong et al., 2009). At low concentration levels, indeed, is not known 

neither their fate in the environment nor their effects to human and animal life. A deep comprehension 

of their fate in the soil is hence imperative to foresee their behaviour and to setup the opportune 

strategies to avoid eventual dramatic consequences. 

 

1.2  Fate of emerging contaminants in soil �± The colloidal mobilization mechanism 

The organic compounds most likely to cause environmental and health problems are the synthetic 

chemicals that are difficult to be mineralized or adsorbed in common WWTPs and have a toxic impact 

on humans or other environmental indices. These xenobiotic compounds, although found in trace 

concentrations in wastewater, may have bioaccumulating properties when accumulated in crops 

through irrigation and may end up in in humans through the food chain. In addition they may 

contaminate groundwater and thus indirectly, drinking water (Díaz-Cruz & Barceló, 2008). It follows 

that the study of contaminant mobility trough soil is of relevant importance to assess the risk of 

reclaimed water use for irrigation. High mobility create risks for pollutants to leach in the 

groundwater or to be fast adsorbed by plant roots, at the same time, high affinity with soils can create 

persistent pollution and bioaccumulation in crops. Kinney et al found accumulation of 

pharmaceuticals in golf court and city hall landscapings irrigated with treated wastewater in a 

Colorado medium-size city. The accumulation appeared to be regulated by soil organic matter 

contained in the soil (Kinney et al., 2006). Singh et al. (2004) reported that the use of treated 

wastewaters in agriculture in a specific program in India determined higher levels of metals and 

pesticides in each of the environmental media receiving them, respect to the adjoining areas not 

included in the reuse project. Metals and pesticides residue levels in plants/crops, vegetables and food 

grains consumed by the cattle and humans being, were also much higher in the wastewater disposal 

areas than in those not receiving wastewater. It is also reported that several organic (xenobiotics) can 

be entered to the food chain when they are adsorbed by root system of plants from soil solution (Mc 

Farlane & Trapp, 1994). During irrigation on agricultural lands with effluents from WWTPs, 

xenobiotics are adsorbed onto the soil colloids and are in equilibrium with the soil solution. Micro-

pollutants could interfere with the growth of crops, limiting the germination rate of seeds and 
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retarding the first phases of seedling growth, thus facilitating the negative competition of weeds. 

Moreover they will be passively taken up by the root system and trans located through the xylem and 

the phloem to the aerial parts of the plants (stems, leaves, fruits) with different physiological 

mechanisms (Korte et al., 2000; Trapp & Matthies, 1995). In the plant tissues, xenobiotics accumulate 

in cell vacuoles or in other subcellular system after conjugation with biological molecules. It becomes 

apparent that bioaccumulation of micro-pollutants in crop can play a critical role in the assessment of 

reusability of wastewater.  

Another effect of water reuse is related to the salinity of the recycled water, mostly linked to the 

concentrations of sodium. Sodium and other forms of salinity are the most persistent in recycled water 

and are among the most difficult to remove from water, usually requiring the use of expensive cation 

exchange resins or reverse osmosis membranes. The salinity of recycled water can impact both on 

the soil itself, as well as influencing the growth of the crops being irrigated. Moreover, sodium cations 

interact with the negatively charged layers of clay particles. As sodium concentration increases, the 

electrophoretic mobility of the clay anionic layers (platelets) increases resulting in swelling dispersion 

of the clay particles which impacts on soil permeability. The final effect is the difficulty of water to 

infiltrate into the soil profile with subsequent surface ponding problems (Toze, 2006). The over 

mentioned effect is of primary importance, being one of the factors that regulates the mobility of 

water through soil and thus the adsorption/release equilibria of contaminants moving through the soil 

layers. It increases the contact time between the contaminants and the solid matrix and consequently 

with the plants roots, thus influencing the processes of contamination and accumulation.  

Sorption to soils is probably the most influential factor on the transport and fate of organic 

contaminants in the environment. The organic matter and mineral matter in soil and sediments are 

known to exhibit distinct contribution to the sorption of non-ionic compounds. The soil organic matter 

(SOM) functions in first approximation as a partition medium and the mineral matter as an adsorbent. 

For relatively non-polar solutes in soil�±water systems where a significant SOM content is present, 

the solute partition in SOM predominates over adsorption on mineral matter because of strong 

suppression by water of solute adsorption on polar mineral surfaces. In such systems the solute 

sorption isotherms exhibits a high linearity over a wide range of relative concentrations. For polar 

solutes, where mineral adsorption may be less effectively suppressed by water, the partition to SOM 

may not dominate at very low concentrations because the possibility of significant unsuppressed 

mineral adsorption cannot be excluded. Several polar organic contaminants are in fact found to be 

strongly retained by clay minerals and the effect of SOM is the reduction to the access to the clays�¶ 

binding sites. Whenever the mineral sorption is negligible, because of the predominance in sorption 
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of relatively non-polar compounds, the partition coefficient between SOM and water (Kom) depend 

on SOM composition and particularly on its polarity. Partition coefficient can also be expressed as 

Koc in terms of soils carbon content instead of SOM content. In light of the expected dependence of 

Koc on SOM composition it is essential to determine the variability in SOM medium properties 

between soils that affect the partition coefficient (Kile et al., 1995). Humic substances (humic acids 

[HA], fulvic acids [FA] and humin) play critical roles in the retention and transportation of 

contaminants. Sorption processes with humic acids are believed to reduce bioavailability, hinder 

remediation, encourage environmental persistence and limit the mobility of hydrophobic compounds. 

Sorption processes with fulvic acids, instead, facilitate the transport and the environmental toxicity. 

Great attention has to be paid to structural differences in HA or FA when discussing the sorption 

mechanism of organic pollutants. Aromaticity is believed to be one of the factors controlling the 

binding interaction. Nonetheless, despite many efforts dedicated to this aspect, (Ahmad et al., 2001), 

a clear understanding of the interaction between SOM and pollutants remain obscure. One reason for 

the lack of clarity is the structural heterogeneity of HA, FA and dissolved organic matter. The 

arrangement and formation of functional groups, such as aromatic and aliphatic moieties, may vary 

significantly. Thereto, to correctly asses the behaviour of organic contaminants, a deeper knowledge 

of the composition of the SOM is strongly needed to define a degree of the interaction strength that 

finally influences the mobility and bioavailability of organic pollutants in soils. The same conclusions 

affect the behaviour of polar and inorganic contaminants with the only difference that it is necessary, 

in this, case to consider also the adsorption on the mineral fraction of the soils.  

Mobility in soil of most hazardous inorganic pollutants such as HMs as well as the availability 

to plants can be evaluated following the BCR three step sequential extraction (�7�R�N�D�O�L�R�÷�O�X�� �H�W�� �D�O������

2006). This procedure allows determining the type of bond linking a metal to the soil matrix. Total 

HMs present in a soil are ideally divided in four fractions. The first three are extracted in the three 

step of the BCR procedure and are defined as Exchangeable, Reducible and Oxidizable fractions. The 

fourth is the residual fraction and represents the Residual fraction of the HMs. This latter is so strongly 

linked to the soil matrix that is not extractable during the three steps. Also for HMs, the mobility 

could be related to the quality of humic and fulvic acids composing the soil organic fractions in terms 

of aromaticity and aliphaticity. More specific studies are taking in consideration the influence of the 

organic fraction of soils, determining by 13C NMR the percentage of aliphatic and aromatic carbons 

present in humic acids, relating their quality to sorption and mobility of metals (�%�D�U�D�Q�þ�t�N�R�Y�i�� �	��

Makovníková, 2003). Concerning organic pollutants, while for heavy metals contamination a 

standard procedure is well defined as described above, is less clear how to evaluate their mobility and 

binding fractions through soils.  
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Another variable that plays primary role is the presence in the wastewater of dissolved carbon. 

Dissolved organic matter (DOM) interacts with organic pollutants and thus affects their behaviour in 

soil and the aquatic environment. DOM may reduce the sorption of organic pollutants through stable 

DOM-pollutant interaction in solution or by competing with the pollutant molecules for the sorption 

sites on the soil surface. In addition to the association of chemical to DOM, DOM applied in soils can 

sorb to soil surfaces resulting in an overall enhancement in sorption and retardation of mobility. 

Furthermore, DOM and many contaminants move through soil in particulate or colloidal forms, either 

because they are inherently particulate due to low solubility or because are adsorbed onto otherwise 

harmless mobile particles, which are present in the soil. In some way is possible to assess that 

contaminants are not only partitioned between an immobile solid phase and a mobile aqueous phase. 

Colloids and nanoparticles in water can act as a third mobile solid phase, that can migrate at rates 

similar or even greater than the mobile aqueous phase (Hofmann & Von der Kammer, 2009; 

McGechan & Lewis, 2002). Although colloidal mobilization might be considered negligible when 

contaminants are present in high concentration, this is not the case of micro-pollutants. Their 

concentration in the pore water, is indeed always comparable to that of the colloids which are 

continuously generated at soil water interface, and colloids mobilization becomes the key factor that 

determines the overall mobility in soil. A multiphase approach is therefore necessary to simulate the 

migration of trace contaminants. Such mobile solid phase consists of colloidal particles in the size 

range from 1nm to 1µm. This kind of transport mechanism is of course correlated with the 

experimental observation about DOM effects on Koc partition coefficients.  

Several sorption and desorption studies are carried out on real soils by mean of column tests for 

several pharmaceutical compounds. Carbamazepine and diclofenac are found to be slow-mobile 

compounds in SOM-rich soil layers. On the contrary in SOM poor soils their mobility increases 

significantly (Chefetz et al., 2008). In presence of DOM, imidacloprid has a reduced sorption due the 

competition of DOM for soil binding sites. While for two aromatic aniline derivatives studied with 

higher log Kow (less polar) the sorption is found enhanced by the presence of DOM, especially with 

addition of tannic acid (Flores-Céspedes et al., 2006; Kile et al., 1995). The binding behaviour 

between organic matter and pollutants is doubtlessly influenced also by pH. Generally pH exerts a 

negative effect on the binding process, because the charge on HA or FA increases at increasing pH, 

thus reducing the binding affinity with non-polar compounds (De Paolis & Kukkonen, 1997) while 

the affinity with ionic compounds (HMS) increases (Benedetti et al., 1996). Anyway, when the 

pollutant concentration is at micro or semi-micro level this effect should be negligible being the 

number of binding sites much higher than the ligands, of course in presence of high ionic strength the 

effect of competition between the cations can become significant. 
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1.2.1 Nature of colloidal nanoparticles and their involvement in contaminants mobilization 

Colloidal enhanced mobilization of HMs definitely depends on the colloids nature and generation 

rate. Clearly either wastewater or soil composition have a fundamental role in the complex dynamics 

that regulate HM mobility through the different layers. Particularly, natural organic matter is 

considered to have a crucial effect, able to greatly influence the retention and the transportation of 

HMs and other micro-pollutants. In general terms, the transport of inorganic and organic pollutants 

in water and soil can be strongly influenced by the mobility of natural dissolved organic matter. 

Organic molecules are present both in the wastewater and in the soil matrix. These molecules 

may belong to different classes of compounds and may have completely different chemical structure 

and biogenesis. Generally natural organic matter contains bio-polymers such as polysaccharides, 

proteins, lignin and their derivatives and finally humic substances (HS). HS are a very complex class 

of organic compounds, of which the biogenesis, the biological function and even the chemical 

structure were not completely elucidated and defined. The partitioning and the mobility of organic 

matter plays a fundamental role in transport of contaminants. Organic matter can either enhance, 

when dissolved (DOM), or retard, when bound to the soil (SOM), the transport of inorganic pollutants 

(Weng et al., 2002). HMs and contaminants in general are not only partitioned between the solid 

immobile and the water liquid phases. Colloids and nanoparticles act as a third mobile phase which 

is characterised by its own rheological properties and velocity (McGechan & Lewis, 2002). The third 

mobile phase could be organic, inorganic or composed by mineral organic associations (MOAs). 

Minerals and organic matter (OM) can form a huge number of different types of associations (Kleber 

et al., 2014). 

In soils, these associations are mainly investigated because of their role in determining the long-

term retention of OM (Janzen, 2006). The processes and mechanisms that retain OM in soil are a 

central concern to very different branches of environmental research, associations of OM with 

pedogenic minerals (MOAs) are known to be key controls in these and many other processes (Kleber 

et al., 2014). On their own, HS are in some way still an unknown on the organic chemistry point of 

view. A suggestive and stimulating scientific debate is instituted in the last decades about the HS 

structure (Piccolo, 2016). The classical idea of a class of unknown polymeric macromolecules - 

namely Humic acids (HA), Fulvic Acids (FA) and humin - is going to be passed by the new concept 

according to which HS are supramolecular aggregates of small organic compounds held together by 

weak dispersive forces (Piccolo, 2002). In any case, the determination of the real structure of such 

ubiquitous class of compounds is hardly challenging for several reasons. HS are rich in very polar or 
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charged substituents (e.g. carboxylic acid, hydroxyl, amino) that make them highly hydrophilic. 

Conversely, they are also rich in aromatic and aliphatic residues that are decidedly hydrophobic. It 

follows that HS in water are present in colloidal form exposing the hydrophilic moieties in the external 

part of the colloid and hiding the non-polar domain in the inner part (Kelleher & Simpson, 2006). 

Within the hydrophobic core, organic residues are bound together by hydrophobic interactions. 

Although such dispersive forces are weak on the energy point of view, the supramolecular structure 

of HS is so stable that is very difficult to extract hydrophobic molecules from the inner core of the 

colloids which, due the very high amount of polar groups are practically non soluble in non-polar 

organic solvents. A scheme of such micellar structure is reported in Figure 1.2 as described by von 

Wandruszka (2000).  
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Figure 1.2 Micellar structure of Humic supramolecular aggregates (von Wandruszka, 2000), © The 
Royal Society of Chemistry, 2000 

 

Due their specific properties, HS colloids are the perfect transport medium for any kind of 

contaminant in any environmental compartment (soil, air, water) where they are ubiquitous. 

Carboxylic and polar groups bind effectively heavy metals while the hydrophobic core can potentially 

host perfectly any kind of organic contaminant despite the lipophilicity degree. Understanding such 

colloidal aggregates mobility through soils is hence of primary importance to assess the fate of 

contaminants in the environment, to prevent their diffusion through the food chain and their 

bioaccumulation. At the same time, this unique class of compounds were successfully exploited to 

remediate contaminated soils due their high affinity with HMs and their enhanced mobility through 

soils. 
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1.3  Scope and structure of the thesis 

 

1.3.1 Thesis scope 

The aim of the present thesis is to give an overview of the HMs fate once they are released in the 

environment through wastewater irrigation, in order to better understand the complex mechanisms 

that influence the contamination process. Such information might be useful to choose the best solution 

for the remediation of such kind of soils and is crucial to assess the potential risk of wastewater reuse 

in agriculture.  

Colloidal mobilization of HMs is considered as key factor of the contamination process. Thereto 

the goal of the study is to relate the information obtained about the colloidal aggregates isolated from 

soil with their ability to selectively mobilize HMs.  

The main idea is to clarify as much as possible the quality and the strength of the interactions 

that regulate the transport of contaminants through soils in aqueous mediums. As explained before 

the overall process is affected by several variables and the wide variety of properties while changing 

from soil to soil is not of help in this direction. It was thus decided to simplify the problem studying 

the behaviour of an artificial soil irrigated with real and / or synthetic wastewater containing trace 

HMs. From literature investigation it was decided to follow the approach standardized by the 

Organization for the Economic Co-operation and Development (OECD) that developed a standard 

protocol for preparation of artificial soils (Wilhelm & Maibach, 2008).  

Artificial soil was first introduced as substrate for the earthworm acute toxicity test and has been 

used as a medium for other bioassays. It has also been used as a reference soil when testing complex 

solid samples like wastes or contaminated soils. Figure 1.3 shows the composition of OECD reference 

soil.  
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Figure 1.3 Composition of standard OECD artificial soil. 
 

The artificial soil composition (peat and clay content, pH, water content) was optimized to 

achieve a standardized soil-like medium, less variable than real soils. The artificial soil composition 

was defined as: 70% fine quartz sand (above 50% particles 0.05 �± 0.2 mm), 20% kaolin clay (kaolinite 

content preferably above 30%) and finely ground Sphagnum peat. Although OECD soil was probably 

�T�X�L�W�H�� �I�D�U�� �W�R�� �S�U�R�S�H�U�O�\�� �P�L�P�L�F�� �W�K�H�� �E�H�K�D�Y�L�R�X�U�� �R�I�� �D�� �U�H�D�O�� �V�R�L�O���� �L�W�� �Z�D�V�� �F�K�R�V�H�Q�� �D�V�� �³�V�L�P�S�O�H�� �P�R�G�H�O�´���� �7�K�H��

relatively low metal background, and the absence of aggregates, inhomogeneity, or other factors 

influencing the metal fate in soil (i.e. Fe and Mn hydroxides,�����D�O�O�R�Z�H�G���V�W�X�G�\�L�Q�J���W�K�H���³�V�R�O�H�´���H�I�I�H�F�W���R�I��

SOM (described in chapter 2), excluding other major effects. As the OECD itself indicates, the 

capacity to retain or release contaminants is related to the amount of organic matter (peat) contained 

in the soil (Wilhelm & Maibach, 2008). It was hence possible to vary the peat amount, keeping 

constant the content of kaolinite clay. Although the use of this kind of soil should grant stability and 

repeatability of the experiments, the composition of the soil has still some source of variability 

(Bielská et al., 2012), probably related to the Sphagnum peat used to grant the required content of 

organic matter. Sphagnum peat is known to be rich in humic and fulvic acids and is normally sold for 

gardening purposes. No information is thus given about the properties of the organic matter, so that 

a detailed characterization was required. 

 

1.3.1 Thesis structure 

In order to achieve the above reported aims, the entire work was divided in several parts that 

constitute the various chapters of the present thesis. Fig. 1.4 schemes out chapters and structure of 

the present work. 
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Chapter 1 briefly summarizes the characteristics of trace HMs as emerging contaminants, and 

briefly describes the mechanism of colloidal mobilization, focusing on the humic substances structure 

and aggregation state. 

Chapter 2 treats the effect of organic matter content on colloidal mobilization. The developed 

mobilization model is introduced and extrapolated from the experimental results. The observation of 

sodium content effect on colloidal mobilization is also reported and discussed. This latter will is 

deeper investigated in chapter 5. 

Chapter 3 is a methodological chapter. It contains the description and the statistical validation of 

a novel analytical method, which is used in the subsequent chapter 4 to monitor the migration pattern 

of humic substances through soil profiles.  

Chapter 4 reports the results of experiments comparing irrigation of OECD soil with real and 

artificial wastewaters. The composition of colloidal metal carriers were better defined as mineral 

organic associations. The hypothesis of supramolecular structure of organic aggregates is confirmed 

by spectroscopic data. 

Chapter 5 deepens the effect of sodium content as inhibitor of colloidal mobilization. Several 

sodium concentrations are tested in the irrigation water to define a threshold sodium value for 

colloidal mobilization inhibition in OECD soil.  

Finally general discussion and conclusions are reported in Chapter 6 to highlight the results 

achieved in the present work and suggest possible future perspective, improvements and 

investigations on trace HMs colloidal mobilization mechanisms. 
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Figure 1.4 Scheme of chapters subdivision and structure of the thesis. 
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2.1  Introduction  

In the last few decades, all over the world and especially in arid and semi-arid regions 

(Avnimelech, 1993), several strategies have been developed to front the water scarcity caused by 

climate changes and population growth. These strategies are mainly addressed by wastewater 

recovery and reuse, which is often the most convenient solution, especially for agriculture purposes. 

Reuse of wastewater for irrigation has several advantages, as it reduces the resource constraints due 

to variable rainfalls, and the need of expensive water storage and freshwater supply network. 

Moreover it allows saving high quality water for drinking water supply. At the same time it also has 

some drawbacks, mainly related to the potential impact on the receiving soil and on the crop itself 

caused by the low quality of the reused water. Real or perceived problems are generally attributed to 

salt and nutrients presence, as well as to heavy metals, pathogens, pharmaceuticals and endocrine 

disruptors (Toze, 2006).  

The existing regulations, which strictly rule the characteristics of treated wastewater to be reused 

for irrigation purposes, together with the advances in the techniques applied for wastewater treatment, 

which allow attaining very high efficiency of the adopted process, have drastically reduced the risk 

related to traditional contaminants. Nonetheless, new and more cogent concerns are now addressed 

to an emerging class of organic and inorganic contaminants, which are not ruled by precise water re-

use guidelines, have a not completely known behaviour in the environment, and could represent a 

serious hazard for human health. These contaminants are therefore indicated as Contaminants of 

Emerging Concerns (CECs). Among the CECs, heavy metals (HMs) in concentrations below the 

discharge limits play a prominent role. They are ubiquitous in the wastewater treatment plant effluent 

(Bolong et al., 2009), and even in trace or ultra-trace concentration are able to be retained by the soil-

plants system (Singh et al., 2010). Consequently their possible risks for human health are not related 

to their concentration in the irrigation water, but to the capacity of soil and plants to retain and 

accumulate them.  

The fate of HMs in the environment is really hard to predict. Mechanisms of mobility through 

the soil are, in fact, very heterogeneous and strongly related to: i) soil physical-chemical nature; ii) 

soil-water retention capacity; and iii) fluid transmission characteristics (Mingorance et al., 2007). Soil 

water sorption-release equilibria are hence really complex, and uneasy to model or generalize 

(McGechan & Lewis, 2002).  

Clearly soil composition has a fundamental role in the complex dynamics that regulate HM 

mobility through the different layers. Particularly soil organic matter content is considered a crucial 
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factor, able to greatly influence the retention and the transportation of HMs and other micro-pollutants 

(Guillon et al., 2003). Sorption processes with humic acids (HAs) are believed to reduce pollutants 

bioavailability, hinder remediation, encourage environmental persistence and limit the mobility of 

hydrophobic compounds (Shaker & albishri, 2014). At the same time fulvic acids (FAs) might 

facilitate the migration and the toxicity of bound pollutants (Shahid et al., 2012; Sun et al., 2012).  

In addition to that it is possible to assess that contaminants are not only partitioned between an 

immobile solid phase and a mobile aqueous phase. Colloids and nanoparticles in water act as a third 

mobile solid phase which migrates at a lower, similar or even greater rate than the mobile aqueous 

phase (Hofmann & Von der Kammer, 2009). A three-phase approach is therefore necessary to 

simulate the migration of sorbed contaminants.  

Although several studies have investigated metal migration and adsorption into soils, little 

(Grybos et al., 2007; Linde et al., 2007; Moreno-Jiménez et al., 2011; Yu & Li, 2012) or no attention 

has been paid, so far, to the behaviour of HMs at trace level concentration, i.e., below the discharge 

limits established by the existing regulation for wastewater reuse in agriculture. 

Starting from these considerations the present work aims to investigate the accumulation of trace 

HMs in soil caused by irrigation with treated wastewater, focusing on the metals retention and 

mobility related to the different content of soil organic matter. In order to have generalizable data and 

repeatable experiments, the research is conducted on an artificial model soil (Wilhelm and Maibach 

2008), prepared according to the Organization for Economic Cooperation and Development (OECD). 

The effect of soil organic matter content, and the effect of irrigation water characteristics are also 

investigated, varying the amount of peat contained in the soil, and the sodium content of the synthetic 

water used for soil irrigation. 

 

2.2  Materials and methods 

 

2.2.1 Experimental setup 

The experimental study was carried out at laboratory scale, using an artificial soil of known 

composition, prepared according to the OECD guidelines. The soil, developed to test the eco toxicity 

of organic and inorganic chemicals and widely used as reference soil in the testing of complex solid 

samples (�-�R���N�R���	���2�O�H�V�]�F�]�X�N������������), was composed as follows: kaolinite clay 20%, quartz sand 74%, 
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CaCO3 1%, Sphagnum peat 5%. Although OECD soil was probably quite far to properly mimic the 

behaviour of a real soil, it was chosen �D�V���³�V�L�P�S�O�H���P�R�G�H�O�´�����7�K�H���O�R�Z���P�H�W�D�O���E�D�F�N�J�U�R�X�Q�G�����D�Q�G���W�K�H���D�E�V�H�Q�F�H��

of aggregates, inhomogeneity, or other factors influencing the metal fate in soil (i.e.: Fe and Mn 

�K�\�G�U�R�[�L�G�H�V�����D�O�O�R�Z�H�G���V�W�X�G�\�L�Q�J���W�K�H���³�V�R�O�H�´���H�I�I�H�F�W���R�I���6�2�0�����H�[�F�O�X�G�L�Q�J���R�W�K�H�U���P�D�M�R�U���H�I�I�H�F�W�V�����$�V���W�K�H���2�(CD 

itself indicates that the capacity to retain or release contaminants is related to the amount of organic 

matter (peat) contained in the soil (Wilhelm & Maibach, 2008), the peat content was varied, keeping 

constant the content of kaolinite clay. At this aim the amount of sand was reduced, having ascertained, 

during preliminary adsorption tests, carried out separately on the three components of the soil, that 

the contribution of sand to the overall capacity of adsorption was negligible (data not shown). All the 

components of the soil were analysed to quantify the background HM concentration. The soil was 

irrigated using an artificial irrigation water (IW) containing a mixture of three HMs frequently found, 

at trace level, in reused wastewater: Cd (0.0025 mg/L), Cu (0.5 mg/L) and Ni (0.15 mg/L). The 

solution was prepared starting from analytical grade CuCl2·2H2O (Carlo Erba Reagenti, Italy), 

NiCl2·6H2O (Sigma-Aldrich, USA), and from 1000 mg/L Cd analytical standard (Carlo Erba 

Reagenti, Italy) and made up to the final concentration by means of subsequent dilutions with milli-

q water (Elga, USA). The IW solution was adjusted to pH 6.5 by means of addiction of few drops of 

KOH 0.05 M. The concentration of metals were well below the threshold values suggested by FAO 

in the wastewater quality guidelines for agricultural use (Pescod, 1992). More in details it was used, 

as a reference, one half of the threshold concentration established by the Italian regulation (DM 

185/2003). Speciation diagrams (Figure 2.1) at the tested concentration were calculated by means of 

the software Visual Minteq. pH was made to variate from 1 to 14 by increments of 0.1. According to 

the obtained data the prevalent species in the artificial IW were the free divalent ions. The only other 

specie occurring at non negligible concentration resulted CuOH+. 

 

 

Figure 2.1 Speciation diagrams as function of pH for Cd (a), Cu (b), Ni (c 
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To assess the effect of HM transportation due to colloids mobilization (Plassard et al., 2000), the 

sodicity of the IW was kept very low(<0.05mM), and then adjusted to 20 mmol/L for the final part 

of the study, adding the opportune amount of analytical grade NaClO4 (Sigma-Aldrich, USA).  

The solution containing the trace contaminants was led to interact with the soil in a modular 

column system built with soil layers of variable depth. Each module of the column was composed by 

�D���������P�/���S�R�O�\�S�U�R�S�\�O�H�Q�H���F�R�Q�L�F�D�O���W�X�E�H�����-��� �������������F�P�������K�R�O�H�G���L�Q���W�K�H���E�R�W�W�R�P���D�Q�G���I�L�O�O�H�G���Z�L�W�K���D���O�R�Z�H�U��layer 

of glass wool and glass beads, as indicated in Figure 2.2. Soil was packed in the columns by tapping 

the tubes on the bench until no reduction of volume due the soil packing was observed. Once reached 

the desired depth (7 cm in experiment A; 5 cm in experiments B,C,D ) the columns were irrigated 

with the synthetic solution.  

 

 

Figure 2.2 Leaching column scheme. 

 

The IW was pumped throughout the columns using a digispense 800 (IVEK, USA) high 

precision, dual channel, rotative ceramic piston pump. The flow rate was adjusted according to the 

soil water retention, leaving the same constant water head (2 cm) on the top of each column. The 

effluent of the columns (leachate) was recorded daily, and analysed, for the entire duration of the test, 

to obtain the amount of HMs and the amount of soluble organic matter (in terms of total organic 

carbon, TOC) leached from the soil.  
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Overall four sets of experiments were performed, varying: i) the amount of soil organic matter 

(SOM); ii) the column depth; iii) the sodicity of the IW. The experimental set-up is summarized in 

Table 2.1. 

 

Table 2.1 Experimental setup. 

Experiment SOM content 

[%]  

Column depth 

[cm] 

Sodium in IW 

[mM ] 

pH of IW  Exp. Time 

(d) 

A 5 (OECD) 49 <0.05 6.5 22 

B 2.5; 5; 7.5; 10 5 <0.05 6.5 36 

C 5 (OECD) 5 <0.05 6.5 17 

D 2.5; 5; 7.5; 10 5 20  6.5 55 

  

 

At the end of experiment A the soil was collected, dried at room temperature in vacuum 

conditions using a desiccator, and subjected to acid digestion to evaluate the content of HMs of each 

module of the column. At the end of experiment B, instead, the soil contained in the polypropylene 

tube was frozen at -20°C and cut in slices of 1 cm each by means of an electrical saw (Bosch, 

Germany), to better define HM spatial distribution. A blank soil sample was moisten with ultrapure 

water, frozen and finally cut and analysed to exclude any metal contamination from the saw blade. In 

order to achieve the metals mass partitioning between the soil and the liquid leachate, the daily 

leachates of each column were collected together, and, at the end of the test, concentrated by 

evaporation at mild temperature (40°C) in a thermostatic oven (Binder, Germany) to a final volume 

of 50 mL prior to analysis. The leachates collected from experiment C were instead analysed daily as 

described in the next sub-section. To define the quality of the interactions between the solid matrix 

and the contaminant, a sequential extraction was performed too (Pueyo et al., 2008). Finally at the 

end of experiment D, it was applied the same procedure described for the experiment B.  

All tests were carried out in triplicate and the variance among the triples was reported as standard 

deviation by means of error bars. 

 



27 
 

2.2.2 Analytical methods  

HMs analyses in soil were performed by Atomic Absorption Spectroscopy (AAS). In details, Ni, 

Cu and Pb contents in the soil were measured by flame atomization (F-AAS), while trace 

concentrations (Cd content in the soil, Ni, Cu, Cd, content in the leachates of experiment B) were 

measured by graphite furnace atomization (GF-AAS). A fully equipped AVANTA (GBC, Australia) 

and a SpectrAA (Varian, USA) atomic absorption spectroscope were used for these purposes. 

Quantification limits (LOQ) for GF-AAS were determined as 0.05; 0.5 and 0.75 ppb for Cd, Cu and 

Ni respectively. Soils were dissolved by means of microwave assisted digestion using a Start D 

(Milestone, USA) microwave digester. The acid digestion was performed using a 9:1 HNO3:H2O2 

reagent mixture. The fractionation of contaminants in the soil was determined following the modified 

BCR three steps sequential extraction as described by Rauret et al. (2000). TOC was measured using 

an OI Analytical AURORA 1030W TOC Analyzer set in TC-TIC mode, and evaluated as difference 

of total carbon (TC), detected after acidic oxidative degradation with 10% sodium persulfate (Carlo 

Erba Reagenti, Italy), and total inorganic carbon (TIC), detected after the sole acidification by the 

addition of 5% concentrated phosphoric acid (Carlo Erba Reagenti, Italy). The leachates collected 

from the columns at 5% SOM (OECD soil) in experiment C were further investigated. In detail the 

concentration of Cd, Cu , Ni, and the absorbance at 245, 285, 350, 650 nm ( A245 ) were measured 

daily. Moreover the 3DEEM matrices were recorded. The E4/E6 ratio was calculated from the 

measured absorbance according to Chen et al. (1977). HM determination in the leachates was carried 

out by means of a Nexion 300 ICP-MS (Perkin Elmer, USA) operating in collision mode. LOQs were 

determined as to be 0.021; 0.06; 0.03 ppb for Cd, Cu and Ni, respectively. The UV measurements 

were carried out using a UV-VIS Lambda3 spectrophotometer (Perkin Elmer, USA). The 3DEEM 

matrices were acquired through a LS 45 spectrofluorimeter (Perkin Elmer, USA) using the following 

excitation-emission range: ex. 210-455nm - em. 370-585 nm. 
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2.3  Results and discussion 

 

2.3.1 Mobility of Cd, Cu, Ni, in the standard OECD artificial soil 

Results of metal concentrations in the different soil layers at the end of the experiment A are 

reported in Figure 2.3.  

 

     

Figure 2.3 a) Mobility profiles of trace Cd, Cu, Ni through OECD soil. b) Mobility profile of kaolinite 
bound Pb after the leaching experiment. Vertical dotted lines indicate initial background levels in the 
artificial soil.   

 

As it can be easily deduced from the obtained metal profiles, the OECD soil showed high affinity 

with the metals that were totally immobilized in the first centimetre of the soil layer. The metals 

concentration, which was monitored daily within the leachates, was very low and during only few 

days copper and nickel were barely above the quantification limits, while cadmium was always below 

during the whole duration of the test. The metals, being present in very low concentration in the IW, 

interacted strongly with the soil binding sites that were more abundant than the pollutants. The major 

part of HMs was hence quickly and irreversibly trapped in the first centimetres and created a very 

thin contamination front, which reasonably would have expanded once the binding sites in the topsoil 

had been saturated. Of course, at the tested concentrations, this was not likely to occur within the 

established experimental time, and therefore no evident mobility of the contaminants appeared.  

Together with the accumulation of HMs occurring in the first centimetres of the soil, a different 

phenomenon was also observed. Copper concentration, in fact, showed a broad peak (18.3 mg/kg) at 

29 cm depth. This peak could not be explained as a consequence of the sorption-desorption equilibria, 

because the column was fed continuously with the IW, and the effect of sorption-desorption would 

have caused a monotonic decrease of concentration at increasing depth, instead of causing an 

b) a) 
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accumulation of metal at two third of the column. Figure 2.3b reports the concentration trend of Pb 

that was found to be present in the initial Kaolinite at quite high concentration (499 ± 5 mg/Kg). It is 

clear that lead was washed from the soil by the IW, since its concentration was lower than the initial 

background throughout the soil profile. On the other side a considerable fraction of the Pb moved at 

very low rate through the soil layers. Finally such slow mobilization generated, after the leaching 

time, a sudden increase (around 80 mg/Kg) of lead concentration at the same depth (29 cm) where 

Cu also accumulated. 

To explain this behaviour it was assumed a mobilization mechanism based on a three-component 

physical model of the soil, described in Figure 2.4, including: i) an immobile phase; ii) a slowly 

mobile phase; and iii) a mobilizable phase.  

Movement inside the soil is driven by the water flow, but it does not always take place, 

necessarily, at the same velocity of the water. Once the leaching starts, the slowly mobile phase moves 

with it, even if at a slower pace, determining a sort of front descending through the soil. The slowly 

mobile phase is mainly composed by colloids, both organic and inorganic, as well as by 

macromolecular aggregates of kaolinite clay platelets with humic substances. The descending front 

divides the soil into two parts, one below the front, in which colloids maintain the same initial 

concentration, and one above the front in which their concentration is decreasing during time and is 

always lower than the initial one (Figure 2.4a). At the same time water leaching brings HMs to the 

soil. The metals interact mainly with the immobile phase, and are trapped in the first layers of the 

soil. The interactions are quite strong, and not easily reversible, since the continuous water flow is 

not able to mobilize the metals and distribute them in the deeper layers of the soil. Nonetheless part 

of the immobile phase is subject to transformation during the leaching process, and becomes mobile 

(mobilizable phase). It is well attested, in fact, how organic matter undergoes to oxidative processes 

in the soil, which may be both biotic and abiotic (Kleber et al., 2014; Sunda & Kieber, 1994; ten Have 

& Teunissen, 2001). This leads to a production of a wide variety of low molecular weight molecules 

and oligomer humic fragments, water soluble and thus highly mobile, which interact with the 

contaminants. Ligands generation take places constantly during the leaching, and is promoted by a 

�V�H�U�L�H�V���R�I���U�H�D�F�W�L�R�Q�V���D�O�V�R���F�D�O�O�H�G���³�R�[�L�G�D�W�L�Y�H���G�H�S�R�O�\�P�H�U�L�V�D�W�L�R�Q�´�����)�L�J�X�U�H��2.4b). Because of their mobility, 

formed ligands act as chaperones molecules through the soil column, carrying downward the metals. 

The migration of the chaperones molecules is quite fast, but at least some of them are somehow 

slowed and even blocked by the colloidal front, producing a peak of contamination at a certain depth 

of the column (Figure 2.4c-2.4d). It is reasonable to suppose that such interaction is higher for high 

molecular weight compounds than for small molecules. 
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As metal mobility is related to the presence and quality of the chaperones molecules, it will be 

completely different if: i) the metals are dissolved; ii) the metals are adsorbed in their charged free 

form; iii) the metals are coordinated to the ligands that are present in the system. In other words the 

mobility will be strongly affected by metal speciation. 

The described mechanism can find confirmation in some of the study described in the available 

literature. Many researches (Khodadoust et al., 2005; Renella et al., 2004; Schwab et al., 2008) 

observed that organic acids may affect heavy metals desorption, solubility and thus mobility. 

Moreover, Cu and Cd are known to mobilize according to different mechanisms (Ahumada et al., 

2001; Lafuente et al., 2008; Li & Zhou, 2010; Zhao et al., 2007a; Zhao et al., 2007b), Cd being more 

mobile than Cu (Beesley et al., 2010) and more subjected to be mobilized by interaction with small 

organic acids (Gerritse, 1996; Li & Zhou, 2010; Weng et al., 2002). In contrast, Cu in soil is frequently 

mobilized also in presence of high MW molecules as metal-organic complex (Flogeac et al., 2004; 

Pérez-Novo et al., 2009; Schwab et al., 2008; Temminghoff et al., 1997). In accordance to this result, 

no contamination front was observed for Cd in the present study (Figure 2.3a). Likely Cadmium was 

transported by small molecules and was affected by the phase change in presence of the colloidal 

front. It is possible to observe that the Cd-Ligand complexes penetrated within the colloidal phase 

front and the concentration, although very low, is arising in the last 10 cm of the column.  

Finally the formulated hypothesis is in agreement with the presence of contamination fronts 

within the soils taking place in correspondence of soil composition changes, usually at the interfaces 

between different horizons. The slowly mobile phase described so far, might be more strongly affine 

with the new type of soil respect to the one from which was released, and therefore could be retained 

at the interface, creating thus a barrier that may continue to trap even trace contaminants and increase 

their concentration during time. This behaviour is very well described, for example, by the 

experiments conducted by Zhao et al. (2007a) and Zhao et al. (2009).  
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Figure 2.4 Proposed mechanism for copper mobility in OECD soil. 

 

2.3.2 Effect of SOM content 

To further confirm the supposed mechanism of HM mobilisation it was run a second set of tests 

(experiment B) by varying the SOM content. This time the column was only 5 cm deep to avoid the 

presence of a colloidal front inside the soil. As expected the modification of the soil composition 

caused a variation of its permeability, testified by the volume of leachate collected at the end of the 

experiment (Figure 2.5c).  

Evidently, the higher amount of peat made the columns more permeable to the water solution. 

These results are often encountered in the literature, since water infiltration may be improved by the 

presence of organic matter and microbiological activity (Davis & Wilson, 2000; MacRae & Mehuys, 

1985). This meant that the column containing the highest amount of organic matter (10%) was loaded 

with the highest amount of HMs, since the total amount of IW passing through this column was about 

30% higher than the total amount passing through the column containing only 2.5% of peat. 

Moreover, as expected, preliminary batch test with Ni and Cu confirmed that peat has a higher 
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maximum adsorption capacity (14.6 mgCu/g and 13.44 mgNi/g) compared to kaolinite (4.3 mgCu/g 

and 6.5 mgNi/g) in accordance with Covelo et al. (2007), therefore it would have been reasonable to 

expect a higher contamination of the soil containing higher percentage of organic matter. Obtained 

data, displayed in Figure 2.5a, contradicted such an expectation, showing that the columns had an 

opposite behaviour for all the tested metals. 

 

 

 

Figure 2.5 Results of experiment B. a) Concentration of Ni, Cd, Cu in the soil increasing SOM content. 
b) Concentration of TOC in the leachates. c) Total volume of leachate collected at the end of the 
experiments at increasing SOM % in the soil. 

 

The accumulation of contaminants, which happened, once more, in the top layer of the soil, was 

in inverse proportion with the SOM content. The highest contamination was reached for the soil 

prepared with 2.5% of peat (30.4 mg/kg of Ni, 0.33 mg/kg of Cd, and 63.5 mg/kg of Cu) while the 

lowest was observed at 10% SOM (21.7, 0.14, 39.9 mg/Kg for Ni, Cd, Cu respectively). Such an 

apparently unexpected result was coherent with the mechanism described in the previous section. The 

generation of mobilizing ligands was more probable at higher SOM content. Because of the limited 

depth of the column, the slow colloidal fraction washed out of the column in the first days of leaching, 

and the ligands were not trapped by it, exiting from the column with the leachate. This was also 

confirmed by the TOC concentration in the leachate (Figure 2.5b). The peak of TOC, in fact, ranged 

from 45 mg/L for the soil having the lowest SOM content, to 180 mg/L for soil having the highest 

a) 

b) c) 
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SOM content. Moreover, after the first 7 days it was observed a continuous release of organic matter, 

which lasted until the end of the experiment. 

Clearly the TOC did not account directly for the ligands concentration, since these latter were 

only a small fraction of the total organic carbon measured in the leachates. Nonetheless it assessed 

that soil was continuously releasing organic material in the leachate. It is worth noting that the 

mobilization mechanism performed a sort of washing of the soil, removing even part of the 

background HM concentration. Measured metal concentration below the first 2 centimeters, in fact, 

were always below the initial background level, the more at higher SOM content.  

 

 

 

 

Figure 2.6 a) Linear correlation between metals mobilization and SOM content. b) Fractionation of 
heavy metals after the irrigation simulation (error bars at the top of the columns refer to mass balance 
discrepancy between adsorbed and leached metals). 

 

Figure 2.6a plots the percentage of metals that was mobilized through the columns at increasing 

SOM content. As it can be easily observed there is an excellent correlation between the two series of 

data for all considered metals, indicating that SOM content played a primary role in defining the trace 

metals mobilization coefficients. Furthermore, considering that the intercepts of the lines are quite 

close to the zero value, it is reasonable to suppose that the interaction with the organic matter was the 

only parameter affecting the metals dynamics in the tested conditions. The similar values of slopes 

obtained also suggest that the mobilization of at least Cd and Cu, happened according to the same 

transport mechanism. No evidence of selectivity nor competition between the ions were observed.  

a) 

b) 
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Figure 2.6b shows also metal distribution among different fractions of the soil, together with 

metal amounts detected in the leachate at the end of the experiment. The sum of these amounts equals 

the sum of HMs added to the system plus the background values, allowing to close the mass balance 

with a maximum discrepancy of 12.5%.  

Several interesting information can be deduced by the obtained distribution. First of all, data 

referred to HMs detected in the leachate confirm the previous observation concerning metal 

mobilisation. Moreover, it can be noted that the majority of metals bound to the soil was distributed 

in the acid-labile fraction.  

This exchangeable fraction was the only one involved in the observed mobility. The SOM 

increase did not cause any variation of the percentage of metals bound to the other fractions of the 

soil, even if the percentage found in the leachate increased. It follows that both the contamination of 

the soil, and the mobilization of the metal into the soil were mainly associate to ionic exchange 

phenomena, and therefore the metals were easily bioavailable for crops or microorganisms. We also 

observed a decrease at increasing of SOM of the nickel bound to the oxidizable fraction that is likely 

related to the mobilization of Ni adsorbed on complex organic ligands (likely FA) from the peat and 

that was already present in the soil background. No Cd at all was found in the oxidizable fraction. 

Moreover Cadmium is confirmed to be more mobile respect to the other metals and in all the 

configurations tested a higher percentage of the added metal was released in the leachate respect to 

Cu and Ni. 

 

2.3.3 Characterization of released soil colloids  

Results referring to the characterization of the leachates collected in experiment C are reported 

in Figure 2.7. From Figures 2.7a-b it is possible to notice the presence of several peaks of HMs 

concentration at different leaching times (e.g.: 6, 9, 11, 14, 15 d). Cu and Ni followed a very similar 

mobility pattern with peaks often coincident (6, 9, 11, 14 d). Conversely, Cd showed a constant 

release with concentration oscillating around 1 µg/L during the first days of the experiment (1-11 d). 

Then the concentration decreased and finally a peak was recorded on day 15 (Figure 2.7b). Figure 

2.7a also shows the measured trend of A245 in comparison with the metals release. Except for one 

sample (14 d), there is a notable correspondence between the peaks of Cu and Ni and the A245 values. 

Such correspondence confirms the hypothesis that the organic colloidal matter is involved in metal 

transport through soil. The OM release from the soil is hence controlling metals mobility. The 

reported trend (Figure 2.7a) of Pb concentration accounts instead for inorganic colloids mobilisation. 
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Indeed, as previously described Pb is intimately related to the Kaolinite composition, that is the only 

Pb source in the studied system. The correspondence of peaks of Pb and A245 (9, 12, 15 d) led to 

hypothesize the presence of colloidal mineral organic associations (MOAs) that were strongly related 

to the transport of Cu and Ni (Kleber et al., 2014). This confirms the hypothesis that the slow colloidal 

fraction is in the first days regulating the metal release, where the mineral organic aggregates are 

those hypothesized in Figure 2.4c and are responsible for the peak of Cu in soil recorded in Figure 

2.3a. The initial release of Cd is clearly related to this inorganic colloids release. Such dispersed 

release of Cd confirms that Cd complexes are penetrating within the slow colloids front and hence no 

accumulation peak is recorded, in accordance with what previously discussed concerning Figure 2.3a. 

The E4/E6 ratio displayed in Figure 2.7b confirms that Cd is preferentially complexed by small 

molecular weight ligands. E4/E6 ratio is in fact related to the degree of humification and in general is 

increasing at decreasing the humification degree (Chen et al., 1977; Yang et al., 2016).  

 

 

Figure 2.7 Characterization of the colloidal fractions mobilised from the columns in experiment C; a) 
trends of Cu, Ni, Pb and A245 versus time; b) trends of Cd and E4/E6 versus time; c) selected 3DEE 
matrices of the leachate solutions. Up-right numbers in Figure c correspond to the experiment time 
indicated in Figure a. 
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A selection of the 3DEEM acquired at specific leaching time was reported in Figure 2.7c. More 

in detail the 3DEEM were chosen according to the HMs trends observed in Figure 2.7a-b. During the 

whole experiment (Figure 2.7c, graphs 1-8) it was detected the constant presence of two peaks of 

excitation- emission. The first one (ex 230 �± em 420-���������Q�P�������Q�D�P�H�O�\���.���L�Q���J�U�D�S�K���������L�V���L�Q���D���]�R�Q�H���R�I��

the matrix that is usually associated to FA-like fluorophore (Boguta et al., 2016). FA has indeed 

higher amounts of aliphatic domains and generally lower molecular weight distributions compared to 

HA. Hence less chromophores conjugation is possible and the excitation wavelength (WL) becomes 

�O�R�Z�H�U�����7�K�H���V�H�F�R�Q�G���S�H�D�N�����Z�K�L�F�K���Z�D�V���S�U�H�V�H�Q�W���L�Q���D�O�O���W�K�H���U�H�F�R�U�G�H�G���J�U�D�S�K�V�����Z�D�V���L�G�H�Q�W�L�I�L�H�G���D�V�������L�Q���W�K�H���]�R�Q�H��

associated to HA (ex 330- em 445 nm). The higher MW and the higher content in aromatic moieties 

makes the excitation WL to become higher. Both these substances were always present within the 

collected leachates, and were connected to the background constant release of metals (Figure 2.7a,b), 

which were continuously released from the column, even at very low concentration. It was pretty 

much evident that, at least qualitatively, the relative intensities within the two described excitation-

emission regions were changing during the experimental time. At the beginning (Figure 2.7c, graphs 

1-3) Humic substances were more abundant. Conversely, at the end of the e�[�S�H�U�L�P�H�Q�W���� �W�K�H���S�H�D�N�� �.��

showed very high excitation-emission intensity. This meant that a constant release of organic 

molecules happened from the soil to the leachate, but their quality and quantity was decidedly 

changing over time. This assumption was in good agreement with Figures 2.7a,b regarding the trends 

of A245 and the E4/E6 ratio. It is worth noting that in correspondence of the simultaneous Cu and Ni 

release (Figure 2.���D�����D���I�X�U�W�K�H�U���Q�H�D�W���S�H�D�N���������L�Q���J�U�D�S�K���������D�S�S�H�D�U�H�G���D�W���K�L�J�K���H�[�F�L�W�D�W�L�R�Q���:�/�����)�L�J�X�U�H��2.7c, 

graphs 2, 4, 5, 7). The higher excitation WL could be related not only to higher MW and to enhanced 

conjugation of the chromophores, but also to higher presence of auxochromes heterogroups 

(carboxyl, hydroxyl, etc.) capable to establish very stable coordination bonds with the metals. In other 

words, the higher ex-em WL explained also the higher metal affinity deducible from Figure 2.7a. A 

further confirmation of the interaction of the fluorophore with Cu and Ni came from the effect of 

quenching that Cu and in minor amount Ni have on fluorescence. Several studies have evidenced this 

effect of Cu binding to HA-like fluorophores (Boguta et al., 2016; Wu et al., 2004). In the collected 

leachates, Cu concentration ranged between 1 and 2 µM and the quenching due to Cu could not be 

higher than 10% of the total fluorescence intensity (Yamashita & Jaffé, 2008). Nevertheless it was 

�S�R�V�V�L�E�O�H���W�R���Q�R�W�L�F�H���W�K�D�W���W�K�H���L�Q�W�H�Q�V�L�W�\���R�I���W�K�H���S�H�D�N�������Z�D�V���U�H�V�S�H�F�W�L�Y�H�O�\���G�H�F�U�H�D�V�L�Q�J���L�Q���J�U�D�S�K�V���������������������6�X�F�K��

decrease was consistent with the Cu concentration in the leachate. It is finally clear that Cu and Ni 

interacted with the humic fraction of OM and the p�H�D�N�� ���� �Z�D�V�� �L�G�H�Q�W�L�I�L�H�G�� �D�V�� �W�K�H�� �E�L�Q�G�L�Q�J�� �V�L�W�H�� �R�I�� �W�K�H��

chaperon molecule. Conversely, in accordance to what observed about the relationship between E4/E6 
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ratio and the release in the leachate, Cd was evidently more affine to FA-like fraction. Such fraction 

was in fact much higher in graph 8 and corresponded to the peak observable in Figure 2.7b. In the 

same sample, no accumulation was encountered of Cu and Ni. Neither Cu nor Ni were detected in 

days 6 and 8, when A245 expressed relative maximums. This meant that the binding of these metals 

with the organic colloids detected in Figure 2.7c graphs 2, 4, 5, 7 is highly specific and selective. In 

the same way Cd was mobilized only by FA and poor or no interactions were possible with the HA 

fraction responsible for Cu and Ni transport. Deeper in detail, graph 7 had emission intensities in the 

HA domain, and consequently Ni and Cu were detected in Figure 2.7a. Although very high signals 

were present in the FA domain, no Cd accumulation was same time recorded. The day after (graph 

8), almost no signal was counted for HA, indeed no peak of Cu and Ni was present in Figure 2.7a. 

On the contrary Cd was released in the same sample. It is to underline that humic substances are 

supramolecular aggregates of organic fragments (Conte et al., 2007; �â�P�H�M�N�D�O�R�Y�i���	���3�L�F�F�R�O�R������������). 

Identifying an excitation emission peak does not give information about the supramolecular structure 

of the released colloids. Such supramolecular structure binds together HA and FA by means of weak 

dispersive forces, changing their affinity with metals. In this case, the chaperone molecules identified 

by signa�O���.���W�K�D�W���D�U�H���P�R�U�H���D�O�L�S�K�D�W�L�F���Z�R�X�O�G���E�H���K�L�G�G�H�Q���L�Q���W�K�H���K�\�G�U�R�S�K�R�E�L�F���F�R�U�H���R�I���W�K�H���V�X�S�U�D�P�R�O�H�F�X�O�D�U��

�F�R�O�O�R�L�G�����Z�K�L�O�H�������D�Q�G�������I�O�X�R�U�R�S�K�R�U�H�V���W�K�D�W���D�U�H���P�R�U�H���U�L�F�K���L�Q���K�\�G�U�R�S�K�L�O�L�F���U�H�V�L�G�X�H�V���Z�R�X�O�G���E�H���L�Q���W�K�H���R�X�W�H�U��

sphere of the macromolecular aggregate. This could explain why Cd was transported by FA only in 

presence of low HA signals (graph 8) and high E4/E6 ratio (Figure 2.7b).  

 

2.3.4 Trace metal mobility in absence of colloidal mobilisation 

A final set of experiments (experiment D) was run in order to evaluate the mobility of metals in 

absence of colloidal mobilisation. In this case the IW was characterized by a high concentration of 

sodium, as described in the methods section. Obtained results (data described only) showed 

substantially the following main points. A severe clogging of the column was observed almost 

immediately, and the flow was particularly slower than in the experiments described so far. It was 

quite variable without any correlation with the content of organic matter. After two months of 

leaching, in all the studied cases, it was not possible to collect more than 450 mL of leachate 

(maximum) while the analysis of this latter showed very low concentration values, often below the 

instrumental quantification limits. In all the columns, despite the SOM content, the recovery of metals 

�Z�D�V���D�E�R�Y�H�����������R�I���W�K�H���L�Q�I�O�X�H�Q�W���P�H�W�D�O���D�O�Z�D�\�V���L�Q���W�K�H���W�R�S���O�D�\�H�U���R�I���W�K�H���F�R�O�X�P�Q�����”�����F�P�������7�K�L�V���L�P�S�O�L�H�V���W�K�D�W��

the mechanisms of mobilization, although related to the organic matter, depend strongly from the 

colloidal mobilization that may affect soil permeability. This could be related to the detachment 
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mechanism of the ligands and to the mobility of the high molecular weight slow colloidal phase. The 

ionic strength did not allow the solubilisation of the colloids that remained in their native solid 

configuration and thus inhibited any mobilization of these macromolecular aggregates. Sodium cation 

is known to interact with the negatively charged layers of clay particles. As sodium concentrations 

increase, the electrophoretic mobility of the clay anionic layers (platelets) increases resulting in 

swelling dispersion of the clay particles thus impacting on soil permeability (Toze, 2006). The 

detachment of the organic ligands, which are aggregated in the supramolecular structures of HA 

(Piccolo, 2001; Piccolo, 2002) by several types of interactions, may need the opportune kinetic energy 

to overhead the binding strength of ligands. Once the slow colloidal phase starts to move within the 

column, it is reasonable to suppose that several preferential pathways are created in the soil texture, 

thus allowing higher permeability through the soil, as observed in Figure 2.4. If water has not enough 

kinetic energy, this detachment is at least slowed or even highly improbable. The effect of sodium 

ions i�V���G�L�I�I�H�U�H�Q�W���I�U�R�P���W�K�D�W���R�I���J�H�Q�H�U�D�O���³�V�D�O�L�Q�L�W�\�´���� �&�D���D�Q�G���0�J���� �L���H�����E�H�L�Q�J���V�P�D�O�O�H�U���W�K�D�Q���V�R�G�L�X�P���G�R���Q�R�W��

increase the clay dispersion, but in contrast they facilitate the aggregation of clay particles, keeping 

soil flocculated and competing with sodium for binding sites (Duan et al., 2010; Warrence et al., 

2002). On the other side the mobility of colloids and particles through soil usually happens in 

condition of non-homogeneous packing of the soil, creating preferential paths and hence preferential 

flows, that determine the ability of organic matter macromolecules to bypass the soil 

�³�F�K�U�R�P�D�W�R�J�U�D�S�K�L�F���F�R�O�X�P�Q�´��(Kleber et al., 2014). It is hence to keep in mind that the behaviour of the 

OECD soil columns with the salinity of a real wastewater will be different. Anyway behaviour 

observed during experiment C excludes the possibility that the phenomena observed during 

experiment A may be related to protonic exchange equilibria. The peat, in fact, is known to be quite 

acid (pH 4-4.5) and the trends observed in Figures 2.5, 2.6 and 2.7 may be erroneously attributed to 

the pH lowering due the increase of acid peat. This was not the mobilization mechanism since, 

although being theoretically possible in the low permeability experiments, it did not happen, 

confirming that the supposed transport dynamics are the more likely to occur. Moreover, no 

mobilization due to any thermodynamic or kinetic ions competition for binding sites was observed 

among sodium and the trace metals in the IW, suggesting that the studied metals are retained in the 

soil solid phase by interactions that are more stable and faster than with Na.  
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2.4 Conclusions 

�x The accumulation and mobility of trace amount of Ni, Cd and Cu was evaluated through an 

artificial soil of known composition on which the organic content was tuned in standard and 

repeatable conditions. The effect of SOM enhanced HMs mobility, since the highest SOM 

percentage corresponded to the lowest metals accumulation, and the highest concentration in 

the effluent leachate. 

�x The HMs were mobilized according to a mechanism that implies the interaction with colloidal 

phases present in the soil, and a slow and constant release of small molecular weight ligands 

that, detaching from the soil immobile matrix, act as chaperones transporting the metals 

through the soil medium and finally in the groundwater leachate. This mobility pattern was 

found to be directly related to the SOM content, since higher amount of SOM generate a 

higher number of chaperon molecules. 

�x A linear correlation was found between the metals mobilization and the organic matter content 

in the column. The effect of organic matter is depending on metals concentration and 

experiments configuration. At high concentration and in batch mode organic matter increased 

adsorption capacity. At trace levels and in continuous flow mode the effect is exactly opposite 

due the colloidal mobilization. Such colloidal mobilization is substantially negligible at high 

concentration and the higher adsorption capacity prevails resulting in higher contamination at 

higher SOM content  

�x The released chaperon molecules were chemically different and moved with different 

velocities over time. Cu and Ni were preferentially transported by HA-like fragments, while 

Cd is preferentially mobilized by FA-like. The formation of colloidal MOAs was also 

hypothesized on the basis of the obtained data to be involved in the observed mobility. 

�x The soil behaves as a metals accumulator, increasing their concentration during time and 

generating contamination fronts that may remain fixed to the immobile matrix or move with 

variable velocities throughout the soil layers. The water/soil transfer of pollutant was not only 

related to the contaminant trace concentration in the irrigation water but strongly depends on 

the soils physical-chemical properties (i.e. SOM content, structure of the released transport 

molecules) as well as on the properties (i.e sodicity) of the aqueous medium. 

�x Further studies are needed to evaluate other effects that might sum to the sole effect of SOM 

(i.e.: Fe and Mn oxides, presence of DOM already in the IW, bacterial activity) and to assess 
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if and how the behaviour observed in the model OECD soil deviates with different types of 

real soils. 
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Chapter 3 

3. Solid dilution allows accurate determination of 

phenolic and humic-like substances in raw solids via 

simple Folin-Ciocalteau colorimetric assay 
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3.1  Introduction  

The determination of total phenolic (TP) content in liquid and solid organic matrices has received 

increasing attention in the last few decades. The fields of application have extended from simple 

environmental monitoring, agri-food characterization (Stratil et al., 2006), and soil quality assessment 

(Ohno & First, 1998), to recently developed field of bio-resource technologies, which includes 

lignocellulosic materials widely studied as renewable energy sources (Ghimire et al., 2015).  

Lignocellulosic materials are rich in lignin, a complex polymer of three so-called monolignols 

(p-coumaryl, conyferil, synapyl alcohols). Monolignols have been well chemically characterized as 

polyphenols, due the presence of more than one phenolic hydroxyl. It is well known that lignin rich 

wastes are not readily biodegradable (Ariunbaatar et al., 2014a). Thus, when improperly discarded in 

the environment, these wastes give rise to slow prolonged release of phenolic compounds in the 

�H�Q�Y�L�U�R�Q�P�H�Q�W�����Z�K�L�F�K���F�D�Q���O�H�D�G���W�R���J�U�R�X�Q�G�Z�D�W�H�U�¶�V���S�R�O�O�X�W�L�R�Q���D�Q�G���O�R�V�V���R�I���V�R�L�O���I�H�U�W�L�O�L�W�\�����0�R�U�H�R�Y�H�U���S�R�O�\�P�H�U�L�F��

phenolic compounds have been scrutinised in the last few decades due the detrimental effects incurred 

when lignocellulosic substances are subjected to anaerobic digestion with excessively high loading 

rates (Liotta et al., 2016; Pontoni et al., 2015). On the other hand there is good evidence to show that 

polyphenols possess very good anti-oxidant properties, and thus, more and more studies have been 

characterizing foods and beverages in terms of polyphenols content (Croft, 2016; Francesca et al., 

2016).  

Noticeable amounts of phenolic moieties contribute to the structure of humic substances. Humic 

substances are strongly involved in many processes related to soil chemistry and biochemistry, such 

as contaminants transport through soil, microbial distribution, soil water retention and consequently 

soil fertility (Paramashivam et al., 2016; Roosta et al., 2016). On the other hand, phenol-rich biosolids 

are often spread onto agricultural soils to increase their fertility The presence of aromatic moieties in 

the polymers relates to the capacity of soil to adsorb or coordinate micro-pollutants (organic and 

inorganic). Thus aromatic moieties of bio-solids spread on natural soils have serious consequences 

on micro-pollutant mobility and bioavailability in the environment (Komprdová et al., 2016; Tang et 

al., 2016).  

The analytical challenges in achieving precise and effective quantification of the TP in all these 

matrices are mostly related to the high solid content. Indeed phenolic groups are heterogeneously 

speciated; they can occur as sma�O�O���K�\�G�U�R�S�K�L�O�L�F���P�R�O�H�F�X�O�H�V�����R�I�W�H�Q���G�H�V�F�U�L�E�H�G���D�V���³�I�U�H�H���S�K�H�Q�R�O�V�´�����W�K�H�\���F�D�Q��

be dissolved; or they can form colloidal or suspended macromolecules (Pontoni et al., 2015). Thus 
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the target analytes might distribute into different phases of a solid or semi-solid matrix; moreover 

they may be more or less water-soluble. 

Although the Folin-Ciocalteau (F-C) method has been validated and standardized for determining 

TP and lignin contents in water and wastewater (APHA, 1998), to the best of our knowledge, there is 

no standard F-C procedure for determinations in solid or semi-solid samples. Estimating TP in these 

heterogeneous matrices, requires a method for it is dealing with water suspensions of samples that 

often contain insoluble particles that interfere with photometric determinations. Hence, sample 

preparation plays an essential role in determination related to this kind of complex matrix. It follows 

that, depending on sample preparation and analysis method, different TP estimations in given 

substrate type might range over several orders of magnitude. Most methods available in the literature 

involve TP quantification after extraction with various solvents from the analytical matrix (Ainsworth 

& Gillespie, 2007; Blainski et al., 2013; Cicco et al., 2009; Francesca et al., 2016). This leads to 

underestimation or absence of the non-extractable compounds, which in many cases, may display 

major biological activities. Analytical data are highly dependent on the recovery after the extraction 

and when high amounts of non-extractable phenols are present, the data does not provide an accurate 

snapshot of the system. Hence, a method is needed that allows a rapid, accurate quantification of TP 

by directly analysing the solid sample, regardless of the speciation of phenols in the system. 

The aim of this study was to demonstrate the applicability of solid dilution (SD) preparative 

method to this analytical method. SD consists of mixing and homogenizing a sample with a known 

amount of a salt that will remain inert during the analytical reactions. The SD method was previously 

successfully applied to the determinations of the chemical oxygen demand (COD) in solid and 

semisolid samples with very good results in terms of recoveries and repeatability (Noguerol-Arias et 

al., 2012). 

Here, we optimized and validated this method on three matrices: rice straw (RS), peat soil (PS) 

and food waste (FW). The results, expressed as mg equivalents of phenol (C6H5OH), were compared 

to those obtained when the homogenized sample was suspended in water (traditional method). We 

analysed the performances of these two methods with �*�U�X�E�E�V�¶���W�H�V�W���D�Q�G���6�W�X�G�H�Q�W-�7���W�H�V�W�����*�U�X�E�E�¶�V���W�H�V�W��

was used to exclude anomalous data that could have distorted the results (e.g. outliers related to 

experimental errors). The Student-T test was used to verify that the two methods generated two 

different sample populations. 
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3.2  Materials and methods 

RS was harvested from rice fields in Pavia (Italy). FW was prepared in the laboratory according 

to previous Valorgas report (Valorgas, 2012) as described in details by Ariunbataar et al., (2014b). 

PS was purchased from a local gardening store. 

F-C reagent was purchased from Carlo Erba Reagenti (Italy). Sodium tartrate, sodium carbonate 

and sodium sulfate anhydrous were purchased from Sigma Aldrich (USA). A sodium carbonate and 

tartrate solution was prepared by dissolving 200 g Na2CO3 and 12 g Na2C4H4O6·2H20 in 750 mL of 

hot ultrapure (Elga Option-q, USA) water. The solution was cooled down to 20 °C, then adjusted to 

1 L with ultrapure water. The calibration curve was constructed with pure phenol in crystals from 

Carlo Erba Reagenti (Italy). Spectrophotometric measures were acquired with a Photolab 6600 UV-

Vis spectrophotometer from WTW (Germany). 

 

3.2.1 Analytical Procedure 

Raw samples were accurately weighed and mixed with diluting agent at a dilution ratio of 1:20. 

This ratio was previously reported to be the most effective for COD analysis (Noguerol-Arias et al., 

2012). The salt-sample mixture was finely crushed in a ceramic mortar until no particles were visible 

anymore. The overall dilution procedure was similar to that described to be effective for COD by 

Noguerol-Arias et al. (2012), except for the choice of diluting agent. Instead of magnesium sulfate, 

which formed a precipitate of magnesium carbonate after adding sodium carbonate and tartrate 

solution, we used sodium sulfate anhydrous, and no precipitation was observed. The homogenized 

samples were divided into aliquots expected to have TP concentrations within the linear range of the 

method (i.e. 0.25-2.5 mg/L). These aliquots were suspended in water for a final volume of 50 mL. 

For the traditional method, separate raw samples, which had not been subjected to SD were finely 

homogenized in the ceramic mortar. For testing, aliquots expected to have TP concentrations similar 

to the ones previously prepared were suspended in water. All the suspensions were maintained in 

perfect mixing conditions and continuously stirred with magnetic stir-bars during sample withdrawal 

for the F-C testing procedure. In a 2.5 mL disposable spectrophotometry cuvette, we added in 

sequence 2 mL of the described suspension and 15 µL of F-C reagent. The mixture was shaken 

upside-down by hand to ensure the reagent dissolved uniformly. Finally, 600 µL of the tartrate and 

carbonate solution was added, and the sample was mixed again. A bright blue colour developed as a 

function of the TP present in the sample. 
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When the 2 mL sample was withdrawn from the flask, the mixture was continuously stirred with 

magnetic stir-bar to ensure that the suspended particles did not settle. However, immediately after 

mixing in the cuvette, a residue was visible due to incomplete solubilisation of the compound. 

�7�K�H�U�H�I�R�U�H���� �V�D�P�S�O�H�V�� �Z�H�U�H�� �I�L�O�W�H�U�H�G�� �E�H�I�R�U�H�� �D�E�V�R�U�E�D�Q�F�H�� �U�H�D�G�L�Q�J�� ����� �������� �Q�P������ �:�H�� �V�H�O�H�F�W�H�G�� �D�� �I�L�O�W�H�U�� �W�K�D�W��

would minimize loss in the absorbance read. We tested various filtering pore sizes and materials 

(laboratory filter paper, glass fibers, glass wool, polypropylene, cellulose acetate, regenerated 

cellulose, TFE). Among these, we found that the mixed cellulose ester with a pore size of 0.8 µm 

provided the least reduction absorbance; absorbance measured after filtering was less than 0.01 

compared to the unfiltered sample in case of phenol standards. The overall procedure is summarized 

in Figure 3.1. 

 

 

Figure 3.1 General scheme of the proposed procedure: a) sample homogenisation with (Test model) and 
without SD (Traditional model); b) addition of the F-C reagents to the water suspension; c) reaction 
time; d) 0.8 µm filtration; e) absorbance reading at 700 nm. 

 

We also evaluated the time required to complete the reactions. After 15 min triplicate 

measurements of a single cuvette showed a high variation, and the absorbance continued to increase, 

which indicated that the reaction was incomplete. After 30 min, the measurements showed 

consistency. Hence we filtered the samples and measured the absorbance after a 30 min reaction time. 

We also verified absorbance to remain stable for at least 2 hours after the reading. Potential 

interference from the added sodium sulfate was excluded by comparing the absorbance of solutions 
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prepared with and without added salt to the absorbances of pure phenol and a commercial sample of 

soluble lignin (Carlo Erba Reagenti, Italy). We found that the linearity interval of the method was 

between 0.25 to 2.5 mg/L of phenol. We constructed a seven-point calibration curve within this linear 

interval with increasing concentrations of phenol standards (Figure 3.2). 

 

 

Figure 3.2 Phenol calibration curve. Phenol standards of known concentrations were measured on a 
spectrophotometer to determine the absorbance at 700 nm after 30 min reaction time and 0.8 µm 
filtration. Each point represents the average of three measurements. 

 

We prepared eight replicates of the suspensions of the raw homogenized sample (traditional 

method) and eight replicate suspensions of the SD sample (test method). Each suspension was 

analysed in triplicate by the described F-C assay, for total 48 analyses per each of the tested matrices. 

Results were compared between the two methods (traditional and SD). 

 

3.2.2 Statistical analysis 

To compare phenol concentration measurements between the two different methods (i.e. the 

traditional method with water dilution and the new method with SD), we performed a statistical 

analysis of experimentally collected data as follows: 
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A normal distr�L�E�X�W�L�R�Q���Z�D�V���S�O�R�W�W�H�G���I�R�U���H�D�F�K���V�H�W�V���R�I���G�D�W�D�����D���*�U�X�E�E�V�¶���W�H�V�W���Z�D�V���S�H�U�I�R�U�P�H�G���W�R���G�H�O�H�W�H��

�G�D�W�D���D�I�I�H�F�W�H�G�� �E�\�� �H�[�S�H�U�L�P�H�Q�W�D�O�� �H�U�U�R�U�V���� �D�� �6�W�X�G�H�Q�W�¶�V�� �7-test was performed to verify that the data sets 

obtained with the two methods were significantly different.  

 

3.2.2.1 Normal distr ibution 

For each series of values measured with both methods, the means and standard deviations were 

calculated with the following expressions: 

           

 (1) 

           (2) 

Where  the average of the data set and s is the related standard deviation. 

Assuming that averages and standard deviations measured from samples ( and s, respectively) 

corresponded to the averages and standard deviations of the populations (µ and �1, respectively) from 

which the samples were taken (i.e. µ=  and �1��= s), we plotted a normal distribution for each series 

of data with the following expression: 

        

 (3) 

Where x ranged from µ-���1���D�Q�G���—�����1�� 

 

3.2.2.2 �*�U�X�E�E�V�¶���W�H�V�W 

Once we verified that the data sets could be reasonably approximated with a normal distribution, 

the Grubbs' test was performed. This test detects outliers from the normal distributions. The candidate 

outliers are the minimum and maximum values in each set of data. The candidates were tested one at 
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�W�L�P�H�����7�K�H���*�U�X�E�E�V�¶�V���W�H�V�W���H�Y�D�O�X�D�W�H�G���L�I���I�R�U���D���I�L�[�H�G���F�R�Q�I�L�G�H�Q�F�H���O�H�Y�H�O�����L���H��������%) the candidate belonged to 

the population. This procedure comprised the following steps: 

1. A confidence level of 1-�. was fixed 

2. The value of parameter T* (dimensionless) was calculated with the following expression: 

           

 (4) 

Where is the average of the data set, s the standard deviation and x* is the candidate value. 

3. T* was compared to the tabled T relative to  and n degrees of freedom, where n is the number 

of values in the data set. When T*�”T, then x* belonged to the data set; when T*>T, then x* 

did not belong to data set with a probability of (1-�.) %. In the latter case was excluded from 

the data set. 

Grubbs' test was iterated until no outliers were detected. The minimum number of values required 

�W�R���S�H�U�I�R�U�P���*�U�X�E�E�V�¶���W�H�V�W���Z�D�V���V�L�[�� 

 

3.3.2.3 �6�W�X�G�H�Q�W�V�¶���7-test 

�:�H���X�V�H�G���6�W�X�G�H�Q�W�V�¶���7-test to verify that two sets of data were significantly different. 

This test can be performed when the sample size is less than 30 and the population standard 

deviation is unknown, otherwise it is preferable to perform the Z-test. 

This test evaluates the probability that the null hypothesis can be rejected. The null hypothesis 

holds that the two data sets belong to the same population, and that differences in terms of means and 

standard deviations between the two data sets are due exclusively to accidental causes. 

The procedure comprised the following steps: 

1. A confidence level �. was fixed 

2. The value of parameter Tobs*  (dimensionless) was calculated with the following expression: 
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           (5) 

where and are the averages of the two data sets respectively and  is the pooled 

standard deviation obtained from the two data sets. 

3. Tobs*  was compared with the tabled T, relative to �. and n+m-2 degrees of freedom, where n 

and m are the number of values in the two sets of data. When Tobs>T, the null hypothesis could 

be rejected with a probability higher than (1-�.) %. When Tobs* �”T, the null hypothesis could 

not be rejected and the two data sets were judged to belong to the same population with a 

probability higher than �.%. 

 

3.3  Results and discussion 

The proposed SD method was successfully used to quantify the TP content in all tested solid 

matrices. However, we encountered several differences in precision and accuracy among samples 

prepared according the SD method. 

None of the experimentally collected values �Z�H�U�H���H�[�F�O�X�G�H�G���Z�L�W�K���*�U�X�E�E�V�¶���W�H�V�W�����E�H�F�D�X�V�H���Q�R�Q�H���Z�H�U�H��

statistically out of range. The results of comparing the two preparation methods are shown in Figure 

3.3a-c and summarized in Table 3.1. 

The normal distributions of phenol values measured with the two methods were clearly different 

(Figure 3.3 a-c). The difference was statistically significant, based on the T-test, (Table 3.1). Thus 

the two methods generated values that belonged to different populations. 
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Table 3.1 Main values of TP values for the investigated matrices compared between two 
preparation methods. 

Sample 
Sample 
preparation 

Number 
of tests TP g/Kg �12 s �1* T-test 

        
        
 Traditional 24 4.239 1.167 1.080 0.25  
RS       2.51�u10-13 

 Test (SD) 24 7.219 0.146 0.382 0.05  
        
 Traditional 24 5.961 0.624 0.790 0.13  

PS  
 

    
1.47�u10-5 

 Test (SD) 24 7.053 0.390 0.625 0.09  
        
 Traditional 24 2.422 1.379 1.174 0.48  
FW       1.66�u10-11 

 Test (SD) 24 6.016 1.839 1.356 0.23  
TP = Total phenols; RS = rice straw; PS = peat rich soil; FW = food 
waste; SD = solid dilution     
�V2= variance       
s= standard deviation       
�V*= coefficient of variation      

 

Our results clearly showed that diluting the sample with salt drastically increased the recovery of 

phenols for the F-C assay. A comparison of the average TPs (Table 3.1) showed that for all substrates, 

the concentration recovered with the SD process was substantially greater than that obtained with the 

traditional method (41.4, 15.5, 59.4 % recovery increases for RS, PS and FW, respectively). These 

findings indicated that the traditional method, where the solids were only suspended in water tended 

to underestimate the actual phenolic content. With the SD method, more accurate estimate was 

achieved. This may be due to an improvement in the homogenization of the substance. The added salt 

may increase the efficiency of breaking up macroscopic particles, because during homogenization, 

the salt crystals act as micro-blades, finely crumbling even high compressive strength substrates, such 

as lignocellulosic materials. The smaller particles could disperse better when suspended in water and 

allow more efficient contact between the phenolic components and the reagents. Another possible 

explanation may be related to the very high salinity, which can denature the hydrophobic core of 

organic matter. This denaturation could expose the core end the phenols within, which would 

otherwise be sequestrated away from the water phase and thus inaccessible to the reagent. The 

standard deviation of the RS substrate measurement was much lower in the SD method than in the 

traditional method. In fact, the standard deviation value for the SD method was nearly half the value 
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obtained with the traditional method. In the PS sample, the difference between methods was slightly 

less, but the SD method (Figure 3.3b) displayed less dispersion in the data (higher precision). 

Conversely, for the FW substrate (Figure 3.3c), the standard deviations value obtained with the SD 

method showed slightly greater data dispersion (less precise) than that obtained with the traditional 

method, although the values were comparable. On the other hand, when compared the coefficients of 

�Y�D�U�L�D�W�L�R�Q�����1����L�Q���7�D�E�O�H��3.1), the SD method displayed more precision than the traditional method. As 

expected a higher variance was observed in the FW values compared to the other tested matrices, due 

the greater heterogeneity in FW (both in composition and in macroscopic shape) than the other tested 

matrices. The simultaneous presence of different organic macromolecules (Ariunbaatar et al., 2014b) 

(i.e. carbohydrates, proteins, lipids) which could give rise to higher uncertainties in the sampling 

phase (Noguerol-Arias et al., 2012). 
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Figure 3.3 Normal distribution of  phenol measured in: RS (a); PS (b); FW (c). The two different methods 
were compared. We represented Traditional method with triangles and dotted lines and SD method 
with squares and continue lines. f(x) values were calculated with equation (3), where x ranged from µ-
3�1���D�Q�G���—�����1. 
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Concerning the reported improvement in data distribution, the obtained results were comparable 

with those reported by Noguerol-Arias et al. (2012), who applied the SD method to COD analysis. 

�7�K�H���D�X�W�K�R�U�V���D�S�S�O�L�H�G���W�K�H���6�'���P�H�W�K�R�G���W�R���D���F�H�U�W�L�I�L�H�G���U�H�I�H�U�H�Q�F�H���P�D�W�H�U�L�D�O�����D�Q�G���R�E�W�D�L�Q�H�G���D���U�H�G�X�F�W�L�R�Q���R�I���1���

�U�D�Q�J�L�Q�J���I�U�R�P���������������W�R�����������������:�K�H�Q���W�K�H���6�'���P�H�W�K�R�G���Z�D�V���D�S�S�O�L�H�G���W�R���³�U�H�D�O�´���S�L�J slaughterhouse waste 

�V�D�P�S�O�H�V�����W�K�H���D�X�W�K�R�U�V���R�E�W�D�L�Q�H�G���D�Q���D�Y�H�U�D�J�H���U�H�G�X�F�W�L�R�Q���R�I���1����I�U�R�P�������������W�R���������������+�H�U�H���Z�H���Y�H�U�L�I�L�H�G���W�K�D�W���W�K�H��

SD method applied to TP measures reduced the relative standard deviation in all tested samples. The 

reduction ranged: i) from 0.25 to 0.05 for RS; ii) from 0.13 to 0.09 for PS; and iii) from 0.48 to 0.23 

for FW (Table 3.1).  

It is worth noting that COD analysis does not depend on oxidizable matter speciation in the 

matrix, therefore the SD method applied to COD simply allows to withdraw a greater amount of 

sample, increasing its representativeness and improving the precision and the accuracy of the 

estimate. On the contrary TP analysis has intrinsically a high variance and is subject to several 

interferences (Ainsworth & Gillespie, 2007). The aim of the present work was to obtain a 

quantification of TP in very complex matrices, regardless their speciation. This meant that the F-C 

reagent had to interact with phenols bound to suspended particles or sequestrated in hydrophobic 

moieties and micelles. Although several published studies and protocols suggest to perform F-C assay 

on sample extracts to increase precision (Ainsworth & Gillespie, 2007; Blainski et al., 2013; Cicco et 

al., 2009; Stratil et al., 2006; Wieder & Starr, 1998), our results ascertain that a complete analysis of 

�W�K�H���P�D�W�U�L�[���³�D�V���L�V�´�����H�[�F�H�S�W���I�R�U���W�K�H���R�Q�O�\���6�'���S�U�H�S�D�U�D�W�L�R�Q�����J�L�Y�H�V���E�D�F�N���P�R�U�H���D�F�F�X�U�D�W�H���D�Q�G���³�U�H�D�O�´���U�H�V�X�O�W�V����

These results showed good reproducibility and acceptable relative standard deviation even for very 

heterogeneous samples. 

 

3.4 Conclusions 

The study work has highlighted some aspects of new SD preparative method for measuring 

phenolic compounds in solid and semisolid matrices, which make this method preferable to the 

traditional one. The SD sample preparation method reduced time for performing analyses, because it 

did not require the extra time needed to solubilize or extract in water and other solvents phenolic 

compounds. Moreover, for all the substrates, (i.e. RS, PS and FW), the SD method yielded higher 

concentrations of phenolic compounds than the traditional method. This was probably due to the 

effect of salt addition that improved sample homogenisation and disrupted hydrophobic aggregates, 

favouring the contact of sequestrated phenols with the F-C reagent. This result proved that the 

proposed method was more accurate than the traditional method. Finally, the proposed method was 
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also more precise than the traditional method, because exhibited less relative data dispersion for all 

the substrates tested. Although for FW the absolute standard deviation was higher than the traditional 

method, this result was not discordant with our other findings, because the coefficient of variation 

was smaller with the SD method than with the traditional method. Furthermore, the wide dispersion 

in FW data could be reasonably attributed to the heterogeneity of the matrix investigated (i.e. FW) 

rather than to the method used. 
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Chapter 4. 

4. Colloidal mobilization and fate of trace heavy metals in 

semi-saturated artificial soil (OECD) irrigated with 

treated wastewater  
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4.1  Introduction  

The recovery and reuse of wastewater in agriculture is a promising strategy to face water scarcity 

issues (Toze, 2006). �7�U�H�D�W�H�G���Z�D�V�W�H�Z�D�W�H�U���L�V���D���³�Q�H�Z�´���Z�D�W�H�U���U�H�V�R�X�U�F�H�����Z�K�L�F�K���F�D�Q���S�R�V�L�W�L�Y�H�O�\���F�R�Q�W�U�L�E�X�W�H��

to the agriculture sustainability. The advantage consists in restoring the organic and inorganic nutrient 

pools of soils, solving, at the same time, water shortage and wastewater discharge problems (Chen et 

al., 2015a), especially in arid and semi-arid regions (Ilias et al., 2014). However, wastewater reuse 

for irrigation purposes can represent a serious threat for the environmental quality (Lu et al., 2015). 

The presence of trace level concentrations of potentially harmful pollutants is in fact permitted in 

irrigation water by existing regulations all over the world, since it does not represent a short-term 

hazard for the environmental quality. Nonetheless some compounds, such as heavy metals (HMs), 

can accumulate in the soil through the years, finally reaching the crops and eventually entering in the 

food chain (Nicholson et al., 2003). 

The fate of HMs in the soils can be hardly predicted. Mechanisms of mobility through the 

different soils horizons are, in fact, extremely diverse, being related to: i) the soil physical-chemical 

nature; ii) the soil-water retention capacity; and iii) the fluid transmission characteristics. Clearly both 

wastewater and soil composition have a fundamental role in the complex dynamics that regulate HMs 

mobility through the different layers. Particularly, organic matter is considered to have a crucial 

effect, by greatly influencing the retention and the transportation of HMs and other micro-pollutants. 

Organic molecules are present both in the wastewater and the soil matrix. The presence of organic 

matter can either enhance, when dissolved (DOM), or retard, when bound to the soil (SOM), the 

transport of inorganic pollutants (Weng et al., 2002). HMs and contaminants in general are not only 

partitioned between the solid immobile and the water mobile phases. Colloids and nanoparticles act 

as a third mobile phase, with their own rheological properties and velocity (McGechan & Lewis, 

2002). This third mobile phase can be organic, inorganic or composed by mineral organic associations 

(MOAs) (Kleber et al., 2014). Three criteria must be met for colloid-facilitated contaminant transport: 

i) colloids must be present; ii) contaminants must interact with colloids; and iii) colloids and 

associated contaminants must be transported through the aquifer (Ryan & Elimelech, 1996). 

�6�W�X�G�\�L�Q�J���W�K�H���L�Q�W�H�U�D�F�W�L�R�Q���R�I���+�0�V���L�Q���³�D�U�W�L�I�L�F�L�D�O�´���Z�D�W�H�U���V�R�O�X�W�L�R�Q�V���Z�L�W�K���W�K�H���V�W�D�Q�G�D�U�G���2�(�&�'���V�R�L�O�����D��

novel HMs transport pattern was developed in Chapter 2. A multi-component mechanism was 

assumed including: i) the interaction of HMs with the colloidal phase of the soil; ii) the slow and 

constant release of small molecular weight ligands detaching from the soil immobile matrix; iii) the 

transportation of HMs through the soil by these low molecular weight chaperon molecules. To further 
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improve the knowledge of the proposed mechanism, a deeper understanding of the structural 

composition of soil organic matter would be required. Soil organic matter, in fact, is constantly under 

study, and its structural composition is subject of debates among the scientific community (Piccolo, 

2002). The classical idea of a class of unknown polymeric macromolecules - namely Humic acids 

(HA), Fulvic Acids (FA) and humin - is going to be passed by the new concept which considers humic 

substances as supramolecular aggregates of small organic compounds, held together by weak 

dispersive forces (Piccolo, 2001). In the light of this theory, soil released chaperone molecules or 

their aggregates, can have different characteristics in terms of chemical structure and molecular 

weights distribution. According to these characteristics, they can have different moving rate through 

the porous media, as well as different affinity and selectivity with metals. As consequence of the 

ex�L�V�W�L�Q�J�� �K�H�W�H�U�R�J�H�Q�H�L�W�\�� �D�P�R�Q�J�� �F�R�O�O�R�L�G�V�� �D�Q�G�� �F�K�D�S�H�U�R�Q�� �P�R�O�H�F�X�O�H�V�� �J�H�Q�H�U�D�W�H�G�� �L�Q�� �V�R�L�O���� �W�K�H�� �³�W�K�U�H�H�� �S�K�D�V�H��

�P�R�G�H�O�´�� �E�H�F�R�P�H�V�� �D�� �³�P�X�O�W�L�S�K�D�V�H�� �P�R�G�H�O�´���� �(�D�F�K�� �P�H�W�D�O�� �L�V�� �S�U�H�I�H�U�H�Q�W�L�D�O�O�\�� �W�U�D�Q�V�S�R�U�W�H�G�� �E�\�� �R�Q�H�� �R�U�� �P�R�U�H��

phases and moves through soil with a velocity that is governed by the phase interaction with the 

porous media and hence by its own physical chemical properties (de Jonge et al., 2004; Pédrot et al., 

2008). In other words, assessing the mobility of such colloidal aggregates equals to achieve the fate 

of HMs in soil. Therefore, a structural characterization of the released phases as well as the definition 

of structural relations with metals affinity and with migration patterns in soil are needed. Starting 

from these premises, the present paper aims to investigate the effect of irrigation wastewater 

characteristics on the colloidal mediated transport of Cd, Cu, Ni and Zn in soil. The research is 

�F�R�Q�G�X�F�W�H�G�� �R�Q�� �D�� �V�W�D�Q�G�D�U�G�� �V�R�L�O���� �L�U�U�L�J�D�W�H�G�� �Z�L�W�K�� �D�� �³�U�H�D�O�´�� �Z�D�V�W�H�Z�D�W�H�U�� �H�I�I�O�X�H�Q�W���� �7�K�H�� �V�R�L�O�� �L�V�� �S�D�F�N�H�G�� �L�Q��

columns, and semi-saturation conditions are always maintained. To better understand the HMs 

transport mechanism according to the over-mentioned multi-phase model, several spectroscopic 

methods (UV-VIS, 3DEEM, 1H-NMR) are used, to achieve a deeper characterization of the organic 

metal binding phases. 

 

4.2  Materials and methods 

 

4.2.1 Leaching experiments 

A micro-contamination phenomenon was reproduced and studied at laboratory scale, simulating 

the irrigation of an artificial soil with either the effluent collected from a wastewater treatment plant 

(WWTP) or a synthetic water containing four trace HMs in the same concentrations as in the real 

treated wastewater. To evaluate the dynamics of accumulation of micropollutants as well as their 
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migration in the leachate, HMs concentration was determined daily in the leachate and, at the end of 

the experiment in the soil column matrices. The mobilization of humic substances in soil was 

monitored by determining the concentration of total phenols. The release of organic substances in the 

leachates was measured as chemical oxygen demand (COD) and Ultra-Violet (UV) absorbance. 

Leached organic matter was further characterized through 3DEEM spectrofluorimetry and NMR 

spectroscopy. 

The used standard soil was prepared according to the "recipe" described in the guidelines of the 

Organization for Economic Cooperation and Development (OECD) (Wilhelm & Maibach, 2008). 

These guidelines were developed in order to test the eco-toxicity of inorganic and organic chemicals 

in soil, therefore the OECD soil is widely used to test complex solid samples (�-�R���N�R���	���2�O�H�V�]�F�]�X�N����

2013). The reference soil was composed as follows: kaolinite, 20%; quartz sand, 74%; CaCO3, 1%; 

sphagnum peat, 5%. Kaolinite, quartz sand and CaCO3 were purchased from Sigma-Aldrich (USA). 

Sphagnum peat was obtained from a local gardening store. As the OECD itself indicates, the ability 

to retain or release contaminants is related to the amount of organic matter (peat) contained in the soil 

(Wilhelm & Maibach, 2008). Before use the soil was analyzed in the single components to define the 

background levels of the tested metals. Results of analysis are reported in Table 4.1. A very high 

concentration of Pb was found in the kaolinite. 

The experimental tests were conducted at laboratory scale using a treated wastewater (W1), 

sampled from a conventional activated sludge WWTP located near Paris (France). W1 was 

characterized in terms of metals content. The HMs concentrations were well below the threshold 

values suggested by Food and Agriculture Organization of the United Nations (FAO) in the 

wastewater quality guidelines for agricultural use (Pescod, 1992). On the basis of the obtained results, 

an artificial effluent (W2) containing the same concentrations of Cd, Cu, Ni and Zn but no dissolved 

organic matter (DOM) nor other major elements was prepared. In details W2 was obtained dissolving 

analytical grade CuCl2·2H2O (Carlo Erba Reagenti, Italy), NiCl2·6H2O (Sigma-Aldrich, USA), and 

ZnCl2 (Applichem, Germany) and analytical standard Cd (Carlo Erba Reagenti, Italy), in analytical 

grade HNO3 1% (J.T. Baker, USA) solutions. The obtained stock solutions, containing 1 g/L of the 

selected metal, were successively diluted with ultrapure water (Elga, USA) to obtain the required 

concentrations. Final pH was adjusted to 6.8, adding a few drops of KOH 0.05 M. HMs concentrations 

in W1 and W2 are reported in Table 4.1. 
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Table 4.1 Characteristics of W1, W2 and OECD soil 

Parameter OECD soil (mg/L) W1 (µg/L) W2 (µg/L) 

Al   118 - 

Ca  1.11×105 - 

Cd 0.0363 0.232 0.25 

Co  <0.5 - 

Cr  ND - 

Cu 23.827 8.73 10 

K  8.62×104 - 

Mg  1.34×105 - 

Mn  153 - 

Na  3.5×105 - 

Ni 1.525 1.31 1.5 

Pb 499.3 ND - 

Si 2530   

Sr  928 - 

Zn 89.0 24.82 25 

pH 7.6 6.8 6.8 

DOM (as TOC)  6.71×103 - 

 

The described solutions were used to irrigate the soil packed in a polypropylene conical tube, 

holed in the bottom and filled in the lower part with two layers of glass wool and a layer of glass 

beads, to avoid soil loss in the leachate. The scheme of the columns was the same described in chapter 

2 (Figure 2.2). The columns (5 cm depth) were fed with 20 mL of wastewater every 12 hours. All 

tests were performed in triplicate. 
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The test lasted for 17 days. After this time both the soils, divided into 5 layers of 1 cm each, and 

the daily leachates were characterized in terms of metals and organic matter content. Since very high 

concentration of Pb was detected in the kaolinite, Pb was monitored in the soil and in the leachate as 

a tracer of the clay silicates. Kaolinite was indeed the only source of Pb in the experiment (Table 4.1). 

Clay silicate migration in the leachate was also assessed by monitoring Si concentration in the 

leachates. 

 

4.2.2 Analytical procedures 

�(�D�F�K���V�R�L�O���O�D�\�H�U���D�Q�G���W�K�H���³�E�O�D�Q�N�´���V�R�L�O���Z�H�U�H���G�U�L�H�G���D�W�������ƒ�&���Xntil constant weight and homogenized. 

Aliquots of 1g were mineralized in 15 mL of aqua regia using a Milestone (USA) Start D microwave 

digester. Leachates were collected daily and divided into two aliquots. The first aliquot was acidified 

with 3% HNO3 for metals analysis. The concentrations of Cd, Cu, Ni, Pb, Si and Zn, were measured 

by ICP-OES spectroscopy (Perkin Elmer Optima 8300, USA) and ICP-MS (Perkin Elmer Nexion 

300, USA) operating in dual detector mode. The second aliquot was stored at -20°C for spectroscopic 

characterization. Once defrost, the UV-VIS absorbance at 245nm and the COD were determined. 

Moreover the three dimensional excitation emission matrices (3DEEM) and for some selected 

leachate samples the proton nuclear magnetic resonance (1H-NMR) spectra were recorded. The UV 

measurements were carried out using a Lambda3 UV-VIS spectrophotometer from Perkin Elmer 

(USA). COD was determined according to APHA (1998) standard method 5220D. Total Phenols 

were determined by Folin-Ciocalteau colorimetric assay. COD and total phenols absorbance readings 

were performed by means of a Photolab 6600 UV-VIS spectrophotometer (WTW, Germany). The 

3DEEM matrices were acquired through the spectrofluorimeter Perkin Elmer LS 45 (USA). 

Excitation wavelength was varied between 210-450 nm; emission wavelength was recorded between 

370-585 nm. NMR spectra were acquired on an AVANCE 400 NMR spectroscope (Bruker, 

Germany), equipped with Prodigy cryo-probe. Solvent suppression was achieved using standard pre-

saturation sequence. 
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4.3  Results 

 

4.3.1 Mobility profiles in soil  

The results of metals analysis in the soil and in the leachate are summarized in Figure 4.1. Figure 

4.1 also displays phenols concentration in the different soil layers to have an indication of organic 

materials distribution and mobility. 

 

 

Figure 4.1 Metals and total phenols concentration in soil columns irrigated with W1 and W2. Irrigation 
lasted 17d and a total leachate of 650 mL was collected at the end of the experiment. Soil background 
HMs concentrations are reported in Table 4.1. 

 

The distributions of Pb and total phenols were very similar. Peaks of both concentrations were 

observable at the same depth. Pb and phenols together showed different trends in soil irrigated with 

W1 and W2. In the experiments conducted using W1 as irrigation water (W1 tests) total phenols and 

Pb concentrations showed two peaks, located at 2 and 4 cm depth. Overall Pb concentration was quite 

uniform, and accounted for almost one half of the initial background value. In the experiments 

conducted using W2 as irrigation water (W2 tests) there was a clear increase of the phenols and Pb 

concentrations which started below 3 cm of depth. At 6 cm depth, Pb concentration was very similar 

to the initial background value (509 mg/Kg). This is an illustration of a slow colloidal front that was 

still present at 4 cm depth at the end of the W2 tests. A different migration rate of the soil colloids, 
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which moved faster in the soil irrigated with W1, was evidenced. According to the observed 

mobilization, HMs behaved differently in the two experiments. Cu distribution was very similar to 

Pb and phenols. In W2 tests, in fact, there was an evident accumulation below 3 cm depth, while in 

W1 tests the concentration presented two small peaks at 2 and 4 cm depth. Very small Cu 

contamination was present in the top layer. Conversely Cd, Ni and Zn always displayed a 

concentration peak in the top of the column. Accumulation of Cd at 0.5 cm depth was higher in W2 

tests (49.51 µg/Kg) than in W1 tests (23.35 µg/Kg). Ni concentration in the top layer was higher in 

W1 tests (3.03 mg/Kg) than in W2 tests (1.92 mg/Kg). The same behavior was observed for Zn (274 

and 189 mg/Kg in W1 and W2 respectively). However, quite high standard deviations were observed 

among the replicates in the case of Ni and Zn. In the deeper layers practically no peaks were observed 

in the soil irrigated with W1. In contrast, in the soil irrigated with W2, the concentration of Cd, Cu, 

Ni and Zn greatly increased below 3 cm, in accordance with Pb and phenols mobilization. Differently 

form the other metals, Ni and Zn concentrations markedly decreased at 5 cm depth where were 

comparable to the initial background levels. Due to the accumulation in the lower layers, higher HMs 

retention was generally observable in W2 tests compared to W1 tests. 

 

4.3.2 Leachates characterization 

HMs mobilization information obtained from metal concentration in the different soil layers was 

confirmed by the concentration values of HMs detected in the leachates (Figure 4.2a). Obtained data 

showed that the irrigation with W1 led to higher mobilization of the kaolinite silicates (Figure 4.2b). 

The release of Si was indeed around three times higher in W1 than with W2. This is reflected by 

higher metals release into the leachate respect to which observed during the irrigation with W2. 
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Figure 4.2 Evolution of HMs (a), Si (b) concentrations and A245 (c) in the leachate produced by soil 
irrigation with W1 and W2  

 

The release of inorganic colloids and HMs in the leachate was indeed much higher during W1 

tests (W1 leachate) than during W2 tests (W2 leachate). A remarkable difference between the two 

experiments was represented by the concentration of Pb. In accordance with metal data in the soil 

columns (Figure 4.1) and Si trends (Figure 4.2b), a higher release was observed in W1 leachate where 

Pb concentration never went below 350 µg/L. Conversely, W2 leachate displayed a decreasing trend 

of Pb, which, at the end of the experiment, was stabilized near 100 µg/L. Generally, HMs did not 

show a constant concentration in the leachates and several peaks were observable at given 

experimental times. In detail, peaks of metals were observed at the same time (days 8-10 and days 

14-16) in both W1 leachate and W2 leachate. In W2 leachate, differently from W1 leachate, Zn 

concentration peaks were not observed, and Zn concentration remained constant in time, ranging 

between 20 and 40 µg/L. High concentration of Zn and Cu was also recorded together in W1 leachate 

(day 11). In the same day, Pb released in the leachate also showed a marked increase. These peaks 

were not observable in W2 leachate. Ni mainly eluted with the other metals during days 8-10 in both 

the experiments. 

Contemporarily with metal release, a constant release of organic matter in the leachate was 

observed, as indicated by UV A245 trend, reported in Figure 4.2c. A245 peaks were popping up at the 
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same time (days 8-10 and days 14-16) as the major of HMs peaks (Figure 4.2a). At the same 

experimental time, peaks of Si in W2 leachate were noticeable in Figure 4.2b. 

COD in the leachates displayed a trend very similar to A245 (data not shown). Also in the case of 

COD relative maximum peaks (up to 68.5 mgO2/L) appeared at the same experimental time as A245 

and metals peaks. A �F�R�Q�V�W�D�Q�W���E�D�F�N�J�U�R�X�Q�G���U�H�O�H�D�V�H���R�I���&�2�'���Z�D�V���D�O�V�R���U�H�F�R�U�G�H�G�����§���������“�������P�J�22/L). 

 

 

Figure 4.3 Correlation diagrams between HMs and A245 in the leachates 

 

Correlation diagrams between total HMs (i.e. Cu, Cd, Ni, Zn) and A245 are plotted in Figure 4.3 

for both experiments. A better correlation was achieved for W2 tests respect to W1 tests. The slope 

coefficient instead was higher in W1 tests. This latter result indicated that the interaction between the 

organic matter and the metals was more effective in W1 experimental condition, meaning that other 

factors played significant role in determining overall metal mobilization by DOM. 

 

4.3.3 Spectroscopic characterization of released soil colloids  

A qualitative characterization of the organic substances was achieved by the excitation emission 

matrices of the leachates, presented in Figure 4.4. Figure 4.4 reports the contour plots related to 

leaching time from day 7.5 to day 9.5, corresponding to the previously described peaks of HMs.  
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Figure 4.4 Selection of 3DEE matrices recorded in W1 and W2 leachates at time between 7-10 d 

 

In most of the collected samples, the leachate presented a fluorescence matrix very similar to the 

one shown for the day 7.5. It was possible to observe two notable fluorescence peaks, corresponding, 

respectively to fulvic acids (ex230 - em440) and humic acids (ex330 - em445) (Yamashita & Jaffé, 

2008). Such a result confirmed that a continuous and constant release of organic substances from the 

soil to the liquid phase (background) took place during the experiments. A fluorescence peak (ex385 

- em460) appeared again at day 8.5 in both W1 and W2 tests. This peak identified a net change in the 

quality and quantity of DOM released into the leachate. The variation led to an increase of the 

absorption wavelength and consequently a slight increase of the emission wavelength compared to 

the previously mentioned background signal. The displacement was attributable to the presence of 

higher conjugation in the aromatic system as well as to the presence of auxochromes functional 

groups. The increase in ex-em wavelengths was also associated with higher molecular weight 

�G�L�V�W�U�L�E�X�W�L�R�Q���D�Q�G���³�K�X�P�L�F�´���F�K�D�U�D�F�W�H�U���R�I���W�K�H���I�O�X�R�U�R�S�K�R�U�H�V��(Boguta et al., 2016; �%�R�J�X�W�D���	���6�R�N�R�á�R�Z�V�N�D����

2016). 
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Figure 4.5 400MHz 1H NMR spectra of collected leachates in correspondence of metals accumulation. 
Spectra were acquired with 20480 scans, probe temperature of 298 K, solvent suppression with pre-
saturation field of 50Hz. 

 

Further information was obtained by the 1H-NMR spectra, plotted in Figure 4.5. It was possible 

to notice the higher intensity of the signals in the sample relative to day 8.5, in agreement with the 

peak observed in the fluorescence matrix (Figure 4.4), confirming the peak of organic matter release 

in the leachate (Figure 4.3). The spectrum recorded on day 8.5 displayed high intensity signals in the 

�D�O�L�S�K�D�W�L�F���U�H�J�L�R�Q���������/�����������S�S�P�������$���V�L�Q�J�O�H�W���V�L�J�Q�D�O���Z�D�V���Q�R�W�L�F�H�D�E�O�H���L�Q���W�K�H���U�H�J�L�R�Q���R�I���R�U�J�D�Q�R-silanes ���/��� ��

0.150 ppm). Several signals were observable (8.5d) within th�H���F�D�U�E�R�K�\�G�U�D�W�H�V���U�H�J�L�R�Q���������/�������S�S�P������

�7�Z�R�� �V�L�J�Q�D�O�V�� �R�I�� �D�Q�R�P�H�U�L�F�� �F�D�U�E�R�Q�V�� �Z�H�U�H�� �E�D�U�H�O�\�� �Y�L�V�L�E�O�H�� �����������/������ �S�S�P���� �V�X�J�J�H�V�W�L�Q�J�� �W�K�H�� �S�U�H�V�H�Q�F�H�� �R�I��

polysaccharides. These signals absent or much less intense in the other days samples confirmed that 

the quality of the organic matter release was changing over time. It is noticeable that the presence of 

carbohydrates was recorded in significant concentration at experimental time corresponding to metal 

�D�F�F�X�P�X�O�D�W�L�R�Q���� �$�W�� �I�L�U�V�W�� �J�O�D�Q�F�H�� �Q�R�� �S�H�D�N�� �Z�D�V�� �S�U�H�V�H�Q�W�� �L�Q�� �W�K�H�� �D�U�R�P�D�W�L�F�� �U�H�J�L�R�Q�� �������/���� ppm) since the 

spectrum was not opportunely resolved (see magnification in Figure 4.5). Signals in such chemical 

shift region resulted in broadened line shapes and of very low intensities. 
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4.4  Discussion 

 

4.4.1 Colloidal mobilization of HMs 

By comparing Figures 4.1-4.5, it was evident that colloids containing organic molecules of humic 

nature and/or their association with inorganic kaolinite platelets were involved in the transport of 

metals. These aggregates, generated in the soil, migrated through the column layers with a different 

moving rate compared to the water flow. Colloidal fronts were generated through the soil depth 

profile as indicated by the migration profiles of Pb and total phenols in soil and by the simultaneous 

release in the leachate of organic and inorganic matter, forming stable complexes with the metals 

(Figures 4.1-4.2). The similar distribution of the two parameters inside the soil strongly suggested the 

formation of colloidal MOAs moving at a rate influenced by: i) the wastewater different salinity; ii) 

the presence of DOM; and iii) their own characteristics (i.e. amount of organic matter, humification 

degree, hydrophobicity, amount of polar / charged groups, molecular weight distribution, stability of 

the supramolecular structure). In subsection 2.3.4 it was reported a decreasing colloidal mobilization 

speed at increasing sodium content. Here, although W1 had a consistent concentration of Na (350 

mg/L) while W2 had none, the colloids migration rate was higher for W1 than W2. The effect of 

sodi�X�P���L�R�Q�V���Z�D�V���W�K�H�U�H�I�R�U�H���G�L�I�I�H�U�H�Q�W���I�U�R�P���W�K�D�W���R�I���J�H�Q�H�U�D�O���³�V�D�O�L�Q�L�W�\�´�����&�D���D�Q�G���0�J�������������D�Q�G�����������P�J���/���L�Q��

W1 respectively), having lower ionic radius, divalent charge and hence more concentrated charge 

distribution than sodium, did not increase the clay dispersion. In contrast they facilitated the 

aggregation of clay particles, keeping soil flocculated and competing with sodium for binding sites 

(Duan et al., 2010; Kretzschmar & Sticher, 1997; Warrence et al., 2002). This effect overrode the 

sodicity influence, resulting in higher colloidal mobilization in soil irrigated with W1 as ascertained 

by the Si trend reported in Figure 4.2b 

Also the presence (W1 test)/absence (W2 test) of DOM caused different mobility. During W2 

tests, zinc concentration peaks, characteristics of W1 tests, were not observed (Figures 4.1 and 4.2). 

Two different explanations were proposed: i) Zinc from the real wastewater was already present as 

bound to different transport molecules (DOM) upstream to the interaction with the organic substance 

of the soil; ii) Zinc had high affinity to immobile matrix as confirmed by the high concentration in 

the first 0.5 cm (Figure 4.1). The lower colloids release allowed by W2 irrigation made the 

mobilizable fraction of Zn to reach only 3 cm depth at the end of the experiment. The same Zn fraction 

was mobilized earlier within the leachate (Figure 4.2a) during the irrigation with W1, which was 

characterized by an enhanced colloidal mobilization. Such a result highlighted how the mobility of 
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metals was not only dependent on the characteristics of the soil, but also strongly correlated to the 

speciation of the metals themselves within both the irrigation and the pore water (Moreno-Jiménez et 

al., 2011). 

 

4.4.2 Role and nature of colloidal aggregates 

Under the tested experimental conditions, DOM seemed to act as metal carrier through the layers 

of soil. This assumption was confirmed by the monitoring of UV absorbance of the leaching solution. 

The presence of both A245 (Figure 4.2c) and COD backgrounds was due to the release of organic 

molecules, already described in subsections 2.3.2 and 2.3.3. The origin of the observed organic matter 

was attributed to soil release phenomena. Absorbance and COD backgrounds were present even in 

the W2 solution that was devoid of any source of DOM (Table 4.1). The presence in W2 of peaks of 

Si simultaneously to A245 (Figure 4.2b-c) reinforced the hypothesis of aggregation of the detected 

organic matter with kaolinite platelets. Clearly, the presence of DOM is not the sole parameter to 

influence metal release in the leachate, and coefficients of correlation in Figure 4.3 were quite far 

from 1. Nevertheless, the trend was clearly observable and it was possible to assess that metals were 

released together with organic matter into the leachate. Salinity played major role in enhancing the 

dispersion of data in W1 test, which were characterized by a lower value of R2 (Figure 4.3). On the 

other side the higher value of the slope in W1 meant that in presence of salinity, DOM mobilization 

�R�I���P�H�W�D�O�V���Z�D�V���³�P�R�U�H���H�I�I�H�F�W�L�Y�H�´�����2�E�Y�L�R�X�V�O�\���$245 is an indirect measure of DOM and does not give 

information about the quality of organic matter and this is another reason for the observed data 

dispersion. As discussed below, speciation of DOM, and in detail its structure, aggregation state, 

humification degree, molecular weight distribution, presence of metal chelating functional groups are 

all factors that influence the interaction with HMs (�%�R�J�X�W�D���	���6�R�N�R�á�R�Z�V�N�D������������; Chen et al., 2015b). 

From the observation of 3DEEM (Figure 4.4) it was clear that at the experimental time corresponding 

to the metals accumulation, the features of the organic substance in the leachate were significantly 

different from the background. This means that the quality of the released humic and fulvic substances 

were changing over time. Several studies have evidenced quenching of fluorescence related to metals 

and mainly Cu binding to HA-like fluorophores (Boguta et al., 2016; Wu et al., 2004). In the collected 

leachates, Cu concentration was never above 1 µM and the quenching due to Cu could not be higher 

than 10% of the total fluorescence intensity (Yamashita & Jaffé, 2008). The lower fluorescence 

intensity in W2 leachate was hence attributable to the mobilization of total phenols, clearly indicated 

in Figure 4.1: less humic matter mobilized in W2 test. 1H-NMR spectra further confirmed the 

heterogeneity over time of the released organic matter. The hypothesis made about the formation of 
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MOAs was emphasized by the silanic signal (Figure 4.5, 8.5 d) at high fields, suggesting also the 

formation of covalently bound aggregates. The presence of aliphatic signals was in accordance with 

the fluorescence observed at low excitation wavelengths (fulvic acids area). Although very high 

fluorescence is observable in the humic area (Figure 4.4), aromatic signals displayed very low 

intensity and poor resolution in all the acquired NMR spectra. This was attributable to the 

supramolecular structure of the colloidal humic substances detected. The aggregate was hence 

stabilized by the aromatic moieties, which strongly interacted forming a very stable hydrophobic core 

of the colloidal micelle. The polar residues (i.e. carbohydrates, O-Alkyl groups, amines) were instead 

exposed to the water phase and resulted to be easier NMR detectable. This type of structure made, 

indeed, the protons contained within the micelles to have different relaxation times, which resulted 

in broad unresolved peaks. Such behavior was already reported in literature (Lam & Simpson, 2008), 

suggesting that the broadening of line shapes might be due mainly two factors: aggregation state of 

the molecules and interaction with paramagnetic metals or a combination of both these effects. Both 

hypotheses are in good agreement with data obtained in this work. This indicates that the released 

organic matter was in form of colloidal supramolecular aggregates, with a very stable micellar 

structure and very high heterogeneity.  

 

4.4.3 Results comparison with literature 

The main observation of this study is that trace HMs mobility in soil was driven by colloidal 

mobilization. Such behavior was already qualitatively described in literature (McCarthy & Zachara, 

1989), and several studies reported that metal mobility was severely affected by colloidal 

mobilization in the case of HMs at µmoles level (de Jonge et al., 2004; Klitzke & Lang, 2007; 

Kretzschmar & Sticher, 1997). Generally it is very difficult to compare data, since experiments were 

carried out at different concentrations and soil colloids are in general poorly characterized and 

potentially very heterogeneous. For instance, Pédrot et al. (2008) divided trace metals into three 

groups according to their interaction with colloids. Cu, Ni, and Zn were catalogued within the same 

group of metals influenced by organic rich colloids. From Figure 4.1 it was possible to conclude that 

Cu, Ni and Zn behaved differently from each other. Cu showed a strong affinity with the slow 

colloidal phases that were moving within the soil, since its profile in Figure 4.1 was very similar to 

that displayed by Pb and phenols. No accumulation of Cu was detected in the top layer. Ni and Zn, 

conversely, accumulated in the top layer (depth 0.5 cm). On one hand, all metals interacted with the 

slow colloidal front at depth below 3 cm. On the other hand, in the W1 test they eluted together 

(Figure 4.2) at day 8.5 into the leachate. After 10.5 days, only Ni and Zn eluted, and after 15 day, 
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only Cu. As mentioned before, no Zn peak was detected in W2 and again, only Cu eluted after 15 

days. Even in the simplified model of the OECD artificial soil, different kinds of colloids were 

generated in different boundary conditions (Figures 4.5 and 4.6), each with its own moving rate and 

affinity to specific metals. This did not exclude in general the interaction with organic rich colloids 

as reported by the cited literature, but highlighted the huge heterogeneity of mobility patterns that are 

possible for metal-colloid complexes. Several studies are available in the literature concerning 

interaction of metals with organic and inorganic matter (Boguta et al., 2016; Covelo et al., 2007; 

Flogeac et al., 2004; Grybos et al., 2007; Temminghoff et al., 1997). Although the majority of them 

deal with case studies on real scale or with higher concentration ranges, some comparison is still 

possible with the obtained results. It was reported that low molecular weight organic acids in soils 

were released after the partial degradation of soil organic matter (Sposito, 2008). Simple organic 

acids, dissolved or aggregated in humic supramolecular structures (Kelleher & Simpson, 2006; 

Piccolo, 2002), enhanced metal mobility in soil profiles by reducing soil pH and forming complexes 

with heavy metals (Renella et al., 2004). The investigation by thin layer chromatography (TLC) of 

Zn, Cd and Pb mobility in a sandy loam soil in presence of aqueous solutions of several organic acids, 

enhanced the transport of heavy metals, especially Zn and Cd. Although Pb was slightly mobilized 

by citric and tartaric acid, it was found that this metal formed stable complexes with organic acids 

which strongly interacted with inorganic soil matrix resulting in little mobility (Schwab et al., 2008). 

It was observed that Cd mobility decreased with increasing of soil organic matter, while it increased 

with the increasing of salinity and dissolved organic matter (Gerritse, 1996) in accordance to the 

results of the present study. Cd, Pb and Zn were completely immobilized by the soil matrix, mostly 

to the acid-soluble fraction, in the first few centimetres of the soil, while in the leachates Cd behaved 

differently from other metals, due to the marked difference in adsorption kinetics (Plassard et al., 

2000). According to another study, depth penetration of Cd into the soil profile took place due to the 

preferential paths through macropores. It was reported that colloids might have blocked the soil 

matrix capillary, which led to the final accumulation of Cd in the first 5 mm. In contrast, the 

application of DOM increased the diffusion of Cd, as observed in this study (Li & Zhou, 2010). 

Metals mobility was hence affected by very complex equilibria in which the interaction with colloids 

and nanoparticles played a prominent role in determining their fate in the soil. Further studies are of 

course needed to achieve a deeper knowledge of the humic supramolecular structures and their 

aggregation with inorganic colloids as well as the interaction that this complex transport media 

display with contaminants, even at trace concentrations. 
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4.5  Conclusions 

Trace HMs mobilization in soil is controlled by colloidal mobilization. Colloids, that might be 

organic, inorganic or MOAs, are released from the soil matrix during time and act as a metal carrier, 

moving through the soil column with lower velocity than the water flow (multiphase medium), 

selectively interacting with contaminants contained in the irrigation water. The result of this 

interaction is the generation of contamination fronts that move in the soil matrix at the pace of the 

colloidal phase and generate accumulation peaks of HMs in the leachate and in the soil layers. A 

direct correlation was find between the abundance of HMs in the leachate and the contemporary 

release of DOM, expressed as UV A245. The organic molecules responsible for the mobilization, 

detected by UV-VIS measurements, were shown to belong to the class of humic and fulvic acids, as 

indicated by 3DEEM spectrofluorometric data. A very stable and strongly hydrophilic micellar 

structure was hypothesized for these molecules on the basis of 1H-NMR data. Colloidal aggregates 

seemed to be generated from the soil organic matter, since they were also detected in the leachate 

produced by irrigation with an artificial solution deprived of any dissolved organic matter. It was 

concluded that the transfer of pollutants in the complex water / soil system was not only related to the 

concentration of contaminants in the irrigation water, but also to the physical-chemical properties of 

the soil as well as the generated colloidal aggregates.  
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5.1  Introduction  

Irrigation with low quality water, often reclaimed from wastewater treatment plants, is practiced 

all over the world, resulting in constant release of under-threshold levels of contaminants (Angelakis 

et al., 1999). These contaminants might accumulate over years with consequent environmental and 

health concerns. Among the wide variety of contaminants usually released in soil by irrigation 

practices, heavy metals (HMs) play a primary role due to their persistence and their tendency to 

bioaccumulate. It is therefore extremely important to understand their fate into the soil and their 

possible migration to the groundwater. 

Colloidal mobilization is one of the key phenomena determining the fate of contaminants present 

at trace level in the water discharged into soils (Chapters 2 and 4). Soil organic matter is indeed able 

to release colloidal aggregates which sorb efficiently all type of contaminants including HMs. Such 

a mechanism, which is negligible for pollutants present at high concentration, becomes instead crucial 

for pollutants at trace level, i.e. whenever the colloids concentration generated into the soil is 

comparable or higher than the concentration of the pollutants (Kretzschmar et al., 1999; Pédrot et al., 

2008). Since colloidal phases move into the soil column at a pace which is different from those of the 

water flow, the migration pattern of trace pollutants is governed by colloids mobility properties 

through the porous medium.  

The sodium concentration in the irrigation water is reported to be one of the crucial factor 

affecting the mobilization of inorganic colloids (Toze, 2006). Sodium and other forms of salinity (i.e. 

Ca, Mg, K) are the most persistent in recycled water and are among the most difficult to remove from 

water, usually requiring the use of expensive cation exchange resins or reverse osmosis membranes. 

The salinity of recycled water has well-known impact on the infiltration rate with the extent of crust 

formation on the soil itself. This is due to chemical dispersion which depends on the soil exchangeable 

sodium percentage and the electrolyte concentration of the applied water (Agassi et al., 1981).  Such 

impact influences as well the growth of the crops (Halliwell et al., 2001). More in detail, sodium 

cations interact with the negatively charged layers of clay particles. As sodium concentrations 

increase, the electrophoretic mobility of the clay anionic layers (platelets) increases resulting in 

swelling dispersion of the clay particles impacting soil permeability (McNeal et al., 1966) with 

subsequent surface ponding problems (Toze, 2006). This effect is of primary importance being one 

of the factors that regulates the mobility of water through soil and thus the sorption/desorption 

equilibria of contaminants moving through the soil layers, increasing the contact time with the solid 

matrix and consequently with plants roots, thus influencing the processes of contamination and 
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accumulation. The described phenomenon also implicates a lower mobilization of colloidal clays 

which at trace levels could mean lower HMs mobilization. Some authors reported threshold value of 

20 mM sodium concentration able to inhibit colloidal mobilization (Plassard et al., 2000). How this 

effectively influences the fate of trace HMs from wastewater irrigation is not described in the 

literature.  

This work aims to clarify the effect of increasing sodium concentration on the trace Cd, Cu, Ni 

and Zn mobility and the effect of sodicity on the release of organic matter from soil to the pore water 

and finally to the leachate.  

 

5.2  Material and methods 

 

5.2.1 Experimental setup 

A micro-contamination phenomenon was reproduced and studied at laboratory scale, simulating 

the irrigation of an artificial soil with a synthetic water containing four trace HMs (Cd, Cu, Ni and 

Zn) in the concentrations reported in Table 5.1 at various sodiciy levels (0, 1, 5, 10 and 50 mM).  

To evaluate the dynamics of accumulation of micropollutants as well as their migration in the 

soil column at varying sodium content, HMs concentration was determined daily in the leachate and, 

at the end of the experiment in the soil column matrices. The mobilization of humic substances in soil 

was monitored by determining the concentration of total phenols. The release of organic substances 

in the leachates was measured as chemical oxygen demand (COD) and Ultra-Violet (UV) absorbance. 

Leached organic matter was further characterized through three dimensional excitation-emission 

matrix (3DEEM) spectrofluorimetry. 

The used standard soil was prepared according to the "recipe" described in the guidelines of the 

Organization for Economic Cooperation and Development (OECD) (Wilhelm & Maibach, 2008). 

These guidelines were developed in order to test the eco-toxicity of inorganic and organic chemicals 

in soil, therefore the OECD soil is widely used to test complex solid samples (�-�R���N�R���	���2�O�H�V�]�F�]�X�N����

2013). The reference soil was composed as follows: kaolinite, 20%; quartz sand, 74%; CaCO3, 1%; 

sphagnum peat, 5%. Kaolinite, quartz sand and CaCO3 were purchased from Sigma-Aldrich (USA). 

Sphagnum peat was obtained from a local gardening store. Before use the soil was analyzed to define 
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the background levels of the tested metals. Results of analysis are reported in Table 5.1. A very high 

concentration of Pb was found in the kaolinite. 

HMs concentrations were chosen to be well below the threshold values suggested by the Food 

and Agriculture Organization of the United Nations (FAO) in the wastewater quality guidelines for 

agricultural use (Pescod, 1992). In details the different wastewater solutions were obtained dissolving 

analytical grade CuCl2·2H2O (Carlo Erba Reagenti, Italy), NiCl2·6H2O (Sigma-Aldrich, USA), and 

ZnCl2 (Applichem, Germany) and analytical standard Cd (Carlo Erba Reagenti, Italy), in analytical 

grade HNO3 1% (J.T. Baker, USA) solutions. The obtained stock solutions, containing 1 g/L of the 

selected metal, were successively diluted with ultrapure water (Elga, USA) to obtain the required 

concentrations. The opportune amount of analytical grade NaClO4 (Sigma-Aldrich, USA) was added 

to reach the desired sodicity. ClO4
-
 was chosen to minimize counterion effects. Final pH was adjusted 

to 6.8, adding a few drops of KOH 0.05 M.  

 

Table 5.1 Concentration of HMs in OECD soil and in the synthetic wastewater 

  Cd [ppb] Cu [ppb] Ni [ppb] Pb [ppb] Zn [ppb] 

Kaolinite 14.2 62565 748 4031350 10879 

Sphagnum Peat 96.7 2407 1800 9499 19308 

Quartz Sand 5.0 1910 787 4964 8683 

Wastewater 5.00 100 100 / 500 

FAO guidelines 10.0 200 200 / 2000 

 

5.2.2 Analytical procedures 

�(�D�F�K���V�R�L�O���O�D�\�H�U���D�Q�G���W�K�H���³�E�O�D�Q�N�´���V�R�L�O components were dried at 35°C until constant weight and 

homogenized. Aliquots of 1 g were mineralized in 15 mL of aqua regia using a Milestone (USA) Start 

D microwave digester. Leachates were collected daily and divided into two aliquots. The first aliquot 
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was acidified with 3% HNO3 for metals analysis. The concentrations of Cd, Cu, Ni, Pb, Si and Zn, 

were measured by ICP-OES spectroscopy (Perkin Elmer Optima 8300, USA) and ICP-MS (Perkin 

Elmer Nexion 300, USA) operating in dual detector mode. The second aliquot was stored at -20°C 

for spectroscopic characterization. Once defrost, the UV-VIS absorbance at 245, 285, 445, 645 nm 

and the COD were determined. The ratio between absorbance read at 445 and 645 nm (E4/E6 ratio) 

was calculated according to Chen et al. (1977). Moreover 3DEEM of the daily leachates was recorded. 

The UV-VIS measurements were carried out using a V-530 UV-VIS spectrophotometer from Jasco 

(Japan). COD was determined according to APHA (1998) standard method 5220D. COD absorbance 

readings were performed by means of a Photolab 6600 UV-VIS spectrophotometer (WTW, 

Germany). The 3DEEM matrices were acquired through the spectrofluorimeter Jasco FP 750 (Japan) 

and elaborated through the software SPEKWIN 32. Excitation wavelength was varied between 220-

450 nm; emission wavelength was recorded between 370-585 nm. 

 

5.3  Results and discussion 

 

5.3.1 HMs accumulation in soil �± effect of sodium content 

From the data reported in Figure 5.1 it is possible to confirm what was observed in Chapter 2. 

Most of the metals contained into the solution fed to the columns were retained within the 0.5 cm soil 

top layer. Very low oscillations in the deeper layers were observed for all the tested metals 

concentrations. 
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Figure 5.1 Accumulation of Cd, Cu, Ni and Zn in OECD soil after irrigation with artificial wastewater. 
Sodium concentration was increased from 0 to 50 mM. 

 

The observed trends were generally very similar among the different conditions tested, with the 

higher metal concentration in the top layer and concentrations decreasing with depth. Nevertheless 

the change of Na concentration in the water fed to the column highlighted different behavior of the 

tested metals. In first analysis it was clearly evidenced a different effect of sodicity on the 

accumulations of Cd respect to Cu, Ni and Zn. The highest cadmium concentration in the top layer 

was achieved in the experiment at 0 mM [Na]. The increase of sodicity at 1 mM concentration caused 

a lover accumulation at the top of the column. No significant differences were observed while 

increasing the Na concentration up to 50 mM. This means that the presence of sodium increased the 

mobility of Cd, but without registering any effect related to its concentration. This behavior is 

consistent with results available from literature. Amrhein et al. (1992) attributed the increase of Cd 
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mobilization to the concomitance of two factors: competitive cation exchange with sodium as well as 

complexation by C1- and acetate. Ghallab and Usman (2007) reported an increase of cadmium 

mobility and plant availability at increasing Na concentration. Authors attributed higher Cd mobility 

to the counterion effect of Cl-. Speciation modeling in the case gave back the formation of CdCl+ 

specie to be dominant at increasing concentration and, indeed, they found linear increase of Cd 

dissolved species as a function of NaCl concentration. The results displayed on Figure 5.1 are instead 

probably ascribed to effects of competition of Na for some of the binding sites on the immobile soil 

matrix. Harter and Naidu (2001) reviewed the effect of Na on Cd sorption to soil, hypothesizing that, 

since even at very high sodium levels Cd sorption was always recorded, Cd has onto soil specific 

binding sites, which are not affected by sodium exchange. This was consistent with the obtained 

results and explains why at increasing sodicity the sorption of Cd on the top layer remained 

substantially constant. At 1 mM, sodium concentration was indeed much higher than the trace Cd and 

sodicity was already in excess to compete with cadmium ions for sodium exchangeable binding sites. 

In contrast, Cu, Ni and Zn displayed different behavior against sodicity. Some competition was still 

observable in Figure 5.1 at sodicities equal to 1 and 5 mM. The concentrations in topsoil are in these 

cases lower than the experiment carried without Na. Differently to what observed for Cd, the 

concentrations in the top layer were increasing at increasing sodicity. To better highlight such 

behavior, the concentrations in the top layer (0.5 cm depth) are plotted in Figure 5.2 as a function of 

the wastewater sodicity. 
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Figure 5.2 Accumulation of Cd, Cu, Ni and Zn at 0.5 depth at increasing wastewater sodicity. 

The trend of Cd highlights what was previously discussed: no effect of increasing sodicity was 

observed. At sodicity higher than 1 mM, Cd values were practically distributed on a straight line. The 

accumulation of Cu, Ni and Zn was decreasing when sodium ranged from 0 to 5 mM, and increasing 

when Na concentration range was between 5 and 50 mM. This means that sodium displayed opposite 

effect in influencing metal mobilization depending on its concentration in the wastewater solution. 

At low Na concentration, Cu, Ni and Zn were less accumulated on the top layer where the 

concentrations decreased from 31.0, 20.3 and 95.1 mg /Kg at 0 mM (Na) to 25.1, 12.5 and 59.2 mg/Kg 

at 5mM (Na) of Cu, Ni and Zn, respectively. Such decrease could be ascribed to competition with 

sodium ions as described in the case of Cd. Such explanation, although convincing in the case of Cd, 

could not justify the observed increase of accumulation at sodicity higher than 5 mM. The main 

known effect of sodium concentration is in fact to swell the dispersion of clay platelets (McNeal et 

al., 1966). This means that increasing Na concentration changes the hydraulic conductivity of the 

medium. Dispersed clay platelets clog the pores of the solid medium and slower the water flow 

through soil. During the experiments was indeed qualitatively observed that the increase of sodicity 

from 5 to 10 and 50 mM caused a decrease in the leachate flow and hence of the soil desaturation 

time. This reflects in two main consequences: i) being the water flow slower contaminants have 

longer time to interact with soil matrix enhancing the adsorption and or the ionic exchange; ii) pores 

clogging slows the mobilization of colloids through the soil layers. This explains why at sodicity 

higher than 5 mM metal retention in the top layer of the soil was enhanced. It is noticeable that the 

effect of sodium concentration increase is to enhance the generation of inorganic colloids which are, 
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due to their high concentration, less mobile. At intermediate sodicity (1-5 mM) colloids dispersion 

was still enhanced, but their concentration into the pore water was reasonably insufficient to generate 

clogging. As a consequence top layer accumulation substantially decreased (Figure 5.2). 

 

5.3.2 Leachates characterization 

Figure 5.3 displays the concentration trends of HMs released from the columns into the collected 

leachates. In first approximation, it was easy to observe that the concentrations of metals were 

generally low in accordance with observation that most of the metals added were retained in the soil 

top layer (Figure 5.1). Nevertheless several oscillations were visible and it was possible to relate metal 

behavior to the results described in previous subsection The obtained trends were appreciably 

different from each other, meaning that sodium concentration strongly affected the mobilization rate 

of the metals. Concerning Cd, it was possible to notice that except for the leachate at 0 mM [Na] 

where the majority of the metals was retained into the top 0.5 cm, the trends are quite disturbed by 

the presence of several concentration peaks. It was possible to observe that the release of Cd was in 

some way delayed by the sodicity increase since highest peaks of Cd were detected in the last five 

days of the experiments carried on at 10 and 50 mM [Na]. Cu release was more consistent in terms 

of average concentration and this was mainly due the higher background in the soil. For the same 

reason, the concentration trends were very similar since most of Cu detected into the leachate was 

probably originating from the soil background. Nevertheless several differences were observable. A 

peak was observable only with 1 mM [Na] at day 11. With 5, 10 and 50 mM [Na] peaks were detected 

at day 9, 14 and 19, respectively. Conversely, only a small peak at day 14 was observed with 1 mM 

[Na].  

Ni trends into the leachates were less affected by releases from the soil background, Ni 

background in soil was indeed around one order of magnitude lower than Cu (Table 5.1). Hence, 

several differences were observable at increasing of sodicity. Figure 5.3 shows that trends at 0, 10 

and 50 mM [Na] were less disturbed respect to 1 and 5 mM [Na]. In these latter experiments a high 

peak was recorded day 14 while peaks at day 9 and 14 were detected only at 5 mM [Na]. A similar 

behavior was displayed also by Zn. At low sodium concentration peaks of Zn popped up between 8 

and 10 d while at 10 and 50 mM [Na] the release resulted to be almost constant. The described results 

were consistent with the results reported in Figure 5.2. Higher peaks (especially of Ni and Zn) were 

indeed observed at 1 and 5 mM [Na] where the accumulation into the soil top layer was lower than 
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0, 10 and 50mM [Na]. This means that higher mobilization of colloids was allowed in such conditions. 

This observation was further confirmed by the spectroscopic characterization of the leachates. 
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Figure 5.3 Trends of Cd, Cu, Ni and Zn concentration into the leachates. 
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Figure 5.4 3DEEM of the leachates collected between day 8 and 15. 
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Figure 5.4 displays the 3DEEM of the leachates recorded in the time interval between 8 and 15 

d. In most of the collected samples, the leachate presented a very similar fluorescence matrix. It was 

possible to observe two notable fluorescence peaks, corresponding, respectively to fulvic acids 

(ex230 - em440) and humic acids (ex330 - em445) (Yamashita & Jaffé, 2008). Such a result 

confirmed that a continuous and constant release of organic substances from the soil to the liquid 

phase (background) took place during the experiments. A decrease in fluorescence occurred at high 

sodium content. This was, at least in part, due a well-known effect of ionic strength in quenching the 

fluorescence signal. Ghosh and Schnitzer (1980) reported a reduction of 10 % of both humic and 

fulvic signals fluorescence changing the concentration of NaCl from 1 to 100 mM. The observed 

signals were at 50 mM [Na] less than 50 % intense compared to the samples at 0 mM [Na]. This 

implicates that less fluorophores were released at high ionic strength. Several differences were 

displayed among the matrices acquired at different experimental times, mostly related to the relative 

intensities of the two described fluorescence areas. This indicates noticeable variations over time of 

the organic matter quality in terms of humic and fulvic substances released into the leachates (Boguta 

et al., 2016). Higher variability was observed at 0 mM [Na], whereas the fluorescence strongly 

decreased at day 13 and 15 mostly in the humic region. Reduction of fluorescence was also observed, 

primarily of the fulvic signal, at 50 mM [Na] at day 9 and 14 of leaching time. By comparing Figures 

5.3 and 5.4, several relations were observable between the metals release and the detected 

fluorescence. Changes in humic fluorescence areas were observed contemporarily to most of the 

peaks of metal reported in Figure 5.3. In detail, matrices acquired at day 9 and 14, when several peaks 

of Ni and Zn were observable from Figure 5.3, showed, respect to previous and later days, marked 

increase of fluorescence in the humic area. The signal also resulted slightly shifted at higher ex-em 

wavelengths indicating higher conjugation and humification degree (Yamashita & Jaffé, 2008). 

Conversely, very low signal was recorded at 50 mM [Na] in the same days and same time no peaks 

of Ni and Zn were recorded in Figure 5.3. It is worth noting that in the same experiment, peaks of Cu 

were observed at day 9 and 14. Complexation with Cu could be the reason of the observed 

fluorescence lower intensity in the fulvic area compared to the other days. The same was observable 

at 10 mM [Na] where again at 9 and 14 d the fulvic signal was lower in respect to other days.  

 



97 
 

 

Figure 5.5 Trends over time of E4/E6 ratio, A 245, A285 and COD at varying of sodium concentration. 
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From the observation of Figure 5.5, despite the described differences in behavior of both metal 

concentration and fluorescence, trends of measured absorbances (right side of the figure) and COD 

were very similar. Peaks popped up again at day 9, 14 and 19, and rose at increasing sodicity. The 

release of organic matter was indeed enhanced by high sodium concentration. The trend of E4/E6 ratio 

was influenced much more by the sodium concentration. E4/E6 ratio is in fact related to the degree of 

humification and in general is increasing at decreasing the humification degree (Chen et al., 1977). 

The highest oscillations of such ratio were observed at 1 and 5 mM [Na], while the tendencies were 

more stable in the other experiments. This means that in such sodicity interval, where higher metal 

mobilization was deducible from Figure 5.2, the quality of the released organic matter was 

continuously changing over time due the mobilization of colloids moving with different humification 

degrees and moving rates. At higher sodicity where colloids were slowed down by the described 

effect of pore clogging, the release of organic matter happened more regularly in quality. A possible 

explanation of the described effects, is that, being humic substances, supramolecular aggregates of 

small organic fragments (Piccolo, 2001), the increase of Na concentration operated a denaturation of 

such aggregates. The increase of ionic strength, in fact reduces the entropic advantage gained through 

hydrophobic interactions by supramolecular aggregates, making more probable the detachment of 

fragments and small molecules from the hydrophobic core. This would also explain the increasing 

release of COD at increasing of Na concentration. Moreover, such denaturation effect would be in 

good agreement with the observed lower fluorescence intensity displayed in Figure 5.4. The 

aggregation of fluorophores in the hydrophobic core of the aggregate would in fact reduce the energy 

transfer with the sodium quencher (Stork et al., 2002). The conclusion is that probably the 

fluorophores released at 50 mM Na were more quenched because less aggregated. 

 

5.4 Conclusions 

 

�x The colloidal mobilization of Cu, Ni and Zn was strongly affected by the concentration of 

sodium. Cd was less sensitive to Na concentration and no differences were highlighted in 

its mobility at increasing sodium concentration. 

�x In all the experiments the majority of metals were retained into the top soil layer (0.5 cm). 

�x At low concentrations (1-5 mM) sodium enhanced Cu, Ni and Zn mobilization and less 

metals were accumulated into the soil top layer of the columns. 
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�x The release of metals into the leachate happened contemporarily with variations in the 

excitation emission matrix. 

�x At low sodium concentration, higher variations were observed of the E4/E6 ratio. 

�x Sodicity enhanced the release of organic matter into the leachate due to an effect of 

denaturation/disaggregation of humic substances supramolecular structure. 
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6.1 General discussion 

 

6.1.1 Main parameters affecting trace metals retention-mobilization in soil 

The fate of trace metals is the result of a very complex system of simultaneous physical chemical 

equilibria and phenomena. The approach chosen in the experimental plan of the present work was to 

try to isolate each of the parameters to evaluate the single effect of each of the components on the 

overall fate of trace HMs in soil. This was partially possible thanks to the study of the Organization 

for the Economic Cooperation and Development (OECD)  artificial soil (Wilhelm & Maibach, 2008) 

and in most of the cases artificial wastewaters which simplified enormously the research questions. 

Although OECD soil was probably quite far to properly mimic the behaviour of a real soil, it was 

�F�K�R�V�H�Q�� �D�V�� �³�V�L�P�S�O�H�� �P�R�G�H�O�´����The generally low metal background, and the absence of aggregates, 

inhomogeneity, or other factors influencing the metal fate in soil (i.e.: Fe and Mn hydroxides, 

presence of soil aggregates, soil disturbance status) allowed studying singularly the effect of each of 

parameters investigated, excluding other major effects. On the other side, since the OECD soil is 

widely used to assess the eco-toxicological risk of chemicals, the mobilization of contaminants in 

such medium has very high relevance in determining their bioavailability and hence the risk 

assessment itself. The main drawback was that many of the conclusions extrapolated from the 

experimental data still need to be tested and scaled up to different undisturbed real systems. Obtained 

data allowed anyway to clarify the main mechanisms and consequently the parameters affecting the 

overall fate in soil of trace metals from wastewater irrigation. In chapter 2 it was proposed a novel 

mechanism (Figure 2.4) which considers the presence and the mobilization through the soil matrix of 

colloidal phases which strongly interact with metals influencing strongly the mobilization kinetics. 

The same mechanism considered also the disaggregation of the soil organic matter which includes 

also the organic colloidal phases and constitute a source of small organic molecules which are 

continuously released in the pore water and after complexation act as carrier enhancing the metals 

mobilization. In chapter 4 the presence of MOAs among the metals carriers to the leachate resulted 

in describing the metal migration as a multiphase model, in which colloidal phases are different in 

composition and aggregation state, influencing the migration rate. Moreover each phase displayed 

specific affinity with selected metals. Each of these phases is on its own differently affected by the 

system condition as highlighted in chapter 5. The effect of sodium concentration in the wastewater 

affected differently the mobilization of each of the phases present in the soil reflected in different 

migration patterns at each sodium concentration tested. Definitely the main parameters affecting HMs 

fate in soil and investigated throughout the thesis are summarized hereby: 
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�x  the soil composition, in terms of organic and inorganic matter;  

�x  the generation rate of colloidal aggregates, responsible for the transport of part of the metals 

at a migration rate different from the one of the water flow;  

�x  the different physical-chemical properties of the generated colloids, which determines their 

selectivity in binding metals;  

�x  the disaggregation yield of the complex aggregates composing soil organic matter, which 

results in the release of small molecular weight ligands which coordinate HMs accelerating 

the transport rate;  

�x  the wastewater characteristics, including salinity, sodium content, and presence of organic 

matter, which influences the mobilization of colloidal aggregates through soil. 

 

6.1.2 Soil composition 

The effect of SOM content was mainly studied in chapter 2. The use of the artificial OECD soil 

allowed to range the SOM content from 2.5% to 10 % and compare the results in terms of metal 

retention �± mobilization. Preliminary batch test with Ni and Cu - conditions of pH and ionic strength 

���S�+� �������������,���”�������������P�0�����Z�H�U�H���W�K�H���V�D�P�H���R�I���W�K�H���F�R�O�X�P�Q���H�[�S�H�U�L�P�H�Q�W�V��- confirmed that peat had a higher 

maximum adsorption capacity (14.6 mg Cu/g and 13.44 mg Ni/g) compared to kaolinite (4.3 mg Cu/g 

and 6.5 mg Ni/g). 

The increase of SOM in the soil, contrarily to what expected, enhanced HMs mobility, since the 

highest SOM percentage corresponded to the lowest metals accumulation, and the highest 

concentration in the effluent leachate. The accumulation of contaminants, which happened, mainly, 

in the top layer of the soil, was in inverse proportion with the SOM content. The highest 

contamination (Figure 2.5) was reached for the soil prepared with 2.5% of peat (30.4 mg/kg of Ni, 

0.33 mg/kg of Cd, and 63.5 mg/kg of Cu) while the lowest was observed at 10% SOM (21.7, 0.14, 

39.9 mg/Kg for Ni, Cd, Cu, respectively). A continuous release of TOC was detected in the leachates 

collected (Figure 2.5). The concentration was proportional to the initial soil organic matter contained 

into the soil. This meant that organic molecules were continuously detached from the immobile soil 

matrix and transported into the water phase. Such organic molecules were involved in metal 

complexation acting as metal carriers through the soil layers. Several studies (Beesley et al., 2010; 

Flogeac et al., 2004; Gerritse, 1996) report the influence on metal mobility of small organic ligands 
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and the obtained results were found to be consistent with literature data. The generation of mobilizing 

ligands was more probable at higher SOM content. A linear correlation was found between the metals 

mobilization and the organic matter content in the column (Figure 2.6). The effect of organic matter 

is depending on metals concentration and experiments configuration. At high concentration and in 

batch mode organic matter increased adsorption capacity (Covelo et al., 2007). At trace levels and in 

continuous flow mode the effect is exactly opposite due the colloidal mobilization. Such colloidal 

mobilization is substantially negligible at high concentration and the higher adsorption capacity 

prevails resulting in higher contamination at higher SOM content (Clemente & Bernal, 2006). 

 

6.1.3 Colloidal mobilization of trace HMs 

Colloidal mobilization has been highlighted in chapters 2 and 4 as one of the key phenomena in 

determining the fate of trace contaminants from water discharged in soil. Soil organic matter is indeed 

able to release colloidal aggregates constituted of both organic and inorganic matter as described in 

chapter 4. Such colloidal particles adsorb many contaminants and specifically HMs (Mingorance et 

al., 2007). Such mechanism could be considered negligible when high concentrations of HMs are 

present in the irrigation water and the mobilization of metals is governed by sorption-desorption 

equilibria between the soil immobile and the aqueous mobile phases (McGechan & Lewis, 2002). In 

contrast, at HMs trace level, the colloids concentration generated in soil is comparable or higher than 

HMs concentration. In such condition, the adsorption/aggregation of HMs to the colloidal phase is 

not negligible (Kretzschmar et al., 1999; Pédrot et al., 2008). Since colloidal phases move in soil with 

different migration rates in respect to the water flow as described in chapter 4, the result is that the 

migration pattern of HMs is finally governed by colloids mobility properties through the porous 

medium. The development of the analytical method described in chapter 3 helped to monitor the 

migration of slow organic colloidal phases directly into the soil as described in chapter 4, while 

organic colloids released in the leachate were monitored through the use of spectroscopic methods. 

The novel method, applied to total phenols determination in solid and semi-solid matrices, was more 

accurate and more precise respect to the traditional one (Table 3.1), allowing to obtain higher recovery 

of total phenols in peat soil (15.5 % increase) with a decrease of the coefficient of variation (30.1% 

decrease). Inorganic colloids were monitored by following the concentration trends of Pb (Chapter 

2) and Si (Chapter 4). Several correlations were found between the metal concentration and the 

presence of colloidal phases in both soil and leachate samples. In chapter 2 it was reported that Cu 

and Ni were preferentially transported by HA-like fragments, while Cd is preferentially mobilized by 

FA-like. The formation of colloidal MOAs was also hypothesized on the basis of the appearance of 
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peaks of Pb in concomitance with absorbance measured at 245 nm and of course of metal release. 

The relationship between Cd transport and FA-like colloids was not found in presence of high sodicity 

as discussed in chapter 5. The transport of Cu and Ni by Humic like colloids was instead confirmed 

by the experiments in chapters 4 and 5. A direct correlation was found in chapter 4 (Figure 4.3) 

between the abundance of HMs in the leachate and the contemporary release of DOM, expressed as 

UV A245. The same correspondence was observed for the release in the leachate of silicon, directly 

related to inorganic colloids migration. The organic molecules responsible for the mobilization, 

detected by UV-VIS measurements, were further confirmed to belong to the class of humic and fulvic 

acids, as indicated by 3DEEM spectrofluorometric data and its comparison with literature (Boguta et 

al., 2016; �%�R�J�X�W�D���	���6�R�N�R�á�R�Z�V�N�D������������; Chen et al., 2015). A very stable and strongly hydrophilic 

micellar structure of the detected colloids was hypothesized for these molecules on the basis of 1H-

NMR data.  

 

6.1.4 Influence of wastewater composition on colloidal mobilization 

The colloidal mobilization was found to be strongly affected by the characteristics of the 

irrigation wastewater. In experiment D of Chapter 2 conducted by irrigating soil with artificial 

wastewater containing 20 mM sodium, it was observed a decrease of metal mobility and inhibition 

of colloidal mobilization. Such aspect was further investigated in the experiments described in chapter 

5. The concentration of sodium was made to range in the artificial irrigation water from 0 to 1, 5, 10 

and 50 mM to evaluate the effect of increasing sodicity on metal migration in soil. In all the 

experiments the majority of metals originating from treated wastewater were retained into the top soil 

layer (0.5 cm), confirming the results already described in chapter 2. The colloidal mobilization of 

Cu, Ni and Zn was severely affected by the concentration of sodium. Conversely, Cd was less 

sensitive to sodium concentration and no differences were highlighted in its mobility at increasing 

sodium concentration. In detail, mobilization of Ni, Cu and Zn was strongly enhanced at low sodicity 

values (e.g. 1-5 mM [Na]). At higher sodicity values metals were less mobile and higher accumulation 

happened (Figure 5.2) in the top soil layer (0.5 cm depth). This means that higher colloids 

mobilization was achieved in such sodicity range. This observation was further confirmed by the 

variations displayed during time by the ratio between absorbance read at 445 and 465 nm (namely 

E4/E6 ratio) (Chen et al., 1977). E4/E6 ratio is in fact related to the degree of humification and in 

general is increasing at decreasing the humification degree (Boguta et al., 2016). The highest 

oscillations of such ratio were observed at 1 and 5 mM [Na], while the tendencies were more stable 

in the other experiments (Figure 5.5). This means that in such sodicity interval, the quality of the 
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released organic matter was continuously changing over time due to the mobilization of colloids 

characterized by different humification degrees and moving rates. At higher sodicity where colloids 

were slowed by effect of pore clogging, the release of organic matter happened more regularly in 

quality. In Chapter 4 irrigation of OECD soil with artificial low salinity solution and with real 

treatment plant effluent was compared. Data showed that, although the real effluent had a consistent 

concentration of sodium (350 mg/L) while the artificial had none, the colloids migration rate was 

higher irrigating with the real wastewater. The effect of sodium ions was therefore different from that 

�R�I�� �J�H�Q�H�U�D�O�� �³�V�D�O�L�Q�L�W�\�´���� �&�D�� �D�Q�G�� �0�J�� �F�R�Q�W�D�L�Q�H�G�� �L�Q�� �W�K�H�� �U�H�D�O�� �H�I�I�O�X�H�Q�W�� ���������� �D�Q�G�� �������� �P�J���/�� �U�H�V�S�H�F�W�L�Y�H�O�\������

having lower ionic radius, divalent charge and hence more concentrated charge distribution than 

sodium, did not increase the clay dispersion. In contrast they facilitated the aggregation of clay 

particles, keeping soil flocculated and competing with sodium for binding sites (Duan et al., 2010; 

Kretzschmar & Sticher, 1997; Warrence et al., 2002). This effect overrode the sodicity influence 

described in chapters 2 and 5, finally resulting in higher colloidal mobilization in soil irrigated with 

real effluent as ascertained by the Si trend reported in Figure 4.2b. From the results described in 

chapters 2, 4 and 5, it is possible to conclude that even in the simplified model of the OECD artificial 

soil, different kinds of colloids were generated in different boundary conditions (Figures 4.5 and 4.6), 

each with its own moving rate and affinity to specific metals. 

 

6.2 Conclusions and future perspective 

The entire study carried out in the present work focused on the factors affecting the fate of trace 

heavy metals in soil. The results showed a very complex system of parameters which simultaneously 

affect metals retention-mobilization behavior once released in soil. The system behaves as a 

multiphase model in which each phase is characterized by its own properties and affinity with specific 

metals. Consequently, boundary conditions (i.e. pH, ionic strength, redox potential, sodium 

concentration, metals speciation, bacterial activity) influence in different way each of the metal 

binding phase present in the soil. The conclusion is that the fate of trace metals in soil, at the actual 

knowledge, remains obscure and still very difficult to foresee. The experimental approach applied in 

this thesis, despite the mentioned drawbacks, allowed to isolate many of these simultaneous effects. 

The results, although far to be exhaustive and complete, may help in understanding such effects.  

The final aim should be to have a model that, known the boundary conditions, could be applied 

to predict the fate of trace contaminants released in the environment. Foreseeing the fate of 
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contaminants in the environment will contribute to the correct risk assessment of irrigation reuse of 

treated wastewater. A lot of work is still to be performed in this direction. 

 The majority of the results obtained in this thesis refer to laboratory scale experiments with 

artificial soil. The behavior of the disturbed artificial soil prepared in the lab and packed in small 

columns is probably quite different from real undisturbed soil. The latter might present, indeed, 

differences in porosity and other major factors influencing the HMs mobility (e.g. Fe and Mn 

hydroxides, presence of soil aggregates, presence of bacterial activity). This limitation should be 

overroded by scaling the experiments and extending the study to real undisturbed soils. Moreover the 

conducted experimental studies only regarded the fate of trace metals, while in literature it is reported 

that colloidal mobilization also affects the fate of other emerging contaminants (i.e. pharmaceuticals 

and personal care products, organic priority pollutants) (Chen et al., 2011; de Jonge et al., 2004; Kanti 

Sen & Khilar, 2006; Zou & Zheng, 2013). Hence, the experimental approach hereby described could 

be successfully extended to other micro-pollutants. A deeper characterization of colloidal humic 

nanoparticles involved in the trace metals mobilization still needs to be performed. In this research 

was indeed highlighted that soil humic substances properties and their aggregation state are primarily 

involved in determining the overall fate of trace HMs. A better definition of their composition and of 

the forces involved in the stabilization of the three dimensional structure of the supramolecular 

aggregates, will doubtlessly help to further clarify many of the phenomena observed in this thesis.  
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