T. S. Nguyen, S. Lorente, and M. Carcasses, Effect of the environment temperature on the chloride diffusion through CEM-I and CEM-V mortars: An experimental study, Construction and Building Materials, vol.23, issue.2, pp.795-803, 2009.
DOI : 10.1016/j.conbuildmat.2008.03.004

K. Tuutti, Corrosion of steel in concrete Swedish Cement and Concrete Research Institute, p.13, 1982.

L. S. Mcneill and M. Edwards, The importance of temperature in assessing iron pipe pipe corrosion in water distribution systems, Environmental Monitoring and Assessment, vol.77, issue.3, pp.229-242, 2002.
DOI : 10.1023/A:1016021815596

H. H. Strehblow, Nucleation and Repassivation of Corrosion Pits for Pitting on Iron and Nickel, Materials and Corrosion/Werkstoffe und Korrosion, vol.28, issue.11, pp.792-799, 1976.
DOI : 10.5006/0010-9312-28.10.388

R. Cornell and U. Schwertmann, The Iron Oxides : Structure, Properties, Reactions, Occurences and Uses, 2003.
DOI : 10.1002/3527602097

E. Samson and J. Marchand, Modeling the effect of temperature on ionic transport in cementitious materials, Cement and Concrete Research, vol.37, issue.3, pp.455-468, 2007.
DOI : 10.1016/j.cemconres.2006.11.008

. Thai-quang-nguyen, Modélisations physico-chimiques de la pénétration des ions chlorures dans les matériaux cimentaires, École Nationale des Ponts et Chaussées, 2007.

C. I. Steefel, C. A. Appelo, B. Arora, D. Jacques, T. Kalbacher et al., Reactive transport codes for subsurface environmental simulation, Computational Geosciences, vol.45, issue.2001, pp.445-478
DOI : 10.1021/es1038276

URL : https://hal.archives-ouvertes.fr/hal-01223868

E. Q. Michael and . Pilson, An Introduction to the Chemistry of the Sea, p.45, 1998.

K. L. Scrivener, Durability -MdC lecture 5

]. S. Matthews, M. Sarkkinen, and J. R. Morlidge, CONREPNET Project : Achieving durable repaired concrete structures : Adopting a performance-based intervention strategy, 2007.

P. Ghods, O. B. Isgor, G. J. Carpenter, J. Li, G. A. Mcrae et al., Nano-scale study of passive films and chloride-induced depassivation of carbon steel rebar in simulated concrete pore solutions using FIB/TEM, Cement and Concrete Research, vol.47, issue.0, pp.55-68
DOI : 10.1016/j.cemconres.2013.01.009

M. Stratmann and H. Streckel, On the atmospheric corrosion of metals which are covered with thin electrolyte layers???II. Experimental results, Corrosion Science, vol.30, issue.6-7, pp.697-714, 1990.
DOI : 10.1016/0010-938X(90)90033-2

Y. Roh, S. Y. Lee, and M. P. Elless, Characterization of corrosion products in the permeable reactive barriers, Environmental Geology, vol.40, issue.1-2, pp.184-194, 2000.
DOI : 10.1007/s002540000178

U. Schwertmann and R. Taylor, The Influence of Silicate on the Transformation of Lepidocrocite to Goethite, Clays and Clay Minerals, vol.20, issue.3, pp.159-164, 1972.
DOI : 10.1346/CCMN.1972.0200307

Y. Tamaura, K. Ito, and T. Katsura, Transformation of ?-feooh to f e 3 o 4

A. L. Mackay, ??-Ferric Oxyhydroxide???Akagan??ite, Mineralogical Magazine, vol.33, issue.259, pp.270-280, 1962.
DOI : 10.1180/minmag.1962.033.259.02

K. Ståhl, K. Nielsen, J. Jiang, B. Lebech, J. C. Hanson et al., On the akagan??ite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts, Corrosion Science, vol.45, issue.11, pp.2563-2575, 2003.
DOI : 10.1016/S0010-938X(03)00078-7

H. Naono, J. Sonoda, K. Oka, and M. Hakuman, Evaluation of Microporous Texture of Undecomposed and Decomposed ??-FeOOh Fine Particles by Means of Adsorption Isotherms of Nitrogen Gas and Water Vapor, Fundamentals of AdsorptionProceedings of the Fourth International Conference on Fundamentals of Adsorption, pp.467-474, 1993.
DOI : 10.1016/S0167-2991(08)63549-1

G. Biedermann, T. James, and . Chow, The Basicity Constant of p-Benzoquinone. Comparison of the Quinhydrone Half-cell with the Hydrogen Half-cell in HClO4-NaClO4 Ionic Medium., Acta Chemica Scandinavica, vol.10
DOI : 10.3891/acta.chem.scand.10-1340

K. Asami and M. Kikuchi, In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal???industrial atmosphere for 17 years, Corrosion Science, vol.45, issue.11, pp.2671-2688, 2003.
DOI : 10.1016/S0010-938X(03)00070-2

M. Morcillo, J. Alcantara, I. Diaz, B. Chico, J. Simancas et al., Marine atmospheric corrosion of carbon steels, Revista de Metalurgia, vol.51, issue.2, pp.2015-2022
DOI : 10.3989/revmetalm.045

P. Refait, M. Abdelmoula, and J. M. Génin, Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions, Corrosion Science, vol.40, issue.9, pp.1547-1560, 1998.
DOI : 10.1016/S0010-938X(98)00066-3

G. Bourrié, F. Trolard, J. M. Génin, A. Jaffrezic, V. Maitre et al., Iron control by equilibria between hydroxy-Green Rusts and solutions in hydromorphic soils, Geochimica et Cosmochimica Acta, vol.63, issue.19-20
DOI : 10.1016/S0016-7037(99)00262-8

P. Blanc, A. Lassin, and P. Piantone, Thermoddem a database devoted to waste minerals, BRGM, vol.28, p.7, 2007.

P. Refait, M. Abdelmoula, R. Jean-marie, R. Génin, and . Sabot, Green rusts in electrochemical and microbially influenced corrosion of steel, Comptes Rendus Geoscience, vol.338, issue.6-7, pp.476-487, 2006.
DOI : 10.1016/j.crte.2006.04.012

Y. Waseda and S. Suzuki, Characterization of Corrosion Products on Steel Surface, 2006.
DOI : 10.1007/978-3-540-35178-8

R. Altobelli-antunes, R. Uchida-ichikawa, L. G. Martinez, and I. Costa, Characterization of corrosion products on carbon steel exposed to natural weathering and to accelerated corrosion tests, International Journal of Corrosion, vol.2014, issue.9, p.2014

K. Suda, S. Misra, and K. Motohashi, Corrosion products of reinforcing bars embedded in concrete, Corrosion Science, vol.35, issue.5-8, pp.1543-1549, 1993.
DOI : 10.1016/0010-938X(93)90382-Q

A. Poursaee and C. M. Hansson, Reinforcing steel passivation in mortar and pore solution, Cement and Concrete Research, vol.37, issue.7, pp.1127-1133, 2006.
DOI : 10.1016/j.cemconres.2007.04.005

T. Raja-rizwan-hussain and . Ishida, Enhanced electro-chemical corrosion model for reinforced concrete under severe coupled action of chloride and temperature, Construction and Building Materials, vol.25, issue.3, pp.1305-1315, 2011.
DOI : 10.1016/j.conbuildmat.2010.09.014

C. Kim and J. Kim, Numerical analysis of localized steel corrosion in concrete, Construction and Building Materials, vol.22, issue.6, pp.1129-1136, 2008.
DOI : 10.1016/j.conbuildmat.2007.02.007

T. Maruya, H. Takeda, K. Horiguchi, S. Koyama, and K. Hsu, Simulation of Steel Corrosion in Concrete Based on the Model of Macro-Cell Corrosion Circuit, Journal of Advanced Concrete Technology, vol.5, issue.3, pp.343-362, 2007.
DOI : 10.3151/jact.5.343

J. A. Kolotyrkin, Pitting Corrosion of Metals, CORROSION, vol.19, issue.8, pp.261-268, 1963.
DOI : 10.5006/0010-9312-19.8.261

F. Dabosi and B. Baroux, Corrosion localisée. Editions de Physique, p.9, 1994.

T. P. Hoar, D. C. Mears, and G. P. Rothwell, The relationships between anodic passivity, brightening and pitting, Corrosion Science, vol.5, issue.4, pp.279-289, 1965.
DOI : 10.1016/S0010-938X(65)90614-1

K. J. Vetter and H. H. Strehblow, Entstehung und gestalt von korrosionslochern bei lochfra? an eisen und theoretische folgerungen zur lochfra?korrosion, Berichte der Bunsengesellschaft fur physikalische Chemie, pp.1024-1035, 1970.

A. Society, . Testing, . Material, and . Astm-c-1152, Standard test method for acid-soluble chloride in mortar and concrete

C. Andrade and M. Castellote, Testing and modelling chloride penetration in concrete : analysis of total chloride content in concrete, Materials and Structures, vol.35, pp.583-585, 2002.

C. Alonso, C. Andrade, P. Castellote, and . Castro, Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar, Cement and Concrete Research, vol.30, issue.7, pp.1047-1055, 2000.
DOI : 10.1016/S0008-8846(00)00265-9

D. A. Hausmann, Steel corrosion in concrete. how does it occur ?, Materials Protection, vol.6, pp.19-23, 1967.

V. K. Gouda, Corrosion and Corrosion Inhibition of Reinforcing Steel: I. Immersed in Alkaline Solutions, British Corrosion Journal, vol.32, issue.1071, pp.198-203, 1970.
DOI : 10.1179/000705968798326262

G. K. Glass and N. R. Buenfeld, The presentation of the chloride threshold level for corrosion of steel in concrete, Corrosion Science, vol.39, issue.5, pp.1001-1013, 1997.
DOI : 10.1016/S0010-938X(97)00009-7

W. Stumm and J. J. Morgan, Aquatic chemistry, pp.13-58, 1981.

U. Angst, B. Elsener, C. K. Larsen, and Ø. Vennesland, Critical chloride content in reinforced concrete ??? A review, Cement and Concrete Research, vol.39, issue.12, pp.1122-1138, 2009.
DOI : 10.1016/j.cemconres.2009.08.006

K. Y. , A. , and H. Song, Chloride threshold level for corrosion of steel in concrete, Corrosion Science, vol.49, issue.11, pp.4113-4133, 2007.

S. Diamond, Chloride concentrations in concrete pore solutions resulting from calcium and sodium chloride admixtures. Cement concrete and aggregates, pp.97-102, 1986.

L. Li and A. A. Sagüés, Chloride Corrosion Threshold of Reinforcing Steel in Alkaline Solutions???Open-Circuit Immersion Tests, CORROSION, vol.57, issue.1, pp.19-28, 2001.
DOI : 10.5006/1.3290325

M. Moreno, W. Morris, M. G. Alvarez, and G. S. Duffó, Corrosion of reinforcing steel in simulated concrete pore solutions, Corrosion Science, vol.46, issue.11, pp.2681-2699, 2004.
DOI : 10.1016/j.corsci.2004.03.013

S. E. Hussain, A. Rasheeduzzafar, and A. S. Musallam, Factors affecting threshold chloride for reinforcement corrosion in concrete, Cement and Concrete Research, vol.25, issue.7, pp.1543-1555, 1995.
DOI : 10.1016/0008-8846(95)00148-6

B. Martin-pérez, Service life modeling of R.C. highway structures exposed to chlorides, 1999.

H. Friedmann, Modélisation multi-especes de l'électrodiffusion instationnaire des ions chlorures dans les mortiers de ciment -Intégration de la double couche électrique, 2003.

H. Sleiman, Etude du transport des chlorures dans les matériaux cimentaires non saturés : Validation expérimentale sur bétons en situation de marnage, 2008.

. Phu-tho-nguyen, Etude multiphysique du transfert de chlorures dans les bétons insaturés : prédiction de l'initiation de la corrosion des aciers, p.2014

L. Trotignon, V. Devallois, H. Peycelon, C. Tiffreau, and X. Bourbon, Predicting the long term durability of concrete engineered barriers in a geological repository for radioactive waste, Physics and Chemistry of the Earth, Parts A/B/C, vol.32, issue.1-7, pp.259-274, 2007.
DOI : 10.1016/j.pce.2006.02.049

. Gaucher, Influence of reaction kinetics and mesh refinement on the numerical modelling of concrete/clay interactions, Journal of Hydrology, vol.364, issue.44, pp.58-72, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00512711

T. J. Tambach, M. Koenen, L. J. Wasch, and F. Van-bergen, Geochemical evaluation of CO2 injection and containment in a depleted gas field, International Journal of Greenhouse Gas Control, vol.32, pp.61-80
DOI : 10.1016/j.ijggc.2014.10.005

S. Waldmann and H. Rütters, Geochemical effects of SO2 during CO2 storage in deep saline reservoir sandstones of Permian age (Rotliegend) ??? A modeling approach, International Journal of Greenhouse Gas Control, vol.46, pp.116-135
DOI : 10.1016/j.ijggc.2016.01.005

G. Bourrié, F. Trolard, J. M. Robert-génin-jaffrezic, V. Maître, and M. Abdelmoula, Iron control by equilibria between hydroxy-Green Rusts and solutions in hydromorphic soils, Geochimica et Cosmochimica Acta, vol.63, issue.19-20, pp.3417-3427, 1999.
DOI : 10.1016/S0016-7037(99)00262-8

L. Liang, A. B. Sullivan, R. Olivia, . West, R. Gerilynn et al., Predicting the Precipitation of Mineral Phases in Permeable Reactive Barriers, Environmental Engineering Science, vol.20, issue.6, pp.635-53, 2003.
DOI : 10.1089/109287503770736159

B. Lothenbach and F. Winnefeld, Thermodynamic modelling of the hydration of Portland cement, Cement and Concrete Research, vol.36, issue.2, pp.209-226, 2006.
DOI : 10.1016/j.cemconres.2005.03.001

Y. Elakneswaran, T. Nawa, and K. Kurumisawa, Electrokinetic potential of hydrated cement in relation to adsorption of chlorides, Cement and Concrete Research, vol.39, issue.4, pp.340-344, 2009.
DOI : 10.1016/j.cemconres.2009.01.006

O. M. John, . Bockris, K. N. Amulya, and . Reddy, Modern electrochemistry, 1970.

P. Debye and E. Huckel, The theory of electrolytes. i. lowering of freezing point and related phenomena, Physikalische Zeitschrift, vol.24, issue.18, pp.185-206, 1923.

H. Helgeson, D. Kirkham, and G. Flowers, Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb, American Journal of Science, vol.281, issue.10, p.17, 1981.
DOI : 10.2475/ajs.281.10.1249

J. Xu, L. Jiang, W. Wang, and Y. Jiang, Influence of CaCl2 and NaCl from different sources on chloride threshold value for the corrosion of steel reinforcement in concrete, Composite Materials and Adhesive Bonding Technology, pp.663-669, 2011.
DOI : 10.1016/j.conbuildmat.2010.07.023

. Ph, X. Blanc, A. Bourbon, E. C. Lassin, and . Gaucher, Chemical model for cement-based materials : Temperature dependence of thermodynamic functions for nanocrystalline and crystalline c-s-h phases, Cement and Concrete Research, vol.40, pp.851-866, 2010.

B. Lothenbach, Thermodynamic equilibrium calculations in cementitious systems, Materials and Structures, vol.36, issue.2, pp.1413-1433, 2010.
DOI : 10.1557/PROC-212-387

F. Glasser, S. A. Kindness, and . Stronach, Stability and solubility relationships in AFm phases, Cement and Concrete Research, vol.29, issue.6, pp.861-866, 1999.
DOI : 10.1016/S0008-8846(99)00055-1

E. Nielsen, . Herfort, D. Geiker, and . Hooton, Effect of solid solution of afm phases on chloride binding, South Africa Congress on the Chemistry of Cement, 2003.

M. Balonis, The Influence of Inorganic Chemical Accelerators and Corrosion Inhibitors on the Mineralogy of Hydrated Portland Cement Systems, p.22, 2010.

D. Damidot, U. A. Birnin-yauri, and F. P. Glasser, Thermodynamic investigation of the cao-al2o3-cacl2-h2o system at 25 ? c and the influence of na2o, IL Cemento, vol.91, pp.243-254, 1994.

M. Hobbs, Solubilities and ion exchange properties of solid solutions between the OH, Cl and CO3 end members of the monocalcium aluminate hydrates, Canada, 2001.

J. J. Beaudoin, V. S. Ramachandran, and R. F. Feldman, Interaction of chloride and C???S???H, Cement and Concrete Research, vol.20, issue.6, pp.875-883, 1990.
DOI : 10.1016/0008-8846(90)90049-4

H. Viallis-terrisse, Interaction des Silicates de Calcium Hydratés-principaux constituants du ciment-avec les chlorures d'alcalins. Analogie avec les argiles, 2000.

P. Henocq, Moélisation des interactions ioniques a la surface des Silicates de Calcium Hydratés, 2005.

T. Xu, N. Spycher, and E. Sonnenthal, TOUGHREACT User's Guide : A Simulation Program for Non-isothermal Multiphase Reactive Transport in Variably Saturated Geologic Media, version 2.0, pp.25-39, 2012.

M. Thiery, G. Platret, E. Massieu, G. Villain, and V. Baroghel-bouny, Un modele d´hydratation pour le calcul de la teneur en portlandite des matériaux cimentaires comme donnée d´entrée des modeles de carbonatation, p.25, 2005.

D. J. Parkhurst and C. A. Appelo, User's guide to phreeqc (version 2) : A computer program for speciation, batch reaction, one dimensional transport and inverse geochemical calculations, Water-Resources Investigation Report, 1999.

J. Simunek, . Jacques, M. T. Sejna, and . Van-genuchten, The HP2 Program for HYDRUS (2D/3D) : A coupled code for simulating two-dimensional variably-saturated water flowheat transport, and biogeochemistry in porous media, Version 1, p.2012

H. Prommer and V. E. Post, PHT3D, A Reactive Multicomponent Transport Model for Saturated Porous Media. User's Manual, 2010.

O. Kolditz, S. Bauer, B. Bilke, and . Zehner, OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media, Environmental Earth Sciences, vol.36, issue.10, pp.589-599
DOI : 10.1016/j.cageo.2010.02.010

J. Van-der-lee, L. De-windt, V. Lagneau, and P. Goblet, Module-oriented modeling of reactive transport with HYTEC, Computers & Geosciences, vol.29, issue.3, pp.265-275, 2003.
DOI : 10.1016/S0098-3004(03)00004-9

URL : https://hal.archives-ouvertes.fr/hal-00564455

B. Lothenbach, T. Matschei, G. Möschner, and F. P. Glasser, Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement, Cement and Concrete Research, vol.38, issue.1, pp.1-18, 2008.
DOI : 10.1016/j.cemconres.2007.08.017

M. Greg, D. A. Anderson, and . Crerar, Thermodynamics in Geochemistry : The Equilibrium Model : The Equilibrium Model, p.32, 1993.

J. W. Cobble, R. C. Murray, P. J. Turner, and K. Chen, High temperature thermodynamic data for species in aqueous solution, 1982.

I. Diakonov, Etude expérimentale de la complexation de l'aluminium avec l'ion sodium et de la spéciation du gallium et du fer (III) dans les solutions naturelles, 1995.

J. D. Cox, D. Wagman, and V. A. Medvedev, CODATA Key Values for Thermodynamics, p.35, 1989.

E. L. Shock, D. C. Sassani, M. Willis, and D. A. Sverjensky, Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes, Geochimica et Cosmochimica Acta, vol.61, issue.5, pp.907-950, 1997.
DOI : 10.1016/S0016-7037(96)00339-0

B. S. Hemingway, Thermodynamic properties for bunsenite, nio, magnetite, fe 3 o 4 , and hematite, fe 2 o 3 , with comments on selected oxygen buffer reactions, American Mineralogist, vol.75, issue.78, pp.781-790, 1990.

R. A. Berner, Goethite stability and the origin of red beds, Geochimica et Cosmochimica Acta, vol.33, issue.2, pp.267-273, 1969.
DOI : 10.1016/0016-7037(69)90143-4

I. Diakonov, I. Khodakovsky, J. Schott, and E. Sergeeva, Thermodynamic properties of iron oxides and hydroxides. I. Surface and bulk thermodynamic properties of goethite (??-FeOOH) up to 500 K, European Journal of Mineralogy, vol.6, issue.6, pp.967-983, 1994.
DOI : 10.1127/ejm/6/6/0967

C. Laberty and A. Navrotsky, Energetics of stable and metastable low-temperature iron oxides and oxyhydroxides, Geochimica et Cosmochimica Acta, vol.62, issue.17, pp.2905-2913, 1998.
DOI : 10.1016/S0016-7037(98)00208-7

I. Diakonov, Thermodynamic properties of iron oxides and hydroxides. III. Surface and bulk thermodynamic properties of lepidocrocite (??-FeOOH) to 500 K, European Journal of Mineralogy, vol.10, issue.1, pp.31-41, 1998.
DOI : 10.1127/ejm/10/1/0031

A. Woodfield and . Navrotsky, Heat capacity studies of the iron oxyhydroxides akaganéite (?-feooh) and lepidocrocite (?-feooh), Journal of Chemical Thermodynamics, vol.43, issue.2, pp.190-199

J. Chivot, Thermodynamique des produits de corrosion, Collection Sciences et Techniques. ANDRA, 2004.

D. Darrell and . Ebbing, General Chemistry, Houghton Mifflin Company, 1990.

R. A. , R. , and R. H. Stokes, Electrolyte solutions. Courier Corporation, 2002.

L. Trotignon, H. Peycelon, and X. Bourbon, Comparison of performance of concrete barriers in a clayey geological medium, Physics and Chemistry of the Earth, Parts A/B/C, vol.31, issue.10-14, pp.610-617, 2006.
DOI : 10.1016/j.pce.2006.04.011

S. P. Bi, S. Q. An, and F. Liu, A practical application of Driscoll's equation for predicting the acid-neutralizing capacity in acidic natural waters equilibria with the mineral phase gibbsite, Environment International, vol.26, issue.5-6, pp.327-333, 2001.
DOI : 10.1016/S0160-4120(01)00008-3

R. M. Cornell and U. Schwertmann, The Iron Oxides, p.51, 2004.
DOI : 10.1002/3527602097

R. Jean-marie, C. Génin, A. Ruby, P. Géhin, and . Refait, Synthesis of green rusts by oxidation of fe(oh)2, their products of oxidation and reduction of ferric Références bibliographiques oxyhydroxides ; ?ph pourbaix diagrams, Comptes Rendus Geoscience, vol.338, issue.53, pp.433-446, 2006.

T. S. Nguyen, Influence de la nature du liant et de la température sur le transport des chlorures dans les matériaux cimentaires, Institut National des Sciences Appliquées, vol.65, pp.55-66, 2006.

D. Jacques, L. Wang, E. Martens, and D. Mallants, Benchmarking the cemdata07database to model chemical degradation of concrete using gems and phreeqc

T. Thoenen and D. Kulik, Nagra/psi chemical thermodynamic data base 01/01 for the gem-selektor (v.2-psi) geochemical modeling code. Release 28-02-03, p.56, 2003.

N. Akinfiev and A. Zotov, Thermodynamic description of equilibria in mixed fluids (H2O-non-polar gas) over a wide range of temperature (25???700??C) and pressure (1???5000 bars), Geochimica et Cosmochimica Acta, vol.63, issue.13-14
DOI : 10.1016/S0016-7037(98)00304-4

B. Lothenbach, T. Matschei, G. Moschner, and F. P. Glasser, Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement, Cement and Concrete Research, vol.38, issue.1, pp.1-18, 2007.
DOI : 10.1016/j.cemconres.2007.08.017

J. Ederova and V. Satava, Heat capacities of C3AH6, C4AS??H12 and C6AS??3H32, Thermochimica Acta, vol.31, issue.1, pp.126-128, 1979.
DOI : 10.1016/0040-6031(79)80016-7

T. Matschei, B. Lothenbach, and F. P. Glasser, Thermodynamic properties of portland cement hydrates in the system cao, Cement and Concrete Research, vol.37, issue.83, pp.2-3, 2007.

R. A. Robie and B. S. Hemingway, Thermodynamic properties of minerals and related substances at 298.15 k and 1 bar (105 pascals) pressure and at higher temperatures, U.S. Geological survey, p.461, 1995.

M. Balonis and F. P. Glasser, The density of cement phases, Cement and Concrete Research, vol.39, issue.9, pp.733-739, 2009.
DOI : 10.1016/j.cemconres.2009.06.005

D. Sverjensky, E. L. Shock, and H. C. Helgeson, Prediction of the thermodynamic properties of aqueous metal complexes to 1000??C and 5 kb, Geochimica et Cosmochimica Acta, vol.61, issue.7, pp.1359-1412, 1997.
DOI : 10.1016/S0016-7037(97)00009-4

J. Broder, B. Merkel, and . Planer-friedrich, Groundwater Geochemistry : A Practical Guide to Modeling of Natural and Contaminated Aquatic Systems, 2005.

P. Blanc, P. Piantone, A. Lassin, and A. Bumol, Thermochimie : Sélection de constantes thermodynamiques pour les éléments majeurs, le plomb et le cadmium Agence nationale pour la gestion des déchets radioactifs -ANDRA, 2006.

J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000??C, Computers & Geosciences, vol.18, issue.7, pp.899-947, 1992.
DOI : 10.1016/0098-3004(92)90029-Q

J. Moore, C. Stanitsk, and P. Jurs, Chemistry, Cengage Learning, 2011.
DOI : 10.1016/B978-1-4831-9703-6.50024-8

URL : https://hal.archives-ouvertes.fr/hal-01483391

I. V. Olofsson, Apparent molar heat capacities and volumes of aqueous NaCl, KCl, and KNO3 at 298.15 K. Comparison of Picker flow calorimeter with other calorimeters, The Journal of Chemical Thermodynamics, vol.11, issue.10, pp.1005-1014, 1979.
DOI : 10.1016/0021-9614(79)90050-8

V. A. Pokrovskii and H. C. Helgeson, Thermodynamic properties of aqueous species and the solubilities of minerals at high pressures and temperatures: the system Al2O3???H2O???KOH, Chemical Geology, vol.137, issue.3-4, pp.221-242, 1997.
DOI : 10.1016/S0009-2541(96)00167-2

R. M. Smith, A. E. Martell, and R. J. Motekaitis, Critically selected stability constants of metal complexes database, version 4, 1997.

I. Yoon, Reaction experimental study on chloride binding behavior in cement composition, 2nd International Symposium on Service Life Design for Infrastructure, 2010.

Y. Elakneswaran, A. Iwasa, T. Nawa, T. Sato, and K. Kurumisawa, Ion-cement hydrate interactions govern multi-ionic transport model for cementitious materials, Cement and Concrete Research, vol.40, issue.12, pp.1756-1765
DOI : 10.1016/j.cemconres.2010.08.019

A. Mesbah, C. Cau-dit-coumes, G. Renaudin, F. Frizon, and F. Leroux, Uptake of chloride and carbonate ions by calcium monosulfoaluminate hydrate, Cement and Concrete Research, vol.42, issue.8, pp.1157-1165
DOI : 10.1016/j.cemconres.2012.05.012

URL : https://hal.archives-ouvertes.fr/hal-00714608

C. K. Larsen, Effect ofsurrounding environment and concrete composition, 1998.

R. Herman, T. Brown, and H. J. Greenwood, An internally consistent thermodynamic data base for minerals in the system : Atomic Energy of Canada, Whiteshell Nuclear Res