Skip to Main content Skip to Navigation

Macroinvertébrés benthiques et hyphomycètes aquatiques : diversité et implication dans le fonctionnement écosystémique des cours d’eau de Guinée

Abstract : Benthic macroinvertebrates and aquatic hyphomycetes are major components of the biocenosis of headwater ecosystems. Both of them contribute to essential ecosystem functions like leaf litter decomposition as part of the organic carbon cycling. Such a process is vital for woodland streams or riparian tree-lined rivers. While this process is very well documented for temperate regions, the contribution of both types of decomposers, i.e. fungi and invertebrates, remains poorly understood in the tropics partly due to the large ecogeographic variability prevailing in this biome. The present thesis dealt with two unexplored regions of Guinea (Forested Guinea and Upper Guinea) and was motivated by a double objective. First, it aimed at documenting the taxonomic and trophic diversity of benthic macroinvertebrate communities together with the composition of aquatic hyphomycete assemblages. The second objective was to characterize leaf litter decomposition and leaf-associated decomposers, particularly in the perspective of quantifying the relative contribution of both decomposer types. The latter study specifically addressed the hypothesis of a greater importance of fungal decomposers at low latitudes compared to higher latitudes where the activity of invertebrate decomposers prevails. An exploratory survey conducted in 12 streams revealed the occurrence of 45 taxa belonging to the macrobenthic fauna of West Africa and including a new genus, Asellus, which completes the list of known crustacean taxa of Guinea. Both regions differed in the importance of the Functional Feeding Groups: shredders, mainly consisting in shrimps, dominated in Forested Guinea whereas scrapers were abundant in the savannah streams of Upper Guinea, which were characterized by scarce riparian vegetation. In stream water and foam, a total of 29 species of aquatic hyphomycetes were identified. Moreover, 9 additional species were found as sporulating on leaves in litter decomposition experiments, which led to a total of 38 species for Guinea with 12 being new for Africa. This thesis thus substantially expanded the list of known species for Africa. The experiments carried out in both regions showed a fast leaf litter decomposition, likely partly due to the high nutrient contents in litter, and a low diversity of leaf-associated decomposers. In the two studied temporary savannah streams, no leaf-associated invertebrates occurred. The latter was apparently compensated by a strong fungal activity as illustrated by very high mycelial biomass accrual. In the two studied streams of Forested Guinea, the occurrence of Caridina africana (Atyidae crustacean) as potential shredder could explain the leaf mass loss due to invertebrates, even though their density remained low. In both regions, the discrepancies between total and microbial decomposition rates were weak, highlighting a minute contribution of invertebrates and a major role of fungi thus supporting our hypothesis. The present results suggest that droughts resulted in low effects on the rate of leaf decomposition. Furthermore, leaf decomposition did not seem to be affected by the poor diversity of decomposers, i.e. invertebrates and aquatic hyphomycetes. Overall, the principles of leaf decomposition control by factors like the quality of leaf litter and the balanced involvement of both decomposer types do not appear to be fully applicable to tropical environments. Finally, the findings of this thesis suggest that the consequences of climatic change on the cycling of organic carbon in the aquatic ecosystems of West Africa, i.e. a region predicted to be particularly affected, could be mitigated by the dominance of organisms exhibiting a low vulnerability.
Complete list of metadatas
Contributor : Williams Exbrayat <>
Submitted on : Friday, March 2, 2018 - 9:46:23 AM
Last modification on : Thursday, October 15, 2020 - 4:07:04 AM
Long-term archiving on: : Thursday, May 31, 2018 - 1:22:44 PM


Thèse Nathalie Tenkiano.pdf
Files produced by the author(s)


  • HAL Id : tel-01721395, version 1



Nathalie Sia Doumbou Tenkiano. Macroinvertébrés benthiques et hyphomycètes aquatiques : diversité et implication dans le fonctionnement écosystémique des cours d’eau de Guinée. Biodiversité et Ecologie. Universite Toulouse 3 Paul Sabatier (UT3 Paul Sabatier), 2017. Français. ⟨tel-01721395⟩



Record views


Files downloads