F. Une-coupe-horizontale-de, une coupe verticale (au centre) et une vue 3D (à droite) du volume reconstruit avec l'algorithme standard, p.123

. Lyon, Super-resolution for computed tomography based on discrete tomography, Image Processing, pp.1181-1193, 2014.

H. Banjak, Implementation and evaluation of two helical CT reconstruction algorithms in CIVA, p.110001, 2016.
DOI : 10.1007/s11548-014-0978-z

URL : https://hal.archives-ouvertes.fr/hal-01282368

H. Banjak, Iterative CT reconstruction on limited angle trajectories applied to robotic inspection, p.2017
DOI : 10.1088/0031-9155/40/9/010

URL : https://hal.archives-ouvertes.fr/hal-01713997

H. Banjak, Reconstruction Algorithms for Reverse Helical Super- Short-Scan Mode " . In: 4th International Meeting on Image Formation in X-ray Computed Tomography, 2016.

H. Banjak, Two Local FBP Algorithms for Helical Cone-beam Computed Tomography, Digital Industrial Radiology and Computed Tomography, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01282363

H. Banjak, X-ray Computed Tomography Reconstruction on Non- Standard Trajectories for Robotized Inspection, proceedings of the World Conference of NDT, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01468864

K. Batenburg and J. Sijbers, DART: A Practical Reconstruction Algorithm for Discrete Tomography, Image Processing, pp.2542-2553, 2011.
DOI : 10.1109/TIP.2011.2131661

R. Bates and T. Peters, Towards improvements in tomography, New Zealand Journal of Science, vol.144, p.883, 1971.

A. Beck and M. Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, SIAM Journal on Imaging Sciences, vol.2, issue.1, pp.183-202, 2009.
DOI : 10.1137/080716542

F. Beckman, The solution of linear equations by the conjugate gradient method, Mathematical methods for digital computers, pp.62-72, 1960.

J. Freek, C. Beekman, and . Kamphuis, Ordered subset reconstruction for x-ray CT " . In: Physics in medicine and biology 46, p.1835, 2001.

M. Beister, D. Kolditz, and W. A. Kalender, Iterative reconstruction methods in X-ray CT, Physica Medica, vol.28, issue.2, pp.94-108, 2012.
DOI : 10.1016/j.ejmp.2012.01.003

F. Bleichrodt, F. Tabak, and K. Batenburg, SDART: An algorithm for discrete tomography from noisy projections, Computer Vision and Image Understanding, vol.129, pp.63-74, 2014.
DOI : 10.1016/j.cviu.2014.06.002

A. Charles, K. Bouman, and . Sauer, A unified approach to statistical tomography using coordinate descent optimization, Image Processing, pp.480-492, 1996.

R. Newbold-bracewell and A. Riddle, Inversion of Fan-Beam Scans in Radio Astronomy, The Astrophysical Journal, vol.150, p.427, 1967.
DOI : 10.1086/149346

T. Jerrold and . Bushberg, The Essential Physics of Medical Imaging, 2011.

L. Charles and . Byrne, Iterative image reconstruction algorithms based on crossentropy minimization, IEEE Transactions on image processing, vol.2, issue.1, pp.96-103, 1993.

Z. Chen, A limited-angle CT reconstruction method based on anisotropic TV minimization, Physics in medicine and biology 58, p.2119, 2013.
DOI : 10.1088/0031-9155/58/7/2119

S. Cho, Exact reconstruction of volumetric images in reverse helical cone-beam CT, Medical Physics, vol.51, issue.7Part1, pp.3030-3040, 2008.
DOI : 10.1088/0031-9155/51/5/008

R. Clackdoyle and M. Defrise, Tomographic Reconstruction in the 21st Century, Signal Processing Magazine, pp.60-80, 2010.
DOI : 10.1109/MSP.2010.936743

URL : https://hal.archives-ouvertes.fr/ujm-00785216

A. Macleod and C. , Representation of a function by its line integrals, with some radiological applications, Journal of applied physics, vol.349, pp.2722-2727, 1963.

M. Costin, CIVA CT, an advanced simulation platform for NDT, 6th Conference on Industrial Computed Tomography, 2016.

A. Dabravolski, K. Batenburg, and J. Sijbers, A Multiresolution Approach to Discrete Tomography Using DART, PLoS ONE, vol.73, issue.9, p.106090, 2014.
DOI : 10.1371/journal.pone.0106090.g014

P. Danielsson, Towards exact reconstruction for helical cone-beam scanning of long objects. A new detector arrangement and a new completeness condition, Proc. 1997 Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine (Pittsburgh), pp.141-144, 1997.

I. Lyon, Industrial applications of computed tomography

M. Bruno-de, An iterative maximum-likelihood polychromatic algorithm for CT, IEEE transactions on medical imaging, pp.999-1008, 2001.

M. Defrise and R. Clack, Filtered backprojection reconstruction of combined parallel beam and cone beam SPECT data, Physics in Medicine and Biology, vol.40, issue.9, p.1517, 1995.
DOI : 10.1088/0031-9155/40/9/010

M. Defrise, F. Noo, and H. Kudo, A solution to the long-object problem in helical cone-beam tomography, Physics in Medicine and Biology, vol.45, issue.3, p.623, 2000.
DOI : 10.1088/0031-9155/45/3/305

M. Defrise, F. Noo, and H. Kudo, Rebinning-based algorithms for helical cone-beam CT, Physics in Medicine and Biology, vol.46, issue.11, p.2911, 2001.
DOI : 10.1088/0031-9155/46/11/311

M. Defrise, Truncated Hilbert transform and image reconstruction from limited tomographic data, Inverse Problems, vol.22, issue.3, p.1037, 2006.
DOI : 10.1088/0266-5611/22/3/019

URL : https://hal.archives-ouvertes.fr/ujm-00105167

M. Defrise, Truncated Hilbert transform and image reconstruction from limited tomographic data, Inverse Problems, vol.22, issue.3, p.1037, 2006.
DOI : 10.1088/0266-5611/22/3/019

URL : https://hal.archives-ouvertes.fr/ujm-00105167

J. Deng, A Parallel Implementation of the Katsevich Algorithm for 3-D CT Image Reconstruction, The Journal of Supercomputing, vol.50, issue.2, pp.35-47, 2006.
DOI : 10.1109/TNS.1974.6499235

F. Dennerlein and A. Maier, Approximate truncation robust computed tomographyATRACT " . In: Physics in medicine and biology 58, p.6133, 2013.
DOI : 10.1088/0031-9155/58/17/6133

L. David and . Donoho, Compressed sensing In: Information Theory, IEEE Transactions on, vol.524, pp.1289-1306, 2006.

L. Feldkamp, J. Davis, and . Kress, Practical cone-beam algorithm, Journal of the Optical Society of America A, vol.1, issue.6, pp.612-619, 1984.
DOI : 10.1364/JOSAA.1.000612

URL : http://www.engineering.uiowa.edu/~mchen/reconstruction/practical feldkamp.pdf

A. Fieselmann, Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging, SPIE Medical Imaging. International Society for Optics and Photonics. 2016, pp.97830-97830

A. Fischer, Object Specific Trajectory Optimization for Industrial X-ray Computed Tomography, Scientific Reports, vol.8, issue.1, 2016.
DOI : 10.1371/journal.pone.0081141

P. Gilbert, Iterative methods for the three-dimensional reconstruction of an object from projections, Journal of Theoretical Biology, vol.36, issue.1, pp.105-117, 1972.
DOI : 10.1016/0022-5193(72)90180-4

. Lyon, Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication, 2016.

R. Gordon, R. Bender, T. Gabor, and . Herman, Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography, Journal of Theoretical Biology, vol.29, issue.3, pp.471-481, 1970.
DOI : 10.1016/0022-5193(70)90109-8

R. Gordon, R. Bender, T. Gabor, and . Herman, Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography, Journal of Theoretical Biology, vol.29, issue.3, pp.471-481, 1970.
DOI : 10.1016/0022-5193(70)90109-8

P. Grangeat, Mathematical framework of cone beam 3D reconstruction via the first derivative of the radon transform, Mathematical methods in tomography, pp.66-97, 1991.
DOI : 10.1007/BFb0084509

N. Godfrey and . Hounsfield, Computerized transverse axial scanning (tomography)

J. Hsieh, Adaptive streak artifact reduction in computed tomography resulting from excessive x-ray photon noise, Medical Physics, vol.36, issue.11, pp.2139-2147, 1998.
DOI : 10.1109/29.1660

J. Hsieh, Computed tomography: principles, design, artifacts, and recent advances, 2009.
DOI : 10.1117/3.2197756

URL : https://www.spiedigitallibrary.org/samples/PM259.pdf

J. Hsieh, Recent Advances in CT Image Reconstruction, Current Radiology Reports, vol.16, issue.1, pp.39-51, 2013.
DOI : 10.1109/42.552050

J. Hu, K. Tam, and J. Qi, An approximate short scan helical FDK cone beam algorithm based on nutating curved surfaces satisfying the Tuys condition, pp.1529-1536, 2005.

J. Philipp and J. Peter, XXL-Micro-CT Comparative Evaluation of Microscopic Computed Tomography for Macroscopic Objects, pp.1-17

X. Jin, Anisotropic total variation for limited-angle CT reconstruction, IEEE Nuclear Science Symposuim & Medical Imaging Conference, pp.2232-2238, 2010.
DOI : 10.1109/NSSMIC.2010.5874180

M. Kachelriess, S. Schaller, and W. A. Kalender, Advanced single-slice rebinning in cone-beam spiral CT, Medical Physics, vol.274, pp.754-772, 2000.

M. Kachelriess, O. Watzke, and W. A. Kalender, Generalized multidimensional adaptive filtering for conventional and spiral single-slice, multislice , and cone-beam CT, Medical physics 28, pp.475-490, 2001.

S. Kaczmarz, Angenäherte auflösung von systemen linearer gleichungen, Bulletin International de lAcademie Polonaise des Sciences et des Lettres, pp.355-357, 1937.

I. Lyon, Simultaneous Algebraic Reconstruction Technique (SART): A superior implementation of the ART Algorithm, 1984.

C. Avinash, M. Kak, and . Slaney, Principles of computerized tomographic imaging, 1988.

A. Willi and . Kalender, Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation, In: Radiology, vol.1761, pp.181-183, 1990.

C. Kamphuis, J. Freek, and . Beekman, Accelerated iterative transmission CT reconstruction using an ordered subsets convex algorithm, Medical Imaging, pp.1101-1105, 1998.
DOI : 10.1109/42.746730

A. Katsevich, Theoretically Exact Filtered Backprojection-Type Inversion Algorithm for Spiral CT, SIAM Journal on Applied Mathematics, vol.62, issue.6, pp.2012-2026, 2002.
DOI : 10.1137/S0036139901387186

A. Katsevich, S. Basu, and J. Hsieh, Exact filtered backprojection reconstruction for dynamic pitch helical cone beam computed tomography, Physics in Medicine and Biology, vol.49, issue.14, p.3089, 2004.
DOI : 10.1088/0031-9155/49/14/004

H. Kudo, F. Noo, and M. Defrise, Quasi-exact filtered backprojection algorithm for long-object problem in helical cone-beam tomography

H. Kudo and T. Saito, Helical-scan computed tomography using cone-beam projections, Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference, pp.1958-1962, 1991.
DOI : 10.1109/NSSMIC.1991.259259

H. Kudo and M. Defrise, Cone-beam filtered-backprojection algorithm for truncated helical data, Physics in Medicine and Biology, vol.43, issue.10, p.2885, 1998.
DOI : 10.1088/0031-9155/43/10/016

H. Kudo and M. Defrise, Cone-beam filtered-backprojection algorithm for truncated helical data, Physics in Medicine and Biology, vol.43, issue.10, p.2885, 1998.
DOI : 10.1088/0031-9155/43/10/016

H. Kudo, New super-short-scan algorithms for fan-beam and conebeam reconstruction, Nuclear Science Symposium Conference Record, 2002.

H. Kudo, knowledge solves the interior problem in computed tomography, Physics in Medicine and Biology, vol.53, issue.9, p.2207, 2008.
DOI : 10.1088/0031-9155/53/9/001

. Lyon, Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication, 2016.

L. Patrick, X. Rivière, and . Pan, Nonparametric regression sinogram smoothing using a roughness-penalized Poisson likelihood objective function

K. Lange, Convergence of EM image reconstruction algorithms with Gibbs smoothing, Medical Imaging, IEEE Transactions on 9, pp.439-446, 1990.
DOI : 10.1109/42.61759

K. Lange and R. Carson, EM reconstruction algorithms for emission and transmission tomography, J Comput Assist Tomogr, vol.82, pp.306-322, 1984.

S. Lee, <title>Accelerated coordinate descent methods for Bayesian reconstruction using ordered subsets of projection data</title>, Mathematical Modeling, Estimation, and Imaging, pp.170-181, 2000.
DOI : 10.1117/12.402437

A. Lent, A convergent algorithm for maximum entropy image restoration , with a medical x-ray application, Image Analysis and Evaluation, pp.249-257, 1977.

A. Lent and Y. Censor, The primal-dual algorithm as a constraint-setmanipulation device, In: Mathematical Programming, vol.501, issue.3, pp.343-357, 1991.

J. Liow and S. Strother, The convergence of object dependent resolution in maximum likelihood based tomographic image reconstruction, Physics in Medicine and Biology, vol.38, issue.1, p.55, 1993.
DOI : 10.1088/0031-9155/38/1/005

F. Javier-maestre-deusto, ADART: An Adaptive Algebraic Reconstruction Algorithm for Discrete Tomography, Image Processing, pp.2146-2152, 2011.
DOI : 10.1109/TIP.2011.2114894

S. Manglos, Transmission maximum-likelihood reconstruction with ordered subsets for cone beam CT, Physics in Medicine and Biology, vol.40, issue.7, p.1225, 1995.
DOI : 10.1088/0031-9155/40/7/006

S. Manglos, Transmission maximum-likelihood reconstruction with ordered subsets for cone beam CT, Physics in Medicine and Biology, vol.40, issue.7, p.1225, 1995.
DOI : 10.1088/0031-9155/40/7/006

U. Erkan and . Mumcuoglu, Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images, IEEE transactions on Medical Imaging, vol.134, pp.687-701, 1994.

F. Natterer, The mathematics of computerized tomography, Siam, vol.32, 1986.

F. Noo, M. Defrise, and R. Clackdoyle, Single-slice rebinning method for helical cone-beam CT, Physics in Medicine and Biology, vol.44, issue.2, p.561, 1999.
DOI : 10.1088/0031-9155/44/2/019

. Insa-lyon-hiroyuki, M. Kudo, and . Defrise, Approximate short-scan filtered-backprojection for helical CB reconstruction, these.pdf © [H. Banjak], pp.2073-2077, 1998.

F. Noo, J. Pack, and D. Heuscher, Exact helical reconstruction using native cone-beam geometries, Physics in Medicine and Biology, vol.48, issue.23, p.3787, 2003.
DOI : 10.1088/0031-9155/48/23/001

F. Noo, Image reconstruction from fan-beam projections on less than a short scan, Physics in Medicine and Biology, vol.47, issue.14, p.2525, 2002.
DOI : 10.1088/0031-9155/47/14/311

B. Ohnesorge, Efficient correction for CT image artifacts caused by objects extending outside the scan field of view, Medical Physics, vol.3, issue.1, pp.39-46, 2000.
DOI : 10.1109/TMI.1984.4307648

W. Oldendorf, Isolated flying spot detection of radiodensity dis-continuitiesdisplaying the internal structural pattern of a complex object In: IRE transactions on bio-medical electronics 8, pp.68-72, 1961.

P. Oskoui-fard and H. Stark, Tomographic image reconstruction using the theory of convex projections, IEEE Transactions on Medical Imaging, vol.7, issue.1, pp.45-58, 1988.
DOI : 10.1109/42.3928

D. Jed, F. Pack, and . Noo, Cone-beam reconstruction using 1D filtering along the projection of M-lines, Inverse Problems, vol.213, p.1105, 2005.

D. Jed, F. Pack, R. Noo, and . Clackdoyle, Cone-beam reconstruction using the backprojection of locally filtered projections, IEEE Transactions on Medical Imaging, vol.241, pp.70-85, 2005.

D. Jed, F. Pack, H. Noo, and . Kudo, Investigation of saddle trajectories for cardiac CT imaging in cone-beam geometry, In: Physics in Medicine and Biology, vol.4911, p.2317, 2004.

X. Pan, Y. Zou, and D. Xia, Image reconstruction in peripheral and central regions-of-interest and data redundancy, Medical Physics, vol.49, issue.3, pp.673-684, 2005.
DOI : 10.1088/0031-9155/49/12/017

L. Dennis and . Parker, Optimal short scan convolution reconstruction for fan beam CT, Medical physics 9, pp.254-257, 1982.

L. Dennis and . Parker, Optimal short scan convolution reconstruction for fan beam CT, Medical physics 9, pp.254-257, 1982.

F. Sauer, S. Samarasekera, and K. Tam, Practical cone beam image reconstruction using local regions-of-interest, p.142, 1999.

. Lyon, Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication, 2016.

K. Sauer and C. Bouman, A local update strategy for iterative reconstruction from projections, Signal Processing, IEEE Transactions on 41, pp.534-548, 1993.
DOI : 10.1109/78.193196

S. Schaller, Exact Radon rebinning algorithm for the long object problem in helical cone-beam CT, IEEE Transactions on Medical Imaging, vol.19, issue.5, pp.361-375, 2000.
DOI : 10.1109/42.870247

S. Schaller, <title>Novel approximate approach for high-quality image reconstruction in helical cone-beam CT at arbitrary pitch</title>, Medical Imaging 2001: Image Processing, pp.113-127, 2001.
DOI : 10.1117/12.431009

A. Lawrence, . Shepp, F. Benjamin, and . Logan, The Fourier reconstruction of a head section, IEEE Transactions on Nuclear Science, vol.213, pp.21-43, 1974.

A. Lawrence, Y. Shepp, and . Vardi, Maximum likelihood reconstruction for emission tomography, Medical Imaging, pp.113-122, 1982.

Y. Emil, C. Sidky, X. Kao, and . Pan, Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT, Journal of X-ray Science and Technology, vol.142, pp.119-139, 2006.

Y. Emil, X. Sidky, and . Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Physics in medicine and biology 53, p.4777, 2008.

D. Bruce and . Smith, Cone beam convolution formula, Computers in biology and medicine 13, pp.81-87, 1983.

D. Bruce, J. Smith, and . Chen, Implementation, investigation, and improvement of a novel cone-beam reconstruction method, IEEE transactions on medical imaging 11, pp.260-266, 1992.

K. Taguchi, S. Be-shan, . Chiang, D. Michael, and . Silver, A new weighting scheme for cone-beam helical CT to reduce the image noise, Physics in medicine and biology 49, pp.11-2351, 2004.
DOI : 10.1088/0031-9155/49/11/016

C. Kwon, . Tam, F. Samarasekera, and . Sauer, Exact cone beam CT with a spiral scan, Physics in medicine and biology 43, p.1015, 1998.

C. Kwon, . Tam, F. Samarasekera, and . Sauer, Exact cone beam CT with a spiral scan, Physics in medicine and biology 43, p.1015, 1998.

X. Tang and J. Hsieh, A filtered backprojection algorithm for cone beam reconstruction using rotational filtering under helical source trajectory

. Lyon, A filtered backprojection algorithm for cone beam reconstruction using rotational filtering under helical source trajectory, tous droits réservés [103] Xiangyang Tang and Jiang Hsieh

X. Tang and J. Hsieh, Handling data redundancy in helical cone beam reconstruction with a cone-angle-based window function and its asymptotic approximation, Medical Physics, vol.4320, issue.P, pp.1989-1998, 2007.
DOI : 10.1117/12.430862

X. Tang, A helical cone-beam filtered backprojection (CB-FBP) reconstruction algorithm using 3D view weighting, Developments in X-Ray Tomography IV, pp.577-587, 2004.
DOI : 10.1117/12.560141

X. Tang, A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT???helical scanning, Physics in Medicine and Biology, vol.51, issue.4, p.855, 2006.
DOI : 10.1088/0031-9155/51/4/007

X. Tang, A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT???helical scanning, Physics in Medicine and Biology, vol.51, issue.4, p.855, 2006.
DOI : 10.1088/0031-9155/51/4/007

J. Thibault, A three-dimensional statistical approach to improved image quality for multislice helical CT, Medical Physics, vol.6498, issue.11, pp.4526-4544, 2007.
DOI : 10.1088/0031-9155/48/3/305

K. Heang and . Tuy, An inversion formula for cone-beam reconstruction, In: SIAM Journal on Applied Mathematics, vol.433, pp.546-552, 1983.

W. Van-aarle, K. Batenburg, and J. Sijbers, Automatic Parameter Estimation for the Discrete Algebraic Reconstruction Technique (DART), Image Processing, pp.4608-4621, 2012.
DOI : 10.1109/TIP.2012.2206042

G. Wang, Y. Ye, and H. Yu, Approximate and exact cone-beam reconstruction with standard and non-standard spiral scanning, Physics in medicine and biology 52, p.1, 2007.
DOI : 10.1088/0031-9155/52/6/R01

G. Wang, H. Yu, and B. Man, An outlook on x-ray CT research and development, Medical Physics, vol.29, issue.8, pp.1051-1064, 2008.
DOI : 10.1118/1.1494989

G. Wang, A general cone-beam reconstruction algorithm, Medical Imaging, pp.486-496, 1993.
DOI : 10.1109/42.241876

G. Wang, Half-scan cone-beam X-ray microtomography formula, Scanning, vol.14, issue.5, pp.216-220, 1994.
DOI : 10.1002/sca.4950140607

X. Wang, Cone-beam local reconstruction based on a Radon inversion transformation, Chinese Physics B, vol.21, issue.11, p.8702, 2012.
DOI : 10.1088/1674-1056/21/11/118702

. Lyon, Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication, 2016.

Y. Xia, Reconstruction from truncated projections in cone-beam CT using an efficient 1D filtering, Medical Imaging 2013: Physics of Medical Imaging, pp.86681-86681
DOI : 10.1117/12.2007484

Y. Xia, Scaling calibration in region of interest reconstruction with the 1D and 2D ATRACT algorithm, International Journal of Computer Assisted Radiology and Surgery, vol.54, issue.9, pp.345-356, 2014.
DOI : 10.1088/0031-9155/54/9/014

F. Xu, On the efficiency of iterative ordered subset reconstruction algorithms for acceleration on GPUs, Computer Methods and Programs in Biomedicine, vol.98, issue.3, pp.261-270, 2010.
DOI : 10.1016/j.cmpb.2009.09.003

G. Yan, Fast Katsevich algorithm based on GPU for helical conebeam computed tomography, IEEE Transactions on information technology in biomedicine, vol.144, pp.1053-1061, 2010.

X. Yan and R. Leahy, Cone beam tomography with circular, elliptical and spiral orbits, Physics in Medicine and Biology, vol.37, issue.3, p.493, 1992.
DOI : 10.1088/0031-9155/37/3/001

H. Yang, Exact cone beam reconstruction for a saddle trajectory, Physics in medicine and biology 51, p.1157, 2006.
DOI : 10.1088/0031-9155/51/5/008

J. Yang, Parallel Implementation of Katsevich's FBP Algorithm, International Journal of Biomedical Imaging, vol.49, issue.6
DOI : 10.1088/0031-9155/49/12/017

Y. Ye and G. Wang, Filtered backprojection formula for exact image reconstruction from cone-beam data along a general scanning curve, Medical Physics, vol.49, issue.9, pp.42-48, 2005.
DOI : 10.1088/0031-9155/49/22/N02

Y. Ye, H. Yu, and G. Wang, Exact Interior Reconstruction with Cone-Beam CT, International Journal of Biomedical Imaging, vol.14, issue.2, 2007.
DOI : 10.1118/1.2068907

Y. Ye, A general exact reconstruction for cone-beam CT via backprojectionfiltration, IEEE Transactions on Medical Imaging, vol.249, pp.1190-1198, 2005.

Y. Ye, A General Local Reconstruction Approach Based on a Truncated Hilbert Transform, International Journal of Biomedical Imaging, vol.1, issue.2, pp.2-2, 2007.
DOI : 10.1109/TMI.1982.4307555

Y. Ye, Exact reconstruction for cone-beam scanning along nonstandard spirals and other curves, Developments in X-Ray Tomography IV, pp.293-300, 2004.
DOI : 10.1117/12.559087

J. You, L. Gengsheng, and . Zeng, Explicit finite inverse Hilbert transforms, Inverse Problems, vol.22, issue.3, p.7, 2006.
DOI : 10.1088/0266-5611/22/3/L01

C. Dan, H. Youla, and . Webb, Image Restoration by the Method of Convex Projections: Part 1 Theory, IEEE transactions on medical imaging 1, pp.81-94, 1982.

C. Insa-lyon-dan, H. Youla, and . Webb, Image Restoration by the Method of Convex Projections: Part 1Theory, Medical Imaging, IEEE Transactions on 1, pp.81-94, 1982.

H. Yu and G. Wang, Compressed sensing based interior tomography, Physics in Medicine and Biology, vol.54, issue.9, p.2791, 2009.
DOI : 10.1088/0031-9155/54/9/014

URL : http://iopscience.iop.org/article/10.1088/0031-9155/54/13/C01/pdf

H. Yu and G. Wang, Studies on implementation of the Katsevich algorithm for spiral cone-beam CT, Journal of X-ray Science and Technology, vol.12, issue.2, pp.97-116, 2004.

H. Yu, Y. Ye, and G. Wang, Katsevich-type algorithims for variable radius spiral cone-beam CT, Developments in X-Ray Tomography IV, pp.550-557, 2004.
DOI : 10.1117/12.559300

H. Yu, -PI-window, Physics in Medicine and Biology, vol.50, issue.9, p.2099, 2005.
DOI : 10.1088/0031-9155/50/9/012

H. Yu, Exact BPF and FBP algorithms for nonstandard saddle curves, Medical Physics, vol.5535, issue.1, pp.3305-3312, 2005.
DOI : 10.1117/12.559286

Z. Yu, Axially Extended-Volume C-Arm CT Using a Reverse Helical Trajectory in the Interventional Room, IEEE Transactions on Medical Imaging, vol.34, issue.1, pp.203-215, 2015.
DOI : 10.1109/TMI.2014.2350986

Z. Yu, Fast Model-Based X-Ray CT Reconstruction Using Spatially Nonhomogeneous ICD Optimization, Image Processing, pp.161-175, 2011.
DOI : 10.1109/TIP.2010.2058811

Z. Yu, Fast Model-Based X-Ray CT Reconstruction Using Spatially Nonhomogeneous ICD Optimization, IEEE Transactions on Image Processing, vol.20, issue.1, pp.161-175, 2011.
DOI : 10.1109/TIP.2010.2058811

Z. Yu, Non-homogeneous updates for the iterative coordinate descent algorithm, Computational Imaging V, pp.64981-64981, 2007.
DOI : 10.1117/12.716796

Z. Yu, FDK-type reconstruction algorithms for the reverse helical trajectory, 2011 IEEE Nuclear Science Symposium Conference Record, pp.3980-3985, 2011.
DOI : 10.1109/NSSMIC.2011.6153757

. Gengsheng-lawrence-zeng, G. Clack, and . Gullberg, Implementation of Tuy's cone-beam inversion formula, In: Physics in medicine and biology, vol.393, p.493, 1994.

. Lyon, Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication, 2016.

L. Gengsheng and . Zeng, Two finite inverse Hilbert transform formulae for region-of-interest tomography, International Journal of Imaging Systems and Technology, vol.174, pp.219-223, 2007.

J. Zhao, Feldkamp-type reconstruction algorithms for spiral cone-beam CT with variable pitch, Journal of X-ray Science and Technology, vol.15, issue.4, pp.177-196, 2007.

S. Zhao, H. Yu, and G. Wang, A family of analytic algorithms for cone-beam CT, Developments in X-Ray Tomography IV, pp.318-328, 2004.
DOI : 10.1117/12.560242

S. Zhao, H. Yu, and G. Wang, A unified framework for exact cone-beam reconstruction formulas, Medical Physics, vol.31, issue.A, pp.1712-1721, 2005.
DOI : 10.1118/1.1803672

J. Zhou, Computed laminography for materials testing, Applied physics letters 68, pp.3500-3502, 1996.
DOI : 10.1063/1.115771

T. Zhuang, Fan-beam and cone-beam image reconstruction via filtering the backprojection image of differentiated projection data, Physics in Medicine and Biology, vol.49, issue.24, p.5489, 2004.
DOI : 10.1088/0031-9155/49/24/007

X. Zhuge, W. J. Palenstijn, and K. Batenburg, TVR-DART: A More Robust Algorithm for Discrete Tomography From Limited Projection Data With Automated Gray Value Estimation, IEEE Transactions on Image Processing, vol.25, issue.1, 2015.
DOI : 10.1109/TIP.2015.2504869

Y. Zou and X. Pan, Exact image reconstruction on PI-lines from minimum data in helical cone-beam CT, Physics in Medicine and Biology, vol.49, issue.6, p.941, 2004.
DOI : 10.1088/0031-9155/49/6/006

Y. Zou and X. Pan, Image reconstruction on PI-lines by use of filtered backprojection in helical cone-beam CT, Physics in Medicine and Biology, vol.49, issue.12, p.2717, 2004.
DOI : 10.1088/0031-9155/49/12/017

Y. Zou, X. Pan, and . Sidky, Theory and algorithms for image reconstruction on chords and within regions of interest, Journal of the Optical Society of America A, vol.22, issue.11, pp.2372-2384, 2005.
DOI : 10.1364/JOSAA.22.002372

Y. Zou, PI-line-based image reconstruction in helical cone-beam computed tomography with a variable pitch, Medical Physics, vol.50, issue.8, pp.2639-2648, 2005.
DOI : 10.1088/0031-9155/50/1/002

X. La-tomographie-par-rayons, C. Ou, and . Pour, Computed Tomography Contrairement au cas des applications médicales, l'objet inspecté en Contrôle Non Destructif (CND) peut être très grand et composé de matériaux de haute atténuation, auquel cas l'utilisation d'une trajectoire circulaire pour l'inspection est impossible à cause de contraintes dans l'espace. Pour cette raison, l'utilisation de bras robotisés est l'une des nouvelles tendances reconnues dans la CT, car elle autorise plus de flexibilité dans la trajectoire d'acquisition et permet donc la reconstruction 3D de régions difficilement accessibles dont la reconstruction ne pourrait pas être assurée par des systèmes de tomographie industriels classiques Une cellule de tomographie X robotisée a été installée au CEA. La plateforme se compose de deux bras robotiques pour positionner et déplacer la source et le détecteur en vis-à-vis. Parmi les nouveaux défis posés par la tomographie robotisée, nous nous concentrons ici plus particulièrement sur la limitation de l'ouverture angulaire imposée par la configuration en raison des contraintes importantes sur le mouvement mécanique de la plateforme. Le deuxième défi majeur est la troncation des projections qui se produit lorsque l'objet est trop grand par rapport au détecteur. L'objectif principal de ce travail consiste à adapter et à optimiser des méthodes de reconstruction CT pour des trajectoires non standard, Nous étudions à la fois des algorithmes de reconstruction analytiques et itératifs. Avant d'effectuer des inspections robotiques réelles

C. Département-d, S. Thomas, R. Françoise, P. , and I. Lyon, Imagerie et de Simulation pour le Contrôle (DISC) Laboratoire Vibrations Acoustique (LVA) Directeur de thèse: Valérie KAFTANDJIAN Président de jury : Françoise PEYRIN Composition du jury thèse est accessible à l'adresse : http://theses.insa-lyon, Laboratoire