Skip to Main content Skip to Navigation
Theses

Lithosphere dynamics and architecture of the Levant basin margins : integrated geophysical approach

Abstract : Significant gas discoveries have been made recently in the Eastern Mediterranean (www.nobleenergyinc.com), which turned the attention of oil companies towards the Levant Basin. This region is considered today as a typical hydrocarbon frontier province. Hence, a considerable amount of geophysical data has been produced and a series of academic and industry-based studies have been performed. Understanding the crustal and sedimentary architecture, the actual and past thermicity of this basin, in particular on the Lebanese continental margin, has major academic and economic interests. This has important implications on understanding tectonic evolution and earthquakes generation and on assessing petroleum systems. Despite numerous old and recent geophysical studies in this region, the deep crustal configuration of the Levant Basin, known to be the site of rifting in the Late Paleozoic and Early Mesozoic, remains enigmatic. The transition from a typical thick continental crust to thinner attenuated crust offshore (possibly even oceanic crust) has been invoked, but not yet proven. Integrated geophysical approaches and modeling techniques are used in this thesis to study the deep structure of the lithosphere underlying the easternmost Mediterranean region.A 2D modeling approach was accomplished at a regional scale (1000x1000 km2) extending from the Nile delta in the south, to Turkey in the north, from the Herodotus Basin in the west to the Arabian plate in the east. The algorithm used is a trial and error method that delivers the crustal thickness and the depth of the lithosphere-asthenosphere boundary (LAB) as well as the crustal density distribution by integrating top basement heat flow data, free-air gravity anomaly, Geoid and topography data. Moho depth and crustal thickness were locally constrained by refraction data where available. Three models are presented, two in EW direction (580 and 650 km long) and one in SN direction (570 km long). The models in EW sections show a progressively attenuated crystalline crust from E to W (35 to 8 km). The SN section presents a 12 km thick crust to the south, thinning to 9-7 km towards the Lebanese offshore and reaching 20 km in the north. The crystalline crust is best interpreted as a strongly thinned continental crust under the Levant Basin, represented by two distinct components, an upper and a lower crust. The Herodotus Basin, however, shows a very thin crystalline crust, likely oceanic, with a thickness between 6 and 10 km. The Moho under the Arabian plate is 35-40 km deep and becomes shallower towards the Mediterranean coast. Within the Levant Basin, the Moho appears to be situated between 20 and 23 km, reaching 26 km in the Herodotus Basin. While depth to LAB is around 110 km under the Arabian and the Eurasian plates, it is about 150 km under the Levant Basin and plunges finally to 180 km under the Herodotus Basin.A 3D joint inversion of gravity, geoid and topography data applied on the same region confirmed the results of the 2D modeling. A total of 168 of simulations were run, among which the simulation with the minimal data misfits corresponds to a model where the Moho depth varies between 23 and 26 km in the Levant Basin and becomes deeper in the Herodotus Basin and off the African coast. The LAB is 100 to 150 km deep in the Levant Basin and deepens to more than 180 km in the Herodotus Basin.
Complete list of metadatas

Cited literature [186 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01719268
Contributor : Abes Star :  Contact
Submitted on : Wednesday, February 28, 2018 - 10:15:16 AM
Last modification on : Friday, May 29, 2020 - 4:02:06 PM
Long-term archiving on: : Monday, May 28, 2018 - 6:28:37 PM

File

these_archivage_2308452o.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01719268, version 1

Citation

Lama Inati Smaily. Lithosphere dynamics and architecture of the Levant basin margins : integrated geophysical approach. Geophysics [physics.geo-ph]. Université Pierre et Marie Curie - Paris VI; Université Saint-Joseph (Beyrouth). Ecole supérieure d'ingénieurs de Beyrouth, 2017. English. ⟨NNT : 2017PA066314⟩. ⟨tel-01719268⟩

Share

Metrics

Record views

591

Files downloads

185