

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences Lettres
PSL Research University

Préparée à l’École normale supérieure

On the geometry of optimization problems and their struc-
ture
Sur la géométrie de problèmes d’optimisation et leur structure

École doctorale n◦386

ÉCOLE DOCTORALE DE SCIENCES MATHÉMATIQUES DE PARIS CENTRE

Spécialité MATHÉMATIQUES APPLIQUÉES

COMPOSITION DU JURY :

M François Glineur
UCL Louvain-La-Neuve, Rappor-
teur

M Jérôme Malick
CNRS Grenoble, Rapporteur

M Alexandre d’Aspremont
CNRS Paris, Directeur de thèse

M Francis Bach
INRIA Paris, Président du Jury

M Jérôme Bolte
TSE Toulouse, Membre du Jury

M Zaid Harchaoui
UW Seattle, Membre du Jury

Soutenue par Vincent Roulet
le 21.12.2017

Dirigée par Alexandre d’Aspremont

ÉCOLE NORMALE

S U P É R I E U R E

RESEARCH UNIVERSITY PARIS

Dédicacée à ma mère, mon père,
mes soeurs et mes grands-parents.

Abstract

In numerous fields such as machine learning, operational research or circuit design,
a task is modeled by a set of parameters to be optimized in order to take the best
possible decision. Formally, the problem amounts to minimize a function describing
the desired objective with iterative algorithms. The development of these latter de-
pends then on the characterization of the geometry of the function or the structure
of the problem.

In a first part, this thesis studies how sharpness of a function around its minimizers
can be exploited by restarting classical algorithms. Optimal schemes are presented
for general convex problems. They require however a complete description of the
function that is rarely available. Adaptive strategies are therefore developed and
shown to achieve nearly optimal rates. A specific analysis is then carried out for sparse
problems that seek for compressed representation of the variables of the problem.
Their underlying conic geometry, that describes sharpness of the objective, is shown to
control both the statistical performance of the problem and the efficiency of dedicated
optimization methods by a single quantity.

A second part is dedicated to machine learning problems. These perform predic-
tive analysis of data from large set of examples. A generic framework is presented to
both solve the prediction problem and simplify it by grouping either features, samples
or tasks. Systematic algorithmic approaches are developed by analyzing the geome-
try induced by partitions of the data. A theoretical analysis is then carried out for
grouping features by analogy to sparse methods.

Keywords : Convex optimization, Error bound, Sparsity, Sharpness, Structured
models with partitions of the data.

v

vi

Résumé

Dans de nombreux domaines tels que l’apprentissage statistique, la recherche
opérationnelle ou encore la conception de circuits, une tâche est modélisée par un jeu
de paramètres que l’on cherche à optimiser pour prendre la meilleure décision possi-
ble. Mathématiquement, le problème revient à minimiser une fonction de l’objectif
recherché par des algorithmes itératifs. Le développement de ces derniers dépend
alors de la géométrie de la fonction ou de la structure du problème.

Dans une première partie, cette thèse étudie comment l’acuité d’une fonction au-
tour de ses minima peut être exploitée par le redémarrage d’algorithmes classiques.
Les schémas optimaux sont présentés pour des problèmes convexes généraux. Ils
nécessitent cependant une description complète de la fonction, ce qui est rarement
disponible. Des stratégies adaptatives sont donc développées et prouvées être quasi-
optimales. Une analyse spécifique est ensuite conduite pour les problèmes parci-
monieux qui cherchent des représentations compressées des variables du problème.
Leur géométrie conique sous-jacente, qui décrit l’acuité de la fonction de l’objectif,
se révèle contrôler à la fois la performance statistique du problème et l’efficacité des
procédures d’optimisation par une seule quantité.

Une seconde partie est dédiée aux problèmes d’apprentissage statistique. Ceux-ci
effectuent une analyse prédictive de données à l’aide d’un large nombre d’exemples.
Une approche générique est présentée pour à la fois résoudre le problème de prédiction
et le simplifier en groupant soit les variables, les exemples ou les tâches. Des méthodes
algorithmiques systématiques sont développées en analysant la géométrie induite par
une partition des données. Une analyse théorique est finalement conduite lorsque les
variables sont groupées par analogie avec les méthodes parcimonieuses.

Mots-clés : Optimisation convexe, Borne d’erreur, Parcimonie, Acuité, Modèles
structurés par partitions des données.

vii

viii

Remerciements

En avril 2014, lors de notre première rencontre, Alexandre, tu me proposais un
"long-shot". Il dura en effet trois ans et ne s’arrêtera pas à cette thèse car d’un goût
prononcé pour les mathématiques, tu as fait naître un véritable désir de recherche.
Ton enthousiasme, ta clarté, ton optimisme et ton humour ont éclairé cette thèse, je
t’en remercie infiniment.

En deuxième année, ma thèse s’intitulait "Apprentissage divers" du nom du projet
sur lequel j’ai eu la chance de travailler avec toi, Francis. Cette diversité s’est traduite
par la variété des sujets que j’ai pu abordé grâce à ta vision s’étendant de la puissante
abstraction à l’application concrète. Ta bienveillance, ta précision, ta présence ont
largement contribué à l’accomplissement de cette thèse, comme elles font de cette
équipe un environnement exceptionnel de recherche, je t’en remercie beaucoup.

En cette fin de thèse, Zaid, tu m’offres la possibilité de poursuivre l’élan que m’ont
offert ces 3 ans. Je t’en remercie et je suis impatient d’entamer de nouveaux travaux
avec toi.

Je tiens à remercier Jérôme Malick et François Glineur d’avoir rapporté ma thèse,
j’espère profiter au mieux de vos commentaires. Je remercie également Francis Bach,
Jérôme Bolte, Zaid Harchaoui d’avoir accepté d’assister à ma soutenance et d’enrichir
ces travaux par de plus amples discussions.

Les collaborations qu’ont amené cette thèse furent source de belles rencontres.
Fajwel, ce fut un plaisir de partager un bureau, ta bonne humeur ainsi que ta vision
pragmatique des problèmes, j’espère que nous aurons l’occasion de nous retrouver
dans le futur. Nicolas, ton humour, ta clarté tant orale qu’écrite, ta gentillesse, furent
l’une des plus belles découvertes de cette thèse et j’espère à nouveau partager quelques
moments avec toi aux Houches par exemple. Je te souhaite la réussite d’une carrière
qui offrira à de nombreux étudiants la supervision d’un directeur de thèse exception-
nel. Damien, travailler avec toi fut l’une des plus grandes sources d’enrichissement, la
spontanéité de tes idées, ton intuition mathématique m’ont autant étonné que rafraî-
chit ma vision des problèmes. Je ne doute pas du succès à venir dans tes travaux et
j’espère toi aussi te recroiser bientôt.

En 7 ans, nous avons partagé couloir, toit, bureau et manteau ; Jean-Baptiste,
tu as toujours été présent tant pour honorer ton surnom, qu’apporter un soutien
inestimable dans les épreuves. J’ai peu de mots pour t’exprimer ma gratitude, merci,
merci beaucoup. J’espère un jour repartir à la conquête d’un sommet en ta compagnie,
je ferais des efforts pour t’attendre cette fois !

Dès ton arrivée en stage, Antoine, j’ai vu une bouille des plus sympathiques qu’il

ix

m’ait été donné de rencontrer. Ta compagnie pendant 2 ans furent une source de joie
et de rire qui ont éclairé cette thèse comme je n’aurais pas imaginé en avoir la chance.
J’espère bien te retrouver un jour, quelque soit le continent, afin de poursuivre l’étude
des bars à chat du monde.

Au-delà des découvertes scientifiques, cette thèse fut l’occasion de rencontres mé-
morables et précieuses. Merci au prédécesseurs, Guillaume, Piotr, Vincent, Sesh, Loïc,
Florent, Rémi, pour leur accueil et leurs conseils avisés, vous étiez l’une des premières
belles découvertes de cette thèse. Merci aux postdocs et permanents, Alessandro,
Adrien, Robert, Fabian, Igor, Pierre, Rélja, Lénaïc, Anton, Pascal, Simon, pour nous
avoir fait partagé leur savoir et leur enthousiasme. Aux compagnons de fortune,
Aymeric, Damien, Nicolas, Théophile, Rémi, Gauthier, Julia, Matthew, Guilhem,
Christophe, Nastia, Maxime, Dmitri, Tatiana, Gül, Vadim, Alexandre ;votre com-
pagnie durant ces trois ans a fait la richesse de cette thèse tant d’un point de vue
scientifique, qu’humoristique ou philosophique. Merci à vous, j’espère bien que nos
chemins se recroiseront. Bonne chance aux nouveaux, Loucas, Raphaël, Thomas K,
Thomas E, Dmitri, Yana, Antoine, Ignacio, c’était un plaisir de passer quelques temps
avec vous, hâte de vous revoir vous aussi.

En cette fin de thèse, j’ai une pensée émue pour Prototo qui n’est jamais passé
à l’âge adulte. Marion, Rémi, Thomas, former équipe avec vous était l’une des
meilleures expériences de ces trois années. Merci pour l’aventure !

La fin de cette thèse marque aussi celle d’une colocation aussi spacieuse, qu’heureuse.
Marion, Marine, Thomas, Anne , merci de m’avoir supporté pendant ces trois ans et
merci pour tous les soirs où nous avons eu l’occasion de partager quelques moments
dans un foyer.

Depuis dix ans j’ai la chance de partager un peu ma vie avec vous, Josselin,
Nathan, Jérémy, Maxime, Nicolas, Lou, Nathan, Aymeric, Éric, Virginie et les autres
merci pour votre soutien et d’avoir la joie de vous connaître !

Á mon parrain Marc, pour son soutien et sa présence tout au long des années.
Á ma grand-mère, Françoise, avec qui j’ai eu la joie de m’exercer à la rédaction. Á
mon grand-père Roger ; je ne saurais encore dire si les mathématiques préexistent à
l’univers mais le plaisir d’y jouer est né en moi grâce à toi. Á mes soeurs, Amélie et
Hélène, pour leur soutien et la joie des moments passés ensemble. Á mon père dont le
regard souriant ne disparaîtra jamais. Á ma mère dont la générosité porte mes pas.

Merci à Damien, Antoine, Thomas, pour les précieuses relectures de ce manuscrit.
Merci aux mêmes personnes ainsi qu’à Loucas et Raphaël pour la préparation finale.
Enfin merci à Maxime et Nathan pour tous les petits trous !

x

Contents

Extended abstract 1

I Convex optimization with error bounds 7

1 Introduction 9
1.1 Convex optimization . 9
1.2 The Łojasiewicz inequality . 18
1.3 Restart schemes . 20
1.4 Interpretation of accelerated algorithm 21

2 Sharpness, Restart and Acceleration 23
2.1 Problem assumptions . 25
2.2 Scheduled restarts for smooth convex problems 27
2.3 Universal scheduled restarts for convex functions 35
2.4 Restart with termination criterion . 38
2.5 Composite problems & Bregman divergences 39
2.6 Numerical results . 42
2.7 Conclusion . 43

Appendix 45
2.A Rounding issues . 45

3 A brief introduction to sparse problems 47
3.1 Original sparse problems . 47
3.2 Optimization procedures . 49
3.3 Generalized sparse structure . 50

4 On computational and statistical performances of sparse recovery
problems 53
4.1 Recovery performance and linear convergent restart scheme for exact

recovery . 56
4.2 A conic view for sparse recovery problems 63
4.3 Generalization to common sparsity inducing norms 71
4.4 Numerical results . 78
4.5 Conclusion . 83

xi

Appendix 87
4.A Practical optimal restart scheme . 87
4.B Remark on sparsity inducing norms 87

II Machine learning problems with partitioning structure 89

5 Introduction 91
5.1 Learning in the data cube . 92
5.2 Partitioning problems . 93
5.3 Optimization on non-convex sets . 95

6 Grouping features for prediction with partitioning constraints 99
6.1 Problem Formulation . 101
6.2 Convex relaxation . 103
6.3 Iterative Hard Clustering . 106
6.4 Recovery performance of Iterative Hard Clustering 108
6.5 Sparse and grouped linear models . 115
6.6 Numerical experiments . 119
6.7 Conclusion . 121

Appendix 123
6.A Geometric interpretation of algebraic tools 123
6.B Norm for grouping features . 123

7 Grouping samples for diverse predictions 127
7.1 Problem Formulation . 128
7.2 Non-convex schemes . 131
7.3 Convex relaxation . 132
7.4 Numerical experiments . 136
7.5 Conclusion . 137

8 Clustered multi-task 139
8.1 Problem Formulation . 140
8.2 Projected gradient descent . 142
8.3 Clustered multitask with squared loss 143
8.4 Numerical experiments . 148
8.5 Conclusion . 148

A Classical algorithms implementation 151
A.1 Universal fast gradient method . 152
A.2 Accelerated gradient method . 152
A.3 Gradient descent method . 153

Bibliography 155

xii

Extended abstract

This thesis studies how optimization procedures can take advantage of the ge-
ometry of a problem around its solutions in a first part and how they can handle
combinatorial structures in a second part. Its outline is the following.

Part 1

The first part analyzes sharpness of functions around their minimizers by so-called
error bounds, first discovered by Łojasiewicz.

Chapter 1: This chapter sets up the framework of optimization studied in the first
part. Starting from a brief introduction to convex optimization, it further presents
Łojasiewicz inequality that guarantees convergence of restart schemes developed in
this part. We also briefly present an interpretation of accelerated algorithms that we
restart.

Chapter 2: This chapter presents restart schemes of classical algorithms for convex
optimization. They provide optimal rates of convergence under generic error bounds
on the minimum of the function. Precisely, we study convex optimization problems
of the form

minimize 𝑓(𝑥)

in variable 𝑥 ∈ R𝑑, where 𝑓 is a convex function.

Problem setting. To tackle both smooth and non-smooth problems, we assume
that there exist 1 ≤ 𝑠 ≤ 2 and 𝐿 > 0 such that

‖∇𝑓(𝑥)−∇𝑓(𝑦)‖ ≤ 𝐿‖𝑥− 𝑦‖𝑠−1, for all 𝑥, 𝑦 ∈ R𝑑, (1)

where ∇𝑓(𝑥) is any sub-gradient of 𝑓 at 𝑥. This encompasses smooth convex opti-
mization for 𝑠 = 2 and classical assumption for non-smooth convex optimization for
𝑠 = 1. The optimal rate of convergence for such functions is bounded as 𝑂(1/𝑁𝜌),
where 𝑁 is the total number of iterations and

𝜌 = 3𝑠/2− 1,

which gives 𝜌 = 2 for smooth functions and 𝜌 = 1/2 for non-smooth functions.

1

Furthermore, we assume that 𝑓 satisfies a Hölderian error bound on a compact 𝐾
that contains the set of minimizers 𝑋* of the problem, that is, there exist 𝑟 ≥ 1, and
𝜇 > 0 such that

𝜇𝑑(𝑥,𝑋*)𝑟 ≤ 𝑓(𝑥)− 𝑓 * for all 𝑥 ∈ 𝐾 (2)

where 𝑓 * is the minimum of 𝑓 and 𝑑(𝑥,𝑋*) is the distance from 𝑥 to 𝑋*, the set
of minimizers of the problem. This encompasses sharp functions for 𝑟 = 1, strongly
convex functions for 𝑟 = 2 and it is known to be satisfied for a broad class of functions
as the Łojasiewicz inequality.

The smoothness assumption (1) defines an upper bound on the function. Com-
bined with the previous lower bound, we observe that necessary 𝑠 ≤ 𝑟. The conver-
gence rate of our restart schemes will then depend on the following condition number,
based on exponents 𝑠 ad 𝑟,

𝜏 = 1− 𝑠/𝑟 ∈ [0, 1[.

Optimal restart schemes. Under these assumptions, we restart classical al-
gorithms for convex optimization, namely Nesterov’s accelerated algorithm if the
function is smooth (𝑠 = 2) or a fast universal gradient algorithm for general con-
vex functions satisfying equation (1). Precisely, we run these algorithms until some
number of iterations scheduled in advance, stop them and restart them from the last
iterate. If all parameters of the function are known, we retrieve optimal rates of
convergence for the class of functions satisfying our hypotheses, i.e., the precision
reached at the last point �̂� is upper bounded as

𝑓(�̂�)− 𝑓 * = 𝑂
(︁

exp(−𝜅− 𝑠
2𝜌𝑁)

)︁
, when 𝜏 = 0,

while,

𝑓(�̂�)− 𝑓 * = 𝑂
(︁
𝜅

𝑠
2𝜏𝑁− 𝜌

𝜏

)︁
, when 𝜏 > 0,

where 𝑁 is the total number of iterations and 𝜅 is a generalized condition number
that matches the classical one for smooth and strongly convex functions. The error
bound assumption, incorporated in the parameter 𝜏 , therefore results in faster rates
than the ones obtained with only the smoothness hypothesis. Our proof is simple and
the use of universal gradient algorithms enables to cover the non-smooth case.

Adaptive restart schemes. We then develop an adaptive restart scheme if the
function is smooth (𝑠 = 2) and if the parameters 𝜇, 𝑟 of the error bound (2) are
unknown. Namely, for a fixed budget of iterations, a log-scale grid-search on param-
eters 𝜇, 𝑟 is proven to be nearly optimal up to an additional cost of log(𝑁). We
also develop restart schemes using a stopping criterion based on the gap 𝑓(𝑥) − 𝑓 *,
when the optimal value 𝑓 * is known in advance. These methods do not need any
parameters of the function and are proven to be optimal.

Extensions. Finally, we extend our results for composite problems in non-
Euclidean settings. This enables to treat constrained or ℓ1 regularized problems for
which our restarts are shown empirically to outperform plain implementations of

2

accelerated algorithms.

Chapter 3: This chapter presents sparse problems that originally attempt to decode
a vector with few non-zero coordinates given some linear observations of it. Dedicated
optimization procedures and recovery problems of group sparse vectors or low rank
matrices are discussed.

Chapter 4: This chapter studies how optimization complexity and recovery perfor-
mance of sparse problems are related. Namely, we study recovery problems of a sparse
vector 𝑥* ∈ R𝑛 given 𝑝 linear observations 𝑏𝑖 ≈ 𝑎𝑇𝑖 𝑥

* for 𝑖 = 1, . . . , 𝑛. If observations
are exact, 𝑥* is decoded by the exact recovery problem

minimize ‖𝑥‖1
subject to 𝐴𝑥 = 𝑏.

(3)

in 𝑥 ∈ R𝑛. Otherwise, the robust recovery problems reads

minimize ‖𝑥‖1
subject to ‖𝐴𝑥− 𝑏‖2 ≤ 𝜖,

(4)

in 𝑥 ∈ R𝑛, where 𝜖 is a tolerance on the noise in the observations. The perfor-
mance of these decoding procedures to recover 𝑥* has been extensively studied in the
compressed sensing literature, either to know how many observations are needed to
retrieve 𝑥* in the exact case or how sensitive is the robust problem to noise. Here, we
relate these statistical measures of performance to the computational complexities of
these problems.

Exact recovery. For problem (3), we show that recovery of 𝑥* is equivalent to
the sharpness of the problem around its minimizers, which reads

𝛾‖𝑥− 𝑥*‖1 < ‖𝑥‖1 − ‖𝑥*‖1, for all 𝑥 s.t. 𝐴𝑥 = 𝑏

where 0 ≤ 𝛾 < 1. We develop then linearly convergent restart schemes of the smooth-
ing technique of Nesterov, whose rate is controlled by the sharpness constant 𝛾. A
statistical analysis reveals that 𝛾 is then controlled by the recovery threshold of the
problem, i.e., the maximal sparsity level of 𝑥* such that it can be recovered. Over-
all, this shows that the more performing the decoding procedure is, the easier the
decoding problem is.

Robust recovery. The sensitivity to noise of the robust recovery problem is well-
known to be measured by conically restricted singular values of the coding matrix 𝐴.
We show that these latter control the sharpness of the exact recovery problem, hence
linear rate of our restart scheme, but also the complexity of oracle based techniques
such as the ellipsoid method. Overall, we identify a single quantity that controls both
the recovery performance and the computational complexity of decoding procedures.
This is then further illustrated by numerical experiments.

3

Generalized sparse structure. Our analysis is extended to generalized recovery
problems of either group sparse vectors or low rank matrices. We identify same
sharpness property of the corresponding decoding objective. We then highlight their
conic nature and define appropriate conically restricted singular values to generalize
our results.

Part 2

This part studies machine learning procedures that simultaneously solve a prediction
problem and simplify it by grouping either features, samples or tasks. The approach
mixes classical empirical loss minimization procedures and partitioning problems. The
resulting models are non-convex but we provide systematic algorithmic strategies,
whose performances are illustrated on either real or synthetic data.

Chapter 5: This chapter introduces supervised machine learning problems and the
interest of grouping features, samples or tasks in the context of big data. A general
overview of the approach is presented, followed by key tools for partitions or non-
convex optimization problems.

Chapter 6: This chapter studies the problem of grouping features while solving a
prediction task like regression or classification. The task is formulated as a classical
loss minimization problem with additional partitioning constraints on the features,
that reads, for regression,

minimize 𝐿(𝑤) +𝑅(𝑤)
subject to 𝑤 = 𝑍𝑣, 𝑍 ∈ {0, 1}𝑑×𝑄, 𝑍1 = 1

(5)

in variables 𝑤, 𝑣 ∈ R𝑑 and 𝑍, where 𝐿 and 𝑅 are respectively the empirical loss and
the regularization of the prediction problem and 𝑍 ∈ {0, 1}𝑑×𝑄 is the assignment
matrix of the features in 𝑄 groups, within each all features share a same weight given
in the vector 𝑣.

Optimization strategies. For the squared loss, analytic minimization in variables
𝑤 and 𝑣 enables to isolate the partitioning problem in terms of normalized equivalence
matrices of partitions that encode if pairs of points belong to the same group. A
convex relaxation on the convex hull of the set of normalized equivalence matrices
can then be performed by Frank-Wolfe algorithm, whose linear minimization oracle
amounts to a k-means problem that can be solved exactly for regression.

Although feasible set of (5) is non-convex, projection on it amounts to a k-means
problem that can once again be solved exactly for regression. A projected gradient
descent scheme can then be applied, which offers a scalable algorithmic approach for
any loss.

Theoretical analysis. The feasible set of (5) is a union of subspaces defined by
partitions. The projected gradient scheme can therefore be analyzed by analogy with
the Iterative Hard Thresholding algorithm used for sparse problems. Its convergence

4

depends on a restricted isometric property of the problem along the subspaces defined
by partitions. While for sparsity problem this condition is satisfied for a number of
samples that is only a fraction of the number of features, the problem of grouping
features requires as many samples as features to ensure convergence. The underly-
ing combinatorial problem appears too complex to be solved with few samples by a
projected gradient scheme.

Extension to sparse and grouped vectors. Finally a projected gradient scheme to
both select and group variables is presented which enjoys the theoretical guarantees of
sparse problems while highly reducing the dimensionality of the problem by grouping
features.

Chapter 7: This chapter studies the problem of grouping samples while solving a
prediction task. It can either be seen as a supervised clustering task or a prediction
problem allowed to output diverse predictions. As for features, the problem is formu-
lated as a supervised learning problem constrained by partitions on the data. Same
strategies are used to solve it: a convex relaxation using Frank-Wolfe and a projected
gradient scheme, both requiring the solution of a k-means problem to perform an
iterative resolution of the problem.

Chapter 8: This chapter studies the problem of grouping tasks for classification.
The underlying partitioning problem is isolated, which enables the development of a
projected gradient scheme for general losses. In the special case of a squared loss, we
show that the problem reduces to a k-means problem.

References

The publications related to this manuscript are listed below:
a) Interpretation of Accelerated algorithm in Chapter 1, Section 1.4 is based on

the article: Integration Methods and Accelerated Optimization Algorithms, D.
Scieur, V. Roulet, F. Bach and A. d’Aspremont to appear in Advances in Neural
Information Processing Systems 30 (NIPS 2017).

b) Chapter 2 is based on the article: Sharpness, Restart and Acceleration, V.
Roulet and A. d’Aspremont, to appear in Advances in Neural Information Pro-
cessing Systems 30 (NIPS 2017).

c) Chapter 4 is based on the article: Computational Complexity versus Statisti-
cal Performance on Sparse Recovery Problems, V. Roulet, N. Boumal and A.
d’Aspremont, under submission to Information and Inference: A Journal of the
IMA.

d) Chapters 6, 7, 8 are based on the article: Supervised Learning in the Data
Cube, V. Roulet, F. Fogel, F. Bach and A. d’Aspremont, presented at workshop
Transfer and Multi-Task Learning: Trends and New Perspectives (NIPS 2015)
and the preprint: Learning with Clustering Penalties, V. Roulet, F. Fogel, F.
Bach and A. d’Aspremont, ArXiv 1506.04908

5

e) Chapter 6 is also based on the article: Iterative Hard Clustering of Features, V.
Roulet, F. Fogel, F. Bach and A. d’Aspremont, under submission to the 21st In-
ternational Conference on Artificial Intelligence and Statistics (AISTATS 2018)

6

Part I

Convex optimization with error
bounds

7

8

Chapter 1

Introduction

Optimization problems consist in finding extremal values of functions, such as the
minimal cost of a task, and take the general form

minimize 𝑓(𝑥) (1.1)

in variable 𝑥 ∈ R𝑑, where 𝑓 , the objective function, has at least one minimizer.
Analytical solutions of such problems are generally not available. Iterative algorithmic
procedures are therefore developed to get an approximate solution �̂� of (1.1). The
precision achieved by a method is measured by the gap 𝑓(�̂�)−𝑓 * between the estimate
solution 𝑓(�̂�) and the true solution 𝑓 * = min𝑥 𝑓(𝑥). The complexity of an algorithm
to solve (1.1) is then defined as the number of iterations needed to achieve an accuracy
𝜀.

Development of algorithms to solve the optimization problem depend on the in-
formation available at each iteration. Throughout this thesis we are interested in first
order algorithms that have access to gradient (or sub-gradients defined below) ∇𝑓(𝑥)
of the function at any querying point 𝑥 ∈ dom 𝑓 . When dimension 𝑑 is large, their
cheap iteration cost makes them more appropriate than second order methods that
require to compute the Hessian of the function.

Assumptions on the function can then be exploited to build appropriate methods.
In this introduction we recall how convexity and smoothness were used to develop
efficient algorithms. We then present Łojasiewicz inequality that merely describes
the behavior of the objective function around its minimizers and show how it can
be exploited by restart schemes. Finally, we briefly present how accelerated gradient
algorithms for convex functions can be interpreted as discretization methods of the
gradient flow.

1.1 Convex optimization
Convexity has quickly raised the attention of researchers as a key property that

enables efficient resolution of optimization problems. Several books [Boyd and Van-
denberghe, 2004; Bertsekas, 1999; Borwein and Lewis, 2010; Nocedal and Wright,
1999; Nesterov, 2013b] provide exhaustive presentation of the subject. Here we briefly

9

present the key assumptions and classical algorithms to highlight the interest of char-
acterizing the geometry of the problem around its minimizers.

1.1.1 Convexity

We first recall elementary definitions. A convex set, as defined below, is a set that
contains any segment of its points.

Definition 1.1.1. Convex sets A set 𝑄 in R𝑑 is convex if for any 𝑥, 𝑦 ∈ 𝑄 and
𝜃 ∈ [0, 1],

𝜃𝑥+ (1− 𝜃)𝑦 ∈ 𝑄.

Convexity of a function 𝑓 can then be defined by the convexity of its epigraph
ℰ(𝑓) = {(𝑥, 𝑡) ∈ R𝑑 × R : 𝑓(𝑥) ≤ 𝑡}[Rockafellar, 2015] or equivalently as follows.

Definition 1.1.2. Convex functions 0th order A function 𝑓 is convex if its domain
is convex and if for any 𝑥, 𝑦 ∈ dom 𝑓 and 𝜃 ∈ [0, 1],

𝑓(𝜃𝑥+ (1− 𝜃)𝑦) ≤ 𝜃𝑓(𝑥) + (1− 𝜃)𝑓(𝑦).

If the function is in addition differentiable, then it is convex if it is lower bounded
at any point in its domain by its linear approximation. It is detailed in following
equivalent definition.

Definition 1.1.3. Convex functions 1st order A differentiable function 𝑓 is con-
vex if its domain is convex and if for any 𝑥 ∈ dom 𝑓

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩, for every 𝑦 ∈ dom 𝑓.

This property is generalized for non-differentiable convex functions through the
notion of sub-gradients defined below.

Definition 1.1.4. Sub-gradient Let 𝑓 be a convex function. A vector 𝑔 is called the
sub-gradient of 𝑓 at point 𝑥 ∈ dom 𝑓 if

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨𝑔, 𝑦 − 𝑥⟩, for every 𝑦 ∈ dom 𝑓.

Closed 1 convex functions have a sub-gradient at any point in the interior of their
domain [Nesterov, 2013b]. In the following, we denote ∇𝑓(𝑥) any sub-gradient of a
closed convex function 𝑓 at a given point 𝑥. Convexity offers a simple certificate of
optimality : if 𝑥 ∈ R𝑑 possesses a null (sub)gradient ∇𝑓(𝑥) = 0 then it is a global
minimizer. While convexity offers affine lower bounds at each point, quadratic lower
bounds can be obtained through the notion of strong convexity as detailed in next
section.

1. A function is closed if its epigraph is closed, or equivalently if it is lower-semi-continuous

10

1.1.2 Strong convexity

We first recall general definition of strong convexity.

Definition 1.1.5. Strong convexity 0th order A function 𝑓 is strongly convex if
its domain is convex and if there exists 𝜇 ≥ 0 such that for any points 𝑥, 𝑦 ∈ dom 𝑓
and 𝜃 ∈ [0, 1],

𝑓(𝜃𝑥+ (1− 𝜃)𝑦) ≤ 𝜃𝑓(𝑥) + (1− 𝜃)𝑓(𝑦)− 𝜃(1− 𝜃)𝜇
2
‖𝑥− 𝑦‖22

It follows that strong convexity implies convexity. Besides when the function is
differentiable, following equivalent definition details lower bound induced by strong
convexity.

Definition 1.1.6. Strong convexity 1st order A differentiable function 𝑓 is strongly
convex if its domain is convex and if there exists 𝜇 ≥ 0 such that for any points
𝑥 ∈ dom 𝑓 ,

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+
𝜇

2
‖𝑥− 𝑦‖22, for every 𝑦 ∈ dom 𝑓.

In general closed convex functions can also be lower bounded by quadratics in the
interior of their domain, several lower bounds may exist at one point defined by the
different sub-gradients of the function. Strong convexity can be refined to analyze
monomial lower bounds on the function through the notion of uniform convexity. We
simply give its definition for differentiable functions to highlight the resulting lower
bound and refer to e.g. Juditski and Nesterov [2014]; Bauschke and Combettes [2011]
for further details.

Definition 1.1.7. Uniform convexity A differentiable function 𝑓 is uniformly con-
vex if its domain is convex and if there exists 𝑟 ≥ 2, 𝜇 ≥ 0 such that for any points
𝑥 ∈ dom 𝑓 ,

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+
𝜇

2
‖𝑥− 𝑦‖𝑟2, for every 𝑦 ∈ dom 𝑓.

As it will be shown in Section 1.1.4, strong convexity or uniform convexity en-
ables much more efficient resolution of optimization problems than plain convexity.
However it is a strong assumption as it requires quadratic lower bounds at any point
and any direction. We present in Section 1.2, how it can be relaxed by much weaker
assumption on the function while still getting fast rates of convergence.

1.1.3 Smoothness

A standard way to design algorithms for (1.1) is to minimize an upper bound
on the objective function 𝑓 at each iteration. These can be derived from its Taylor

11

expansion at a point 𝑥 ∈ dom 𝑓 that reads for a differentiable function 𝑓 ,

𝑓(𝑦) = 𝑓(𝑥) +

∫︁ 1

0

⟨∇𝑓(𝑥+ 𝜏(𝑦 − 𝑥)), 𝑦 − 𝑥⟩𝑑𝜏

= 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+

∫︁ 1

0

⟨∇𝑓(𝑥+ 𝜏(𝑦 − 𝑥))−∇𝑓(𝑥), 𝑦 − 𝑥⟩𝑑𝜏

Bounds on the gradient lead then to upper bounds on the function. In this section
we use Euclidean norm to define smoothness, refined assumptions are presented in
Section 1.1.6.

Smooth functions

The most common assumption for differentiable function is that their gradient is
Lipschitz continuous as defined below.

Definition 1.1.8. Smooth functions A differentiable function 𝑓 is smooth if there
exists 𝐿 > 0 such that

‖∇𝑓(𝑥)−∇𝑓(𝑦)‖2 ≤ 𝐿‖𝑥− 𝑦‖2, for every 𝑥, 𝑦 ∈ dom 𝑓.

At a given point 𝑥 ∈ dom 𝑓 , using the Taylor expansion of 𝑓 , smoothness implies

𝑓(𝑦) ≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+
𝐿

2
‖𝑥− 𝑦‖22, for every 𝑦 ∈ dom 𝑓.

Denoting 𝑥+ = 𝑥− 1
𝐿
∇𝑓(𝑥) the minimizer of this upper bound, we get

𝑓(𝑥+)− 𝑓(𝑥) ≤ − 1

2𝐿
‖∇𝑓(𝑥)‖22,

that ensures decreasing of the objective if the current point is not a stationary point
(∇𝑓(𝑥) = 0). This is then used to derive convergence rates of the gradient descent
for convex functions [Nesterov, 2013b] or gradient dominated functions [Karimi et al.,
2016].

Non-smooth functions

If the function is not differentiable, Taylor expansions cannot be used. However, if
the function is closed convex, bound on its sub-gradients still offer local upper bounds
on the function. To this end we make the following assumption.

Assumption 1.1.9. Non-smooth functions For a non-differentiable closed convex
function 𝑓 , there exists 𝐿 > 0 such that

‖∇𝑓(𝑥)‖2 ≤
𝐿

2
, for every 𝑥 ∈ dom 𝑓,

where ∇𝑓(𝑥) is any sub-gradient of 𝑓 at 𝑥.

12

At a given point 𝑥 ∈ dom 𝑓 , with a given sub-gradient ∇𝑓(𝑥), this ensures

𝑓(𝑦) ≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+ 𝐿‖𝑥− 𝑦‖2, for every 𝑦 ∈ dom 𝑓.

Minimization of this upper bound may not be tractable but approximate minimiza-
tions can exist [Devolder et al., 2014; Nesterov, 2015]. Notice that non-smooth convex
optimization methods such as sub-gradient [Nesterov, 2013b], dual averaging [Nes-
terov, 2009], double dual averaging [Nesterov and Shikhman, 2015], generally rely
cutting planes arguments. Here we focus on upper bounds to derive generic bounds
that encompass both smooth and non-smooth cases.

Hölder-smooth functions

Smoothness of a differentiable function 𝑓 can be refined by considering Hölder
Lipschitzity of its gradient. While difficult to observe, it allows a common treatment
of the smooth and non-smooth cases by the following definition.

Definition 1.1.10. Hölder smooth functions A closed convex function 𝑓 is Hölder
smooth if there exist 1 ≤ 𝑠 ≤ 2, 𝐿 > 0 such that

‖∇𝑓(𝑥)−∇𝑓(𝑦)‖2 ≤ 𝐿‖𝑥− 𝑦‖𝑠−1
2 , for every 𝑥, 𝑦 ∈ dom 𝑓,

where ∇𝑓(𝑥),∇𝑓(𝑦) are any sub-gradient of 𝑓 at respectively 𝑥 and 𝑦.

Notice that if 𝑠 > 1, the function is necessarily differentiable, since the set of
sub-gradients at any point is then reduced to a singleton. If 𝑠 = 2, we retrieve
the definition of smooth functions, if 𝑠 = 1 the assumption on non-smooth convex
functions and for general 1 ≤ 𝑠 ≤ 2 we get a refined upper bound on the function at
a given point 𝑥 ∈ dom 𝑓 that reads

𝑓(𝑦) ≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+
𝐿

𝑠
‖𝑥− 𝑦‖𝑠2, for every 𝑦 ∈ 𝑄. (1.2)

Even though exact minimization of such upper bounds might not be tractable, ap-
proximate minimizations [Devolder et al., 2014; Nesterov, 2015] are possible and lead
to universal gradient methods presented in next section.

1.1.4 Classical algorithms for convex optimization

In this section we present classical algorithms to solve unconstrained convex op-
timization problems that read

minimize 𝑓(𝑥) (1.3)

in variable 𝑥 ∈ R𝑑, where 𝑓 is a closed convex function. We detail their complexity
depending on additional assumptions on the function such as smoothness or strong
convexity. For each class of problems, Nemirovskii and Yudin [1983] computed the
least number of iterations an algorithm must build to achieve a given precision for any
function in the class. These define lower complexity bounds of convex optimization

13

problems. Algorithms that achieve these lower complexity bounds are then called
optimal.

In the following we denote 𝑥0 the starting point of the algorithms and 𝑑(𝑥0, 𝑋
*) =

min𝑦∈𝑋* ‖𝑥0 − 𝑦‖2 the Euclidean distance between the starting point 𝑥0 and the
set of solutions 𝑋* = argmin𝑦∈𝑄 𝑓(𝑦). Detailed implementations for general convex
problems are presented in Appendix A.

Gradient descent

Gradient descent dates back from Cauchy [1847]. It simply moves along the oppo-
site direction of the gradient at each iteration to progressively decrease the objective
values as

𝑥𝑡+1 = 𝑥𝑡 − ℎ𝑡∇𝑓(𝑥𝑡),

where 𝑥𝑡 is the current iterate, 𝑥𝑡+1 is the next iterate and ℎ𝑡 is the step size. Several
choices exist for the step-size depending on the assumptions made on the function.

∙ Smooth convex functions If the function 𝑓 is 𝐿-smooth, a constant step-size
ℎ𝑡 = 1

𝐿
ensures convergence. Gradient descent outputs then after 𝑡 iterations a point

�̂� that satisfies
𝑓(�̂�)− 𝑓 * ≤ 𝐿

𝑡
𝑑(𝑥0, 𝑋

*)2

If 𝐿 is not known in advance, a backtracking line-search as presented by Nesterov
[2013a] estimates it on the fly to get the same rate with an additional log factor cost.

∙ Smooth strongly convex functions If the function 𝑓 is 𝐿-smooth and 𝜇-
strongly convex, constant step size still ensures convergence, however a bigger step-size
can be used, namely ℎ𝑡 = 2

𝜇+𝐿
. Gradient descent shows then linear convergence, it

outputs after 𝑡 iterations a point �̂� that satisfies

𝑓(�̂�)− 𝑓 * ≤
(︂

1− 𝜇/𝐿
1 + 𝜇/𝐿

)︂𝑡

(𝑓(𝑥0)− 𝑓 *).

Notice that if 𝜇 is not known in advance, constant step size ℎ𝑡 = 1
𝐿

still ensures linear
convergence as

𝑓(�̂�)− 𝑓 * ≤
(︁

1− 𝜇

𝐿

)︁𝑡
(𝑓(𝑥0)− 𝑓 *).

Although worse than previous one, this complexity bound illustrates that gradient
descent adapts to the assumptions on the problem. If the function is strongly convex
it automatically shows linear rate. In fact the function only needs to satisfy gradient
dominated property presented later to get linear rate. However since gradient descent
is not optimal, more elaborate schemes can get better linear rates.

∙ Non-smooth settings We briefly discuss classical algorithms for non-smooth
optimization. They can be tackled by universal gradient algorithms or restart schemes

14

presented later. If the function is non-smooth, sub-gradients can be used instead of
gradients leading e.g. to sub-gradient methods [Nesterov, 2013b], dual averaging
method [Nesterov, 2009] or double dual averaging methods [Nesterov and Shikhman,
2015], unified recently by Ito and Fukuda [2016]. They all output after 𝑡 iterations a
point 𝑡 that satisfies the optimal rate for this class of function, i.e.

𝑓(�̂�)− 𝑓 * = 𝑂(1/𝑡1/2).

However they all need to know in advance an additional parameter such as a bound
𝑅 ≥ 𝑑(𝑥0, 𝑋

*) on the distance to the set of minimizers, which can be simply the size
of the constrained set for constrained optimization presented later.

If the function is non-smooth but strongly convex, sub-gradient methods as pre-
sented e.g. by Lacoste-Julien et al. [2012] can achieve after 𝑡 iterations the optimal
rate in this case, i.e.

𝑓(�̂�)− 𝑓 * = 𝑂(1/𝑡).

Accelerated gradient descent

∙ Smooth convex functions In his seminal work Nesterov [1983] developed an
accelerated scheme for the optimization of 𝐿−smooth convex functions 𝑓 . It was
originally motivated by the construction of a lower bound on the function using its
convexity. It has been revisited several times by the author himself [Nesterov, 2013a,
2005, 2015] or by others [Tseng, 2008] to cite a few. Overall, even if implementation
may vary among the authors, accelerated gradient algorithm outputs after 𝑡 iterations
a point �̂� that satisfies

𝑓(�̂�)− 𝑓 * ≤ 4𝐿

𝑡2
𝑑(𝑥0, 𝑋

*)2

It achieves then optimal rate of convergence for the class of smooth convex functions
Here again the smoothness constant 𝐿 can be estimated on the fly [Nesterov, 2013a],
such that the algorithm does not need to know any parameter of the function to be
run.

∙ Smooth strongly convex functions Nesterov [2013b] presented also acceler-
ation algorithms for 𝐿-smooth 𝜇-strongly convex functions 𝑓 , which outputs after 𝑡
iterations a point �̂� that satisfies the optimal rate of convergence, precisely

𝑓(�̂�)− 𝑓 * ≤
(︂

1−
√︂
𝜇

𝐿

)︂𝑡

(𝑓(𝑥0)− 𝑓 *).

As ratio 𝜇/𝐿 is often small, getting a
√︀
𝜇/𝐿 rate has important impact on the con-

vergence. However while gradient descent automatically adapts to strong convexity,
implementation of the accelerated algorithm varies considerably for strongly convex
functions. Strong convexity parameter 𝜇 can be estimated by doing outer loops of
the algorithm as mentioned by Nesterov [2013a] and further developed by Fercoq and
Qu [2017].

15

Notice that for quadratic functions defined by positive definite matrices, accel-
erated algorithm of Nesterov [2013b] is not exactly optimal. Conjugate gradients
[Hestenes and Stiefel, 1952] or Heavy ball method [Polyak, 1964] achieve a slightly
better rate. However these are not proven to converge for general smooth and strongly
convex functions [Lessard et al., 2016].

Universal gradient methods

Hölder smoothness was first tackled by Nemirovskii and Nesterov [1985] when
parameters 𝑠 and 𝐿 of the function were known. Recently Nesterov [2015] presented
universal methods able to get optimal rates on this class of function without knowing
parameters 𝑠 and 𝐿 in advance but only the desired target precision. A so-called
universal gradient method was developed that simply approximates the minimization
of the upper bound (1.2). An accelerated version incorporates then the convexity
assumption similarly as in the classical smooth case. For a Hölder smooth function
with parameters (𝑠, 𝐿) and required accuracy 𝜀, it starts from a feasible point 𝑥0 and
outputs after 𝑡 iterations a point �̂� that satisfies

𝑓(𝑥)− 𝑓 * ≤ 𝜀

2
+
𝑐𝑠𝐿

2
𝑠𝑑(𝑥0, 𝑋

*)

𝜀
2
𝑠 𝑡

3𝑠−2
𝑠

𝜀

2
,

where 𝑐𝑠 = 24−2/𝑠. If the smoothness parameters 𝑠, 𝐿 are known, target accuracy 𝜀
can be optimized which leads to optimal rates for the class of Hölder smooth convex
functions [Nemirovskii and Nesterov, 1985], i.e. after 𝑡 iterations,

𝑓(𝑥)− 𝑓 * ≤ 𝑂(1/𝑡3𝑠/2−1).

In particular if the function is smooth (𝑠 = 2) optimal target accuracy is 𝜀 = 0 and we
retrieve optimal rate for smooth convex functions 𝑂(1/𝑡2). For non-smooth functions
with bounded sub-gradients, we also get the optimal rate 𝑂(1/𝑡1/2).

Other algorithms

Although not studied here, quasi-Newton methods such as BFGS Broyden [1970];
Fletcher [1970]; Goldfarb [1970]; Shanno [1970] that approximate the Hessian along
the iterations show fast numerical convergence. Their theoretical analysis is however
more complex. Recently Scieur et al. [2016] proposed also regularized polynomial
extrapolation methods that shows good numerical performance. Finally non-smooth
uniform convex functions were tackled by restart schemes by Juditski and Nesterov
[2014] that lead to optimal rate.

1.1.5 Constrained and composite problems

Previous problems were presented for convex unconstrained problems of the form (1.3)
for sake of clarity. We detail here how constrained or regularized problems are treated.

16

Constrained convex optimization problems read

minimize 𝑓(𝑥)
subject to 𝑥 ∈ 𝑄, (1.4)

in variable 𝑥 ∈ R𝑑, where 𝑓 is closed convex and 𝑄 ⊂ R𝑑 2, that encodes constraints
on variables, is a closed convex set. For such problems we assume that we can
compute feasible points for problem (1.1) from any 𝑥 ∈ R𝑑. This generally amounts
to have access to the Euclidean projection on 𝑄 but refined assumptions exist such
as linear minimization [Frank and Wolfe, 1956; Jaggi, 2013] or proximal operation on
the set for mirror gradient descent algorithms [Beck and Teboulle, 2003]. Additional
assumptions on the function such as smoothness or strong convexity presented in
Sections 1.1.3 and 1.1.2 need only to be valid on the set of constraints. Parameters
𝐿 and 𝜇 of these assumptions can then be much better when restricted to the set 𝑄.
Algorithms can then take advantage of the specific geometry of the function on the
set as presented by d’Aspremont et al. [2013].

Constrained convex optimization problems belong to the more general class of
composite problems that read

minimize 𝑓(𝑥) + 𝑔(𝑥) (1.5)

in variable 𝑥 ∈ R𝑑, where 𝑓 is closed convex and 𝑔 is a "simple" convex function in
the sense that its proximal operator

prox𝛾
𝑔(𝑥) = argmin

𝑦∈R𝑑

𝑔(𝑦) +
𝛾

2
‖𝑥− 𝑦‖22

can be solved at a cheap computational cost for any 𝑥 ∈ R𝑑 and 𝛾 ≥ 0. Constrained
problems can be cast as composite problems by taking 𝑔 the indicator function of the
set𝑄 whose proximal operator is the Euclidean projection on𝑄. But this encompasses
also least squares problems regularized by sparsity inducing norms [Bach et al., 2012],
such as the ℓ1 norm.

Algorithms presented in Section 1.1.4 can be adapted to incorporate the “simple"
function 𝑔 [Nesterov, 2013a; Beck and Teboulle, 2009; Tseng, 2008]. They achieve
same rates of convergence for the classes of functions that 𝑓 belongs to. However,
as already mentioned, parameters of these assumptions can considerably change. In
other words constraining or regularizing the problem may make the problem easier.

1.1.6 Beyond Euclidean geometry

We defined in Sections 1.1.3 and 1.1.2 with respect to the Euclidean norm. How-
ever, in some cases, different norms are more appropriate to describe the function on
a constrained set 𝑄. To handle them, Bregman divergences of strongly convex func-
tions are used as surrogates of the norm of interest (see e.g. Beck and Teboulle [2003]

2. Without loss of generality we assume 𝑄 ⊂ dom 𝑓

17

for a detailed presentation). This leads to the family of mirror gradient [Nemirovskii
and Yudin, 1983] or accelerated mirror gradient descents [Krichene et al., 2015] and
can been incorporated in numerous algorithms such dual averaging [Nesterov, 2009]
or universal gradient algorithms [Nesterov, 2015].

Recently Lu et al. [2016]; Bauschke et al. [2016] introduced smoothness and strong
convexity with respect to another convex function that refines even more the descrip-
tion of convex functions.

1.2 The Łojasiewicz inequality

1.2.1 Definitions

In his pioneering work, Łojasiewicz [1958, 1961, 1965] proved two inequalities
on semi-algebraic functions. The first one lower bounds the function values by the
distance to the set of minimizers. We give a simple definition that will be used in
Chapter 2.

Definition 1.2.1. Łojasiewicz error bound inequality A lower bounded continu-
ous function 𝑓 on R𝑑 with non-empty set of minimizers 𝑋* satisfies the Łojasiewicz
error bound inequality on a set 𝐾 ⊃ 𝑋* if there exists 𝜇 > 0, 𝑟 ≥ 1 such that

𝜇𝑑(𝑥,𝑋*)𝑟 ≤ 𝑓(𝑥)− 𝑓 *, for every 𝑥 ∈ 𝐾, (1.6)

where 𝑓 * = min𝑥∈R𝑑 𝑓(𝑥) and 𝑑(𝑥,𝑋*) = min𝑦∈𝑋* ‖𝑥− 𝑦‖2 is the Euclidean distance
between 𝑥 and the set of minimizers of 𝑓 .

The first result on error bounds dates back from Hoffman [1952] who analyzed
systems of linear inequalities. It was then studied for convex functions by Robinson
[1975]; Mangasarian [1985]; Auslender and Crouzeix [1988]. Łojasiewicz [1958, 1961,
1965] extended these results. As it merely describes function in the neighborhood of
its minimizers, Łojasiewicz error bound is generally satisfied. Its proof for general sub-
analytic functions can be found for example in Bierstone and Milman [1988, Theorem
6.4] using topological arguments. Error bounds have been more generally expressed
using residual function of the set of minimizers, see e.g. Pang [1997] for a review.
Quantitative results were developed by Luo and Luo [1994]; Luo and Pang [1994];
Luo and Sturm [2000]; Dedieu [1992] and recently further analyzed by Li [2013]; Li,
Mordukhovich and Pham [2015]; Li, Mordukhovich, Nghia and Pham [2015]; Beck
and Shtern [2015]; Vui [2013].

Although Łojasiewicz inequality is widely applicable, pathological behavior ap-
pears when the function is extremely flat or present wild oscillations around their
minimizers such as 𝑓(𝑥) = exp(−1/𝑥2) or 𝑓(𝑥) = sin(1/𝑥) exp(−1/𝑥2) extended by
continuity on 0. In the presented definition, the larger is 𝑟, the flatter is the function
around its minimizers and so the worse it is conditioned as presented in Chapter 2.
Notice finally that Łojasiewicz error bound inequality is a local assumption that may
not generalize to the whole domain of 𝑓 . Yet, if this property is valid on an open set

18

𝐾 ⊃ 𝑋*, it will also be valid on any compact set 𝐾 ′ ⊃ 𝐾 with the same exponent 𝑟
but with a potentially lower constant 𝜇.

The second Łojasiewicz inequality upper bounds gradient magnitude by function
values. Again, we give a simple definition that can be generalized.

Definition 1.2.2. Łojasiewicz gradient inequality A differentiable function 𝑓
satisfies Łojasiewicz gradient inequality in the neighborhood 𝐾 of a critical point 𝑥*,
if there exists 𝑐 > 0 and 𝜃 ∈ [0, 1[such that

𝑐‖∇𝑓(𝑥)‖𝜃2 ≥ 𝑓(𝑥)− 𝑓(𝑥*), for every 𝑥 ∈ 𝐾. (1.7)

First discovered by Łojasiewicz for analytic functions, above gradient inequality
was generalized by Kurdyka [1998] for semi-algebraic functions by introducing desin-
gularizing functions. It has recently been generalized to the non-smooth case by Bolte
et al. [2007].

1.2.2 Variants of strong convexity

As strong convexity appears too restrictive for many problems, it was relaxed
in several manners using the definitions of essential strong convexity, weak strong
convexity or restricted secant inequality [Karimi et al., 2016; Necoara et al., 2015;
Liu and Wright, 2015; Zhang, 2017]. Among these assumptions, the quadratic error
bound ((1.6) with 𝑟 = 2) is proven to be the weakest [Karimi et al., 2016].

More generally uniform convexity with parameter 𝑟 can easily be seen to satisfy
Łojasiewicz error bound with some exponent by looking at its first order definition.
By allowing exponent 𝑟 to vary, Łojasiewicz error bound can also describes sharp
functions (𝑟 = 1) studied for example by Gilpin et al. [2012]. Combined with Hölder
smoothness, these offer a generic description of convex problems.

1.2.3 Applications

Łojasiewicz gradient inequality (1.7) for 𝜃 = 1/2 is better known in the optimiza-
tion community as the gradient dominated property introduced by Polyak [1963]. It
suffices to prove linear convergence of convex functions as recalled by Karimi et al.
[2016]. Generic error bounds were also considered by Nemirovskii and Nesterov [1985]
to derive generic optimal algorithms for convex functions. However these require to
know in advance parameters 𝜇 and 𝑟 which are generally hard to estimate outside the
strongly convex case.

Recently the growing interest about Łojasiewicz inequalities led to new conver-
gence analysis of many important algorithms in non-smooth and even non-convex
settings [Attouch et al., 2013; Bolte et al., 2014; Frankel et al., 2015]. Generic meth-
ods to derive convergence rates for convex optimization were notably studied by Bolte
et al. [2015]. In Chapter 2, we present simple restart schemes for convex optimization
that take advantage of Łojasiewicz error bound and show adaptivity to parameters 𝜇
and 𝑟 for smooth functions.

19

Łojasiewicz inequalities have also an impact beyond optimization. They notably
lead to the characterization of smooth or non-smooth dynamical systems [Simon,
1983; Bolte et al., 2007] or can provide a simple framework for the development of
concentration inequalities [Blanchet and Bolte, 2016].

1.3 Restart schemes

A simple way to achieve acceleration for strongly convex problems is simply to
restart the accelerated method for smooth convex functions at regular time intervals
[Nesterov, 2013a]. Consider the unconstrained minimization of a smooth strongly
convex functions. At the unique minimizer 𝑥*, strong convexity reads

𝑓(𝑥)− 𝑓 * ≥ 𝜇

2
‖𝑥− 𝑥*‖22

After 𝑡 = ⌈𝑒
√︀

8𝐿/𝜇⌉ iterations of the accelerated method for smooth convex func-
tions, one obtains a point �̂� satisfying

𝑓(�̂�)− 𝑓 * ≤ 4𝐿

𝑡2
‖𝑥0 − 𝑥*‖22 ≤

8𝐿

𝜇𝑡2
(𝑓(𝑥0)− 𝑓 *) ≤ 𝑒−2(𝑓(𝑥0)− 𝑓 *)

Therefore repeating this operation and counting the total number of iterations leads
to the optimal complexity for strongly convex functions. Observe that only the Ło-
jasiewicz error bound implied by strong convexity is used to achieve such rate. This
remark was further explored by Nemirovskii and Nesterov [1985] for general convex
problems.

The scheduling of the restart schemes is their drawback. In the strongly convex
case for example, strong convexity parameter 𝜇 must be known in advance. Numer-
ous heuristics strategies have thus been developed to restart the accelerated method
for smooth convex functions. O’Donoghue and Candes [2015] proposed to enforce
monotonicity of the objective values, that is, to restart the algorithm when the objec-
tive values increase. Giselsson and Boyd [2014] proved that such heuristics converge
at least as fast as the accelerated scheme for smooth convex functions. However in
practice restart show much better performance than a plain implementation of the
accelerated algorithm, in particular for composite problems such as LASSO [Tibshi-
rani, 1996]. Continuous time interpretations of the accelerated scheme were also used
to justify restart heuristics. They rely on an inertia argument of the continuous time
dynamic [Su et al., 2014; Wibisono et al., 2016]. However no theoretical guarantees
of this heuristic were proven.

Developing algorithms adaptive to unknown strongly convex parameter was first
studied by Nesterov [2013a]; Lin and Xiao [2014] by running several outer loops of the
accelerated algorithm for strongly convex functions. Recently Fercoq and Qu [2016]
proposed restart schemes for generic quadratic error bounds ((1.6) with 𝑟 = 2) robust
to misspecification of the parameters. Fercoq and Qu [2017] refined their algorithm
to provide adaptive restarts with theoretical guarantees under the same assumptions,

20

which offer guarantees of accelerated linear rates for the LASSO.
Restart schemes were also studied for non-smooth convex optimization. Juditski

and Nesterov [2014] restart the dual averaging method [Nesterov, 2009] to optimize
non-smooth uniformly convex functions. They present an adaptive algorithm in this
case for a fixed number of iterations and with an additional estimate of the distance
to the set of minimizers. Gilpin et al. [2012] restart smoothing technique of Nesterov
[2005] to solve zero-sum games. Interestingly, as the optimum value of their problem
is known, their technique do not need additional parameters. Finally smooth convex
optimization problems satisfying (1.7) with 𝜃 > 1/2 were studied by Yang [2016],
where they use magnitude of the gradient to provide criteria for restarts.

1.4 Interpretation of accelerated algorithm

Nesterov’s accelerated gradient algorithm [Nesterov, 2013b] was designed with op-
timal complexity in mind, but the proof relies on purely algebraic arguments and
the key mechanism behind acceleration remains elusive. Various alternative to the
accelerated algorithm were developed with different proofs [Nesterov, 2013a; Beck
and Teboulle, 2009; Auslender and Teboulle, 2006; Chambolle et al., 1998] sometimes
simpler [Tseng, 2008] but still difficult to interpret. Recent stream of papers use dif-
ferential equations to model the acceleration behavior and offer another interpretation
of Nesterov’s algorithm [Su et al., 2014; Krichene et al., 2015; Wibisono et al., 2016;
Wilson et al., 2016]. However, the differential equation is often quite complex, being
reverse-engineered from Nesterov’s method itself, thus losing the intuition. Moreover,
integration methods for these differential equations are often ignored or are not de-
rived from standard numerical integration schemes, since convergence proofs do not
require the continuous-time interpretation.

In Scieur et al. [2017], we analyzed how optimization methods, in particular Nes-
terov’s algorithm, can be interpreted as discretization methods of the simple gradient
flow equation that reads

�̇�(𝑡) = −∇𝑓(𝑥(𝑡)), 𝑥(0) = 𝑥0. (1.8)

For example gradient descent can be seen as an Euler’s explicit scheme of integration
for this differential equation. Proximal point algorithm [Rockafellar, 1976] translates
as an Euler’s implicit scheme. Finally extra-gradient algorithm, studied for example
by [Nemirovski, 2004], that solves saddle point problems, is a predictor-corrector
method [Press, 1992, §16.7] on the associated gradient flow equation.

In Scieur et al. [2017], we study specifically multi-step discretization methods for
gradient flow equation derived from smooth and strongly convex functions. These
schemes use several past points to build next iterate of the approximate solution
of (1.8). Numerical analysis literature [Gautschi, 2011] provides conditions on the
parameters to ensure consistency, i.e. convergence of the discrete approximation to
the continuous solution of the differential equation on a finite time interval for in-
finitesimal step-sizes, which is essential for continuous time interpretation. Stability

21

for infinite time horizon can be derived for linear gradient flows (quadratic optimiza-
tion) by some other conditions. Nesterov’s algorithm and Polyak’s heavy ball method
can then be identified as consistent and stable multi-step methods of order 2 that allow
bigger step-size of integration compared to simple Euler’s scheme, which explains the
acceleration phenomenon. Similar considerations applied for the non-strongly convex
case by identifying accelerated method as a consistent integration scheme and identi-
fying a bigger step-size. A full analysis of multi-step methods of order 2 is carried out
for linear gradient flows (quadratic optimization). Future work is to certify stability
of multi-step methods for smooth and strongly convex functions and explain why
Heavy ball’s method fails to solve some smooth strongly convex functions [Lessard
et al., 2016].

22

Chapter 2

Sharpness, Restart and Acceleration

Chapter Abstract

The Łojasiewicz inequality shows that sharpness bounds on the mini-
mum of convex optimization problems hold almost generically. Sharpness
directly controls the performance of restart schemes, as observed by Ne-
mirovskii and Nesterov [1985]. The constants quantifying error bounds
are of course unobservable, but we show that optimal restart strategies
are robust, and searching for the best scheme only increases the complex-
ity by a logarithmic factor compared to the optimal bound. Overall then,
restart schemes generically accelerate accelerated methods.

Introduction

We study convex optimization problems of the form

minimize 𝑓(𝑥) (P)

where 𝑓 is a convex function defined on R𝑛. The complexity of these problems using
first order methods is generically controlled by smoothness assumptions on 𝑓 such as
Lipschitz continuity of its gradient. Additional assumptions such as strong convexity
or uniform convexity provide respectively linear [Nesterov, 2013b] and faster polyno-
mial [Juditski and Nesterov, 2014] rates of convergence. However, these assumptions
are often too restrictive to be applied. Here, we make a much weaker and generic
assumption that describes the sharpness of the function around its minimizers by
constants 𝜇 ≥ 0 and 𝑟 ≥ 1 such that

𝜇

𝑟
𝑑(𝑥,𝑋*)𝑟 ≤ 𝑓(𝑥)− 𝑓 *, for every 𝑥 ∈ 𝐾, (Sharp)

where 𝑓 * is the minimum of 𝑓 , 𝐾 ⊂ R𝑛 is a compact set, 𝑑(𝑥,𝑋*) = min𝑦∈𝑋* ‖𝑥− 𝑦‖
is the distance from 𝑥 to the set 𝑋* ⊂ 𝐾 of minimizers of 𝑓 1 for the Euclidean norm

1. We assume the problem feasible, i.e. 𝑋* ̸= ∅.

23

‖ · ‖. This defines a lower bound on the function around its minimizers: for 𝑟 = 1,
𝑓 shows a kink around its minimizers and the larger is 𝑟 the flatter is the function
around its minimizers. We tackle this property by restart schemes of classical convex
optimization algorithms.

Sharpness assumption (Sharp) is better known as a Hölderian error bound on the
distance to the set of minimizers. Hoffman [Hoffman, 1952] first introduced error
bounds to study system of linear inequalities. Natural extensions were then devel-
oped for convex optimization [Robinson, 1975; Mangasarian, 1985; Auslender and
Crouzeix, 1988], notably through the concept of sharp minima [Polyak, 1979; Burke
and Ferris, 1993; Burke and Deng, 2002]. But the most striking discovery was made
by Łojasiewicz [Łojasiewicz, 1963, 1993] who proved inequality (Sharp) for real ana-
lytic and subanalytic functions. It has then been extended to non-smooth subanalytic
convex functions by Bolte et al. [2007]. Overall, since (Sharp) essentially measures
the sharpness of minimizers, it holds somewhat generically. On the other hand, this
inequality is purely descriptive as we have no hope of ever observing either 𝑟 or 𝜇,
and deriving adaptive schemes is crucial to ensure practical relevance.

Łojasiewicz inequalities either in the form of (Sharp) or as gradient dominated
properties [Polyak, 1979] led to new simple convergence results [Karimi et al., 2016],
in particular for alternating and splitting methods [Attouch et al., 2010; Frankel et al.,
2015], even in the non-convex case [Bolte et al., 2014]. Here we focus on Hölderian
error bounds as they offer simple explanation of accelerated rates of restart schemes.

Restart schemes were already studied for strongly or uniformly convex functions
[Nemirovskii and Nesterov, 1985; Nesterov, 2013a; Juditski and Nesterov, 2014; Lin
and Xiao, 2014]. In particular, Nemirovskii and Nesterov [1985] link a “strict mini-
mum” condition akin to (Sharp) with faster convergence rates using restart schemes
which form the basis of our results, but do not study the cost of adaptation and do
not tackle the non-smooth case. In a similar spirit, weaker versions of this strict min-
imum condition were used more recently to study the performance of restart schemes
in [Renegar, 2014; Freund and Lu, 2015; Roulet et al., 2015]. The fundamental ques-
tion of a restart scheme is naturally to know when must an algorithm be stopped
and relaunched. Several heuristics [O’Donoghue and Candes, 2015; Su et al., 2014;
Giselsson and Boyd, 2014] studied adaptive restart schemes to speed up convergence
of optimal methods. The robustness of restart schemes was then theoretically studied
by Fercoq and Qu [2016] for quadratic error bounds, i.e. (Sharp) with 𝑟 = 2, that
LASSO problem satisfies for example. Fercoq and Qu [2017] extended recently their
work to produce adaptive restarts with theoretical guarantees of optimal performance,
still for quadratic error bounds. Previous references focus on smooth problems, but
error bounds appear also for non-smooth ones, Gilpin et al. [2012] prove for example
linear converge of restart schemes in bilinear matrix games where the minimum is
sharp, i.e. (Sharp) with 𝑟 = 1.

Our contribution here is to derive optimal scheduled restart schemes for general
convex optimization problems for smooth, non-smooth or Hölder smooth functions
satisfying the sharpness assumption. We then show that for smooth functions these
schemes can be made adaptive with nearly optimal complexity (up to a squared log
term) for a wide array of sharpness assumptions. We also analyze restart criterion

24

based on a sufficient decrease of the gap to the minimum value of the problem, when
this latter is known in advance. In that case, restart schemes are shown to be optimal
without requiring any additional information on the function.

The paper is organized as follows. In Section 2.1, we present the assumptions
we make on the problem, i.e. smoothness and sharpness of the function, and dis-
cuss their link. In Section 2.2, scheduled restart strategies are presented for smooth
unconstrained convex minimization problems satisfying the Łojasiewicz inequality,
together with adaptive variants. In Section 2.3, these results are generalized to func-
tions with Hölder continuous gradients. Adaptive restart schemes when the optimal
value is known are introduced in Section 2.4. In Section 2.5, our results are extended
to composite problems using Bregman divergences, and in particular prox-friendly
constrained problems. Finally, numerical experiments are provided in Section 2.6.

Notations

For a real 𝑎, ⌈𝑎⌉ and ⌊𝑎⌋ denote respectively the smallest integer larger than or
equal to 𝑎 and the largest integer smaller than or equal to 𝑎.

2.1 Problem assumptions

In the following, we present the geometry of the problem with respect to the
Euclidean norm, such that 𝑑(𝑥,𝑋*) = min𝑦∈𝑋* ‖𝑥 − 𝑦‖2 is the Euclidean distance
from a point 𝑥 ∈ R𝑛 to the set of minimizers. In Section 2.5, we detail how our
approach generalizes to other geometries handled by Bregman divergences.

2.1.1 Smoothness

Convex optimization problems (P) are generally divided in two classes : smooth
problems, for which 𝑓 has Lipschitz continuous gradients, and non-smooth problems
for which 𝑓 is not differentiable. Nesterov [2015] proposed to unify point of views by
assuming generally that there exist constant 1 ≤ 𝑠 ≤ 2 and 𝐿 > 0 such that

‖∇𝑓(𝑥)−∇𝑓(𝑦)‖2 ≤ 𝐿‖𝑥− 𝑦‖𝑠−1
2 , for all 𝑥, 𝑦 ∈ R𝑛 (Smooth)

where ∇𝑓(𝑥) is any sub-gradient of 𝑓 at 𝑥 if 𝑠 = 1 (otherwise this implies differen-
tiability of 𝑓). For 𝑠 = 2, we retrieve the classical definition of smoothness [Nesterov,
2013b]. For 𝑠 = 1 we get a classical assumption made in non-smooth convex optimiza-
tion, i.e. that sub-gradients of the function are bounded. For 1 < 𝑠 < 2, this assumes
gradient of 𝑓 to be Hölder Lipschitz. In a first step, we will analyze restart schemes
for smooth convex optimization problems, then generalize to general smoothness as-
sumption (Smooth) using appropriate accelerated algorithms developed by Nesterov
[2015].

25

2.1.2 Error bounds

In general, an error bound is an inequality of the form

𝑑(𝑥,𝑋*) ≤ 𝜔(𝑓(𝑥)− 𝑓 *),

where 𝜔 is an increasing function at 0, called the residual function, and 𝑥 may evolve
either in the whole space or in a bounded set, see Bolte et al. [2015] for more details.
We focus on Hölderian Error Bounds (Sharp) as they are the most common in practice,
they are notably satisfied by a analytic and subanalytic functions but the proof (see
e.g. Bierstone and Milman [1988]) is shown using topological arguments that are far
from constructive, hence outside of some particular cases (e.g. strong convexity), we
cannot assume that the constants in (Sharp) are known, even approximately.

Error bounds can generically be linked to Łojasiewicz inequality that upper bounds
magnitude of the gradient by values of the function [Bolte et al., 2015]. Such property
paved the way to many recent results in optimization [Attouch et al., 2010; Frankel
et al., 2015; Bolte et al., 2014]. Here we will see that (Sharp) is sufficient to accel-
eration of convex optimization algorithms by their restart. Note finally that in most
cases, error bounds are local properties hence the convergence results that follow will
generally be local.

2.1.3 Sharpness and smoothness

Let 𝑓 be a convex function on R𝑛 satisfying (Smooth) with parameters (𝑠, 𝐿).
This property ensures that, 𝑓(𝑥) ≤ 𝑓 * + 𝐿

𝑠
‖𝑥 − 𝑦‖𝑠2, for given 𝑥 ∈ R𝑛 and 𝑦 ∈ 𝑋*.

Setting 𝑦 to be the projection of 𝑥 onto 𝑋*, this yields the following upper bound on
suboptimality

𝑓(𝑥)− 𝑓 * ≤ 𝐿

𝑠
𝑑(𝑥,𝑋*)𝑠. (2.1)

Now assume that 𝑓 satisfies the error bound (Sharp) on a set 𝐾 with parameters
(𝑟, 𝜇). Combining (2.1) and (Sharp) this leads for every 𝑥 ∈ 𝐾,

𝑠𝜇

𝑟𝐿
≤ 𝑑(𝑥,𝑋*)𝑠−𝑟.

This means that necessarily 𝑠 ≤ 𝑟 by taking 𝑥 → 𝑋*. Moreover if 𝑠 < 𝑟, this last
inequality can only be valid on a bounded set, i.e. either smoothness or error bound
or both are valid only on a bounded set. In the following, we write

𝜅 , 𝐿
2
𝑠 /𝜇

2
𝑟 and 𝜏 , 1− 𝑠

𝑟
(2.2)

respectively a generalized condition number for the function 𝑓 and a condition number
based on the ratio of powers in inequalities (Smooth) and (Sharp). If 𝑟 = 𝑠 = 2, 𝜅
matches the classical condition number of the function.

26

2.2 Scheduled restarts for smooth convex problems

In this section 𝑓 is assumed to be smooth, i.e. satisfies (Smooth) with 𝑠 = 2
and 𝐿 > 0. Without further assumptions on 𝑓 , an optimal algorithm to solve the
smooth convex optimization problem (P) is Nesterov’s accelerated gradient method
[Nesterov, 1983]. Given an initial point 𝑥0, this algorithm outputs, after 𝑡 iterations,
a point 𝑥 = 𝒜(𝑥0, 𝑡) such that

𝑓(𝑥)− 𝑓 * ≤ 𝑐𝐿

𝑡2
𝑑(𝑥0, 𝑋

*)2, (2.3)

where 𝑐 > 0 denotes a universal constant (whose value will be allowed to vary in what
follows, with 𝑐 = 4 here). We assume without loss of generality that 𝑓(𝑥) ≤ 𝑓(𝑥0).
More details about Nesterov’s algorithm are given in Appendix A.2.

In what follows, we will also assume that 𝑓 satisfies (Sharp) with parameters (𝑟, 𝜇)
on a set 𝐾 ⊇ 𝑋*, which means

𝜇

𝑟
𝑑(𝑥,𝑋*)𝑟 ≤ 𝑓(𝑥)− 𝑓 *, for every 𝑥 ∈ 𝐾.

As mentioned before if 𝑟 > 𝑠 = 2, this property is necessarily local, i.e. 𝐾 is bounded.
We assume then that given a starting point 𝑥0 ∈ R𝑛, (Sharp) is satisfied on the
sublevel set {𝑥| 𝑓(𝑥) ≤ 𝑓(𝑥0)}. Remark that if this property is valid on an open set
𝐾 ⊃ 𝑋*, it will also be valid on any compact set 𝐾 ′ ⊃ 𝐾 with the same exponent 𝑟
but a potentially lower constant 𝜇 [Bierstone and Milman, 1988, Theorem 6.4]. The
scheduled restart schemes presented assume (Sharp) on the whole sublevel set defined
by the initial point and are not adaptive to the best local constant 𝜇. On the other
hand, restarts on criterion introduced in Section 2.4, assuming that 𝑓 * is known, adapt
to the value of 𝜇. We now describe a restart scheme exploiting this extra regularity
assumption to improve the computational complexity of solving problem (P) using
accelerated methods.

2.2.1 Scheduled restarts

Here we schedule the number of iterations 𝑡𝑘 made by Nesterov’s algorithm be-
tween restarts, with 𝑡𝑘 the number of (inner) iterations at the 𝑘th algorithm run (outer
iteration). Our scheme is described below.

Algorithm 1 Scheduled restarts for smooth convex minimization (RESTART)
Inputs : 𝑥0 ∈ R𝑛 and a sequence 𝑡𝑘 for 𝑘 = 1, . . . , 𝑅.
for 𝑘 = 1, . . . , 𝑅 do

𝑥𝑘 := 𝒜(𝑥𝑘−1, 𝑡𝑘) (RESTART)

end for
Output : �̂� := 𝑥𝑅

27

The analysis of this scheme and the following ones relies on two steps : first choose
schedules that ensure linear convergence in the iterates 𝑥𝑘 at a given rate, then adjust
this linear rate to minimize the complexity in terms of the total number of iterations.

We begin by a technical lemma which assumes linear convergence holds, and con-
nects the growth of 𝑡𝑘, the precision reached and the total number of inner iterations
𝑁 .

Lemma 2.2.1. Let 𝑥𝑘 be a sequence whose 𝑘th iterate is generated from the previous
one by an algorithm that runs 𝑡𝑘 iterations and write 𝑁 =

∑︀𝑅
𝑘=1 𝑡𝑘 the total number

of iterations to output a point 𝑥𝑅. Suppose setting 𝑡𝑘 = 𝐶𝑒𝛼𝑘, 𝑘 = 1, . . . , 𝑅 for some
𝐶 > 0 and 𝛼 ≥ 0 ensures that outer iterations satisfy

𝑓(𝑥𝑘)− 𝑓 * ≤ 𝜈𝑒−𝛾𝑘, (2.4)

for all 𝑘 ≥ 0 with 𝜈 ≥ 0 and 𝛾 ≥ 0. Then precision at the output is given by,

𝑓(𝑥𝑅)− 𝑓 * ≤ 𝜈 exp(−𝛾𝑁/𝐶), when 𝛼 = 0,

and
𝑓(𝑥𝑅)− 𝑓 * ≤ 𝜈

(𝛼𝑒−𝛼𝐶−1𝑁 + 1)
𝛾
𝛼

, when 𝛼 > 0.

Proof. When 𝛼 = 0, 𝑁 = 𝑅𝐶, and inserting this in (2.4) at the last point 𝑥𝑅
yields the desired result. On the other hand, if 𝛼 > 0, then 𝑁 =

∑︀𝑅
𝑘=1 𝑡𝑘 = 𝐶𝑒𝛼 𝑒𝛼𝑅−1

𝑒𝛼−1
,

which gives 𝑅 = log
(︀
𝑒𝛼−1
𝑒𝛼𝐶

𝑁 + 1
)︀
/𝛼. Inserting this in (2.4) at the last point, this leads

𝑓(𝑥𝑅)− 𝑓 * ≤ 𝜈 exp

(︂
−𝛾
𝛼

log

(︂
𝑒𝛼 − 1

𝑒𝛼𝐶
𝑁 + 1

)︂)︂
≤ 𝜈

(𝛼𝑒−𝛼𝐶−1𝑁 + 1)
𝛾
𝛼

,

using that 𝑒𝑥 − 1 ≥ 𝑥. This yields the second part of the result.

The last approximation in the case 𝛼 > 0 simplifies the analysis that follows
without significantly affecting the bounds. We also show in Appendix 2.A that using
𝑡𝑘 = ⌈𝑡𝑘⌉ does not significantly affect the bounds above. Remark that convergence
bounds are generally linear or polynomial such that one can extract a subsequence
that converges linearly. Therefore our approach does not restrict the analysis of our
scheme. It simplifies it and can be used for other algorithms like the gradient descent
as detailed in Section 2.2.3.

We now analyze restart schedules 𝑡𝑘 that ensure linear convergence. Our choice
of 𝑡𝑘 will heavily depend on the ratio between 𝑟 and 𝑠 (with 𝑠 = 2 for smooth
functions here), incorporated in the parameter 𝜏 = 1 − 𝑠/𝑟 defined in (2.2). The
following Proposition shows that if 𝜏 = 0, a constant schedule is sufficient to ensure
linear convergence. When 𝜏 > 0, this requires a geometrically increasing number of
iterations for each cycle.

Proposition 2.2.2. Let 𝑓 be a smooth convex function satisfying (Smooth) with
parameters (2, 𝐿) and (Sharp) with parameters (𝑟, 𝜇) on a set 𝐾. Assume that we

28

are given 𝑥0 ∈ R𝑛 such that {𝑥| 𝑓(𝑥) ≤ 𝑓(𝑥0)} ⊂ 𝐾. Run (RESTART) from 𝑥0 with
iteration schedule 𝑡𝑘 = 𝐶*

𝜅,𝜏𝑒
𝜏𝑘, for 𝑘 = 1, . . . , 𝑅, where

𝐶*
𝜅,𝜏 , 𝑒1−𝜏 (𝑐𝜅)

1
2 (𝑓(𝑥0)− 𝑓 *)−

𝜏
2 , (2.5)

with 𝜅 and 𝜏 defined in (2.2) and 𝑐 = 4𝑒2/𝑒 here. The precision reached at the last
point �̂� is given by,

𝑓(�̂�)− 𝑓 * ≤ exp
(︁
−2𝑒−1(𝑐𝜅)−

1
2𝑁
)︁

(𝑓(𝑥0)− 𝑓 *) = 𝑂
(︁

exp(−𝜅− 1
2𝑁)

)︁
, when 𝜏 = 0,

(2.6)

while,

𝑓(�̂�)− 𝑓 * ≤ 𝑓(𝑥0)− 𝑓 *(︁
𝜏𝑒−1(𝑓(𝑥0)− 𝑓 *)

𝜏
2 (𝑐𝜅)−

1
2𝑁 + 1

)︁ 2
𝜏

= 𝑂
(︁
𝑁− 2

𝜏

)︁
, when 𝜏 > 0, (2.7)

where 𝑁 =
∑︀𝑅

𝑘=1 𝑡𝑘 is the total number of iterations.

Proof. Our strategy is to choose 𝑡𝑘 such that the objective is linearly decreasing,
i.e.

𝑓 (𝑥𝑘)− 𝑓 * ≤ 𝑒−𝛾𝑘(𝑓(𝑥0)− 𝑓 *), (2.8)

for some 𝛾 ≥ 0 depending on the choice of 𝑡𝑘. This directly holds for 𝑘 = 0 and any
𝛾 ≥ 0. Combining (Sharp) with the complexity bound in (2.3) gives

𝑓 (𝑥𝑘)− 𝑓 * ≤ 𝑐𝜅

𝑡2𝑘
(𝑓 (𝑥𝑘−1)− 𝑓 *)

2
𝑟 ,

where 𝑐 = 4𝑒2/𝑒 using that 𝑟2/𝑟 ≤ 𝑒2/𝑒. Assuming recursively that (2.8) is satisfied at
iteration 𝑘 − 1 for a given 𝛾,

𝑓 (𝑥𝑘)− 𝑓 * ≤ 𝑐𝜅𝑒−𝛾 2
𝑟
(𝑘−1)

𝑡2𝑘
(𝑓(𝑥0)− 𝑓 *)

2
𝑟 ,

and to ensure (2.8) at iteration 𝑘, this imposes

𝑐𝜅𝑒−𝛾 2
𝑟
(𝑘−1)

𝑡2𝑘
(𝑓(𝑥0)− 𝑓 *)

2
𝑟 ≤ 𝑒−𝛾𝑘(𝑓(𝑥0)− 𝑓 *).

Rearranging terms in this last inequality, using 𝜏 defined in (2.2),

𝑡𝑘 ≥ 𝑒
𝛾(1−𝜏)

2 (𝑐𝜅)
1
2 (𝑓(𝑥0)− 𝑓 *)−

𝜏
2 𝑒

𝜏𝛾
2
𝑘. (2.9)

For a given 𝛾 ≥ 0, we can set 𝑡𝑘 = 𝐶𝑒𝛼𝑘 where

𝐶 = 𝑒
𝛾(1−𝜏)

2 (𝑐𝜅)
1
2 (𝑓(𝑥0)− 𝑓 *)−

𝜏
2 and 𝛼 = 𝜏𝛾/2, (2.10)

29

and Lemma 2.2.1 then yields,

𝑓(�̂�)− 𝑓 * ≤ exp
(︁
−𝛾𝑒− 𝛾

2 (𝑐𝜅)−
1
2𝑁
)︁

(𝑓(𝑥0)− 𝑓 *),

when 𝜏 = 0, while

𝑓(�̂�)− 𝑓 * ≤ (𝑓(𝑥0)− 𝑓 *)(︁
𝜏
2
𝛾𝑒−

𝛾
2 (𝑐𝜅)−

1
2 (𝑓(𝑥0)− 𝑓 *)

𝜏
2𝑁 + 1

)︁ 2
𝜏

,

when 𝜏 > 0. These bounds are minimal for 𝛾 = 2, which yields the desired result.

When 𝜏 = 0, bound (2.6) matches the classical complexity bound for smooth
strongly convex functions [Nesterov, 2013b]. When 𝜏 > 0 on the other hand, bound
(2.7) highlights a much faster convergence rate than accelerated gradient methods. The
sharper the function (i.e. the smaller 𝑟), the faster the convergence. This matches
the lower bounds for optimizing smooth and sharp functions functions [Nemirovskii
and Nesterov, 1985, Page 6] up to constant factors. Also, setting 𝑡𝑘 = 𝐶*

𝜅,𝜏𝑒
𝜏𝑘 yields

continuous bounds on precision, i.e. when 𝜏 → 0, bound (2.7) converges to bound
(2.6), which also shows that for 𝜏 near zero, constant restart schemes are almost
optimal.

2.2.2 Adaptive scheduled restart

The previous restart schedules depend on the parameters (𝑟, 𝜇) in (Sharp). In
general of course, these values are neither observed nor known a priori. Making our
restart scheme adaptive is thus crucial to its practical performance. Fortunately, we
show below that a simple logarithmic grid search strategy on these parameters is
enough to guarantee nearly optimal performance.

In that purpose we need first the following Corollary of Proposition 2.2.2.
Corollary 2.2.3. Let 𝑓 be a smooth convex function satisfying (Smooth) with pa-
rameters (2, 𝐿) and (Sharp) with parameters (𝑟, 𝜇) on a set 𝐾. Assume that we are
given 𝑥0 ∈ R𝑛 such that {𝑥 : 𝑓(𝑥) ≤ 𝑓(𝑥0)} ⊂ 𝐾. Run (RESTART) from 𝑥0 with
general schedules of the form {︂

𝑡𝑘 = 𝐶 if 𝜏 = 0,
𝑡𝑘 = 𝐶𝑒𝛼𝑘 if 𝜏 > 0,

we have the following complexity bounds, if 𝜏 = 0 and 𝐶 ≥ 𝐶*
𝜅,0,

𝑓(�̂�)− 𝑓 * ≤
(︁ 𝑐𝜅
𝐶2

)︁𝑁
𝐶

(𝑓(𝑥0)− 𝑓 *), (2.11)

while, if 𝜏 > 0 and 𝐶 ≥ 𝐶(𝛼),

𝑓(�̂�)− 𝑓 * ≤ 𝑓(𝑥0)− 𝑓 *

(𝛼𝑒−𝛼𝐶−1𝑁 + 1)
2
𝜏

, (2.12)

30

where
𝐶(𝛼) , 𝑒

𝛼(1−𝜏)
𝜏 (𝑐𝜅)

1
2 (𝑓(𝑥0)− 𝑓 *)−

𝜏
2 , (2.13)

and 𝑁 =
∑︀𝑅

𝑘=1 𝑡𝑘 is the total number of iterations.

Proof. Given general schedules of the form{︂
𝑡𝑘 = 𝐶 if 𝜏 = 0,
𝑡𝑘 = 𝐶𝑒𝛼𝑘 if 𝜏 > 0,

the best value of 𝛾 satisfying condition (2.9) for any 𝑘 ≥ 0 in Proposition 2.2.2 are
given by {︃

𝛾 = log
(︁

𝐶2

𝑐𝜅

)︁
if 𝜏 = 0 and 𝐶 ≥ 𝐶*

𝜅,0,
𝛾 = 2𝛼

𝜏
if 𝜏 > 0 and 𝐶 ≥ 𝐶(𝛼).

As in Proposition 2.2.2, plugging these values into the bounds of Lemma 2.2.1 yields
the desired result.

This Corollary shows that scheduled restarts are theoretically efficient only if the
algorithm itself makes a sufficient number of iterations. With this Corollary, an
analysis of a grid search of the schedules can be made.

We run several schemes with a fixed number of inner iterations 𝑁 to perform a
log-scale grid search on 𝜏 and 𝜅. These schemes are defined as follows.{︂

𝒮𝑖,0 : (RESTART) scheme with 𝑡𝑘 = 𝐶𝑖,
𝒮𝑖,𝑗 : (RESTART) scheme with 𝑡𝑘 = 𝐶𝑖𝑒

𝜏𝑗𝑘, (2.14)

where 𝐶𝑖 = 2𝑖 and 𝜏𝑗 = 2−𝑗. These schemes are stopped when the total number of
inner algorithm iterations has exceed𝑁 , i.e. at the smallest 𝑅 such that

∑︀𝑅
𝑘=1 𝑡𝑘 ≥ 𝑁 .

The size of the grid search in 𝐶𝑖 is naturally bounded as the algorithm cannot be
restarted after more than 𝑁 total inner iterations, so 𝑖 ∈ [1, . . . , ⌊log2𝑁⌋]. We will
also show that when 𝜏 is smaller than 1/𝑁 , a constant schedule performs as well as
the optimal geometrically increasing schedule, which crucially means that we can also
choose 𝑗 ∈ [1, . . . , ⌈log2𝑁⌉] and limits the cost of grid search.

Proposition 2.2.4. Let 𝑓 be a smooth convex function satisfying (Smooth) with
parameters (2, 𝐿) and (Sharp) with parameters (𝑟, 𝜇) on a set 𝐾. Assume that we
are given 𝑥0 ∈ R𝑛 such that {𝑥| 𝑓(𝑥) ≤ 𝑓(𝑥0)} ⊂ 𝐾 and denote 𝑁 a given number
of iterations. Run schemes 𝒮𝑖,𝑗 defined in (2.14) to solve (P) for 𝑖 ∈ [1, . . . , ⌊log2𝑁⌋]
and 𝑗 ∈ [0, . . . , ⌈log2𝑁⌉], stopping each time after 𝑁 total inner algorithm iterations
i.e. for 𝑅 such that

∑︀𝑅
𝑘=1 𝑡𝑘 ≥ 𝑁 .

Assume 𝑁 is large enough, so 𝑁 ≥ 2𝐶*
𝜅,𝜏 , and if 1

𝑁
> 𝜏 > 0, 𝐶*

𝜅,𝜏 > 1.
If 𝜏 = 0, there exists 𝑖 ∈ [1, . . . , ⌊log2𝑁⌋] such that scheme 𝒮𝑖,0 achieves a precision

given by
𝑓(�̂�)− 𝑓 * ≤ exp

(︁
−𝑒−1(𝑐𝜅)−

1
2𝑁
)︁

(𝑓(𝑥0)− 𝑓 *).

If 𝜏 > 0, there exist 𝑖 ∈ [1, . . . , ⌊log2𝑁⌋] and 𝑗 ∈ [1, . . . , ⌈log2𝑁⌉] such that

31

scheme 𝒮𝑖,𝑗 achieves a precision given by

𝑓(�̂�)− 𝑓 * ≤ 𝑓(𝑥0)− 𝑓 *(︁
𝜏𝑒−1(𝑐𝜅)−

1
2 (𝑓(𝑥0)− 𝑓 *)

𝜏
2 (𝑁 − 1)/4 + 1

)︁ 2
𝜏

.

Overall, running the logarithmic grid search has a complexity (log2𝑁)2 times higher
than running 𝑁 iterations using the optimal (oracle) scheme.

Proof. Denote 𝑁 ′ =
∑︀𝑅

𝑘=1 𝑡𝑘 ≥ 𝑁 the number of iterations of a scheme 𝒮𝑖,𝑗. We
necessarily have 𝑁 ′ ≤ 2𝑁 for our choice of 𝐶𝑖 and 𝜏𝑗. Hence the cost of running all
methods is of the order (log2𝑁)2.

If 𝜏 = 0 and 𝑁 ≥ 2𝐶*
𝜅,0, then 𝑖 = ⌈log2𝐶

*
𝜅,0⌉ ≤ ⌊log2𝑁⌋. Therefore 𝒮𝑖,0 has been

run and bound (2.11) to shows then that the last iterate �̂� satisfies

𝑓(�̂�)− 𝑓 * ≤
(︂
𝑐𝜅

𝐶2
𝑖

)︂ 𝑁
𝐶𝑖

(𝑓(𝑥0)− 𝑓 *).

Using that 𝐶*
𝜅,0 ≤ 𝐶𝑖 ≤ 2𝐶*

𝜅,0,

𝑓(�̂�)− 𝑓 * ≤
(︂

𝑐𝜅

(𝐶*
𝜅,0)

2

)︂ 𝑁
2𝐶*

𝜅,0

(𝑓(𝑥0)− 𝑓 *)

≤ exp
(︁
−𝑒−1(𝑐𝜅)−

1
2𝑁
)︁

(𝑓(𝑥0)− 𝑓 *).

If 𝜏 ≥ 1
𝑁

and 𝑁 ≥ 2𝐶*
𝜅,𝜏 , then 𝑗 = ⌈− log2 𝜏⌉ ≤ ⌈log2𝑁⌉ and 𝑖 = ⌈log2𝐶

*
𝜅,𝜏⌉ ≤

⌊log2𝑁⌋. Therefore scheme 𝒮𝑖,𝑗 has been run. As 𝐶𝑖 ≥ 𝐶*
𝜅,𝜏 ≥ 𝐶(𝜏𝑗), where 𝐶(𝜏𝑗)

is defined in (2.13), bound (2.12) shows then that the last iterate �̂� of scheme 𝒮𝑖,𝑗
satisfies

𝑓(�̂�)− 𝑓 * ≤ 𝑓(𝑥0)− 𝑓 *(︀
𝜏𝑗𝑒−𝜏𝑗𝐶−1

𝑖 𝑁 + 1
)︀ 2

𝜏

.

Finally, by definition of 𝑖 and 𝑗, 2𝜏𝑗 ≥ 𝜏 and 𝐶𝑖 ≤ 2𝐶*
𝜅,𝜏 , so

𝑓(�̂�)− 𝑓 * ≤ 𝑓(𝑥0)− 𝑓 *(︀
𝜏𝑒−𝜏𝑗(𝐶*

𝜅,𝜏)−1𝑁/4 + 1
)︀ 2

𝜏

=
𝑓(𝑥0)− 𝑓 *(︁

𝜏𝑒−1(𝑐𝜅)−
1
2 (𝑓(𝑥0)− 𝑓 *)

𝜏
2𝑁/4 + 1

)︁ 2
𝜏

,

where we concluded by expanding 𝐶*
𝜅,𝜏 = 𝑒1−𝜏 (𝑐𝜅)

1
2 (𝑓(𝑥0) − 𝑓 *)−

𝜏
2 and using that

𝜏 ≥ 𝜏𝑗.

If 1
𝑁
> 𝜏 > 0 and 𝑁 > 2𝐶*

𝜅,𝜏 , then 𝑖 = ⌈log2𝐶
*
𝜅,𝜏⌉ ≤ ⌊log2𝑁⌋, so scheme 𝒮𝑖,0 has

32

been run. Its iterates 𝑥𝑘 satisfy, with 1− 𝜏 = 2/𝑟,

𝑓(𝑥𝑘)− 𝑓 * ≤ 𝑐𝜅

𝐶2
𝑖

(𝑓(𝑥𝑘−1)− 𝑓 *)
2
𝑟

≤
(︂
𝑐𝜅

𝐶2
𝑖

)︂(1−(1−𝜏)𝑘)/𝜏
(𝑓(𝑥0)− 𝑓 *)(1−𝜏)𝑘

≤
(︂
𝑐𝜅(𝑓(𝑥0)− 𝑓 *)−𝜏

𝐶2
𝑖

)︂(1−(1−𝜏)𝑘)/𝜏
(𝑓(𝑥0)− 𝑓 *).

Now 𝐶𝑖 ≥ 𝐶*
𝜅,𝜏 = 𝑒1−𝜏 (𝑐𝜅)

1
2 (𝑓(𝑥0) − 𝑓 *)−

𝜏
2 and 𝐶𝑖𝑅 ≥ 𝑁 , therefore last iterate �̂�

satisfies

𝑓(�̂�)− 𝑓 * ≤ exp

(︂
−2(1− 𝜏)

1− (1− 𝜏)𝑁/𝐶𝑖

𝜏

)︂
(𝑓(𝑥0)− 𝑓 *).

As 𝑁 ≥ 𝐶𝑖, since

ℎ(𝜏) =
(1− 𝜏)

(︁
1− (1− 𝜏)

𝑁
𝐶𝑖

)︁
1− (1− 𝜏)

is decreasing with 𝜏 and 1
𝑁
> 𝜏 > 0, we have

𝑓(�̂�)− 𝑓 * ≤ exp

(︃
−2(𝑁 − 1)

(︃
1−

(︂
1− 1

𝑁

)︂𝑁/𝐶𝑖

)︃)︃
(𝑓(𝑥0)− 𝑓 *)

≤ exp

(︂
−2(𝑁 − 1)

(︂
1− exp

(︂
− 1

𝐶𝑖

)︂)︂)︂
(𝑓(𝑥0)− 𝑓 *)

≤ exp

(︂
−2

𝑁 − 1

𝐶𝑖

(︂
1− 1

2𝐶𝑖

)︂)︂
(𝑓(𝑥0)− 𝑓 *).

having used the facts that (1 + 𝑎𝑥)
𝑏
𝑥 ≤ exp(𝑎𝑏) if 𝑎𝑥 ≥ −1, 𝑏

𝑥
≥ 0 and 1− 𝑥 + 𝑥2

2
≥

exp(−𝑥) when 𝑥 ≥ 0. By assumption 𝐶*
𝜅,𝜏 ≥ 1, so 𝐶𝑖 ≥ 1 and finally

𝑓(�̂�)− 𝑓 * ≤ exp

(︂
−𝑁 − 1

𝐶𝑖

)︂
(𝑓(𝑥0)− 𝑓 *)

≤ exp

(︂
−𝑁 − 1

2𝐶*
𝜅,𝜏

)︂
(𝑓(𝑥0)− 𝑓 *)

≤ 𝑓(𝑥0)− 𝑓 *(︀
𝜏(𝐶*

𝜅,𝜏)−1(𝑁 − 1)/4 + 1
)︀ 2

𝜏

≤ 𝑓(𝑥0)− 𝑓 *(︁
𝜏(𝑓(𝑥0)− 𝑓 *)

𝜏
2 𝑒−1(𝑐𝜅)−

1
2 (𝑁 − 1)/4 + 1

)︁ 2
𝜏

.

using the fact that 𝑒𝜏 ≥ 1.

33

As shown in Corollary 2.2.3, theoretical efficiency of scheduled restarts is ensured
only for a sufficient number of iterations of the algorithm itself. Therefore 𝑁 needs
to be large enough to ensure the efficiency of the adaptive method. If 𝜏 = 0, then
naturally 𝐶*

𝜅,0 ≥ 1, therefore if 1
𝑁
> 𝜏 > 0 and 𝑁 is large, assuming 𝐶*

𝜅,𝜏 ≈ 𝐶*
𝜅,0, it

results 𝐶*
𝜅,𝜏 ≥ 1. This adaptive bound is similar to the one of Nesterov [2013a] to

optimize smooth strongly convex functions in the sense that we lose approximately
a log factor of the condition number of the function. However our assumptions are
weaker and we are able to tackle all regimes of the sharpness property, i.e. any
exponent 𝑟 ∈ [2,+∞], not just the strongly convex case. Finally the step size chosen
for the grid search was set to 2. Proof can adapted for a generic step size ℎ, the size
of the grid may be reduced but corresponding bounds will suffer an ℎ2 approximation
loss compared to the best schedule.

We end this section by analyzing the behavior of gradient descent in light of the
sharpness assumption.

2.2.3 Comparison to gradient descent

Given only the smoothness hypothesis, the gradient descent algorithm, recalled in
Appendix A.3, starts from a point 𝑥0 and outputs iterates 𝑥𝑡 = 𝒢(𝑥0, 𝑡) such that

𝑓(𝑥𝑡)− 𝑓 * ≤ 𝐿

𝑡
𝑑(𝑥0, 𝑋

*)2,

While accelerated methods use the last two iterates to compute the next one, simple
gradient descent algorithms use only the last iterate, so the algorithm can be seen as
(implicitly) restarting at each iteration. Its convergence can therefore be written for
𝑘 ≥ 1,

𝑓(𝑥𝑘+𝑡)− 𝑓 * ≤ 𝐿

𝑡
𝑑(𝑥𝑘, 𝑋

*)2. (2.15)

and we analyze it in light of the restart interpretation using the error bound in the
following proposition.

Proposition 2.2.5. Let 𝑓 be a smooth convex function satisfying (Smooth) with
parameters (2, 𝐿) and (Sharp) with parameters (𝑟, 𝜇) on a set 𝐾. Assume that we
are given 𝑥0 ∈ R𝑛 such that {𝑥| 𝑓(𝑥) ≤ 𝑓(𝑥0)} ⊂ 𝐾. Denote 𝑥𝑡 = 𝒢(𝑥0, 𝑡) the iterate
sequence generated by the gradient descent algorithm started at 𝑥0 to solve (P). Define

𝑡𝑘 = 𝑒1−𝜏𝑐𝜅(𝑓(𝑥0)− 𝑓 *)𝜏𝑒𝜏𝑘,

with 𝜅 and 𝜏 defined in (2.2) and 𝑐 = 𝑒2/𝑒 here. The precision reached after 𝑁 =∑︀𝑛
𝑘=1 𝑡𝑘 iterations is given by,

𝑓(𝑥𝑁)− 𝑓 * ≤ exp
(︀
−𝑒−1(𝑐𝜅)−1𝑁

)︀
(𝑓(𝑥0)− 𝑓 *) = 𝑂

(︀
exp(−𝜅−1𝑁)

)︀
, when 𝜏 = 0,

34

while,

𝑓(𝑥𝑁)− 𝑓 * ≤ 𝑓(𝑥0)− 𝑓 *

(𝜏𝑒−1(𝑐𝜅)−1(𝑓(𝑥0)− 𝑓 *)𝜏𝑁 + 1)
1
𝜏

= 𝑂
(︁
𝑁− 1

𝜏

)︁
, when 𝜏 > 0.

Proof. For a given 𝛾 ≥ 0, we construct a subsequence 𝑥𝜑(𝑘) of 𝑥𝑡 such that

𝑓(𝑥𝜑(𝑘))− 𝑓 * ≤ 𝑒−𝛾𝑘(𝑓(𝑥0)− 𝑓 *). (2.16)

Define 𝑥𝜑(0) = 𝑥0. Assume that (2.16) is true at iteration 𝑘 − 1, then combining
complexity bound (2.15) and (Sharp), for any 𝑡 ≥ 1,

𝑓(𝑥𝜑(𝑘−1)+𝑡)− 𝑓 * ≤ 𝑐𝜅

𝑡
(𝑓(𝑥𝜑(𝑘−1))− 𝑓 *)

2
𝑟

≤ 𝑐𝜅

𝑡
𝑒−𝛾 2

𝑟
(𝑘−1)(𝑓(𝑥0)− 𝑓 *)

2
𝑟 .

where 𝑐 = 𝑒2/𝑒, using that 𝑟2/𝑟 ≤ 𝑒2/𝑒. Taking 𝑡𝑘 = 𝑒𝛾(1−𝜏)𝑐𝜅(𝑓(𝑥0) − 𝑓 *)−𝜏𝑒𝛾𝜏𝑘 and
𝜑(𝑘) = 𝜑(𝑘 − 1) + 𝑡𝑘, (2.16) holds at iteration 𝑘. Using Lemma 2.2.1, we obtain at
iteration 𝑁 = 𝜑(𝑛) =

∑︀𝑛
𝑘=1 𝑡𝑘,

𝑓(𝑥𝑁)− 𝑓 * ≤ exp
(︀
−𝛾𝑒−𝛾(𝑐𝜅)−1𝑁

)︀
(𝑓(𝑥0)− 𝑓 *), if 𝜏 = 0,

and
𝑓(𝑥𝑁)− 𝑓 * ≤ 𝑓(𝑥0)− 𝑓 *

(𝜏𝛾𝑒−𝛾(𝑐𝜅)−1(𝑓(𝑥0)− 𝑓 *)𝜏𝑁 + 1)
1
𝜏

, if 𝜏 > 0.

These bounds are minimal for 𝛾 = 1 and the results follow.

We observe that restarting accelerated gradient methods reduces complexity from
𝑂(1/𝜀𝜏) to 𝑂(1/𝜀𝜏/2) compared to simple gradient descent. More general results on
the convergence of (sub)gradient descent algorithms under a Łojasiewicz inequality
assumption were developed by Bolte et al. [2015]. We extend now this restart scheme
to solve general convex optimization problem under an Hölderian error bound as-
sumption.

2.3 Universal scheduled restarts for convex functions

In this section we use the framework introduced by Nesterov [2015] to describe
smoothness of a function 𝑓 on a set 𝐽 ⊂ R𝑛. We recall that it assumes that there
exist 𝑠 ∈ [1, 2] and 𝐿 > 0 such that

‖∇𝑓(𝑥)−∇𝑓(𝑦)‖ ≤ 𝐿‖𝑥− 𝑦‖𝑠−1, for every 𝑥, 𝑦 ∈ 𝐽,

If the function is non smooth, it satisfies (Smooth) with 𝑠 = 1 and 𝐿 taken as the
maximum norm of subgradients on 𝐽 . Without further assumptions on 𝑓 , an optimal
algorithm to solve the convex optimization problem (P) is the universal fast gradi-

35

ent method [Nesterov, 2015]. Given a target accuracy 𝜀, the universal fast gradient
method starts at a point 𝑥0 and outputs after 𝑡 iterations a point 𝑥 , 𝒰(𝑥0, 𝜀, 𝑡), such
that

𝑓(𝑥)− 𝑓 * ≤ 𝜀

2
+
𝑐𝐿

2
𝑠𝑑(𝑥0, 𝑋

*)2

𝜀
2
𝑠 𝑡

2𝜌
𝑠

𝜀

2
, (2.17)

where 𝑐 is a constant (𝑐 = 8) and

𝜌 ,
3𝑠

2
− 1 (2.18)

is the optimal rate of convergence for 𝑠-smooth functions. More details about the
universal fast gradient method are given in Appendix A.1.

We will again assume that 𝑓 satisfies (Sharp) with parameters (𝑟, 𝜇) on a set
𝐾 ⊇ 𝑋*, i.e.

𝜇

𝑟
𝑑(𝑥,𝑋*)𝑟 ≤ 𝑓(𝑥)− 𝑓 *, for every 𝑥 ∈ 𝐾.

As mentioned in Section 2.1, if 𝑟 > 𝑠, smoothness or sharpness are local properties,
i.e. either 𝐽 or 𝐾 or both are bounded, our analysis is therefore local. In the following
we assume for simplicity, given an initial point 𝑥0, that smoothness and sharpness
are satisfied simultaneously on the sublevel set {𝑥| 𝑓(𝑥) ≤ 𝑓(𝑥0)}. The key difference
with the smooth case described in the previous section is that here we schedule both
the target accuracy 𝜀𝑘 used by the algorithm and the number of iterations 𝑡𝑘 made
at the 𝑘th run of the algorithm. Our scheme is described in Algorithm Universal
RESTART.

Algorithm 2 General scheduled restarts for convex minimization (Universal
RESTART)

Inputs : 𝑥0 ∈ R𝑛, 𝜀0 ≥ 𝑓(𝑥0)− 𝑓 *, 𝛾 ≥ 0 and a sequence 𝑡𝑘 for 𝑘 = 1, . . . , 𝑅.
for 𝑘 = 1, . . . , 𝑅 do

𝜀𝑘 := 𝑒−𝛾𝜀𝑘−1, 𝑥𝑘 := 𝒰(𝑥𝑘−1, 𝜀𝑘, 𝑡𝑘) (Universal RESTART)

end for
Output : �̂� := 𝑥𝑅

Our strategy is to choose a sequence 𝑡𝑘 that ensures

𝑓(𝑥𝑘)− 𝑓 * ≤ 𝜀𝑘,

for the geometrically decreasing sequence 𝜀𝑘. The overall complexity of our method
will then depend on the growth of 𝑡𝑘 as described in Lemma 2.2.1.

Proposition 2.3.1. Let 𝑓 be a convex function satisfying (Smooth) with parameter
(𝑠, 𝐿) on a set 𝐽 and (Sharp) with parameters (𝑟, 𝜇) on a set 𝐾. Given 𝑥0 ∈ R𝑛

assume that {𝑥|𝑓(𝑥) ≤ 𝑓(𝑥0)} ⊂ 𝐽 ∩𝐾. Run (Universal RESTART) scheme from 𝑥0

36

for a given 𝜀0 ≥ 𝑓(𝑥0)− 𝑓 * with

𝛾 = 𝜌, 𝑡𝑘 = 𝐶*
𝜅,𝜏,𝜌𝑒

𝜏𝑘, where 𝐶*
𝜅,𝜏,𝜌 , 𝑒1−𝜏 (𝑐𝜅)

𝑠
2𝜌 𝜀

− 𝜏
𝜌

0

where 𝜌 is defined in (2.18), 𝜅 and 𝜏 are defined in (2.2) and 𝑐 = 8𝑒2/𝑒 here. The
precision reached at the last point �̂� is given by,

𝑓(�̂�)− 𝑓 * ≤ exp
(︁
−𝜌𝑒−1(𝑐𝜅)−

𝑠
2𝜌𝑁

)︁
𝜀0 = 𝑂

(︁
exp(−𝜅− 𝑠

2𝜌𝑁)
)︁
, when 𝜏 = 0,

while,

𝑓(�̂�)− 𝑓 * ≤ 𝜀0(︁
𝜏𝑒−1(𝑐𝜅)−

𝑠
2𝜌 𝜀

𝜏
𝜌

0 𝑁 + 1
)︁− 𝜌

𝜏

= 𝑂
(︁
𝜅

𝑠
2𝜏𝑁− 𝜌

𝜏

)︁
, when 𝜏 > 0,

where 𝑁 =
∑︀𝑅

𝑘=1 𝑡𝑘 is total number of iterations.

Proof. Our goal is to ensure that the target accuracy is reached at each restart,
i.e.

𝑓(𝑥𝑘)− 𝑓 * ≤ 𝜀𝑘. (2.19)

By assumption, (2.19) holds for 𝑘 = 0. Assume that (2.19) is true at iteration 𝑘 − 1,
combining (Sharp) with the complexity bound in (2.17), then

𝑓(𝑥𝑘)− 𝑓 * ≤ 𝜀𝑘
2

+
𝑐𝜅(𝑓(𝑥𝑘−1)− 𝑓 *)

2
𝑟

𝜀
2
𝑠
𝑘 𝑡

2𝜌
𝑠
𝑘

𝜀𝑘
2

≤ 𝜀𝑘
2

+
𝑐𝜅

𝑡
2𝜌
𝑠
𝑘

𝜀
2
𝑟
𝑘−1

𝜀
2
𝑠
𝑘

𝜀𝑘
2
,

where 𝑐 = 8𝑒2/𝑒 using that 𝑟2/𝑟 ≤ 𝑒2/𝑒. By definition 𝜀𝑘 = 𝑒−𝛾𝑘𝜀0, so to ensure (2.19)
at iteration 𝑘 this imposes

𝑐𝜅𝑒𝛾
2
𝑟 𝑒−𝛾(2

𝑟
− 2

𝑠)𝑘

𝑡
2𝜌
𝑠
𝑘

𝜀
2
𝑟
− 2

𝑠
0 ≤ 1.

Rearranging terms in last inequality, using 𝜏 defined in (2.2),

𝑡𝑘 ≥ 𝑒𝛾
1−𝜏
𝜌 (𝑐𝜅)

𝑠
2𝜌 𝜀

− 𝜏
𝜌

0 𝑒
𝛾𝜏
𝜌
𝑘.

Choosing 𝑡𝑘 = 𝐶𝑒𝛼𝑘, where

𝐶 = 𝑒𝛾
1−𝜏
𝜌 (𝑐𝜅)

𝑠
2𝜌 𝜀

− 𝜏
𝜌

0 and 𝛼 =
𝛾𝜏

𝜌
,

37

and using Lemma 2.2.1 then yields,

𝑓(�̂�)− 𝑓 * ≤ exp(−𝛾𝑒−
𝛾
𝜌 (𝑐𝜅)−

𝑠
2𝜌𝑁)𝜀0, (2.20)

when 𝜏 = 0, while,

𝑓(�̂�)− 𝑓 * ≤ 𝜀0(︁
𝛾𝜏
𝜌
𝑒−

𝛾
𝜌 (𝑐𝜅)−

𝑠
2𝜌 𝜀

𝜏
𝜌

0 𝑁 + 1
)︁ 𝜌

𝜏

. (2.21)

when 𝜏 > 0. These bounds are minimal for 𝛾 = 𝜌 and the results follow.

This bound matches the lower bounds for optimizing smooth and sharp functions
[Nemirovskii and Nesterov, 1985, Page 6] up to constant factors. However, the rate
of convergence of this method is controlled by the ratio between 𝜏 and 𝜌. If these are
unknown, a log-scale grid search will not be able to reach the optimal rate even if 𝜌 is
known since we will miss the optimal rate, controlled by the ratio 𝜌/𝜏 , by a constant
factor. If both are known, in the case of non-smooth strongly convex functions for
example, a grid-search on 𝐶 recovers nearly the optimal bound. Now we will see that
if 𝑓 * is known, restart produces adaptive optimal rates.

2.4 Restart with termination criterion

Here, we assume that we know the optimum 𝑓 * of (P), or have an exact termi-
nation criterion. This is the case for example in zero-sum matrix games problems.
We assume again that 𝑓 satisfies (Smooth) with parameters (𝑠, 𝐿) on a set 𝐽 and
(Sharp) with parameters (𝑟, 𝜇) on a set 𝐾. Given an initial point 𝑥0 we assume
that smoothness and error bound are satisfied simultaneously on the sublevel set
{𝑥| 𝑓(𝑥) ≤ 𝑓(𝑥0)}. We use again the universal gradient method 𝒰 . Here however,
we can stop the algorithm when it reaches the target accuracy as we know the op-
timum 𝑓 *, i.e. we stop after 𝑡𝜀 inner iterations such that 𝑥 = 𝒰(𝑥0, 𝜀, 𝑡𝜀) satisfies
𝑓(𝑥)− 𝑓 * ≤ 𝜀, and write the output of this method

𝑥 , 𝒞(𝑥0, 𝜀).

Here we simply restart this method and decrease the target accuracy by a constant
factor after each restart. Our scheme is described in Algorithm 𝜀-RESTART.

Algorithm 3 Restart on criterion (𝜀-RESTART)

Inputs : 𝑥0 ∈ R𝑛, 𝑓 *, 𝛾 ≥ 0, 𝜀0 = 𝑓(𝑥0)− 𝑓 *

for 𝑘 = 1, . . . , 𝑅 do

𝜀𝑘 := 𝑒−𝛾𝜀𝑘−1, 𝑥𝑘 := 𝒞(𝑥𝑘−1, 𝜀𝑘) (𝜀-RESTART)

end for
Output : �̂� := 𝑥𝑅

38

The following result describes the convergence of this method. It relies on the
idea that it cannot do more iterations than the best scheduled restart to achieve the
target accuracy at each iteration.

Proposition 2.4.1. Let 𝑓 be a convex function satisfying (Smooth) with parameter
(𝑠, 𝐿) on a set 𝑄 and (Sharp) with parameters (𝑟, 𝜇) on a set 𝐾. Given 𝑥0 ∈ R𝑛

assume that {𝑥, 𝑓(𝑥) ≤ 𝑓(𝑥0)} ⊂ 𝑄 ∩𝐾. Run (𝜀-RESTART) scheme from 𝑥0 with
parameter 𝛾 = 𝜌. The precision reached at the point 𝑥𝑅 is given by,

𝑓(�̂�)− 𝑓 * ≤ exp
(︁
−𝜌𝑒−1(𝑐𝜅)−

𝑠
2𝜌𝑁

)︁
(𝑓(𝑥0)− 𝑓 *) = 𝑂

(︁
exp(−𝜅− 𝑠

2𝜌𝑁)
)︁
, when 𝜏 = 0,

while,

𝑓(�̂�)− 𝑓 * ≤ 𝑓(𝑥0)− 𝑓 *(︁
𝜏𝑒−1(𝑐𝜅)−

𝑠
2𝜌 (𝑓(𝑥0)− 𝑓 *)

𝜏
𝜌𝑁 + 1

)︁ 𝜌
𝜏

= 𝑂
(︁
𝜅

𝑠
2𝜏𝑁− 𝜌

𝜏

)︁
, when 𝜏 > 0,

where 𝑁 is the total number of iterations.

Proof. Given 𝛾 ≥ 0, linear convergence of our scheme is ensured by our choice of
target accuracies 𝜀𝑘. It remains to compute the number of iterations 𝑡𝜀𝑘 needed by
the algorithm before the 𝑘th restart. Following proof of Proposition 2.3.1, for 𝑘 ≥ 1
we know that target accuracy is necessarily reached after

𝑡𝑘 = 𝑒𝛾
1−𝜏
𝜌 (𝑐𝜅)

𝑠
2𝜌 𝜀

− 𝜏
𝜌

0 𝑒
𝛾𝜏
𝜌
𝑘

iterations, such that 𝑡𝜀𝑘 ≤ 𝑡𝑘. So (𝜀-RESTART) scheme achieves linear convergence
while needing less inner iterates than the scheduled restart presented in Proposi-
tion 2.3.1, its convergence is therefore at least as good. For a given 𝛾 bounds (2.20)
and (2.21) follow with 𝜀0 = 𝑓(𝑥0)− 𝑓 * and taking 𝛾 = 𝜌 is optimal.

Therefore if 𝑓 * is known, this method is adaptive to 𝜇 and 𝑟, contrary to the
general case in Proposition 2.3.1. It can even adapt to the local values of 𝐿 or 𝜇
as we use a criterion instead of a preset schedule. Here, stopping using 𝑓(𝑥𝑘) − 𝑓 *

implicitly yields optimal choices of 𝐶 and 𝜏 . A closer look at the proof shows that
the dependency in 𝛾 of this restart scheme is a factor ℎ(𝛾) = 𝛾𝑒−𝛾/𝜌 of the number
of iterations. Taking 𝛾 = 1, leads then to a suboptimal constant factor of at most
ℎ(𝜌)/ℎ(1) ≤ 𝑒/2 ≈ 1.3 for 𝜌 ∈ [1/2, 2], so running this scheme with 𝛾 = 1 makes it
parameter-free while getting nearly optimal bounds.

2.5 Composite problems & Bregman divergences
The restart schemes detailed so far focused on unconstrained problems in an Eu-

clidean setting. Here, we extend them to more general convex optimization problems
of the form

minimize 𝑓(𝑥) , 𝜑(𝑥) + 𝑔(𝑥), (Composite)

39

where 𝜑 is a convex function whose smoothness is described by parameters (𝐿, 𝑠),
such that

‖∇𝜑(𝑥)−∇𝜑(𝑦)‖* ≤ 𝐿‖𝑥− 𝑦‖𝑠−1 for every 𝑥, 𝑦 ∈ 𝐽, (Generic Smooth)

for a given norm ‖ · ‖ where ‖ · ‖* is its dual norm, and 𝑔 is a simple convex function
(the meaning of simple will be clarified later).

To exploit the smoothness of 𝜑 with respect to a generic norm, we assume that
we have access to a prox function ℎ with dom(𝑓) ⊂ dom(ℎ), strongly convex with
respect to the norm ‖ · ‖ with convexity parameter equal to one, which means

ℎ(𝑦) ≥ ℎ(𝑥) +∇ℎ(𝑥)𝑇 (𝑦 − 𝑥) +
1

2
‖𝑥− 𝑦‖2, for any 𝑥, 𝑦 ∈ dom(ℎ).

We define the Bregman divergence associated to ℎ as

𝐷ℎ(𝑦, 𝑥) = ℎ(𝑦)− ℎ(𝑥)−∇ℎ(𝑥)𝑇 (𝑦 − 𝑥), for 𝑥, 𝑦 ∈ dom(ℎ),

so that 𝐷ℎ(𝑦, 𝑥) ≥ 1
2
‖𝑥 − 𝑦‖2. For ℎ(𝑥) = 1

2
‖𝑥‖22, we get 𝐷ℎ(𝑦, 𝑥) = 1

2
‖𝑥 − 𝑦‖22 and

recover the Euclidean setting. Given the problem geometry, appropriate choices of
prox functions and associated Bregman divergences can lead to significant perfor-
mance gains in high dimensional settings.

We now formally state the assumption that 𝑔 is simple. Given 𝑥, 𝑦 ∈ dom(𝑓) and
𝜆 ≥ 0 we assume that

min
𝑧

{︀
𝑦𝑇 𝑧 + 𝑔(𝑧) + 𝜆𝐷ℎ(𝑧, 𝑥)

}︀
can be solved either in a closed form or by some fast computational procedure. Ex-
amples of such settings include sparse optimization problems, such as the LASSO,
where 𝜑(𝑥) = ‖𝐴𝑥 − 𝑏‖22, with 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, 𝑔(𝑥) = 𝜆‖𝑥‖1, with 𝜆 ≥ 0 and
ℎ(𝑥) = 1

2
‖𝑥‖2. This setting also includes constrained optimization problems, where

𝑔 is the indicator function of a closed convex set. We see in numerical experiments
that restart schemes applied in these two settings lead to significant performance
improvements.

To apply our analysis of restart schemes we need two things: an accelerated
algorithm that tackles such setting and an appropriate notion of sharpness. We first
introduce the notion of relative error bound.

Definition 2.5.1. A convex function 𝑓 is called relatively sharp with respect to a
strictly convex function ℎ on a set 𝐾 ⊂ dom(𝑓) iff there exist 𝑟 ≥ 1, 𝜇 > 0 such that

𝜇

𝑟
𝐷ℎ(𝑥,𝑋*)

𝑟
2 ≤ 𝑓(𝑥)− 𝑓 * for any 𝑥 ∈ 𝐾 (Relative Sharp)

where 𝐷ℎ(𝑥,𝑋*) = min𝑥*∈𝑋* 𝐷ℎ(𝑥, 𝑥*) and 𝐷ℎ is the Bregman divergence associated
to ℎ.

If ℎ = 1
2
‖𝑥‖22 we recover the definition of sharpness in the Euclidean setting (with

slightly modified constants). This assumption is as generic as our first one in (Sharp)
as it is satisfied if 𝑓 and ℎ are subanalytic [Bierstone and Milman, 1988, Th. 6.4].

40

The universal gradient is then the candidate in this setting. Given a target ac-
curacy 𝜀 and an initial point 𝑥0, it outputs, after 𝑡 iterations, a point 𝑥 = 𝒰(𝑥0, 𝜀, 𝑡)
such that

𝑓(𝑥)− 𝑓 * ≤ 𝜀

2
+
𝑐𝐿

2
𝑠𝐷ℎ(𝑥0, 𝑋

*)

𝜀
2
𝑠 𝑡

2𝜌
𝑠

𝜀

2
,

where 𝑐 = 16 here. All our previous results can then directly be transposed to the
setting here, as their proofs rely only on this convergence bound. We restate them in
this setting below. First if 𝜑 is known to be smooth (𝑠 = 2) the universal fast gradient
algorithm simplifies as the accelerated gradient algorithm (see Appendix A.2) and the
next Corollary generalizes Proposition 2.2.2.

Corollary 2.5.2. Let 𝜑, 𝑔, ℎ defining the composite problem (Composite) described
above with 𝜑 satisfying (Generic Smooth) with parameters (2, 𝐿) and 𝑓 = 𝜑 + 𝑔
satisfies the (Relative Sharp) condition with respect to ℎ with parameters (𝑟, 𝜇) on a
set 𝐾. Assume that we are given 𝑥0 ∈ R𝑛 such that {𝑥| 𝑓(𝑥) ≤ 𝑓(𝑥0)} ⊂ 𝐾. Run
(RESTART) from 𝑥0 with iteration schedule 𝑡𝑘 = 𝐶*

𝜅,𝜏𝑒
𝜏𝑘, for 𝑘 = 1, . . . , 𝑅, where

𝐶*
𝜅,𝜏 , 𝑒1−𝜏 (𝑐𝜅)

1
2 (𝑓(𝑥0)− 𝑓 *)−

𝜏
2 ,

with 𝜅 and 𝜏 defined in (2.2) and 𝑐 = 16𝑒2/𝑒. The precision reached at the last point
�̂� is given by,

𝑓(�̂�)− 𝑓 * ≤ exp
(︁
−2𝑒−1(𝑐𝜅)−

1
2𝑁
)︁

(𝑓(𝑥0)− 𝑓 *) = 𝑂
(︁

exp(−𝜅− 1
2𝑁)

)︁
, when 𝜏 = 0,

while,

𝑓(�̂�)− 𝑓 * ≤ 𝑓(𝑥0)− 𝑓 *(︁
𝜏𝑒−1(𝑓(𝑥0)− 𝑓 *)

𝜏
2 (𝑐𝜅)−

1
2𝑁 + 1

)︁ 2
𝜏

= 𝑂
(︁
𝜅

1
𝜏𝑁− 2

𝜏

)︁
, when 𝜏 > 0,

where 𝑁 =
∑︀𝑅

𝑘=1 𝑡𝑘 is the total number of iterations.

For general convex functions, the following Corollary generalizes Proposition 2.3.1.

Corollary 2.5.3. Let 𝜑, 𝑔, ℎ defining the composite problem (Composite) described
above with 𝜑 satisfying (Generic Smooth) with parameters (𝑠, 𝐿) on a set 𝐽 and 𝑓 =
𝜑+ 𝑔 satisfying (Relative Sharp) with respect to ℎ with parameters (𝑟, 𝜇) on a set 𝐾.
Given 𝑥0 ∈ R𝑛 assume that {𝑥| 𝑓(𝑥) ≤ 𝑓(𝑥0)} ⊂ 𝑄∩𝐾. Run (Universal RESTART)
scheme from 𝑥0 for given 𝜀0 ≥ 𝑓(𝑥0)− 𝑓 *,

𝛾 = 𝜌, 𝑡𝑘 = 𝐶*
𝜅,𝜏,𝜌𝑒

𝜏𝑘, where 𝐶*
𝜅,𝜏,𝜌 , 𝑒1−𝜏 (𝑐𝜅)

𝑠
2𝜌 𝜀

− 𝜏
𝜌

0

where 𝜌 is defined in (2.18), 𝜅 and 𝜏 are defined in (2.2) and 𝑐 = 16𝑒2/𝑒. The precision

41

reached at the last point �̂� is given by,

𝑓(�̂�)− 𝑓 * ≤ exp
(︁
−𝜌𝑒−1(𝑐𝜅)−

𝑠
2𝜌𝑁

)︁
𝜀0 = 𝑂

(︁
exp(−𝜅− 𝑠

2𝜌𝑁)
)︁
, when 𝜏 = 0,

while,

𝑓(�̂�)− 𝑓 * ≤ 𝜀0(︁
𝜏𝑒−1(𝑐𝜅)−

𝑠
2𝜌 𝜀

𝜏
𝜌

0 𝑁 + 1
)︁ 𝜌

𝜏

= 𝑂
(︁
𝜅

𝑠
2𝜏𝑁− 𝜌

𝜏

)︁
, when 𝜏 > 0,

where 𝑁 =
∑︀𝑅

𝑘=1 𝑡𝑘 is total number of iterations.

The results regarding adaptive schemes and those with termination criterion gen-
eralize similarly under the relative sharpness assumption.

2.6 Numerical results

We illustrate our results by testing our adaptive restart methods, denoted Adap
and Crit (𝜀-Restart), introduced respectively in Sections 2.2.2 and 2.4 on several
problems and compare them against simple gradient descent (Grad), accelerated
gradient methods (Acc), and the restart heuristic enforcing monotonicity (Mono in
[O’Donoghue and Candes, 2015]). For Adap we plot the convergence of the best
method found by grid search to compare with the restart heuristic. This implicitly
assumes that the grid search is run in parallel with enough servers. For Crit we use
the optimal 𝑓 * found by another solver. This gives an overview of its performance in
order to potentially approximate it along the iterations as with Polyak steps [Poljak,
1987]. All restart schemes are using the accelerated gradient with backtracking line
search detailed in the Supplementary Material, with large dots representing restart
iterations.

In Figures 2-1, we solve classification problems with various losses on the UCI
Sonar data set [Asuncion and Newman, 2007] with (𝑛, 𝑑) = (208, 60). For least
square loss on sonar data set, we observe much faster convergence of the restart
schemes compared to the accelerated method. These results were already observed
by O’Donoghue and Candes [2015]. For logistic loss, we observe that restart does not
provide much improvement. For hinge loss, we regularized by a squared norm and
optimize the dual, which means solving a quadratic problem with box constraints. We
observe here that the scheduled restart scheme converges much faster, while restart
heuristics may be activated too late. We observe similar results for the LASSO
problem. In general Crit ensures acceleration rates consistent with the theory but
Adap exhibits more consistent behavior. This highlights the benefits of a Hölderian
error bound assumption for these last two problems. Precisely quantifying sharpness
of the function from data/problem structure is a key open problem.

To account for the grid search effort, in Figure 2-2, we multiplied the number of
iterations made by the Adap method by the size of the grid. This is for the LASSO
problem on Sonar data set with a grid step size of 4. This shows that the benefits

42

of the restart schemes make the grid search effort acceptable both on paper and in
practice. More clever grid search strategies for scheduled restarts run in parallel would
even reduce the grid search effort.

0 200 400 600 800

Iterations

10
-10

10
-5

10
0

f(
x
)-

f
*

Grad

Acc

Mono

Adap

Crit

Iterations

0 500 1000

Iterations

10
-2

10
-1

10
0

f(
x
)-

f
*

Grad

Acc

Mono

Adap

Crit

Iterations

0 500 1000

Iterations

10
-10

10
-5

10
0

f(
x
)-

f
*

Grad

Acc

Mono

Adap

Crit

Iterations

0 500 1000

Iterations

10
-10

10
-5

10
0

f(
x
)-

f
*

Grad

Acc

Mono

Adap

Crit

Iterations

Figure 2-1 – Sonar data set. From top to bottom and left to right: least square
loss, logistic loss, dual SVM problem and LASSO. We use adaptive restarts (Adap),
gradient descent (Grad), accelerated gradient (Acc) and restart heuristic enforcing
monotonicity (Mono). Large dots represent the restart iterations. Regularization
parameters for dual SVM and LASSO were set to one.

2.7 Conclusion

We have shown that Hölderian error bounds that generically describe convex func-
tions can be optimally treated by restart schemes of fast convex optimization algo-
rithms for smooth or non-smooth functions. These restarts are shown to be robust
to misspecification of the parameters of the error bound as a log-scale grid search on
these parameters offer near-optimal rates for smooth convex functions. Schedules are
however still a drawback of our approach as they do not adapt to local geometries of
the function. Error bounds can indeed be formulated at the distance to a sublevel set
of the function instead of the set of minimizers. Our restart with criterion brings a
partial resolution of the question when 𝑓 * is known. Recently Fercoq and Qu [2017]
developed generic adaptive schemes for quadratic local error bounds that give theo-
retical guarantees of acceleration for ℓ1 regularized or constrained problems by restart

43

0 500 1000

Iterations

10
-10

10
-5

10
0

f(
x
)-

f
*

Grad

Acc

Mono

Adap

Crit

Figure 2-2 – Comparison of the methods for the LASSO problem on Sonar dataset
where number of iterations of the Adaptive method is multiplied by the size of the
grid. Grid search step size is set to 4.

schemes with criterion. Extending such results to sharp non-smooth problems such
as sparse recovery problems presented in next chapter is a potential future direction
of research.

44

Appendix

2.A Rounding issues
We presented convergence bounds for real sequences of iterate counts (𝑡𝑘)∞𝑘=1 but

in practice these are integer sequences. The following Lemma details the convergence
of our schemes for an approximate choice 𝑡𝑘 = ⌈𝑡𝑘⌉.
Lemma 2.A.1. Let 𝑥𝑘 be a sequence whose 𝑘th iterate is generated from previous one
by an algorithm that needs 𝑡𝑘 iterations and denote 𝑁 =

∑︀𝑅
𝑘=1 𝑡𝑘 the total number of

iterations to output a point �̂� = 𝑥𝑅. Suppose setting

𝑡𝑘 = ⌈𝐶𝑒𝛼𝑘⌉, 𝑘 = 1, . . . , 𝑅

for some 𝐶 > 0 and 𝛼 ≥ 0 ensures that objective values 𝑓(𝑥𝑘) converge linearly, i.e.

𝑓 (𝑥𝑘)− 𝑓 * ≤ 𝜈𝑒−𝛾𝑘, (2.22)

for all 𝑘 ≥ 0 with 𝜈 ≥ 0 and 𝛾 ≥ 0. Then precision at the output is given by,

𝑓(�̂�)− 𝑓 * ≤ 𝜈 exp(−𝛾𝑁/(𝐶 + 1)), when 𝛼 = 0,

and
𝑓(�̂�)− 𝑓 * ≤ 𝜈

(𝛼𝑒−𝛼𝐶−1𝑁 ′ + 1)
𝛾
𝛼

, when 𝛼 > 0,

where 𝑁 ′ = 𝑁 − log((𝑒𝛼−1)𝑒−𝛼𝐶−1𝑁+1)
𝛼

.

Proof. At the 𝑅th point generated, 𝑁 =
∑︀𝑅

𝑘=1 𝑡𝑘. If 𝑡𝑘 = ⌈𝐶⌉, define 𝜀 = ⌈𝐶⌉−𝐶
such that 0 ≤ 𝜀 < 1. Then 𝑁 = 𝑅(𝐶 + 𝜀), injecting it in (2.22) at the 𝑅th point,

𝑓(�̂�)− 𝑓 * ≤ 𝜈𝑒−𝛾 𝑁
𝐶+𝜀 ≤ 𝜈𝑒−𝛾 𝑁

𝐶+1 .

Now, if 𝑡𝑘 = ⌈𝐶𝑒𝛼𝑘⌉, define 𝜀𝑘 = ⌈𝐶𝑒𝛼𝑘⌉ − 𝐶𝑒𝛼𝑘, such that 0 ≤ 𝜀𝑘 < 1. On one
hand

𝑁 ≥
𝑅∑︁

𝑘=1

𝐶𝑒𝛼𝑘,

such that
𝑅 ≤ log ((𝑒𝛼 − 1)𝑒−𝛼𝐶−1𝑁 + 1)

𝛼
.

45

On the other hand,

𝑁 =
𝑅∑︁

𝑘=1

𝑡𝑘 =
𝐶𝑒𝛼

𝑒𝛼 − 1
(𝑒𝛼𝑅 − 1) +

𝑅∑︁
𝑘=1

𝜀𝑘

≤ 𝐶𝑒𝛼

𝑒𝛼 − 1
(𝑒𝛼𝑅 − 1) +𝑅

≤ 𝐶𝑒𝛼

𝑒𝛼 − 1
(𝑒𝛼𝑅 − 1) +

log ((𝑒𝛼 − 1)𝑒−𝛼𝐶−1𝑁 + 1)

𝛼
,

such that
𝑅 ≥ log (𝛼𝑒−𝛼𝐶−1𝑁 ′ + 1)

𝛼
.

Injecting it in (2.22) at the 𝑅th point the result follows.

46

Chapter 3

A brief introduction to sparse
problems

Sparsity has been studied early on by statisticians to select relevant features in
data fitting problem, see Guyon and Elisseeff [2003] for a review. A whole field, namely
compressed sensing, has then been dedicated to its analysis as it provides new coding-
decoding procedures that break Shannon compression rate barrier, see Candès and
Wakin [2008] for an introduction. Here we briefly recall models that tackle sparsity
assumptions and their structure for which geometrical analysis provides insights on
their optimization process.

3.1 Original sparse problems

The term sparsity has been extensively used to qualify diverse structures of vari-
ables that compress their information. Originally a vector is said to be sparse if it
has few non-zero coefficients. Formally, a vector 𝑥 ∈ R𝑑 is 𝑠-sparse if its support
Supp(𝑥) = {𝑖 ∈ J1, 𝑑K : 𝑥𝑖 ̸= 0} has cardinality at most 𝑠. Sparsity assumption can
be used for example in linear regression problems. Assume that we are given 𝑛 noisy
observations 𝑏1, . . . , 𝑏𝑛 of a 𝑠-sparse vector 𝑥* ∈ R𝑑 by data points 𝑎1, . . . , 𝑎𝑛 ∈ R𝑑

such that
𝑏𝑖 = 𝑎𝑇𝑖 𝑥𝑖 + 𝜂𝑖, for every 𝑖 ∈ J1, 𝑑K,

where 𝜂𝑖 are bounded i.i.d. noise. Simple least-square estimation can retrieve 𝑥*

if the number of samples 𝑛 is larger than the number of features 𝑑. However as it
does not exploit the sparsity assumption, estimated solution will be dense and some
coefficients only capture noise signal. Moreover if the number of samples is strictly
less than the number of features, least-square estimation simply fails.

3.1.1 Models

Several models have thus been developed to exploit sparsity assumption and re-
cover the original signal even if 𝑛 < 𝑑. When observations are not perturbed by noise
a straight strategy to recover original signal is to minimize the number of non-zero

47

coefficients of vectors satisfying the observations. However this problem is NP-hard
[Natarajan, 1995] so one rather seeks to solve its convex relaxation called Basis Pur-
suit [Chen et al., 2001] that reads

minimize ‖𝑥‖1
subject to 𝐴𝑥 = 𝑏

(3.1)

in variable 𝑥 ∈ R𝑑, where 𝐴 = (𝑎1, . . . , 𝑎𝑛)𝑇 ∈ R𝑛×𝑑 is the matrix of data points and
𝑏 = (𝑏1, . . . , 𝑏𝑛) ∈ R𝑛 is the vector of observations. To account for noise, a robust
version of (3.1) reads

minimize ‖𝑥‖1
subject to ‖𝐴𝑥− 𝑏‖2 ≤ 𝛿‖𝐴‖2, (3.2)

in variable 𝑥 ∈ R𝑑, where 𝛿 is an estimation of the level of noise and ‖𝐴‖2 is the
spectral norm of the observation matrix 𝐴.

Another approach to retrieve the original signal is to minimize a data fitting term
under sparsity constraints. As these latter are not convex, one consider the relaxed
versions that constrains the ℓ1 norm of the variable. Its penalized version is well
known as the LASSO [Tibshirani, 1996] problem that reads

minimize 1
2
‖𝐴𝑥− 𝑏‖22 + 𝜆‖𝑥‖1 (3.3)

in variable 𝑥 ∈ R𝑑, where 𝜆 ≥ 0 is a regularization parameter. Finally by looking
at the optimal conditions of the LASSO problem, another estimator called Dantzig
selector [Candes and Tao, 2007] was developed.

3.1.2 Recovery performance

The main question that drew interest of the compressed sensing community was
to certify that, by solving these problems, one can retrieve the original vector at least
approximatively, i.e. decode it from the observations. Precisely, they were interested
in the number of observations needed to recover the signal and the robustness to noise
of these procedures. Naturally the answer depends on properties of the observation
matrix 𝐴, i.e. how the original vector was encoded by linear observations.

In their seminal works Candès et al. [2006]; Candes and Tao [2006]; Donoho [2006]
show that for an original 𝑠-sparse vector, 𝑂(𝑠 log 𝑑) random observations of it are
sufficient to decode it by solving one of these problems. To this end, they introduce
the restricted isometric property defined below.

Definition 3.1.1. A matrix 𝐴 ∈ R𝑛×𝑑 satisfies the Restricted Isometric Property
(RIP) at level 𝑠, if there exists 𝛿𝑠 such that for any submatrix 𝐴𝑠 ∈ R𝑛×𝑠 and any
𝑠-sparse vector 𝑥,

(1− 𝛿𝑠)‖𝑥‖22 ≤ ‖𝐴𝑠𝑥‖22 ≤ (1 + 𝛿𝑠)‖𝑥‖22.
Candès et al. [2006]; Candes and Tao [2006] then proved that the RIP at level 𝑠

with sufficiently small parameter 𝛿𝑠 ensures recovery of 𝑠-sparse signals and that if

48

the matrix of observations 𝐴 is drawn from a Gaussian random distribution then the
RIP is satisfied.

Further assumptions on the observation matrix 𝐴 were then defined to ensure
recovery. Donoho and Huo [2001]; Feuer and Nemirovski [2003]; Cohen et al. [2009]
notably introduced the null space property defined below.

Definition 3.1.2. A matrix 𝐴 satisfies the Null Space Property (NSP) at order 𝑠
with constant 𝛼 ≥ 1 if for any support 𝑆 ⊂ {1, . . . 𝑝} of cardinality at most 𝑠 and any
𝑧 ∈ Null(𝐴) ∖ {0},

𝛼‖𝑧𝑆‖1 < ‖𝑧𝑆𝑐‖1,
where Null(𝐴) is the null space of 𝐴, and 𝑧𝑆 ∈ R𝑝 denotes the vector obtained by
zeroing all coefficients of 𝑧 that are not in 𝑆.

NSP provides sufficient and necessary conditions for exact recovery of signals in the
absence of noise when solving problem(3.1). For LASSO problem (3.3) or Dantzig
selector, numerous properties were defined, Van De Geer et al. [2009] summarized
and linked them. Minimal conically restricted singular values defined by Bickel et al.
[2009] that read for a matrix 𝐴,

𝜅(𝑠, 𝛼) = inf
𝑆∈J1,𝑝K

Card(𝑆)≤𝑠

inf
‖𝑥𝑆𝑐‖1≤𝛼‖𝑥𝑆‖1

‖𝑥𝑆‖2=1

‖𝐴𝑥‖2

appeared to be the essential quantity that control exact and robust recovery. These
assumptions were linked early to Kolmogorov width [Kashin and Temlyakov, 2007]
or Gaussian widths [Chandrasekaran et al., 2012; Raskutti et al., 2010] of sections of
unit balls which allow a simpler and more geometrical approach to these problems.
Overall, these works provide a fine description of the geometry of the problem that
can be used for optimization purposes.

3.2 Optimization procedures
On an optimization point of view problems (3.1) and (3.2) on one side and prob-

lem (3.3) have different structures and are therefore tackled by different procedures
that we present now.

3.2.1 Basis pursuits

As the ℓ1 norm is non-smooth, problems (3.1) and (3.2) belong to the class of
non-smooth convex problems and shall have complexity 𝑂(1/

√
𝜀). However analysis

does not take into account the structure of the problem, namely that the ℓ1 norm can
be written as a maximum of linear functions. In his seminal paper, Nesterov [2005]
presented how this additional information can be exploited to get an approximate
solution in 𝑂(1/𝜀) iterations by smoothing the objective function and applying his
accelerated algorithm for smooth convex optimization. This remark was exploited
by Becker, Bobin and Candès [2011] on problems (3.1) and (3.2). They also provide

49

restarting heuristics of their algorithm, called continuation steps, that show remark-
able performance but they do not explain this phenomenon.

Łojasiewicz inequality can then help. While the ℓ1 norm is clearly not strongly
convex, it is sharp, i.e. it satisfies

𝛾𝑑(𝑥,𝑋*) ≤ 𝑓(𝑥)− 𝑓 *, for every 𝑥 ∈ R𝑑

where 𝑓(𝑥) = ‖𝑥‖1, 𝑓 * = 0, 𝑋* = 0, 𝑑(𝑥,𝑋*) is the ℓ1 distance of 𝑥 to the minimizer
and 𝛾 = 1. This property generalizes to problem (3.1) and can be exploited to
produce linearly convergent restart schemes as shown in Chapter 4. The sharpness
constant depends then on the data 𝐴 that defines the set of constraints. Interestingly,
sharpness can be estimated by the same conic properties of the problem that control
recovery performance. A finer analysis in Chapter 4 show that a single quantity
controls then both statistical and computational performance.

3.2.2 LASSO

The LASSO problem (3.3) drew more attention of the optimization community
for its applicability in prediction problems. Accelerated methods for smooth convex
composite problems apply in this setting, they were first developed by Beck and
Teboulle [2009] with FISTA algorithm. As the ℓ1 norm is decomposable, coordinate
accelerated methods were also proposed [Fercoq and Richtárik, 2015; Lee and Sidford,
2013; Nesterov, 2012]. Some specialized schemes discard features that are certified to
be zero along the optimization process see Fercoq et al. [2015] and references herein.
Finally homotopy methods such LARS [Efron et al., 2004] build the regularization
path of the method, i.e. the curve of solutions for varying regularization parameters.

In the undetermined case, where 𝑛 < 𝑑, problem (3.3) is convex but not strongly
convex. However here again restart schemes were shown to outperform simple acceler-
ated methods [O’donoghue and Candes, 2015]. Further properties of the problem were
explored to prove linear convergence of a simple gradient descent [Yen et al., 2014;
Agarwal et al., 2010]. A closer inspection of the structure highlighted that LASSO
problem satisfies the Łojasiewicz inequality with exponent 𝑟 = 2 [Bolte et al., 2015;
Zhang, 2017], which explained once more why restart schemes accelerate standard
methods and allow theoretical guarantees as done by Fercoq and Qu [2016, 2017].

3.3 Generalized sparse structure

Original sparsity is one assumption among others that present how some variables
can be compressed. For example if the variable is a matrix rather than a vector,
compression can mean low rank of the matrix. Several point of views were taken to
ensure such compressed structures, loosely called sparse structures. A first approach
is to consider these structures as the description of variables by a finite set of "atoms"
[Chandrasekaran et al., 2012]. The norm induced by the convex hull of these atoms
can then be used to build specific estimators. Their geometrical definition has then

50

been used to analyze recovery performance of problems of the form (3.1), (3.2) or (3.3)
[Raskutti et al., 2010].

Combinatorial penalties can also be used to induce sparse structures on the vari-
ables. Original sparsity for example is the cardinality of the support of the variable.
It was generalized by using submodular functions on sets defined by a vector, like its
support [Bach et al., 2013]. Their continuous extensions can then be used as regular-
izers for machine learning problems [Bach et al., 2012]. Furthermore by identifying
the underlying combinatorial problem, this approach provides practical operators for
the resulting regularizer. Notice that generally the support function of the symmetric
base polytope of the support function is the dual norm of an atomic norm, such that
both point of views merge.

Finally several frameworks attempt to unify sparse structures under generic as-
sumptions to identify their statistical properties [Negahban et al., 2009]. Recovery
performances of corresponding problems require then generalization of the previous
properties as done e.g. by Juditsky et al. [2014]; Oymak and Hassibi [2010].

51

52

Chapter 4

On computational and statistical
performances of sparse recovery
problems

Chapter Abstract

In the past years, sparse recovery problems have received a lot of attention
from various perspectives. On one side, an extensive literature explores
attainable statistical performance, that is, the possibility to retrieve the
underlying original signal, depending on the number of observations or
the noise level. On the other side, a long list of algorithms now solve
these problems at a low computational cost. Here, we provide evidence
that these two aspects are intimately related. Loosely stated, the more
accurate the recovery is, the faster it is to compute. As a first step, we
develop a linearly convergent restart scheme for exact recovery whose rate
is controlled by the recovery threshold of the problem. Then, we analyze
the underlying conic geometry of sparse recovery problems. On the statis-
tical side, minimal conically-restricted singular values of the observation
matrix control robust recovery performance. On the computational side,
Renegar’s condition number, generalizing classical condition numbers in
linear algebra to conic systems, is shown to control computational com-
plexity of optimality certificates for exact recovery and the restart scheme
we present. Numerical experiments illustrate its impact for several other
classical algorithms. By observing that the worst-case value of this al-
gorithmic complexity measure taken over all signals matches the minimal
conically-restricted singular value, we argue that, in these problems, a sin-
gle parameter directly controls computational complexity and statistical
recovery performance

53

Introduction

Sparse recovery problems have received a lot of attention from various perspec-
tives. On one side, an extensive literature explores the limits of recovery performance.
On the other side, a long list of algorithms now solve these problems very efficiently.
Early on, it was noticed empirically by e.g. Donoho and Tsaig [2008], that recovery
problems which are easier to solve from a statistical point of view (i.e., where more
samples are available), are also easier to solve numerically. Here, we show that these
two aspects are indeed intimately related.

Recovery problems consist in retrieving a signal 𝑥*, lying in some Euclidean space
𝐸, given linear observations. If the signal is “sparse", namely if it can be efficiently
compressed, a common approach is to minimize the corresponding sparsity inducing
norm ‖ · ‖ (e.g. the ℓ1 norm in classical sparse recovery). The exact sparse recovery
problem then reads

minimize ‖𝑥‖
subject to 𝐴(𝑥) = 𝑏,

(4.1)

in the variable 𝑥 ∈ 𝐸, where 𝐴 is a linear operator on 𝐸 and 𝑏 = 𝐴(𝑥*) is the vector of
observations. If the observations are affected by noise a robust version of this problem
is written as

minimize ‖𝑥‖
subject to ‖𝐴(𝑥)− 𝑏‖2 ≤ 𝜀,

in the variable 𝑥 ∈ 𝐸, where ‖ · ‖2 is the Euclidean norm and 𝜀 > 0 is a tolerance to
noise. In penalized form, this is

minimize ‖𝑥‖+ 𝜆‖𝐴(𝑥)− 𝑏‖22

in the variable 𝑥 ∈ 𝐸 where 𝜆 > 0 is a penalization parameter. This last problem is
known as the LASSO [Tibshirani, 1996] in the ℓ1 case.

When 𝑥* has no more than 𝑠 non zero values, Donoho and Tanner [2005] and
Candes and Tao [2006] have shown that, for certain linear operators 𝐴, 𝑂(𝑠 log 𝑝)
observations suffice for stable recovery of 𝑥* by solving the exact formulation (4.1)
using the ℓ1 norm (a linear program). These results have then been generalized to
many other recovery problems with various assumptions on signal structure (e.g.,
where 𝑥 is a block-sparse vector, a low-rank matrix, etc.) and corresponding convex
relaxations were developed in those cases (see e.g. Chandrasekaran et al. [2012] and
references therein). Recovery performance is often measured in terms of the number
of samples required to guarantee exact or robust recovery given a level of noise.

On the computational side, many algorithms were developed to solve these prob-
lems at scale. Besides specialized methods such as LARS [Efron et al., 2004], FISTA
[Beck and Teboulle, 2009] and NESTA [Becker, Bobin and Candès, 2011], solvers
use accelerated gradient methods to solve robust recovery problems, with efficient
and flexible implementations covering a wide range of compressed sensing instances
developed by e.g. Becker, Candès and Grant [2011]. Recently, linear convergence
results have been obtained for the LASSO [Agarwal et al., 2010; Yen et al., 2014;

54

Zhou et al., 2015] using variants of the classical strong convexity assumption. Some
restart schemes have also been developed in e.g. [O’Donoghue and Candes, 2015;
Su et al., 2014; Giselsson and Boyd, 2014] while Fercoq and Qu [2016] showed that
generic restart schemes can offer linear convergence given a rough estimate of the
behavior of the function around its minimizers.

As mentioned above, Donoho and Tsaig [2008] was one of the first reference to
connect statistical and computational performance in this case, showing empirically
that recovery problems which are easier to solve from a statistical point of view (i.e.,
where more samples are available), are also easier to solve numerically (using homo-
topy methods). More recently, Chandrasekaran and Jordan [2013]; Amelunxen et al.
[2014] studied computational and statistical trade offs for increasingly tight convex
relaxations of shrinkage estimators. They show that recovery performance is directly
linked to the Gaussian squared-complexity of the tangent cone with respect to the
constraint set and study the complexity of several convex relaxations. In [Chan-
drasekaran and Jordan, 2013; Amelunxen et al., 2014] however, the structure of the
convex relaxation is varying and affecting both complexity and recovery performance,
while in [Donoho and Tsaig, 2008] and in what follows, the structure of the relaxation
is fixed, but the data (i.e. the observation matrix 𝐴) varies.

Here, as a first step, we study the exact recovery case and show that the null space
property introduced by Cohen et al. [2009] can be seen as a measure of sharpness on
the optimum of the sparse recovery problem. On one hand this allows us to develop
linearly convergent restart schemes whose rate depends on this sharpness. On the
other hand we recall how the null space property is linked to the recovery threshold
of the sensing operator 𝐴 for random designs, thus producing a clear link between
statistical and computational performance.

We then analyze the underlying conic geometry of recovery problems. Robust
recovery performance is controlled by a minimal conically restricted singular value.
We recall Renegar’s condition number and show how it affects the computational
complexity of optimality certificates for exact recovery and the linear convergence
rate of restart schemes. By observing that the minimal conically restricted singular
value matches the worst case value of Renegar’s condition number on sparse signals,
we provide further evidence that a single quantity controls both computational and
statistical aspects of recovery problems. Numerical experiments illustrate its impact
on various classical algorithms for sparse recovery.

The first two sections focus on the ℓ1 case for simplicity. We generalize our results
to non-overlapping group norms and the nuclear norm in a third section.

Notations

For a given integer 𝑝 ≥ 1, J1, 𝑝K denotes the set of integers between 1 and 𝑝. For
a given subset 𝑆 ⊂ J1, 𝑝K, we denote 𝑆𝑐 = J1, 𝑝K ∖ 𝑆 its complementary and Card(𝑆)
its cardinality. For a given vector 𝑥 ∈ R𝑝, we denote Supp(𝑥) = {𝑖 ∈ J1, 𝑝K : 𝑥𝑖 ̸= 0}
the support of 𝑥, ‖𝑥‖0 = Card(Supp(𝑥)) its sparsity and ‖𝑥‖𝑝 its 𝑝-norm. For a
given vector 𝑥 and integer subset 𝑆 ⊂ J1, 𝑝K, 𝑥𝑆 ∈ R𝑝 denotes the vector obtained by
zeroing all coefficients of 𝑥 that are not in 𝑆. For a given linear operator or matrix 𝐴,

55

we denote Null(𝐴) its null space, ℑ(𝐴) its range, and ‖𝑋‖2 its operator norm with
respect to the Euclidean norm (for matrices this is the spectral norm). The identity
operator is denoted I. In a linear topological space 𝐸 we denote int(𝐹) the interior
of 𝐹 ⊂ 𝐸. Finally for a given real 𝑎, we denote ⌈𝑎⌉ the smallest integer larger than
or equal to 𝑎 and ⌊𝑎⌋ the largest integer smaller than or equal to 𝑎.

4.1 Recovery performance and linear convergent restart
scheme for exact recovery

In this section and the following one, we discuss sparse recovery problems using
the ℓ1 norm. Given a matrix 𝐴 ∈ R𝑛×𝑝 and observations 𝑏 = 𝐴𝑥* on a signal 𝑥* ∈ R𝑝,
recovery is performed by solving the ℓ1 minimization program

minimize ‖𝑥‖1
subject to 𝐴𝑥 = 𝑏

(ℓ1 recovery)

in the variable 𝑥 ∈ R𝑝.
In what follows, we show that the Null Space Property condition (recalled below)

can be seen as measure of sharpness for ℓ1-recovery of a sparse signals 𝑥*, with

‖𝑥‖1 − ‖𝑥*‖1 > 𝛾‖𝑥− 𝑥*‖1 (Sharp)

for any 𝑥 ̸= 𝑥* such that 𝐴𝑥 = 𝑏, and some 0 ≤ 𝛾 < 1. This first ensures that 𝑥* is
the unique minimizer of problem (ℓ1 recovery) but also has important computational
implications. It allows us to produce linear convergent restart schemes whose rates
depend on sharpness. By connecting null space property to recovery threshold for
random observation matrices, we thus get a direct link between computational and
statistical aspects of sparse recovery problems.

4.1.1 Null space property & sharpness for exact recovery

Although the definition of null space property appeared in earlier work [Donoho
and Huo, 2001; Feuer and Nemirovski, 2003] the terminology of restricted null space
is due to Cohen et al. [2009]. The following definition differs slightly from the original
one in order to relate it to intrinsic geometric properties of the problem in Section 4.2.

Definition 4.1.1. (Null Space Property) The matrix 𝐴 satisfies the Null Space
Property (NSP) on support 𝑆 ⊂ J1, 𝑝K with constant 𝛼 ≥ 1 if for any 𝑧 ∈ Null(𝐴)∖{0},

𝛼‖𝑧𝑆‖1 < ‖𝑧𝑆𝑐‖1. (NSP)

The matrix 𝐴 satisfies the Null Space Property at order 𝑠 with constant 𝛼 ≥ 1 if it
satisfies it on every support 𝑆 of cardinality at most 𝑠.

The Null Space Property is a necessary and sufficient condition for the convex
program (ℓ1 recovery) to recover all signals up to some sparsity threshold. Necessity

56

will follow from results recalled in Section 4.2.2. We detail sufficiency of (NSP) using
sharpness in the following proposition.

Proposition 4.1.2. Given a coding matrix 𝐴 ∈ R𝑛×𝑝 satisfying (NSP) at order 𝑠 with
constant 𝛼 ≥ 1, if the original signal 𝑥* is 𝑠-sparse, then for any 𝑥 ∈ R𝑝 satisfying
𝐴𝑥 = 𝑏, 𝑥 ̸= 𝑥*, we have

‖𝑥‖1 − ‖𝑥*‖1 >
𝛼− 1

𝛼 + 1
‖𝑥− 𝑥*‖1.

This implies signal recovery, i.e. optimality of 𝑥* for (ℓ1 recovery), and the sharpness
bound (Sharp) with 𝛾 = 𝛼−1

𝛼+1
.

Proof. The proof follows the one in Cohen et al. [2009, Theorem 4.4]. Let
𝑆 = supp(𝑥*), with Card(𝑆) ≤ 𝑠, and let 𝑥 ̸= 𝑥* such that 𝐴𝑥 = 𝑏, so 𝑧 = 𝑥−𝑥* ̸= 0
satisfies 𝐴𝑧 = 0. Then

‖𝑥‖1 = ‖𝑥*𝑆 + 𝑧𝑆‖1 + ‖𝑧𝑆𝑐‖1
≥ ‖𝑥*𝑆‖1 − ‖𝑧𝑆‖1 + ‖𝑧𝑆𝑐‖1
= ‖𝑥*‖1 + ‖𝑧‖1 − 2‖𝑧𝑆‖1.

Now as 𝐴 satisfies (NSP) on support 𝑆,

‖𝑧‖1 = ‖𝑧𝑆‖1 + ‖𝑧𝑆𝑐‖1 > (1 + 𝛼)‖𝑧𝑆‖1

hence

‖𝑥‖1 − ‖𝑥*‖1 >
𝛼− 1

𝛼 + 1
‖𝑧‖1 =

𝛼− 1

𝛼 + 1
‖𝑥− 𝑥*‖1.

As 𝛼 ≥ 1, this implies that 𝑥* is the solution of program (ℓ1 recovery) and the
corresponding sharpness bound.

Sharpness is a crucial property for optimization problems that can be exploited
to accelerate the performance of classical optimization algorithms [Nemirovskii and
Nesterov, 1985; Roulet and d’Aspremont, 2017]. Before that we remark that it is in
fact equivalent to (NSP) at order 𝑠.

Proposition 4.1.3. Given a matrix 𝐴 ∈ R𝑛×𝑝 such that problem (ℓ1 recovery) is
sharp on every 𝑠-sparse signal 𝑥*, i.e. there exists 0 ≤ 𝛾 < 1 such that

‖𝑥‖1 − ‖𝑥*‖1 > 𝛾‖𝑥− 𝑥*‖1,

for any 𝑥 ̸= 𝑥* such that 𝐴𝑥 = 𝐴𝑥*. Then, 𝐴 satisfies (NSP) at order 𝑠 with constant
𝛼 = 1+𝛾

1−𝛾
≥ 1.

Proof. Let 𝑆 ⊂ J1, 𝑝K with Card(𝑆) ≤ 𝑠 and 𝑧 ∈ Null(𝐴), 𝑧 ̸= 0, such that
𝐴𝑧𝑆 = −𝐴𝑧𝑆𝑐 and 𝑧𝑆 ̸= −𝑧𝑆𝑐 . Using sharpness of problem (ℓ1 recovery) with 𝑥* = 𝑧𝑆,

57

and 𝑥 = −𝑧𝑆𝑐 , we get

‖𝑧𝑆𝑐‖1 − ‖𝑧𝑆‖1 > 𝛾‖𝑧‖1 = 𝛾‖𝑧𝑆‖1 + 𝛾‖𝑧𝑆𝑐‖1.

Rearranging terms and using 𝛾 < 1, this reads

‖𝑧𝑆𝑐‖1 >
1 + 𝛾

1− 𝛾 ‖𝑧𝑆‖1,

which is (NSP) on support 𝑆 with the announced constant. As 𝑆 was taken arbitrarily,
this means (NSP) holds at order 𝑠.

4.1.2 Restarting first-order methods

In this section, we seek to solve the recovery problem (ℓ1 recovery) and exploit the
sharpness bound (Sharp). The NESTA algorithm [Becker, Bobin and Candès, 2011]
uses the smoothing argument of Nesterov [2013a] to solve (ℓ1 recovery). In practice,
this means using the optimal algorithm of Nesterov [1983] to minimize

𝑓𝜀(𝑥) , sup
‖𝑢‖∞≤1

{︂
𝑢𝑇𝑥− 𝜀

2𝑝
‖𝑢‖22

}︂
for some 𝜀 > 0, which approximates the ℓ1 norm uniformly up to 𝜀/2. This is
the classical Huber function, which has a Lipschitz continuous gradient with constant
equal to 𝑝/𝜀. Overall given an accuracy 𝜀 and a starting point 𝑥0 this method outputs
after 𝑡 iterations a point 𝑥 = 𝒜(𝑥0, 𝜀, 𝑡) such that

‖𝑥‖1 − ‖�̂�‖1 ≤
2𝑝‖𝑥0 − �̂�‖22

𝜀𝑡2
+
𝜀

2
, (4.2)

for any �̂� solution of problem (ℓ1 recovery). Now if the sharpness bound is satis-
fied, restarting this method, as described in the (Restart) scheme presented below,
accelerates its convergence.

Algorithm 4 Restart Scheme (Restart)

Input: Initial point 𝑦0 ∈ R𝑝, initial gap 𝜀0 ≥ ‖𝑦0‖1 − ‖�̂�‖1, decreasing factor 𝜌,
restart clock 𝑡
For 𝑘 = 1 . . . , 𝐾 compute

𝜀𝑘 = 𝜌𝜀𝑘−1, 𝑦𝑘 = 𝒜(𝑦𝑘−1, 𝜀𝑘, 𝑡) (Restart)

Output: A point 𝑦 = 𝑦𝐾 approximately solving (ℓ1 recovery).

58

Optimal restart scheme

We begin by analyzing an optimal restart scheme assuming the sharpness constant
is known. We use a non-integer clock to highlight its dependency to the sharpness.
Naturally clock and number of restarts must be integer but this does not affect much
bounds as detailed in Appendix 4.A. The next proposition shows that algorithm 𝒜
needs a constant number of iterations to decrease the gap by a constant factor, which
means restart leads to linear convergence.

Proposition 4.1.4. Given a coding matrix 𝐴 ∈ R𝑛×𝑝 and a signal 𝑥* ∈ R𝑝 such that
the sharpness bound (Sharp) is satisfied with 𝛾 > 0, i.e.

‖𝑥‖1 − ‖𝑥*‖1 > 𝛾‖𝑥− 𝑥*‖1,

for any 𝑥 ̸= 𝑥* such that 𝐴𝑥 = 𝐴𝑥*, running the (Restart) scheme with 𝑡 ≥ 2
√
𝑝

𝛾𝜌

ensures
‖𝑦𝑘‖1 − ‖𝑥*‖1 ≤ 𝜀𝑘, (4.3)

at each iteration, with 𝑥* the unique solution of problem (ℓ1 recovery). Using optimal
parameters

𝜌* = 𝑒−1 𝑎𝑛𝑑 𝑡* =
2𝑒
√
𝑝

𝛾
, (4.4)

we get a point 𝑦 such that

‖𝑦‖1 − ‖𝑥*‖1 ≤ exp

(︂
− 𝛾

2
√
𝑝
𝑒𝑁

)︂
𝜀0. (4.5)

after running a total of 𝑁 inner iterations of Algorithm Restart with 𝑡 = 𝑡* (hence
𝑁/𝑡 restarts).

Proof. By the choice of 𝜀0, (4.3) is satisfied for 𝑘 = 0. Assuming it holds at
iteration 𝑘, combining sharpness bound (Sharp) and complexity bound (4.2) leads to,
for 𝑥 = 𝒜(𝑦𝑘−1, 𝜀𝑘, 𝑡),

‖𝑥‖1 − ‖𝑥*‖1 ≤
2𝑝(‖𝑦𝑘−1‖1 − ‖𝑥*‖1)2

𝛾2𝜀𝑘𝑡2
+
𝜀𝑘
2

≤ 4𝑝

𝜌2𝛾2𝑡2
𝜀𝑘
2

+
𝜀𝑘
2
.

Therefore after 𝑡 ≥ 2
√
𝑝

𝛾𝜌
iterations, the method has achieved the decreased accuracy 𝜀𝑘

which proves (4.3). The overall complexity after a total of 𝑁 inner iterations, hence
𝑁/𝑡 restarts, is then

‖𝑦‖1 − ‖𝑥*‖1 ≤ 𝜌𝑁/𝑡𝜀0.

If 𝛾 is known, using exactly 2
√
𝑝

𝛾𝜌
inner iterations at each restart leads to

‖𝑦‖1 − ‖𝑥*‖1 ≤ exp

(︂
𝛾

2
√
𝑝
𝑁𝜌 log 𝜌

)︂
𝜀0.

59

Optimizing in 𝜌 yields 𝜌* = 𝑒−1, and with 𝑡* inner iterations the complexity bound
(4.5) follows.

To run NESTA, 𝐴𝑇𝐴 is assumed to be an orthogonal projector (often the case
in compressed sensing applications) such that the projection on the feasible set is
easy. Becker, Bobin and Candès [2011] already studied restart schemes that they
called “acceleration with continuation". However their restart criterion depends on
the relative variation of objective values, not on the number of iterates, and no linear
convergence was proven. We further note that linear convergence of restart schemes
only requires an assumption of the form

𝑓(𝑥)− 𝑓 * ≥ 𝛾𝑑(𝑥,𝑋*), (4.6)

where 𝑑(𝑥,𝑋*) is the distance (in any norm) from 𝑥 to the set of minimizers of the
objective function 𝑓 (here 𝑓(𝑥) = ‖𝑥‖1). This type of bound is known as Łojasiewicz’s
inequality, studied for example in Bolte et al. [2007] for non-smooth convex functions.
Here (NSP) ensures that the set of minimizers is reduced to a singleton, the original
signal.

Practical restart scheme

Several parameters are needed to run the optimal scheme above. The optimal
decreasing factor is independent of the data. The initial gap 𝜀0 can be taken as ‖𝑦0‖1
for 𝐴𝑦0 = 𝑏. The sharpness constant 𝛾 is for its part mostly unknown such that we
cannot choose the number 𝑡* of inner iterations a priori. However, given a budget of
iterations 𝑁 , a log scale grid search can be performed on the optimal restart clock to
get nearly optimal rates as detailed in the following corollary (contrary to the general
results in [Roulet and d’Aspremont, 2017], the sharpness exponent is known here,
simplifying the parameter search).

Corollary 4.1.5. Given a coding matrix 𝐴 ∈ R𝑛×𝑝, a signal 𝑥* ∈ R𝑝 such that the
sharpness bound (Sharp) is satisfied with 𝛾 > 0, a budget of 𝑁 iterations, run the
following schemes from an initial point 𝑦0

(Restart) with 𝑡 = ℎ𝑗, 𝑗 = 1, . . . , ⌊logℎ𝑁⌋

with ℎ the grid search precision. Stop restart iteration when the total number of
iterations has exceeded the budget 𝑁 . Then, provided that 𝑁 ≥ ℎ𝑡*, where 𝑡* is
defined in (4.4), at least one of these restart schemes achieves a precision given by

‖𝑦‖1 − ‖𝑥*‖1 ≤ exp

(︂
− 𝛾

2ℎ
√
𝑝
𝑒𝑁

)︂
𝜀0. (4.7)

Overall running the logarithmic grid search has a complexity logℎ𝑁 times higher than
running 𝑁 iterations in the optimal scheme.

Proof. All schemes stop after at most 𝑁 + ℎ𝑗 ≤ 2𝑁 iterations. As we assumed
𝑁 ≥ ℎ𝑡*, 𝑗 = ⌈logℎ 𝑡

*⌉ ≤ logℎ𝑁 and (Restart) has been run with 𝑡 = ℎ𝑗. Proposi-

60

tion 4.1.4 ensures, since 𝑡 ≥ 𝑡*, that the output of this scheme achieves after 𝑁 ′ ≥ 𝑁
total iterations a precision

‖𝑦‖1 − ‖�̂�‖1 ≤ 𝑒−𝑁 ′/𝑡𝜀0 ≤ 𝑒−𝑁/𝑡𝜀0

and as 𝑡 ≤ ℎ𝑡*

‖𝑦‖1 − ‖�̂�‖1 ≤ 𝑒−𝑁/(ℎ𝑡*)𝜀0

which gives the result. Finally the logarithmic grid search costs logℎ𝑁 to get this
approximative optimal bound.

Sharpness therefore controls linear convergence of simple restart schemes to solve
(ℓ1 recovery). We now turn back to (NSP) estimates and connect them to recovery
thresholds of the sampling matrix. This will give us a direct link between computa-
tional complexity and recovery performance for exact recovery problems.

4.1.3 Recovery threshold

If (NSP) is satisfied at a given order 𝑠 it holds also for any 𝑠′ ≤ 𝑠. However, the
constant, and therefore the speed of convergence, may change. Here we show that
this constant actually depends on the ratio between the maximal order at which 𝐴
satisfies (NSP) and the sparsity of the signal that we seek to recover.

To this end, we give a more concrete geometric meaning to the constant 𝛼 in (NSP),
connecting it with the diameter of a section of the ℓ1 ball by the null space of the
matrix 𝐴 (see e.g. Kashin and Temlyakov [2007] for more details).

Lemma 4.1.6. Given a matrix 𝐴 ∈ R𝑛×𝑝, denote

1

2
diam(𝐵𝑝

1 ∩ Null(𝐴)) = sup
𝐴𝑧=0
‖𝑧‖1≤1

‖𝑧‖2,

the radius of the section of the ℓ1 ball 𝐵𝑝
1 by the null space of the matrix 𝐴 and

𝑠𝐴 , 1/diam(𝐵𝑝
1 ∩ Null(𝐴))2, (4.8)

a recovery threshold. Then 𝐴 satisfies (NSP) at any order 𝑠 < 𝑠𝐴 with constant

𝛼 = 2
√︀
𝑠𝐴/𝑠− 1 > 1. (4.9)

Proof. For any 𝑧 ∈ Null(𝐴) and support set 𝑆 with Card(𝑆) ≤ 𝑠, using equiva-
lence of norms and definition of the radius,

‖𝑧𝑆‖1 ≤
√
𝑠 ‖𝑧‖2 ≤

1

2

√︂
𝑠

𝑠𝐴
‖𝑧‖1 =

1

2

√︂
𝑠

𝑠𝐴
(‖𝑧𝑆‖1 + ‖𝑧𝑆𝑐‖1),

which means, as 𝑠 < 𝑠𝐴,

‖𝑧𝑆𝑐‖1 ≥ (2
√︀
𝑠𝐴/𝑠− 1)‖𝑧𝑆‖1,

61

hence the desired result.

With 𝑠𝐴 defined in (4.8), for any signal 𝑥* of sparsity 𝑠 < 𝑠𝐴, the sharpness
bound (Sharp) then reads

‖𝑥‖1 − ‖𝑥*‖1 ≥
(︁

1−
√︀
𝑠/𝑠𝐴

)︁
‖𝑥− 𝑥*‖1,

and the optimal restart scheme defined in Proposition 4.1.4 has complexity

‖𝑦‖1 − ‖𝑥*‖1 ≤ exp

(︂
−
(︁

1−
√︀
𝑠/𝑠𝐴

)︁ 𝑒

2
√
𝑝
𝑁

)︂
𝜀0,

which means that, given a sensing matrix 𝐴 with recovery threshold 𝑠𝐴, the sparser
the signal, the faster the algorithm.

Precise estimates of the diameter of random sections of norm balls can be com-
puted using classical results in geometric functional analysis. The low 𝑀* estimates
of Pajor and Tomczak-Jaegermann [1986] (see [Vershynin, 2011, Theorem 3.1] for a
concise presentation) show that when 𝐸 ⊂ R𝑝 is a random subspace of codimension
𝑛 (e.g. the null space of a random matrix 𝐴 ∈ R𝑛×𝑝), then

diam(𝐵𝑝
1 ∩ 𝐸) ≤ 𝑐

√︂
log 𝑝

𝑛
,

with high probability, where 𝑐 > 0 is an absolute constant. This means that the
recovery threshold 𝑠𝐴 satisfies

𝑠𝐴 ≥ 𝑛/(𝑐2 log 𝑝),

with high probability and leads to the following corollary.

Corollary 4.1.7. Given a random sampling matrix 𝐴 ∈ R𝑛×𝑝 and a signal 𝑥* with
sparsity 𝑠 < 𝑛/(𝑐2 log 𝑝), (Restart) scheme with optimal parameters defined in (4.4)
outputs a point 𝑦 such that

‖𝑦‖1 − ‖𝑥*‖1 ≤ exp

(︃
−
(︃

1− 𝑐
√︂
𝑠 log 𝑝

𝑛

)︃
𝑒

2
√
𝑝
𝑁

)︃
𝜀0,

with high probability, where 𝑐 is a universal constant and 𝑁 is the total number of
iterations.

This means that the complexity of the optimization problem (ℓ1 recovery) is con-
trolled by the oversampling ratio 𝑛/𝑠. In other words, while increasing the number
of samples increases the time complexity of elementary operations of the algorithm,
it also increases its rate of convergence.

62

4.2 A conic view for sparse recovery problems

We first gave concrete evidence of the link between optimization complexity and
recovery performance for the exact recovery problem by highlighting sharpness prop-
erties of the objective around the true signal, given by the null space condition. We
now take a step back and consider results on the underlying conic geometry of recovery
problems that also control both computational and statistical aspects.

On the statistical side, minimal conically restricted singular values are known to
control recovery performance in robust recovery problems. On the computational
side, Renegar’s condition number, a well known computational complexity measure
for conic convex programs, controls the cost of obtaining optimality certificates for
exact recovery and the sharpness of exact recovery problems (hence computational
complexity of the (Restart) scheme presented in the previous section). Numerical
experiments will then illustrate its relevance to control numerous other classical al-
gorithms. By observing that minimal conically restricted singular values match the
worst case of Renegar’s condition number on sparse signals, our analysis shows once
more that one single geometrical quantity controls both statistical robustness and
computational complexity of recovery problems.

4.2.1 Conic linear systems

Conic linear systems arise naturally from optimality conditions of the exact re-
covery problem. To see this, define the tangent cone at point 𝑥 with respect to the
ℓ1 norm, that is, the set of descent directions for ‖ · ‖1 at 𝑥, as

𝒯 (𝑥) = cone{𝑧 : ‖𝑥+ 𝑧‖1 ≤ ‖𝑥‖1}. (4.10)

As shown for example by Chandrasekaran et al. [2012, Prop 2.1] a point 𝑥 is then the
unique optimum of the exact recovery problem (ℓ1 recovery) if and only if Null(𝐴) ∩
𝒯 (𝑥) = {0}, that is, there is no point satisfying the linear constraints that has lower
ℓ1 norm than 𝑥. Correct recovery of an original signal 𝑥* is therefore certified by the
infeasibility of a conic linear system of the form

find 𝑧
s.t. 𝐴𝑧 = 0

𝑧 ∈ 𝐶, 𝑧 ̸= 0,
(PA,C)

where 𝐶 is a closed convex cone and 𝐴 a given matrix. For both computational
and statistical aspects we will be interested in the distance to feasibility. On the
computational side this will give a distance to ill-posedness that plays the role of a
condition number. On the statistical side it will measure the amount of perturbation
that the recovery can handle.

Definition 4.2.1 (Distance to feasibility). Writingℳ𝐶 = {𝐴 ∈ R𝑛×𝑝 : (PA,C) is infeasible},

63

distance to feasibility is defined as

𝜎𝐶(𝐴) , inf
Δ𝐴
{‖∆𝐴‖2 : 𝐴+ ∆𝐴 /∈ℳ𝐶}. (4.11)

A geometric analysis of the problem explicits the distance to feasibility in terms
of minimal conically restricted singular value, as recalled in the following lemma.

Lemma 4.2.2. Given a matrix 𝐴 ∈ R𝑝×𝑛 and a closed convex cone 𝐶, the distance
to feasibility of (PA,C) is given by

𝜎𝐶(𝐴) = min
𝑥∈𝐶

‖𝑥‖2=1

‖𝐴𝑥‖2. (4.12)

Proof. We recall the short proof of Amelunxen and Lotz [2014, Lemma 3.2].
Similar results have been derived by Freund and Vera [1999b, Theorem 2] and Belloni
and Freund [2009, Lemma 3.2]. Let 𝑧 ∈ 𝐶, with ‖𝑧‖2 = 1, achieve the minimum
above. Then ∆𝐴 = −𝐴𝑧𝑧𝑇 satisfies (𝐴+ ∆𝐴)𝑧 = 0, so 𝐴+ ∆𝐴 /∈ℳ𝐶 and

𝜎𝐶(𝐴) ≤ ‖∆𝐴‖2 = ‖𝐴𝑧‖2‖𝑧‖2 = min
𝑥∈𝐶

‖𝑥‖2=1

‖𝐴𝑥‖2.

On the other hand denote ∆𝐴 a perturbation such that 𝐴+ ∆𝐴 /∈ℳ𝐶 . Then there
exists 𝑧 ∈ 𝐶 ∖ {0} such that (𝐴+ ∆𝐴)𝑧 = 0. Thus we have

‖∆𝐴‖2 ≥
‖∆𝐴𝑧‖2
‖𝑧‖2

=
‖𝐴𝑧‖2
‖𝑧‖2

≥ min
𝑥∈𝐶

‖𝑥‖2=1

‖𝐴𝑥‖2.

Taking the infimum on the left-hand side over all ∆𝐴 such that 𝐴 + ∆𝐴 /∈ ℳ𝐶

concludes the proof.

Expression (4.12) writes distance to infeasibility as a cone restricted eigenvalue.
Minimal cone restricted eigenvalues also directly characterize recovery performance
as we recall now.

4.2.2 Recovery performance of robust recovery

The previous section showed that recovery of a signal 𝑥* is ensured by infeasi-
bility of the conic linear system (PA,𝒯 (𝑥*)), i.e. positiveness of the minimal conically
restricted singular value 𝜎𝒯 (𝑥*)(𝐴). We now show how this quantity also controls re-
covery performance in the presence of noise. In that case, the robust recovery problem
attempts to retrieve an original signal 𝑥* by solving

minimize ‖𝑥‖1
subject to ‖𝐴𝑥− 𝑏‖2 ≤ 𝛿‖𝐴‖2, (Robust ℓ1 recovery)

in the variable 𝑥 ∈ R𝑝, with the same design matrix 𝐴 ∈ R𝑛×𝑝, where 𝑏 ∈ R𝑛 are
given observations perturbed by noise of level 𝛿 > 0. The following classical result

64

then bounds reconstruction error in terms of 𝜎𝒯 (𝑥*)(𝐴).

Lemma 4.2.3. Given a coding matrix 𝐴 ∈ R𝑛×𝑝 and an original signal 𝑥*, sup-
pose we observe 𝑏 = 𝐴𝑥* + 𝑤 where ‖𝑤‖2 ≤ 𝛿‖𝐴‖2 and denote an optimal solution
of (Robust ℓ1 recovery) by �̂�. If the minimal singular value 𝜎𝒯 (𝑥*)(𝐴) in (4.12) re-
stricted to the tangent cone 𝒯 (𝑥*) in (4.10) is positive, the following error bound
holds:

‖�̂�− 𝑥*‖2 ≤ 2
𝛿‖𝐴‖2

𝜎𝒯 (𝑥*)(𝐴)
. (4.13)

Proof. We recall the short proof of Chandrasekaran et al. [2012, Prop. 2.2]. Both
�̂� and 𝑥* are feasible for (Robust ℓ1 recovery) and �̂� is optimal, so that ‖�̂�‖1 ≤ ‖𝑥*‖1.
Thus, the error vector �̂�−𝑥* is in the tangent cone 𝒯 (𝑥*). By the triangle inequality,

‖𝐴(�̂�− 𝑥*)‖2 ≤ ‖𝐴�̂�− 𝑏‖2 + ‖𝐴𝑥* − 𝑏‖2 ≤ 2𝛿‖𝐴‖2.

Furthermore, by definition of 𝜎𝒯 (𝑥*)(𝐴),

‖𝐴(�̂�− 𝑥*)‖2 ≥ 𝜎𝒯 (𝑥*)(𝐴) ‖�̂�− 𝑥*‖2.

Combining the two concludes the proof.

Therefore the robustness of the coding matrix 𝐴 on all 𝑠-sparse signals is measured
by

𝜇𝑠(𝐴) , inf
𝑥 : ‖𝑥‖0≤𝑠

min
𝑧∈𝒯 (𝑥)
‖𝑧‖2=1

‖𝐴𝑧‖2. (4.14)

Expression of this minimal conically singular value can the be simplified by identifying
the tangent cones on 𝑠-sparse signals, as done in the following lemma.

Lemma 4.2.4. For any subset 𝑆 ⊂ J1, 𝑝K, let

ℰ𝑆 = {𝑧 : ‖𝑧𝑆𝑐‖1 ≤ ‖𝑧𝑆‖} and ℱ𝑆 =
⋃︁

𝑥 :𝑥=𝑥𝑆

𝒯 (𝑥),

then ℰ𝑆 = ℱ𝑆.

Proof. Let 𝑧 ∈ ℰ𝑆, take 𝑥 = −𝑧𝑆, then

‖𝑥+ 𝑧‖1 = ‖𝑧𝑆𝑐‖1 ≤ ‖𝑧𝑆‖1 = ‖𝑥‖1.

Therefore 𝑧 ∈ 𝒯 (𝑥) ⊂ ℱ𝑆 as 𝑥 = 𝑥𝑆.
Conversely let 𝑧 ∈ ℱ𝑆, and 𝑥 ∈ R𝑝, with 𝑥 = 𝑥𝑆, such that 𝑧 ∈ 𝒯 (𝑥). Then

‖𝑥+ 𝑧‖1 = ‖𝑥+ 𝑧𝑆‖1 + ‖𝑧𝑆𝑐‖1 ≥ ‖𝑥‖1 − ‖𝑧𝑆‖1 + ‖𝑧𝑆𝑐‖1.

As 𝑧 ∈ 𝒯 (𝑥), this implies ‖𝑧𝑆𝑐‖1 ≤ ‖𝑧𝑆‖1, so 𝑧 ∈ ℰ𝑆 and we conclude that ℰ𝑆 = ℱ𝑆.

65

Therefore, the previous expression for the minimal conically restricted singular
value (4.14) can be equivalently stated as

𝜇𝑠(𝐴) = min
𝑆⊂J1,𝑝K

Card(𝑆)≤𝑠

min
‖𝑧𝑆𝑐‖1≤‖𝑧𝑆‖1

‖𝑧‖2=1

‖𝐴𝑧‖2. (4.15)

This quantity was introduced in [Bickel et al., 2009] and further explored in e.g. [Van
De Geer et al., 2009]. Bickel et al. [2009] notably showed that it controls estimation
performance of LASSO and Dantzig selector. Observe that positiveness of 𝜇𝑠(𝐴) is
equivalent to (NSP) at order 𝑠 with constant 1 which shows necessity of (NSP) for
sparse recovery.

Since both null space property and conically restricted singular values are neces-
sary and sufficient conditions for exact recovery they may have been linked previously
in the literature. Here we derive estimates for the constant in (NSP) from the min-
imal cone restricted singular value using tools form conic linear systems. We search
for 𝛼 such that (NSP) is satisfied at order 𝑠. Equivalently we search for 𝛼 such that
for any support 𝑆 of cardinality at most 𝑠, the conic linear system

find 𝑧
s.t. 𝐴𝑧 = 0

‖𝑧𝑆𝑐‖1 ≤ 𝛼‖𝑧𝑆‖1, 𝑧 ̸= 0
(4.16)

is infeasible. Notice that system (4.16) for 𝛼 > 1 is a perturbed version of the case
𝛼 = 1, so the problem reduces to studying the sensitivity to perturbations of conic
linear systems as shown in the following lemma.

Lemma 4.2.5. Given a matrix 𝐴 ∈ R𝑛×𝑝 and an integer 𝑠 ∈ J1, 𝑝K, if the mini-
mal conically restricted singular value 𝜇𝑠(𝐴) in (4.14) and (4.15) is positive, then 𝐴
satisfies (NSP) at order 𝑠 for any constant

𝛼 ≤
(︂

1− 𝜇𝑠(𝐴)

‖𝐴‖2

)︂−1

.

Proof. For a support 𝑆 of cardinality at most 𝑠, write 𝑃 the orthogonal projector
on this support (that is, 𝑃𝑥 = 𝑥𝑆), 𝑃 = I−𝑃 its orthogonal projector and define the
closed convex cone 𝐶𝑆 = {𝑧 : ‖𝑧𝑆𝑐‖1 ≤ ‖𝑧𝑆‖1}. Given 𝛼 ≥ 1, denote 𝐻 = 𝛼−1𝑃+𝑃 =
I− (1− 𝛼−1)𝑃 . Observe that

{𝑧 : ‖𝑧𝑆𝑐‖1 ≤ 𝛼‖𝑧𝑆‖1} = 𝐻𝐶𝑆.

Therefore, the conic linear system (4.16) reads

find 𝑧
s.t. 𝐴𝑧 = 0

𝑧 ∈ 𝐻𝐶𝑆, 𝑧 ̸= 0.

66

As 𝐻 is invertible, this is equivalent to

find 𝑧
s.t. 𝐴𝐻𝑧 = 0

𝑧 ∈ 𝐶𝑆, 𝑧 ̸= 0.
(4.17)

Therefore, if the conic linear system

find 𝑧
s.t. 𝐴𝑧 = 0

𝑧 ∈ 𝐶𝑆, 𝑧 ̸= 0

is infeasible, that is 𝜎𝐶𝑆
(𝐴) > 0, by Lemma 4.2.2, which is true for 𝜇𝑠 > 0, then by

definition of the distance to feasibility, (4.17) is also infeasible provided ‖𝐴𝐻−𝐴‖2 ≤
𝜎𝐶𝑆

(𝐴), which holds for any 𝛼 ≥ 1 such that

(1− 𝛼−1)‖𝐴𝑃‖2 ≤ 𝜎𝐶𝑆
(𝐴).

Using that ‖𝐴𝑃‖2 ≤ ‖𝐴‖2, infeasibility is ensured in particular for any 𝛼 such that

1− 𝜎𝐶𝑆
(𝐴)

‖𝐴‖2
≤ 𝛼−1.

To ensure infeasibility of the conic linear systems (4.16) for any support 𝑆, it suffices
to take 𝛼 such that

1− 𝜇𝑠(𝐴)

‖𝐴‖2
≤ 𝛼−1.

This means that (NSP) at order 𝑠 is satisfied for any

𝛼 ≤
(︂

1− 𝜇𝑠(𝐴)

‖𝐴‖2

)︂−1

where we used that, by definition of the minimal conically restricted singular value,
𝜇𝑠(𝐴) ≤ ‖𝐴‖2 (in case of equality (NSP), will be satisfied for any 𝛼 ≥ 1).

We now relate the minimal cone restricted singular value to computational com-
plexity measures.

4.2.3 Computational complexity of recovery problems

Computational complexity for convex optimization problems is often described in
terms of polynomial functions of problem size. This produces a clear link between
problem structure and computational complexity but fails to account for the nature of
the data. If we use linear systems as a basic example, unstructured linear systems of
dimension 𝑛 can be solved with complexity 𝑂(𝑛3) regardless of the matrix values, but
iterative solvers will converge much faster on systems that are better conditioned.
The seminal work of Renegar [1995b, 2001] extends this notion of conditioning to

67

optimization problems, producing data-driven bounds on the complexity of solving
conic programs, and showing that the number of outer iterations of interior point
algorithms increases as the distance to ill-posedness decreases.

Renegar’s condition number

Renegar’s condition number [Renegar, 1995b,a; Peña, 2000] provides a data-driven
measure of the complexity of certifying infeasibility of a conic linear system of the
form presented in (PA,C) (the larger the condition number, the harder the problem).
It is rooted in the sensible idea that certifying infeasibility is easier if the problem is
far from being feasible. It is defined as the scale invariant reciprocal of the distance
to feasibility 𝜎𝐶(𝐴), defined in (4.11), of problem (PA,C), i.e.

ℛ𝐶(𝐴) ,
‖𝐴‖2
𝜎𝐶(𝐴)

= ‖𝐴‖2/ min
𝑥∈𝐶

‖𝑥‖2=1

‖𝐴𝑥‖2. (4.18)

Notice that, if 𝐶 were the whole space R𝑝, and if 𝐴𝑇𝐴 were full-rank (never the case
if 𝑛 < 𝑝), then 𝜎𝐶(𝐴) would be the smallest singular value of 𝐴. As a result, ℛ𝐶(𝐴)
would reduce to the classical condition number of 𝐴 (and to ∞ when 𝐴𝑇𝐴 is rank-
deficient). Renegar’s condition number is necessarily smaller (better) than the latter,
as it further incorporates the notion that 𝐴 need only be well conditioned along those
directions that matter with respect to 𝐶.

Complexity of certifying optimality

In a first step, we study the complexity of the oracle certifying optimality of a
candidate solution 𝑥 to (ℓ1 recovery) as a proxy for the problem of computing an
optimal solution to this problem. As mentioned in Section 4.2.1, optimality of a
point 𝑥 is equivalent to infeasibility of

find 𝑧
s.t. 𝐴𝑧 = 0

𝑧 ∈ 𝒯 (𝑥), 𝑧 ̸= 0,
(PA,𝒯 (𝑥))

where the tangent cone 𝒯 (𝑥) is defined in (4.10). By a theorem of alternative, infea-
sibility of (PA,𝒯 (𝑥)) is equivalent to feasibility of the dual problem

find 𝑦
s.t. 𝐴𝑇𝑦 ∈ int(𝒯 (𝑥)∘),

(DA,𝒯 (𝑥))

where 𝒯 (𝑥)∘ is the polar cone of 𝒯 (𝑥). Therefore, to certify infeasibility of (PA,𝒯 (𝑥))
it is sufficient to exhibit a solution for the dual problem (DA,𝒯 (𝑥)).

Several references have connected Renegar’s condition number and the complexity
of solving such conic linear systems using various algorithms [Renegar, 1995b; Freund
and Vera, 1999a; Epelman and Freund, 2000; Renegar, 2001; Vera et al., 2007; Belloni
et al., 2009]. In particular, Vera et al. [2007] linked it to the complexity of solving

68

the primal dual pair (PA,𝒯 (𝑥))–(DA,𝒯 (𝑥)) using a barrier method. They show that the
number of outer barrier method iterations grows as

𝑂
(︀√

𝜌 log
(︀
𝜌ℛ𝒯 (𝑥)(𝐴)

)︀)︀
,

where 𝜌 is the barrier parameter, while the conditioning (hence the complexity) of
the linear systems arising at each interior point iteration is controlled by ℛ𝒯 (𝑥)(𝐴)2.
This link was also tested empirically on linear programs using the NETLIB library
of problems by Ordóñez and Freund [2003], where computing times and number of
iterations were regressed against estimates of the condition number computed using
the approximations for Renegar’s condition number detailed by Freund and Vera
[2003].

Studying the complexity of computing an optimality certificate gives insights on
the performance of oracle based optimization techniques such as the ellipsoid method.
We now show how Renegar’s condition also controls the number steps in the (Restart)
scheme presented in Section 4.1.2.

Complexity of restart scheme with Renegar’s condition number

Convergence of the (Restart) scheme presented in Section 4.1.2 is controlled by
the sharpness of the problem deduced from (NSP). We now observe that sharpness is
controlled by the worst case Renegar condition number for the optimality certificates
(PA,𝒯 (𝑥)) on all 𝑠-sparse signals, defined as

ℛ𝑠(𝐴) , sup
𝑥 : ‖𝑥‖0≤𝑠

ℛ𝒯 (𝑥)(𝐴) = ‖𝐴‖2/𝜇𝑠(𝐴). (4.19)

Connecting Lemmas 4.2.3, 4.2.5 and Proposition 4.1.4 we get the following corollary.

Corollary 4.2.6. Given a coding matrix 𝐴 ∈ R𝑛×𝑝 and a sparsity level 𝑠 ≥ 1, if
ℛ𝑠(𝐴) < +∞ in (4.19) then optimal (Restart) scheme achieves an 𝜀 precision in at
most

𝑂((2ℛ𝑠(𝐴)− 1) log 𝜀−1)

iterations.

Proof. From Lemma 4.2.3, if ℛ𝑠(𝐴) < +∞, then (NSP) is satisfied for 𝛼 =
(1 − ℛ𝑠(𝐴)−1)−1 > 1, so from Lemma 4.2.5 (4.1) is sharp with constant 𝛾 = 𝛼−1

𝛼+1
=

(2ℛ𝑠(𝐴)− 1)−1 and Proposition 4.1.4 leads to the linear convergence rate above.

This shows that Renegar’s condition number explicitly controls the convergence of
an algorithmic scheme devoted to the exact recovery problem (ℓ1 recovery), through
its link with sharpness.

On the statistical side, we observed that the minimal conically restricted singular
value controls recovery performance of robust procedures and that its positivity en-
sures exact recovery. On the computational side, we presented the role of Renegar’s
condition number as a computational complexity measure for sparse recovery prob-
lems. A key observation is that the worst case of Renegar’s condition number ℛ𝑠(𝐴),

69

defined in (4.19), matches the minimal conically restricted singular value defined in
(4.14). Once again, a single quantity controls both aspects. This at least partially
explains the common empirical observation (see, e.g., Donoho and Tsaig [2008]) that
problem instances where statistical estimation succeeds are computationally easier to
solve.

4.2.4 Computational complexity for inexact recovery

When the primal problem (PA,𝒯 (𝑥)) is feasible, so that 𝜎𝒯 (𝑥)(𝐴) = 0, Renegar’s
condition number as defined here is infinite. While this correctly captures the fact
that, in that regime, statistical recovery does not hold, it does not properly capture
the fact that, when (PA,𝒯 (𝑥)) is “comfortably" feasible, certifying so is easy, and al-
gorithms terminate quickly (although they return a useless estimator). From both a
statistical and a computational point of view, the truly delicate cases correspond to
problem instances for which both (PA,𝒯 (𝑥)) and (DA,𝒯 (𝑥)) are only barely feasible or
infeasible. This is illustrated in simple numerical example by Boyd and Vandenberghe
[2004, §11.4.3] and in our numerical experiments, corresponding to the peaks in the
CPU time plots of the right column in Figure 4-4: problems where sparse recovery
barely holds/fails are relatively harder. For simplicity, we only focused here on dis-
tance to feasibility for problem (PA,𝒯 (𝑥)). However, it is possible to symmetrize the
condition numbers used here as described by Amelunxen and Lotz [2014, §1.3], where
a symmetric version of the condition number is defined as

ℛ̄𝒯 (𝑥)(𝐴) = min

{︃
‖𝐴‖

𝜎𝑃
𝒯 (𝑥)(𝐴)

,
‖𝐴‖

𝜎𝐷
𝒯 (𝑥)(𝐴)

}︃
,

where 𝜎𝑃
𝒯 (𝑥)(𝐴) and 𝜎𝐷

𝒯 (𝑥)(𝐴) denote the distance to feasibility of respectively (PA,𝒯 (𝑥))
and (DA,𝒯 (𝑥)). This quantity peaks for programs that are nearly feasible/infeasible.

As we noticed in Section 4.1.2, a Łojasiewicz inequality (4.6) for the (ℓ1 recovery)
problem is sufficient to ensure linear convergence of the restart scheme. Connecting
the symmetrized Renegar condition number to the Łojasiewicz inequality constant
𝛾 may then produce complexity bounds for the restart scheme beyond the recovery
case. Łojasiewicz inequalities for convex programs have indeed proven their relevance.
They were used by Fercoq and Qu [2016]; Roulet and d’Aspremont [2017] to accelerate
classical methods, in particular on the LASSO problem. Lower computational bounds
for convex optimization problems satisfying it were also studied by Nemirovskii and
Nesterov [1985, Page 6]. Although the Łojasiewicz inequality is proven to be satisfied
by a broad class of functions [Bolte et al., 2007], quantifying its parameters is still
a challenging problem that would enable better parameter choices for appropriate
algorithms.

4.2.5 Other algorithms

The restart scheme presented in Section 4.1.2 is of course not the only one to
solve problem (ℓ1 recovery) in practice and it has not been analyzed in the noisy

70

case. However, we will observe in the numerical experiments of Section 4.4 that the
condition number is correlated with the empirical performance of efficient recovery
algorithms such as LARS [Efron et al., 2004] and Homotopy [Donoho and Tsaig, 2008;
Asif and Romberg, 2014]. On paper, the computational complexities of (ℓ1 recovery)
and (Robust ℓ1 recovery) are very similar (in fact, infeasible start primal-dual algo-
rithms designed for solving (ℓ1 recovery) actually solve problem (Robust ℓ1 recovery)
with 𝛿 small). However in our experiments, we did observe sometimes significant
differences in behavior between the noisy and noiseless case.

4.3 Generalization to common sparsity inducing norms

In this section we generalize previous results to sparse recovery problems in (non-
overlapping) group norms or nuclear norm. Group norms arise in contexts such as
genomics to enforce the selection of groups of genes (e.g., Obozinski et al. [2011] and
references therein.) The nuclear norm is used for low-rank estimation (e.g., Recht
et al. [2008] and references therein.) We use the framework of decomposable norms
introduced by Negahban et al. [2009] which applies to these norms. This allows us to
generalize the null space property and to derive corresponding sharpness bounds for
the exact recovery problem in a broader framework. We then again relate recovery
performance and computational complexity of these recovery problems.

4.3.1 Decomposable norms

Sparsity inducing norms have been explored from various perspectives. Here, we
use the framework of decomposable norms by Negahban et al. [2009] to generalize our
results from ℓ1 norms to non-overlapping group norms and nuclear norms in a concise
form. We then discuss the key geometrical properties of these norms and potential
characterization of their conic nature.

We first recall the definition of decomposable norms by Negahban et al. [2009] in
terms of projectors.

Definition 4.3.1. Decomposable norms Given a Euclidean space 𝐸, a norm ‖.‖
on 𝐸 is said to be decomposable if there exists a family of orthogonal projectors 𝒫
such that

(i) to each 𝑃 ∈ 𝒫 is associated a non-negative weight 𝜂(𝑃) and an orthogonal
projector 𝑃 such that 𝑃𝑃 = 𝑃𝑃 = 0, and

(ii) for any 𝑥 ∈ 𝐸 and 𝑃 ∈ 𝒫, ‖𝑃𝑥+ 𝑃𝑥‖ = ‖𝑃𝑥‖+ ‖𝑃𝑥‖ .

A signal 𝑥 is then said to be 𝑠-sparse if there exists 𝑃 ∈ 𝒫, such that 𝜂(𝑃) ≤ 𝑠 and
𝑃𝑥 = 𝑥.

We now detail the family of projectors for some decomposable norms of interest.

71

ℓ1 norm.

In the the ℓ1 norm case, 𝐸 = R𝑝 and 𝒫 is the set of projectors on coordinate
subspaces of R𝑝, that is, 𝒫 contains all projectors which zero out all coordinates of
a vector except for a subset of them, which are left unaffected. The maps 𝑃 are the
complementary projectors: 𝑃 = I−𝑃 . Property (ii) is the classical decomposability of
the ℓ1 norm. Naturally, the complexity level corresponds to the number of coordinates
preserved by 𝑃 , i.e., 𝜈(𝑃) = Rank(𝑃). These definitions recover the usual notion of
sparsity.

Group norms.

Given a partition 𝐺 of J1, 𝑝K in (non-overlapping) groups 𝑔 ⊂ J1, 𝑝K, the group
norm is defined for 𝑥 ∈ R𝑝 as

‖𝑥‖ =
∑︁
𝑔∈𝐺

‖𝑥𝑔‖𝑟,

where ‖𝑥𝑔‖𝑟 is the ℓ𝑟-norm of the projection of 𝑥 onto the coordinates defined by 𝑔.
The cases 𝑟 = 2,∞ correspond respectively to ℓ1/ℓ2 and ℓ1/ℓ∞ block norms. Here,
𝐸 = R𝑝 and the family 𝒫 is composed of orthogonal projectors onto coordinates
defined by (disjoint) unions of groups 𝑔, and 𝑃 = I − 𝑃 . Formally, to each 𝑃 we
associate 𝐹 ⊂ 𝐺 such that for any 𝑥 ∈ 𝐸, (𝑃𝑥)𝑔 = 𝑥𝑔 if 𝑔 ∈ 𝐹 and (𝑃𝑥)𝑔 = 0
otherwise. Decomposability (ii) then clearly holds. To each group 𝑔 we associate a
weight 𝜂𝑔 and for a projector 𝑃 ∈ 𝒫 with associated 𝐹 ⊂ 𝐺, 𝜂(𝑃) =

∑︀
𝑔∈𝐹 𝜂𝑔. A

classical choice of weights is 𝜂𝑔 = 1 for all 𝑔 ∈ 𝐺.

Nuclear norm.

The nuclear norm is defined for matrices 𝑋 ∈ R𝑝×𝑞 with singular values 𝜎𝑖(𝑋) as

‖𝑋‖ =

min(𝑝,𝑞)∑︁
𝑘=1

𝜎𝑘(𝑋).

Here 𝐸 = R𝑝×𝑞 and its associated family of projectors contains 𝑃 such that

𝑃 : 𝑋 ↦→ 𝑃left𝑋𝑃right,

and
𝑃 : 𝑋 ↦→ (I− 𝑃left)𝑋(I− 𝑃right),

where 𝑃left ∈ R𝑝×𝑝 and 𝑃right ∈ R𝑞×𝑞 are orthogonal projectors. Their weights are de-
fined as 𝜂(𝑃) = max (Rank(𝑃left),Rank(𝑃right)) defining therefore 𝑠-sparse matrices
as matrices of rank at most 𝑠. As 𝑃 and 𝑃 project on orthogonal row and column
spaces, condition (ii) holds.

Decomposable norms offer a unified nomenclature for the study of sparsity induc-
ing norms. However, they appear to be essentially restricted to the three examples
presented above. Moreover, it is not clear if their definition is sufficient to character-

72

ize the conic nature of these norms, in particular in the nuclear norm case that will
require additional linear algebra results. In comparison, the framework proposed by
Juditsky et al. [2014] can encompass non-latent overlapping groups. For future use,
we simplify the third property of their definition [Juditsky et al., 2014, Section 2.1] in
Appendix 4.B. It is not clear how this view can be used for latent overlapping group
norms presented by Obozinski et al. [2011] applied in biology. Moreover the suffi-
cient conditions that Juditsky et al. [2014] present are sufficient but not necessary in
the nuclear norm case. Better characterizing the key geometrical properties of these
norms is therefore a challenging research direction.

4.3.2 Sharpness and generalized null space property

From now on, we assume that we are given an ambient Euclidean space 𝐸 with
one of the three decomposable norms ‖.‖ presented in previous section, i.e. ℓ1, group
or nuclear norm, and the associated family of orthogonal projectors 𝒫 as introduced
in Definition 4.3.1. We study the sparse recovery problem

minimize ‖𝑥‖
subject to 𝐴(𝑥) = 𝑏

(Sparse recovery)

in the variable 𝑥 ∈ 𝐸, where 𝐴 is a linear operator onto R𝑛 and the observations
𝑏 ∈ R𝑛 are taken from an original point 𝑥* such that 𝑏 = 𝐴(𝑥*). We begin by
generalizing the null space property in this setting.

Definition 4.3.2. (Generalized Null space Property) A linear operator 𝐴 on 𝐸
satisfies the Generalized Null Space Property (GNSP) for orthogonal projector 𝑃 ∈ 𝒫
with constant 𝛼 ≥ 1 if and only if for any 𝑧 ∈ Null(𝐴) ∖ {0} such that 𝑧 = 𝑃𝑧 + 𝑃𝑧,

𝛼‖𝑃𝑧‖ < ‖𝑃𝑧‖. (GNSP)

The linear operator 𝐴 satisfies the Generalized Null Space Property at order 𝑠 with
constant 𝛼 ≥ 1 if it satisfies it for any 𝑃 such that 𝜂(𝑃) ≤ 𝑠.

Notice that if 𝑃 = I−𝑃 , the condition 𝑧 = 𝑃𝑧+𝑃𝑧 is not restrictive. However it
will be useful to prove necessity of (GNSP) for the nuclear norm. In that case, observe
that it is equivalent to the condition introduced by Oymak and Hassibi [2010], i.e.

∀𝑧 ∈ Null(𝐴) ∖ {0}, 𝛼

𝑠∑︁
𝑖=1

𝜎𝑖(𝑧) <

min(𝑝,𝑞)∑︁
𝑖=𝑠+1

𝜎𝑖(𝑧),

where 𝜎𝑖(𝑧) are the singular values of 𝑧 in decreasing order. Notice also that we
recover the classical Definition NSP in the ℓ1 case. The sharpness bound then easily
follows if 𝑃 = I − 𝑃 . In the case of the nuclear norm it requires additional linear
algebra results.

Proposition 4.3.3. Given a linear operator 𝐴 that satisfies (GNSP) at order 𝑠 with
constant 𝛼, if the original point 𝑥* is 𝑠-sparse, then for any 𝑥 ∈ 𝐸 satisfying 𝐴(𝑥) = 𝑏,

73

𝑥 ̸= 𝑥*, we have

‖𝑥‖ − ‖𝑥*‖ > 𝛼− 1

𝛼 + 1
‖𝑥− 𝑥*‖.

This implies recovery, i.e., optimality of 𝑥* for (Sparse recovery).

Proof. Denote 𝑃 such that 𝜂(𝑃) ≤ 𝑠 and 𝑃𝑥* = 𝑥*, which defines its sparsity.
Let 𝑥 ̸= 𝑥* such that 𝐴(𝑥) = 𝑏, so 𝑧 = 𝑥 − 𝑥* ∈ Null(𝐴) and 𝑧 ̸= 0. If 𝑃 = I − 𝑃 ,
𝑥 = 𝑃𝑥+ 𝑃𝑥 and using the decomposability (ii), we have

‖𝑥‖ = ‖𝑃𝑥* + 𝑃𝑧‖+ ‖𝑃𝑧‖
≥ ‖𝑥*‖ − ‖𝑃𝑧‖+ ‖𝑃𝑧‖
= ‖𝑥*‖+ ‖𝑧‖ − 2‖𝑃𝑧‖.

By using (GNSP), ‖𝑧‖ = ‖𝑃𝑧‖+‖𝑃𝑧‖ > (1+𝛼)‖𝑃𝑧‖. The result follows by arranging
the terms.

If ‖.‖ is the nuclear norm and 𝑃 ̸= I−𝑃 , as in [Oymak and Hassibi, 2010, Lemma
6], we use that (see Horn and Johnson [1990, Theorem 7.4.9.1])

‖𝑥* + 𝑧‖ ≥
min(𝑝,𝑞)∑︁

𝑖=1

|𝜎𝑖(𝑥*)− 𝜎𝑖(𝑧)|,

where 𝜎𝑖(𝑥*), 𝜎𝑖(𝑧) denote the singular values in decreasing order of respectively 𝑥*

and 𝑧. Then, using that 𝑥* has rank at most 𝑠,

‖𝑥‖ ≥
𝑠∑︁

𝑖=1

|𝜎𝑖(𝑥*)− 𝜎𝑖(𝑧)|+
min(𝑝,𝑞)∑︁
𝑖=𝑠+1

𝜎𝑖(𝑧)

≥
𝑠∑︁

𝑖=1

𝜎𝑖(𝑥
*)−

𝑠∑︁
𝑖=1

𝜎𝑖(𝑧) +

min(𝑝,𝑞)∑︁
𝑖=𝑠+1

𝜎𝑖(𝑧)

= ‖𝑥*‖ − ‖𝑄𝑧‖+ ‖�̄�𝑧‖,

where 𝑄 is the projector on the 𝑠 largest singular directions of 𝑧 and therefore �̄� the
projector on the 𝑛−𝑠 others. These can be defined using the singular value decompo-
sition of 𝑧 such that 𝑧 = 𝑄𝑧+ �̄�𝑧. Then, using (GNSP) and the decomposability (ii)
concludes the proof as above.

This shows that the sharpness bound of the form (Sharp) generalizes to non-
overlapping group norms and the nuclear norm. Proposition 4.1.3 can also be gener-
alized directly to this case with our definition of (GNSP). The smoothing argument
and restart schemes developed in Section 4.1.2 can then be applied with similar lin-
ear convergence rates that essentially depend on the sharpness constant. By looking
at the diameter of the section of the unit ball of the norm by the null space of 𝐴,
one may also show that the oversampling ratio controls the sharpness bound as in
Section 4.1.3.

74

As in Section 4.2, we now study the conic quantities which control statistical and
optimization aspects.

4.3.3 Robust recovery performance and computational com-
plexity

In this section, for a Euclidean space 𝐸 and 𝑥 ∈ 𝐸 we denote ‖𝑥‖2 the ℓ2 norm of
its coefficients, if 𝐸 is a matrix space ‖𝑥‖2 is then the Frobenius norm of 𝑥.

Generalized cone restricted singular value

We begin by addressing the recovery performance of robust sparse recovery prob-
lems that reads

minimize ‖𝑥‖
subject to ‖𝐴(𝑥)− 𝑏‖2 ≤ 𝛿‖𝐴‖2, (Robust sparse recovery)

in the variable 𝑥 ∈ 𝐸, with the same linear operator 𝐴, where the observations 𝑏 ∈ R𝑛

are affected by noise of level 𝛿 > 0. For a linear operator 𝐴 from 𝐸 to R𝑛, we denote
its operator norm with respect to ‖ · ‖, ‖𝐴‖2 = sup𝑥∈𝐸:‖𝑥‖2≤1 ‖𝐴(𝑥)‖2.

The results of Section 4.2.2 transpose directly to the general case by replacing
‖ · ‖1 by ‖ · ‖. Precisely, assuming that 𝑏 = 𝐴𝑥* +𝑤 where ‖𝑤‖2 ≤ 𝛿‖𝐴‖2, an optimal
solution �̂� of problem (Robust sparse recovery) satisfies the error bound

‖�̂�− 𝑥*‖2 ≤ 2
𝛿‖𝐴‖2

𝜎𝒯 (𝑥*)(𝐴)
,

where the tangent cone is defined as

𝒯 (𝑥) = cone{𝑧 : ‖𝑥+ 𝑧‖ ≤ ‖𝑥‖},

and robust recovery of 𝑠-sparse signals is therefore controlled by

𝜇𝑠(𝐴) = inf
𝑃∈𝒫 : 𝜂(𝑃)≤𝑠

inf
𝑥∈𝐸 :𝑃𝑥=𝑥

min
𝑧∈𝒯 (𝑥)
‖𝑧‖2=1

‖𝐴𝑧‖2. (4.20)

The key point is then to characterize the tangent cones of 𝑠-sparse signals. First,
this will allow statistical estimations of 𝜇𝑠(𝐴). Second, it will enable us to estimate the
constant (GNSP), hence sharpness of the exact recovery problem and computational
complexity of associated restart schemes. This is the aim of the following lemma.

Lemma 4.3.4. For a given sparsity 𝑠, write

ℰ =
⋃︁

𝑃∈𝒫 : 𝜂(𝑃)≤𝑠

{𝑧 ∈ 𝐸 : 𝑧 = 𝑃𝑧 + 𝑃𝑧, ‖𝑃𝑧‖ ≤ ‖𝑃𝑧‖}

75

and
ℱ =

⋃︁
𝑃∈𝒫 : 𝜂(𝑃)≤𝑠

⋃︁
𝑥∈𝐸 :𝑥=𝑃𝑥

𝒯 (𝑥).

Then ℰ = ℱ .

Proof. Let 𝑧 ∈ ℰ and 𝑃 ∈ 𝒫 such that 𝑧 = 𝑃𝑧 + 𝑃𝑧. Taking 𝑥 = −𝑃𝑧 we get

‖𝑥+ 𝑧‖ = ‖𝑃𝑧‖ ≤ ‖𝑃𝑧‖ = ‖𝑥‖.

Therefore 𝑧 ∈ 𝒯 (𝑥) ⊂ ℱ . Conversely, if 𝑧 ∈ ℱ , denote 𝑥 ∈ 𝐸 and 𝑃 ∈ 𝒫 such that
𝑥 = 𝑃𝑥, 𝑧 ∈ 𝒯 (𝑥) and 𝜂(𝑃) ≤ 𝑠. If 𝑃 = I− 𝑃 , by decomposability (ii),

‖𝑥+ 𝑧‖ = ‖𝑃𝑥+ 𝑃𝑧‖+ ‖𝑃𝑧‖ ≥ ‖𝑥‖ − ‖𝑃𝑧‖+ ‖𝑃𝑧‖.

Since 𝑧 ∈ 𝒯 (𝑥), we have ‖𝑥+ 𝑧‖ ≤ ‖𝑥‖; combined with the previous statement, this
implies that 𝑧 ∈ {𝑧 ∈ 𝐸 : 𝑧 = 𝑃𝑧 + 𝑃𝑧, ‖𝑃𝑧‖ ≤ ‖𝑃𝑧‖} ⊂ ℰ . Now, if ‖.‖ is the
nuclear norm, as in the proof of Proposition (4.3.3), we have

‖𝑥+ 𝑧‖ ≥ ‖𝑥‖ − ‖𝑄𝑧‖+ ‖�̄�𝑧‖,

where 𝑄 is the projector on the 𝑠 largest singular directions of 𝑧 given by the singular
value decomposition of 𝑧, so that 𝑧 = 𝑄𝑧+ �̄�𝑧. Therefore, 𝑧 ∈ 𝒯 (𝑥) implies 𝑧 ∈ {𝑧 ∈
𝐸 : 𝑧 = 𝑄𝑧 + �̄�𝑧, ‖�̄�𝑧‖ ≤ ‖𝑄𝑧‖} ⊂ ℰ . In all cases we have therefore proven ℰ = ℱ .

Using the previous lemma, the minimal cone restricted singular value reads:

𝜇𝑠(𝐴) = inf
𝑃∈𝒫, 𝜂(𝑃)≤𝑠

min
𝑧∈𝐸, ‖𝑧‖2=1

𝑧=𝑃𝑧+𝑃𝑧, ‖𝑃𝑧‖≤‖𝑃𝑧‖

‖𝐴𝑧‖2. (4.21)

This quantity can then be linked to the (GNSP) constant, as shown in the following
lemma.

Lemma 4.3.5. Given a linear operator 𝐴 on 𝐸, If the minimal cone restricted sin-
gular value 𝜇𝑠(𝐴), defined in (4.20) and reformulated in (4.21), is positive, then 𝐴
satisfies (GNSP) at order 𝑠 for any constant

𝛼 ≤
(︂

1− 𝜇𝑠(𝐴)

‖𝐴‖2

)︂−1

.

Proof. For a given 𝑃 ∈ 𝒫 , denote 𝐶𝑃 = {𝑧 ∈ ℑ(𝑃) + ℑ(𝑃) : ‖𝑃𝑧‖ ≤ ‖𝑃𝑧‖}
and define for 𝛼 ≥ 1 the conic linear system

find 𝑧 ∈ ℑ(𝑃) + ℑ(𝑃)
s.t. 𝐴(𝑧) = 0

‖𝑃𝑧‖ ≤ 𝛼‖𝑃𝑧‖, 𝑧 ̸= 0.
(4.22)

76

Infeasibility of this system for all 𝑃 ∈ 𝒫 such that 𝜂(𝑃) ≤ 𝑠 is then equivalent to
(GNSP) at order 𝑠 with constant 𝛼. Denote 𝐻 = I− (1− 𝛼−1)𝑃 such that

{𝑧 ∈ ℑ(𝑃) + ℑ(𝑃) : ‖𝑃𝑧‖ ≤ 𝛼‖𝑃𝑧‖} = 𝐻𝐶𝑃 .

Since 𝐻 is invertible, we observe as in Lemma 4.2.5 that the conic linear system (4.22)
is equivalent to

find 𝑧 ∈ ℑ(𝑃) + ℑ(𝑃)
s.t. 𝐴− (1− 𝛼−1)𝐴𝑃𝑧 = 0

𝑧 ∈ 𝐶𝑃 , 𝑧 ̸= 0.
(4.23)

If this problem is infeasible for 𝛼 = 1, i.e., its distance to feasibility 𝜇𝐶𝑃
(𝐴) defined

in (4.11) is positive, then (4.23) is infeasible for any 𝛼 ≥ 1 such that

(1− 𝛼−1)‖𝐴𝑃‖ ≤ 𝜇𝐶𝑃
(𝐴).

Now, if 𝜇𝑠(𝐴) > 0 the conic linear system (4.22) will still be infeasible for any

𝛼 ≤
(︂

1− 𝜇𝑠(𝐴)

‖𝐴‖2

)︂−1

.

Thus, 𝐴 satisfies (GNSP) at order 𝑠 with 𝛼 as above.

Renegar’s condition number

On the computational side, denote ℛ𝒯 (𝑥)(𝐴) the Renegar condition number of the
conic linear system

find 𝑧
s.t. 𝐴(𝑧) = 0

𝑧 ∈ 𝒯 (𝑥), 𝑧 ̸= 0,

and the worst-case Renegar condition number on 𝑠-sparse signals

ℛ𝑠(𝐴) , sup
𝑃∈𝒫 : 𝜂(𝑃)≤𝑠

sup
𝑥∈𝐸 :𝑃𝑥=𝑥

ℛ𝒯 (𝑥)(𝐴) = ‖𝐴‖2/𝜇𝑠(𝐴).

First, Renegar’s condition number plays the same role as before in computing opti-
mality certificates for the exact recovery problems. Then, combining Lemma 4.3.5
and Proposition 4.3.3 shows that the sharpness bound for exact recovery reads

‖𝑥‖ − ‖𝑥*‖ > 1

2ℛ𝑠(𝐴)− 1
‖𝑥− 𝑥*‖.

This sharpness will then control linearly convergent restart schemes for the exact
recovery problem.

Overall then, as established earlier in this paper, a single geometric quantity—
namely, the minimal cone restricted singular value—appears to control both com-
putational and statistical aspects. We now illustrate this statement on numerical

77

experiments.

4.4 Numerical results

In this section, we first test the empirical performance of restart schemes and its
link with recovery performance. We then perform similar experiments on Renegar’s
condition number.

4.4.1 Sharpness & restart for exact recovery

We test the (Restart) scheme on ℓ1-recovery problems with random design ma-
trices. Throughout the experiments, we use the NESTA code described in [Becker,
Bobin and Candès, 2011] as the subroutine in the restart strategy. We generate a
random design matrix 𝐴 ∈ R𝑛×𝑝 with i.i.d. Gaussian coefficients. We then normalize
𝐴 so that 𝐴𝐴𝑇 = I (to fit NESTA’s format) and generate observations 𝑏 = 𝐴𝑥* where
𝑥* ∈ R𝑝 is an 𝑠-sparse vector whose nonzero coefficients are all ones. We denote �̂�
the solution given by a common solver run at machine precision and plot convergence
𝑓(𝑥𝑡)− 𝑓 * = ‖𝑥𝑡‖1 − ‖�̂�‖1 (scaled such that 𝑓(𝑥0)− 𝑓(�̂�) = 1).

Restart scheme performance

First we compare in Figure 4-1 the practical scheme presented in Section 4.1.2 with
a plain implementation of NESTA without restart or continuation steps. Dimensions
of the problem are 𝑝 = 500, 𝑛 = 200 and 𝑠 = 30. Starting from 𝑥0 = 𝐴𝑇 𝑏, we use
𝜀0 = ‖𝑥0‖1 as a first initial guess on the gap and perform a grid search of step size
ℎ = 4 for a budget of 𝑁 = 500 iterations. The first and last schemes of the grid
search were not run as they are unlikely to produce a nearly optimal restart scheme.
The grid search can be parallelized and the best scheme found is plotted with a solid
red line. The dashed red line represents the convergence rate accounting for the cost
of the grid search. For the plain implementation of NESTA, we used different target
precisions. These control indeed the smoothness of the surrogate function 𝑓𝜀 which
itself controls the step size of Nesterov’s algorithm. Therefore a high precision slows
down the algorithm. However for low precision NESTA can be faster but will not
approximate well the original signal. Also, the theoretical bound (4.2) might be very
pessimistic, as the surrogate function 𝑓𝜀 may approximate the ℓ1 norm for the points
of interest at a much better accuracy than 𝜀.

Overall, we observe a clear linear convergence of the restart scheme that outper-
forms the plain implementation. This was already observed by Becker, Bobin and
Candès [2011] who developed their continuation steps against which we compare in
Figure 4-2. We used default options for NESTA, namely 5 continuation steps with
a stopping criterion based on the relative objective change in the surrogate function
(specifically, the algorithm stops when these changes are lower than the target accu-
racy, set to 10−6). We compare continuations steps and best restart found by grid
search for different dimensions of the problem, we fix 𝑝 = 500, 𝑠 = 30 and vary the

78

0 100 200 300 400 500
10 -10

10 -5

10 0

Plain NESTA low

Plain NESTA high

Restart

Fair restart

f
(x

t
)
−
f
∗

Inner iterations

Figure 4-1 – Best restarted NESTA (solid red line) and overall cost of the practical
restart schemes (dashed red line) versus plain NESTA implementation with low ac-
curacy 𝜀 = 10−1 (dotted black line) and higher accuracy 𝜀 = 10−3 (dash-dotted black
line) for a budget of 500 iterations.

number of samples 𝑛 = {200, 300}. Continuation steps converge faster with better
conditioned problems, i.e., more samples. Otherwise they may get stuck due to the
termination criterion. Notice that a lot of parameters are involved for both algo-
rithms, in particular the target precision may play an important role, so that more
extensive experiments may be needed to refine these statements.

Our goal here is to provide a simple but strong baseline with theoretical guarantees
for recovery. Improving on it, as Fercoq and Qu [2016] did for LASSO, is an appealing
research direction. Sharpness may be used for example to refine the heuristic strategy
of the continuations steps.

0 50 100 150 200
10 -8

10 -6

10 -4

10 -2

10 0

NESTA Continuation

Restart

Fair restart

f
(x

t
)
−
f
∗

Inner iterations

0 50 100 150 200
10 -8

10 -6

10 -4

10 -2

10 0

NESTA Continuation

Restart

Fair restart

f
(x

t
)
−
f
∗

Inner iterations

Figure 4-2 – Best restarted NESTA (solid red line) and overall cost of the practical
restart schemes (dashed red line) versus NESTA with 5 continuation steps (dotted
blue line) for a budget of 500 iterations. Crosses represent the restart occurrences.
Left: 𝑛 = 200. Right : 𝑛 = 300.

79

Number of samples 𝑛 100 200 400
Time in seconds

for 𝑓(𝑥𝑡)− 𝑓 * < 10−2 5.07 · 10−2 3.07 · 10−2 1.66 · 10−2

Table 4.1 – Time to achieve 𝜀 = 10−2 by the best restart scheme for increasing number
of samples 𝑛

Convergence rate and oversampling ratio

We now illustrate the theoretical results of Section 4.1.3 by running the practical
scheme presented in Section 4.1.2 for increasing values of the oversampling ratio
𝜏 = 𝑛/𝑠. In Figure 4-3, we plot the best scheme found by the grid search, that
approximates the optimal scheme, for a budget of 𝑁 = 500 iterations. We use a fine
grid of step size ℎ = 2. Other algorithmic parameters remain unchanged: 𝑥0 = 𝐴𝑇 𝑏
and 𝜀0 = ‖𝑥0‖1. We fix the dimension 𝑝 = 1000 and either make 𝑛 vary for a fixed
sparsity 𝑠 = 20 or make 𝑠 vary for a fixed number of samples 𝑛 = 200. In both cases
we do observe an improved convergence for increasing oversampling ratio 𝜏 . Notice
that linear convergence is observed even for 𝜏 < log 𝑝, that is, outside the recovery
region. This suggests that sharpness may also hold in this case in the form of a
Łojasiewicz inequality as mentioned in Sections 4.1.2 and 4.2.3.

0 100 200 300 400 500
10 -10

10 -5

10 0

τ = 5
τ = 10

τ = 20

f
(x

k
)
−

f
(x

∗
)

Inner iterations
τ

0 100 200 300 400 500
10 -10

10 -5

10 0

τ = 5
τ = 10

τ = 20

f
(x

k
)
−

f
(x

∗
)

Inner iterations
τ

Figure 4-3 – Best restart scheme found by grid search for increasing values of the
oversampling ratio 𝜏 = 𝑛/𝑠. Left : sparsity 𝑠 = 20 fixed. Right : number of samples
𝑛 = 200 fixed.

In table 4.1, we report the time needed to achieve an 𝜀 = 10−2 precision for a
fixed sparsity 𝑠 = 20 and increasing number of samples 𝑛 = {100, 200, 400}. While
the cost of core operations (namely, matrix-vector multiplications) increases with 𝑛,
the overall time required to reach convergence decreases. In other words, getting more
samples increases the recovery performance at little or no computational cost.

80

4.4.2 Renegar’s condition number and compressed sensing per-
formance

Our theoretical results showed that Renegar’s condition number measures the
complexity for the exact recovery problem (4.1). However it does not a priori control
convergence of the robust recovery problems defined in the introduction. This nu-
merical section aims therefore at analyzing the relevance of this condition number for
general recovery problems in the ℓ1 case, assuming that their complexity corresponds
roughly to that of checking optimality of a given point at each iteration, as mentioned
in Section 4.2.3. We first describe how we approximate the value of ℛ𝒯 (𝑥*)(𝐴) as de-
fined in (4.18) for a given original signal 𝑥* and matrix 𝐴 ∈ R𝑛×𝑝. We then detail
numerical experiments on synthetic data sets.

Computing ℛ𝒯 (𝑥*)(𝐴)

The condition number ℛ𝒯 (𝑥*)(𝐴) appears here in upper bounds on computational
complexities and statistical performances. In order to test numerically whether this
quantity truly explains those features (as opposed to merely appearing in a wildly
pessimistic bound), we explicitly compute it in numerical experiments.

To compute ℛ𝒯 (𝑥*)(𝐴), we propose a heuristic which computes 𝜎𝒯 (𝑥*)(𝐴) in (4.11)
and (4.12), the value of a non convex minimization problem over the cone of descent
directions 𝒯 (𝑥*). The closure of the latter is the polar of the cone generated by
the subdifferential to the ℓ1-norm ball at 𝑥* [Chandrasekaran et al., 2012, §2.3]. Let
𝑆 ⊂ J1, 𝑝K denote the support of 𝑥* and 𝑠 = Card(𝑆). Then, with 𝑢 = sign(𝑥*),

𝒯 (𝑥*) = cone
{︀
𝑧 ∈ R𝑝 : 𝑧𝑆 = 𝑢𝑆, 𝑧𝑆𝑐 ∈ [−1, 1]𝑝−𝑠)

}︀∘
=
{︀
𝑧 ∈ R𝑝 : ‖𝑧𝑆𝑐‖1 ≤ −𝑢𝑇𝑆𝑧𝑆 = −𝑢𝑇 𝑧

}︀
.

Thus, 𝜎𝒯 (𝑥*)(𝐴) is the square root of

min
𝑧∈R𝑝

𝑧𝑇𝐴𝑇𝐴𝑧 s.t. ‖𝑧‖2 = 1 and ‖𝑧𝑆𝑐‖1 ≤ −𝑢𝑇 𝑧. (4.24)

Let 𝜆 denote the largest eigenvalue of 𝐴𝑇𝐴. If it were not for the cone constraint,
solutions of this problem would be the dominant eigenvectors of 𝜆I − 𝐴𝑇𝐴, which
suggests a projected power method [Deshpande et al., 2014] as follows. Given an
initial guess 𝑧0 ∈ R𝑝, ‖𝑧0‖2 = 1, iterate

𝑧𝑘+1 = Proj𝒯 (𝑥*)

(︀
(𝜆I− 𝐴𝑇𝐴)𝑧𝑘

)︀
, 𝑧𝑘+1 = 𝑧𝑘+1/‖𝑧𝑘+1‖2, (4.25)

where we used the orthogonal projector to 𝒯 (𝑥*),

Proj𝒯 (𝑥*)(𝑧) = arg min
𝑧∈R𝑝
‖𝑧 − 𝑧‖22 s.t. ‖𝑧𝑆𝑐‖1 ≤ −𝑢𝑇 𝑧. (4.26)

This convex, linearly constrained quadratic program is easily solved with CVX [Grant
et al., 2001]. As can be seen from KKT conditions, this iteration is a generalized power

81

iteration [Luss and Teboulle, 2013; Journée et al., 2010]

𝑧𝑘+1 ∈ arg max
𝑧∈R𝑝

𝑧𝑇 (𝜆I− 𝐴𝑇𝐴)𝑧𝑘 s.t. ‖𝑧‖2 ≤ 1 and ‖𝑧𝑆𝑐‖1 ≤ −𝑢𝑇 𝑧.

From the latter, it follows that ‖𝐴𝑧𝑘‖2 decreases monotonically with 𝑘. Indeed, owing
to convexity of 𝑓(𝑧) = 1

2
𝑧𝑇 (𝜆I−𝐴𝑇𝐴)𝑧, we have 𝑓(𝑧)−𝑓(𝑧𝑘) ≥ (𝑧−𝑧𝑘)𝑇 (𝜆I−𝐴𝑇𝐴)𝑧𝑘.

The next iterate 𝑧 = 𝑧𝑘+1 maximizes this lower bound on the improvement. Since 𝑧 =
𝑧𝑘 is admissible, the improvement is nonnegative and 𝑓(𝑧𝑘) increases monotonically.

Thus, the sequence ‖𝐴𝑧𝑘‖2 converges, but it may do so slowly, and the value
it converges to may depend on the initial iterate 𝑧0. On both accounts, it helps
greatly to choose 𝑧0 well. To obtain one, we modify (4.24) by smoothly penalizing
the inequality constraint in the cost function, which results in a smooth optimization
problem on the ℓ2 sphere. Specifically, for small 𝜀1, 𝜀2 > 0, we use smooth proxies
ℎ(𝑥) =

√︀
𝑥2 + 𝜀21 − 𝜀1 ≈ |𝑥| and 𝑞(𝑥) = 𝜀2 log(1 + exp(𝑥/𝜀2)) ≈ max(0, 𝑥). Then,

with 𝛾 > 0 as Lagrange multiplier, we consider

min
‖𝑧‖2=1

‖𝐴𝑧‖22 + 𝛾 · 𝑞
(︁
𝑢𝑇 𝑧 +

∑︁
𝑖∈𝑆𝑐

ℎ(𝑧𝑖)
)︁
.

We solve the latter locally with Manopt [Boumal et al., 2014], itself with a uniformly
random initial guess on the sphere, to obtain 𝑧0. Then, we iterate the projected
power method. The value ‖𝐴𝑧‖2 is an upper bound on 𝜎𝒯 (𝑥*)(𝐴), so that we ob-
tain a lower bound on ℛ𝒯 (𝑥*)(𝐴). Empirically, this procedure, which is random only
through the initial guess on the sphere, consistently returns the same value, up to
five digits of accuracy, which suggests the proposed heuristic computes a good ap-
proximation of the condition number. Similarly positive results have been reported
on other cones by Deshpande et al. [2014], where the special structure of the cone
even made it possible to certify that this procedure indeed attains a global optimum
in proposed experiments. Similarly, a generalized power method was recently shown
to converge to global optimizers for the phase synchronization problem (in a certain
noise regime) [Boumal, 2016; Zhong and Boumal, 2017]. This gives us confidence in
the estimates produced here.

Sparse recovery performance

We conduct numerical experiments in the ℓ1 case to illustrate the connection
between the condition number ℛ𝒯 (𝑥*)(𝐴), the computational complexity of solv-
ing (ℓ1 recovery), and the statistical efficiency of the estimator (Robust ℓ1 recovery).
Importantly, throughout the experiments, the classical condition number of 𝐴 will
remain essentially constant, so that the main variations cannot be attributed to the
latter.

We follow a standard setup, similar to some of the experiments by Donoho and
Tsaig [2008]. Fixing the ambient dimension 𝑝 = 300 and sparsity 𝑠 = ‖𝑥*‖0 = 15, we
let the number of linear measurements 𝑛 vary from 1 to 150. For each value of 𝑛, we
generate a random signal 𝑥* ∈ R𝑝 (uniformly random support, i.i.d. Gaussian entries,
unit ℓ2-norm) and a random sensing matrix 𝐴 ∈ R𝑛×𝑝 with i.i.d. standard Gaussian

82

entries. Furthermore, for a fixed value 𝛿 = 10−2, we generate a random noise vector
𝑤 ∈ R𝑛 with i.i.d. standard Gaussian entries, normalized such that ‖𝑤‖2 = 𝛿‖𝐴‖2,
and we let 𝑏 = 𝐴𝑥* + 𝑤. This is repeated 100 times for each value of 𝑛.

For each triplet (𝐴, 𝑥*, 𝑏), we first solve the noisy problem (Robust ℓ1 recovery)
with the L1-Homotopy algorithm (𝜏 = 10−7) [Asif and Romberg, 2014], and report
the estimation error ‖�̂� − 𝑥*‖2. Then, we solve the noiseless problem (4.1) with L1-
Homotopy and the TFOCS routine for basis pursuit (𝜇 = 1) [Becker, Candès and
Grant, 2011]. Exact recovery is declared when the error is less than 10−5, and we
report the empirical probability of exact recovery, together with the number of itera-
tions required by each of the solvers. The number of iterations of LARS [Efron et al.,
2004] is also reported, for comparison. For L1-Homotopy, we report the computation
time, normalized by the computation time required for one least-squares solve in 𝐴,
as in [Donoho and Tsaig, 2008, Fig. 3], which accounts for the growth in 𝑛. Finally,
we compute the classical condition number of 𝐴, 𝜅(𝐴), as well as (a lower bound on)
the cone-restricted condition number ℛ𝒯 (𝑥*)(𝐴), as per the previous section. As it is
the computational bottleneck of the experiment, it is only computed for 20 of the 100
repetitions.

The results of Figure 4-4 show that the cone-restricted condition number explains
both the computational complexity of (ℓ1 recovery) and the statistical complexity
of (Robust ℓ1 recovery): fewer samples mean bad conditioning which in turn im-
plies high computational complexity. We caution that our estimate of ℛ𝒯 (𝑥*)(𝐴)
is only a lower bound. Indeed, for small 𝑛, the third plot on the left shows that,
even in the absence of noise, recovery of 𝑥* is not achieved by (Robust ℓ1 recovery).
Lemma 4.2.3 then requires ℛ𝒯 (𝑥*)(𝐴) to be infinite. But the computational complex-
ity of solving (ℓ1 recovery) is visibly favorable for small 𝑛, where far from the phase
transition, problem (PA,𝒯 (𝑥)) is far from infeasibility, which is just as easy to verify as
it is to certify that (PA,𝒯 (𝑥)) is infeasible when 𝑛 is comfortably larger than needed.
This phenomenon is best explained using a symmetric version of the condition num-
ber [Amelunxen and Lotz, 2014] (omitted here to simplify computations).

We also solved problem (ℓ1 recovery) with interior point methods (IPM) via CVX.
The number of iterations appeared mostly constant throughout the experiments, sug-
gesting that the practical implementation of such solvers renders their complexity
mostly data agnostic in the present setting. Likewise, the computation time required
by L1-Homotopy on the noisy problem (Robust ℓ1 recovery), normalized by the time
of a least-squares solve, is mostly constant (at about 150). This hints that the link
between computational complexity of (ℓ1 recovery) and (Robust ℓ1 recovery) remains
to be fully explained.

4.5 Conclusion

We studied the geometry of sparse recovery problems around their solutions that
control both computational efficiency of restart schemes or oracle-based algorithms
for exact recovery, and statistical performance of the decoding procedures, either
in the recovery threshold or in the sensitivity to noise. We generally show that

83

Exact recovery probability, noiseless

#iterations, TFOCS-BP, noiseless

L1-Hom.

TFOCS-BP

Estimation error, L1-Hom., noisy

#iterations, LARS, noiseless

#iterations, L1-Hom., noiseless

CPU time in lsq solves, L1-Hom., noiselessCondition number RT (x∗) (lower bound)

Classical condition number κ(A)

0 50 100 1500 50 100 150

0

500

2500

0

1

0

50

200

10
0

1012

100

10
1

0

40

160

0

20

80

0

1

1.5

Figure 4-4 – We plot the cone-restricted condition number of 𝐴 (upper left), explaining
both the computational complexity of problem (ℓ1 recovery) (right column) and the
statistical complexity of problem (Robust ℓ1 recovery) (second on the left). Central
curves represent the mean (geometric mean in log-scale plots), red curves correspond
to 10th and 90th percentile. We observe that high computing times (peaks in the right
column) are directly aligned with instances where sparse recovery barely holds/fails
(left), i.e. near the phase transition around 𝑛 = 70, where the distance to feasibility
for problem (PA,𝒯 (𝑥)) also follows a phase transition.

84

minimal conically restricted singular value of the coding matrix is the key quantity
that describes the problem and can be seen as the worst case of Renegar’s condition
number for conic feasibility problems that certificate recovery. This analysis extends
then to other sparse structures such as group sparsity or low rank matrices.

Several questions remain. First, sharpness constant is only given when exact recov-
ery is ensured. As the ℓ1 norm is always sharp, our analysis may extend to problems
where exact recovery is not possible. In other words, if the decoding procedure is far
from being efficient statistically, its complexity may also be small. Furthermore, for
robust recovery, sharpness may also be stated. A finer analysis may help to link it
with minimal conically restricted singular value on the tangent cone of the original
vector which would give instance dependent complexity bounds. Finally a proper def-
inition of sparse structures would ease the development of new compressed structures
such as grouped vectors that we present in Chapter 6.

85

86

Appendix

4.A Practical optimal restart scheme
In Section 4.1.2 we quickly give optimal restart schemes in terms of a potentially

non-integer clock. Following corollary details optimal scheme for an integer optimal
clock.

Corollary 4.A.1. Given a coding matrix 𝐴 ∈ R𝑛×𝑝 and an original signal 𝑥* ∈ R𝑝

such that sharpness bound (Sharp) is satisfied with 𝛾 > 0, running Algorithm Restart
with 𝜌* and 𝑡 = ⌈𝑡*⌉ where 𝜌* and 𝑡* are defined in (4.4) ensures that after 𝐾 ≥ 1
restarts, i.e. 𝑁 = 𝐾⌈𝑡*⌉ total number of iterations,

‖𝑦‖1 − ‖𝑥*‖1 ≤ exp

(︂
− 𝑁𝛾

2𝑒
√
𝑝+ 𝛾

)︂
𝜀0. (4.27)

Proof. Denote 𝛿 = ⌈𝑡*⌉ − 𝑡* ∈ [0, 1[. As ⌈𝑡*⌉ ≥ 𝑡* (4.3) is ensured for 𝜌*. At the
𝐾th restart, 𝑁 = 𝐾(𝑡* + 𝛿), and

‖𝑦‖1 − ‖𝑥*‖1 ≤ 𝑒−𝐾𝜀0 = exp(−𝑁/(𝑡* + 𝛿)) ≤ exp(−𝑁/(𝑡* + 1)).

Replacing 𝑡* by its value gives the result.

4.B Remark on sparsity inducing norms
We quickly discuss the framework of Juditsky et al. [2014] for sparsity inducing

norms and show that it can be simplified. We first recall the definition.

Definition 4.B.1. (Sparsity structure [Juditsky et al., 2014]) A sparsity struc-
ture on a Euclidean space 𝐸 is defined as a norm ‖ · ‖ on 𝐸, together with a family
𝒫 of linear maps of 𝐸 into itself, satisfying three assumptions:

1. Every 𝑃 ∈ 𝒫 is a projector, 𝑃 2 = 𝑃 ,
2. Every 𝑃 ∈ 𝒫 is assigned a weight 𝜈(𝑃) ≥ 0 and a linear map 𝑃 on 𝐸 such that

𝑃𝑃 = 0,
3. For any 𝑃 ∈ 𝒫 and 𝑢, 𝑣 ∈ 𝐸, one has

‖𝑃 *𝑢+ 𝑃 *𝑣‖* ≤ max(‖𝑢‖*, ‖𝑣‖*),

87

where ‖ · ‖* is the dual norm of ‖ · ‖ and 𝑃 * is the conjugate mapping of the linear
map 𝑃 .

The last condition in Definition 4.B.1 is arguably the least intuitive and following
Lemma connects it with the more intuitive notion of decomposable norm.

Lemma 4.B.2. Condition (3) above, which reads

‖𝑃 *𝑢+ 𝑃 *𝑣‖* ≤ max(‖𝑢‖*, ‖𝑣‖*),

for any 𝑢, 𝑣 ∈ 𝐸, is equivalent to

‖𝑤‖ ≥ ‖𝑃𝑤‖+ ‖𝑃𝑤‖,

for any 𝑤 ∈ 𝐸.

Proof. Denote 𝑓 : (𝑢, 𝑣) → ‖𝑃 *𝑢 + 𝑃 *𝑣‖* and 𝑔 : (𝑢, 𝑣) → max(‖𝑢‖*, ‖𝑣‖*).
Since 𝑓 and 𝑔 are non-negative, continuous convex functions, 𝑓 2/2 and 𝑔2/2 are also
convex continuous and following equivalences hold

𝑓 ≤ 𝑔 ⇔ 𝑓 2

2
≤ 𝑔2

2
⇔

(︂
𝑓 2

2

)︂*

≥
(︂
𝑔2

2

)︂*

,

using that for a convex continuous function ℎ, ℎ** = ℎ. Now combining the conjugacy
result for squared norm [Boyd and Vandenberghe, 2004, Example 3.27] showing that
the conjugate of a squared norm ‖𝑥‖2/2 is the squared conjugate norm ‖𝑥‖2*/2, with
the result in [Rockafellar, 2015, Th. 16.3], we get(︂

𝑓 2

2

)︂*

(𝑠, 𝑡) = inf
𝑤
{‖𝑤‖2/2 : 𝑃𝑤 = 𝑠, 𝑃𝑤 = 𝑡},

where the infimum is +∞ if the constraints are infeasible. Then the dual of the norm
𝑔 is (𝑠, 𝑡)→ ‖𝑠‖+ ‖𝑡‖ therefore condition (3) is equivalent to

inf
𝑤
{‖𝑤‖ : 𝑃𝑤 = 𝑠, 𝑃𝑤 = 𝑡} ≥ ‖𝑠‖+ ‖𝑡‖,

for any 𝑠, 𝑡 ∈ 𝐸, which reads

‖𝑤‖ ≥ ‖𝑃𝑤‖+ ‖𝑃𝑤‖,

for any 𝑤 ∈ 𝐸.

88

Part II

Machine learning problems with
partitioning structure

89

90

Chapter 5

Introduction

Machine learning

Machine learning is a recent field of research that attempts to give to a computer
the ability to perform predictive analysis of data. It stems from statistics which
model the data and optimization which makes the computer find the best parameters
of the model. It has been applied to numerous fields such as computer vision, natural
language processing, bio-informatics, robotics, speech processing and economics. Ma-
chine learning can be applied for example to predict antigens concentration in blood
after a medical treatment. Another classical application is image classification, where
the computer must distinguish pictures of humans, animals or objects.

Formally, data consist of objects 𝑥 ∈ 𝒳 and their attributes 𝑦 ∈ 𝒴 that the
computer must predict. To perform predictive analysis, the computer has generally
access to the representation of the object by 𝑑 features, such that throughout this
part 𝒳 = R𝑑. Attributes can be quantitative values, i.e. 𝒴 = R, as in prediction of
antigens concentration, or qualitative values, 𝒴 = {1, . . . 𝐾} that encode 𝐾 classes
of objects, as in image classification.

Several settings exist to analyze data depending on the information that a com-
puter can have access. In this thesis, we study supervised learning problems where a
batch of training samples is available. It consists in 𝑛 pairs (𝑥1, , 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) of
objects and their attributes that the computer uses to fit a model on the data.

Big data challenges

Machine learning appeals a growing interest of researchers because of the large
amount of data available in applications that the prediction task can benefit from.
By large, one refers first to the number 𝑛 of training samples like the number of
documents in a topic classification task. The larger is 𝑛, the more performing is
naturally the computed model.

Big data can also concern the number 𝑑 of features that describe the data. For
example in genomics, features are frequency of mutations of genes and the number of
discriminative genes in ADN is around 3 millions. Similarly, the more features one
can have access to describe the data, the more information the computer can use.

91

Finally, machine learning problems may treat large number 𝐾 of tasks simulta-
neously. For example, in computer vision, a common task is to identify elements of
a picture such as a cat or a car. Each element requires a specific classification task
and data sets like ImageNet [Deng et al., 2009] of 1000 classes exist to describe the
variety of possible elements in a picture. Here again a large number 𝐾 of tasks may
help because similar tasks can share information to improve overall performance.

While this big data setting helps prediction performance, it also increases com-
plexity of the task. First, it rises new computational challenges for the optimization
procedure but the resulting model can also be more difficult to interpret. Learning
procedures able to perform prediction and simplify the problem are therefore of in-
terest for the user. They not only help interpretation but also increase generalization
performance.

Outline of this part

In this part, we study therefore learning procedures that simultaneously solve a
prediction problem and reduce its complexity by grouping either features in Chap-
ter 6, samples in Chapter 7 or tasks in Chapter 8. They mix classical supervised
learning procedures and partitioning problems. The algebraic tools and optimiza-
tion procedures are essentially the same for all three settings. We present them in
Sections 5.2 and 5.3. A general perspective of our approach is given in Section 5.1.
Following chapters detail then each application and specific computations.

5.1 Learning in the data cube

For a general supervised machine learning problem involving 𝑛 samples with
𝑑 features to solve 𝐾 tasks, supervised learning methods have at their disposi-
tion 𝑛 input data points 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑 with their corresponding outputs for 𝐾
tasks 𝑦1, . . . , 𝑦𝑛 ∈ R𝐾 . Linear methods aim then at finding 𝐾 vectors of prediction
𝑤1, . . . 𝑤𝐾 ∈ R𝑑 that maps inputs to outputs as

𝑦𝑖𝑘 ≈ 𝑤𝑇
𝑘 𝑥𝑖, for 𝑘 ∈ {1, . . . , 𝐾} and 𝑖 ∈ {1, . . . , 𝑛}

which reads compactly
𝑌 ≈ 𝑋𝑊,

where 𝑌 = (𝑦1, . . . , 𝑦𝑛)𝑇 ∈ R𝑛×𝐾 , 𝑋 = (𝑥1, . . . , 𝑥𝑛)𝑇 ∈ R𝑛×𝑑 and 𝑊 = (𝑤1, . . . , 𝑤𝑘) ∈
R𝑑×𝐾 . A loss function is then used to measure the accuracy error of a given set of
predictors 𝑊 , as detailed for regression and classification in the following chapters.
Its minimization on the training data gives a candidate predictor for future samples.

Notice that to perform prediction we assume that all samples share the same
predictor. However, to account for diversity in the samples, this assumption can
be relaxed by searching for more than one predictor as detailed in Chapter 7. Di-
verse outputs are then delivered by the machine depending on the prediction variable

92

chosen. This means that our prediction variable can generally be seen as a tensor

𝒲 = (𝑤𝑗𝑘𝑖)𝑗∈{1,...𝑑}, 𝑘∈{1,...,𝐾}, 𝑖∈{1,...,𝑛} ∈ R𝑑×𝐾×𝑛

whose coefficients along the third direction are constrained to be equal for classical
prediction which leads to the matrix of prediction 𝑊 presented before. The three
dimensions of this tensor dress the data cube as introduced by Harchaoui [2013].
In this part we study grouping of either features, samples or tasks by constraining
coordinates of the tensor 𝒲 along the different directions it defines in the data cube.
Precisely, we constraint the coefficients to be equal or closed to each other in some
groups defined by partitions.

5.2 Partitioning problems

5.2.1 Representation of partitions

We present classical algebraic tools to partition 𝑝 items, where, in our following
settings, 𝑝 = 𝑑 for features, 𝑝 = 𝑛 for samples or 𝑝 = 𝐾 for tasks. First, recall the
definition of partitions.

Definition 5.2.1. Partitions A collection 𝐺 of subsets of {1, . . . , 𝑝} is a partition of
{1, . . . , 𝑝} if for any 𝑔, 𝑔′ ∈ 𝐺×𝐺, 𝑔 ̸= 𝑔′ implies 𝑔∩𝑔′ = ∅ and if

⋃︀
𝑔∈𝐺 𝑔 = {1, . . . , 𝑝}.

Partitions can be partially ordered as detailed in Section 6.4.2. They possess a
lattice structure [Fujishige, 2005] that can be used for combinatorial optimization
[Topkis, 1978; Amini et al., 2009].

Here we use simple algebraic tools to represent them. First, for a partition 𝐺 =
(𝑔1, . . . , 𝑔𝑄) of a set {1, . . . , 𝑝} of 𝑝 elements in 𝑄 groups, one defines assignment
matrices 𝑍 ∈ {0, 1}𝑝×𝑄 that assigns items into the groups 𝑔1, . . . , 𝑔𝑄 by

𝑍𝑖𝑞 =

{︃
1 if 𝑖 ∈ 𝑔𝑞,
0 otherwise.

Observe that a partition 𝐺 into 𝑄 groups 𝑔1, . . . 𝑔𝑄 is independent of the ordering of
the groups, namely, 𝑔𝜋(1), . . . 𝑔𝜋(𝑄), where 𝜋 is a permutation of {1, . . . , 𝑄}, describes
as well 𝐺. Consequently a partition can be encoded by several assignment matrices,
these are identical up to a permutation of their columns defining the groups.

A binary matrix 𝑍 ∈ {0, 1}𝑝×𝑄 describes a partition 𝐺 of {1, . . . , 𝑝} into 𝑄 groups,
if and only if it satisfies 𝑍1 = 1 as it encodes the fact that each element belongs to
exactly one group. Since groups of a partition are disjoints, columns of assignment ma-
trices are orthogonal. Their squared Euclidean norm and ℓ1 norm are equal to the size
of the groups they represent, i.e. ‖𝑍𝑞‖22 = ‖𝑍𝑞‖1 = 𝑍𝑇1 = Card(𝑔𝑞), where 𝑍𝑞 is the
𝑞th column of an assignment matrix 𝑍 of a partition 𝐺 = (𝑔1, . . . , 𝑔𝑄). Combining two
previous comments, we conclude that size of the groups are the squared singular values
of the assignment matrix., i.e. 𝑍𝑇𝑍 = diag(𝑠) where 𝑠 = (Card(𝑔1, . . . ,Card(𝑔𝑄))
encodes the size of the groups 𝑔1, . . . , 𝑔𝑄 that 𝑍 represents.

93

Another way to represent a partition 𝐺 = (𝑔1, . . . , 𝑔𝑄) of {1, . . . , 𝑝} into 𝑄 groups
is to use its equivalence matrix 𝑁 ∈ {0, 1}𝑝×𝑝 that encodes if pair of items belong to
the same group as

𝑁𝑖𝑗 =

{︃
1 if (𝑖, 𝑗) ∈ (𝑔𝑞 × 𝑔𝑞)
0 otherwise.

They can be derived from assignment matrices 𝑍 of the partition 𝐺 as 𝑁 = 𝑍𝑍𝑇 .
Contrary to assignment matrices, there exists only one equivalence matrix per par-
tition. In other words, partitions are uniquely defined by pairwise relationships of
the items. Equivalence matrices are notably used for finding minimal cuts of graph,
which partitions its vertices. Resulting problem is then convex but can lead to un-
satisfactory solutions as it may only separate one edge to the others [Von Luxburg,
2007].

To circumvent this problem, balanced cuts penalize the resulting partitions by the
size of the groups. This leads to the definition of normalized equivalence matrices
𝑀 ∈ R𝑝×𝑝, that encode a partition 𝐺 = {𝑔1, . . . , 𝑔𝑄} of {1, . . . , 𝑝} as

𝑀𝑖𝑗 =

{︃
1/Card(𝑔𝑞) if (𝑖, 𝑗) ∈ (𝑔𝑞 × 𝑔𝑞)
0 otherwise.

In terms of assignment matrices, these read 𝑀 = 𝑍(𝑍𝑇𝑍)†𝑍𝑇 , where 𝐴† denotes the
pseudo-inverse of a matrix 𝐴, here (𝑍𝑇𝑍)† = diag(𝑠†), where 𝑠†𝑞 = 1/Card(𝑔𝑞) if 𝑔𝑞
is non-empty and 𝑠†𝑞 = 0 otherwise. Normalized equivalence matrices are orthonormal
projectors, i.e. 𝑀2 = 𝑀 and 𝑀𝑇 = 𝑀 . While normalized equivalence matrices may
better formulate a task, they lead to non-convex problems such as k-means.

5.2.2 K-means problem

A well-known and appealing partitioning problem is the clustering of points into
groups of points closed to each other. Its common example is the k-means problem
[Steinhaus, 1956; MacQueen et al., 1967] that seeks to partition 𝑝 points 𝑥1, . . . , 𝑥𝑝 ∈
R𝑑 into 𝑄 clusters that minimize distance between points and centers 𝑐1, . . . , 𝑐𝑄 of
the clusters. Several distances can be used [Dhillon et al., 2004], the original one is
the Euclidean distance which leads to following problem

minimize
𝑄∑︁

𝑞=1

∑︁
𝑖∈𝑔𝑞

‖𝑥𝑖 − 𝑐𝑞‖22,

in the partition 𝐺 = (𝑔1, . . . , 𝑔𝑄) of {1, . . . , 𝑝} and the centroids 𝑐1, . . . , 𝑐𝑄. By using
assignment matrices 𝑍 ∈ {0, 1}𝑝×𝑄 to represent partitions, the k-means problem reads

minimize‖𝑋 − 𝑍𝐶‖2𝐹 (5.1)

in variables 𝐶 = (𝑐1, . . . , 𝑐𝑄)𝑇 ∈ R𝑄×𝑑 and 𝑍, where 𝑋 = (𝑥1, . . . , 𝑥𝑝)
𝑇 ∈ R𝑝×𝑑 is the

matrix of data points. In following chapters, we develop formulations of our predic-

94

tion problems that group features, samples or tasks into 𝑄 groups using assignment
matrices 𝑍 such that constraint set takes the form

{𝑊 = 𝑉 𝑍,𝑍 ∈ {0, 1}𝑝×𝑄}

where 𝑝 is the number of items to be grouped, 𝑊 represents predictors with po-
tentially redundant coefficients and 𝑉 represents the predictors without redundancy.
Dimensions of 𝑊 and 𝑉 depend on the setting. Assignment matrices make the con-
straint set non-convex but projection on it reads (5.1). Therefore projected gradient
presented in next section can be approximately performed.

K-means problem (5.1) can be simplified by minimizing in the matrix of centroids
which leads to

minimize ‖𝑈 − 𝑍(𝑍𝑇𝑍)−1𝑍𝑇𝑈‖2𝐹
subject to 𝑍 ∈ {0, 1}𝑑×𝑄, 𝑍1 = 1,

(5.2)

in variable 𝑍, where we recognize normalized equivalence matrices of partitions 𝑀 =
𝑍(𝑍𝑇𝑍)−1𝑍𝑇 . In our prediction problems, when using a squared loss, empirical
loss minimization can be performed analytically. It remains a partitioning problem
in terms of normalized equivalence matrices that can be solved using conditional
gradient presented in next section. Core inner step of this algorithm, namely linear
minimization oracle, amounts indeed to the k-means problem (5.2), as detailed in
following chapters.

5.3 Optimization on non-convex sets

By imposing partitioning structure on a classical learning task we introduce non-
convex constraints in the optimization procedure. Formally, we face a problem of the
form

minimize 𝑓(𝑥)
subject to 𝑥 ∈ 𝐶, (5.3)

in 𝑥 ∈ R𝑑, where 𝑓 is a 𝐿-smooth convex function and 𝐶 is a closed set. In this
section we review optimization strategies for such problems.

5.3.1 Projected gradient descent

Projected gradient scheme initialized on 𝑥0 ∈ 𝐶 for (5.3) reads

𝑥𝑡+1 = 𝑃𝐶(𝑥𝑡 − 𝛾𝑡∇𝑓(𝑥𝑡)),

where 𝛾𝑡 is the step-size and 𝑃𝐶(𝑥) ∈ argmin𝑦∈𝐶 ‖𝑥− 𝑦‖2 is the projection on set 𝐶.
If 𝐶 is convex, projection is uniquely defined and a constant step-size 𝛾𝑡 = 1

𝐿

ensures convergence to a solution of (5.3) at rate 𝑂(1/𝑡) [Nesterov, 2013b]. When 𝐶
is non-convex convergence is no more guaranteed without further assumptions on the
problem.

Yet, projected gradient schemes offer fast and good algorithmic solutions for nu-

95

merous models. In some cases their convergence can even be stated. A well-known
example is the Iterative Hard Thresholding algorithm [Blumensath and Davies, 2009]
used in compressed sensing to decode a given sparse signal from linear observations of
it. Provided that linear observations satisfy the restricted isometric property [Candès
and Tao, 2005], Iterative Hard Thresholding is shown to approximately recover the
sparse signal. Such analysis was extended to low rank estimation of matrices [Tanner
and Wei, 2013] or tensors [Rauhut et al., 2017]. Key ingredients are the structure of
the constraint set, namely a union of subspaces and the restricted strong convexity
property that the function 𝑓 satisfies [Jain et al., 2014].

In our settings, projected gradient descent offer fast and scalable resolutions of
our problems. However their analysis is delicate, since, even if the feasible set is a
union of subspaces, the projection step is generally only approximated, as k-means
is a NP-hard problem [Mahajan et al., 2012]. Yet, in the case of regression grouping
features, the k-means steps are performed on scalar values and can therefore be solved
exactly by dynamic program. This allows us in Chapter 6 to adapt the analysis of
classical Iterative Hard Thresholding algorithm in our setting

5.3.2 Convex relaxation

A more classical approach to solve non-convex problems of the form (5.3) is to
approximate the non-convex set by a convex one. This ensures then efficient opti-
mization of the resulting problem. The tightest relaxation consists in considering the
convex hull of the original set which leads to

minimize 𝑓(𝑥)
subject to 𝑥 ∈ hull(𝐶),

in 𝑥 ∈ R𝑑. Projected gradient descent may then be delicate as it would require
to build the convex hull and the projection itself may be costly. In such cases, the
conditional gradient method, a.k.a. Frank-Wolfe [Frank and Wolfe, 1956; Jaggi, 2013],
presented in Algorithm 5, can circumvent the problem. It uses a linear minimization
oracle (5.4) to produce a sequence of feasible iterates that converge to a solution 𝑥* of
the problem at a rate 1/𝑡, where 𝑡 is the number of iterations. The linear minimization
oracle also provides an estimated gap (5.5) for free, since, by definition of the oracle
and convexity of 𝑓 ,

⟨𝑥𝑡 − 𝑠𝑡,∇𝑓(𝑥𝑡)⟩ ≥ ⟨𝑥𝑡 − 𝑥*,∇𝑓(𝑥𝑡)⟩ ≥ 𝑓(𝑥𝑡)− 𝑓(𝑥*).

96

Algorithm 5 Conditional gradient algorithm for constrained problem (5.3)
Inputs: Initial point 𝑥0 ∈ hull(𝐶), target precision 𝜀
for 𝑡 = 0, . . . do

Solve linear minimization oracle

𝑠𝑡 = argmin
𝑠∈hull(𝐶)

⟨∇𝑓(𝑥𝑡), 𝑠⟩ (5.4)

Get estimated gap
∆𝑡 = ⟨𝑥𝑡 − 𝑠𝑡,∇𝑓(𝑥𝑡)⟩ (5.5)

if ∆𝑡 ≤ 𝜀 then Stop end if
Set

𝑥𝑡+1 = 𝑥𝑡 +
2

𝑡+ 2
(𝑠𝑡 − 𝑥𝑡)

end for
Output: �̂� = 𝑥𝑡

The key observation is that, in our problems, we do have access to a linear mini-
mization oracle that amounts to a k-means problem.

97

98

Chapter 6

Grouping features for prediction with
partitioning constraints

Chapter Abstract

In a prediction problem, grouping features can improve performance, ro-
bustness and interpretation of the results. Here we propose to find the
best partition of the features for a task by constraining the prediction
vector to have a small number of values. We formulate our model for
classification and regression and present algorithmic schemes to tackle it.
First, we develop a convex relaxation for squared losses using conditional
gradient descent to handle the underlying combinatorial problem. Then,
we propose a projected gradient scheme that amounts to iteratively clus-
ter the features at each gradient step. We provide a theoretical analysis of
this method to recover the information needed for prediction, based on a
union of subspaces interpretation of the partitioning structure. We extend
these results to combine sparsity and grouping constraints, and develop a
new projection algorithm on the set of grouped sparse vectors. Numerical
experiments illustrate the performance of our algorithms on synthetic and
real data.

Introduction
In a prediction problem, getting a compressed representation of the informa-

tion needed for the task has been extensively studied to improve prediction per-
formance. Numerous models have been developed to select few features for the task
(see e.g. [Tang et al., 2014]). In particular an extensive literature has been presented
to tackle the problem by enforcing sparsity on the prediction vector (see [Bach et al.,
2012]). Here we rather focus on the problem of grouping features, which has var-
ious applications. For example, in text classification this amounts to group words
that have the same meaning for the task (see e.g. [Gupta et al., 2009] and references
therein). In biology, this can be used to retrieve groups of genomes that have the same
impact on a disease (see e.g. [Segal et al., 2003; Balding, 2006]). More generally this

99

approach can be seen as a supervised quantization of the feature space (see e.g. [Nova
and Estévez, 2014] and references therein).

The idea of grouping features to reduce dimensionality of the problem is of course
not new. Hastie et al. [2001] used for example supervised learning methods to se-
lect group of predictive variables formed by hierarchical clustering. Several models
also developed mutual information-based algorithms to remove redundant features,
e.g. [Yu and Liu, 2003; Song et al., 2013; Peng et al., 2005]. More recently, reg-
ularizers were developed to enforce grouped vectors [Bondell and Reich, 2008; She
et al., 2010; Petry et al., 2011]. In particular, Bach et al. [2012] analyzed geometrical
properties induced by convex relaxations of submodular functions that lead to group
structures. This geometrical perspective was also investigated by Bühlmann et al.
[2013], who showed recovery performance of group norms induced by hierarchical
clustering methods based on canonical correlations. Finally Shen and Huang [2010]
developed an homotopy method to extract homogeneous subgroups of predictors.

In this chapter, we study a simple approach to the problem : while sparsity
enforces a small number of non-zero coefficient of the prediction vector, we enforce a
small number of values. This naturally induces groups of features that share the same
weight for the prediction. We formulate our approach for regression and classification
tasks in Section 6.1, by using assignment matrices to link features to the representative
coefficient of their group. This leads to a non-convex problem that we tackle with
several algorithmic schemes.

First, in Section 6.2, we analyze a convex relaxation of our model when a squared
loss is used to measure the prediction error. In that case, the underlying combi-
natorial problem can be isolated such that we can use a conditional gradient al-
gorithm, a.k.a. Frank-Wolfe algorithm [Frank and Wolfe, 1956; Jaggi, 2013], whose
core inner step amounts to solving a clustering problem. Then, in Section 6.3 we
present a simple projected gradient scheme similar to the Iterative Hard Thresholding
(IHT) [Blumensath and Davies, 2009] algorithm used in compressed sensing. While
constraints are non-convex, projection on the feasible set also reduces to a clustering
subproblem. For both schemes, the clustering problem can be solved exactly with
dynamic programming [Bellman, 1973; Wang and Song, 2011] for regression where
it amounts to a k-means problem in one dimension, or approximated efficiently with
k-means++ [Arthur and Vassilvitskii, 2007] for classification.

We analyze the performance of the projected gradient scheme to recover a vector
that generates the observations in Section 6.4. To this end, we detail the geometry
induced by the partitioning constraints and demonstrate that, for regression with a
least-square penalty and a sufficient number of observations, the projected gradient
scheme can be seen as a fixed point algorithm. Although our structure is similar to
sparsity, we show that imposing a grouped structure, while helping interpretability,
does not allow us to significantly reduce the number of observations to retrieve the
original vector, as in the sparse case for example.

We also extend the application of the projected gradient scheme to both select
and group features in Section 6.5 by developing a new dynamic program that gives
the exact projection on the set of sparse and clustered vectors.

Finally, numerical experiments illustrate the performance of the algorithmic schemes

100

on both synthetic and real datasets involving large corpora of text from movie reviews.
The use of k-means steps makes our approach fast and scalable while comparing fa-
vorably with standard benchmarks and providing meaningful insights on the data
structure.

6.1 Problem Formulation

We first present our framework for linear regression tasks and then extend its
application to classification.

6.1.1 Regression with grouped features

Given 𝑛 observations 𝑦1, . . . , 𝑦𝑛 ∈ R from data points 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑, linear
regression aims at finding a regression vector 𝑤 ∈ R𝑑 that fits the data such that

𝑦𝑖 ≈ 𝑤𝑇𝑥𝑖, for all 𝑖 = 1, . . . , 𝑛.

Parameter 𝑤 then serves to predict future observations 𝑦 of new data points 𝑥. To
assess the quality of a prediction vector 𝑤, one defines a loss function ℓ that measures
its accuracy error ℓ(𝑤𝑇𝑥, 𝑦) on a sample (𝑥, 𝑦). A common choice of loss, that we
investigate here, is the squared loss ℓsquare(𝑤𝑇𝑥, 𝑦) = 1

2
(𝑤𝑇𝑥− 𝑦)2, but several others

exist in the literature, see Hastie et al. [2008]. A classical approach to compute a
linear regression vector is then to minimize the empirical loss function

𝐿(𝑤) =
1

𝑛

𝑛∑︁
𝑖=1

ℓ(𝑤𝑇𝑥𝑖, 𝑦𝑖).

In order to prevent the computed prediction parameters from over-fitting the given
set of samples, one often adds a regularizer 𝑅(𝑤) of the regression vector to the
minimization problem. This notably reduces the effect of noise or outliers in the
data. For example, one can use the squared Euclidean norm of the regression vector,
i.e. 𝑅square(𝑤) = 1

2
‖𝑤‖2. Candidate regression parameters are then given by the

minimization problem
minimize 𝐿(𝑤) + 𝜆𝑅(𝑤) (6.1)

in variable 𝑤 ∈ R𝑑, where 𝜆 ≥ 0 is a regularization parameter.
Structural information on the task can then be added. For example, one can

enforce the regression vectors 𝑤 to be sparse, i.e. to have few non-zeros coefficients.
Here we rather enforce the regression vectors 𝑤 to have at most 𝑄 values 𝑣1, . . . , 𝑣𝑄.
Each coefficient 𝑣𝑞 is assigned to a group of features 𝑔𝑞 such that regression vectors
𝑤 define partitions 𝐺 = {𝑔1, . . . , 𝑔𝑄} of the features. We encode it by an assignment
matrix 𝑍 ∈ {0, 1}𝑑×𝑄, whose rows index the features and columns index the groups,
such that

𝑍𝑖𝑞 =

{︃
1 if 𝑖 ∈ 𝑔𝑞
0 otherwise.

101

These are presented in Section 5.2. A regression vector 𝑤 satisfying the constraints can
then be described by an assignment matrix 𝑍 and the prediction weights 𝑣1, . . . , 𝑣𝑄
such that 𝑤𝑖 =

∑︀𝑄
𝑞=1 𝑍𝑖𝑞𝑣𝑞 = (𝑍𝑣)𝑖. Therefore linear regression enforcing 𝑄 groups

of features reads

minimize 𝐿(𝑤) + 𝜆𝑅(𝑤)
subject to 𝑤 = 𝑍𝑣, 𝑍 ∈ {0, 1}𝑑×𝑄, 𝑍1 = 1

(6.2)

in variables 𝑤 ∈ R𝑑, 𝑣 ∈ R𝑄 and 𝑍, where 𝜆 ≥ 0 is a regularization parameter.
We detail the geometry of the non-convex set defined by the partitions of the fea-

tures in Section 6.4.2 and extend now this formulation to classification tasks. Before
notice that affine regression problems that seek for a regression vector 𝑤 ∈ R𝑑 and an
intercept 𝑏 ∈ R such that 𝑦 ≈ 𝑤𝑇𝑥 + 𝑏 can be treated similarly. It suffices to add a
constant feature equals to one to data points 𝑥 and to consider the resulting problem
in dimension 𝑑+1. In this case regularization function 𝑅 and partitioning constraints
apply only on the first 𝑑 dimensions of the resulting problem.

6.1.2 Classification with grouped features

Numerous models have been proposed for classification, we refer the interesting
reader to Hastie et al. [2008] for a detailed presentation. Here we briefly present one
of them, namely one-vs-all linear classification, in order to focus on the optimization
problem that will be constrained to group features. In classification, data points
𝑥1, . . . , 𝑥𝑛 ∈ R𝑑 belong to one of 𝐾 classes, which can be encoded by binary vectors
𝑦𝑖 ∈ {−1, 1}𝐾 such that 𝑦𝑖𝑘 = 1 if 𝑖th point belongs to class 𝑘 and −1 otherwise.
One-vs-all linear classification aims then at computing hyperplanes defining regions
of space where points are more likely to belong to a given class. Such hyperplanes are
defined by their normals 𝑤1, . . . , 𝑤𝐾 , forming a matrix of linear classifiers 𝑊 ∈ R𝑑×𝐾

whose classification error on a sample (𝑥, 𝑦) is measured by a loss ℓ(𝑊 𝑇𝑥, 𝑦) such as
the squared loss ℓsquare(𝑊 𝑇𝑥, 𝑦) = 1

2
‖𝑊 𝑇𝑥− 𝑦‖22. One searches then to minimize the

empirical loss function

𝐿(𝑊) =
1

𝑛

𝑛∑︁
𝑖=1

ℓ(𝑊 𝑇𝑥𝑖, 𝑦𝑖).

As for regression, a regularizer 𝑅(𝑊) can be added on the linear classifiers such
as their squared euclidean norm 𝑅square(𝑊) = 1

2

∑︀𝐾
𝑘=1 ‖𝑤𝑘‖22 = 1

2
‖𝑊‖2𝐹 . Candidate

classification parameters are then given by solving

minimize 𝐿(𝑊) + 𝜆𝑅(𝑊) (6.3)

in variable 𝑊 ∈ R𝑑×𝐾 , where 𝜆 ≥ 0 is a regularization parameter.
To group features, we will enforce the classifiers to share the same partition of

their coefficients. Namely, if this partition is encoded by an assignment matrix 𝑍 and
𝑣𝑘 = (𝑣1𝑘, . . . , 𝑣𝑄𝑘) represent the 𝑄 different coefficients of the 𝑘th linear classifier 𝑤𝑘,

102

then 𝑤𝑘 = 𝑍𝑣𝑘. Linear classification enforcing 𝑄 groups of constraints then reads

minimize 𝐿(𝑊) + 𝜆𝑅(𝑊)
subject to 𝑊 = 𝑍𝑉, 𝑍 ∈ {0, 1}𝑑×𝑄, 𝑍1 = 1

(6.4)

in variables 𝑊 ∈ R𝑑×𝐾 , 𝑉 ∈ R𝑄×𝐾 and 𝑍, where 𝜆 ≥ 0 is a regularization pa-
rameter. Observe that constraints in (6.4) are essentially the same as the ones in
(6.2), except that these are formulated on matrices. However this simple difference
will have important algorithmic implications. Notice that for binary classification, a
vector of labels of dimension one is sufficient to encode the class information, such
that binary classification reduces to a problem of the form (6.2). As for regression,
this setting can be applied to compute affine hyperplanes by extending the problem
in 𝑑+ 1 dimension and by applying regularization and constraints only on the first 𝑑
dimensions.

6.2 Convex relaxation

We now present a first optimization strategy for solving prediction problems (6.2)
and (6.4) that group features, whose general formulation is

minimize 𝐿(𝑊) + 𝜆𝑅(𝑊)
subject to 𝑊 = 𝑍𝑉, 𝑍 ∈ {0, 1}𝑑×𝑄, 𝑍1 = 1

(P)

in variables𝑊 ∈ R𝑑×𝐾 , 𝑉 ∈ R𝑄×𝐾 and 𝑍, where 𝐿 and 𝑅 are respectively the loss and
the regularizer of the problem and 𝜆 ≥ 0 is a regularization parameter. Regression and
binary classification cases corresponds to𝐾 = 1 and multiclassification to𝐾 > 1. The
difficulty of problem (P) lies in its underlying combinatorial nature that we isolate
in the case of a squared loss and squared regularizer. Then, we propose a convex
relaxation of the resulting problem which amounts to optimize on the convex hull of
the set of constraints by using a conditional gradient algorithm.

6.2.1 Simplified formulation for squared loss

The squared loss has the advantage to provide analytic solutions for prediction
problems in variables 𝑊,𝑉 . By replacing 𝑊 = 𝑍𝑉 , the objective of problem (P) in
the remaining variables 𝑍, 𝑉 reads

𝐿square(𝑍𝑉) + 𝜆𝑅square(𝑍𝑉) =
1

2𝑛

𝑛∑︁
𝑖=1

‖𝑦𝑖 − (𝑍𝑉)𝑇𝑥𝑖‖22 +
𝜆

2
‖𝑍𝑉 ‖2𝐹

=
1

2𝑛
Tr(𝑉 𝑇𝑍𝑇𝑋𝑇𝑋𝑍𝑉) +

𝜆

2
Tr(𝑉 𝑇𝑍𝑇𝑍𝑉)

− 1

𝑛
Tr(𝑌 𝑇𝑋𝑍𝑉) +

1

2𝑛
Tr(𝑌 𝑇𝑌),

103

where 𝜆 ≥ 0 is a regularization parameter, 𝑋 = (𝑥1, . . . , 𝑥𝑛)𝑇 ∈ R𝑛×𝑑 is the matrix
of data points and 𝑌 = (𝑦1, . . . , 𝑦𝑛)𝑇 ∈ R𝑛×𝐾 is the matrix of labels or the vector of
observations in the regression case. Assume first 𝑍 to be full rank, then minimization
in 𝑉 leads to

min
𝑉
𝐿square(𝑍𝑉) + 𝜆𝑅square(𝑍𝑉) =

1

2𝑛
Tr
(︀
𝑌 𝑇
(︀
I−𝑋𝑍(𝑍𝑇𝑋𝑇𝑋𝑍 + 𝜆𝑛𝑍𝑇𝑍)−1𝑍𝑇𝑋𝑇

)︀
𝑌
)︀

=
1

2𝑛
Tr

(︃
𝑌 𝑇

(︂
I +

1

𝑛𝜆
𝑋𝑍(𝑍𝑇𝑍)−1𝑍𝑇𝑋𝑇

)︂−1

𝑌

)︃
,

where we simplified first expression by using the Sherman-Woodbury-Morrison for-
mula. If 𝑍 is not full rank, some of its columns are null (some of the groups it
represents are empty). Previous computations can then be performed by replac-
ing 𝑍 by 𝑍 defined with the non-zero columns of 𝑍, such that 𝑍 is full rank and
𝑍(𝑍𝑇𝑍)−1𝑍𝑇 = 𝑍(𝑍𝑇𝑍)†𝑍𝑇 , where 𝐴† is the pseudo-inverse of 𝐴. Overall, we there-
fore get

min
𝑉
𝐿square(𝑍𝑉) + 𝜆𝑅square(𝑍𝑉) =

1

2𝑛
Tr

(︃
𝑌 𝑇

(︂
I +

1

𝑛𝜆
𝑋𝑍(𝑍𝑇𝑍)†𝑍𝑇𝑋𝑇

)︂−1

𝑌

)︃

Resulting objective is convex in 𝑍(𝑍𝑇𝑍)†𝑍𝑇 where we recognize the normalized equiv-
alence matrices of partitions as presented in Section 5.2. The optimization problem
then reads

minimize Tr
(︁
𝑌 𝑇
(︀
I + 1

𝑛𝜆
𝑋𝑀𝑋𝑇

)︀−1
𝑌
)︁

subject to 𝑀 ∈ℳ.
(6.5)

in variable 𝑀 where ℳ = {𝑀 = 𝑍(𝑍𝑇𝑍)†𝑍𝑇 , 𝑍 ∈ {0, 1}𝑑×𝑄, 𝑍1 = 1} is the
set of normalized equivalence matrices for partitions of {1, . . . , 𝑑} into 𝑄 groups.
The resulting problem is still non-convex due to the combinatorial nature of the set
of normalized equivalence matrices. However one can then relax the problem by
optimizing on its convex hull as presented in Section 5.3.2.

6.2.2 Conditional gradient algorithm

We detail the linear minimization oracle used by Frank-Wolfe Algorithm 5 in this
setting. Denote the objective function of problem (6.5) by

𝑓(𝑀) , Tr

(︃
𝑌 𝑇

(︂
I +

1

𝑛𝜆
𝑋𝑀𝑋𝑇

)︂−1

𝑌

)︃
. (6.6)

Its gradient at a given 𝑀 ∈ℳ is

∇𝑓(𝑀) = − 1

2𝑛2𝜆
𝑋𝑇

(︂
I +

1

𝑛𝜆
𝑋𝑀𝑋𝑇

)︂−1

𝑌 𝑌 𝑇

(︂
I +

1

𝑛𝜆
𝑋𝑀𝑋𝑇

)︂−1

𝑋. (6.7)

104

Observe that −∇𝑓(𝑀) is a semi-definite positive matrix of squared root

𝑈 =
1

𝑛
√

2𝜆
𝑋𝑇

(︂
I +

1

𝑛𝜆
𝑋𝑀𝑋𝑇

)︂−1

𝑌 ∈ R𝑑×𝐾 .

The linear minimization oracle to minimize 𝑓(𝑀) over the convex hull of the set of
normalized equivalence matrices can then be computed as follows

argmin
𝑆∈hull(ℳ)

⟨𝑆,∇𝑓(𝑀)⟩ 𝜗1= argmin
𝑆∈ℳ

Tr(𝑆𝑇∇𝑓(𝑀))

= argmin
𝑆∈ℳ

−Tr(𝑆𝑈𝑈𝑇)

= argmin
𝑆∈ℳ

Tr((I− 𝑆)𝑈𝑈𝑇))

𝜗2= argmin
𝑆∈ℳ

‖𝑈 − 𝑆𝑈‖2𝐹 . (6.8)

In 𝜗1, we used that ℳ is a set of atoms, so its convex hull is a polytope and linear
minimization on it is equivalent to linear minimization on its vertices, i.e., ℳ. In
𝜗2, we used that normalized equivalence matrices are orthogonal projectors, so 𝐼 −𝑆
is also an orthogonal projector. Now we observe that (6.8) is a k-means problem as
presented in Section 5.2.2.

Therefore solving a k-means problem on the rows of the squared root matrix 𝑈 of
−∇𝑓(𝑀) offers a solution to the linear minimization oracle. Crucially here if 𝐾 = 1
(i.e. for regression or binary classification), 𝑈 is a vector such that this reduces to
a k-means problem in one dimension that can be solved exactly in polynomial time
by dynamic programming [Bellman, 1973; Wang and Song, 2011]. Otherwise careful
initialization as made in k-means++ [Arthur and Vassilvitskii, 2007] offers logarithmic
approximations to the problem.

A conditional gradient method can then be applied in our setting, so that we can
solve a relaxed version of (6.5). Once done, it remains to provide an approximate
feasible solution for the original constraints. Two projections of the relaxed version
are possible: either finding the closest normalized equivalence matrix in Frobenius
norm or computing the point that minimizes the gradient of the relaxed solution,
i.e. computing its linear minimization oracle. In practice we chose second solution
as it provided better results. Notice that the k-means operation used for the linear
minimization provides not only a normalized equivalence matrix but also a corre-
sponding assignment matrix 𝑍 that leads to the optimal coefficients that minimize
𝐿square(𝑍𝑉) + 𝜆𝑅square(𝑍𝑉) as

𝑉 (𝑍) = (𝑍𝑇𝑋𝑇𝑋𝑍 + 𝜆𝑛𝑍𝑇𝑍)†𝑍𝑇𝑋𝑇𝑌. (6.9)

To summarize, our convex relaxation for regression with grouped features is pre-
sented in Algorithm 6. We denote by 𝑍 = k-means(𝑈,𝑄) an assignment matrix
solution of the k-means problem that cluster rows of 𝑈 in 𝑄 groups.

105

Algorithm 6 Convex relaxation for regression with grouped features
Inputs: Data (𝑋, 𝑌), desired number of groups𝑄, target precision 𝜀, regularization
parameter 𝜆 ≥ 0
Initialize 𝑀0 ∈ℳ
for 𝑡 = 0, . . . do

Compute −∇𝑓(𝑀𝑡) in (6.7) and its squared root 𝑈
Get linear minimization oracle by computing

𝑍𝑡 = k-means(𝑈,𝑄)
𝑆𝑡 = 𝑍𝑡(𝑍

𝑇
𝑡 𝑍𝑡)

†𝑍𝑇
𝑡

if Tr
(︀
(𝑀𝑡 − 𝑆𝑡)

𝑇∇𝑓(𝑀𝑡)
)︀
≤ 𝜀 then Stop end if

Set 𝑀𝑡+1 = 𝑀𝑡 + 1
𝑡+2

(𝑆𝑡 −𝑀𝑡)
end for
𝑍 = 𝑍𝑡

𝑉 = 𝑉 (𝑍) in (6.9)
Output: �̂� = 𝑍𝑉

6.2.3 Computational complexity

We briefly examine the complexity of Algorithm 6. For regression the k-means
operation has a complexity of 𝑂(𝑑2𝑄) operations to get an exact solution by dynamic
programming. For classification, k-means++ initialization costs 𝑂(𝑄2𝑑) operations
and standard alternating minimization approximates the k-means operation at a cost
of 𝑂(𝑇𝑄𝑑), where 𝑇 is the number of alternating steps, that is generally small.

The squared root computation is directly given by the computation of ∇𝑓(𝑀).
However, this gradient itself requires the inversion of a matrix of size 𝑑 × 𝑑. This
burdens its implementation for big data sets. Yet, a few iterations of this algorithm
can give a good initialization for non-convex approaches of the problem.

6.3 Iterative Hard Clustering

Previous part gave an overview of the tightest convex relation in the simple case
of a squared loss. Convexity ensures convergence of the Algorithm 6, at least for
regression or binary classification. However, as noticed, this scheme may not scale
for big data. Moreover it does not transpose to losses different than the squared one.
We therefore propose to tackle directly the non-convex problem

minimize 𝐿(𝑊) + 𝜆𝑅(𝑊)
subject to 𝑊 = 𝑍𝑉, 𝑍 ∈ {0, 1}𝑑×𝑄, 𝑍1 = 1

(P)

in variables 𝑊 ∈ R𝑑×𝐾 , 𝑉 ∈ R𝑄×𝐾 and 𝑍, where 𝜆 ≥ 0 is a regularization parameter.
We use a projected gradient scheme that amounts to iteratively cluster features at
each gradient step. This transposes the Iterative Hard Thresholding [Blumensath and

106

Davies, 2009] algorithm, studied in compressed sensing, to the problem of grouping
features. It offers a scalable solution for various losses as shown in the numerical
experiments. Here we detail its implementation and analyze its performance from a
compressed sensing point of view in the next section.

6.3.1 Projected gradient descent

The algorithm relies on the fact that projecting a point 𝑊 on the feasible set,
that reads

minimize ‖𝑊 − 𝑍𝑉 ‖2𝐹
subject to 𝑍 ∈ {0, 1}𝑑×𝑄, 𝑍1 = 1

in variable 𝑉 ∈ R𝑄×𝐾 and 𝑍 is a clustering problem

minimize
𝑄∑︁

𝑞=1

∑︁
𝑖∈𝑔𝑞

‖𝑤𝑖 − 𝑣𝑞‖22, (6.10)

in variables 𝑣1, . . . , 𝑣𝑄 ∈ R𝐾 that are the centroids of the clusters and 𝐺 = (𝑔1, . . . , 𝑔𝑄)
a partition of {1, . . . , 𝑑}. As noticed in previous section, this k-means problem can
be solved approximately with k-means++ if 𝐾 > 1 or exactly in polynomial time if
𝐾 = 1. Given a matrix 𝑊 , whose rows we want to cluster in 𝑄 groups, we denote
by [𝑍, 𝑉] = k-means(𝑊,𝑄) respectively the assignment matrix and the matrix of
centroids output by a clustering algorithm. A projected gradient scheme for prob-
lem (P) is described in Algorithm 7 and its implementations details are provided in
next section.

Algorithm 7 Iterative Hard Clustering
Inputs: Data (𝑋, 𝑌), desired number of groups 𝑄, regularization parameter 𝜆 ≥ 0,
step size 𝛾𝑡
Initialize 𝑊0 ∈ R𝑑×𝐾

for t = 1,. . . ,T do
𝑊𝑡+1/2 = 𝑊𝑡 − 𝛾𝑡(∇𝐿(𝑊𝑡) + 𝜆∇𝑅(𝑊𝑡))
[𝑍𝑡+1, 𝑉𝑡+1] = k-means(𝑊𝑡+1/2, 𝑄)
𝑊𝑡+1 = 𝑍𝑡+1𝑉𝑡+1

end for
Output: �̂� = 𝑊𝑇

6.3.2 Detailed implementation

In practice, we stop the algorithm when change in objective values of (P) are
below some prescribed threshold 𝜀. We use a backtracking line search on the stepsize
𝛾𝑡 that guarantees decreasing of the objective. At each iteration if

�̄�𝑡+1 = k-means (𝑊𝑡 − 𝛾𝑡(∇𝐿(𝑊𝑡) + 𝜆∇𝑅(𝑊𝑡)), 𝑄)

107

decreases the objective value we keep it and we increase the stepsize by a constant
factor 𝛾𝑡+1 = 𝛼𝛾𝑡 with 𝛼 > 1. If �̄�𝑡+1 increases the objective value we decrease the
stepsize by a constant factor 𝛾𝑡 ← 𝛽𝛾𝑡, with 𝛽 < 1, compute new �̄�𝑡+1 and iterate
this operation until �̄�𝑡+1 decreases the objective value or the stepsize reaches the
stopping value 𝜀 used as a stopping criterion on the objective values. We observed
better results with this line search than with constant stepsize, in particular when
the number of samples is small.

Using this strategy, we observed convergence of the projected gradient algorithm
in less than 100 iterations which makes it highly scalable. The complexity of its core
operations amounts indeed to k-means operations whose complexities were given in
Section 6.2.3.

6.4 Recovery performance of Iterative Hard Cluster-
ing

We now analyze convergence of the Iterative Hard Clustering scheme to retrieve
the true regressor 𝑤* in the regression problem. To this end we first detail the problem
in terms of partitions.

6.4.1 Combinatorial penalty for grouping features

Several works developed tools to encode structural information in optimization
problems such as sparsity inducing norms. Bach et al. [2013] show that these reg-
ularizers can generally be seen as convex extensions of combinatorial functions. A
given vector 𝑤 defines indeed by its support Supp(𝑤) = {𝑖 ∈ {1, . . . , 𝑑}, 𝑤𝑖 ̸= 0} a set
that can be constrained to satisfy some combinatorial properties by using submodular
functions. For example, classical sparsity enforces the cardinality of this support to
be small in order to select a few parameters. On a regression problem (6.1), this reads

minimize 𝐿(𝑤) + 𝜆𝑅(𝑤)
subject to Card(Supp(𝑤)) ≤ 𝑠,

in variable 𝑤 ∈ R𝑑, where 𝑠 is the desired sparsity. In our context, we do not use the
set defined by the support of a vector, but the partition given by its level sets, that
read

Part(𝑤) = {𝑔 ⊂ {1, . . . , 𝑑} : (𝑖, 𝑗) ∈ 𝑔 × 𝑔, iff 𝑤𝑖 = 𝑤𝑗}.
Denoting Card(𝐺) the number of the (non-empty) groups of a partition 𝐺, linear
regression enforcing 𝑄 group of features (6.2) then reads

minimize 𝐿(𝑤) + 𝜆𝑅(𝑤)
subject to Card(Part(𝑤)) ≤ 𝑄,

(6.11)

in variable 𝑤 ∈ R𝑑. Assignment matrices introduced in Section 6.1 encode then the
possible partitions into at most 𝑄 groups. We detail the geometrical interpretations

108

of assignment and normalized equivalence matrices in Appendix 6.A. Identifying the
underlying combinatorial constraint helps then to describe the geometry of the feasible
set. It can also be used to derive a norm as discussed in Appendix 6.B.

6.4.2 Geometry induced by partitions

Denote 𝒫 the set of partitions of {1, . . . , 𝑑} whose definition is recalled below.

Definition 6.4.1. Partitions A collection 𝐺 of subsets of {1, . . . , 𝑑} is a partition of
{1, . . . , 𝑑} if for any 𝑔, 𝑔′ ∈ 𝐺×𝐺, 𝑔 ̸= 𝑔′ implies 𝑔∩𝑔′ = ∅ and if

⋃︀
𝑔∈𝐺 𝑔 = {1, . . . , 𝑑}.

Denote from now on 𝒫 the set of partitions of {1, . . . , 𝑑}. Pair of partitions can
then be compared as follows.

Definition 6.4.2. Sup- and sub-partitions Let 𝐺,𝐺′ ∈ 𝒫 be two partitions. 𝐺 is
a sup-partition of 𝐺′ (or 𝐺′ is a sub-partition of 𝐺), denoted

𝐺 ⪰ 𝐺′,

if for any 𝑔′ ∈ 𝐺′ there exists 𝑔 ∈ 𝐺 such that 𝑔′ ⊂ 𝑔 , or equivalently if any 𝑔 ∈ 𝐺 is
a union of groups 𝑔′ of 𝐺′.

Relation ⪰ is transitive, reflexive and anti-symmetric, such that it is a partial
order on the set of partitions. Notice that the number of (non-empty) groups of
partitions, Card(·), decreases with the partial order ⪰.

Following proposition highlights the geometry induced by a single partition of the
features.

Proposition 6.4.3. Any partition 𝐺 ∈ 𝒫 defines a linear subspace

𝐸𝐺 = {𝑤 ∈ R𝑑 : Part(𝑤) ⪰ 𝐺} (6.12)

of vectors 𝑤 whose level sets can be partitioned by the groups of 𝐺. For any partitions
𝐺,𝐺′ ∈ 𝒫, if 𝐺 ⪰ 𝐺′ then 𝐸𝐺 ⊂ 𝐸𝐺′.

Proof. Given a partition 𝐺 ∈ 𝒫 and a vector 𝑤 ∈ R𝑑, 𝐺 is a sub-partition
of Part(𝑤), i.e. Part(𝑤) ⪰ 𝐺, if and only if the groups of 𝐺 are subsets of equal
coefficients of 𝑤, or equivalently if level sets of 𝑤 can be partitioned by groups of 𝐺.
Now, if, for some 𝑤1, 𝑤2 ∈ R𝑑, groups of 𝐺 are subsets of equal coefficients of both
𝑤1 and 𝑤2, they will also be subset of equal coefficients of any linear combination
of 𝑤1, 𝑤2. Therefore 𝐸𝐺 is a linear subspace. Second statement follows from the
transitivity of ⪰.

Since 𝑤 ∈ 𝐸Part(𝑤), the feasible set for the regression problem (6.11) enforcing 𝑄
groups of features is then a union of subspaces:

{𝑤 ∈ R𝑑 : Card(Part(𝑤)) ≤ 𝑄} =
⋃︁

𝐺∈𝒫 :Card(𝐺)≤𝑄

𝐸𝐺 =
⋃︁

𝐺∈𝒫 :Card(𝐺)=𝑄

𝐸𝐺.

109

Second equality comes from the fact that if a partition 𝐺 ∈ 𝒫 has strictly less than
𝑄 groups, i.e., Card(𝐺) < 𝑄, some of its groups can always be split to form a
new partition 𝐺′ such that 𝐺 ⪰ 𝐺′, Card(𝐺′) = 𝑄 and 𝐸𝐺 ⊂ 𝐸𝐺′ . Therefore it is
sufficient to consider subspaces generated by partitions into exactly 𝑄 groups, whose
set is denoted 𝒫𝑄 = {𝐺 ∈ 𝒫 : Card(𝐺) = 𝑄}.

6.4.3 Convergence analysis of Iterative Hard Clustering

We now analyze the convergence of the projected gradient algorithm applied to
a regression problem enforcing 𝑄 groups of features. We use a squared loss and no
regularization. Therefore our problem reads

minimize 1
2𝑛
‖𝑋𝑤 − 𝑦‖22

subject to Card(Part(𝑤)) ≤ 𝑄
(6.13)

in 𝑤 ∈ R𝑑, where 𝑋 = (𝑥1, . . . , 𝑥𝑛)𝑇 ∈ R𝑛×𝑑 is the matrix of data points and 𝑦 =
(𝑦1, . . . , 𝑦𝑛) ∈ R𝑛 is the vector of observations. For the analysis, we use a constant step
size 𝛾𝑡 = 1 and initialize the algorithm with 𝑤0 = 0. We assume that the observations
𝑦 are generated by a linear model whose coefficients 𝑤* satisfy the constraints above,
up to additive noise, that is

𝑦 = 𝑋𝑤* + 𝜂,

where 𝜂 ∼ 𝒩 (0, 𝜎2) and Card(Part(𝑤*)) ≤ 𝑄. Hence we analyze the performance of
the algorithm to recover 𝑤* and the partition Part(𝑤*) of the features.

If it were not the constraints, a gradient descent applied to (6.13) would act as
a fixed point algorithm whose contraction factor depends on the singular values of
the Hessian 𝑋𝑇𝑋 of the problem. Here we will show that the projected gradient
scheme exhibits the same behavior, except that the contraction factor will depend on
restricted singular values on small subspaces defined by partitions. These subspaces
belong to the following collections

ℰ1 = {𝐸𝐺 : 𝐺 ∈ 𝒫𝑄}
ℰ2 = {𝐸𝐺1 + 𝐸𝐺2 : 𝐺1, 𝐺2 ∈ 𝒫𝑄}
ℰ3 = {𝐸𝐺1 + 𝐸𝐺2 + 𝐸𝐺3 : 𝐺1, 𝐺2, 𝐺3 ∈ 𝒫𝑄}.

(6.14)

Throughout the rest of the section, for a given subspace 𝐸 of R𝑑, we denote 𝑃𝐸 the
orthogonal projector on 𝐸, 𝑈𝐸 any orthonormal basis of 𝐸 and for a given matrix 𝑋 ∈
R𝑛×𝑑 we denote 𝜎min(𝑋𝑈𝐸/

√
𝑛) and 𝜎max(𝑋𝑈𝐸/

√
𝑛) respectively the smallest and

largest singular values of 𝑋𝑈𝐸/
√
𝑛, i.e. the smallest and largest restricted singular

values of 𝑋/
√
𝑛 on 𝐸.

The next proposition adapts the proof of Iterative Hard Thresholding in our con-
text using that feasible set is a union of subspaces,

Proposition 6.4.4. Iterative Hard Clustering Algorithm 7 with constant step size
𝛾𝑡 = 1 and initialization 𝑤0 = 0, applied to (6.13) outputs iterates 𝑤𝑡 that converge

110

to the original 𝑤* as

‖𝑤* − 𝑤𝑡‖2 ≤ 𝜌𝑡‖𝑤*‖2 +
1− 𝜌𝑡
1− 𝜌 𝜈‖𝜂‖2,

where

𝜌 = 6 max
𝐸∈ℰ2

max(𝛿𝐸, 𝛿
3
𝐸),

𝜈 = 2/
√
𝑛max

𝐸∈ℰ3
𝜎max(𝑋𝑈𝐸/

√
𝑛)

and for any subspace 𝐸 of R𝑑, 𝛿𝐸 is the smallest non-negative constant that satisfies

1− 𝛿𝐸 ≤ 𝜎min

(︀
𝑋𝑈𝐸/

√
𝑛
)︀
≤ 𝜎max

(︀
𝑋𝑈𝐸/

√
𝑛
)︀
≤ 1 + 𝛿𝐸.

Proof. To describe Algorithm 7, we define for 𝑡 ≥ 0,

𝑤𝑡+1/2 = 𝑤𝑡 − 𝛾𝑡∇𝐿(𝑤𝑡) = 𝑤𝑡 −
1

𝑛
𝑋𝑇𝑋(𝑤𝑡 − 𝑤*) +

1

𝑛
𝑋𝑇𝜂

𝑤𝑡+1 = argmin
𝑤∈R𝑑 :Card(Part(𝑤))≤𝑄

‖𝑤 − 𝑤𝑡+1/2‖22,

where 𝑤𝑡+1 is given exactly by the solution of a k-means problem in one dimension.
The analysis of convergence relies on the characterization of the subspaces that con-
tain 𝑤*, 𝑤𝑡 and 𝑤𝑡+1. We define therefore

𝐸𝑡,* = 𝐸Part(𝑤𝑡) + 𝐸Part(𝑤*)

𝐸𝑡+1,* = 𝐸Part(𝑤𝑡+1) + 𝐸Part(𝑤*)

𝐸𝑡,𝑡+1,* = 𝐸Part(𝑤𝑡) + 𝐸Part(𝑤𝑡+1) + 𝐸Part(𝑤*),

and the orthogonal projections on these set respectively 𝑃𝑡,*, 𝑃𝑡+1,*, 𝑃𝑡,𝑡+1,*. Bound
on the error can then be computed as follows:

‖𝑤* − 𝑤𝑡+1‖2 = ‖𝑃𝑡+1,*(𝑤* − 𝑤𝑡+1)‖2
≤ ‖𝑃𝑡+1,*(𝑤* − 𝑤𝑡+1/2)‖2 + ‖𝑃𝑡+1,*(𝑤𝑡+1/2 − 𝑤𝑡+1)‖2. (6.15)

In the second term, as Card(Part(𝑤*)) ≤ 𝑄 and 𝑤𝑡+1 = argmin
𝑤∈R𝑑 :Card(Part(𝑤))≤𝑄

‖𝑤 −

𝑤𝑡+1/2‖22, we have
‖𝑤𝑡+1 − 𝑤𝑡+1/2‖22 ≤ ‖𝑤* − 𝑤𝑡+1/2‖22

which is equivalent to

‖𝑃𝑡+1,*(𝑤𝑡+1−𝑤𝑡+1/2)‖22+‖(𝐼−𝑃𝑡+1,*)𝑤𝑡+1/2‖22 ≤ ‖𝑃𝑡+1,*(𝑤*−𝑤𝑡+1/2)‖22+‖(𝐼−𝑃𝑡+1,*)𝑤𝑡+1/2‖22

and this last statement implies

‖𝑃𝑡+1,*(𝑤𝑡+1 − 𝑤𝑡+1/2)‖2 ≤ ‖𝑃𝑡+1,*(𝑤* − 𝑤𝑡+1/2)‖2.

111

This means that we get from (6.15)

‖𝑤* − 𝑤𝑡+1‖2 ≤ 2‖𝑃𝑡+1,*(𝑤* − 𝑤𝑡+1/2)‖2
= 2‖𝑃𝑡+1,*(𝑤* − 𝑤𝑡 −

1

𝑛
𝑋𝑇𝑋(𝑤* − 𝑤𝑡)−

1

𝑛
𝑋𝑇𝜂)‖2

≤ 2‖𝑃𝑡+1,*(𝐼 −
1

𝑛
𝑋𝑇𝑋)(𝑤* − 𝑤𝑡)‖2 +

2

𝑛
‖𝑃𝑡+1,*(𝑋

𝑇𝜂)‖2

= 2‖𝑃𝑡+1,*(𝐼 −
1

𝑛
𝑋𝑇𝑋)𝑃𝑡,*(𝑤* − 𝑤𝑡)‖2 +

2

𝑛
‖𝑃𝑡+1,*(𝑋

𝑇𝜂)‖2

≤ 2‖𝑃𝑡+1,*(𝐼 −
1

𝑛
𝑋𝑇𝑋)𝑃𝑡,*‖2‖𝑤* − 𝑤𝑡‖2 +

2

𝑛
‖𝑃𝑡+1,*𝑋

𝑇‖2‖𝜂‖2.

Now, assuming

2‖𝑃𝑡+1,*(𝐼 −
1

𝑛
𝑋𝑇𝑋)𝑃𝑡,*‖2 ≤ 𝜌 (6.16)

2

𝑛
‖𝑃𝑡+1,*𝑋

𝑇‖2 ≤ 𝜈 (6.17)

and developing the latter inequality over 𝑡, using that 𝑤0 = 0, we get

‖𝑤* − 𝑤𝑡‖2 ≤ 𝜌𝑡‖𝑤*‖2 +
1− 𝜌𝑡
1− 𝜌 𝜈‖𝜂‖2.

Bounds 𝜌 and 𝜈 can then be given by restricted singular values of 𝑋. For 𝜈 in (6.17),
we have

‖𝑃𝑡+1,*𝑋
𝑇‖2 = ‖𝑋𝑃𝑡+1,*‖2

𝜗

≤ max
𝐸∈ℰ2
‖𝑋𝑃𝐸‖2 = max

𝐸∈ℰ2
𝜎max(𝑋𝑈𝐸).

For 𝜗, as noticed in previous section, if for example Card(Part(𝑤*)) < 𝑄, there
always exists 𝐺 ∈ 𝒫 such that Part(𝑤*) ⪰ 𝐺, Card(𝐺) = 𝑄 and so 𝐸Part(𝑤*) ⊂ 𝐸𝐺.
Therefore there exists 𝐹𝑡+1,* that contain 𝐸𝑡+1,* and belong to ℰ2, such that we can
restrict our attention to restricted singular values on subspaces in ℰ2 (defined from
partitions in exactly 𝑄 groups).

For 𝜌 in (6.16), we have

‖𝑃𝑡+1,*(𝐼 −𝑋𝑇𝑋)𝑃𝑡,*‖2
𝜗1≤ ‖𝑃𝑡,𝑡+1,*(𝐼 −

1

𝑛
𝑋𝑇𝑋)𝑃𝑡,𝑡+1,*‖2

𝜗2≤ max
𝐸∈ℰ3
‖𝑃𝐸(𝐼 − 1

𝑛
𝑋𝑇𝑋)𝑃𝐸‖2

= max
𝐸∈ℰ3
‖𝑈𝐸(𝐼 − 1

𝑛
𝑈𝑇
𝐸𝑋

𝑇𝑋𝑈𝐸)𝑈𝑇
𝐸‖2

= max
𝐸∈ℰ3
‖𝐼 − 1

𝑛
𝑈𝑇
𝐸𝑋

𝑇𝑋𝑈𝐸‖2,

where for a subspace 𝐸, 𝑈𝐸 denotes any orthonormal basis of it. In 𝜗1 we used that
𝐸𝑡,𝑡+1,* contain 𝐸𝑡,* and 𝐸𝑡+1,*. In 𝜗2 we use the same argument as for 𝜈 to restrict

112

our attention to subspaces defined by partitions into exactly 𝑄 groups. Finally, for a
subspace 𝐸 if 𝛿𝐸 ≥ 0 satisfies

1− 𝛿𝐸 ≤ 𝜎min

(︀
𝑋𝑈𝐸/

√
𝑛
)︀
≤ 𝜎max

(︀
𝑋𝑈𝐸/

√
𝑛
)︀
≤ 1 + 𝛿𝐸,

then [Vershynin, 2010, Lemma 5.38] shows

‖𝐼 − 1

𝑛
𝑈𝑇
𝐸𝑋

𝑇𝑋𝑈𝐸‖2 ≤ 3 max{𝛿𝐸, 𝛿2𝐸},

which concludes the proof by taking the maximum of 𝛿𝐸 over ℰ3.

If the contraction factor is sufficient, convergence of the projected gradient scheme
to the original vector is ensured up to a constant error of the order of the noise as
the classical IHT algorithm does for sparse signals [Blumensath and Davies, 2009].

6.4.4 Recovery performance on random instances

We observe now that for isotropic independent sub-Gaussian data 𝑥𝑖 the restricted
singular values introduced in Proposition 6.4.4 depend on the number of subspaces
that define partitions and their dimension. This proposition reformulates results of
Vershynin [2010, Theorems 5.39, 5.65] in our context.

Proposition 6.4.5. Let ℰ be a collection of subspaces of R𝑑 of dimension at most 𝐷
and denote 𝑁 their number. If the samples are 𝑛 isotropic independent sub-gaussian
random variables forming a design matrix 𝑋 = (𝑥1, . . . , 𝑥𝑛)𝑇 ∈ R𝑛×𝑑, then for any
𝐸 ∈ ℰ,

1− 𝛿 − 𝜀 ≤ 𝜎min

(︂
𝑋𝑈𝐸√
𝑛

)︂
≤ 𝜎max

(︂
𝑋𝑈𝐸√
𝑛

)︂
≤ 1 + 𝛿 + 𝜀,

with probability larger than 1 − exp(−𝑐𝜀2𝑛), where 𝛿 = 𝐶0

√︁
𝐷
𝑛

+
√︁

log(𝑁)
𝑐𝑛

and 𝐶0, 𝑐

depend only on the sub-gaussian norm of the 𝑥𝑖.

Proof. Let 𝐸 ∈ ℰ , denote 𝑈𝐸 one of its orthonormal basis and 𝐷𝐸 = dim(𝐸) ≤ 𝐷
its dimension. The rows of𝑋𝑈𝐸 are orthogonal projections of the rows of𝑋 onto 𝐸, so
they are still independent sub-gaussian isotropic random vectors. We can therefore
apply [Vershynin, 2010, Theorem 5.39] on 𝑋𝑈𝐸 ∈ R𝑛×𝐷𝐸 . Hence, for any 𝑠 ≥ 0,
with probability at least 1 − 2 exp(−𝑐𝑠2), the smallest and largest singular values of
𝑋𝑈𝐸/

√
𝑛 are bounded as

1− 𝐶0

√︂
𝑄

𝑛
− 𝑠√

𝑛
≤ 𝜎min

(︂
𝑋𝑈𝐸√
𝑛

)︂
≤ 𝜎max

(︂
𝑋𝑈𝐸√
𝑛

)︂
≤ 1 + 𝐶0

√︂
𝑄

𝑛
+

𝑠√
𝑛
, (6.18)

where 𝑐 and 𝐶0 depend only on the sub-gaussian norm of the 𝑥𝑖. Now, by taking the
union bound, (6.18) holds for any 𝐺 ∈ 𝒫𝑄 with probability 1− 2𝑁 exp(−𝑐𝑠2).

113

Taking 𝑠 =
√︁

log(𝑁)
𝑐

+ 𝜀
√
𝑛, we get for all 𝐺 ∈ 𝒫𝑄,

1− 𝛿 − 𝜀 ≤ 𝜎min

(︂
𝑋𝑈𝐸√
𝑛

)︂
≤ 𝜎max

(︂
𝑋𝑈𝐸√
𝑛

)︂
≤ 1 + 𝛿 + 𝜀,

with probability at least 1− 2 exp(−𝑐𝜀2𝑛), where 𝛿 = 𝐶0

√︁
𝑄
𝑛

+
√︁

log(𝑁)
𝑐𝑛

.

To ensure approximate recovery of the projected gradient scheme in Proposition
6.4.4, one needs to control restricted singular values of 𝑋 on subspaces in ℰ3 in order
to ensure that the contraction factor 𝜌 is strictly less than one. Precisely, we need to
ensure for that for any 𝐸 ∈ ℰ3, there exists 0 ≤ 𝛿 < 1/6 such that

1− 𝛿 ≤ 𝜎min

(︂
𝑋𝑈𝐸√
𝑛

)︂
≤ 𝜎max

(︂
𝑋𝑈𝐸√
𝑛

)︂
≤ 1 + 𝛿.

Denoting 𝐷3 and 𝑁3 respectively the largest dimension of the subspaces in ℰ3 and
the number of these subspaces, last proposition shows that when observations 𝑥𝑖 are
isotropic independent sub-gaussian, their number 𝑛 must therefore satisfy

𝐶0

√︂
𝐷3

𝑛
<

1

6
and

√︂
log(𝑁3)

𝑐𝑛
<

1

6

which is roughly
𝑛 = Ω(𝐷3) and 𝑛 = Ω(log(𝑁3)) (6.19)

The first condition in (6.19) means that subspaces must be low-dimensional, in our
case 𝐷3 = 3𝑄, and we naturally want the number of groups to be small. The second
condition in (6.19) means that the structure (partitioning here) is restrictive enough,
i.e., that the number of possible configurations, 𝑁3, is small enough.

To compute 𝑁3, denote 𝑁𝑄 the number of partitions in exactly 𝑄 groups such
that 𝑁3 =

(︀
𝑁𝑄

3

)︀
. The number of partitions into 𝑄 groups is then given by the the

Stirling number of second kind 𝑁𝑄 =
{︀

𝑑
𝑄

}︀
, that can be bounded as

𝑄𝑑−𝑄 ≤
{︂
𝑑

𝑄

}︂
≤ 1

2
(𝑒𝑑/𝑄)𝑄𝑄𝑑−𝑄. (6.20)

Using standard bounds on the binomial coefficients this means

𝑁3 ≥
(︂
𝑁𝑄

3

)︂3

≥ 𝑄3𝑑−3𝑄

27
.

Therefore although the intrinsic dimension of our variables is of order 3𝑄, the num-
ber of subspaces 𝑁3 is such that we need roughly 𝑛 ≥ 3𝑑 log(𝑄) observations, i.e.,
approximately as many samples as features, so the grouping structure is not specific
enough to reduce the number of samples required by a projected gradient scheme
to converge. On the other hand, given this many samples, the algorithm provably

114

converges to the original 𝑤*, which helps interpretation.
As a comparison, classical sparse recovery problems have the same structure [Rao

et al., 2012], as 𝑠-sparse vectors for instance can be described as {𝑤 = 𝑍𝑣, 𝑍 ∈
{0, 1}𝑑×𝑠, 𝑍𝑇1 = 1} and so are part of a “union of subspaces”. However in the case
of sparse vectors the number of subspaces grows as 𝑑𝑠 which means recovery requires
much less samples than features.

6.5 Sparse and grouped linear models

Projected gradient schemes are simple but scalable algorithms to tackle con-
strained structures of linear models. It has been developed for sparsity through the
Iterative Hard Thresholding algorithm [Blumensath and Davies, 2009], we presented
its version to group features in Section 6.3, we now extend it to both select 𝑠 features
and group them in 𝑄 groups. Using the notations introduced in Section 6.4.1, a
regression problem that enforces predictors to have at most 𝑠 non-zeros coefficients
clustered in at most 𝑄 groups reads

minimize 𝐿(𝑤) + 𝜆𝑅(𝑤)
subject to Card(Supp(𝑤)) ≤ 𝑠, Card(Part(𝑤)) ≤ 𝑄+ 1

(6.21)

in variable 𝑤 ∈ R𝑑, where 𝐿 and 𝑅 are respectively the loss and the regularizer of
the prediction problem as introduced in Section 6.1 and 𝜆 ≥ 0 is a regularization
parameter. Naturally we take 𝑄 ≤ 𝑠 as one cannot cluster 𝑠 features in more than 𝑠
groups.

A projected gradient for this problem requires essentially an efficient algorithm
for the projection step. To this end, we develop a new dynamic program to get
the projection on 𝑠-sparse vectors whose non-zero coefficients form 𝑄 groups of equal
coefficients. Analysis of the recovery performance of this scheme will then follow from
the previous study for grouped vectors.

6.5.1 Projection on 𝑠-sparse 𝑄-grouped vectors

Given two projectors on different subspaces, the projection on their intersection
is not simply given by the composition of the projectors. Similarly here one easily
shows that projection on sparse and clustered vectors is not given by a thresholding
step followed by a clustering one, finer analysis is necessary as detailed below.

Formulation of the problem

A feasible point 𝑤 ∈ R𝑑 for problem (6.21) is described by the partition of its
coordinates 𝐺 = {𝑔0, . . . , 𝑔𝑄𝐺

} in groups of equal coefficients, where 𝑔0 is the group
of zero coefficients, and 𝑣1, . . . , 𝑣𝑄𝐺

the possible values of the non-zero coefficients.
𝑄𝐺 = Card(𝐺)−1 ≥ 0 denotes here the number of (non-empty) groups of a partition
𝐺 ∈ 𝒫 .

115

Let us fix a point 𝑥 ∈ R𝑑, its distance to a feasible point 𝑤 reads

‖𝑥− 𝑤‖22 =
∑︁
𝑖∈𝑔0

𝑥2𝑖 +

𝑄𝐺∑︁
𝑞=1

∑︁
𝑖∈𝑔𝑞

(𝑥𝑖 − 𝑣𝑞)2, (6.22)

for given 𝐺 = {𝑔0, . . . 𝑔𝑄𝐺
} ∈ 𝒫 and 𝑣 ∈ R𝑄𝐺 . For a fixed partition 𝐺 ∈ 𝒫 , hence a

fixed subspace, minimization in 𝑣 gives the barycenters of the groups 𝑔1, . . . , 𝑔𝑄𝐺
of

non-zero coefficients denoted

𝜇𝑞 =
1

𝑠𝑞

∑︁
𝑖∈𝑔𝑞

𝑥𝑖 for 𝑞 = 1, . . . 𝑄𝐺,

where 𝑠𝑞 = Card(𝑔𝑞) is the size of the 𝑞th group. Inserting them in (6.22), the
distance to a subspace of sparse grouped coefficients defined by a partition 𝐺 ∈ 𝒫
can be developed as

∑︁
𝑖∈𝑔0

𝑥2𝑖 +

𝑄𝐺∑︁
𝑞=1

∑︁
𝑖∈𝑔𝑞

(𝑥2𝑖 + 𝜇2
𝑞 − 2𝑣𝑞𝑥𝑖) =

𝑑∑︁
𝑖=1

𝑥2𝑖 −
𝑄𝐺∑︁
𝑞=1

𝑠𝑞𝜇
2
𝑞.

Projection on the feasible set of (6.21), that minimizes the above distance for all
possible partitions in 𝑄 groups of 𝑠 non-zeros coefficients, amounts then to solve

maximize
∑︀𝑄𝐺

𝑞=1 𝑠𝑞𝜇
2
𝑞

subject to Card
(︁⋃︀𝑄𝐺

𝑞=1 𝑔𝑞

)︁
≤ 𝑠, 0 ≤ 𝑄𝐺 ≤ 𝑄,

(6.23)

in the partition 𝐺 = {𝑔0, . . . , 𝑔𝑄𝐺
} ∈ 𝒫 , where 𝜇𝑞 = 1

𝑠𝑞

∑︀
𝑖∈𝑔𝑞 𝑥𝑖 and 𝑄𝐺 = Card(𝐺)−

1.
This problem amounts to select a number 𝑠′ ≤ 𝑠 of features and cluster them in a

number 𝑄′ ≤ 𝑄 groups whose barycenters have maximal magnitude for the objective
in (6.23). The objective can then be split into positive and negative barycenters to
treat each resulting problem independently and then find the best balance between
both parts.

Dynamic programing

To solve problem (6.23), observe first that the objective is clearly increasing with
the number of groups, as it allows more degrees of freedom to approximate 𝑥. Fur-
thermore if the number 𝑠′ of selected features is fixed, the number of groups cannot
exceed it, i.e. 𝑄′ ≤ 𝑠′, and it can therefore be set at min(𝑠′, 𝑄).

A solution of (6.23) that selects 𝑠′ ≤ 𝑠 features is then composed of a partition of
𝑗 points into 𝑞 groups that define positive barycenters, and a partition of the 𝑠′ − 𝑗
remaining points into min(𝑠′, 𝑄)−𝑞 groups that define negative centers. We therefore
tackle (6.23) by searching for the best parameters 𝑠′, 𝑗, 𝑞 that balance optimally the
objective into positive and negative barycenters.

116

To this end, we define 𝑓+(𝑗, 𝑞) the optimal value of (6.23) when picking 𝑗 points
clustered in 𝑞 groups of positive barycenters, i.e. the solution of the problem

maximize
∑︀𝑞

𝑝=1 𝑠𝑝𝜇
2
𝑝

subject to 𝜇𝑝 = 1
𝑠𝑝

∑︀
𝑖∈𝑔𝑝 𝑥𝑖 > 0

Card
(︁⋃︀𝑞

𝑝=1 𝑔𝑝

)︁
= 𝑗,

(𝑃+(𝑗, 𝑞))

in disjoint groups 𝑔1, . . . , 𝑔𝑞 ⊂ {1, . . . , 𝑑}. This problem is not always feasible, as it
may not be possible to find 𝑞 clusters of positive barycenters with 𝑗 points. In that
case we denote its solution 𝑓+(𝑗, 𝑞) = +∞. We define similarly 𝑓−(𝑗, 𝑞) the optimal
value of (6.23) when picking 𝑗 points clustered in 𝑞 groups forming only negative
barycenters. The best balance between the two, which solves (6.23), is then given by
solving:

maximize 𝑓+(𝑗, 𝑞) + 𝑓−(𝑠′ − 𝑗,𝑄′ − 𝑞)
subject to 0 ≤ 𝑗 ≤ 𝑠′, 0 ≤ 𝑞 ≤ 𝑄′,

0 ≤ 𝑠′ ≤ 𝑠, 𝑄′ = min(𝑠′, 𝑄),
(6.24)

in variables 𝑠′, 𝑗 and 𝑞.
It remains to compute 𝑓+ and 𝑓− efficiently. We present our approach for 𝑓+ that

transposes to 𝑓−. Let 𝑆+ ⊂ {1, . . . , 𝑑} be the optimal subset of indexes taken for
(𝑃+(𝑗, 𝑞)) and 𝑖 ∈ 𝑆+. If there exists 𝑗 ∈ {1, . . . , 𝑑} ∖ 𝑆+ such that 𝑥𝑗 ≥ 𝑥𝑖, then
swapping 𝑗 and 𝑖 would increase the magnitude of the barycenter of the group that
𝑖 belongs to and so the objective. Therefore (𝑃+(𝑗, 𝑞)) amounts to a partitioning
problem on the 𝑗 largest values of 𝑥. From now on, assume coefficients of 𝑥 to
be in decreasing order 𝑥1 ≥ . . . ≥ 𝑥𝑑. For (𝑃+(𝑗, 𝑞)) a feasible problem, denote
𝑔1, . . . , 𝑔𝑞 the optimal partition of {1, . . . , 𝑗} whose corresponding barycenters are in
decreasing order. Let 𝑖 be the index of the largest coefficient of 𝑥 in 𝑔𝑞, then necessarily
𝑔1, . . . , 𝑔𝑞−1 is optimal to solve (𝑃+(𝑖−1, 𝑞−1)). 𝑓+ can then be computed recursively
as

𝑓+(𝑗, 𝑞) = max
𝑞≤𝑖≤𝑗

𝜇(𝑥𝑖,...,𝑥𝑗)>0

𝑓+(𝑖− 1, 𝑞 − 1) + (𝑗 − 𝑖+ 1)𝜇(𝑥𝑖, . . . , 𝑥𝑗)
2, (6.25)

where 𝜇(𝑥𝑖, . . . , 𝑥𝑗) = 1
𝑗−𝑖+1

∑︀𝑗
𝑙=𝑖 𝑥𝑙 can be computed in constant time using that

𝜇(𝑥𝑖, . . . , 𝑥𝑗) =
𝑥𝑖 + (𝑗 − 𝑖)𝜇(𝑥𝑖+1, . . . , 𝑥𝑗)

𝑗 − 𝑖+ 1
.

By convention 𝑓+(𝑗, 𝑞) = −∞ if is not possible to find 𝑞 clusters of positive barycenters
with 𝑗 points such that (𝑃+(𝑗, 𝑞)) is not feasible. Values of 𝑓+ are stored to compute
(6.24). Two auxiliary variables 𝐼+ and 𝑣+ store respectively the indexes of the largest
value of 𝑥 in group 𝑔𝑞 and the barycenter of the group 𝑔𝑞. The same dynamic program
can be used to compute 𝑓−, 𝐼− and 𝑣−, defined similarly as 𝐼+ and 𝑣+, by reversing the
order of the values of 𝑥. A grid search on 𝑓(𝑗, 𝑞, 𝑠′) = 𝑓+(𝑗, 𝑞)+𝑓−(𝑠′−𝑗,𝑄′−𝑞), with
𝑄′ = min(𝑠′, 𝑄), gives the optimal balance between positive and negative barycenters.
A backtrack on 𝐼− and 𝐼+ finally gives the best partition and the projection with the
associated barycenters given in 𝑣− and 𝑣+.

117

𝑓+ is initialized as a grid of 𝑘+1 and 𝑄+1 columns such that 𝑓+(0, 𝑞) = 0 for any
𝑞, 𝑓+(𝑗, 0) = 0 and 𝑓+(𝑗, 1) = 𝑗𝜇(𝑥1, . . . , 𝑥𝑗)

2 for any 𝑗 ≥ 1. 𝐼+ and 𝑣+ are initialized
by 𝐼+(𝑗, 1) = 1 and 𝜇+(𝑗, 1) = 𝜇(𝑥1, . . . , 𝑥𝑗).

Each dynamic program needs only to build the best partitions for the 𝑠 smallest
or largest partitions so they cost 𝑂(𝑠2𝑄) elementary operations. The grid search and
the backtrack cost respectively 𝑂(𝑠2𝑄) and 𝑂(𝑄) elementary operations. Overall,
the complexity of the projection does not exceed 𝑂(𝑠2𝑄).

6.5.2 Recovery performance

Analysis of recovery performance of the projected gradient for sparse clustered
vectors follows the one provided in Section 6.4. Our problem is to recover an original
vector 𝑤* such that Card(Supp(𝑤*)) ≤ 𝑠 and Card(Part(𝑤*)) ≤ 𝑄+1 that generates
𝑛 noisy observations 𝑦𝑖 from data points 𝑥𝑖 as

𝑦 = 𝑋𝑤* + 𝜂,

where 𝜂 ∼ 𝒩 (0, 𝜎2), where 𝑋 = (𝑥1, . . . , 𝑥𝑛)𝑇 ∈ R𝑛×𝑑 is the matrix of data points
and 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ R𝑛 is the vector of observations. To this end we attempt to
solve a regression problem enforcing 𝑄 groups of 𝑠 features with a squared loss and
no regularization, which reads

minimize 1
2𝑛
‖𝑋𝑤 − 𝑦‖22

subject to Card(Supp(𝑤)) ≤ 𝑠, Card(Part(𝑤)) ≤ 𝑄+ 1.
(6.26)

As in Section 6.4, we use a projected gradient scheme with constant step size 𝛾𝑡 = 1
and initialized at 𝑤0 = 0, the only difference is the projection step that is given here
by the dynamic program presented in last section.

First we detail the geometry of the feasible set of (6.21). A given subset 𝑆 ⊂
{1, . . . , 𝑑} defines a linear subspace

𝐸𝑆 = {𝑤 ∈ R𝑑 : Supp(𝑤) ⊂ 𝑆}.

By combining a subset 𝑆 ∈ {1, . . . , 𝑑} with a partition 𝐺 ∈ 𝒫 we get a linear subspace

𝐸𝑆,𝐺 = {𝑤 ∈ R𝑑 : Supp(𝑤) ⊂ 𝑆, Part(𝑤) ⪰ 𝐺} = 𝐸𝑆 ∩ 𝐸𝐺.

Vectors in 𝐸𝑆,𝐺 have at most Card(𝐺) − 1 different non-zero coefficients such that
dim(𝐸𝑆,𝐺) = Card(𝐺)− 1. The feasible set of (6.21) is then a union of subspaces,

{𝑤 ∈ R𝑑 : Card(Supp(𝑤)) ≤ 𝑠, Card(Part(𝑤)) ≤ 𝑄+ 1} =
⋃︁

𝑆∈{1,...,𝑑} :Card(𝑆)≤𝑠
𝐺∈𝒫 :Card(𝐺)≤𝑄+1

𝐸𝑆,𝐺.

Analysis of convergence made in Proposition 6.4.4 for the clustered case relies only
on the fact that the feasible set is a union of subspaces and that the projection on
it can be computed exactly, so it applies also here. However the contraction factor

118

will now depend on restricted singular values of the data on a smaller collection of
subspaces. Precisely, define

ℰ̃ = {𝐸𝑆,𝐺 : 𝑆 ⊂ {1, . . . , 𝑑}, 𝐺 ∈ 𝒫 , Card(𝑆) = 𝑠, Card(𝐺) = 𝑄+ 1}
ℰ̃3 = {𝐸1 + 𝐸2 + 𝐸3 : 𝐸1, 𝐸2, 𝐸3 ∈ ℰ̃}.

The contraction factor depends then on the restricted singular values of the matrix 𝑋
on subspaces belonging to ℰ̃3. Since dim(𝐸𝑆,𝐺) = Card(𝐺)− 1, subspaces in ℰ̃3 have
a dimension at most 3𝑄. Denoting 𝑁 and 𝑁3 the cardinality of respectively ℰ̃ and
ℰ̃3, we have 𝑁3 =

(︀
𝑁
3

)︀
. Subspaces of ℰ̃ are defined by selecting 𝑠 features among 𝑑

and partitioning these 𝑠 features into 𝑄 groups so that their number is 𝑁 =
(︀
𝑑
𝑠

)︀{︀
𝑠
𝑄

}︀
.

Using classical bounds on the binomial coefficient and (6.20), we can roughly bound
𝑁 for 𝑠 ≥ 3, 𝑄 ≥ 3 by

𝑁 ≤
(︂
𝑒𝑑

𝑠

)︂𝑠
1

2

(︂
𝑒

𝑄

)︂𝑄

𝑠𝑄𝑄𝑠−𝑄 ≤ 𝑑𝑠𝑠𝑄𝑄𝑠−𝑄

and so

𝑁3 ≤
(︂
𝑒𝑁

3

)︂3

≤ 𝑁3 ≤ (𝑑𝑠𝑠𝑄𝑄𝑠−𝑄)3

Propositions 6.4.4 and 6.4.5 adapted in this case thus predict that the number of
observations must satisfy

𝑛 = 𝑂(𝑠 log 𝑑+𝑄 log(𝑠) + (𝑠−𝑄) log(𝑄))

for a projected gradient scheme to recover approximately 𝑤*. It produces 𝑄 + 1
cluster of features, one being a cluster of zero features, reducing dimensionality, while
needing roughly as many samples as non-zero features.

6.6 Numerical experiments
We now test our methods, first on artificial datasets to check their robustness to

noisy data, then on real data extracted from movie reviews.

6.6.1 Synthetic dataset

We test the robustness of our algorithms for an increasing number of training
samples or level of noise in the labels. We generate a linear model in dimension
𝑑 = 100 with a vector 𝑤* ∈ R𝑑 that has only 𝑄 = 5 different values uniformly
distributed around 0. We sample 𝑛Gaussian random points 𝑥𝑖 with noisy observations
𝑦𝑖 = 𝑤𝑇𝑥𝑖 + 𝜂, where 𝜂 ∼ 𝒩 (0, 𝜎2). We vary the number of samples 𝑛 or the level of
noise 𝜎 and measure ‖𝑤*− �̂�‖2, the 𝑙2 norm of the difference between the true vector
of weights 𝑤* and the estimated ones �̂�.

In Table 6.1 and 6.2, we study the performance of our model with a squared loss
and regularized by the Euclidean norm. We solve it with the conditional gradient

119

algorithm (CG),the Iterative Hard Clustering algorithm (IHC) (initialized with the
solution of Least Square followed by k-means) and the conditional gradient followed
by IHC (CGIHC). We compare the proposed algorithms to Least Squares regularized
by the squared norm (LS), Least Squares regularized by the squared norm followed
by K-means on the weights (using associated centroids as predictors) (LSK) and
OSCAR [Bondell and Reich, 2008]. For OSCAR we used a submodular approach
[Bach et al., 2012] to compute the corresponding proximal algorithm, which makes it
scalable. “Oracle" refers to the Least Square solution given the true assignments of
features and can be seen as the best achievable error rate. When varying the number
of samples, noise on labels is set to 𝜎 = 0.5 and when varying level of noise 𝜎 number
of samples is set to 𝑛 = 150. Regularization parameters of the models were all cross-
validated using a logarithmic grid. Results were averaged over 50 experiments and
figures after the ± sign correspond to one standard deviation.

𝑛 = 50 𝑛 = 75 𝑛 = 100 𝑛 = 125 𝑛 = 150
Oracle 0.16±0.06 0.14±0.04 0.10±0.04 0.10±0.04 0.09±0.03
LS 61.94±17.63 51.94±16.01 21.41±9.40 1.02±0.18 0.70±0.09
LSK 62.93±18.05 57.78±17.03 10.18±14.96 0.31±0.19 0.19±0.12
IHC 63.31±18.24 52.72±16.51 5.52±14.33 0.14±0.09 0.09±0.04
CG 61.81±17.78 52.59±16.58 17.24±13.87 1.20±1.38 1.05±1.37
CGIHC 62.29±18.15 50.15±17.43 0.64±2.03 0.15±0.19 0.17±0.53
OS 61.54±17.59 52.87±15.90 11.32±7.03 1.25±0.28 0.71±0.10

Table 6.1 – Measure of ‖𝑤* − �̂�‖2, the 𝑙2 norm of the difference between the true
vector of weights 𝑤* and the estimated ones �̂� along number of samples 𝑛.

𝜎 = 0.05 𝜎 = 0.1 𝜎 = 0.5 𝜎 = 1
Oracle 0.86±0.27 1.72±0.54 8.62±2.70 17.19±5.43
LS 7.04±0.92 14.05±1.82 70.39±9.20 140.41±18.20
LSK 1.44±0.46 2.88±0.91 19.10±12.13 48.09±27.46
IHC 0.87±0.27 1.74±0.52 9.11±4.00 26.23±18.00
CG 23.91±36.51 122.31±145.77 105.45±136.79 155.98±177.69
CGIHC 1.52±3.13 140.83±710.32 17.34±53.31 24.80±16.32
OS 14.43±2.45 18.89±3.46 71.00±10.12 140.33±18.83

Table 6.2 – Measure of ‖𝑤* − �̂�‖2, the 𝑙2 norm of the difference between the true
vector of weights 𝑤* and the estimated ones �̂� along level of noise 𝜎.

We observe that both IHC and CGIHC give significantly better results than other
methods and even reach the performance of the Oracle for 𝑛 > 𝑑 and for small 𝜎,
while for 𝑛 ≤ 𝑑 results are in the same range.

120

6.6.2 Predicting ratings from reviews using groups of words.

We perform “sentiment" analysis of newspaper movie reviews. We use the publicly
available dataset introduced by Pang and Lee [2005] which contains movie reviews
paired with star ratings. We treat it as a regression problem, taking responses for
𝑦 in (0, 1) and word frequencies as covariates. The corpus contains 𝑛 = 5006 docu-
ments and we reduced the initial vocabulary to 𝑑 = 5623 words by eliminating stop
words, rare words and words with small TF-IDF mean on whole corpus. We evalu-
ate our algorithms for regression with clustered features against standard regression
approaches: Least-Squares (LS), Least-Squares followed by k-means on predictors
(LSK), Oscar regularization (OS), LASSO and Iterative Hard Thresholding (IHT).
We also tested our projected gradient with sparsity constraint, initialized by the solu-
tion of LSK (PGS) or by the solution of CG (CGPGS). Number of clusters, sparsity
constraints and regularization parameters were 5-fold cross-validated using respec-
tively grids going from 5 to 15, 𝑑/2 to 𝑑/5 and logarithmic grids. Cross validation
and training were made on 80% on the dataset and tested on the remaining 20%
it gave 𝑄 = 15 number of clusters and 𝑑/2 sparsity constraint for our algorithms.
Results are reported in Table 6.3, figures after the ± sign correspond to one standard
deviation when varying the training and test sets on 20 experiments.

All methods perform similarly except IHT and Lasso whose hypotheses do not
seem appropriate for the problem. Our approaches have the benefit to reduce di-
mensionality from 5623 to 15 and provide meaningful cluster of words. The clusters
with highest absolute weights are also the ones with smallest number of words, which
confirms the intuition that only a few words are very discriminative. We illustrate
this in Table 6.4, picking randomly words of the four clusters within which associated
predictor weights 𝑣𝑞 have largest magnitude.

LS LSK IHC CG CGIHC OS
1.51±0.06 1.53±0.06 1.52±0.06 1.58±0.07 1.49±0.08 1.47±0.07

IHCS CGIHCS IHT LASSO
1.53±0.06 1.49±0.07 2.19±0.12 3.77±0.17

Table 6.3 – 100 × mean square errors for predicting movie ratings associated with
reviews.

6.7 Conclusion
We analyzed how prediction problems can be simplified by constraining groups

of features, within each a common weight is assigned. Our formulation enables the
development of a projected gradient scheme or a tight convex relaxation for squared
loss. This approach can then be generalized for grouping samples or tasks in the
following chapters. Our theoretical analysis of the projected gradient highlights that,
even if dimension is reduced by grouping features, the treatment of this structure is

121

2 most bad, awful,
negative worst, boring, ridiculous,
clusters watchable, suppose, disgusting,
2 most perfect,hilarious,fascinating,great
positive wonderfully,perfectly,goodspirited,
clusters world, intelligent,wonderfully,unexpected,gem,recommendation,

excellent,rare,unique,marvelous,good-spirited,
mature,send,delightful,funniest

Table 6.4 – Clustering of words on movie reviews. We show clusters of words within
which associated predictor weights have largest magnitude. First row presents ones
associated to a negative coefficient and therefore bad feelings about movies, second
row ones to a positive coefficient and good feelings about movies.

much more complex than simple sparsity as it requires as many samples as features
to ensure efficiency of a projected gradient scheme. Yet, by developing a dynamic
program for sparse and grouped vectors we finally obtain a fast and scalable algorithm
that drastically reduces the dimensionality of the problem while enjoying properties
of sparse problems.

Notice that the combinatorial penalty we use, i.e. the number of non-empty groups
of a partition, is not a submodular function on the lattice that forms partitions. Using
submodular functions of partitions may lead to efficient algorithmic solutions to group
features as it has been done for classical sparsity [Bach et al., 2013].

122

Appendix

6.A Geometric interpretation of algebraic tools

In Proposition 6.4.3 we defined subspaces from partitions of{1, . . . , 𝑑}. Here we
relate assignment and normalized equivalence matrices to these subspaces. First for a
partition 𝐺 = (𝑔1, . . . , 𝑔𝑄) into 𝑄 groups, 𝑤 ∈ 𝐸𝐺 has at most 𝑄 different coefficients
and can be encoded using assignment matrices as presented in Section 6.1. In other
words, for an assignment matrix 𝑍 of 𝐺, one has

𝐸𝐺 = {𝑤 = 𝑍𝑣, 𝑣 ∈ R𝑑}

Columns of 𝑍 are orthogonal since since groups are disjoints and not null if 𝐺 has no
empty groups. In this case, 𝑍 is therefore an orthogonal basis of 𝐸𝐺. The normal-
ized equivalence matrix of 𝐺, that reads 𝑀 = 𝑍(𝑍𝑇𝑍)−1𝑍𝑇 is then the orthogonal
projector on 𝐸𝐺.

As mentioned in Section 5.2, several assignment matrices can encode a partition,
i.e. several binary matrices form a basis of a subspace 𝐸𝐺. However 𝐸𝐺 and its or-
thogonal projector, i.e. the normalized equivalence matrix, are for their part uniquely
defined by 𝐺.

To represent more generally partitions of {1, . . . , 𝑑} in any number of groups
one can use binary matrices 𝑍 ∈ {0, 1}𝑑×𝑑 that satisfy 𝑍1 = 1. Number of non-
zero columns of such matrices are then the number of groups of the partition they
represent. Once again partitions can be represented by several assignment matrices
but are in bijection with the set of normalized equivalence matrices

M = {𝑀 = 𝑍(𝑍𝑇𝑍)†𝑍 , 𝑍 ∈ {0, 1}𝑑×𝑑 , 𝑍1 = 1}. (6.27)

Number of groups of a partition 𝐺 is then equal to the rank of its normalized equiv-
alence matrix (the dimension of 𝐸𝐺), i.e. Card(𝐺) = Rank(𝑀) = Tr(𝑀), since 𝑀
is a projector.

6.B Norm for grouping features

In this section, we seek to develop a norm that induce groups of features by regu-
larization rather than enforcing it by constraints as in (6.2) or (6.4). In Section 6.4,
we highlighted that our framework constraints number of level sets of the variables,

123

i.e. the function
Ω(𝑤) = Card(Part(𝑤)).

Following Obozinski and Bach [2012] ,we investigate how this combinatorial func-
tion can be incorporated in standard Euclidean regularization by finding the tightest
convex homogeneous envelope of

Ω2 =
1

2
‖𝑤‖22 +

1

2
Card(Part(𝑤)).

Following proposition details its formulation

Proposition 6.B.1. The tightest convex homogeneous envelope of

Ω2(𝑤) =
1

2
‖𝑤‖22 +

1

2
Card(Part(𝑤))

is
‖𝑤‖Ω2 = inf

(𝑥𝑀)𝑀∈ℳ
𝑥=

∑︀
𝑀∈ℳ 𝑀𝑥𝑀

∑︁
𝑀∈ℳ

Tr(𝑀)1/2‖𝑀𝑥𝑀‖2,

where M defined in (6.27) is the set of normalized equivalence matrices of partitions
of {1, . . . , 𝑑}.
‖𝑤‖Ω2 is a norm, whose dual norm is

‖𝑤‖*Ω2
= max

𝑀∈ℳ

‖𝑀𝑥‖2
Tr(𝑀)1/2

.

Proof. First we give an algebraic formulation of the combinatorial function Ω.
Given a vector 𝑤 ∈ R𝑑, Part(𝑤) is the largest partition (in terms of ⪰ presented in
Definition 6.4.2) in groups of equal coefficients of 𝑤. It defines therefore the small-
est subspace (see Proposition 6.4.3) on which 𝑤 lies. Card(Part(𝑤)) is then the
dimension of the smallest subspace defined from partitions, on which 𝑤 lies. Using
normalized equivalence matrices that are orthogonal projections on these subspaces,
as mentioned in Appendix 6.A, the combinatorial penalty Ω reads

Ω(𝑤) = Card(Part(𝑤)) = min
𝑀∈M
𝑀𝑤=𝑤

Tr(𝑀).

Now, following [Obozinski and Bach, 2012], we begin by computing the homog-
enized version of Ω2 defined as ℎ(𝑤) = inf𝜆>0

Ω2(𝜆𝑤)
𝜆

, then we compute the Fenchel
bi-conjugate of ℎ. We have

ℎ(𝑤) = inf
𝜆>0

1

2
‖𝑤‖22𝜆+

1

2
Ω(𝑤)𝜆−1.

= ‖𝑤‖2Ω(𝑤)1/2

124

Fenchel dual of ℎ reads then

ℎ*(𝑥) = sup
𝑤∈R𝑑

𝑥𝑇𝑤 − ‖𝑤‖2Ω(𝑤)1/2

= sup
𝑤∈R𝑑

max
𝑀∈M
𝑀𝑤=𝑤

𝑥𝑇𝑤 − ‖𝑤‖2Tr(𝑀)
1
2

= max
𝑀∈M

sup
𝑤∈R𝑑

𝑀𝑤=𝑤

𝑥𝑇𝑤 − ‖𝑤‖2Tr(𝑀)
1
2

= max
𝑀∈M

{︃
0 if ‖𝑀𝑥‖2 ≤ Tr(𝑀)1/2

+∞ otherwise

=

{︃
0 if max𝑀∈ℳ ‖𝑀𝑥‖2Tr(𝑀)−1/2 ≤ 1

+∞ otherwise.

Define
‖𝑤‖*Ω2

= max
𝑀∈M

‖𝑀𝑥‖2Tr(𝑀)−1/2.

‖𝑤‖*Ω2
is convex as a finite maximum of convex functions, it is clearly homogeneous

and as I ∈ ℳ we have ‖𝑤‖*Ω2
=⇒ 𝑤 = 0. Hence ‖𝑤‖*Ω2

is a norm. ℎ* is then the
indicator function of the unit norm ball of ‖𝑤‖*Ω2

.
Fenchel bi-dual of ℎ is then

ℎ**(𝑤) = sup
𝑥∈R𝑑

𝑤𝑇𝑥− ℎ*(𝑥)

= sup
𝑥∈R𝑑

𝑤𝑇𝑥−
∑︁
𝑀∈M

sup
𝜆𝑀≥0

𝜆𝑀(‖𝑀𝑥‖2 −Tr(𝑀)1/2)

= inf
(𝜆𝑀)𝑀∈M, 𝜆𝑀≥0

∑︁
𝑀∈M

Tr(𝑀)1/2𝜆𝑀 + sup
𝑥∈R𝑑

𝑤𝑇𝑥−
∑︁
𝑀∈M

𝜆𝑀‖𝑀𝑥‖2

= inf
(𝜆𝑀)𝑀∈M, 𝜆𝑀≥0

∑︁
𝑀∈M

Tr(𝑀)1/2𝜆𝑀 + sup
𝑥∈R𝑑

𝑤𝑇𝑥−
∑︁
𝑀∈M

𝜆𝑀 sup
‖𝑎𝑀‖2≤1

𝑥𝑇𝑀𝑎𝑀

= inf
(𝜆𝑀)𝑀∈M, 𝜆𝑀≥0

(𝑎𝑀)𝑀∈M, ‖𝑎𝑀‖2≤1
𝑥=

∑︀
𝑀∈M 𝜆𝑀𝑀𝑎𝑀

∑︁
𝑀∈M

Tr(𝑀)1/2𝜆𝑀

= inf
(𝑥𝑀)𝑀∈M

𝑥=
∑︀

𝑀∈M 𝑀𝑥𝑀

∑︁
𝑀∈M

Tr(𝑀)1/2‖𝑀𝑥𝑀‖2

= ‖𝑤‖Ω2 .

Since ℎ* is the indicator function of the unit ball of ‖𝑤‖*Ω2
, ‖𝑤‖Ω2 is the dual norm

of ‖𝑤‖*Ω2
.

Computed norm ‖𝑤‖Ω2 appears similar to the grouped norms defined for example
by Jacob et al. [2009]. However, to our knowledge, no algorithm can compute the
norm or its proximal operator such that its utility in practice is unclear.

125

126

Chapter 7

Grouping samples for diverse
predictions

Chapter Abstract

In prediction problems involving a large amount of training samples, re-
ducing complexity of the task by clustering data points can improve per-
formance and help interpretation. Here, rather than separating clustering
and prediction steps, we study how both can be done simultaneously. We
provide a formulation of our problem for regression or classification and
present several algorithms to solve it. First, we develop a projected gra-
dient scheme whose core iteration amounts to a k-means step. Then, we
present a convex relaxation of the problem using conditional gradient,
a.k.a. Frank-Wolfe algorithm, whose core iteration amounts again to a
k-means operation. Numerical experiments illustrate the performance of
our methods on synthetic data sets.

Introduction
Machine learning aims at analyzing data either to predict observations of future

data or to reveal hidden information such as clusters. It has been applied in numerous
fields such as computer vision, bio-informatics or economy (see Hastie et al. [2008]
for an introduction of the field). While prediction and clustering problems are often
analyzed independently, they can benefit from each other.

On one side, if data are clustered beforehand a prediction problem can use this
information [Pfeffermann and Nathan, 1981; Graubard and Korn, 1994]. If data
could be clustered but clusters are unknown then the prediction problem shall take
this information into account. For example, in a regression problem where one half
of the data 𝑥 with attributes 𝑦 satisfies 𝑦 ≈ 𝑥 and the other one satisfies 𝑦 ≈ −𝑥, a
classical algorithm would predict 𝑦 ≈ 0 in average, while it may preferable to output
two possible answers 𝑦 = 𝑥 or 𝑦 = −𝑥 which accounts for the diversity of the data.
Note that, in this case, the problem can be seen as a special instance of subspace
clustering problem [Vidal, 2011].

127

On the other side, more and more clustering techniques exist (classical k-means
Gan et al. [2007], k-means with kernels [Schölkopf et al., 1998], EM algorithm [Demp-
ster et al., 1977], EM with Bregman divergence [Banerjee et al., 2005], spectral cluster-
ing [Von Luxburg, 2007], DIFFRAC [Bach and Harchaoui, 2008], Clusterpath [Hock-
ing et al., 2011] to cite a few) but no common measure of performance allow their
comparison. Yet, clustering can be used as a first phase of prediction problem that
it simplifies and helps. Performance of the prediction procedure can then be used to
compare different clustering of the data.

In this chapter, we investigate how both clustering and prediction can be per-
formed simultaneously. It either can be seen as a prediction problem relaxed to
output more than one prediction per sample or as a clustering problem driven by the
performance of a prediction task. It applies when data contain hidden information
and diverse answers are required as in privacy learning (see Wainwright et al. [2012]
and references herein), where personal information influences the predicted attributes
but are not revealed.

Diversity learning was studied by Guzman-Rivera et al. [2014] who developed
losses to enforce multiple outputs. Here we rather constraint classical learning prob-
lems by a clustering one. Mixing clustering and prediction problems is also performed
in the mixture of experts framework [Jordan, 1994]. However our setting differs form
the latter as we assume that partition of the samples can only be revealed by the
observations that have to be predicted and not by the features of the data. Our
framework corresponds to the one studied by Zhang [2003] or Bagirov et al. [2013] to
perform regression clustering with various models of regression.

We present our framework for regression and classification tasks, it incorporates
the partitioning problem of the training samples in the minimization of an empiri-
cal loss. First, we propose algorithms to tackle the non-convex resulting problem :
an alternate minimization between the partitioning problem and the empirical loss
minimization and a projected gradient scheme whose projection step amounts to a
clustering problem that can be solved approximatively by k-means++. Then, we
present a convex relaxation in the case of a squared loss for which the combinatorial
problem can be isolated. We use conditional gradient, a.k.a. Frank-Wolfe algorithm
[Frank and Wolfe, 1956; Jaggi, 2013], whose core iteration amounts also to a k-means
problem. Finally numerical experiments show the robustness of our method on syn-
thetic data.

7.1 Problem Formulation

We first present our framework for linear regression tasks and then extend its
application to classification.

7.1.1 Clustered Regression

We briefly present regression problems, more details are provided in Section 6.1.1.
Given 𝑛 observations 𝑦1, . . . , 𝑦𝑛 ∈ R from data points 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑, we are seek-

128

ing for a vector 𝑤 that predicts linearly outputs from inputs. A loss function ℓ
measures its accuracy error ℓ(𝑤𝑇𝑥, 𝑦) on a sample (𝑥, 𝑦) such as the squared loss
ℓsquare(𝑤

𝑇𝑥, 𝑦) = 1
2
(𝑤𝑇𝑥 − 𝑦)2. A candidate vector 𝑤 can be found by minimiz-

ing the empirical loss 1
𝑛

∑︀𝑛
𝑖=1 ℓ(𝑤

𝑇𝑥𝑖, 𝑦𝑖). In order to prevent over-fitting, a regu-
larizer 𝑅(𝑤) of the predictor 𝑤 is added such as its squared Euclidean norm, i.e.
𝑅square(𝑤) = 1

2
‖𝑤‖2. The regression problem is then

minimize
1

𝑛

𝑛∑︁
𝑖=1

ℓ(𝑤𝑇𝑥𝑖, 𝑦𝑖) + 𝜆𝑅(𝑤)

in variable 𝑤 ∈ R𝑑, where 𝜆 ≥ 0 is a regularization parameter. Affine regression
problems can be treated similarly as detailed in Section 6.1.1.

Here we search for 𝑄 linear prediction vectors 𝑣1, . . . , 𝑣𝑄 ∈ R𝑑, each can be used
to predict observations of a given sample. Samples can then be partitioned in 𝑄
groups 𝑔1, . . . , 𝑔𝑄 by assigning for each of them the best predictor. When it comes to
compute best predictors 𝑣1, . . . , 𝑣𝑄 on the training data, we face therefore a mix of a
partitioning problem and empirical loss minimization. We weight the regularization
of each predictor by the number of samples in the group it defines in order to ease
the development of our algorithms. Our clustered regression problem reads therefore

minimize
1

𝑛

𝑄∑︁
𝑞=1

∑︁
𝑖∈𝑔𝑞

ℓ
(︀
𝑣𝑇𝑞 𝑥𝑖, 𝑦𝑖

)︀
+ 𝜆

𝑄∑︁
𝑞=1

𝑠𝑞𝑅(𝑣𝑞) (7.1)

in the partition 𝐺 = (𝑔1, . . . , 𝑔𝑄) of {1, . . . , 𝑛} and prediction vectors 𝑣1, . . . , 𝑣𝑄 ∈ R𝑑,
where 𝑠𝑞 = Card(𝑔𝑞) is the size of group 𝑔𝑞 and 𝜆 ≥ 0 is a regularization parameter.

By denoting 𝑤𝑖 ∈ R𝑑 the prediction vector used for sample 𝑖 such that if 𝑖 ∈ 𝑔𝑞,
𝑤𝑖 = 𝑣𝑞, our problem can be rewritten

minimize 1
𝑛

∑︀𝑛
𝑖=1 ℓ

(︀
𝑤𝑇

𝑖 𝑥𝑖, 𝑦𝑖
)︀

+ 𝜆
∑︀𝑛

𝑖=1𝑅(𝑤𝑖)
subject to 𝑤𝑖 = 𝑣𝑞 if 𝑖 ∈ 𝑔𝑞, for all 𝑖 ∈ {1, . . . , 𝑛} (7.2)

in the partition 𝐺 = (𝑔1, . . . , 𝑔𝑄) of {1, . . . , 𝑛} and prediction vectors 𝑤1, . . . , 𝑤𝑛 ∈
R𝑑 and 𝑣1, . . . , 𝑣𝑄 ∈ R𝑑, where 𝜆 ≥ 0 is a regularization parameter. A partition
𝐺 = (𝑔1, . . . , 𝑔𝑄) of {1, . . . , 𝑛} can then be represented by an assignment matrix
𝑍 ∈ {0, 1}𝑛×𝑄 such that

𝑍𝑖𝑞 =

{︃
1 if 𝑖 ∈ 𝑔𝑞
0 otherwise.

Partitioning constraints of (7.2) read then 𝑤𝑖 =
∑︀𝑄

𝑞=1 𝑍𝑖𝑞𝑣𝑞 for all 1 ≤ 𝑖 ≤ 𝑛, where
𝑍 is the assignment matrix of a partition. Denoting 𝑊 = (𝑤1, . . . , 𝑤𝑛) ∈ R𝑑×𝑛 the
matrix of individual classifiers, 𝐿(𝑊) = 1

𝑛

∑︀𝑛
𝑖=1 ℓ

(︀
𝑤𝑇

𝑖 𝑥𝑖, 𝑦𝑖
)︀

and 𝑅(𝑊) =
∑︀𝑛

𝑖=1𝑅(𝑤𝑖),
clustered regression problem finally reads

minimize 𝐿(𝑊) + 𝜆𝑅(𝑊)
subject to 𝑊 = 𝑉 𝑍𝑇 , 𝑍 ∈ {0, 1}𝑛×𝑄, 𝑍1 = 1,

(7.3)

129

in variables 𝑊 ∈ R𝑑×𝑛, 𝑉 ∈ R𝑑×𝑄 and 𝑍, where 𝜆 ≥ 0 is a regularization parameter.
This algebraic formulation eases the presentation of our algorithmic solutions that we
present in next section, before we extend our framework to classification problems.

7.1.2 Clustered classification

We briefly present classification problems, more details are provided in Section 6.1.2.
We are given 𝑛 data points 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑 that belong to one of 𝐾 classes, which is
encoded by binary vectors 𝑦𝑖 ∈ {−1, 1}𝐾 such that 𝑦𝑖𝑘 = 1 if 𝑖th point belongs to class
𝐾 and −1 otherwise. We search for 𝐾 linear classifiers 𝑤1, . . . , 𝑤𝐾 , forming a matrix
of linear classifiers 𝑊 ∈ R𝑑×𝐾 whose classification error on a sample (𝑥, 𝑦) is measured
by a loss ℓ(𝑊 𝑇𝑥, 𝑦) such as the squared loss ℓsquare(𝑊 𝑇𝑥, 𝑦) = 1

2
‖𝑊 𝑇𝑥− 𝑦‖22. Candi-

date classifiers are given by the minimization of the empirical loss 1
𝑛

∑︀𝑛
𝑖=1 ℓ(𝑊

𝑇𝑥𝑖, 𝑦𝑖).
As for regression, a regularizer 𝑅(𝑊) can be added on the linear classifiers such as
their squared euclidean norm 𝑅square(𝑊) = 1

2

∑︀𝐾
𝑘=1 ‖𝑤𝑘‖22 = 1

2
‖𝑊‖2𝐹 . Classification

problems read then

minimize
1

𝑛

𝑛∑︁
𝑖=1

ℓ(𝑊 𝑇𝑥𝑖, 𝑦𝑖) + 𝜆𝑅(𝑊)

in variable 𝑊 ∈ R𝑑×𝐾 , where 𝜆 ≥ 0 is a regularization parameter.
As for regression, we search not one but several matrices of classifiers 𝑉1, . . . , 𝑉𝑄 ∈

R𝑑×𝐾 that, for a given sample, outputs diverse estimated classes. Number of possible
classifiers 𝑄 does naturally not exceed the number of classes 𝐾. Samples are then
partitioned in 𝑄 groups by assigning the best matrix of classifier for each sample. Us-
ing same weighted regularization as for regression, our clustered classification problem
reads

minimize
1

𝑛

𝑄∑︁
𝑞=1

∑︁
𝑖∈𝑔𝑞

ℓ
(︀
𝑉 𝑇
𝑞 𝑥𝑖, 𝑦𝑖

)︀
+ 𝜆

𝑄∑︁
𝑞=1

𝑠𝑞𝑅(𝑉𝑞) (7.4)

in the partition 𝐺 = (𝑔1, . . . , 𝑔𝑄) of {1, . . . , 𝑛} and matrices of classifiers 𝑉1, . . . , 𝑉𝑄 ∈
R𝑑×𝐾 , where 𝑠𝑞 = Card(𝑔𝑞) is the size of group 𝑔𝑞 and 𝜆 ≥ 0 is a regularization
parameter.

By denoting 𝑊𝑖 the matrix of classifiers used for sample 𝑖 such that if 𝑖 ∈ 𝑔𝑞, 𝑊𝑖 =
𝑉𝑞 and by using assignment matrices to represent partitions, clustered classification
problem reads

minimize 1
𝑛

∑︀𝑛
𝑖=1 ℓ

(︀
𝑊 𝑇

𝑖 𝑥𝑖, 𝑦𝑖
)︀

+ 𝜆
∑︀𝑛

𝑖=1𝑅(𝑊𝑖)

subject to 𝑊𝑖 =
∑︀𝑄

𝑞=1 𝑍𝑖𝑞𝑉𝑞, for all 𝑖 ∈ J1, 𝑛K
𝑍 ∈ {0, 1}𝑛×𝑄, 𝑍1 = 1,

(7.5)

in variables 𝑊1, . . . ,𝑊𝑛 ∈ R𝑑×𝐾 , 𝑉1, . . . , 𝑉𝑄 ∈ R𝑑×𝐾 and 𝑍, where 𝜆 ≥ 0 is a regu-
larization parameter. As for regression this can also applied to compute affine hyper-
planes by adding a constant dimension to the data and solve the problem in dimension
𝑑+ 1.

130

Overall (7.5) possesses same structure as (7.3) by replacing regression vectors
with matrices of classifiers. Both problems have convex objectives but non-convex
constraints that encode the underlying combinatorial problem. Specifically the fea-
sible set is a union of subspaces generated by assignment matrices of partitions. In
the following, we focus on the regression case, classification can be treated with same
algorithms by considering matrices instead of vectors.

7.2 Non-convex schemes

We present strategies that tackle directly the non-convex clustered prediction
problems.

7.2.1 Greedy algorithm

A first strategy to solve problem (7.1) is to alternate minimization on the predic-
tors of each group and assignment of each point to the group where its loss is smallest.
This method is fast but unstable and highly dependent on initialization. However, it
can be used to refine the solution of others algorithms proposed below.

7.2.2 Projected gradient descent

Formulation (7.3) enables to develop projected gradient descent on the indi-
vidual prediction vectors represented by the variable 𝑊 . Projection of a given
𝑊 = (𝑤1, . . . , 𝑤𝑛) ∈ R𝑑×𝑛 on the feasible set of (7.3) reads

minimize ‖𝑊 − 𝑉 𝑍𝑇‖2𝐹 =
∑︀𝑛

𝑖=1 ‖𝑤𝑖 −
∑︀𝑄

𝑞=1 𝑍𝑖𝑞𝑣𝑞‖22
subject to 𝑍 ∈ {0, 1}𝑛×𝑄, 𝑍1 = 1

in variable 𝑉 = (𝑣1, . . . , 𝑣𝑄) ∈ R𝑑×𝑄 and 𝑍. We recognize a k-means problem on the
columns of 𝑊 , i.e.

minimize
𝑄∑︁

𝑞=1

∑︁
𝑖∈𝑔𝑞

‖𝑤𝑖 − 𝑣𝑞‖22, (7.6)

in variables 𝑣1, . . . , 𝑣𝑄 ∈ R𝑑 that are the centroids of the clusters and 𝐺 = {𝑔1, . . . , 𝑔𝑄}
a partition of {1, . . . , 𝑛}. Careful initialization as made in k-means++ [Arthur and
Vassilvitskii, 2007] offers logarithmic approximations to the problem such that approx-
imate projection is available. Given a matrix 𝑊 , whose columns we want to cluster in
𝑄 groups, we denote by [𝑍, 𝑉] = k-means(𝑊,𝑄) respectively the assignment matrix
and the matrix of centroids output by a clustering algorithm. A projected gradient
scheme for problem (7.3) is described in Algorithm 8.

131

Algorithm 8 Projected gradient descent for clustered regression
Inputs: Data (𝑋, 𝑌), desired number of groups 𝑄, step size 𝛾𝑡
Initialize 𝑊0 ∈ R𝑑×𝐾

for t = 1,. . . ,T do
𝑊𝑡+1/2 = 𝑊𝑡 − 𝛾𝑡(∇𝐿(𝑊𝑡) +∇𝑅(𝑊𝑡))
[𝑍𝑡+1, 𝑉𝑡+1] = k-means(𝑊𝑡+1/2, 𝑄)
𝑊𝑡+1 = 𝑉𝑡+1𝑍

𝑇
𝑡+1

end for
Output: �̂� = 𝑊𝑇

In practice, we stop the algorithm when change in objective values are below
some prescribed threshold 𝜀. We use a backtracking line search on the stepsize 𝛾𝑡
that guarantees decreasing of the objective. Precisely, at each iteration if

�̄�𝑡+1 = k-means (𝑊𝑡 − 𝛾𝑡(∇𝐿(𝑊𝑡) +∇𝑅(𝑊𝑡)), 𝑄)

decreases the objective value we keep them and we increase the stepsize by a constant
factor 𝛾𝑡+1 = 𝛼𝛾𝑡 with 𝛼 > 1. If �̄�𝑡+1 increases the objective value we decrease the
stepsize by a constant factor 𝛾𝑡 ← 𝛽𝛾𝑡, with 𝛽 < 1, compute new �̄�𝑡+1 and iterate
this operation until �̄�𝑡+1 decreases the objective value or the stepsize reaches the
stopping value 𝜀 used as a stopping criterion on the objective values. We observed
better results with this line search than with constant stepsize.

Using this strategy we observed convergence of the projected gradient algorithm
in less than 100 iterations even for large 𝑛 which makes it scalable. The complexity of
its core operations amounts indeed to k-means operations. k-means++ initialization
costs 𝑂(𝑄2𝑛𝑑) operations and standard alternating minimization approximates the
k-means operation at a cost of 𝑂(𝑇𝑄𝑛𝑑), where 𝑇 , the number of alternating steps,
is generally small.

7.3 Convex relaxation

Difficulty of clustered regression problems (7.1) lies in its underlying combinatorial
nature that can be isolated in the case of a squared loss and squared regularizer. In
this case problem (7.1) reads

minimize
1

2𝑛

𝑄∑︁
𝑞=1

∑︁
𝑖∈𝑔𝑞

(︀
𝑣𝑇𝑞 𝑥𝑖 − 𝑦𝑖

)︀2
+
𝜆

2

𝑄∑︁
𝑞=1

𝑠𝑞‖𝑣𝑞‖22 (7.7)

in the partition 𝐺 = (𝑔1, . . . , 𝑔𝑄) of {1, . . . , 𝑛} and prediction vectors 𝑣1, . . . , 𝑣𝑄 ∈ R𝑑,
where 𝑠𝑞 = Card(𝑔𝑞) is the size of group 𝑔𝑞 and 𝜆 ≥ 0 is a regularization parameter.
In the following, we denote 𝑋 = (𝑥1, . . . , 𝑥𝑛)𝑇 ∈ R𝑛×𝑑 the matrix of data points and
𝑦 = (𝑦1, . . . , 𝑦𝑛)𝑇 ∈ R𝑛 the vector of observations.

132

7.3.1 Simplified formulation for squared loss

The squared loss has the advantage to provide analytic solutions for prediction
problems in the continuous variables. Resulting problem on partitions can be ex-
pressed in terms of normalized equivalence matrices presented in Section 5.2. Follow-
ing proposition details the simplified formulations of the clustered prediction problem
for squared loss and squared regularizer.

Proposition 7.3.1. Problem (7.7) is equivalent to

minimize 1
2𝑛
𝑦𝑇 (I + 1

𝜆𝑛
𝑋𝑋𝑇 ∘𝑀)−1𝑦

subject to 𝑀 ∈ℳ (7.8)

whereℳ = {𝑀 : 𝑀 = 𝑍(𝑍𝑇𝑍)†𝑍𝑇 , 𝑍 ∈ {0, 1}𝑛×𝑄, 𝑍1 = 1} is the set of equivalence
matrices.

Proof. We fix a partition 𝐺 = (𝑔1, . . . , 𝑔𝑄) and define for each group 𝑔𝑞 =
{𝑘1, . . . , 𝑘𝑠𝑞} ⊂ {1, . . . , 𝑛}, the matrix 𝐸 ∈ {0, 1}𝑠𝑞×𝑛 that picks the 𝑠𝑞 points of 𝑔𝑞,
i.e. (𝐸𝑞)𝑖𝑗 = 1 if 𝑗 = 𝑘𝑖 and 0 otherwise. Therefore 𝑦𝑞 = 𝐸𝑞𝑦 ∈ R𝑠𝑞 and 𝑋𝑞 = 𝐸𝑞𝑋 ∈
R𝑠𝑞×𝑑 are respectively the vector of labels and the matrix of sample vectors of the
group 𝑔𝑞. We naturally have 𝐸𝑞𝐸

𝑇
𝑞 = I as rows of 𝐸𝑞 are orthonormal and 𝐸𝑇

𝑞 𝐸𝑞

is a diagonal matrix where 𝑍𝑞 = diag(𝐸𝑇
𝑞 𝐸𝑞) ∈ {0, 1}𝑛 is the assignment vector in

group 𝑔𝑞, i.e. (𝑍𝑞)𝑗 = 1 if 𝑗 ∈ 𝑔𝑞 and 0 otherwise. 𝑍 = (𝑍1, . . . , 𝑍𝑄) is therefore an
assignment matrix for the partition 𝐺.

Minimizing in 𝑣 and using the Sherman-Woodbury-Morrison formula, we obtain
a function of the partition

𝜓(𝐺) = min
𝑣1,...,𝑣𝑄

1

2𝑛

𝑄∑︁
𝑞=1

‖𝑦𝑞 −𝑋𝑞𝑣𝑞‖22 +
𝜆

2

𝑄∑︁
𝑞=1

𝑠𝑞‖𝑣𝑞‖22

=
1

2𝑛

𝑄∑︁
𝑞=1

(︀
‖𝑦𝑞‖22 − 𝑦𝑇𝑞 𝑋𝑞(𝑠𝑞𝜆𝑛I +𝑋𝑇

𝑞 𝑋𝑞)
−1𝑋𝑇

𝑞 𝑦𝑞
)︀

=
1

2𝑛

𝑄∑︁
𝑞=1

𝑦𝑇𝑞 (I +
1

𝑠𝑞𝜆𝑛
𝑋𝑞𝑋

𝑇
𝑞)−1𝑦𝑞.

Formulating terms of the sum as solutions of an optimization problem, we get

𝜓(𝐺) =
1

2𝑛

𝑄∑︁
𝑞=1

max
𝛼𝑞∈R𝑠𝑞

−𝛼𝑇
𝑞 (I +

1

𝑠𝑞𝜆𝑛
𝑋𝑞𝑋

𝑇
𝑞)𝛼𝑞 + 2𝑦𝑇𝑞 𝛼𝑞

=
1

2𝑛
max

𝛼=(𝛼1;...;𝛼𝑄)
𝛼𝑞∈R𝑠𝑞

𝑄∑︁
𝑞=1

−𝛼𝑇
𝑞 (I +

1

𝑠𝑞𝜆𝑛
𝑋𝑞𝑋

𝑇
𝑞)𝛼𝑞 + 2𝑦𝑇𝑞 𝛼𝑞,

where (𝛼1; . . . ;𝛼𝑄) = (𝛼𝑇
1 , . . . , 𝛼

𝑇
𝑄)𝑇 stacks vectors 𝛼𝑞 in one vector of size

∑︀𝑄
𝑞=1 𝑠𝑞 =

133

𝑛. Using that 𝐸 = (𝐸1; . . . ;𝐸𝑄) = (𝐸𝑇
1 , . . . , 𝐸

𝑇
𝑄)𝑇 ∈ {0, 1}𝑛×𝑛 is an orthonormal

matrix, we make the change of variable 𝛽 = 𝐸𝑇𝛼 (and so 𝛼 = 𝐸𝛽) such that for
𝛼 = (𝛼1; . . . ;𝛼𝑄), 𝛼𝑞 ∈ R𝑠𝑞 , 𝛼𝑞 = 𝐸𝑞𝛽. Decomposing 𝑋𝑞 and 𝑦𝑞 and using 𝐸𝑇

𝑞 𝐸𝑞 =
diag(𝑍𝑞), we get

𝜓(𝐺) =
1

2𝑛
max
𝛽∈R𝑛

𝑄∑︁
𝑞=1

−𝛽𝑇𝐸𝑇
𝑞 (I +

1

𝑠𝑞𝜆𝑛
𝑋𝑞𝑋

𝑇
𝑞)𝐸𝑞𝛽 + 2𝑦𝑇𝑞 𝐸𝑞𝛽

=
1

2𝑛
max
𝛽∈R𝑛

𝑄∑︁
𝑞=1

−𝛽𝑇𝐸𝑇
𝑞 (I +

1

𝑠𝑞𝜆𝑛
𝐸𝑞𝑋𝑋

𝑇𝐸𝑇
𝑞)𝐸𝑞𝛽 + 2𝑦𝑇𝐸𝑇

𝑞 𝐸𝑞𝛽

=
1

2𝑛
max
𝛽∈R𝑛

𝑄∑︁
𝑞=1

−𝛽𝑇 diag(𝑍𝑞)𝛽 −
1

𝑠𝑞𝜆𝑛
𝛽𝑇 diag(𝑍𝑞)𝑋𝑋

𝑇 diag(𝑍𝑞)𝛽 + 2𝑦𝑇 diag(𝑍𝑞)𝛽.

For 𝑞 fixed,
(︁

1
𝑠𝑞
diag(𝑍𝑞)𝑋𝑋

𝑇 diag(𝑍𝑞)
)︁
𝑖𝑗

= 1
𝑠𝑞
𝑥𝑇𝑖 𝑥𝑗 if (𝑖, 𝑗) ∈ 𝑔𝑞 and 0 otherwise.

So
𝑄∑︁

𝑞=1

1

𝑠𝑞
diag(𝑍𝑞)𝑋𝑋

𝑇 diag(𝑍𝑞) = 𝑋𝑋𝑇 ∘𝑀,

where 𝑀 = 𝑍(𝑍𝑇𝑍)†𝑍𝑇 is the normalized equivalence matrix of the partition 𝐺 and
∘ denotes the Hadamard product. Using

∑︀𝑄
𝑞=1 diag(𝑍𝑞) = I, we finally get a function

of the equivalence matrix

𝑓(𝑀) =
1

2𝑛
max
𝛽∈R𝑛
−𝛽𝑇 (I +

1

𝜆𝑛
𝑋𝑋𝑇 ∘𝑀)𝛽 + 2𝑦𝑇𝛽

=
1

2𝑛
𝑦𝑇 (I +

1

𝜆𝑛
𝑋𝑋𝑇 ∘𝑀)−1𝑦.

The resulting problem is still non-convex due to the combinatorial nature of the
set of equivalence matrices. However one can then relax the problem by optimizing
on its convex hull as presented in Section 5.3.2.

7.3.2 Conditional gradient algorithm application

We detail the linear minimization oracle used by Frank-Wolfe Algorithm 5 in this
setting. Denote the objective function of problem (7.8) by

𝑓(𝑀) ,
1

2𝑛
𝑦𝑇 (I +

1

𝜆𝑛
𝑋𝑋𝑇 ∘𝑀)−1𝑦. (7.9)

Its gradient at a given 𝑀 ∈ℳ is

∇𝑓(𝑀) = − 1

2𝜆𝑛2
𝑋𝑋𝑇 ∘

(︂
(I +

1

𝜆𝑛
𝑋𝑋𝑇 ∘𝑀)−1𝑦𝑦𝑇 (I +

1

𝜆𝑛
𝑋𝑋𝑇 ∘𝑀)−1

)︂
. (7.10)

134

Observe that −∇𝑓(𝑀) is a semi-definite positive matrix with squared root

𝑈 =
1√
2𝜆𝑛

diag

(︂
(I +

1

𝜆𝑛
𝑋𝑋𝑇 ∘𝑀)−1𝑦

)︂
𝑋 ∈ R𝑛×𝑑.

The linear minimization oracle to minimize 𝑓(𝑀) over the convex hull of the set of
normalized equivalence matrices can then be computed as follows

argmin
𝑆∈hull(ℳ)

⟨𝑆,∇𝑓(𝑀)⟩ 𝜗1= argmin
𝑆∈ℳ

Tr(𝑆𝑇∇𝑓(𝑀))

= argmin
𝑆∈ℳ

−Tr(𝑆𝑈𝑈𝑇)

= argmin
𝑆∈ℳ

Tr((I− 𝑆)𝑈𝑈𝑇))

𝜗2= argmin
𝑆∈ℳ

‖𝑈 − 𝑆𝑈‖2𝐹 . (7.11)

In 𝜗1, we used that ℳ is a set of atoms, so its convex hull is a polytope and linear
minimization on it is equivalent to linear minimization on its vertices, i.e., ℳ. In
𝜗2, we used that normalized equivalence matrices are orthogonal projectors, so 𝐼 −𝑆
is also an orthogonal projector. Now we observe that (7.11) is a k-means problem
as presented in Section 5.2.2. Therefore solving a k-means problem on the rows of
the squared root matrix 𝑈 of −∇𝑓(𝑀) offers a solution to the linear minimization
oracle. Careful initialization as made in k-means++ [Arthur and Vassilvitskii, 2007]
offers logarithmic approximations to the problem.

A conditional gradient method with approximate oracle can then be applied to
solve a relaxed version of (7.8). Once done, it remains to provide an approximate
feasible solution for the original constraints. Two projections of the relaxed version
are possible: either finding the closest normalized equivalence matrix in Frobenius
norm or computing the point that minimizes the gradient of the relaxed solution, i.e.
computing its linear minimization oracle. In practice we chose second solution as it
provided better results. Notice that the k-means operation used for the linear mini-
mization provides not only a normalized equivalence matrix but also a corresponding
partition that leads to the optimal predictors 𝑣1, . . . , 𝑣𝑄 as

𝑣𝑞 = (𝑛𝜆𝑠𝑞I +𝑋𝑇
𝑞 𝑋𝑞)

−1𝑋𝑇
𝑞 𝑦𝑞

= (𝑛𝜆𝑠𝑞I +𝑋𝑇𝐸𝑇
𝑞 𝐸𝑞𝑋)−1𝑋𝑇𝐸𝑇

𝑞 𝐸𝑞𝑦
= (𝑛𝜆𝑠𝑞I +𝑋𝑇 diag(𝑍𝑞)𝑋)−1𝑋𝑇 diag(𝑍𝑞)𝑦,

(7.12)

where 𝑋𝑞, 𝑦𝑞, 𝑍𝑞 and 𝐸𝑞 are defined in the proof of Proposition 7.3.1.

To summarize, our convex relaxation for regression with grouped features is pre-
sented in Algorithm 9. We denote by 𝑍 = k-means(𝑈,𝑄) an assignment matrix
solution of the k-means problem that cluster rows of 𝑈 in 𝑄 groups.

135

Algorithm 9 Convex relaxation for regression with grouped features
Inputs: Data (𝑋, 𝑌), desired number of groups 𝑄, target precision 𝜀
Initialize 𝑀0 ∈ℳ
for 𝑡 = 0, . . . do

Compute −∇𝑓(𝑀𝑡) in (7.10) and its squared root 𝑈
Get linear minimization oracle by computing

𝑍𝑡 = k-means(𝑈,𝑄)
𝑆𝑡 = 𝑍𝑡(𝑍

𝑇
𝑡 𝑍𝑡)

†𝑍𝑇
𝑡

if Tr
(︀
(𝑀𝑡 − 𝑆𝑡)

𝑇∇𝑓(𝑀𝑡)
)︀
≤ 𝜀 then Stop end if

Set 𝑀𝑡+1 = 𝑀𝑡 + 1
𝑡+2

(𝑆𝑡 −𝑀𝑡)
end for
Output: Optimal predictors 𝑣1, . . . , 𝑣𝑄 in (7.12) from partition given by 𝑍𝑡.

We briefly examine the complexity of Algorithm 6. To get linear minimization
oracle we use a k-means++ initialization that costs 𝑂(𝑄2𝑛𝑑) operations and stan-
dard alternating minimization approximates then the k-means operation at a cost of
𝑂(𝑇𝑄𝑛𝑑), where 𝑇 is the number of alternating steps, that is generally small. The
squared root computation is directly given by the computation of ∇𝑓(𝑀). However
this gradient itself requires the inversion of a matrix of size 𝑛 × 𝑛. This burdens its
implementation for big data sets. However a few iterations of this algorithm can give
a good initialization for non-convex approaches of the problem.

7.4 Numerical experiments

We test the robustness of our method when data can be clustered using a few
features. We generate 𝑛 data points (𝑥𝑖, 𝑦𝑖) for 𝑖 = 1, . . . , 𝑛, with 𝑥𝑖 ∈ R𝑑, 𝑑 = 10,
and 𝑦𝑖 ∈ R, divided in 𝑄 = 3 clusters corresponding to regression tasks with weight
vectors 𝑣𝑞. Regression labels for points 𝑥𝑖 in group 𝑔𝑞 are given by 𝑦𝑖 = 𝑣𝑇𝑞 𝑥𝑖 + 𝜂𝑦,
where 𝜂 ∼ 𝒩 (0, 𝜎2). We test the robustness of the algorithms to the addition of noisy
dimensions by completing 𝑥𝑖 with 𝛿 dimensions of noise 𝜃 ∼ 𝒩 (0, 𝜏 2). For testing
the models we take the difference between the true label and the best prediction such
that the mean square error is given by

1

2𝑛

𝑛∑︁
𝑖=1

min
𝑞=1...,𝑄

(𝑦𝑖 − 𝑣𝑇𝑞 𝑥𝑖)2. (7.13)

The results are reported in Table 7.1 where the intrinsic dimension is 10 and the
proportion of dimensions of noise 𝛿/(𝑑+𝛿) increases. On the algorithmic side, “Oracle"
refers to the least-squares fit given the true assignments, which can be seen as the
best achievable error rate, AM refers to alternate minimization, PG refers to projected
gradient with squared loss, CG refers to conditional gradient and RC to regression
clustering as proposed by Zhang [2003], implemented using the Harmonic K-means

136

formulation. PG, CG and RC were followed by AM refinement. 1000 points were
used for training, 100 for testing. The regularization parameters were 5-fold cross-
validated using a logarithmic grid. Noise on labels is 𝜎 = 10−1 and noise on added
dimensions is 𝜏 = 1. Results were averaged over 50 experiments with figures after
the ± sign corresponding to one standard deviation.

p = 0 p = 0.25 p = 0.5 p = 0.75 p = 0.9
Oracle 0.52±0.08 0.55±0.07 0.55±0.10 0.58±0.09 0.71±0.11
AM 0.52±0.08 0.55±0.07 5.57±4.11 6.93±14.39 101.08±55.49
PG 1.53±7.13 3.98±17.65 3.20±13.23 5.64±20.50 91.33±39.32
CG 0.87±2.45 1.16±4.29 3.64±11.02 5.43±14.33 91.19±53.00
RC 0.52±0.08 0.55±0.07 5.59±20.27 13.45±28.76 59.19±37.97

Table 7.1 – Test mean square error given by (7.13) along proportion of added dimen-
sions of noise 𝑝 = 𝛿/(𝑑+ 𝛿).

All algorithms perform similarly, RC and AM get better results without added
noise. None of the present algorithms get a significantly better behavior with a
majority of noisy dimensions.

7.5 Conclusion
We developed a framework for diversity learning that finds groups of samples

which share same predictor. Projected gradient scheme offers a scalable algorithmic
approach for any loss, while convex relaxation for squared loss gives a first good
estimate. However core inner steps of these approaches are only approximated by
k-means++, a finer analysis would require to both tackle non-convexity and inexact
oracles. Yet, this framework may find its application in privacy learning to leverage
hidden information.

137

138

Chapter 8

Clustered multi-task

Chapter Abstract

Multi-task learning aim at solving several prediction tasks simultaneously
with the hope that they can share information to improve overall per-
formance. Based on previous clustered multi-task learning framework of
Jacob et al. [2009], we investigate how similar tasks can be clustered to
exploit common information. To this end, a clustering penalty on the pre-
diction vectors is added to the empirical loss minimization problem. Here,
we isolate the clustering problem and treat it with various optimization
strategies. First, we present a projected gradient descent whose core it-
eration amounts to a k-means problem on the predictors. Then, we show
that in case of a squared loss, clustered multi-task reduces to a k-means
problem. Numerical experiments detail the performance of our approach
on text classification.

Introduction
A supervised learning problem aims at fitting a model on a set of training data

that can generalize to future samples. Generalization performance naturally increases
with the number of training samples but can also benefit from the number of tasks
performed simultaneously on the data [Maurer et al., 2016]. Similar tasks can indeed
share information to improve overall performance [Argyriou et al., 2008; Evgeniou and
Pontil, 2004; Pan and Yang, 2010]. For example, in image classification, classifiers
associated with different species of cats should be quite similar, but well separated
from classifiers associated with cars. This observation motivated Jacob et al. [2009]
to regularize multi-task learning problems by a clustering penalty that groups similar
tasks. It led to further developments in the transfer learning literature [Zhang and
Yeung, 2010; Kumar and Daume, 2012; Ciliberto et al., 2015; Zhou et al., 2011].

In this work, we investigate new optimization procedures of the clustered multi-
task of Jacob et al. [2009]. We use same clustering penalty that can be decomposed
in three terms : overall regularization of the tasks, regularization of the variance
between clusters and regularization of the variance within clusters. However, here,

139

we isolate the clustering problem and do not relax it. First, we develop a projected
gradient descent, that clusters predictors at each prediction step. Then, for squared
loss we isolate the underlying partitioning problem on the tasks and show that it
amounts to a k-means problem. We illustrate the performance on our approach on
topics classification of a corpus of texts.

8.1 Problem Formulation

For simplicity, we illustrate the case of multi-category classification, which can be
extended to the general multi-task setting. We briefly present classification problems,
more details are provided in Section 6.1.2. We are given 𝑛 data points 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑

that belong to one of 𝐾 classes, which is encoded by binary vectors 𝑦𝑖 ∈ {−1, 1}𝐾
such that 𝑦𝑖𝑘 = 1 if 𝑖th point belongs to class 𝐾 and −1 otherwise. We search for 𝐾
linear classifiers 𝑤1, . . . , 𝑤𝐾 , forming a matrix of linear classifiers 𝑊 ∈ R𝑑×𝐾 whose
classification error on a sample (𝑥, 𝑦) is measured by a loss ℓ(𝑊 𝑇𝑥, 𝑦) such as the
squared loss ℓsquare(𝑊 𝑇𝑥, 𝑦) = 1

2
‖𝑊 𝑇𝑥 − 𝑦‖22. Candidate classifiers are given by the

minimization of the empirical loss

𝐿(𝑊) =
1

𝑛

𝑛∑︁
𝑖=1

ℓ(𝑊 𝑇𝑥𝑖, 𝑦𝑖).

Various strategies are used to leverage the information coming from related tasks,
such as low rank [Argyriou et al., 2008] or structured norm penalties [Ciliberto et al.,
2015] on the matrix of classifiers 𝑊 . Here we follow the clustered multitask setting
introduced in Jacob et al. [2009]. Namely we add a penalty 𝜔 on the classifiers
(𝑤1, . . . , 𝑤𝐾) which enforce them to be clustered in 𝑄 groups 𝑔1, . . . , 𝑔𝑄, centered
around 𝑄 points 𝑣1, . . . , 𝑣𝑄 ∈ R𝑑. By denoting 𝐺 = (𝑔1, . . . 𝑔𝑄) the partition of the 𝐾
tasks, 𝑠𝑞 = Card(𝑔𝑞) the size of the group 𝑔𝑞 and 𝑉 = (𝑣1 . . . , 𝑣𝑄) ∈ R𝑑×𝑄 the matrix
of centroids, this penalty can be decomposed in

— A measure of the variance within clusters,

𝜔𝑤𝑖𝑡ℎ𝑖𝑛(𝑊,𝑉,𝐺) =
1

2

𝑄∑︁
𝑞=1

∑︁
𝑖∈𝑔𝑞

||𝑤𝑖 − 𝑣𝑞||22

— A measure of the variance between clusters,

𝜔𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝑉,𝐺) =
1

2

𝑄∑︁
𝑞=1

𝑠𝑞||𝑣𝑞 − 𝑣||22

— A measure of the norm of the barycenter of centers 𝑣 = 1
𝐾

∑︀𝑄
𝑞=1 𝑠𝑞𝑣𝑞,

𝜔𝑚𝑒𝑎𝑛(𝑉,𝐺) =
𝐾

2
||𝑣||22

140

The total penalty reads

𝜔(𝑊,𝑉,𝐺) = 𝜆𝑤𝜔𝑤𝑖𝑡ℎ𝑖𝑛(𝑊,𝑉,𝐺) + 𝜆𝑏𝜔𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝑉,𝐺) + 𝜆𝑚𝜔𝑚𝑒𝑎𝑛(𝑉,𝐺),

where 𝜆𝑤, 𝜆𝑏, 𝜆𝑚 are non-negative regularization parameters. It is illustrated in Fig-
ure 8-1.

ωwithin

ωbetween
ωmean

0

Figure 8-1 – Decomposed clustering penalty.

The partition 𝐺 = (𝑔1, . . . , 𝑔𝑄) of the 𝐾 tasks can then be represented by an
assignment matrix 𝑍 ∈ {0, 1}𝐾×𝑄, whose columns index tasks and rows groups such
that

𝑍𝑘𝑞 =

{︃
1 if 𝑘 ∈ 𝑔𝑞
0 otherwise.

To represent the barycenter of the predictors, we use the orthogonal projection
Π𝐾 = 1𝐾1𝑇

𝐾/𝐾 ∈ R𝐾×𝐾 on the vector 1𝐾 of all ones in dimension 𝐾 . Given 𝑄
centroids forming a matrix 𝑉 = (𝑣1, . . . , 𝑣𝑄) ∈ R𝑑×𝑄 and a partition 𝐺 = (𝑔1, . . . , 𝑔𝑄)
represented by an assignment matrix 𝑍 ∈ {0, 1}𝐾×𝑄 such that 𝑍1 = 1, previous
penalties read

Ω𝑤𝑖𝑡ℎ𝑖𝑛(𝑊,𝑉, 𝑍) =
1

2

𝑄∑︁
𝑞=1

∑︁
𝑖∈𝑔𝑞

||𝑤𝑖 − 𝑣𝑞||22 =
𝜆𝑤
2
||𝑊 − 𝑉 𝑍𝑇 ||2𝐹 .

Ω𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝑉, 𝑍) =
1

2

𝑄∑︁
𝑞=1

𝑠𝑞||𝑣𝑞 − 𝑣||22 =
𝜆𝑏
2
Tr(𝑉 𝑍𝑇 (I𝐾 − Π𝐾)𝑍𝑉 𝑇),

Ω𝑚𝑒𝑎𝑛(𝑉, 𝑍) = 𝐾
1

2
||𝑣||22 =

𝜆𝑚
2

Tr(𝑉 𝑍𝑇Π𝑍𝑉 𝑇),

Using 𝑈 = 𝑉 𝑍𝑇 , the total penalty can then be written

Ω(𝑊,𝑈) =
𝜆𝑤
2
||𝑊 − 𝑈 ||2𝐹 +

𝜆𝑏
2
Tr(𝑈(I𝐾 − Π𝐾)𝑈𝑇) +

𝜆𝑚
2

Tr(𝑈Π𝐾𝑈
𝑇). (8.1)

where 𝜆𝑤, 𝜆𝑏, 𝜆𝑚 are non-negative regularization parameters. Overall, clustered mul-
titask learning problem reads then

minimize 𝐿(𝑊) + Ω(𝑊,𝑈)
s.t. 𝑈 = 𝑉 𝑍𝑇 , 𝑍 ∈ {0, 1}𝐾×𝑄, 𝑍1 = 1,

(8.2)

141

in variables 𝑊 ∈ R𝑑×𝐾 , 𝑈 ∈ R𝑑×𝐾 , 𝑉 ∈ R𝑑×𝑄 and 𝑍. This formulation exhibits a
convex objective under non-convex constraints that encode the clustering problem.
Several optimization procedures can then be used to treat these constraints.

8.2 Projected gradient descent
Formulation (8.2) enables to develop projected gradient descent on the auxiliary

variable 𝑈 . Projection of a given 𝑈 = (𝑢1, . . . , 𝑢𝐾) ∈ R𝑑×𝐾 on the feasible set of (8.2)
reads

minimize ‖𝑈 − 𝑉 𝑍𝑇‖2𝐹 =
∑︀𝐾

𝑖=1 ‖𝑢𝑖 −
∑︀𝑄

𝑞=1 𝑍𝑖𝑞𝑣𝑞‖22
subject to 𝑍 ∈ {0, 1}𝐾×𝑄, 𝑍1 = 1

in variable 𝑉 = (𝑣1, . . . , 𝑣𝑄) ∈ R𝑑×𝑄 and 𝑍. We recognize a k-means problem on the
columns of 𝑈 , i.e.

minimize
𝑄∑︁

𝑞=1

∑︁
𝑖∈𝑔𝑞

‖𝑢𝑖 − 𝑣𝑞‖22, (8.3)

in variables 𝑣1, . . . , 𝑣𝑄 ∈ R𝑑 that are the centroids of the clusters and 𝐺 = (𝑔1, . . . , 𝑔𝑄)
a partition of {1, . . . , 𝐾}. Careful initialization as made in k-means++ [Arthur and
Vassilvitskii, 2007] offers logarithmic approximations to the problem such that approx-
imate projection is available. Given a matrix 𝑊 , whose columns we want to cluster in
𝑄 groups, we denote by [𝑍, 𝑉] = k-means(𝑊,𝑄) respectively the assignment matrix
and the matrix of centroids output by a clustering algorithm. A projected gradient
scheme for problem (8.2) is described in Algorithm 10.

Algorithm 10 Projected gradient descent for clustered multi-task
Inputs: Data (𝑋, 𝑌), desired number of groups 𝑄, step size 𝛾𝑡
Initialize 𝑊0 ∈ R𝑑×𝐾

for t = 1,. . . ,T do
𝑊𝑡+1 = 𝑊𝑡 − 𝛾𝑡 (∇𝐿(𝑊𝑡) +∇Ω(𝑊𝑡, 𝑈𝑡))
𝑈𝑡+1/2 = 𝑈𝑡 − 𝛾𝑡(∇Ω(𝑊𝑡, 𝑈𝑡))
[𝑍𝑡+1, 𝑉𝑡+1] = k-means(𝑈𝑡+1/2, 𝑄)
𝑈𝑡+1 = 𝑉𝑡+1𝑍

𝑇
𝑡+1

end for
Output: �̂� = 𝑊𝑇

In practice we stop the algorithm when change in objective values are below some
prescribed threshold 𝜀. We use a backtracking line search on the stepsize 𝛾𝑡 that
guarantees decreasing of the objective. Precisely, at each iteration if

�̄�𝑡+1 = 𝑊𝑡 − 𝛾𝑡(∇𝐿(𝑊𝑡) +∇Ω(𝑊𝑡, 𝑈𝑡))
�̄�𝑡+1 = k-means (𝑈𝑡 − 𝛾𝑡∇Ω(𝑊𝑡, 𝑈𝑡), 𝑄)

decrease the objective value we keep them and we increase the stepsize by a constant
factor 𝛾𝑡+1 = 𝛼𝛾𝑡 with 𝛼 > 1. If �̄�𝑡+1, �̄�𝑡+1 increase the objective value we decrease

142

the stepsize by a constant factor 𝛾𝑡 ← 𝛽𝛾𝑡, with 𝛽 < 1, compute new �̄�𝑡+1, �̄�𝑡+1

and iterate this operation until �̄�𝑡+1, �̄�𝑡+1 decrease the objective value or the stepsize
reaches the stopping value 𝜀 used as a stopping criterion on the objective values. We
observed better results with this line search than with constant stepsize.

Using this strategy we observed convergence of the projected gradient algorithm
in less than 100 iterations even for large dimension (big 𝑛, 𝑑 or 𝐾), which makes it
scalable. The complexity of its core operations amounts indeed to k-means opera-
tions. k-means++ initialization costs 𝑂(𝑄2𝑛) operations and standard alternating
minimization approximates the k-means operation at a cost of 𝑂(𝑇𝑄𝑛), where 𝑇 , the
number of alternating steps, is generally small.

8.3 Clustered multitask with squared loss
Difficulty of clustered multitask problems (8.2) lies in its underlying combinatorial

nature that can be isolated in the case of a squared loss. We first detail the simplified
formulation and then show how it reduces to a k-means problem.

8.3.1 Simplification for squared loss

When simplifying the clustered multitask problem, partitions are expressed in
terms of normalized equivalence matrices presented in Section 5.2. First, simplifica-
tion can be made on the clustering penalty (8.1) by minimizing on the variable 𝑉 for
𝑊 and 𝑍 fixed as detailed in the following lemma.

Lemma 8.3.1. For given matrix of classifier 𝑊 ∈ R𝑑×𝐾 and assignment matrix
𝑍 ∈ {0, 1}𝐾×𝑄, clustering penalty (8.1) with regularization parameters 𝜆𝑚, 𝜆𝑏 and 𝜆𝑤
simplifies by minimizing in the matrix of centroids 𝑉 ∈ R𝑑×𝑄 as

min
𝑉

Ω(𝑊,𝑉 𝑍𝑇) =
𝜆𝑤
2

Tr
(︀
𝑊 (I𝐾 − 𝜌𝑤𝑏(𝑀 − Π𝐾)− 𝜌𝑤𝑚Π𝐾)𝑊 𝑇

)︀
where 𝜌𝑤𝑏 = 𝜆𝑤

𝜆𝑤+𝜆𝑏
, 𝜌𝑤𝑚 = 𝜆𝑤

𝜆𝑤+𝜆𝑚
and 𝑀 = 𝑍(𝑍𝑇𝑍)†𝑍𝑇 is the normalized equivalence

matrix of the partition represented by 𝑍.

Proof.

min
𝑉

Ω(𝑊,𝑉 𝑍𝑇) = min
𝑉

𝜆𝑤
2
‖𝑊 − 𝑉 𝑍𝑇‖2𝐹 +

𝜆𝑏
2
Tr(𝑉 𝑍𝑇 (I𝐾 − Π𝐾)𝑍𝑉 𝑇) +

𝜆𝑚
2

Tr(𝑉 𝑍𝑇Π𝐾𝑍𝑉
𝑇)

= min
𝑉

1

2
Tr
(︀
𝑉
(︀
(𝜆𝑤 + 𝜆𝑏)𝑍

𝑇𝑍 + (𝜆𝑚 − 𝜆𝑏)𝑍𝑇Π𝐾𝑍
)︀
𝑉 𝑇
)︀
− 𝜆𝑤 Tr(𝑉 𝑇𝑊𝑍)

+
𝜆𝑤
2
‖𝑊‖2𝐹

=− 𝜆2𝑤
2

Tr
(︁
𝑊𝑍

(︀
(𝜆𝑤 + 𝜆𝑏)𝑍

𝑇𝑍 + (𝜆𝑚 − 𝜆𝑏)𝑍𝑇Π𝐾𝑍
)︀−1

𝑍𝑇𝑊 𝑇
)︁

+
𝜆𝑤
2
‖𝑊‖2𝐹 .

Denote 𝑠 = (𝑠1, . . . , 𝑠𝑄) ∈ R𝑄 the vector of the size of the groups 𝑔1, . . . , 𝑔𝑄 that
can be computed from the assignment matrix 𝑍 as 𝑠 = 𝑍𝑇1𝐾 , 𝑠

1
2 the vector whose

143

coordinates are
√
𝑠𝑞 and 𝑠−

1
2 the vector whose coordinates are 1√

𝑠𝑞
if 𝑠𝑞 ̸= 0 and 0

otherwise. Inversion in the precedent formula reads

𝐽−1 =
(︀
(𝜆𝑤 + 𝜆𝑏)𝑍

𝑇𝑍 + (𝜆𝑚 − 𝜆𝑏)𝑍𝑇Π𝐾𝑍
)︀−1

=

(︂
(𝜆𝑤 + 𝜆𝑏)diag(𝑠) + (𝜆𝑚 − 𝜆𝑏)

𝑠𝑠𝑇

𝐾

)︂−1

𝜗1=
1

𝜆𝑤 + 𝜆𝑏
diag(𝑠−

1
2)

(︃
I𝑄 +

𝜆𝑚 − 𝜆𝑏
𝜆𝑤 + 𝜆𝑏

𝑠
1
2 𝑠

1
2
𝑇

𝐾

)︃−1

diag(𝑠−
1
2)

𝜗2=
1

𝜆𝑤 + 𝜆𝑏
diag(𝑠−

1
2)

(︃
I𝑄 −

𝜆𝑚 − 𝜆𝑏
𝜆𝑤 + 𝜆𝑚

𝑠
1
2 𝑠

1
2
𝑇

𝑚

)︃
diag(𝑠−

1
2)

=
1

𝜆𝑤 + 𝜆𝑏
(𝑍𝑇𝑍)† − 𝜆𝑚 − 𝜆𝑏

(𝜆𝑤 + 𝜆𝑚)(𝜆𝑤 + 𝜆𝑏)

1𝑄1
𝑇
𝑄

𝐾

=
1

𝜆𝑤 + 𝜆𝑏

(︃
(𝑍𝑇𝑍)† − 1𝑄1

𝑇
𝑄

𝐾

)︃
+

1

𝜆𝑤 + 𝜆𝑚

1𝑄1
𝑇
𝑄

𝐾
,

where we used in 𝜗1 that 𝑍𝑇𝑍 = diag(𝑠) and in 𝜗2 that 𝑃 = 𝑠
1
2 𝑠

1
2
𝑇

𝐾
= 𝑠

1
2 𝑠

1
2
𝑇

‖𝑠
1
2 ‖22

is a

projector and therefore (𝐼 + 𝛼𝑃)−1 = 𝐼 − 𝛼
𝛼+1

𝑃 .

Now introducing the equivalence matrix𝑀 = 𝑍(𝑍𝑇𝑍)†𝑍𝑇 , and using that 𝑍
1𝑄1𝑇

𝑄

𝑚
𝑍𝑇 =

Π𝐾 , we finally obtain

min
𝑉

Ω(𝑊,𝑉 𝑍𝑇) =
𝜆𝑤
2

Tr(𝑊𝑊 𝑇)− 𝜆2𝑤
2

Tr

(︂
𝑊

(︂
1

𝜆𝑤 + 𝜆𝑏
(𝑀 − Π𝐾) +

1

𝜆𝑤 + 𝜆𝑚
Π𝐾

)︂
𝑊 𝑇

)︂
=
𝜆𝑤
2

Tr
(︀
𝑊 (I𝐾 − 𝜌𝑤𝑏(𝑀 − Π𝐾)− 𝜌𝑤𝑚Π𝐾)𝑊 𝑇

)︀
,

where 𝜌𝑤𝑏 = 𝜆𝑤

𝜆𝑤+𝜆𝑏
and 𝜌𝑤𝑚 = 𝜆𝑤

𝜆𝑤+𝜆𝑚
.

The squared loss has now the advantage to provide analytic solutions for multitask
problems in the variable 𝑊 which simplifies clustered multitask problem (8.2) as
shown in following proposition. Training data is there represented by the design
matrix 𝑋 = (𝑥1, . . . , 𝑥𝑛)𝑇 ∈ R𝑛×𝑑 and the matrix of labels (𝑦1, . . . , 𝑦𝑛)𝑇 ∈ R𝑛×𝐾 .

Proposition 8.3.2. Clustered multitask problem (8.2) with regularization parameters
𝜆𝑚, 𝜆𝑏 and 𝜆𝑤 is equivalent to

minimize Tr(𝐴𝑇𝑀)
subject to 𝑀 ∈ℳ (8.4)

144

where

𝐴 = 𝑌 𝑇𝑋
(︀
(𝑋𝑇𝑋 + 𝑛𝜆𝑤I𝑑)

−1 − (𝑋𝑇𝑋 + 𝑛𝜆𝑤(1− 𝜌𝑤𝑏)I𝑑)
−1
)︀
𝑋𝑇𝑌, (8.5)

𝜌𝑤𝑏 = 𝜆𝑤

𝜆𝑤+𝜆𝑏
and ℳ = {𝑀 : 𝑀 = 𝑍(𝑍𝑇𝑍)−1𝑍𝑇 , 𝑍 ∈ {0, 1}𝑛×𝑄, 𝑍1 = 1} is the set

of equivalence matrices.

Proof. Using a squared loss and Kronecker’s product formula, we get for a given
matrix of classifier 𝑊 = (𝑤1, . . . , 𝑤𝐾) ∈ R𝑑×𝐾 ,

𝐿(𝑊) =
1

2𝑛
‖𝑋𝑊 − 𝑌 ‖2𝐹

=
1

2𝑛
Tr(𝑊 𝑇𝑋𝑇𝑋𝑊)− 1

𝑛
Tr(𝑊 𝑇𝑋𝑇𝑌) +

1

2𝑛
‖𝑌 ‖2𝐹

=
1

2𝑛
Vect(𝑊)𝑇 (I𝐾 ⊗𝑋𝑇𝑋) Vect(𝑊)− 1

𝑛
Vect(𝑊)𝑇 Vect(𝑋𝑇𝑌) +

1

2𝑛
‖𝑌 ‖2𝐹 .

Simplified clustering penalty computed in Lemma 8.3.1 can also be rewritten using
Kronecker’s product formula as

min
𝑉

Ω(𝑊,𝑉 𝑍𝑇) =
𝜆𝑤
2

Vect(𝑊)𝑇 (𝑃 ⊗ I𝑑) Vect(𝑊),

where 𝑃 = I𝐾 − 𝜌𝑤𝑏(𝑀 − Π𝐾)− 𝜌𝑤𝑚Π𝐾 . Problem (8.2) can then be simplified as

min
𝑊,𝑉

𝐿(𝑊) + Ω(𝑊,𝑉 𝑍𝑇) = min
𝑊

1

2𝑛
Vect(𝑊)𝑇 (I𝐾 ⊗𝑋𝑇𝑋 + 𝑃 ⊗ I𝑑) Vect(𝑊)

− 1

𝑛
Vect(𝑊)𝑇 Vect(𝑋𝑇𝑌) +

1

2𝑛
‖𝑌 ‖2𝐹

=− 1

2𝑛
Vect(𝑋𝑇𝑌)𝑇

(︀
I𝐾 ⊗𝑋𝑇𝑋 + 𝜆𝑤𝑛𝑃 ⊗ I𝑑

)︀−1 Vect(𝑋𝑇𝑌)

+
1

2𝑛
‖𝑌 ‖2𝐹

Denote 𝑣1, ..., 𝑣𝑑 ∈ R𝑑, 𝜆1, ..., 𝜆𝑑 ∈ R and 𝑢1, ..., 𝑢𝐾 ∈ R𝐾 , 𝜇1, ..., 𝜇𝐾 ∈ R the eigen-
vectors and corresponding eigenvalues respectively of matrices 𝑋𝑇𝑋 and 𝑃 = (I𝐾 −
𝜌𝑤𝑏(𝑀 − Π𝐾) + 𝜌𝑤𝑚Π𝐾). The eigenvectors and corresponding eigenvalues of I𝐾 ⊗
𝑋𝑇𝑋+𝜆𝑤𝑛𝑃⊗I𝑑 are (𝑢𝑖⊗𝑣𝑗)𝑖∈J1,𝑛K, 𝑗∈J1,𝑑K and (𝜆𝑤𝑛𝜇𝑖+𝜆𝑗)𝑖∈J1,𝑛K, 𝑗∈J1,𝑑K. The inversion
in the expression of 𝐺 is then given by

𝐽−1 =
(︀
I𝐾 ⊗𝑋𝑇𝑋 + 𝜆𝑤𝑛𝑃 ⊗ I𝑑

)︀−1
=

𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

1

𝜆𝑤𝑛𝜇𝑖 + 𝜆𝑗
𝑢𝑖𝑢

𝑇
𝑖 ⊗ 𝑣𝑗𝑣𝑇𝑗 .

We then note that the set of eigenvectors of 𝑃 can be decomposed into three sets.
Matrices I𝐾 −𝑀,𝑀 − Π𝐾 and Π𝐾 are indeed orthogonal projectors on orthogonal
subspaces spanning the entire space. Denote by ℐ𝑤, ℐ𝑏, ℐ𝑚 the sets of eigenvectors cor-
responding respectively to I𝐾−𝑀 , 𝑀 −Π𝐾 and Π𝐾 , their corresponding eigenvalues

145

in 𝑃 can easily be computed and we obtain

𝑃 = I𝐾 −𝑀 + (1− 𝜌𝑤𝑏)(𝑀 − Π𝐾) + (1− 𝜌𝑤𝑚)Π𝐾

=
∑︁
𝑖∈ℐ𝑤

𝑢𝑖𝑢
𝑇
𝑖 + (1− 𝜌𝑤𝑏)

∑︁
𝑖∈ℐ𝑏

𝑢𝑖𝑢
𝑇
𝑖 + (1− 𝜌𝑤𝑚)

∑︁
𝑖∈ℐ𝑚

𝑢𝑖𝑢
𝑇
𝑖 .

This decomposition can be used for the inversion

𝐽−1 =
∑︁
𝑖∈ℐ𝑊

𝑑∑︁
𝑗=1

1

𝜆𝑤𝑛+ 𝜆𝑗
𝑢𝑖𝑢

𝑇
𝑖 ⊗ 𝑣𝑗𝑣𝑇𝑗

+
∑︁
𝑖∈ℐ𝐵

𝑑∑︁
𝑗=1

1

𝜆𝑤𝑛(1− 𝜌𝑤𝑏) + 𝜆𝑗
𝑢𝑖𝑢

𝑇
𝑖 ⊗ 𝑣𝑗𝑣𝑇𝑗

+
∑︁
𝑖∈ℐ𝑊

𝑑∑︁
𝑗=1

1

𝜆𝑤𝑛(1− 𝜌𝑤𝑚) + 𝜆𝑗
𝑢𝑖𝑢

𝑇
𝑖 ⊗ 𝑣𝑗𝑣𝑇𝑗

= (I𝐾 −𝑀)⊗ (𝑋𝑇𝑋 + 𝑛𝜆𝑤I𝑑)
−1 + (𝑀 − Π𝐾)⊗ (𝑋𝑇𝑋 + 𝑛𝜆𝑤(1− 𝜌𝑤𝑏)I𝑑)

−1

+ Π𝐾 ⊗ (𝑋𝑇𝑋 + 𝑛𝜆𝑤(1− 𝜌𝑤𝑚)I𝑑)
−1.

Finally clustered multitask problem can be simplified using properties of the Kro-
necker product

𝐴 = min
𝑊,𝑉

𝐿(𝑊) + Ω(𝑊,𝑉 𝑍𝑇)

=− 1

2𝑛
Vect(𝑋𝑇𝑌)𝑇

(︀
(I𝐾 −𝑀)⊗ (𝑋𝑇𝑋 + 𝑛𝜆𝑤I𝑑)

−1
)︀
Vect(𝑋𝑇𝑌)

− 1

2𝑛
Vect(𝑋𝑇𝑌)𝑇

(︀
(𝑀 − Π𝐾)⊗ (𝑋𝑇𝑋 + 𝑛𝜆𝑤(1− 𝜌𝑤𝑏)I𝑑)

−1
)︀
Vect(𝑋𝑇𝑌)

− 1

2𝑛
Vect(𝑋𝑇𝑌)𝑇

(︀
Π𝐾 ⊗ (𝑋𝑇𝑋 + 𝑛𝜆𝑤(1− 𝜌𝑤𝑚)I𝑑)

−1
)︀
Vect(𝑋𝑇𝑌) +

1

2𝑛
‖𝑌 ‖2𝐹

=− 1

2𝑛
Tr(𝑌 𝑇𝑋(𝑋𝑇𝑋 + 𝑛𝜆𝑤I𝑑)

−1𝑋𝑇𝑌 (I𝐾 −𝑀))

− 1

2𝑛
Tr(𝑌 𝑇𝑋(𝑋𝑇𝑋 + 𝑛𝜆𝑤(1− 𝜌𝑤𝑏)I𝑑)

−1𝑋𝑇𝑌 (𝑀 − Π𝐾))

− 1

2𝑛
Tr(𝑌 𝑇𝑋(𝑋𝑇𝑋 + 𝑛𝜆𝑤(1− 𝜌𝑤𝑚)I𝑑)

−1𝑋𝑇𝑌Π𝐾) +
1

2𝑛
‖𝑌 ‖2𝐹 .

The remaining variable of the problem is the normalized equivalence matrix 𝑀 . By
ignoring the constant terms we get the claimed formulation.

Clustered multitask problem reduces therefore to a linear problem in normalized
equivalence matrices 𝑀 of partitions of the 𝐾 classes. Though the feasible set is still
non-convex, minimization of this linear function on the set of normalized equivalence
matrices reduces to a k-means problem that can be approximated efficiently.

146

8.3.2 Resolution by k-means

As 0 ≤ 𝜌𝑤𝑏 ≤ 1, we get that 𝐴 defined in (8.5) is semi-definite negative and
denote 𝑈 ∈ R𝐾×𝐾 a squared root of −𝐴 such that −𝐴 = 𝑈𝑈𝑇 . Clustered multitask
problem (8.4) reads then

argmin
𝑆∈ℳ

Tr(𝑆𝑇𝐴) = argmin
𝑆∈ℳ

−Tr(𝑆𝑈𝑈𝑇)

= argmin
𝑆∈ℳ

Tr((I− 𝑆)𝑈𝑈𝑇))

𝜗
= argmin

𝑆∈ℳ
‖𝑈 − 𝑆𝑈‖2𝐹 . (8.6)

In 𝜗, we used that normalized equivalence matrices are orthogonal projectors, so 𝐼−𝑆
is also an orthogonal projector. Now we observe that (8.6) is a k-means problem as
presented in Section 5.2.2. Therefore solving a k-means problem on the rows of
the squared root matrix 𝑈 of −∇𝑓(𝑀) offers a solution to the clustered multi-task
problem with squared loss. Careful initialization as made in k-means++ [Arthur and
Vassilvitskii, 2007] offers logarithmic approximations to the problem.

Resolution of the clustered-multitask problem with squared loss by k-means is
summarized in Algorithm 11. We denote 𝑍 = k-means(𝑈,𝑄) the assignment matrix
found by a dedicated algorithm that clusters the rows of 𝑈 into 𝑄 groups. Once an
equivalence matrix found for the problem, classifiers stacked in 𝑊 = (𝑤1, . . . , 𝑤𝑘) are
given in (8.7) using computations made in Proposition 8.3.2 and Kronecker’s formula.
Finally 𝜌𝑤𝑏, 𝜌𝑤𝑚 are defined in Lemma 8.3.1.

Algorithm 11 Clustered multitask resolution by k-means
Inputs: Data (𝑋, 𝑌), desired number of groups 𝑄, regularization parameters
𝜆𝑤, 𝜆𝑏, 𝜆𝑚.
Compute squared root 𝑈 of

𝐴 = 𝑌 𝑇𝑋
(︀
(𝑋𝑇𝑋 + 𝑛𝜆𝑤I𝑑)

−1 − (𝑋𝑇𝑋 + 𝑛𝜆𝑤(1− 𝜌𝑤𝑏)I𝑑)
−1
)︀
𝑋𝑇𝑌

Get
𝑍 = k-means(𝑈,𝑄), 𝑀 = 𝑍(𝑍𝑇𝑍)†𝑍𝑇

Output:
𝑊 = (𝑋𝑇𝑋 + 𝑛𝜆𝑤I𝑑)

−1𝑋𝑇𝑌 (I𝐾 −𝑀)
+(𝑋𝑇𝑋 + 𝑛𝜆𝑤(1− 𝜌𝑤𝑏)I𝑑)

−1𝑋𝑇𝑌 (𝑀 − Π𝐾)
+(𝑋𝑇𝑋 + 𝑛𝜆𝑤(1− 𝜌𝑤𝑚)I𝑑)

−1𝑋𝑇𝑌Π𝐾

(8.7)

Overall this solution requires a k-means++ initialization that costs 𝑂(𝑄2𝐾2) op-
erations and the resolution of the k-means problem that standard alternating mini-
mization approximates at a cost of 𝑂(𝑇𝑄𝐾2), where 𝑇 is the number of alternating
steps, which is generally small. The main drawback of this solution is the computation
of 𝐴 in (8.5) that requires the inversion of matrices of size 𝑑×𝑑 and the computation

147

of its squared root. This burdens its implementation for big data sets. However it
can give a good initialization for more elaborated approaches that use different losses
than the squared loss.

8.4 Numerical experiments

We perform classification of documents in topics. We used the publicly available
20NewsGroup dataset which contains 2800 documents that are classified in 20 top-
ics. Some of the topics are very closely related to each other (e.g. pc.hardware
and mac.hardware), while others are highly unrelated (e.g. misc.forsale and
soc.religion.christian). Using this prior, we try to benefit from the classifi-
cation of some topics with the use of similar topics. We use a dictionary of 5000
words selected by TF-IDF coefficients and take the word frequencies as covariates for
each document.

In Table 8.1, we compare our approach to other classical regularizations such as
the Frobenius norm and the trace norm, as implemented by Ciliberto et al. [2015],
using either a ridge or a logistic loss (Log). The algorithm proposed by Jacob et al.
[2009] was too slow on this large dataset to compare with. We initialize it by the
solution given by the logistic loss. All algorithms were 5-fold cross-validated on 80%
of the data then tested on the remaining 20%. The number of clusters was set to
5, as suggested by the names of newsgroups. Figures after the ± sign correspond to
one standard deviation when varying the training and test sets. At first glance, our
solutions appear to offer better generalization performance, however the groups of
tasks found by our method do not have meaning and best regularization parameters
are the ones that do not tend to clustered tasks.

Frobenius Log Trace Ridge CG Ridge PG Log
5.8±2.0 4.3±0.8 4.9±0.8 2.6±1.5

Table 8.1 – 100 ×mean absolute errors for predicting topics on 20NewsGroup dataset,
comparing classical regularizers (Frobenius and Trace) with our algorithms. PG refers
to projected gradient, CG refers to conditional gradient.

8.5 Conclusion

We applied our framework of learning problems with partitions to cluster tasks.
Once more a projected gradient scheme can be applied to offer scalable resolution for
any loss. However framework of Jacob et al. [2009] requires to tune at least 3 param-
eters which burdens its application. Moreover regularization of the variance between
clusters is generally taken positive to develop convex relaxations. Further experi-
ments that both enforce low variance intra-clusters and high variance inter-clusters
may better benefit from the clustering approach. Notice that our computations for

148

squared loss revealed that this framework can be reduced to a k-means problem for
which several approaches exist that may refine the framework.

149

150

Appendix A

Classical algorithms implementation

We present here the classical algorithms for convex optimization that we restart.
We present their general form to solve composite optimization problems of the form

minimize 𝑓(𝑥) = 𝜑(𝑥) + 𝑔(𝑥) (Composite)

where 𝜑, 𝑔 are convex functions and 𝑔 is assumed simple in a sense that will be clarified
later.

Algorithms used to solve this problem crucially depend on the smoothness assump-
tion on the (sub)gradients of 𝜑. We assume here that they are Hölder continuous with
respect to a given norm ‖ · ‖ on a set 𝐽 , i.e. that there exists 𝑠 ∈ [0, 1] and 𝐿 > 0
such that

‖∇𝜑(𝑥)−∇𝜑(𝑦)‖* ≤ ‖𝑥− 𝑦‖𝑠−1, for every 𝑥, 𝑦 ∈ 𝐽, (Generic Smoothness)

where ‖ · ‖ is the dual norm of ‖ · ‖ and ∇𝜑(𝑥) denotes any subgradient of 𝜑 at 𝑥. To
exploit the smoothness of 𝜑 with respect to a generic norm, we assume that we have
access to a prox function ℎ with dom(𝑓) ⊂ dom(ℎ), strongly convex with respect to
the norm ‖ · ‖ with convexity parameter equal to one, i.e.

ℎ(𝑦) ≥ ℎ(𝑥) +∇ℎ(𝑥)𝑇 (𝑦 − 𝑥) +
1

2
‖𝑥− 𝑦‖2, for any 𝑥, 𝑦 ∈ dom(ℎ).

We define the Bregman divergence associated to ℎ as, for given 𝑥, 𝑦 ∈ dom(ℎ),

𝐷ℎ(𝑦;𝑥) = ℎ(𝑦)− ℎ(𝑥)−∇ℎ(𝑥)𝑇 (𝑦 − 𝑥)

such that we naturally have 𝐷ℎ(𝑦;𝑥) ≥ 1
2
‖𝑥 − 𝑦‖2. For ℎ(𝑥) = 1

2
‖𝑥‖22, we get

𝐷ℎ(𝑦;𝑥) = 1
2
‖𝑥 − 𝑦‖22, so we retrieve the Euclidean setting. The assumption that

𝑔 is “simple" can now be stated formally. Given 𝑥, 𝑦 ∈ dom(𝑓) and 𝜆 ≥ 0 we assume
that we can solve

min
𝑧
𝑦𝑇 𝑧 + 𝑔(𝑧) + 𝜆𝐷ℎ(𝑧;𝑥)

either in a closed form or by some cheap computational procedure.

151

A.1 Universal fast gradient method

An optimal algorithm to solve the (Composite) problem is then the universal
fast gradient method [Nesterov, 2015]. It is detailed in Algorithm 12. Given a target
accuracy 𝜀, it starts at a point 𝑥0 and outputs after 𝑡 iterations a point 𝑥 , 𝒰(𝑥0, 𝜀, 𝑡),
such that

𝑓(𝑥)− 𝑓 * ≤ 𝜀

2
+
𝑐𝑠𝐿

2
𝑠𝐷ℎ(𝑥0, 𝑋

*)

𝜀
2
𝑠 𝑡

2𝜌
𝑠

𝜀

2
,

where 𝐷ℎ(𝑥;𝑋*) = min𝑥*∈𝑋* 𝐷ℎ(𝑥;𝑥*) is the Bregman distance from 𝑥 to the set of
minimizers and 𝑐𝑠 = 2

5𝑠−2
𝑠 that we bounded as 𝑐𝑠 ≤ 𝑐 = 16 for 𝑠 ∈ [1, 2].

𝜌 ,
3𝑠− 2

2

is the optimal rate of convergence for 𝑠-smooth functions. In the Euclidean setting,
ℎ = 1

2
‖𝑥‖22, 𝐷ℎ(𝑦;𝑥) = 1

2
‖𝑥− 𝑦‖2, such that we get the bound given in (2.17).

The method does not need to know the smoothness parameters (𝑠, 𝐿), but the
target accuracy 𝜀 is used to parametrize the algorithm. The universal fast gradient
method requires an estimate 𝐿0 of the smoothness parameter 𝐿 to start a line search
on 𝐿. This line search is proven to increase the complexity of the algorithm by at
most a constant factor plus a logarithmic term and ensures that the overall complexity
does not depend on 𝐿0 but on 𝐿. In our restart schemes we use a first estimate 𝐿0

when running the algorithm for the first time and we use the last estimate found by
the algorithm when restarting it.

Finally if 𝑋* ̸= ∅, the universal fast gradient method produces a convergent
sequence of iterates. Therefore if the Łojasiewicz inequality is satisfied on a compact
set 𝐾, it will be valid for all our iterates after perhaps reducing 𝜇.

A.2 Accelerated gradient method

The accelerated gradient method is a special instance of the universal fast gradient
method when the function 𝜑 is known to be smooth (i.e. satisfies (Generic Smoothness)
with 𝑠 = 2). In that case the optimal 𝜀 to run the Universal Fast Gradient method is 0
(otherwise it depends on the parameters of the function). Given an initial point 𝑥0, ac-
celerated gradient method outputs, after 𝑡 iterations, a point 𝑥 , 𝒜(𝑥0, 𝑡) = 𝒰(𝑥0, 0, 𝑡)
such that

𝑓(𝑦)− 𝑓 * ≤ 𝑐𝐿

𝑡2
𝐷ℎ(𝑥0, 𝑋

*),

where 𝐷ℎ(𝑥;𝑋*) = min𝑥*∈𝑋* 𝐷ℎ(𝑥;𝑥*) is the Bregman distance from 𝑥 to the set of
minimizers and 𝑐 = 8. In the Euclidean setting, 𝐷ℎ(𝑦;𝑥) = 1

2
‖𝑥 − 𝑦‖2, such that

we get the bound given in (2.3). Here again smoothness parameter 𝐿 is found by a
backtracking line search such that one only needs a first estimate of its value.

152

Algorithm 12 Universal fast gradient method
Inputs : 𝑥0, 𝐿0, 𝜀
Initialize : 𝑦0 := 𝑥0, 𝐴0 := 0, �̂� := 𝐿0

for 𝑡 = 0, . . . , 𝑇 do

𝑧𝑡 := arg min
𝑧

𝑡∑︁
𝑖=1

𝑎𝑖∇𝜑(𝑥𝑖)
𝑇 𝑧 + 𝐴𝑡𝑔(𝑧) +𝐷ℎ(𝑧;𝑥0)

repeat
Find 𝑎 ≥ 0, such that

𝑎2 =
1

�̂�
(𝐴𝑡 + 𝑎)

Choose

𝜏 :=
𝑎

𝐴𝑡 + 𝑎
𝑥 := 𝜏𝑧𝑡 + (1− 𝜏)𝑦𝑡

�̂� := arg min
𝑧

𝑎∇𝜑(𝑥)𝑇 𝑧 + 𝑎𝜓(𝑧) +𝐷ℎ(𝑧; 𝑧𝑡)

𝑦 := 𝜏 �̂�+ (1− 𝜏)𝑦𝑡

if 𝜑(𝑦) ≥ 𝜑(𝑥) + ⟨∇𝜑(𝑥), 𝑦 − 𝑥⟩+ �̂�
2
‖𝑦 − 𝑥‖22 + 𝜏𝜀

2
then �̂� := 2�̂� end if

until 𝜑(𝑦) ≤ 𝜑(𝑥) + ⟨∇𝜑(𝑥), 𝑦 − 𝑥⟩+
^̂
𝐿
2
‖𝑦 − 𝑥‖22 + 𝜏𝜀

2

Set

𝑥𝑡+1 := 𝑥, 𝑦𝑡+1 := 𝑦, 𝑎𝑡+1 := 𝑎,

𝐴𝑡+1 := 𝐴𝑡 + 𝑎𝑡+1, �̂� := �̂�/2,

end for
Output : 𝑥 = 𝑦𝑇

A.3 Gradient descent method
We recall in Algorithm 13 the simple gradient descent method when the function

𝜑 is smooth with constant 𝐿. I can also be found in Nesterov [2015]. It starts at a
point 𝑥0 and outputs iterates 𝑥𝑡 = 𝒢(𝑥0, 𝑡) such that

𝑓(𝑥𝑡)− 𝑓 * ≤ 𝑐𝐿

𝑡
𝐷ℎ(𝑥0, 𝑋

*),

where 𝑐 = 2 and 𝐷ℎ(𝑥;𝑋*) = min𝑥*∈𝑋* 𝐷ℎ(𝑥;𝑥*) is the Bregman distance from 𝑥
to the set of minimizers. In the Euclidean setting, 𝐷ℎ(𝑦;𝑥) = 1

2
‖𝑥 − 𝑦‖2, such that

we get the bound in (2.15). Once again it performs a line search on the smoothness
parameter 𝐿 such that 𝐿0 can be chosen arbitrarily.

153

Algorithm 13 Gradient descent method
Inputs : 𝑥0, 𝐿0

Initialize : �̂� := 𝐿0

for 𝑡 = 0, . . . do
repeat

𝑥 := arg min𝑧∇𝜑(𝑥)𝑇 𝑧 + 𝑔(𝑧) + �̂�𝐷ℎ(𝑧;𝑥)

if 𝜑(𝑥) ≥ 𝜑(𝑥𝑡) + ⟨∇𝜑(𝑥𝑡), 𝑥− 𝑥𝑡⟩+ �̂�
2
‖𝑥− 𝑥𝑡‖22 then �̂� = 2�̂� end if

until 𝜑(𝑥) ≤ 𝜑(𝑥𝑡) + ⟨∇𝜑(𝑥𝑡), 𝑥− 𝑥𝑡⟩+ �̂�
2
‖𝑥− 𝑥𝑡‖22

Set
𝑥𝑡+1 := 𝑥, �̂� := �̂�/2

end for

154

Bibliography

Agarwal, A., Negahban, S. and Wainwright, M. J. [2010], Fast global convergence
rates of gradient methods for high-dimensional statistical recovery, in ‘Advances in
Neural Information Processing Systems’, pp. 37–45.

Amelunxen, D. and Lotz, M. [2014], ‘Gordon’s inequality and condition numbers in
conic optimization’, arXiv preprint arXiv:1408.3016 .

Amelunxen, D., Lotz, M., McCoy, M. B. and Tropp, J. A. [2014], ‘Living on the
edge: Phase transitions in convex programs with random data’, Information and
Inference p. iau005.

Amini, O., Mazoit, F., Nisse, N. and Thomassé, S. [2009], ‘Submodular partition
functions’, Discrete Mathematics 309(20), 6000–6008.

Argyriou, A., Evgeniou, T. and Pontil, M. [2008], ‘Convex multi-task feature learn-
ing’, Machine Learning 73(3), 243–272.

Arthur, D. and Vassilvitskii, S. [2007], k-means++: The advantages of careful seed-
ing, in ‘Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms’, Society for Industrial and Applied Mathematics, pp. 1027–1035.

Asif, M. S. and Romberg, J. [2014], ‘Sparse recovery of streaming signals using l1-
homotopy’, Signal Processing, IEEE Transactions on 62(16), 4209–4223.

Asuncion, A. and Newman, D. [2007], ‘Uci machine learning repository’.

Attouch, H., Bolte, J., Redont, P. and Soubeyran, A. [2010], ‘Proximal alternat-
ing minimization and projection methods for nonconvex problems: An approach
based on the kurdyka-łojasiewicz inequality’, Mathematics of Operations Research
35(2), 438–457.

Attouch, H., Bolte, J. and Svaiter, B. F. [2013], ‘Convergence of descent methods for
semi-algebraic and tame problems: proximal algorithms, forward–backward split-
ting, and regularized gauss–seidel methods’, Mathematical Programming 137(1-
2), 91–129.

Auslender, A. and Crouzeix, J.-P. [1988], ‘Global regularity theorems’, Mathematics
of Operations Research 13(2), 243–253.

155

Auslender, A. and Teboulle, M. [2006], ‘Interior gradient and proximal methods for
convex and conic optimization’, SIAM Journal on Optimization 16(3), 697–725.

Bach, F., Jenatton, R., Mairal, J. and Obozinski, G. [2012], ‘Optimization with
sparsity-inducing penalties’, Foundations and Trends R○ in Machine Learning
4(1), 1–106.

Bach, F. R. and Harchaoui, Z. [2008], Diffrac: a discriminative and flexible framework
for clustering, in ‘Advances in Neural Information Processing Systems’, pp. 49–56.

Bach, F. et al. [2013], ‘Learning with submodular functions: A convex optimization
perspective’, Foundations and Trends R○ in Machine Learning 6(2-3), 145–373.

Bagirov, A. M., Ugon, J. and Mirzayeva, H. [2013], ‘Nonsmooth nonconvex opti-
mization approach to clusterwise linear regression problems’, European Journal of
Operational Research 229(1), 132–142.

Balding, D. J. [2006], ‘A tutorial on statistical methods for population association
studies’, Nature reviews. Genetics 7(10), 781.

Banerjee, A., Merugu, S., Dhillon, I. S. and Ghosh, J. [2005], ‘Clustering with breg-
man divergences’, Journal of machine learning research 6(Oct), 1705–1749.

Bauschke, H. H., Bolte, J. and Teboulle, M. [2016], ‘A descent lemma beyond lipschitz
gradient continuity: first-order methods revisited and applications’, Mathematics
of Operations Research 42(2), 330–348.

Bauschke, H. H. and Combettes, P. L. [2011], Convex analysis and monotone operator
theory in Hilbert spaces, Vol. 408, Springer.

Beck, A. and Shtern, S. [2015], ‘Linearly convergent away-step conditional gradient
for non-strongly convex functions’, Mathematical Programming pp. 1–27.

Beck, A. and Teboulle, M. [2003], ‘Mirror descent and nonlinear projected subgradient
methods for convex optimization’, Operations Research Letters 31(3), 167–175.

Beck, A. and Teboulle, M. [2009], ‘A fast iterative shrinkage-thresholding algorithm
for linear inverse problems’, SIAM Journal on Imaging Sciences 2(1), 183–202.

Becker, S., Bobin, J. and Candès, E. J. [2011], ‘Nesta: A fast and accurate first-order
method for sparse recovery’, SIAM Journal on Imaging Sciences 4(1), 1–39.

Becker, S. R., Candès, E. J. and Grant, M. C. [2011], ‘Templates for convex cone
problems with applications to sparse signal recovery’, Mathematical Programming
Computation 3(3), 165–218.

Bellman, R. [1973], ‘A note on cluster analysis and dynamic programming’, Mathe-
matical Biosciences 18(3), 311–312.

156

Belloni, A. and Freund, R. M. [2009], ‘A geometric analysis of renegar’s condi-
tion number, and its interplay with conic curvature’, Mathematical programming
119(1), 95–107.

Belloni, A., Freund, R. M. and Vempala, S. [2009], ‘An efficient rescaled perceptron
algorithm for conic systems’, Mathematics of Operations Research 34(3), 621–641.

Bertsekas, D. P. [1999], Nonlinear programming, Athena Scientific Belmont.

Bickel, P. J., Ritov, Y. and Tsybakov, A. B. [2009], ‘Simultaneous analysis of lasso
and dantzig selector’, The Annals of Statistics 37(4), 1705–1732.

Bierstone, E. and Milman, P. D. [1988], ‘Semianalytic and subanalytic sets’, Publica-
tions Mathématiques de l’IHÉS 67, 5–42.

Blanchet, A. and Bolte, J. [2016], ‘A family of functional inequalities: lojasiewicz
inequalities and displacement convex functions’, arXiv preprint arXiv:1612.02619 .

Blumensath, T. and Davies, M. E. [2009], ‘Iterative hard thresholding for compressed
sensing’, Applied and Computational Harmonic Analysis 27(3), 265–274.

Bolte, J., Daniilidis, A. and Lewis, A. [2007], ‘The łojasiewicz inequality for nons-
mooth subanalytic functions with applications to subgradient dynamical systems’,
SIAM Journal on Optimization 17(4), 1205–1223.

Bolte, J., Nguyen, T. P., Peypouquet, J. and Suter, B. W. [2015], ‘From error bounds
to the complexity of first-order descent methods for convex functions’, Mathematical
Programming pp. 1–37.

Bolte, J., Sabach, S. and Teboulle, M. [2014], ‘Proximal alternating linearized min-
imization for nonconvex and nonsmooth problems’, Mathematical Programming
146(1-2), 459–494.

Bondell, H. D. and Reich, B. J. [2008], ‘Simultaneous regression shrinkage, variable se-
lection, and supervised clustering of predictors with oscar’, Biometrics 64(1), 115–
123.

Borwein, J. and Lewis, A. S. [2010], Convex analysis and nonlinear optimization:
theory and examples, Springer Science & Business Media.

Boumal, N. [2016], ‘Nonconvex phase synchronization’, SIAM Journal on Optimiza-
tion 26(4), 2355–2377.

Boumal, N., Mishra, B., Absil, P.-A. and Sepulchre, R. [2014], ‘Manopt, a Mat-
lab toolbox for optimization on manifolds’, Journal of Machine Learning Research
15, 1455–1459.
URL: http://www.manopt.org

Boyd, S. and Vandenberghe, L. [2004], Convex optimization, Cambridge University
Press.

157

Broyden, C. G. [1970], ‘The convergence of a class of double-rank minimization algo-
rithms: 2. the new algorithm’, IMA journal of applied mathematics 6(3), 222–231.

Bühlmann, P., Rütimann, P., van de Geer, S. and Zhang, C.-H. [2013], ‘Correlated
variables in regression: clustering and sparse estimation’, Journal of Statistical
Planning and Inference 143(11), 1835–1858.

Burke, J. and Deng, S. [2002], ‘Weak sharp minima revisited part i: basic theory’,
Control and Cybernetics 31, 439–469.

Burke, J. and Ferris, M. C. [1993], ‘Weak sharp minima in mathematical program-
ming’, SIAM Journal on Control and Optimization 31(5), 1340–1359.

Candès, E. J., Romberg, J. and Tao, T. [2006], ‘Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information’, IEEE Trans-
actions on information theory 52(2), 489–509.

Candès, E. J. and Tao, T. [2005], ‘Decoding by linear programming’, IEEE Transac-
tions on Information Theory 51(12), 4203–4215.

Candes, E. J. and Tao, T. [2006], ‘Near-optimal signal recovery from random pro-
jections: Universal encoding strategies?’, IEEE transactions on information theory
52(12), 5406–5425.

Candès, E. J. and Wakin, M. B. [2008], ‘An introduction to compressive sampling’,
IEEE signal processing magazine 25(2), 21–30.

Candes, E. and Tao, T. [2007], ‘The dantzig selector: Statistical estimation when p
is much larger than n’, The Annals of Statistics pp. 2313–2351.

Cauchy, A. [1847], ‘Méthode générale pour la résolution des systemes d’équations
simultanées’, Comp. Rend. Sci. Paris 25(1847), 536–538.

Chambolle, A., De Vore, R. A., Lee, N.-Y. and Lucier, B. J. [1998], ‘Nonlinear wavelet
image processing: variational problems, compression, and noise removal through
wavelet shrinkage’, IEEE Transactions on Image Processing 7(3), 319–335.

Chandrasekaran, V. and Jordan, M. I. [2013], ‘Computational and statistical trade-
offs via convex relaxation’, Proceedings of the National Academy of Sciences
110(13), 1181–1190.

Chandrasekaran, V., Recht, B., Parrilo, P. and Willsky, A. [2012], ‘The convex ge-
ometry of linear inverse problems’, Foundations of Computational Mathematics
12(6), 805–849.

Chen, S. S., Donoho, D. L. and Saunders, M. A. [2001], ‘Atomic decomposition by
basis pursuit’, SIAM review 43(1), 129–159.

158

Ciliberto, C., Mroueh, Y., Poggio, T. and Rosasco, L. [2015], Convex learning of mul-
tiple tasks and their structure, in ‘Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015’, pp. 1548–1557.

Cohen, A., Dahmen, W. and DeVore, R. [2009], ‘Compressed sensing and best k-term
approximation’, Journal of the American mathematical society 22(1), 211–231.

d’Aspremont, A., Guzmán, C. and Jaggi, M. [2013], ‘An optimal affine invariant
smooth minimization algorithm’, arXiv preprint arXiv:1301.0465 .

Dedieu, J. P. [1992], ‘Penalty functions in subanalytic optimization’, Optimization
26(1-2), 27–32.

Dempster, A. P., Laird, N. M. and Rubin, D. B. [1977], ‘Maximum likelihood from
incomplete data via the em algorithm’, Journal of the royal statistical society. Series
B (methodological) pp. 1–38.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L. [2009], ImageNet: A
Large-Scale Hierarchical Image Database, in ‘CVPR09’.

Deshpande, Y., Montanari, A. and Richard, E. [2014], Cone-constrained princi-
pal component analysis, in ‘Advances in Neural Information Processing Systems’,
pp. 2717–2725.

Devolder, O., Glineur, F. and Nesterov, Y. [2014], ‘First-order methods of smooth
convex optimization with inexact oracle’, Mathematical Programming 146(1-2), 37–
75.

Dhillon, I. S., Guan, Y. and Kulis, B. [2004], Kernel k-means: spectral clustering
and normalized cuts, in ‘Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining’, ACM, pp. 551–556.

Donoho, D. and Huo, X. [2001], ‘Uncertainty principles and ideal atomic decomposi-
tion’, IEEE Transactions on Information Theory 47(7), 2845–2862.

Donoho, D. L. [2006], ‘For most large underdetermined systems of linear equations
the minimal l1-norm solution is also the sparsest solution’, Communications on
pure and applied mathematics 59(6), 797–829.

Donoho, D. L. and Tanner, J. [2005], ‘Sparse nonnegative solutions of underdeter-
mined linear equations by linear programming’, Proc. of the National Academy of
Sciences 102(27), 9446–9451.

Donoho, D. L. and Tsaig, Y. [2008], ‘Fast solution of ℓ1-norm minimization problems
when the solution may be sparse-norm minimization problems when the solution
may be sparse’, Information Theory, IEEE Transactions on 54(11), 4789–4812.

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R. et al. [2004], ‘Least angle regres-
sion’, The Annals of statistics 32(2), 407–499.

159

Epelman, M. and Freund, R. M. [2000], ‘Condition number complexity of an el-
ementary algorithm for computing a reliable solution of a conic linear system’,
Mathematical Programming 88(3), 451–485.

Evgeniou, T. and Pontil, M. [2004], Regularized multi–task learning, in ‘Proceedings
of the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining’, ACM, pp. 109–117.

Fercoq, O., Gramfort, A. and Salmon, J. [2015], Mind the duality gap: safer rules for
the lasso, in ‘International Conference on Machine Learning’, pp. 333–342.

Fercoq, O. and Qu, Z. [2016], ‘Restarting accelerated gradient methods with a rough
strong convexity estimate’, arXiv preprint arXiv:1609.07358 .

Fercoq, O. and Qu, Z. [2017], ‘Adaptive restart of accelerated gradient methods under
local quadratic growth condition’, arXiv preprint arXiv:1709.02300 .

Fercoq, O. and Richtárik, P. [2015], ‘Accelerated, parallel, and proximal coordinate
descent’, SIAM Journal on Optimization 25(4), 1997–2023.

Feuer, A. and Nemirovski, A. [2003], ‘On sparse representation in pairs of bases’,
IEEE Transactions on Information Theory 49(6), 1579–1581.

Fletcher, R. [1970], ‘A new approach to variable metric algorithms’, The computer
journal 13(3), 317–322.

Frank, M. and Wolfe, P. [1956], ‘An algorithm for quadratic programming’, Naval
research logistics quarterly 3(1-2), 95–110.

Frankel, P., Garrigos, G. and Peypouquet, J. [2015], ‘Splitting methods with variable
metric for kurdyka–łojasiewicz functions and general convergence rates’, Journal
of Optimization Theory and Applications 165(3), 874–900.

Freund, R. M. and Lu, H. [2015], ‘New computational guarantees for solving convex
optimization problems with first order methods, via a function growth condition
measure’, arXiv preprint arXiv:1511.02974 .

Freund, R. M. and Vera, J. R. [1999a], ‘Condition-based complexity of convex opti-
mization in conic linear form via the ellipsoid algorithm’, SIAM Journal on Opti-
mization 10(1), 155–176.

Freund, R. M. and Vera, J. R. [1999b], ‘Some characterizations and properties of
the “distance to ill-posedness” and the condition measure of a conic linear system’,
Mathematical Programming 86(2), 225–260.

Freund, R. M. and Vera, J. R. [2003], ‘On the complexity of computing estimates of
condition measures of a conic linear system’, Mathematics of Operations Research
28(4), 625–648.

160

Fujishige, S. [2005], Submodular functions and optimization, Vol. 58, Elsevier.

Gan, G., Ma, C. and Wu, J. [2007], Data clustering: theory, algorithms, and applica-
tions, SIAM.

Gautschi, W. [2011], Numerical analysis, Springer Science & Business Media.

Gilpin, A., Pena, J. and Sandholm, T. [2012], ‘First-order algorithm with 𝒪(log 1/𝜖)
convergence for 𝜖-equilibrium in two-person zero-sum games’, Mathematical pro-
gramming 133(1-2), 279–298.

Giselsson, P. and Boyd, S. [2014], Monotonicity and restart in fast gradient methods,
in ‘53rd IEEE Conference on Decision and Control’, IEEE, pp. 5058–5063.

Goldfarb, D. [1970], ‘A family of variable-metric methods derived by variational
means’, Mathematics of computation 24(109), 23–26.

Grant, M., Boyd, S. and Ye, Y. [2001], ‘CVX: Matlab software for disciplined convex
programming’.

Graubard, B. I. and Korn, E. L. [1994], ‘Regression analysis with clustered data’,
Statistics in medicine 13(5-7), 509–522.

Gupta, V., Lehal, G. S. et al. [2009], ‘A survey of text mining techniques and appli-
cations’, Journal of emerging technologies in web intelligence 1(1), 60–76.

Guyon, I. and Elisseeff, A. [2003], ‘An introduction to variable and feature selection’,
Journal of machine learning research 3(Mar), 1157–1182.

Guzman-Rivera, A., Kohli, P., Batra, D. and Rutenbar, R. [2014], Efficiently enforcing
diversity in multi-output structured prediction, in ‘Proceedings of the Seventeenth
International Conference on Artificial Intelligence and Statistics’, pp. 284–292.

Harchaoui, Z. [2013], ‘Large-scale learning for image classification’, http:
//www.di.ens.fr/willow/events/cvml2013/materials/slides/thursday/
harch_cvml13.pdf.

Hastie, T., Tibshirani, R., Botstein, D. and Brown, P. [2001], ‘Supervised harvesting
of expression trees’, Genome Biology 2(1), research0003–1.

Hastie, T., Tibshirani, R. and Friedman, J. [2008], The elements of statistical learning:
data mining, inference and prediction, 2 edn, Springer.

Hestenes, M. R. and Stiefel, E. [1952], ‘Methods of conjugate gradients for solving
linear systems”, Journal of Research of the National Bureau of Standards 49(6).

Hocking, T. D., Joulin, A., Bach, F. and Vert, J.-P. [2011], Clusterpath an algorithm
for clustering using convex fusion penalties, in ‘28th international conference on
machine learning’, p. 1.

161

http://www.di.ens.fr/willow/events/cvml2013/materials/slides/thursday/harch_cvml13.pdf
http://www.di.ens.fr/willow/events/cvml2013/materials/slides/thursday/harch_cvml13.pdf
http://www.di.ens.fr/willow/events/cvml2013/materials/slides/thursday/harch_cvml13.pdf

Hoffman, A. J. [1952], ‘On approximate solutions of systems of linear inequalities’,
Journal of Research of the National Bureau of Standards 49(4).

Horn, R. A. and Johnson, C. R. [1990], Matrix analysis, Cambridge University Press,
Cambridge. Corrected reprint of the 1985 original.

Ito, M. and Fukuda, M. [2016], ‘A family of subgradient-based methods for convex op-
timization problems in a unifying framework’, Optimization Methods and Software
31(5), 952–982.

Jacob, L., Obozinski, G. and Vert, J.-P. [2009], Group lasso with overlap and graph
lasso, in ‘Proceedings of the 26th annual international conference on machine learn-
ing’, ACM, pp. 433–440.

Jaggi, M. [2013], Revisiting frank-wolfe: Projection-free sparse convex optimization,
in ‘Proceedings of the 30th International Conference on Machine Learning (ICML-
13)’, pp. 427–435.

Jain, P., Tewari, A. and Kar, P. [2014], On iterative hard thresholding methods
for high-dimensional m-estimation, in ‘Advances in Neural Information Processing
Systems’, pp. 685–693.

Jordan, M. I. [1994], ‘Hierarchical mixtures of experts and the em algorithm’, Neural
Computation 6, 181–214.

Journée, M., Nesterov, Y., Richtárik, P. and Sepulchre, R. [2010], ‘Generalized power
method for sparse principal component analysis’, Journal of Machine Learning
Research 11(Feb), 517–553.

Juditski, A. and Nesterov, Y. [2014], ‘Primal-dual subgradient methods for minimiz-
ing uniformly convex functions’, arXiv preprint arXiv:1401.1792 .

Juditsky, A., Karzan, F. K. and Nemirovski, A. [2014], ‘On a unified view of nullspace-
type conditions for recoveries associated with general sparsity structures’, Linear
Algebra and its Applications 441, 124–151.

Karimi, H., Nutini, J. and Schmidt, M. [2016], Linear convergence of gradient and
proximal-gradient methods under the polyak-łojasiewicz condition, in ‘Joint Eu-
ropean Conference on Machine Learning and Knowledge Discovery in Databases’,
Springer, pp. 795–811.

Kashin, B. S. and Temlyakov, V. N. [2007], ‘A remark on compressed sensing’, Math-
ematical notes 82(5), 748–755.

Krichene, W., Bayen, A. and Bartlett, P. L. [2015], Accelerated mirror descent in con-
tinuous and discrete time, in ‘Advances in neural information processing systems’,
pp. 2845–2853.

162

Kumar, A. and Daume, H. [2012], Learning task grouping and overlap in multi-task
learning, in ‘Proceedings of the 29th International Conference on Machine Learning
(ICML-12)’, pp. 1383–1390.

Kurdyka, K. [1998], On gradients of functions definable in o-minimal structures, in
‘Annales de l’institut Fourier’, Vol. 48, Chartres: L’Institut, 1950-, pp. 769–784.

Lacoste-Julien, S., Schmidt, M. and Bach, F. [2012], ‘A simpler approach to obtaining
an o (1/t) convergence rate for the projected stochastic subgradient method’, arXiv
preprint arXiv:1212.2002 .

Lee, Y. T. and Sidford, A. [2013], Efficient accelerated coordinate descent methods
and faster algorithms for solving linear systems, in ‘Foundations of Computer Sci-
ence (FOCS), 2013 IEEE 54th Annual Symposium on’, IEEE, pp. 147–156.

Lessard, L., Recht, B. and Packard, A. [2016], ‘Analysis and design of optimiza-
tion algorithms via integral quadratic constraints’, SIAM Journal on Optimization
26(1), 57–95.

Li, G. [2013], ‘Global error bounds for piecewise convex polynomials’, Mathematical
Programming pp. 1–28.

Li, G., Mordukhovich, B., Nghia, T. and Pham, T. [2015], ‘Error bounds for para-
metric polynomial systems with applications to higher-order stability analysis and
convergence rates’, Mathematical Programming pp. 1–34.

Li, G., Mordukhovich, B. S. and Pham, T. [2015], ‘New fractional error bounds for
polynomial systems with applications to hölderian stability in optimization and
spectral theory of tensors’, Mathematical Programming 153(2), 333–362.

Lin, Q. and Xiao, L. [2014], An adaptive accelerated proximal gradient method and
its homotopy continuation for sparse optimization., in ‘ICML’, pp. 73–81.

Liu, J. and Wright, S. J. [2015], ‘Asynchronous stochastic coordinate descent: Paral-
lelism and convergence properties’, SIAM Journal on Optimization 25(1), 351–376.

Łojasiewicz, S. [1958], ‘Division d’une distribution par une fonction analytique de
variables rélles’, Comptes rendus de l’Acad’émie des Sciences de Paris 246, 683–
686.

Łojasiewicz, S. [1961], ‘Sur le probleme de la division’.

Łojasiewicz, S. [1963], ‘Une propriété topologique des sous-ensembles analytiques
réels’, Les équations aux dérivées partielles pp. 87–89.

Łojasiewicz, S. [1965], Ensembles semi-analytiques, IHES.

Łojasiewicz, S. [1993], ‘Sur la géométrie semi-et sous-analytique’, Annales de l’institut
Fourier 43(5), 1575–1595.

163

Lu, H., Freund, R. M. and Nesterov, Y. [2016], ‘Relatively-smooth convex optimiza-
tion by first-order methods, and applications’, arXiv preprint arXiv:1610.05708
.

Luo, X.-D. and Luo, Z.-Q. [1994], ‘Extension of hoffman’s error bound to polynomial
systems’, SIAM Journal on Optimization 4(2), 383–392.

Luo, Z.-Q. and Pang, J.-S. [1994], ‘Error bounds for analytic systems and their ap-
plications’, Mathematical Programming 67(1-3), 1–28.

Luo, Z.-Q. and Sturm, J. F. [2000], Error bounds for quadratic systems, in ‘High
performance optimization’, Springer, pp. 383–404.

Luss, R. and Teboulle, M. [2013], ‘Conditional gradient algorithmsfor rank-one matrix
approximations with a sparsity constraint’, SIAM Review 55(1), 65–98.

MacQueen, J. et al. [1967], Some methods for classification and analysis of multivari-
ate observations, in ‘Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability’, number 14 in ‘1’, Oakland, CA, USA., pp. 281–297.

Mahajan, M., Nimbhorkar, P. and Varadarajan, K. [2012], ‘The planar k-means prob-
lem is np-hard’, Theoretical Computer Science 442, 13–21.

Mangasarian, O. L. [1985], ‘A condition number for differentiable convex inequalities’,
Mathematics of Operations Research 10(2), 175–179.

Maurer, A., Pontil, M. and Romera-Paredes, B. [2016], ‘The benefit of multitask
representation learning’, The Journal of Machine Learning Research 17(1), 2853–
2884.

Natarajan, B. K. [1995], ‘Sparse approximate solutions to linear systems’, SIAM
journal on computing 24(2), 227–234.

Necoara, I., Nesterov, Y. and Glineur, F. [2015], ‘Linear convergence of first order
methods for non-strongly convex optimization’, arXiv preprint arXiv:1504.06298 .

Negahban, S., Yu, B., Wainwright, M. J. and Ravikumar, P. K. [2009], A unified
framework for high-dimensional analysis of 𝑚-estimators with decomposable regu-
larizers, in ‘Advances in Neural Information Processing Systems’, pp. 1348–1356.

Nemirovski, A. [2004], ‘Prox-method with rate of convergence o (1/t) for variational
inequalities with lipschitz continuous monotone operators and smooth convex-
concave saddle point problems’, SIAM Journal on Optimization 15(1), 229–251.

Nemirovskii, A. and Nesterov, Y. [1985], ‘Optimal methods of smooth convex mini-
mization’, USSR Computational Mathematics and Mathematical Physics 25(2), 21–
30.

Nemirovskii, A. and Yudin, D. B. [1983], ‘Problem complexity and method efficiency
in optimization’.

164

Nesterov, Y. [1983], ‘A method of solving a convex programming problem with con-
vergence rate 𝑂(1/𝑘2)’, Soviet Mathematics Doklady 27(2), 372–376.

Nesterov, Y. [2005], ‘Smooth minimization of non-smooth functions’, Mathematical
programming 103(1), 127–152.

Nesterov, Y. [2009], ‘Primal-dual subgradient methods for convex problems’, Mathe-
matical programming 120(1), 221–259.

Nesterov, Y. [2012], ‘Efficiency of coordinate descent methods on huge-scale optimiza-
tion problems’, SIAM Journal on Optimization 22(2), 341–362.

Nesterov, Y. [2013a], ‘Gradient methods for minimizing composite functions’, Math-
ematical Programming 140(1), 125–161.

Nesterov, Y. [2013b], Introductory lectures on convex optimization: A basic course,
Vol. 87, Springer Science & Business Media.

Nesterov, Y. [2015], ‘Universal gradient methods for convex optimization problems’,
Mathematical Programming 152(1-2), 381–404.

Nesterov, Y. and Shikhman, V. [2015], ‘Quasi-monotone subgradient methods for
nonsmooth convex minimization’, Journal of Optimization Theory and Applications
165(3), 917–940.

Nocedal, J. and Wright, S. J. [1999], Numerical Optimization, Springer.

Nova, D. and Estévez, P. A. [2014], ‘A review of learning vector quantization classi-
fiers’, Neural Computing and Applications 25(3-4), 511–524.

Obozinski, G. and Bach, F. [2012], ‘Convex relaxation for combinatorial penalties’,
arXiv preprint arXiv:1205.1240 .

Obozinski, G., Jacob, L. and Vert, J.-P. [2011], ‘Group lasso with overlaps: the latent
group lasso approach’, arXiv preprint arXiv:1110.0413 .

O’Donoghue, B. and Candes, E. [2015], ‘Adaptive restart for accelerated gradient
schemes’, Foundations of computational mathematics 15(3), 715–732.

Ordóñez, F. and Freund, R. M. [2003], ‘Computational experience and the explana-
tory value of condition measures for linear optimization’, SIAM Journal on Opti-
mization 14(2), 307–333.

Oymak, S. and Hassibi, B. [2010], ‘New null space results and recovery thresholds for
matrix rank minimization’, arXiv preprint arXiv:1011.6326 .

O’donoghue, B. and Candes, E. [2015], ‘Adaptive restart for accelerated gradient
schemes’, Foundations of computational mathematics 15(3), 715–732.

165

Pajor, A. and Tomczak-Jaegermann, N. [1986], ‘Subspaces of small codimension of
finite-dimensional banach spaces’, Proceedings of the American Mathematical Soci-
ety 97(4), 637–642.

Pan, S. J. and Yang, Q. [2010], ‘A survey on transfer learning’, IEEE Transactions
on knowledge and data engineering 22(10), 1345–1359.

Pang, B. and Lee, L. [2005], Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales, in ‘Proceedings of the 43rd Annual
Meeting on Association for Computational Linguistics’, Association for Computa-
tional Linguistics, pp. 115–124.

Pang, J.-S. [1997], ‘Error bounds in mathematical programming’, Mathematical Pro-
gramming 79(1-3), 299–332.

Peña, J. [2000], ‘Understanding the geometry of infeasible perturbations of a conic
linear system’, SIAM Journal on Optimization 10(2), 534–550.

Peng, H., Long, F. and Ding, C. [2005], ‘Feature selection based on mutual infor-
mation criteria of max-dependency, max-relevance, and min-redundancy’, IEEE
Transactions on pattern analysis and machine intelligence 27(8), 1226–1238.

Petry, S., Flexeder, C. and Tutz, G. [2011], ‘Pairwise fused lasso’.

Pfeffermann, D. and Nathan, G. [1981], ‘Regression analysis of data from a cluster
sample’, Journal of the American Statistical Association 76(375), 681–689.

Poljak, B. [1987], Introduction to optimization, Optimization Software.

Polyak, B. [1979], Sharp minima institute of control sciences lecture notes, moscow,
ussr, 1979, in ‘IIASA workshop on generalized Lagrangians and their applications,
IIASA, Laxenburg, Austria’.

Polyak, B. T. [1963], ‘Gradient methods for minimizing functionals’, Zhurnal Vychis-
litel’noi Matematiki i Matematicheskoi Fiziki 3(4), 643–653.

Polyak, B. T. [1964], ‘Some methods of speeding up the convergence of iteration
methods’, USSR Computational Mathematics and Mathematical Physics 4(5), 1–
17.

Press, W. H. [1992], The art of scientific computing, Cambridge university press.

Rao, N., Recht, B. and Nowak, R. [2012], ‘Signal recovery in unions of subspaces with
applications to compressive imaging’, arXiv preprint arXiv:1209.3079 .

Raskutti, G., Wainwright, M. J. and Yu, B. [2010], ‘Restricted eigenvalue proper-
ties for correlated gaussian designs’, The Journal of Machine Learning Research
11, 2241–2259.

166

Rauhut, H., Schneider, R. and Stojanac, Ž. [2017], ‘Low rank tensor recovery via
iterative hard thresholding’, Linear Algebra and its Applications 523, 220–262.

Recht, B., Xu, W. and Hassibi, B. [2008], Necessary and sufficient conditions for suc-
cess of the nuclear norm heuristic for rank minimization, in ‘Decision and Control,
2008. CDC 2008. 47th IEEE Conference on’, IEEE, pp. 3065–3070.

Renegar, J. [1995a], ‘Incorporating condition measures into the complexity theory of
linear programming’, SIAM Journal on Optimization 5(3), 506–524.

Renegar, J. [1995b], ‘Linear programming, complexity theory and elementary func-
tional analysis’, Mathematical Programming 70(1-3), 279–351.

Renegar, J. [2001], A mathematical view of interior-point methods in convex optimiza-
tion, Vol. 3, Siam.

Renegar, J. [2014], ‘Efficient first-order methods for linear programming and semidef-
inite programming’, arXiv preprint arXiv:1409.5832 .

Robinson, S. M. [1975], ‘An application of error bounds for convex programming in
a linear space’, SIAM Journal on Control 13(2), 271–273.

Rockafellar, R. T. [1976], ‘Monotone operators and the proximal point algorithm’,
SIAM journal on control and optimization 14(5), 877–898.

Rockafellar, R. T. [2015], Convex analysis, Princeton University Press.

Roulet, V., Boumal, N. and d’Aspremont, A. [2015], ‘Renegar’s condition number,
shaprness and compressed sensing performance’, arXiv preprint arXiv:1506.03295
.

Roulet, V. and d’Aspremont, A. [2017], ‘Sharpness, restart and acceleration’, arXiv
preprint arXiv:1702.03828 .

Schölkopf, B., Smola, A. and Müller, K.-R. [1998], ‘Nonlinear component analysis as
a kernel eigenvalue problem’, Neural computation 10(5), 1299–1319.

Scieur, D., d’Aspremont, A. and Bach, F. [2016], Regularized nonlinear acceleration,
in ‘Advances in Neural Information Processing Systems’, pp. 712–720.

Scieur, D., Roulet, V., Bach, F. and d’Aspremont, A. [2017], ‘Integration methods
and accelerated optimization algorithms’, arXiv preprint arXiv:1702.06751 .

Segal, M. R., Dahlquist, K. D. and Conklin, B. R. [2003], ‘Regression approaches for
microarray data analysis’, Journal of Computational Biology 10(6), 961–980.

Shanno, D. F. [1970], ‘Conditioning of quasi-newton methods for function minimiza-
tion’, Mathematics of computation 24(111), 647–656.

167

She, Y. et al. [2010], ‘Sparse regression with exact clustering’, Electronic Journal of
Statistics 4, 1055–1096.

Shen, X. and Huang, H.-C. [2010], ‘Grouping pursuit through a regularization solution
surface’, Journal of the American Statistical Association 105(490), 727–739.

Simon, L. [1983], ‘Asymptotics for a class of non-linear evolution equations, with
applications to geometric problems’, Annals of Mathematics pp. 525–571.

Song, Q., Ni, J. and Wang, G. [2013], ‘A fast clustering-based feature subset selection
algorithm for high-dimensional data’, IEEE transactions on knowledge and data
engineering 25(1), 1–14.

Steinhaus, H. [1956], ‘Sur la division des corp materiels en parties’, Bull. Acad. Polon.
Sci 1, 801–804.

Su, W., Boyd, S. and Candes, E. [2014], A differential equation for modeling nes-
terov’s accelerated gradient method: Theory and insights, in ‘Advances in Neural
Information Processing Systems’, pp. 2510–2518.

Tang, J., Alelyani, S. and Liu, H. [2014], ‘Feature selection for classification: A
review’, Data Classification: Algorithms and Applications p. 37.

Tanner, J. and Wei, K. [2013], ‘Normalized iterative hard thresholding for matrix
completion’, SIAM Journal on Scientific Computing 35(5), S104–S125.

Tibshirani, R. [1996], ‘Regression shrinkage and selection via the LASSO’, Journal of
the Royal statistical society, series B 58(1), 267–288.

Topkis, D. M. [1978], ‘Minimizing a submodular function on a lattice’, Operations
research 26(2), 305–321.

Tseng, P. [2008], ‘On accelerated proximal gradient methods for convex-concave op-
timization’, submitted to SIAM J.Optim .

Van De Geer, S. A., Bühlmann, P. et al. [2009], ‘On the conditions used to prove
oracle results for the lasso’, Electronic Journal of Statistics 3, 1360–1392.

Vera, J. C., Rivera, J. C., Peòa, J. and Hui, Y. [2007], ‘A primal–dual symmetric
relaxation for homogeneous conic systems’, Journal of Complexity 23(2), 245–261.

Vershynin, R. [2010], ‘Introduction to the non-asymptotic analysis of random matri-
ces’, arXiv preprint arXiv:1011.3027 .

Vershynin, R. [2011], Lectures in Geometric Functional Analysis, In preparation.
URL: http://www-personal.umich.edu/ romanv/papers/GFA-book/GFA-book.pdf

Vidal, R. [2011], ‘Subspace clustering’, IEEE Signal Processing Magazine 28(2), 52–
68.

168

Von Luxburg, U. [2007], ‘A tutorial on spectral clustering’, Statistics and computing
17(4), 395–416.

Vui, H. H. [2013], ‘Global holderian error bound for nondegenerate polynomials’,
SIAM Journal on Optimization 23(2), 917–933.

Wainwright, M. J., Jordan, M. I. and Duchi, J. C. [2012], Privacy aware learning, in
‘Advances in Neural Information Processing Systems’, pp. 1430–1438.

Wang, H. and Song, M. [2011], ‘Ckmeans. 1d. dp: optimal k-means clustering in one
dimension by dynamic programming’, The R Journal 3(2), 29–33.

Wibisono, A., Wilson, A. C. and Jordan, M. I. [2016], ‘A variational perspective
on accelerated methods in optimization’, Proceedings of the National Academy of
Sciences p. 201614734.

Wilson, A. C., Recht, B. and Jordan, M. I. [2016], ‘A lyapunov analysis of momentum
methods in optimization’, arXiv preprint arXiv:1611.02635 .

Yang, T. [2016], ‘Adaptive accelerated gradient converging methods under holderian
error bound condition’, arXiv preprint arXiv:1611.07609 .

Yen, I. E.-H., Hsieh, C.-J., Ravikumar, P. K. and Dhillon, I. S. [2014], Constant
nullspace strong convexity and fast convergence of proximal methods under high-
dimensional settings, in ‘Advances in Neural Information Processing Systems’,
pp. 1008–1016.

Yu, L. and Liu, H. [2003], Feature selection for high-dimensional data: A fast
correlation-based filter solution, in ‘Proceedings of the 20th international confer-
ence on machine learning (ICML-03)’, pp. 856–863.

Zhang, B. [2003], Regression clustering, in ‘Data Mining, 2003. ICDM 2003. Third
IEEE International Conference on’, IEEE, pp. 451–458.

Zhang, H. [2017], ‘The restricted strong convexity revisited: analysis of equivalence
to error bound and quadratic growth’, Optimization Letters 11(4), 817–833.

Zhang, Y. and Yeung, D.-Y. [2010], A convex formulation for learning task relation-
ships in multi-task learning, in ‘Proceedings of the Twenty-Sixth Conference on
Uncertainty in Artificial Intelligence’, AUAI Press, pp. 733–742.

Zhong, Y. and Boumal, N. [2017], ‘Near-optimal bounds for phase synchronization’,
arXiv preprint arXiv:1703.06605 .

Zhou, J., Chen, J. and Ye, J. [2011], Clustered multi-task learning via alternating
structure optimization, in ‘Advances in neural information processing systems’,
pp. 702–710.

Zhou, Z., Zhang, Q. and So, A. M.-C. [2015], l1, p-norm regularization: Error bounds
and convergence rate analysis of first-order methods, in ‘Proceedings of the 32nd
International Conference on Machine Learning,(ICML)’, pp. 1501–1510.

169

170

List of Figures

2-1 Sonar data set. From top to bottom and left to right: least square
loss, logistic loss, dual SVM problem and LASSO. We use adaptive
restarts (Adap), gradient descent (Grad), accelerated gradient (Acc)
and restart heuristic enforcing monotonicity (Mono). Large dots rep-
resent the restart iterations. Regularization parameters for dual SVM
and LASSO were set to one. 43

2-2 Comparison of the methods for the LASSO problem on Sonar dataset
where number of iterations of the Adaptive method is multiplied by
the size of the grid. Grid search step size is set to 4. 44

4-1 Best restarted NESTA (solid red line) and overall cost of the practical
restart schemes (dashed red line) versus plain NESTA implementation
with low accuracy 𝜀 = 10−1 (dotted black line) and higher accuracy
𝜀 = 10−3 (dash-dotted black line) for a budget of 500 iterations. . . . 79

4-2 Best restarted NESTA (solid red line) and overall cost of the practical
restart schemes (dashed red line) versus NESTA with 5 continuation
steps (dotted blue line) for a budget of 500 iterations. Crosses represent
the restart occurrences. Left: 𝑛 = 200. Right : 𝑛 = 300. 79

4-3 Best restart scheme found by grid search for increasing values of the
oversampling ratio 𝜏 = 𝑛/𝑠. Left : sparsity 𝑠 = 20 fixed. Right :
number of samples 𝑛 = 200 fixed. 80

4-4 We plot the cone-restricted condition number of 𝐴 (upper left), explain-
ing both the computational complexity of problem (ℓ1 recovery) (right
column) and the statistical complexity of problem (Robust ℓ1 recovery)
(second on the left). Central curves represent the mean (geometric
mean in log-scale plots), red curves correspond to 10th and 90th per-
centile. We observe that high computing times (peaks in the right col-
umn) are directly aligned with instances where sparse recovery barely
holds/fails (left), i.e. near the phase transition around 𝑛 = 70, where
the distance to feasibility for problem (PA,𝒯 (𝑥)) also follows a phase
transition. 84

8-1 Decomposed clustering penalty. 141

171

172

List of Tables

4.1 Time to achieve 𝜀 = 10−2 by the best restart scheme for increasing
number of samples 𝑛 . 80

6.1 Measure of ‖𝑤* − �̂�‖2, the 𝑙2 norm of the difference between the true
vector of weights 𝑤* and the estimated ones �̂� along number of samples
𝑛. 120

6.2 Measure of ‖𝑤* − �̂�‖2, the 𝑙2 norm of the difference between the true
vector of weights 𝑤* and the estimated ones �̂� along level of noise 𝜎. 120

6.3 100 × mean square errors for predicting movie ratings associated with
reviews. 121

6.4 Clustering of words on movie reviews. We show clusters of words within
which associated predictor weights have largest magnitude. First row
presents ones associated to a negative coefficient and therefore bad
feelings about movies, second row ones to a positive coefficient and
good feelings about movies. 122

7.1 Test mean square error given by (7.13) along proportion of added di-
mensions of noise 𝑝 = 𝛿/(𝑑+ 𝛿). 137

8.1 100 × mean absolute errors for predicting topics on 20NewsGroup
dataset, comparing classical regularizers (Frobenius and Trace) with
our algorithms. PG refers to projected gradient, CG refers to condi-
tional gradient. 148

173

174

175

Résumé

Dans de nombreux domaines tels que l’apprentis-
sage statistique, la recherche opérationnelle ou encore
la conception de circuits, une tâche est modélisée par
un jeu de paramètres que l’on cherche à optimiser pour
prendre la meilleure décision possible. Mathématique-
ment, le problème revient à minimiser une fonction de
l’objectif recherché par des algorithmes itératifs. Le dé-
veloppement de ces derniers dépend alors de la géomé-
trie de la fonction ou de la structure du problème.

Dans une première partie, cette thèse étudie comment
l’acuité d’une fonction autour de ses minima peut être ex-
ploitée par le redémarrage d’algorithmes classiques. Les
schémas optimaux sont présentés pour des problèmes
convexes généraux. Ils nécessitent cependant une des-
cription complète de la fonction, ce qui est rarement
disponible. Des stratégies adaptatives sont donc déve-
loppées et prouvées être quasi-optimales. Une analyse
spécifique est ensuite conduite pour les problèmes par-
cimonieux qui cherchent des représentations compres-
sées des variables du problème. Leur géométrie conique
sous-jacente, qui décrit l’acuité de la fonction de l’objec-
tif, se révèle contrôler à la fois la performance statistique
du problème et l’efficacité des procédures d’optimisation
par une seule quantité.

Une seconde partie est dédiée aux problèmes d’ap-
prentissage statistique. Ceux-ci effectuent une ana-
lyse prédictive de données à l’aide d’un large nombre
d’exemples. Une approche générique est présentée pour
à la fois résoudre le problème de prédiction et le sim-
plifier en groupant soit les variables, les exemples ou
les tâches. Des méthodes algorithmiques systématiques
sont développées en analysant la géométrie induite par
une partition des données. Une analyse théorique est fi-
nalement conduite lorsque les variables sont groupées
par analogie avec les méthodes parcimonieuses.

Mots Clés
Optimisation convexe, Borne d’erreur, Parcimonie,
Acuité, Modèles structurés par partitions des données.

Abstract

In numerous fields such as machine learning, oper-
ational research or circuit design, a task is modeled by
a set of parameters to be optimized in order to take the
best possible decision. Formally, the problem amounts
to minimize a function describing the desired objective
with iterative algorithms. The development of these lat-
ter depends then on the characterization of the geometry
of the function or the structure of the problem.

In a first part, this thesis studies how sharpness of
a function around its minimizers can be exploited by
restarting classical algorithms. Optimal schemes are
presented for general convex problems. They require
however a complete description of the function that is
rarely available. Adaptive strategies are therefore devel-
oped and shown to achieve nearly optimal rates. A spe-
cific analysis is then carried out for sparse problems that
seek for compressed representation of the variables of
the problem. Their underlying conic geometry, that de-
scribes sharpness of the objective, is shown to control
both the statistical performance of the problem and the
efficiency of dedicated optimization methods by a single
quantity.

A second part is dedicated to machine learning prob-
lems. These perform predictive analysis of data from
large set of examples. A generic framework is presented
to both solve the prediction problem and simplify it by
grouping either features, samples or tasks. Systematic
algorithmic approaches are developed by analyzing the
geometry induced by partitions of the data. A theoreti-
cal analysis is then carried out for grouping features by
analogy to sparse methods.

Keywords
Convex optimization, Error bound, Sparsity, Sharpness,
Structured models with partitions of the data.

177

	Extended abstract
	I Convex optimization with error bounds
	Introduction
	Convex optimization
	The Łojasiewicz inequality
	Restart schemes
	Interpretation of accelerated algorithm

	Sharpness, Restart and Acceleration
	Problem assumptions
	Scheduled restarts for smooth convex problems
	Universal scheduled restarts for convex functions
	Restart with termination criterion
	Composite problems & Bregman divergences
	Numerical results
	Conclusion

	Appendix
	Rounding issues

	A brief introduction to sparse problems
	Original sparse problems
	Optimization procedures
	Generalized sparse structure

	On computational and statistical performances of sparse recovery problems
	Recovery performance and linear convergent restart scheme for exact recovery
	A conic view for sparse recovery problems
	Generalization to common sparsity inducing norms
	Numerical results
	Conclusion

	Appendix
	Practical optimal restart scheme
	Remark on sparsity inducing norms

	II Machine learning problems with partitioning structure
	Introduction
	Learning in the data cube
	Partitioning problems
	Optimization on non-convex sets

	Grouping features for prediction with partitioning constraints
	Problem Formulation
	Convex relaxation
	Iterative Hard Clustering
	Recovery performance of Iterative Hard Clustering
	Sparse and grouped linear models
	Numerical experiments
	Conclusion

	Appendix
	Geometric interpretation of algebraic tools
	Norm for grouping features

	Grouping samples for diverse predictions
	Problem Formulation
	Non-convex schemes
	Convex relaxation
	Numerical experiments
	Conclusion

	Clustered multi-task
	Problem Formulation
	Projected gradient descent
	Clustered multitask with squared loss
	Numerical experiments
	Conclusion

	Classical algorithms implementation
	Universal fast gradient method
	Accelerated gradient method
	Gradient descent method

	Bibliography

