Z. Li, R. M. Adams, K. Chourey, and G. B. Hurst, Systematic Comparison of Label-Free, Metabolic Labeling, and Isobaric Chemical Labeling for Quantitative Proteomics on LTQ Orbitrap Velos, Journal of Proteome Research, vol.11, issue.3, pp.1582-1590, 2012.
DOI : 10.1021/pr200748h

M. Bantscheff, M. Schirle, G. Sweetman, J. Rick, and B. Kuster, Quantitative mass spectrometry in proteomics: a critical review, Analytical and Bioanalytical Chemistry, vol.25, issue.7, pp.1017-1031, 2007.
DOI : 10.1186/1479-7364-2-5-310

S. P. Gygi, B. Rist, S. A. Gerber, and F. Turecek, Quantitative analysis of complex protein mixtures using isotope-coded affinity tags, Nature Biotechnology, vol.22, issue.10, pp.994-999, 1999.
DOI : 10.1002/elps.1150191045

S. Ong, B. Blagoev, I. Kratchmarova, and D. B. Kristensen, Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics, Molecular & Cellular Proteomics, vol.73, issue.5, pp.376-386, 2002.
DOI : 10.1083/jcb.142.3.873

X. Chen, S. Wei, Y. Ji, X. Guo, and F. Yang, Quantitative proteomics using SILAC: Principles, applications, and developments, PROTEOMICS, vol.11, issue.18, pp.3175-3192
DOI : 10.1586/14789450.2014.971115

P. L. Ross, Y. N. Huang, J. N. Marchese, and B. Williamson, Using Amine-reactive Isobaric Tagging Reagents, Molecular & Cellular Proteomics, vol.75, issue.12, pp.1154-1169, 2004.
DOI : 10.1021/ac034120b

V. J. Patel, K. Thalassinos, S. E. Slade, and J. B. Connolly, A Comparison of Labeling and Label-Free Mass Spectrometry-Based Proteomics Approaches, Journal of Proteome Research, vol.8, issue.7, pp.3752-3759, 2009.
DOI : 10.1021/pr900080y

H. Wang, S. Alvarez, and L. M. Hicks, Strains of Interest for Biofuels Engineering, Journal of Proteome Research, vol.11, issue.1, pp.487-501, 2012.
DOI : 10.1021/pr2008225

W. W. Wu, G. Wang, S. J. Baek, and R. Shen, Comparative Study of Three Proteomic Quantitative Methods, DIGE, cICAT, and iTRAQ, Using 2D Gel- or LC???MALDI TOF/TOF, Journal of Proteome Research, vol.5, issue.3, pp.651-658, 2006.
DOI : 10.1021/pr050405o

S. M. Pütz, A. M. Boehm, T. Stiewe, and A. Sickmann, iTRAQ Analysis of a Cell Culture Model for Malignant Transformation, Including Comparison with 2D-PAGE and SILAC, Journal of Proteome Research, vol.11, issue.4
DOI : 10.1021/pr200881c

C. Evans, J. Noirel, S. Y. Ow, and M. Salim, An insight into iTRAQ: where do we stand now?, Analytical and Bioanalytical Chemistry, vol.108, issue.4, pp.1011-1027, 2012.
DOI : 10.1002/bit.23011

W. Lin, W. Hung, Y. Yian, and K. Wu, Multi-Q:?? A Fully Automated Tool for Multiplexed Protein Quantitation, Journal of Proteome Research, vol.5, issue.9, pp.2328-2338, 2006.
DOI : 10.1021/pr060132c

A. M. Boehm, S. Pütz, D. Altenhöfer, A. Sickmann, and M. Falk, Precise protein quantification based on peptide quantification using iTRAQ???, BMC Bioinformatics, vol.8, issue.1, p.214, 2007.
DOI : 10.1186/1471-2105-8-214

B. Carrillo, C. Yanofsky, S. Laboissiere, R. Nadon, and R. E. Kearney, Methods for combining peptide intensities to estimate relative protein abundance, Bioinformatics, vol.101, issue.1, pp.98-103, 2010.
DOI : 10.1137/1.9781611971002

J. Aramburu, M. B. Yaffe, C. López-rodrí-guez, and L. C. Cantley, Affinity-Driven Peptide Selection of an NFAT Inhibitor More Selective Than Cyclosporin A, Science, vol.285, issue.5436, p.2129, 1999.
DOI : 10.1126/science.285.5436.2129

T. Muth, D. Keller, S. M. Puetz, and L. Martens, jTraqX: A free, platform independent tool for isobaric tag quantitation at the protein level, PROTEOMICS, vol.6, issue.5, pp.1223-1225, 2010.
DOI : 10.1074/mcp.M200025-MCP200

D. G. Altman and J. M. Bland, Measurement in Medicine: The Analysis of Method Comparison Studies, The Statistician, vol.32, issue.3, pp.307-317, 1983.
DOI : 10.2307/2987937

J. M. Bland and D. Altman, Statistical methods for assessing agreement between two methods of clinical measurement. The lancet, pp.307-310, 1986.

E. W. Deutsch, A. Csordas, Z. Sun, and A. Jarnuczak, The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition, Nucleic Acids Research, vol.22, issue.D1, pp.1100-1106, 2017.
DOI : 10.1038/nbt.3597

J. A. Vizcaíno, A. Csordas, N. Del-toro, and J. A. Dianes, 2016 update of the PRIDE database and its related tools, Nucleic Acids Research, vol.44, issue.D1, pp.447-456, 2016.
DOI : 10.1002/prca.201400107

N. A. Karp, W. Huber, P. G. Sadowski, and P. D. Charles, Addressing Accuracy and Precision Issues in iTRAQ Quantitation, Molecular & Cellular Proteomics, vol.18, issue.9, pp.1885-1897, 2010.
DOI : 10.1093/nar/gkm1021

D. W. Mahoney, T. M. Therneau, C. J. Heppelmann, and L. Higgins, Relative Quantification: Characterization of Bias, Variability and Fold Changes in Mass Spectrometry Data from iTRAQ-Labeled Peptides, Journal of Proteome Research, vol.10, issue.9, pp.4325-4333, 2011.
DOI : 10.1021/pr2001308

D. Pascovici, X. Song, P. S. Solomon, and B. Winterberg, -Values as a Pragmatic Approach to the Analysis of Multirun iTRAQ Experiments, Journal of Proteome Research, vol.14, issue.2, pp.738-746, 2015.
DOI : 10.1021/pr501091e

M. Bantscheff, M. Boesche, D. Eberhard, and T. Matthieson, Robust and Sensitive iTRAQ Quantification on an LTQ Orbitrap Mass Spectrometer, Molecular & Cellular Proteomics, vol.78, issue.9, pp.1702-1713, 2008.
DOI : 10.1021/ac0518811

T. Köcher, P. Pichler, M. Schutzbier, and C. Stingl, High Precision Quantitative Proteomics Using iTRAQ on an LTQ Orbitrap: A New Mass Spectrometric Method Combining the Benefits of All, Journal of Proteome Research, vol.8, issue.10, pp.4743-4752, 2009.
DOI : 10.1021/pr900451u

K. A. Jones, P. D. Kim, B. B. Patel, and S. G. Kelsen, Immunodepletion Plasma Proteomics by TripleTOF 5600 and Orbitrap Elite/LTQ-Orbitrap Velos/Q Exactive Mass Spectrometers, Journal of Proteome Research, vol.12, issue.10, pp.4351-4365, 2013.
DOI : 10.1021/pr400307u

H. Chang, S. Jiang, K. Dang, and H. Wang, iTRAQ-based proteomic analysis of myofibrillar contents and relevant synthesis and proteolytic proteins in soleus muscle of hibernating Daurian ground squirrels (Spermophilus dauricus), Proteome Science, vol.83, issue.3, p.16, 2016.
DOI : 10.1152/physrev.00029.2002

Q. Hou, H. T. Tan, K. H. Lim, and T. K. Lim, Identification and Functional Validation of Caldesmon as a Potential Gastric Cancer Metastasis-associated Protein, Journal of Proteome Research, vol.12, issue.2, pp.980-990, 2013.
DOI : 10.1021/pr3010259

L. Qin, X. Liu, S. Liu, and Y. Liu, Differentially expressed proteins underlying childhood cortical dysplasia with epilepsy identified by iTRAQ proteomic profiling, PLOS ONE, vol.9, issue.12, p.172214, 2017.
DOI : 10.1371/journal.pone.0172214.s003

P. Kaur, N. M. Rizk, S. Ibrahim, and N. Younes, iTRAQ-Based Quantitative Protein Expression Profiling and MRM Verification of Markers in Type 2 Diabetes, Journal of Proteome Research, vol.11, issue.11, pp.5527-5539, 2012.
DOI : 10.1021/pr300798z

C. Légaré, A. Droit, F. Fournier, and S. Bourassa, Investigation of Male Infertility Using Quantitative Comparative Proteomics, Journal of Proteome Research, vol.13, issue.12, pp.5403-5414, 2014.
DOI : 10.1021/pr501031x

R. Narumi, T. Murakami, T. Kuga, and J. Adachi, A Strategy for Large-Scale Phosphoproteomics and SRM-Based Validation of Human Breast Cancer Tissue Samples, Journal of Proteome Research, vol.11, issue.11, pp.5311-5322, 2012.
DOI : 10.1021/pr3005474

L. V. Desouza, A. D. Romaschin, T. J. Colgan, and K. W. Siu, Absolute Quantification of Potential Cancer Markers in Clinical Tissue Homogenates Using Multiple Reaction Moni- Références bibliographiques

A. Hart, J. Smith, M. Skeans, S. Gustafson, D. Stewart et al., Kidney, American Journal of Transplantation, vol.16, issue.S2, pp.11-46, 2016.
DOI : 10.1111/ajt.13666

J. Borel, C. Feurer, H. Gubler, and H. Stähelin, Biological effects of cyclosporin A: A new antilymphocytic agent, Agents and Actions, vol.22, issue.4, pp.468-75, 1976.
DOI : 10.1007/BF01973261

R. Calne, S. Thiru, P. Mcmaster, G. Craddock, D. White et al., CYCLOSPORIN A IN PATIENTS RECEIVING RENAL ALLOGRAFTS FROM CADAVER DONORS, The Lancet, vol.312, issue.8104, pp.1323-1330, 1978.
DOI : 10.1016/S0140-6736(78)91970-0

R. Calne, K. Rolles, S. Thiru, P. Mcmaster, G. Craddock et al., CYCLOSPORIN A INITIALLY AS THE ONLY IMMUNOSUPPRESSANT IN 34 RECIPIENTS OF CADAVERIC ORGANS: 32 KIDNEYS, 2 PANCREASES, AND 2 LIVERS, 34 RECIPIENTS OF CADAVER- IC ORGANS: 32 KIDNEYS, 2 PANCREASES, AND 2 LIVERS, pp.1033-1039, 1979.
DOI : 10.1016/S0140-6736(79)92440-1

T. Kino, H. Hatanaka, S. Miyata, N. Inamura, M. Nishiyama et al., FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro., The Journal of Antibiotics, vol.40, issue.9, pp.1256-65, 1987.
DOI : 10.7164/antibiotics.40.1256

T. Starzl, J. Fung, R. Venkataramman, S. Todo, D. A. Jain et al., FK 506 FOR LIVER, KIDNEY, AND PANCREAS TRANSPLANTATION, The Lancet, vol.334, issue.8670, pp.1000-1004, 1989.
DOI : 10.1016/S0140-6736(89)91014-3

P. Hogan, Transcriptional regulation by calcium, calcineurin, and NFAT, Genes & Development, vol.17, issue.18, pp.2205-2237, 2003.
DOI : 10.1101/gad.1102703

H. Li, A. Rao, and P. Hogan, Interaction of calcineurin with substrates and targeting proteins, Trends in Cell Biology, vol.21, issue.2, pp.91-103, 2011.
DOI : 10.1016/j.tcb.2010.09.011

T. Malek and I. Castro, Interleukin-2 Receptor Signaling: At the Interface between Tolerance and Immunity, Immunity, vol.33, issue.2, pp.153-65, 2010.
DOI : 10.1016/j.immuni.2010.08.004

S. Schreiber, Chemistry and biology of the immunophilins and their immunosuppressive ligands, Science, vol.251, issue.4991, pp.283-290, 1991.
DOI : 10.1126/science.1702904

J. Liu, J. Farmer, W. Lane, J. Friedman, I. Weissman et al., Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes, Cell, vol.66, issue.4, pp.807-822, 1991.
DOI : 10.1016/0092-8674(91)90124-H

J. Liu, M. Albers, T. Wandless, S. Luan, D. Alberg et al., Inhibition of T cell signaling by immunophilin-ligand complexes correlates with loss of calcineurin phosphatase activity, Biochemistry, vol.31, issue.16, pp.3896-901, 1992.
DOI : 10.1021/bi00131a002

J. Griffith, J. Kim, E. Kim, M. Sintchak, J. Thomson et al., X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex, Cell, vol.82, issue.3, pp.507-529, 1995.
DOI : 10.1016/0092-8674(95)90439-5

C. Kissinger, H. Parge, D. Knighton, C. Lewis, L. Pelletier et al., Crystal structures of human calcineurin and the human FKBP12???FK506???calcineurin complex, Nature, vol.378, issue.6557, pp.641-645, 1995.
DOI : 10.1038/378641a0

P. Mccaffrey, B. Perrino, T. Soderling, and A. Rao, NF-ATp, a T lymphocyte DNA-binding protein that is a target for calcineurin and immunosuppressive drugs, J Biol Chem. 15 févr, vol.268, issue.5, pp.3747-52, 1993.

R. Gaston, Chronic Calcineurin Inhibitor Nephrotoxicity: Reflections on an Evolving Paradigm, Clinical Journal of the American Society of Nephrology, vol.4, issue.12, pp.2029-2063, 2009.
DOI : 10.2215/CJN.03820609

M. Naesens, D. Kuypers, and M. Sarwal, Calcineurin Inhibitor Nephrotoxicity, Disponible sur, 2009.
DOI : 10.2215/CJN.04800908

B. Myers, R. J. Newton, L. Luetscher, J. Perlroth, and M. , Cyclosporine-Associated Chronic Nephropathy, New England Journal of Medicine, vol.311, issue.11, pp.699-705, 1984.
DOI : 10.1056/NEJM198409133111103

B. Murray, M. Paller, and T. Ferris, Effect of cyclosporine administration on renal hemodynamics in conscious rats, Kidney International, vol.28, issue.5, pp.767-74, 1985.
DOI : 10.1038/ki.1985.196

J. English, A. Evan, D. Houghton, and W. Bennett, CYCLOSPORINE-INDUCED ACUTE RENAL DYSFUNCTION IN THE RAT EVIDENCE OF ARTERIOLAR VASOCONSTRICTION WITH PRESERVATION OF TUBULAR FUNCTION, Transplantation, vol.44, issue.1, pp.135-176, 1987.
DOI : 10.1097/00007890-198707000-00027

S. Textor, J. Burnett, J. Romero, V. Canzanello, S. Taler et al., Urinary endothelin and renal vasoconstriction with cyclosporine or FK506 after liver transplantation, Kidney International, vol.47, issue.5, pp.1426-1459, 1995.
DOI : 10.1038/ki.1995.200

H. Nakahama, Stimulatory effect of cyclosporine A on endothelin secretion by a cultured renal epithelial cell line, LLC-PK1 cells, European Journal of Pharmacology, vol.180, issue.1, pp.191-193, 1990.
DOI : 10.1016/0014-2999(90)90610-I

C. Ramírez, A. Olmo, O. Valle, F. Masseroli, M. Aguilar et al., Role of Intrarenal Endothelin 1, Endothelin 3, and Angiotensin II Expression in Chronic Cyclosporin A Nephrotoxicity in Rats, Nephron Experimental Nephrology, vol.8, issue.3, pp.161-72, 2000.
DOI : 10.1159/000020664

H. S. , C. M. Torres-am, T. A. , and B. L. , Potentiation by Nitric Oxide of Cyclosporin A and FK506-Induced Apoptosis in Renal Proximal Tubule Cells, J Am Soc Nephrol. 1 déc, vol.11, issue.12, pp.2315-2338, 2000.

M. Mihatsch, G. Thiel, and B. Ryffel, Morphology of ciclosporin nephropathy, Prog Allergy, vol.38, pp.447-65, 1986.

M. Mihatsch, B. Ryffel, M. Hermle, F. Brunner, and G. Thiel, Morphology of cyclosporine nephrotoxicity in the rat, Clin Nephrol, vol.25, issue.1, pp.2-8, 1986.

M. Mihatsch, G. Thiel, and B. Ryffel, Brief Review of the Morphology of Ciclosporin Nephropathy, Contrib Nephrol, vol.51, pp.156-61, 1986.
DOI : 10.1159/000413115

M. Mihatsch, M. Kyo, K. Morozumi, Y. Yamaguchi, V. Nickeleit et al., The side-effects of ciclosporine-A and tacrolimus, Clin Nephrol. juin, vol.49, issue.6, pp.356-63, 1998.

P. Randhawa, R. Shapiro, M. Jordan, T. Starzl, and A. Demetris, The Histopathological Changes Associated with Allograft Rejection and Drug Toxicity in Renal Transplant Recipients Maintained on FK506, The American Journal of Surgical Pathology, vol.17, issue.1, pp.60-68, 1993.
DOI : 10.1097/00000478-199301000-00007

J. Kim and K. Suh, Light microscopic and electron microscopic features of cyclosporine nephrotoxicity in rats, Journal of Korean Medical Science, vol.10, issue.5, p.352, 1995.
DOI : 10.3346/jkms.1995.10.5.352

K. Morozumi, A. Takeda, K. Uchida, and M. Mihatsch, Cyclosporine nephrotoxicity: how does it affect renal allograft function and transplant morphology?, Transplantation Proceedings, vol.36, issue.2, pp.251-257, 2004.
DOI : 10.1016/j.transproceed.2004.01.027

S. Heyman, M. Brezis, C. Reubinoff, Z. Greenfeld, C. Lechene et al., Acute renal failure with selective medullary injury in the rat., Journal of Clinical Investigation, vol.82, issue.2, pp.401-413, 1988.
DOI : 10.1172/JCI113612

M. Mihatsch, V. Basler, E. Curschellas, M. Kyo, M. Duerig et al., Giant Mitochondria in ???Zero-hour??? Transplant Biopsies, Ultrastructural Pathology, vol.60, issue.3, pp.277-82, 2009.
DOI : 10.1007/978-3-642-66731-2_3

H. Lee, adenosine receptor knockout mice are protected against acute radiocontrast nephropathy in vivo, American Journal of Physiology-Renal Physiology, vol.290, issue.6, pp.1367-75, 2006.
DOI : 10.1254/jjp.65.167

M. Haas, C. Sonnenday, J. Cicone, H. Rabb, and R. Montgomery, Isometric Tubular Epithelial Vacuolization in Renal Allograft Biopsy Specimens of Patients Receiving Low-Dose Intravenous Immunoglobulin for a Positive Crossmatch, Transplantation, vol.78, issue.4, pp.549-56, 2004.
DOI : 10.1097/01.TP.0000137199.32333.03

G. Bollee, D. Anglicheau, A. Loupy, J. Zuber, N. Patey et al., High-Dosage Intravenous Immunoglobulin-Associated Macrovacuoles Are Associated with Chronic Tubulointerstitial Lesion Worsening in Renal Transplant Recipients, Clinical Journal of the American Society of Nephrology, vol.3, issue.5, pp.1461-1469, 2008.
DOI : 10.2215/CJN.00500108

M. Naesens, E. Lerut, B. Damme, Y. Vanrenterghem, and D. Kuypers, Tacrolimus Exposure and Evolution of Renal Allograft Histology in the First Year After Transplantation, American Journal of Transplantation, vol.11, issue.9, pp.2114-2137, 2007.
DOI : 10.1111/j.1600-6143.2005.01122.x

M. Naesens, N. Kambham, W. Concepcion, O. Salvatierra, and M. Sarwal, The Evolution of Nonimmune Histological Injury and Its Clinical Relevance in Adult-Sized Kidney Grafts in Pediatric Recipients, American Journal of Transplantation, vol.49, issue.11, pp.2504-2518, 2007.
DOI : 10.1097/00007890-200008150-00003

G. Klintmalm, S. Iwatsuki, T. Starzl, . Nephrotoxicity, . Cyclosporin et al., NEPHROTOXICITY OF CYCLOSPORIN A IN LIVER AND KIDNEY TRANSPLANT PATIENTS, The Lancet, vol.317, issue.8218, pp.470-471, 1981.
DOI : 10.1016/S0140-6736(81)91851-1

P. Morris, M. French, M. Dunnill, A. Hunnisett, A. Ting et al., A CONTROLLED TRIAL OF CYCLOSPORINE IN RENAL TRANSPLANTATION WITH CONVERSION TO AZATHIOPRINE AND PREDNISOLONE AFTER THREE MONTHS, Transplantation, vol.36, issue.3, pp.273-280, 1983.
DOI : 10.1097/00007890-198309000-00009

B. Nankivell, R. Borrows, C. Fung, O. Connell, P. Allen et al., The Natural History of Chronic Allograft Nephropathy, New England Journal of Medicine, vol.349, issue.24, pp.2326-2359, 2003.
DOI : 10.1056/NEJMoa020009

B. Nankivell, R. Borrows, C. Fung, P. O?connell, J. Chapman et al., Calcineurin Inhibitor Nephrotoxicity: Longitudinal Assessment by Protocol Histology, Transplantation, vol.78, issue.4, pp.557-65, 2004.
DOI : 10.1097/01.TP.0000128636.70499.6E

URL : http://pdfs.journals.lww.com/transplantjournal/2004/08270/Calcineurin_Inhibitor_Nephrotoxicity__Longitudinal.12.pdf?token=method|ExpireAbsolute;source|Journals;ttl|1504329367747;payload|mY8D3u1TCCsNvP5E421JYK6N6XICDamxByyYpaNzk7FKjTaa1Yz22MivkHZqjGP4kdS2v0J76WGAnHACH69s21Csk0OpQi3YbjEMdSoz2UhVybFqQxA7lKwSUlA502zQZr96TQRwhVlocEp/sJ586aVbcBFlltKNKo+tbuMfL73hiPqJliudqs17cHeLcLbV/CqjlP3IO0jGHlHQtJWcICDdAyGJMnpi6RlbEJaRheGeh5z5uvqz3FLHgPKVXJzdGlb2qsojlvlytk14LkMXSMiMws5f4xBFQy6hcpJDPjjEYUt+v1/vTD+qZnLYwqxe;hash|dU4S0HN3T0s/0QXkNG27hQ==

B. Nankivell, R. Borrows, C. Fung, O. Connell, P. Chapman et al., Delta Analysis of Posttransplantation Tubulointerstitial Damage, Transplantation, vol.78, issue.3, pp.434-475, 2004.
DOI : 10.1097/01.TP.0000128613.74683.D9

B. Nankivell, R. Borrows, C. Fung, O. Connell, P. Allen et al., Evolution and Pathophysiology of Renal-Transplant Glomerulosclerosis, Transplantation, vol.78, issue.3, pp.461-469, 2004.
DOI : 10.1097/01.TP.0000128612.75163.26

B. Young, E. Burdmann, R. Johnson, T. Andoh, W. Bennett et al., Cyclosporine A induced arteriolopathy in a rat model of chronic cyclosporine nephropathy, Kidney International, vol.48, issue.2, pp.431-439, 1995.
DOI : 10.1038/ki.1995.311

B. Young, E. Burdmann, R. Johnson, C. Alpers, C. Giachelli et al., Cellular proliferation and macrophage influx precede interstitial fibrosis in cyclosporine nephrotoxicity, Kidney International, vol.48, issue.2, pp.439-487, 1995.
DOI : 10.1038/ki.1995.312

K. Horike, A. Takeda, Y. Yamaguchi, Y. Ogiyama, Y. Yamauchi et al., Is arteriolar vacuolization a predictor of calcineurin inhibitor nephrotoxicity?, Clinical Transplantation, vol.38, pp.23-30, 2011.
DOI : 10.1097/00007890-199210000-00032

M. Gandhi, J. Olson, and T. Meyer, Contribution of tubular injury to loss of remnant kidney function, Kidney International, vol.54, issue.4, pp.1157-65, 1998.
DOI : 10.1046/j.1523-1755.1998.00107.x

I. Gibson, T. Downie, I. More, G. Lindop, . Atubular et al., ATUBULAR GLOMERULI AND GLOMERULAR CYSTS???A POSSIBLE PATHWAY FOR NEPHRON LOSS IN THE HUMAN KIDNEY?, The Journal of Pathology, vol.100, issue.4, pp.421-427, 1996.
DOI : 10.1007/BF00454830

M. Martin, M. Krichbaum, V. Kaever, M. Goppelt-strübe, and K. Resch, Cyclosporin a suppresses proliferation of renal mesangial cells in culture, Biochemical Pharmacology, vol.37, issue.6, pp.1083-1091, 1988.
DOI : 10.1016/0006-2952(88)90514-X

Y. Kim, R. Calne, and N. Nagasue, Cyclosporin A stimulates proliferation of the liver cells after partial hepatectomy in rats, Surg Gynecol Obstet. avr, vol.166, issue.4, pp.317-339, 1988.

L. Jonasson, J. Holm, and G. Hansson, Cyclosporin A inhibits smooth muscle proliferation in the vascular response to injury., Proceedings of the National Academy of Sciences, vol.85, issue.7, pp.2303-2309, 1988.
DOI : 10.1073/pnas.85.7.2303

A. Urabe, J. Kanitakis, J. Viac, and J. Thivolet, Cyclosporin a inhibits directly in vivo keratinocyte proliferation of living human skin, Journal of Investigative Dermatology, vol.92, issue.5, pp.755-762, 1989.
DOI : 10.1016/0022-202X(89)90195-4

M. Healey, L. Rosenberg, D. Clas, and W. Duguid, Inhibition of pancreatic islet cell differentiation and proliferation by cyclosporine A, Transplant Proc. avr, vol.22, issue.2, pp.861-863, 1990.

T. Karashima, H. Hachisuka, and Y. Sasai, FK506 and cyclosporin A inhibit growth factor-stimulated human keratinocyte proliferation by blocking cells in the G0G1 phases of the cell cycle, Journal of Dermatological Science, vol.12, issue.3, pp.246-54, 1996.
DOI : 10.1016/0923-1811(95)00480-7

A. Khanna and J. Hosenpud, CYCLOSPORINE INDUCES THE EXPRESSION OF THE CYCLIN INHIBITOR p21, Transplantation, vol.67, issue.9, pp.1262-1270, 1999.
DOI : 10.1097/00007890-199905150-00011

G. Pawelec and P. Wernet, Cyclosporin a inhibits interleukin 2-dependent growth of alloactivated cloned human T-lymphocytes, International Journal of Immunopharmacology, vol.5, issue.4, pp.315-336, 1983.
DOI : 10.1016/0192-0561(83)90034-6

A. Muraguchi, Selective suppression of an early step in human B cell activation by cyclosporin A, Journal of Experimental Medicine, vol.158, issue.3, pp.690-702, 1983.
DOI : 10.1084/jem.158.3.690

V. Kermani-arab, S. Salehmoghaddam, G. Danovitch, K. Hirji, and A. Rezai, MEDIATION OF THE ANTIPROLIFERATIVE EFFECT OF CYCLOSPORINE ON HUMAN LYMPHOCYTES BY BLOCKADE OF INTERLEUKIN 2 BIOSYNTHESIS, Transplantation, vol.39, issue.4, pp.439-481, 1985.
DOI : 10.1097/00007890-198504000-00019

A. Hannam-harris, D. Taylor, and P. Nowell, Cyclosporin A Directly Inhibits Human B-Cell Proliferation by More Than a Single Mechanism, Journal of Leukocyte Biology, vol.38, issue.2, pp.231-240, 1985.
DOI : 10.1002/jlb.38.2.231

H. Blaehr and S. Friis, Acute Inhibition of Human Renal Tubular Cell Growth by Cyclosporin A, Pharmacology & Toxicology, vol.248, issue.2, pp.115-135, 1990.
DOI : 10.1111/j.1600-0773.1990.tb00716.x

H. Blaehr, C. Andersen, and J. Ladefoged, Acute effects of FK506 and cyclosporine A on cultured human proximal tubular cells, European Journal of Pharmacology: Environmental Toxicology and Pharmacology, vol.228, issue.5-6, pp.283-291, 1993.
DOI : 10.1016/0926-6917(93)90062-U

C. Lally, E. Healy, and M. Ryan, Cyclosporine A-induced cell cycle arrest and cell death in renal epithelial cells, Kidney International, vol.56, issue.4, pp.1254-1261, 1999.
DOI : 10.1046/j.1523-1755.1999.00696.x

P. Jennings, C. Koppelstaetter, S. Aydin, T. Abberger, A. Wolf et al., Cyclosporine A induces senescence in renal tubular epithelial cells, American Journal of Physiology-Renal Physiology, vol.293, issue.3, pp.831-839, 2007.
DOI : 10.1006/abio.1997.2391

S. Elmore, Apoptosis: A Review of Programmed Cell Death, Toxicologic Pathology, vol.135, issue.4, pp.495-516, 2007.
DOI : 10.1038/sj.embor.7400622

H. Ito, N. Kasagi, K. Shomori, M. Osaki, and H. Adachi, APOPTOSIS IN THE HUMAN ALLOGRAFTED KIDNEY, Transplantation, vol.60, issue.8, pp.794-802, 1995.
DOI : 10.1097/00007890-199510270-00006

E. Healy, M. Dempsey, C. Lally, and M. Ryan, Apoptosis and necrosis: Mechanisms of cell death induced by cyclosporine A in a renal proximal tubular cell line, Kidney International, vol.54, issue.6, pp.1955-66, 1998.
DOI : 10.1046/j.1523-1755.1998.00202.x

A. Ortiz, C. Lorz, M. Catalán, A. Ortiz, S. Coca et al., Cyclosporine A induces apoptosis in murine tubular epithelial cells: Role of caspases, Kidney International, vol.54, pp.25-29, 1998.
DOI : 10.1046/j.1523-1755.1998.06808.x

P. Justo, Intracellular Mechanisms of Cyclosporin A-Induced Tubular Cell Apoptosis, Journal of the American Society of Nephrology, vol.14, issue.12, pp.3072-80, 2003.
DOI : 10.1097/01.ASN.0000099383.57934.0E

R. Eliseev, J. Malecki, T. Lester, Y. Zhang, J. Humphrey et al., Cyclophilin D Interacts with Bcl2 and Exerts an Anti-apoptotic Effect, Journal of Biological Chemistry, vol.1762, issue.15, pp.9692-9701, 2009.
DOI : 10.1038/386728a0

C. Baines, R. Kaiser, N. Purcell, N. Blair, H. Osinska et al., Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death, Nature, vol.7, issue.7033, pp.658-62, 2005.
DOI : 10.1038/sj.gt.3301048

T. Nakagawa, S. Shimizu, T. Watanabe, O. Yamaguchi, K. Otsu et al., Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death, Nature, vol.189, issue.7033, pp.652-660, 2005.
DOI : 10.1084/jem.189.11.1699

S. Lemoine, B. Pillot, N. Rognant, L. Augeul, M. Rayberin et al., Postconditioning With Cyclosporine A Reduces Early Renal Dysfunction by Inhibiting Mitochondrial Permeability Transition, Transplantation, vol.99, issue.4, pp.717-740, 2015.
DOI : 10.1097/TP.0000000000000530

S. Lemoine, B. Pillot, L. Augeul, M. Rabeyrin, A. Varennes et al., Dose and timing of injections for effective cyclosporine A pretreatment before renal ischemia reperfusion in mice, PLOS ONE, vol.2, issue.4, p.182358, 2017.
DOI : 10.1371/journal.pone.0182358.t001

N. Pallet, N. Bouvier, A. Bendjallabah, M. Rabant, J. Flinois et al., Cyclosporine-Induced Endoplasmic Reticulum Stress Triggers Tubular Phenotypic Changes and Death, American Journal of Transplantation, vol.80, issue.11, pp.2283-96, 2008.
DOI : 10.1016/S0002-9440(10)62984-7

N. Pallet, M. Rabant, Y. Xu-dubois, D. Lecorre, M. Mucchielli et al., Response of human renal tubular cells to cyclosporine and sirolimus: A toxicogenomic study, Toxicology and Applied Pharmacology, vol.229, issue.2, pp.184-96, 2008.
DOI : 10.1016/j.taap.2008.01.019

S. Han, C. Li, K. Ahn, S. Lim, H. Song et al., Prolonged Endoplasmic Reticulum Stress Induces Apoptotic Cell Death in an Experimental Model of Chronic Cyclosporine Nephropathy, American Journal of Nephrology, vol.28, issue.5, pp.707-721, 2008.
DOI : 10.1159/000127432

T. Hama, K. Nakanishi, H. Mukaiyama, Y. Shima, H. Togawa et al., Endoplasmic reticulum stress with low-dose cyclosporine in frequently relapsing nephrotic syndrome, Pediatric Nephrology, vol.14, issue.6
DOI : 10.1038/nm.1857

N. Pallet, N. Bouvier, C. Legendre, J. Gilleron, P. Codogno et al., Autophagy protects renal tubular cells against cyclosporine toxicity, Autophagy, vol.4, issue.6, pp.783-91, 2008.
DOI : 10.4161/auto.6477

URL : http://www.tandfonline.com/doi/pdf/10.4161/auto.6477?needAccess=true

A. Djamali, Oxidative stress as a common pathway to chronic tubulointerstitial injury in kidney allografts, American Journal of Physiology-Renal Physiology, vol.293, issue.2, pp.445-55, 2007.
DOI : 10.1097/01.ASN.0000068626.23485.E0

M. Vetter, Z. Chen, G. Chang, C. D. Liu, S. Chang et al., Cyclosporin A Disrupts Bradykinin Signaling Through Superoxide, Hypertension, vol.41, issue.5, pp.1136-1178, 2003.
DOI : 10.1161/01.HYP.0000068201.48340.3B

P. Galletti, D. Gennaro, C. Migliardi, V. Indaco, S. et al., Diverse effects of natural antioxidants on cyclosporin cytotoxicity in rat renal tubular cells, Nephrology Dialysis Transplantation, vol.20, issue.8, pp.1551-1559, 2005.
DOI : 10.2174/0929867043365332

M. Tariq, C. Morais, S. Sobki, A. Sulaiman, M. et al., N-acetylcysteine attenuates cyclosporin-induced nephrotoxicity in rats, Nephrology Dialysis Transplantation, vol.14, issue.4, pp.923-932, 1999.
DOI : 10.1093/ndt/14.4.923

P. Heering and B. Grabensee, Influence of Ciclosporin A on Renal Tubular Function after Kidney Transplantation, Nephron, vol.59, issue.1, pp.66-70, 1991.
DOI : 10.1159/000186520

R. Higgins, K. Ramaiyan, T. Dasgupta, H. Kanji, S. Fletcher et al., Hyponatraemia and hyperkalaemia are more frequent in renal transplant recipients treated with tacrolimus than with cyclosporin. Further evidence for differences between cyclosporin and tacrolimus nephrotoxicities, Nephrology Dialysis Transplantation, vol.19, issue.2, pp.444-50, 2004.
DOI : 10.1093/ndt/gfg515

Y. Caliskan, S. Kalayoglu-besisik, D. Sargin, and T. Ecder, Cyclosporine-associated hyperkalemia: report of four allogeneic blood stem-cell transplant cases, Transplantation, 2003.
DOI : 10.1097/01.TP.0000057241.69355.59

A. Takami, H. Asakura, H. Takamatsu, H. Yamazaki, M. Arahata et al., Isolated Hyperkalemia Associated with Cyclosporine Administration in Allogeneic Stem Cell Transplantation for Renal Cell Carcinoma, International Journal of Hematology, vol.17, issue.2, pp.159-61, 2005.
DOI : 10.1532/IJH97.04113

K. Miura, T. Nakatani, T. Asai, S. Yamanaka, S. Tamada et al., ROLE OF HYPOMAGNESEMIA IN CHRONIC CYCLOSPORINE NEPHROPATHY1, Transplantation, vol.73, issue.3, pp.340-347
DOI : 10.1097/00007890-200202150-00005

R. Holzmacher, C. Kendziorski, M. Hofman, R. Jaffery, J. Becker et al., Low serum magnesium is associated with decreased graft survival in patients with chronic cyclosporin nephrotoxicity, Nephrology Dialysis Transplantation, vol.20, issue.7, pp.1456-62, 2005.
DOI : 10.1093/ndt/gfg343

R. Stahl, L. Kanz, B. Maier, and P. Schollmeyer, Hyperchloremic metabolic acidosis with high serum potassium in renal transplant recipients: a cyclosporine A associated side effect

M. Younes-ibrahim, M. Barnese, P. Burth, and M. Castro-faria, -ATPase by Cyclosporine A, Annals of the New York Academy of Sciences, vol.65, issue.suppl. 4, pp.633-638, 2003.
DOI : 10.1111/j.1749-6632.2003.tb07270.x

A. Ferrer-martínez, A. Felipe, P. Barceló, F. Casado, J. Ballarín et al., Effects of cyclosporine A on Na,K-ATPase expression in the renal epithelial cell line NBL-1, Kidney International, vol.50, issue.5, pp.1483-1492, 1996.
DOI : 10.1038/ki.1996.462

S. Lim, K. Ahn, M. Sheen, U. Jeon, J. Kim et al., Downregulation of Renal Sodium Transporters and Tonicity-Responsive Enhancer Binding Protein by Long-Term Treatment with Cyclosporin A, Journal of the American Society of Nephrology, vol.18, issue.2, pp.421-430, 2007.
DOI : 10.1681/ASN.2006060664

J. Tumlin and J. Sands, Nephron segment-specific inhibition of Na+/K+-ATPase activity by cyclosporin A, Kidney International, vol.43, issue.1, pp.246-51, 1993.
DOI : 10.1038/ki.1993.38

J. Lea, J. Sands, S. Mcmahon, and J. Tumlin, Evidence that the inhibition of Na+/K+-ATPase activity by FK506 involves calcineurin, Kidney International, vol.46, issue.3, pp.647-52, 1994.
DOI : 10.1038/ki.1994.317

S. Aker, P. Heering, E. Kinne-saffran, C. Deppe, B. Grabensee et al., Different Effects of Cyclosporine A and FK506 on Potassium Transport Systems in MDCK Cells, Nephron Experimental Nephrology, vol.9, issue.5, pp.332-372, 2001.
DOI : 10.1159/000052629

C. Deppe, P. Heering, H. Tinel, E. Kinne-saffran, B. Grabensee et al., Effect of cyclosporine A on Na+, ATPase in MDCK cells and two subtypes, pp.7-11471, 1997.

C. Esteva-font, E. Ars, E. Guillen-gomez, J. Campistol, L. Sanz et al., Ciclosporin-induced hypertension is associated with increased sodium transporter of the loop of Henle (NKCC2), Nephrology Dialysis Transplantation, vol.22, issue.10, pp.2810-2816, 2007.
DOI : 10.1093/ndt/gfm390

B. Ling and D. Eaton, Cyclosporin A inhibits apical secretory K+ channels in rabbit cortical collecting tubule principal cells, Kidney International, vol.44, issue.5, pp.974-84, 1993.
DOI : 10.1038/ki.1993.339

M. Zeisberg and E. Neilson, Mechanisms of Tubulointerstitial Fibrosis, Journal of the American Society of Nephrology, vol.21, issue.11, pp.1819-1853, 2010.
DOI : 10.1681/ASN.2010080793

J. Klein, M. Miravete, B. Buffin-meyer, J. Schanstra, and J. Bascands, La fibrose tubulointerstitielle rénale: Menace fantôme ou dernière croisade ? médecine/sciences, janv, vol.27, issue.1, pp.55-61, 2011.

S. Lovisa, M. Zeisberg, and R. Kalluri, Partial Epithelial-to-Mesenchymal Transition and Other New Mechanisms of Kidney Fibrosis, Trends in Endocrinology & Metabolism, vol.27, issue.10, pp.681-95, 2016.
DOI : 10.1016/j.tem.2016.06.004

M. Hazzan, A. Hertig, D. Buob, M. Copin, C. Noel et al., Epithelial-to-Mesenchymal Transition Predicts Cyclosporine Nephrotoxicity in Renal Transplant Recipients, Journal of the American Society of Nephrology, vol.22, issue.7, pp.1375-81, 2011.
DOI : 10.1681/ASN.2010060673

T. Mcmorrow, M. Gaffney, C. Slattery, E. Campbell, and M. Ryan, Cyclosporine A induced epithelial???mesenchymal transition in human renal proximal tubular epithelial cells, Nephrology Dialysis Transplantation, vol.20, issue.10, pp.2215-2240, 2005.
DOI : 10.1111/j.1523-1755.1998.00820.x

C. Slattery, E. Campbell, T. Mcmorrow, and M. Ryan, Cyclosporine A-Induced Renal Fibrosis, The American Journal of Pathology, vol.167, issue.2, pp.395-407, 2005.
DOI : 10.1016/S0002-9440(10)62984-7

C. Faul, M. Donnelly, S. Merscher-gomez, Y. Chang, S. Franz et al., The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A, Nature Medicine, vol.14, issue.9, pp.931-939, 2008.
DOI : 10.1172/JCI200112849

X. Li, X. Zhang, X. Li, X. Wang, S. Wang et al., Cyclosporine A protects podocytes via stabilization of cofilin-1 expression in the unphosphorylated state, Experimental Biology and Medicine, vol.265, issue.8, pp.922-958, 2014.
DOI : 10.1172/JCI32022

V. Descazeaud, E. Mestre, P. Marquet, and M. Essig, Calcineurin regulation of cytoskeleton organization: a new paradigm to analyse the effects of calcineurin inhibitors on the kidney, Journal of Cellular and Molecular Medicine, vol.281, issue.2, pp.218-245, 2012.
DOI : 10.1681/ASN.2009121253

URL : https://hal.archives-ouvertes.fr/inserm-00925231

W. Wu, G. Wang, S. Baek, and R. Shen, Comparative Study of Three Proteomic Quantitative Methods, DIGE, cICAT, and iTRAQ, Using 2D Gel- or LC???MALDI TOF/TOF, Journal of Proteome Research, vol.5, issue.3, pp.651-659, 2006.
DOI : 10.1021/pr050405o

S. Pütz, A. Boehm, T. Stiewe, and A. Sickmann, iTRAQ Analysis of a Cell Culture Model for Malignant Transformation, Including Comparison with 2D-PAGE and SILAC, Journal of Proteome Research, vol.11, issue.4, pp.2140-53, 2012.
DOI : 10.1021/pr200881c

S. Gygi, B. Rist, S. Gerber, F. Turecek, M. Gelb et al., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags, Nature Biotechnology, vol.22, issue.10, pp.994-1003, 1999.
DOI : 10.1002/elps.1150191045

S. Ong, B. Blagoev, I. Kratchmarova, D. Kristensen, H. Steen et al., Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics, Molecular & Cellular Proteomics, vol.73, issue.5, pp.376-86, 2002.
DOI : 10.1083/jcb.142.3.873

P. Ross, Using Amine-reactive Isobaric Tagging Reagents, Molecular & Cellular Proteomics, vol.75, issue.12, pp.1154-69, 2004.
DOI : 10.1021/ac034120b

W. Zhu, J. Smith, and C. Huang, Mass Spectrometry-Based Label-Free Quantitative Proteomics, Journal of Biomedicine and Biotechnology, vol.14, issue.1, p.840518, 2010.
DOI : 10.1021/pr700705u

M. Bantscheff, M. Schirle, G. Sweetman, R. J. Kuster, and B. , Quantitative mass spectrometry in proteomics: a critical review, Analytical and Bioanalytical Chemistry, vol.25, issue.7, pp.1017-1048, 2007.
DOI : 10.1186/1479-7364-2-5-310

M. Bantscheff, S. Lemeer, M. Savitski, and B. Kuster, Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present, Analytical and Bioanalytical Chemistry, vol.8, issue.11, pp.939-65, 2012.
DOI : 10.1021/pr900252n

X. Chen, S. Wei, Y. Ji, X. Guo, and F. Yang, Quantitative proteomics using SILAC: Principles, applications, and developments, PROTEOMICS, vol.11, issue.18, pp.3175-92, 2015.
DOI : 10.1586/14789450.2014.971115

V. Patel, K. Thalassinos, S. Slade, J. Connolly, A. Crombie et al., A Comparison of Labeling and Label-Free Mass Spectrometry-Based Proteomics Approaches, Journal of Proteome Research, vol.8, issue.7, pp.3752-3761, 2009.
DOI : 10.1021/pr900080y

H. Wang, S. Alvarez, and L. Hicks, Strains of Interest for Biofuels Engineering, Journal of Proteome Research, vol.11, issue.1, pp.487-501, 2012.
DOI : 10.1021/pr2008225

C. Gan, P. Chong, T. Pham, and P. Wright, Technical, Experimental, and Biological Variations in Isobaric Tags for Relative and Absolute Quantitation (iTRAQ), Journal of Proteome Research, vol.6, issue.2, pp.821-828, 2007.
DOI : 10.1021/pr060474i

A. Redding, A. Mukhopadhyay, D. Joyner, T. Hazen, and J. Keasling, Study of nitrate stress in Desulfovibrio vulgaris Hildenborough using iTRAQ proteomics, Briefings in Functional Genomics and Proteomics, vol.5, issue.2, pp.133-176, 2006.
DOI : 10.1093/bfgp/ell025

S. Ow, M. Salim, J. Noirel, C. Evans, I. Rehman et al., iTRAQ Underestimation in Simple and Complex Mixtures: ???The Good, the Bad and the Ugly???, Journal of Proteome Research, vol.8, issue.11, pp.5347-55, 2009.
DOI : 10.1021/pr900634c

C. Suarez and D. Kovar, Internetwork competition for monomers governs actin cytoskeleton organization, Nature Reviews Molecular Cell Biology, vol.25, issue.12, pp.799-810, 2016.
DOI : 10.1091/mbc.E13-03-0162

T. Pollard and J. Cooper, Actin, a Central Player in Cell Shape and Movement, Science, vol.460, issue.7258, pp.1208-1220, 2009.
DOI : 10.1038/nature08231

D. Remedios, C. Chhabra, D. Kekic, M. Dedova, I. Tsubakihara et al., Actin Binding Proteins: Regulation of Cytoskeletal Microfilaments, Physiological Reviews, vol.260, issue.2, pp.433-73, 2003.
DOI : 10.1111/j.1365-2184.1995.tb00057.x

V. Paavilainen, E. Bertling, S. Falck, and P. Lappalainen, Regulation of cytoskeletal dynamics by actin-monomer-binding proteins, Trends in Cell Biology, vol.14, issue.7, pp.386-94, 2004.
DOI : 10.1016/j.tcb.2004.05.002

J. Leavitt, S. Ng, U. Aebi, M. Varma, G. Latter et al., Expression of transfected mutant beta-actin genes: alterations of cell morphology and evidence for autoregulation in actin pools., Molecular and Cellular Biology, vol.7, issue.7, pp.2457-66, 1987.
DOI : 10.1128/MCB.7.7.2457

T. Pollard, Actin and Actin-Binding Proteins, Cold Spring Harbor Perspectives in Biology, vol.8, issue.8, p.18226, 2016.
DOI : 10.1101/cshperspect.a018226

B. Bernstein and J. Bamburg, ADF/Cofilin: a functional node in cell biology, Trends in Cell Biology, vol.20, issue.4, pp.187-95, 2010.
DOI : 10.1016/j.tcb.2010.01.001

G. Kanellos and M. Frame, Cellular functions of the ADF/cofilin family at a glance, Journal of Cell Science, vol.129, issue.17, pp.3211-3219, 2016.
DOI : 10.1242/jcs.187849

J. Bamburg, H. Harris, and A. Weeds, Partial purification and characterization of an actin depolymerizing factor from brain, FEBS Letters, vol.121, issue.1, pp.178-82, 1980.
DOI : 10.1016/0014-5793(80)81291-9

A. Mcgough, B. Pope, W. Chiu, and A. Weeds, Cofilin Changes the Twist of F-Actin: Implications for Actin Filament Dynamics and Cellular Function, The Journal of Cell Biology, vol.266, issue.4, pp.771-81, 1997.
DOI : 10.1002/cm.970250402

K. Miyamoto and J. Gurdon, Transcriptional regulation and nuclear reprogramming: roles of nuclear actin and actin-binding proteins, Cellular and Molecular Life Sciences, vol.5, issue.18, pp.3289-302, 2013.
DOI : 10.1371/journal.pgen.1000470

L. Munsie, C. Desmond, and R. Truant, Cofilin nuclear???cytoplasmic shuttling affects cofilin???actin rod formation during stress, Journal of Cell Science, vol.26, issue.17, pp.3977-88, 2012.
DOI : 10.1091/mbc.E11-12-0992

J. Dopie, K. Skarp, K. Rajakyla, E. Tanhuanpaa, K. Vartiainen et al., Active maintenance of nuclear actin by importin 9 supports transcription, Proceedings of the National Academy of Sciences, vol.8, issue.3, pp.544-52, 2012.
DOI : 10.1038/ncb1357

A. Obrdlik and P. Percipalle, The F-actin severing protein cofilin-1 is required for RNA polymerase II transcription elongation, Nucl Austin Tex. févr, vol.2, issue.1, pp.72-81, 2011.

E. Nishida, K. Iida, N. Yonezawa, S. Koyasu, I. Yahara et al., Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells., Proceedings of the National Academy of Sciences, vol.84, issue.15, pp.5262-5268, 1987.
DOI : 10.1073/pnas.84.15.5262

Y. Ohta, E. Nishida, H. Sakai, and E. Miyamoto, Dephosphorylation of cofilin accompanies heat shock-induced nuclear accumulation of cofilin, J Biol Chem. 25 sept, vol.264, issue.27, pp.16143-16151, 1989.

S. Ono, H. Abe, R. Nagaoka, and T. Obinata, Colocalization of ADF and cofilin in intranuclear actin rods of cultured muscle cells, Journal of Muscle Research and Cell Motility, vol.266, issue.2, pp.195-204, 1993.
DOI : 10.1007/BF00115454

H. Abe, R. Nagaoka, and T. Obinata, Cytoplasmic Localization and Nuclear Transport of Cofilin in Cultured Myotubes, Experimental Cell Research, vol.206, issue.1, pp.1-10, 1993.
DOI : 10.1006/excr.1993.1113

B. Bernstein, H. Chen, J. Boyle, and J. Bamburg, Formation of actin-ADF/cofilin rods transiently retards decline of mitochondrial potential and ATP in stressed neurons, American Journal of Physiology-Cell Physiology, vol.291, issue.5, pp.828-867, 2006.
DOI : 10.1006/jmbi.2001.5280

S. Ashworth, E. Southgate, R. Sandoval, P. Meberg, J. Bamburg et al., ADF/cofilin mediates actin cytoskeletal alterations in LLC-PK cells during ATP depletion, American Journal of Physiology-Renal Physiology, vol.45, issue.4
DOI : 10.1038/31735

L. Minamide, S. Maiti, J. Boyle, R. Davis, J. Coppinger et al., Isolation and Characterization of Cytoplasmic Cofilin-Actin Rods, Journal of Biological Chemistry, vol.106, issue.8, pp.5450-60, 2010.
DOI : 10.1016/j.ejcb.2008.04.001

L. Munsie and R. Truant, The role of the cofilin-actin rod stress response in neurodegenerative diseases uncovers potential new drug targets, BioArchitecture, vol.28, issue.6, pp.204-212, 2012.
DOI : 10.1128/MCB.00079-08

B. Chua, C. Volbracht, K. Tan, R. Li, V. Yu et al., Mitochondrial translocation of cofilin is an early step in apoptosis induction, Nature Cell Biology, vol.108, issue.12, pp.1083-1092, 2003.
DOI : 10.1038/379466a0

B. Zhu, K. Fukada, H. Zhu, and N. Kyprianou, Prohibitin and Cofilin Are Intracellular Effectors of Transforming Growth Factor ?? Signaling in Human Prostate Cancer Cells, Cancer Research, vol.66, issue.17, pp.8640-8647, 2006.
DOI : 10.1158/0008-5472.CAN-06-1443

G. Li, Q. Cheng, L. Liu, T. Zhou, C. Shan et al., Mitochondrial translocation of cofilin is required for allyl isothiocyanate-mediated cell death via ROCK1/PTEN/PI3K signaling pathway, Cell Communication and Signaling, vol.11, issue.1, p.50, 2013.
DOI : 10.1038/bcj.2013.7

G. Li, J. Zhou, A. Budhraja, X. Hu, Y. Chen et al., Mitochondrial translocation and interaction of cofilin and Drp1 are required for erucin-induced mitochondrial fission and apoptosis, Oncotarget, vol.6, issue.3, pp.1834-1883, 2015.
DOI : 10.18632/oncotarget.2795

C. Lee, H. Park, H. So, H. Kim, K. Lee et al., Proteomic profiling and identification of cofilin responding to oxidative stress in vascular smooth muscle, PROTEOMICS, vol.68, issue.24, pp.6455-75, 2006.
DOI : 10.1152/ajpgi.00141.2001

F. Klamt, S. Zdanov, R. Levine, A. Pariser, Y. Zhang et al., Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin, Nature Cell Biology, vol.268, issue.10, pp.1241-1247, 2009.
DOI : 10.1016/j.bbagen.2005.07.016

S. Zdanov, F. Klamt, and E. Shacter, Importance of cofilin oxidation for oxidant-induced apoptosis, Cell Cycle, vol.9, issue.9, pp.1675-1682, 2010.
DOI : 10.4161/cc.9.9.11650

M. Vantroys, L. Huyck, S. Leyman, S. Dhaese, J. Vandekerkhove et al., Ins and outs of ADF/cofilin activity and regulation, European Journal of Cell Biology, vol.87, issue.8-9, pp.649-67, 2008.
DOI : 10.1016/j.ejcb.2008.04.001

B. Agnew, L. Minamide, and J. Bamburg, Reactivation of Phosphorylated Actin Depolymerizing Factor and Identification of the Regulatory Site, Journal of Biological Chemistry, vol.265, issue.29, pp.17582-17589, 1995.
DOI : 10.1111/j.1432-1033.1989.tb14918.x

K. Moriyama, K. Iida, and I. Yahara, Phosphorylation of Ser-3 of cofilin regulates its essential function on actin, Genes to Cells, vol.1, issue.1, pp.73-86, 1996.
DOI : 10.1046/j.1365-2443.1996.05005.x

R. Nagaoka, H. Abe, and T. Obinata, Site-directed mutagenesis of the phosphorylation site of cofilin: Its role in cofilin-actin interaction and cytoplasmic localization, Cell Motility and the Cytoskeleton, vol.344, issue.3, pp.200-209, 1996.
DOI : 10.1038/344675a0

N. Yang, O. Higuchi, K. Ohashi, K. Nagata, A. Wada et al., Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization, Nature, vol.270, issue.6687, pp.809-821, 1998.
DOI : 10.1074/jbc.270.39.22681

M. Maekawa, Signaling from Rho to the Actin Cytoskeleton Through Protein Kinases ROCK and LIM-kinase, Science, vol.285, issue.5429, pp.895-903, 1999.
DOI : 10.1126/science.285.5429.895

K. Ohashi, T. Hosoya, K. Takahashi, H. Hing, and K. Mizuno, A Drosophila Homolog of LIM-Kinase Phosphorylates Cofilin and Induces Actin Cytoskeletal Reorganization, Biochemical and Biophysical Research Communications, vol.276, issue.3, pp.1178-85, 2000.
DOI : 10.1006/bbrc.2000.3599

K. Ohashi, K. Nagata, M. Maekawa, T. Ishizaki, S. Narumiya et al., Rho-associated Kinase ROCK Activates LIM-kinase 1 by Phosphorylation at Threonine 508 within the Activation Loop, Journal of Biological Chemistry, vol.258, issue.5, pp.3577-82, 2000.
DOI : 10.1074/jbc.274.17.12171

C. Dan, A. Kelly, O. Bernard, and A. Minden, Cytoskeletal Changes Regulated by the PAK4 Serine/Threonine Kinase Are Mediated by LIM Kinase 1 and Cofilin, Journal of Biological Chemistry, vol.11, issue.34, pp.32115-32136, 2001.
DOI : 10.1083/jcb.147.7.1519

D. Edwards, L. Sanders, G. Bokoch, and G. Gill, Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics, Nature Cell Biology, vol.224, issue.5, pp.253-262, 1999.
DOI : 10.1006/abio.1995.1070

D. Edwards and G. Gill, Structural Features of LIM Kinase That Control Effects on the Actin Cytoskeleton, Journal of Biological Chemistry, vol.228, issue.16, pp.11352-61, 1999.
DOI : 10.1126/science.279.5350.509

T. Sumi, K. Matsumoto, A. Shibuya, and T. Nakamura, Activation of LIM Kinases by Myotonic Dystrophy Kinase-related Cdc42-binding Kinase ??, Journal of Biological Chemistry, vol.249, issue.25, pp.23092-23098, 2001.
DOI : 10.1016/S0092-8674(00)81281-7

T. Sumi, K. Matsumoto, and T. Nakamura, Specific Activation of LIM kinase 2 via Phosphorylation of Threonine 505 by ROCK, a Rho-dependent Protein Kinase, Journal of Biological Chemistry, vol.11, issue.1, pp.670-676, 2001.
DOI : 10.1016/S0169-328X(96)00257-4

T. Huang, C. Dermardirossian, and G. Bokoch, Cofilin phosphatases and regulation of actin dynamics, Current Opinion in Cell Biology, vol.18, issue.1, pp.26-31, 2006.
DOI : 10.1016/j.ceb.2005.11.005

X. Song, X. Chen, H. Yamaguchi, G. Mouneimne, J. Condeelis et al., Initiation of cofilin activity in response to EGF is uncoupled from cofilin phosphorylation and dephosphorylation in carcinoma cells, Journal of Cell Science, vol.119, issue.14, pp.2871-81, 2006.
DOI : 10.1242/jcs.03017

A. Hosoda, N. Sato, R. Nagaoka, H. Abe, and T. Obinata, Activity of cofilin can be regulated by a mechanism other than phosphorylation/dephosphorylation in muscle cells in culture, Journal of Muscle Research and Cell Motility, vol.266, issue.2-3, pp.183-94, 2007.
DOI : 10.1128/MCB.17.7.3841

K. Lee, J. Jung, M. Kim, and G. Guidotti, Interaction of the ?? subunit of Na,K-ATPase with cofilin, Biochemical Journal, vol.353, issue.2, pp.377-85, 2001.
DOI : 10.1042/bj3530377

M. Kim, J. Jung, C. Park, and K. Lee, Identification of the cofilin-binding sites in the large cytoplasmic domain of Na,K-ATPase, Biochimie, vol.84, issue.10, pp.1021-1030, 2002.
DOI : 10.1016/S0300-9084(02)00004-4

J. Jung, T. Yoon, E. Choi, and K. Lee, Interaction of Cofilin with Triose-phosphate Isomerase Contributes Glycolytic Fuel for Na,K-ATPase via Rho-mediated Signaling Pathway, Journal of Biological Chemistry, vol.27, issue.50, pp.48931-48938, 2002.
DOI : 10.1023/A:1007261322878

J. Jung, M. Kim, S. Choi, M. Kim, J. Suh et al., Molecular mechanism of cofilin dephosphorylation by ouabain, Cellular Signalling, vol.18, issue.11, pp.2033-2073, 2006.
DOI : 10.1016/j.cellsig.2006.03.014

J. Jung, H. Park, M. Kim, M. Kim, E. Choi et al., Extracellular potassium deprivation reversibly dephosphorylates cofilin, Biochemical and Biophysical Research Communications, vol.345, issue.4, pp.1393-1400, 2006.
DOI : 10.1016/j.bbrc.2006.05.028

N. Yonezawa, E. Nishida, K. Iida, I. Yahara, and H. Sakai, Inhibition of the interactions of cofilin, destrin, and deoxyribonuclease I with actin by phosphoinositides, J Biol Chem. 25 mai, vol.265, issue.15, pp.8382-8388, 1990.

N. Yonezawa, Y. Homma, I. Yahara, H. Sakai, and E. Nishida, A short sequence responsible for both phosphoinositide binding and actin binding activities of cofilin, J Biol Chem. 15 sept, vol.266, issue.26, pp.17218-17239, 1991.

H. Zhao, M. Hakala, and P. Lappalainen, ADF/Cofilin Binds Phosphoinositides in a Multivalent Manner to Act as a PIP2-Density Sensor, Biophysical Journal, vol.98, issue.10, pp.2327-2363, 2010.
DOI : 10.1016/j.bpj.2010.01.046

C. Frantz, G. Barreiro, L. Dominguez, X. Chen, R. Eddy et al., Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding, The Journal of Cell Biology, vol.265, issue.5, pp.865-79, 2008.
DOI : 10.1023/B:JNMR.0000032508.54841.0f

S. Yeoh, B. Pope, H. Mannherz, and A. Weeds, Determining the differences in actin binding by human ADF and cofilin 1 1Edited by J. Karn, Journal of Molecular Biology, vol.315, issue.4, pp.911-936, 2002.
DOI : 10.1006/jmbi.2001.5280

J. Pfannstiel, M. Cyrklaff, A. Habermann, S. Stoeva, G. Griffiths et al., Human Cofilin Forms Oligomers Exhibiting Actin Bundling Activity, Journal of Biological Chemistry, vol.264, issue.52, pp.49476-84, 2001.
DOI : 10.1046/j.1365-2443.1996.05005.x

URL : http://www.jbc.org/content/276/52/49476.full.pdf

M. Klemke, G. Wabnitz, F. Funke, B. Funk, H. Kirchgessner et al., Oxidation of Cofilin Mediates T Cell Hyporesponsiveness under Oxidative Stress Conditions, Immunity, vol.29, issue.3, pp.404-417, 2008.
DOI : 10.1016/j.immuni.2008.06.016

P. Goyal, D. Pandey, D. Brünnert, E. Hammer, M. Zygmunt et al., Cofilin Oligomer Formation Occurs In Vivo and Is Regulated by Cofilin Phosphorylation, PLoS ONE, vol.10, issue.8, p.71769, 2013.
DOI : 10.1371/journal.pone.0071769.s004

E. Andrianantoandro and T. Pollard, Mechanism of Actin Filament Turnover by Severing and Nucleation at Different Concentrations of ADF/Cofilin, Molecular Cell, vol.24, issue.1, pp.13-23, 2006.
DOI : 10.1016/j.molcel.2006.08.006

P. Percipalle, Co-transcriptional nuclear actin dynamics, Nucleus, vol.7, issue.1, pp.43-52, 2013.
DOI : 10.1016/j.bbrc.2008.10.048

E. Rajakylä and M. Vartiainen, Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression, Small GTPases, vol.18, issue.1, p.27539, 2014.
DOI : 10.1016/j.molcel.2006.07.005

G. Posern and R. Treisman, Actin??? together: serum response factor, its cofactors and the link to signal transduction, Trends in Cell Biology, vol.16, issue.11, pp.588-96, 2006.
DOI : 10.1016/j.tcb.2006.09.008

E. Olson and A. Nordheim, Linking actin dynamics and gene transcription to drive cellular motile functions, Nature Reviews Molecular Cell Biology, vol.9, issue.5, pp.353-65, 2010.
DOI : 10.1172/JCI19137

C. Hill, J. Wynne, and R. Treisman, The Rho family GTPases RhoA, Racl , and CDC42Hsregulate transcriptional activation by SRF, Cell, vol.81, issue.7, pp.1159-70, 1995.
DOI : 10.1016/S0092-8674(05)80020-0

A. Sotiropoulos, D. Gineitis, J. Copeland, and R. Treisman, Signal-Regulated Activation of Serum Response Factor Is Mediated by Changes in Actin Dynamics, Cell, vol.98, issue.2, pp.159-69, 1999.
DOI : 10.1016/S0092-8674(00)81011-9

O. Geneste, J. Copeland, and R. Treisman, LIM kinase and Diaphanous cooperate to regulate serum response factor and actin dynamics, The Journal of Cell Biology, vol.113, issue.5, pp.831-839, 2002.
DOI : 10.1038/31735

D. Wang, S. Li, D. Hockemeyer, L. Sutherland, Z. Wang et al., Potentiation of serum response factor activity by a family of myocardin-related transcription factors, Proceedings of the National Academy of Sciences, vol.81, issue.7, pp.14855-60, 2002.
DOI : 10.1016/S0092-8674(05)80020-0

B. Cen, A. Selvaraj, R. Burgess, J. Hitzler, Z. Ma et al., Megakaryoblastic Leukemia 1, a Potent Transcriptional Coactivator for Serum Response Factor (SRF), Is Required for Serum Induction of SRF Target Genes, Molecular and Cellular Biology, vol.23, issue.18, pp.6597-608, 2003.
DOI : 10.1128/MCB.23.18.6597-6608.2003

R. Treisman, Ternary complex factors: growth factor regulated transcriptional activators, Current Opinion in Genetics & Development, vol.4, issue.1, pp.96-101, 1994.
DOI : 10.1016/0959-437X(94)90097-3

Q. Sun, Defining the mammalian CArGome, Genome Research, vol.16, issue.2, pp.197-207, 2005.
DOI : 10.1101/gr.4108706

N. Martin-martin, Q. Dan, Y. Amoozadeh, F. Waheed, T. Mcmorrow et al., RhoA and Rho kinase mediate cyclosporine A and sirolimus-induced barrier tightening in renal proximal tubular cells, The International Journal of Biochemistry & Cell Biology, vol.44, issue.1, pp.178-88, 2012.
DOI : 10.1016/j.biocel.2011.10.014

H. Ihara, S. Hosokawa, T. Ogino, M. Arima, and F. Ikoma, Activation of K+ channel and inhibition of Na(+)-K+ ATPase of human erythrocytes by cyclosporine: possible role in hyperpotassemia in kidney transplant recipients, Transplant Proc. août, vol.22, issue.4, pp.1736-1745, 1990.

I. Marakhova, A. Vereninov, T. Vinogradova, and F. Toropova, Cyclosporin A inhibits long-term activation of Na+,K+ pump in phytohemagglutinin-stimulated human lymphocytes, Membr Cell Biol, vol.12, issue.3, pp.363-74, 1998.

I. Marakhova, A. Ivanova, F. Toropova, A. Vereninov, and T. Vinogradova, Functional expression of the Na/K pump is controlled via a cyclosporin A-sensitive signalling pathway in activated human lymphocytes, FEBS Letters, vol.362, issue.2, pp.285-294, 1999.
DOI : 10.1016/0014-5793(95)00217-W

M. Zeidel, H. Brady, B. Kone, S. Gullans, and B. Brenner, Endothelin, a peptide inhibitor of Na(+)-K(+)-ATPase in intact renaltubular epithelial cells, American Journal of Physiology-Cell Physiology, vol.65, issue.6, pp.1101-1108, 1989.
DOI : 10.1172/JCI113663

G. Suñé, E. Sarró, M. Puigmulé, J. López-hellín, M. Zufferey et al., Cyclophilin B Interacts with Sodium-Potassium ATPase and Is Required for Pump Activity in Proximal Tubule Cells of the Kidney, PLoS ONE, vol.162, issue.6, p.13930, 2010.
DOI : 10.1371/journal.pone.0013930.g006

M. Rocchetti, M. Centra, M. Papale, G. Bortone, C. Palermo et al., Urine protein profile of IgA nephropathy patients may predict the response to ACE-inhibitor therapy, PROTEOMICS, vol.35, issue.1, pp.206-216, 2008.
DOI : 10.1007/s004180100317

M. Frantzi, J. Metzger, R. Banks, H. Husi, J. Klein et al., Discovery and validation of urinary biomarkers for detection of renal cell carcinoma, Journal of Proteomics, vol.98, pp.44-58, 2014.
DOI : 10.1016/j.jprot.2013.12.010

K. Davalieva, S. Kiprijanovska, S. Komina, G. Petrusevska, C. Zografska et al., Proteomics analysis of urine reveals acute phase response proteins as candidate diagnostic biomarkers for prostate cancer, Proteome Science, vol.12, issue.1, 2015.
DOI : 10.1016/0022-2496(75)90001-2

C. Smith, I. Batruch, J. Bauça, H. Kosanam, J. Ridley et al., Deciphering the peptidome of urine from ovarian cancer patients and healthy controls, Clinical Proteomics, vol.11, issue.1, p.23, 2014.
DOI : 10.1073/pnas.82.7.1906

J. Bauça, E. Martínez-morillo, and E. Diamandis, Peptidomics of Urine and Other Biofluids for Cancer Diagnostics, Clinical Chemistry, vol.60, issue.8, pp.60-1052, 2014.
DOI : 10.1373/clinchem.2013.211714

A. Beasley-green, Urine Proteomics in the Era of Mass Spectrometry, International Neurourology Journal, vol.20, issue.Suppl 2, pp.70-75, 2016.
DOI : 10.5213/inj.1612720.360

C. Spahr, M. Davis, M. Mcginley, J. Robinson, E. Bures et al., Towards Defining the Urinary Proteome Using Liquid Chromatography-Tandem Mass Spectrometry. I. Profiling an Unfractionated Tryptic Digest, Proteomics, issue.1, pp.93-107, 2001.

A. Marimuthu, O. Meally, R. Chaerkady, R. Subbannayya, Y. Nanjappa et al., A Comprehensive Map of the Human Urinary Proteome, Journal of Proteome Research, vol.10, issue.6, pp.2734-2777, 2011.
DOI : 10.1021/pr2003038

D. Meo, A. Batruch, I. Yousef, A. Pasic, M. Diamandis et al., An Integrated Proteomic and Peptidomic Assessment of the Normal Human Urinome, Clin Chem Lab Med, vol.55, pp.237-284, 2017.

S. Gygi, B. Rist, S. Gerber, F. Turecek, M. Gelb et al., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags, Nature Biotechnology, vol.22, issue.10, pp.994-99, 1999.
DOI : 10.1002/elps.1150191045

S. Ong, B. Blagoev, I. Kratchmarova, D. Kristensen, H. Steen et al., Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics, Molecular & Cellular Proteomics, vol.73, issue.5, pp.376-86, 2002.
DOI : 10.1083/jcb.142.3.873

X. Chen, S. Wei, Y. Ji, X. Guo, Y. F. Ross et al., Quantitative Proteomics Using SILAC: Principles, Applications , and Developments These lamoureux (15) Multiplexed Protein Quantitation in Saccharomyces Cerevisiae Using Amine-Reactive Isobaric Tagging Reagents, 1154?69. (16) Wells (17) Zieske LR. A Perspective on the Use of ITRAQ Reagent Technology for Protein Complex and Profiling Studies, pp.3175-92, 2004.

R. Wolfe, V. Ashby, E. Milford, A. Ojo, R. Ettenger et al., Comparison of Mortality in All Patients on Dialysis, Patients on Dialysis Awaiting Transplantation, and Recipients of a First Cadaveric Transplant Calcineurin Inhibitor Nephrotoxicity, N Engl J Med Clin J Am Soc Nephrol, vol.341, issue.4, pp.1725-1755, 1999.

D. Anglicheau, M. Naesens, M. Essig, W. Gwinner, P. Marquet et al., Establishing Biomarkers in Transplant Medicine, Transplantation, vol.100, issue.10, pp.25-2024, 2011.
DOI : 10.1097/TP.0000000000001321

R. Redfield, K. Mccune, A. Rao, and E. Sadowski, Nature, timing, and severity of complications from ultrasound-guided percutaneous renal transplant biopsy, Transplant International, vol.11, issue.6 Suppl 1, pp.167-72, 2004.
DOI : 10.1111/j.1399-3046.2006.00659.x

V. Descazeaud, E. Mestre, P. Marquet, and M. Essig, Calcineurin regulation of cytoskeleton organization: a new paradigm to analyse the effects of calcineurin inhibitors on the kidney, Journal of Cellular and Molecular Medicine, vol.281, issue.2, pp.218-245, 2012.
DOI : 10.1681/ASN.2009121253

URL : https://hal.archives-ouvertes.fr/inserm-00925231

F. Lamoureux, L. Gastinel, E. Mestre, P. Marquet, and M. Essig, Mapping cyclosporine-induced changes in protein secretion by renal cells using stable isotope labeling with amino acids in cell culture (SILAC), Journal of Proteomics, vol.75, issue.12, pp.75-3674, 2012.
DOI : 10.1016/j.jprot.2012.04.024

URL : https://hal.archives-ouvertes.fr/inserm-00925556

A. Jurewicz, Tacrolimus versus ciclosporin immunosuppression: long-term outcome in renal transplantation, Nephrology Dialysis Transplantation, vol.18, issue.90001, pp.7-11, 2003.
DOI : 10.1093/ndt/gfg1028

B. Kaplan, J. Schold, and H. Meier-kriesche, Long-Term Graft Survival with Neoral and Tacrolimus: A Paired Kidney Analysis, Journal of the American Society of Nephrology, vol.14, issue.11, pp.2980-84, 2003.
DOI : 10.1097/01.ASN.0000095250.92361.D5

F. Shihab, T. Waid, D. Conti, H. Yang, M. Holman et al., Conversion from Cyclosporine to Tacrolimus in Patients at Risk for Chronic Renal Allograft Failure : 60-Month Results of the CRAF Study Comparative Acute Nephrotoxicity of FK-506 and Ciclosporin in an Isolated in Situ Autoperfused Rat Kidney Model, Transplantation Am J Nephrol, vol.85, issue.17, pp.1261-69, 1997.

S. Gardiner, J. March, P. Kemp, B. Fallgren, and T. Bennett, Regional haemodynamic effects of cyclosporine A, tacrolimus and sirolimus in conscious rats, British Journal of Pharmacology, vol.13, issue.4, pp.634-677, 2004.
DOI : 10.1042/cs0830179

I. Klein, A. Abrahams, T. Van-ede, R. Hené, H. Koomans et al., Different effects of tacrolimus and cyclosporine on renal hemodynamics and blood pressure in healthy subjects, Transplantation, vol.73, issue.5, pp.732-768, 2002.
DOI : 10.1097/00007890-200203150-00012

S. Jain, G. Bicknell, and M. Nicholson, Tacrolimus has less fibrogenic potential than cyclosporin A in a model of renal ischaemia-reperfusion injury, British Journal of Surgery, vol.54, issue.11, pp.1563-68, 2000.
DOI : 10.1159/000028023

T. Sigdel, Y. Gao, J. He, A. Wang, C. Nicora et al., Mining the human urine proteome for monitoring renal transplant injury, Kidney International, vol.89, issue.6, pp.1244-52, 2016.
DOI : 10.1016/j.kint.2015.12.049

T. Sigdel, C. Nicora, S. Hsieh, H. Dai, W. Qian et al., Optimization for peptide sample preparation for urine peptidomics, Clinical Proteomics, vol.11, issue.1, 2014.
DOI : 10.1021/pr0498638

URL : https://clinicalproteomicsjournal.biomedcentral.com/track/pdf/10.1186/1559-0275-11-7?site=clinicalproteomicsjournal.biomedcentral.com

N. Clipstone and G. Crabtree, Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation, Nature, vol.357, issue.6380, pp.695-97, 1992.
DOI : 10.1038/357695a0

B. Becknell, L. Greenbaum, W. Smoyer, J. Pirsch, J. Miller et al., A new ???tac??? for childhood nephrotic syndrome, Kidney International, vol.82, issue.10, pp.1049-51, 1997.
DOI : 10.1038/ki.2012.272

URL : https://doi.org/10.1038/ki.2012.272

F. Lamoureux, E. Mestre, M. Essig, F. Sauvage, P. Marquet et al., Quantitative proteomic analysis of cyclosporine-induced toxicity in a human kidney cell line and comparison with tacrolimus, Journal of Proteomics, vol.75, issue.2, pp.75-677, 2011.
DOI : 10.1016/j.jprot.2011.09.005

URL : https://hal.archives-ouvertes.fr/inserm-00925562

P. Justo, C. Lorz, A. Sanz, J. Egido, and A. Ortiz, Intracellular Mechanisms of Cyclosporin A-Induced Tubular Cell Apoptosis, Journal of the American Society of Nephrology, vol.14, issue.12, pp.3072-80, 2003.
DOI : 10.1097/01.ASN.0000099383.57934.0E

A. Djamali, Oxidative stress as a common pathway to chronic tubulointerstitial injury in kidney allografts, American Journal of Physiology-Renal Physiology, vol.293, issue.2, pp.445-455, 2007.
DOI : 10.1097/01.ASN.0000068626.23485.E0

J. Bravo-cordero, M. A. Javier, O. Magalhaes, R. Eddy, L. Hodgson et al., Functions of cofilin in cell locomotion and invasion, Nature Reviews Molecular Cell Biology, vol.3, issue.7, pp.405-420, 1988.
DOI : 10.1038/nmeth947

R. Pichler, N. Franceschini, B. Young, C. Hugo, T. Andoh et al., Pathogenesis of Cyclosporine Nephropathy: Roles of Angiotensin II and Osteopontin, J Am Soc Nephrol, issue.6, pp.1186-96, 1995.