Skip to Main content Skip to Navigation
Theses

Cortical microvessels and the tripartite synapse in chronic pain studied with synchrotron radiation

Abstract : Chronic pain (CP) is a complex sensory disorder characterized by structural changes, i.e. severe anatomical rearrangements of somatosensory cortex, and functional changes, i.e. anomalies in network functional connectivity and in information transmission at the level of thalamo-cortical circuit. From the structural point of view, within each cortical module, a morpho-functional unit can be recognized, also called neuro-glial-vascular unit, where the glial cells represent the bridging structures allowing for the transfer of metabolites and oxygen to neurons. Namely, the functional dependency between neuronal and vascular elements, largely explored by 3D confocal microscopy and two photon microscopy, has expanded the concept of synaptic space to a more complex form, indicated as “tripartite synapse”, where besides the presence of the pre- and post- synaptic neurons, a glial component is added facing on the microvascular context. Due to this dependency it appears, thus, correct to analyse the cortical microscopical effects of the macroscopical picture. Novel studies by our group have recently investigated CP origin and evolution in experimental CP rat models (Seltzer) through microstructural and functional analyses focused both on the cortical neuronal substrate and the blood micromorphological and vasculodynamic properties. The 3D microarchitecture of cortical vascular network has been revealed by means of synchrotron X-ray micro Computed Tomography (CT) at the ID17 and ID16A beamlines (ESRF, Grenoble) and the TOMCAT beamline (SLS, Villigen). A subsequent morphometric analysis of the 3D vascular network has been implemented by means of skeletonization and spatial graph transformation. Then, a comparative study “Neuropathic vs Control”, based on the estimated vascular network properties (number of vessels, branch points, skeleton segments and vessel diameter), showed evident changes in cortical microvascular compartments: a widespread increase of blood microvessels and capillaries in the investigated regions (the somatosensory [SSI] cortical area) has been found in all CP rats. In parallel, a reduced mean value of vessel diameter in all CP rats prove that capillaries and small microvessels are predominantly interested by these angiogenetic events. By investigating the time evolution of the neogenesis, it appears strongly present since the first stage of the neuropathy (2 weeks), fading away, but still present, during the last time stage considered (6 months). In addition, an increased maximum blood flow, sustained by the vascular network, has been found in CP condition, indicating that CP vascular networks are compatible with an enriched blood flow sustained by the promoted novel angiogenesis. These results from micro- and nano-tomography have been further confirmed also by immunofluorescence microscopy analysis: CP samples have shown the positivity to three markers of vascular neo-genesis (VEGFR1, VEGFR2 and VWF). In parallel, to functionally analyse the genesis and the evolution of the thalamo-cortical circuits in CP conditions, the neural activity has been recorded by means of 32-microelectrode matrices implanted in the brain, simultaneously receiving signals from the VPL thalamic nucleus and the SS1 cortex. All the CP groups show connectivity disorders exhibited also by the evolution of the network topology from “Modules and Hubs” to a “random” network organisation where the intra-community and inter-community functional connections decrease. These results clearly confirm how the neuronal dynamics is strictly linked to the vascular activity: the cortical microvessel neo-genetic events in CP are strongly correlated to the functional anomalies in neuronal network dynamic. The microvascular involvement in CP opens a new way of interpretation of CP disease, not only recognized as sensory pathology, but also as a neurological disease where neuronal and vascular connectivity networks are extensively involved in the whole system.
Complete list of metadatas

Cited literature [147 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01719388
Contributor : Abes Star :  Contact
Submitted on : Wednesday, February 28, 2018 - 11:07:19 AM
Last modification on : Tuesday, May 19, 2020 - 8:56:26 AM
Long-term archiving on: : Monday, May 28, 2018 - 2:05:47 PM

File

DEL_GROSSO_2017_diffusion.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01719388, version 1

Collections

Citation

Veronica del Grosso. Cortical microvessels and the tripartite synapse in chronic pain studied with synchrotron radiation. Human health and pathology. Université Grenoble Alpes, 2017. English. ⟨NNT : 2017GREAS034⟩. ⟨tel-01719388⟩

Share

Metrics

Record views

368

Files downloads

101