E. Lust, E. Härk, J. Nerut, and K. Vaarmets, Pt and Pt???Ru catalysts for polymer electrolyte fuel cells deposited onto carbide derived carbon supports, Electrochimica Acta, vol.101, pp.130-141, 2013.
DOI : 10.1016/j.electacta.2012.10.024

A. Gasteiger, S. S. Kocha, B. Sompalli, and F. T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Applied Catalysis B: Environmental, vol.56, issue.1-2, pp.9-35, 2005.
DOI : 10.1016/j.apcatb.2004.06.021

P. Chen and . Holt-hindle, Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications, Chemical Reviews, vol.110, issue.6, pp.3767-3804, 2010.
DOI : 10.1021/cr9003902

T. Parrondoa, E. Hanb, C. Niangarb, N. Wangb, K. Daleb et al., Platinum supported on titanium-ruthenium oxide is a remarkably stable electrocatayst for hydrogen fuel cell vehicles, Proceedings of the National Academy of Sciences, vol.46, issue.1, pp.45-50, 2014.
DOI : 10.1149/1.3635762

C. Shim, H. Lee, J. Lee, E. J. Lee, and . Cairns, Electrochemical characteristics of Pt???WO3/C and Pt???TiO2/C electrocatalysts in a polymer electrolyte fuel cell, Journal of Power Sources, vol.102, issue.1-2, pp.172-177, 2001.
DOI : 10.1016/S0378-7753(01)00817-5

E. R. Antolini and . Gonzalez, Tungsten-based materials for fuel cell applications, Applied Catalysis B: Environmental, vol.96, issue.3-4, pp.245-266, 2010.
DOI : 10.1016/j.apcatb.2010.02.039

J. Bai, J. Wu, J. Xi, W. Wang, L. Zhu et al., Electrochemical oxidation of ethanol on Pt???ZrO2/C catalyst, Electrochemistry Communications, vol.7, issue.11, pp.1087-1090, 2005.
DOI : 10.1016/j.elecom.2005.08.002

O. Graf, D. J. De-vlieger, B. L. Mojet, and L. Lefferts, New insights in reactivity of hydroxyl groups in water gas shift reaction on Pt/ZrO2, Journal of Catalysis, vol.262, issue.2, pp.181-187, 2009.
DOI : 10.1016/j.jcat.2008.12.015

J. Chen, X. Wang, Y. Meng, R. Zhong, X. Li et al., Atomic layer deposition assisted Pt-SnO2 hybrid catalysts on nitrogen-doped CNTs with enhanced electrocatalytic activities for low temperature fuel cells, International Journal of Hydrogen Energy, vol.36, issue.17, pp.11085-11092, 2011.
DOI : 10.1016/j.ijhydene.2011.05.156

C. Yao, Y. F. , and Y. Yao, Ceria in automotive exhaust catalysts I. Oxygen storage, Journal of Catalysis, vol.86, issue.2, pp.254-265, 1984.
DOI : 10.1016/0021-9517(84)90371-3

W. Pierre, M. Deng, and . Flytzani-stephanopoulos, The Importance of Strongly Bound Pt???CeO x Species for the Water-gas Shift Reaction: Catalyst Activity and Stability Evaluation, Topics in Catalysis, vol.245, issue.2, pp.363-373, 2007.
DOI : 10.1007/s11244-007-9013-8

. Trovalleri, Catalysis Reviews, pp.439-520, 1996.

V. Skorodumova, S. I. Simak, B. I. Lundqvist, I. A. Abrikosov, and B. Johansson, Quantum Origin of the Oxygen Storage Capability of Ceria, Physical Review Letters, vol.128, issue.16, p.166601, 2002.
DOI : 10.1038/35009177

U. V. Dutta, T. Waghmare, M. S. Baidya, and . Hegde, : Enhanced Storage of Active Hydrogen, Chemistry of Materials, vol.19, issue.26, pp.6430-6436, 2007.
DOI : 10.1021/cm071330m

B. Levy and M. Boudart, Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis, Science, vol.181, issue.4099, pp.547-549, 1973.
DOI : 10.1126/science.181.4099.547

J. Colton and J. W. Rabalais, Electronic structure to tungsten and some of its borides, carbides, nitrides, and oxides by x-ray electron spectroscopy, Inorganic Chemistry, vol.15, issue.1, pp.236-238, 1976.
DOI : 10.1021/ic50155a049

V. Esposito and J. G. Chen, Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations, Energy & Environmental Science, vol.5, issue.10, pp.3900-3912, 2011.
DOI : 10.1038/nmat1752

B. Zellner and J. G. Chen, Potential Application of Tungsten Carbides as Electrocatalysts: Synergistic Effect by Supporting Pt on C???W(110) for the Reactions of Methanol, Water, and CO, Journal of The Electrochemical Society, vol.554, issue.555, pp.1483-1494, 2005.
DOI : 10.1103/PhysRevLett.92.046102

R. Li, J. He, J. O. Gao, N. J. Jensen, and . Bjerrum, The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200??C, Journal of The Electrochemical Society, vol.25, issue.12, pp.1599-1605, 2003.
DOI : 10.1149/1.1619984

K. Das, A. Reis, and K. J. Berry, Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell, Journal of Power Sources, vol.193, issue.2, pp.691-698, 1964.
DOI : 10.1016/j.jpowsour.2009.04.021

D. Franke, K. Ohms, and . Wiesener, Investigation of the influence of thermal treatment on the properties of carbon materials modified by N4-chelates for the reduction of oxygen in acidic media, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.260, issue.1, pp.63-73, 1989.
DOI : 10.1016/0022-0728(89)87099-8

D. Zhang, T. Chi, T. Okajima, and . Ohsaka, Catalytic activity of dual catalysts system based on nano-manganese oxide and cobalt octacyanophthalocyanine toward four-electron reduction of oxygen in alkaline media, Electrochimica Acta, vol.52, issue.17, pp.5400-5406, 2007.
DOI : 10.1016/j.electacta.2007.02.060

S. Rebello, P. V. Samant, J. L. Figuierdo, and J. B. Fernandes, Enhanced electrocatalytic activity of carbon-supported MnOx/Ru catalysts for methanol oxidation in fuel cells, Journal of Power Sources, vol.153, issue.1, pp.36-40, 2006.
DOI : 10.1016/j.jpowsour.2005.03.005

V. Samant and J. B. Fernandes, Nickel-modified manganese oxide as an active electrocatalyst for oxidation of methanol in fuel cells, Journal of Power Sources, vol.79, issue.1, pp.114-118, 1999.
DOI : 10.1016/S0378-7753(99)00043-9

A. Binder, W. Kohling, W. Kuhn, G. Lindner, and . Sandstede, Tungsten Carbide Electrodes for Fuel Cells with Acid Electrolyte, Nature, vol.265, issue.5226, pp.1299-1300, 1969.
DOI : 10.1038/2241299b0

G. Yang and C. Y. Wang, Nanostructured tungsten carbide catalysts for polymer electrolyte fuel cells, Applied Physics Letters, vol.86, issue.22, pp.224104-224112, 2005.
DOI : 10.1016/0965-9773(95)00265-G

N. Ross and P. Stonehart, The relation of surface structure to the electrocatalytic activity of tungsten carbide, Journal of Catalysis, vol.48, issue.1-3, pp.42-59, 1977.
DOI : 10.1016/0021-9517(77)90076-8

D. N. Sinha, J. T. Miller, and . Irvine, Development of novel anode material for intermediate temperature SOFC (IT-SOFC), Journal of Materials Chemistry A, vol.129, issue.381, p.11117, 2016.
DOI : 10.1016/S0167-2738(99)00319-7

Y. Huang, Y. Li, and . Xing, Abstract, Journal of Materials Research, vol.6, issue.03, pp.454-460, 2013.
DOI : 10.1021/ja710448e

URL : https://hal.archives-ouvertes.fr/hal-01418465

F. Delporte, C. Meunier, P. Pham-huu, M. J. Vennegues, J. Ledoux et al., Physical characterization of molybdenum oxycarbide catalyst; TEM, XRD and XPS, Catalysis Today, vol.23, issue.3, pp.251-267, 1995.
DOI : 10.1016/0920-5861(94)00166-Y

S. A. Liu, J. G. Rykov, and . Chen, A comparative surface science study of carbide and oxycarbide: the effect of oxygen modification on the surface reactivity of C/W(111), Surface Science, vol.487, issue.1-3, pp.107-117, 2001.
DOI : 10.1016/S0039-6028(01)01070-6

J. King, M. Werner, P. R. Chalker, A. C. Jones, H. C. Aspinall et al., Effect of deposition temperature on the properties of CeO2 films grown by atomic layer deposition, Thin Solid Films, vol.519, issue.13, pp.4192-4195, 2011.
DOI : 10.1016/j.tsf.2011.02.025

H. Kim, M. K. Kim, W. J. Maeng, J. Gatineau, V. Pallem et al., Growth Characteristics and Film Properties of Cerium Dioxide Prepared by Plasma-Enhanced Atomic Layer Deposition, Journal of The Electrochemical Society, vol.158, issue.8, pp.169-172, 2011.
DOI : 10.1016/S0167-9317(00)00525-6

K. Ohno, K. Sakurai, T. Tagui, S. Morita, K. Suzuki et al., Chemical Vapor Deposition of CeO[sub 2] Films Using a Liquid Metallorganic Source, Electrochemical and Solid-State Letters, vol.34, issue.3, pp.87-89, 2006.
DOI : 10.1016/S0040-6090(99)00022-X

J. C. Mcaleese, B. C. Plakatouras, and . Steele, The use of Ce(fod)4 as a precursor for the growth of ceria films by metal-organic chemical vapour deposition, Thin Solid Films, vol.280, issue.1-2, pp.152-159, 1996.
DOI : 10.1016/0040-6090(95)08193-3

Y. Suchorski, R. Wrobel, S. Becker, B. Strzelczyk, W. Drachsel et al., Ceria nanoformations in CO oxidation on Pt(111): Promotional effects and reversible redox behaviour, Surface Science, vol.601, issue.21, p.4843, 2007.
DOI : 10.1016/j.susc.2007.07.029

P. Sheng, W. Chiu, A. Yee, S. Morrison, and H. Idriss, Hydrogen production from ethanol over bimetallic Rh-M/CeO2 (M=Pd or Pt), Catalysis Today, vol.129, issue.3-4, p.313, 2007.
DOI : 10.1016/j.cattod.2006.09.040

S. Imamura, T. Higashihara, Y. Saito, H. Aritani, H. Kanai et al., Decomposition of methanol on Pt-loaded ceria, Catalysis Today, vol.50, issue.2, p.369, 1999.
DOI : 10.1016/S0920-5861(98)00516-1

M. Vá-clavu, I. Matolí-nová, J. Myslivecek, R. Fiala, and V. Matolí-n, Anode Material for Hydrogen Polymer Membrane Fuel Cell: Pt???CeO[sub 2] RF-Sputtered Thin Films, Journal of The Electrochemical Society, vol.156, issue.8, p.938, 2009.
DOI : 10.1016/j.electacta.2005.05.031

F. Potin, V. Illas, J. Matolín, K. M. Libuda, and . Neyman, Angew. Chemie -Int, 2014.

N. Zanfoni, L. Avril, L. Imhoff, B. Domenichini, and S. Bourgeois, Direct liquid injection chemical vapor deposition of platinum doped cerium oxide thin films, Thin Solid Films, vol.589, p.246, 2015.
DOI : 10.1016/j.tsf.2015.05.037

D. A. Shirley, High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold, Physical Review B, vol.26, issue.12, p.4709, 1972.
DOI : 10.1103/PhysRevLett.26.1108

J. H. Scofield, Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV, Journal of Electron Spectroscopy and Related Phenomena, vol.8, issue.2, p.129, 1976.
DOI : 10.1016/0368-2048(76)80015-1

S. Tanuma, C. J. Powell, and D. R. Penn, Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50-2000 eV range, Surface and Interface Analysis, vol.20, issue.3, p.165, 2000.
DOI : 10.1002/sia.740210302

L. Avril, S. Bourgeois, P. Simon, B. Domenichini, N. Zanfoni et al., Nanostructured Pt???TiO2 composite thin films obtained by direct liquid injection metal organic chemical vapor deposition: Control of chemical state by X-ray photoelectron spectroscopy, Thin Solid Films, vol.591, p.237, 2015.
DOI : 10.1016/j.tsf.2015.06.007

A. Pfau and K. D. Schierbaum, The electronic structure of stoichiometric and reduced CeO2 surfaces: an XPS, UPS and HREELS study, Surface Science, vol.321, issue.1-2, p.71, 1994.
DOI : 10.1016/0039-6028(94)90027-2

A. Kotani, H. Mizuta, and T. Jo, Theory of core photoemission spectra in CeO2, Solid State Communications, vol.53, issue.9, p.805, 1985.
DOI : 10.1016/0038-1098(85)90223-6

C. D. Wanger, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy, 1979.

D. Chen, A. Higgins, L. Yu, J. Zhang, and . Zhang, A review on non-precious metal electrocatalysts for PEM fuel cells, Energy & Environmental Science, vol.111, issue.1, pp.3167-3192, 2011.
DOI : 10.1021/jp076106z

C. Serov and . Kwak, Review of non-platinum anode catalysts for DMFC and PEMFC application, Applied Catalysis B: Environmental, vol.90, issue.3-4, pp.313-320, 2009.
DOI : 10.1016/j.apcatb.2009.03.030

. Wang, Recent development of non-platinum catalysts for oxygen reduction reaction, Journal of Power Sources, vol.152, pp.1-15, 2005.
DOI : 10.1016/j.jpowsour.2005.05.098

S. Navío, T. Vallejos, E. Stoycheva, X. Llobet, R. Correig et al., Gold clusters on WO3 nanoneedles grown via AACVD: XPS and TEM studies, Materials Chemistry and Physics, vol.134, issue.2-3, pp.809-813, 2012.
DOI : 10.1016/j.matchemphys.2012.03.073

A. U. Dufour, Fuel cells ??? a new contributor to stationary power, Journal of Power Sources, vol.71, issue.1-2, pp.19-25, 1998.
DOI : 10.1016/S0378-7753(97)02732-8

S. G. Chalk, J. F. Miller, and F. W. Wagner, Challenges for fuel cells in transport applications, Journal of Power Sources, vol.86, issue.1-2, pp.40-61, 2000.
DOI : 10.1016/S0378-7753(99)00481-4

A. Obuchl, A. Ohl, M. Nakamura, A. Ogata, and K. , Performance of platinum-group metal catalysts for the selective reduction of nitrogen oxides by hydrocarbons, Applied Catalysis B: Environmental, vol.2, issue.1, pp.71-80, 1993.
DOI : 10.1016/0926-3373(93)80027-B

M. Boudart, A. Aldag, J. E. Benson, N. A. Dougharty, and C. Harkins, On the specific activity of platinum catalysts, Journal of Catalysis, vol.6, issue.1, pp.92-99, 1966.
DOI : 10.1016/0021-9517(66)90113-8

D. Pierre, W. Deng, and M. Flytzani-stephanopoulos, The importance of strongly bound Pt? CeOx species for the water?gas shift reaction: catalyst activity and stability evaluation

S. Doneta and . Mailleye, Impact of ultra-low Pt loadings on the performance of anode/cathode in a proton-exchange membrane fuel cell, Journal of Power Sources, vol.195, pp.2737-2746, 2010.

R. Ganesan and J. S. Lee, Tungsten Carbide Microspheres as a Noble-Metal-Economic Electrocatalyst for Methanol Oxidation, Angewandte Chemie International Edition, vol.68, issue.40, pp.6557-6560, 2005.
DOI : 10.1002/anie.200501272

H. Meng and P. K. Shen, Novel Pt-free catalyst for oxygen electroreduction, Electrochemistry Communications, vol.8, issue.4, pp.588-594, 2006.
DOI : 10.1016/j.elecom.2006.01.020

J. Nazon, M. Herbst, M. C. Marco-de-lucas, S. Bourgeois, and B. Domenichini, WC-based thin films obtained by reactive radio-frequency magnetron sputtering using W target and methane gas, Thin Solid Films, vol.591, pp.119-215, 2015.
DOI : 10.1016/j.tsf.2015.08.035

X. G. Yang and C. Y. Wang, Nanostructured tungsten carbide catalysts for polymer electrolyte fuel cells, Applied Physics Letters, vol.86, issue.22, 2005.
DOI : 10.1016/0965-9773(95)00265-G

H. Binder, A. Köhling, W. Kuhn, W. Lindner, and G. Sandstede, Tungsten Carbide Electrodes for Fuel Cells with Acid Electrolyte, Nature, vol.265, issue.5226, pp.1299-1300, 1969.
DOI : 10.1038/2241299b0

N. Liu, S. A. Rykov, and J. G. Chen, A comparative surface science of carbide and oxycarbode: the effect of oxygen modification on the surf ace

E. Iglesia, J. E. Baumgartner, F. H. Ribeiro, and M. Boudart, Bifunctional reactions of alkanes on tungsten carbides modified by chemisorbed oxygen, Journal of Catalysis, vol.131, issue.2, pp.523-544, 1991.
DOI : 10.1016/0021-9517(91)90284-B

S. Izhar, M. Yoshida, and M. Naga, Characterization and performances of cobalt???tungsten and molybdenum???tungsten carbides as anode catalyst for PEFC, Electrochimica Acta, vol.54, issue.4, pp.1255-1262, 2009.
DOI : 10.1016/j.electacta.2008.08.049

P. N. Ross-jr and P. Stonehart, The relation of surface structure to the electrocatalytic activity of tungsten carbide, Journal of Catalysis, vol.48, issue.1-3, pp.42-59, 1977.
DOI : 10.1016/0021-9517(77)90076-8

M. Vorokhta, I. Khalakhan, I. Matolínová, M. Kobata, H. Yoshikawa et al., Nanostructured Pt???CeO2 thin film catalyst grown on graphite foil by magnetron sputtering, Applied Surface Science, vol.267, pp.119-123, 2013.
DOI : 10.1016/j.apsusc.2012.08.036

A. Grill, V. Patel, K. P. Rodbell, E. Huang, M. R. Baklanov et al., Porosity in plasma enhanced chemical vapor deposited SiCOH dielectrics: A comparative study, Journal of Applied Physics, vol.716, issue.5, 2003.
DOI : 10.1557/PROC-716-B12.3

L. Avril, N. Zanfoni, P. Simon, L. Imhoff, S. Bourgeois et al., MOCVD growth of porous cerium oxide thin films on silicon substrate, Surface and Coatings Technology, vol.280, pp.148-153, 2015.
DOI : 10.1016/j.surfcoat.2015.07.055

N. Zanfoni, L. Avril, L. Imhoff, B. Domenichini, and S. Bourgeois, Direct liquid injection chemical vapor deposition of platinum doped cerium oxide thin films, Thin Solid Films, vol.589, pp.246-251, 2015.
DOI : 10.1016/j.tsf.2015.05.037

Z. Li, R. G. Gordon, V. Pallem, H. Li, and D. V. Shenai, Direct-Liquid-Injection Chemical Vapor Deposition of Nickel Nitride Films and Their Reduction to Nickel Films, Chemistry of Materials, vol.22, issue.10, pp.3060-3066, 2010.
DOI : 10.1021/cm903636j

A. Van-der-zouwen and H. A. Meinema, Tungsten deposition by organometallic chemical vapour deposition with organotungsten precursors, Materials Science and Engineering, vol.17, pp.108-111, 1993.

L. Avril, J. Boudon, M. C. Marco-de-lucas, and L. Imhoff, Alumina particle reinforced TiO2 composite films grown by direct liquid injection MOCVD, Vacuum, vol.107, pp.259-263, 2014.
DOI : 10.1016/j.vacuum.2014.02.020

D. Barreca, S. Bozza, G. Carta, G. Rossetto, E. Tondello et al., Structural and morphological analyses of tungsten oxide nanophasic thin films obtained by MOCVD, Surface Science, vol.532, issue.535, pp.532-535, 2003.
DOI : 10.1016/S0039-6028(03)00215-2

T. L. Barr, An ESCA study of the termination of the passivation of elemental metals, The Journal of Physical Chemistry, vol.82, issue.16, pp.1801-1810, 1978.
DOI : 10.1021/j100505a006

J. J. Yeh and I. Lindau, Atomic subshell photoionization cross sections and asymmetry parameters: 1 ? Z ? 103, Atomic Data and Nuclear Data Tables, pp.1-155, 1985.
DOI : 10.1016/0092-640x(85)90016-6

F. Y. Xie, L. Gong, X. Liu, Y. T. Tao, W. H. Zhang et al., XPS studies on surface reduction of tungsten oxide nanowire film by Ar+ bombardment, Journal of Electron Spectroscopy and Related Phenomena, vol.185, issue.3-4, pp.112-118, 2012.
DOI : 10.1016/j.elspec.2012.01.004

. Wcx, CNTs as highly efficient support of electrocatalysts with low Pt loading for oxygen reduction reaction, Energy & Environmental Science, vol.3, pp.1121-1127, 2010.