Nano-DNA induced target assemblies - detection of small targets of DNA by forming networks

Résumé : La détection de petites molécules contribue au développement de nombreux domaines tels que la sécurité alimentaire, la sécurité intérieure, le diagnostic, le contrôle de l'environnement, etc. Cependant, la petite taille de ces cibles et leur faible concentration rendent difficile leur détection. Pour pallier à cela, des biocapteurs avec des sondes appropriées et des stratégies d'amplification du signal sont nécessaires. Parmi les éléments de reconnaissance couramment utilisés, les aptamères présentent l'avantage d'une synthèse aisée et de grandes possibilités de modification, ainsi qu'une dénaturation réversible à haute température et une tolérance élevée à la concentration en sel et au pH dans le milieu de travail. Plus important encore, la petite taille des aptamères en fait un choix idéal pour créer des structures adaptées pour la détection de petites cibles. La possibilité de couper la séquence de l'aptamère a fourni d'autres approches d’amplification de signal. Il existe deux catégories de méthodes de détection basées sur des aptamères : analyse hétérogène lorsque l'aptamère est immobilisé sur la surface ou analyse homogène lorsque le test est réalisé en solution. Nous proposons dans cette thèse une approche appliquable aux deux stratégies. L'adénosine a été utilisée comme une cible modèle pour cette preuve de concept. La détection de l'adénosine a été obtenue en combinant l'auto-assemblage de dimères d'oligonucléotides avec des extrémités pendantes correspondantes à l'aptamère coupé. Nous avons construit des structures auto-assemblées d'ADN (de 1D à 3D) avec l'adénosine comme déclencheur d'un changement structurel. La première méthode décrite dans ce travail consiste à utiliser de telles structures d'ADN combinées à l'imagerie par Résonance de Plasmons de Surface (SPRi). La SPRi est une méthode sensible à la variation d'indice optique produite par l'interaction entre les sondes immobilisées sur le prisme de l'or et la cible dans la solution. En présence d'adénosine, la structure d'ADN s'auto-assemble sur la surface de l'or et un signal a été créé. La limite de détection de l'adénosine atteinte par cette méthode est de 10 μM. La deuxième homogène méthode consiste à analyser les variations d'absorbance UV de la solution contenant les structures d'ADN puisque l'absorbance UV de l'ADN monocaténaire et du duplex ADN hybride est différente. En raison de cet effet, la température de fusion des brins d'ADN peut être déterminée par la dérivée de l'absorbance UV mesurée. Les structures d'ADN combinant les extrémités pendantes de l'aptamère coupé couplés à des oligonucléotides complémentaires présentent deux températures de fusion caractéristique de la dissociation de chaque partie. L'une correspond à l'oligonucléotide hybridé et l'autre à l'aptamère coupé liant l'adénosine. En présence d'adénosine dans la solution, la stabilité de la structure augmente et le pic de fusion de l'aptamère coupé est décalé à une température plus élevée tandis que le second pic de fusion reste identique et peut servir de référence interne. La limite de détection atteinte pour cette méthode est de 1 μM. Les structures d'ADN que nous avons proposées s'auto-assemblent de manière linéaire ou bi- ou tri-dimensionnelle : la structure 1D est une chaîne d'ADN formée par un enchainement de dimères connectés par des extrémités formées de l'aptamère scindé; La structure en 2D est une structure en forme de Y formée par un ADN simple brin avec une extrémité aptamère scindé sur chaque branche du "Y"; La structure 3D est un tétraèdre formé par quatre simple brins d'ADN avec des extrémités aptamère scindé sur les quatre sommets. En présence d'adénosine, les structures 2D et 3D peuvent s'auto-assembler et ainsi former un réseau avec les extrémités pendantes. La structure 1D a été mûrement développée pour les deux méthodes, les structures 2D et 3D ont été prouvées efficaces pour la détection, mais nécessitent encore plus d'efforts pour permettre une détection optimisée.
Type de document :
Thèse
Biomolecules [q-bio.BM]. Université Grenoble Alpes, 2017. English. 〈NNT : 2017GREAV066〉
Liste complète des métadonnées

Littérature citée [104 références]  Voir  Masquer  Télécharger

https://tel.archives-ouvertes.fr/tel-01719785
Contributeur : Abes Star <>
Soumis le : mercredi 28 février 2018 - 14:46:07
Dernière modification le : jeudi 7 mars 2019 - 17:00:03
Document(s) archivé(s) le : lundi 28 mai 2018 - 10:24:17

Fichier

LU_2017_diffusion.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01719785, version 1

Collections

Citation

Chenze Lu. Nano-DNA induced target assemblies - detection of small targets of DNA by forming networks. Biomolecules [q-bio.BM]. Université Grenoble Alpes, 2017. English. 〈NNT : 2017GREAV066〉. 〈tel-01719785〉

Partager

Métriques

Consultations de la notice

204

Téléchargements de fichiers

126