C. P. Wong, [Polymers for electronic and photonic applications], 1992.

F. Charra, V. M. Agranovich, F. Kajzar, and N. , of NATO science series, 2003.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff et al., High-frequency single-photon source with polarization control, Nature Photonics, vol.418, issue.12, pp.704-708, 2007.
DOI : 10.1038/nphoton.2007.227

Y. Dumeige, F. Treussart, R. Alléaume, J. Roch, T. Gacoin et al., Photo-induced creation of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination, Journal of Luminescence, vol.109, issue.2, pp.61-67, 2004.
DOI : 10.1016/j.jlumin.2004.01.020

F. Jelezko, J. Wrachtrup, and J. , Single defect centres in diamond: A review, physica status solidi (a), vol.46, issue.4, pp.3207-3225, 2006.
DOI : 10.1002/pssa.200671403

P. Hemmer and J. Wrachtrup, Where Is My Quantum Computer?, Science, vol.77, issue.7213, pp.473-474, 2009.
DOI : 10.1103/PhysRevA.77.041801

G. Reiss and A. Hütten, Applications beyond data storage, Nature Materials, vol.112, issue.10, pp.725-726, 2005.
DOI : 10.1016/j.jbiotec.2004.04.019

C. Chappert, A. Fert, V. Dau, and F. N. , The emergence of spin electronics in data storage, Nature Materials, vol.96, issue.5, pp.813-823, 2007.
DOI : 10.1016/j.physrep.2005.08.004

J. Alonso, H. Khurshid, J. Devkota, Z. Nemati, N. Khadka et al., Superparamagnetic nanoparticles encapsulated in lipid vesicles for advanced magnetic hyperthermia and biodetection, Journal of Applied Physics, vol.119, issue.8, p.83904, 2016.
DOI : 10.1063/1.4862395

S. Lal, S. E. Clare, and N. J. Halas, Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact, Accounts of Chemical Research, vol.41, issue.12, pp.1842-1851, 2008.
DOI : 10.1021/ar800150g

X. Huang, P. K. Jain, I. H. El-sayed, and M. A. Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles, Lasers in Medical Science, vol.297, issue.6, pp.217-228, 2007.
DOI : 10.1177/153303460300200602

C. Clavero, Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices, Nature Photonics, vol.51, issue.2, pp.95-103, 2014.
DOI : 10.3131/jvsj2.51.172

D. Staedler, D. Magouroux, T. Hadji, R. Joulaud, C. Extermann et al., Harmonic Nanocrystals for Biolabeling: A Survey of Optical Properties and Biocompatibility, ACS Nano, vol.6, issue.3, pp.2542-2549, 2012.
DOI : 10.1021/nn204990n

URL : https://hal.archives-ouvertes.fr/hal-00688092

X. Gao, Y. Cui, R. Levenson, L. Chung, and S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots, Nature Biotechnology, vol.214, issue.8, pp.969-976, 2004.
DOI : 10.1006/bbrc.1995.2373

S. Shukla, E. P. Furlani, X. Vidal, M. T. Swihart, P. et al., Two-Photon Lithography of Sub-Wavelength Metallic Structures in a Polymer Matrix, Advanced Materials, vol.89, issue.33, pp.3695-3699, 2010.
DOI : 10.1002/adma.201000059

Z. Sun, X. Dong, W. Chen, S. Nakanishi, X. Duan et al., Multicolor Polymer Nanocomposites: In Situ Synthesis and Fabrication of 3D Microstructures, Advanced Materials, vol.90, issue.454, pp.914-919, 2008.
DOI : 10.1002/adma.200702035

J. Gass, P. Poddar, J. Almand, S. Srinath, and H. Srikanth, Superparamagnetic Polymer Nanocomposites with Uniform Fe3O4 Nanoparticle Dispersions, Advanced Functional Materials, vol.17, issue.1, pp.71-75, 2006.
DOI : 10.1002/adfm.200500335

W. Lu, P. Xie, Z. Zhang, G. Wong, and K. Wong, photonic crystal for visible emissions, Optics Express, vol.14, issue.25, pp.12353-12358, 2006.
DOI : 10.1364/OE.14.012353

M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O-'faolain et al., Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities, Optics Express, vol.18, issue.25, p.26613, 2010.
DOI : 10.1364/OE.18.026613

S. Noda, M. Fujita, and T. Asano, Spontaneous-emission control by photonic crystals and nanocavities, Nature Photonics, vol.88, issue.8, pp.449-458, 2007.
DOI : 10.1364/OE.10.000670

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, Laser oscillation in a strongly coupled single-quantum-dot???nanocavity system, Nature Physics, vol.425, issue.4, pp.279-283, 2010.
DOI : 10.1103/PhysRevLett.87.157401

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity, Nature Photonics, vol.51, issue.3, pp.185-189, 2008.
DOI : 10.1016/S0030-4018(02)01680-2

H. Liu, C. Wang, C. Hsu, T. Lin, and J. Liu, Optically tuneable blue phase photonic band gaps, Applied Physics Letters, vol.96, issue.12, p.121103, 2010.
DOI : 10.1021/jp9939221

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse et al., Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling, Nano Letters, vol.10, issue.3, pp.891-895, 2010.
DOI : 10.1021/nl903555u

M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O-'faolain et al., Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities, Optics Express, vol.18, issue.25, pp.26613-26624, 2010.
DOI : 10.1364/OE.18.026613

M. Kataja, T. K. Hakala, A. Julku, M. J. Huttunen, S. Van-dijken et al., Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays, Nature Communications, vol.64, issue.1, p.7072, 2015.
DOI : 10.1016/j.jcp.2006.09.013

L. Xuan, L. Brasselet, S. Treussart, F. Roch, J. Marquier et al., Balanced homodyne detection of second-harmonic generation from isolated subwavelength emitters, Applied Physics Letters, vol.89, issue.12, p.121118, 2006.
DOI : 10.1364/OL.25.001526

URL : https://hal.archives-ouvertes.fr/hal-00022891

L. Xuan, L. Zhou, C. Slablab, A. Chauvat, D. Tard et al., Photostable Second-Harmonic Generation from a Single KTiOPO4 Nanocrystal for Nonlinear Microscopy, pp.1332-1336, 2008.

M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, Second-Harmonic Generation from a Single Core/Shell Quantum Dot, Small, vol.271, issue.24, pp.2835-2840, 2009.
DOI : 10.1002/smll.200900399

M. Zielinski, S. Winter, R. Kolkowski, C. Nogues, D. Oron et al., Nanoengineering the second order susceptibility in semiconductor quantum dot heterostructures, Optics Express, vol.19, issue.7, p.6657, 2011.
DOI : 10.1364/OE.19.006657

M. Mascheck, S. Schmidt, M. Silies, T. Yatsui, K. Kitamura et al., Observing the localization of light in space and time by ultrafast second-harmonic microscopy, Nature Photonics, vol.326, issue.5, pp.293-298, 2012.
DOI : 10.1016/S0370-1573(99)00091-5

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky et al., Thresholdless nanoscale coaxial lasers, Thresholdless nanoscale coaxial lasers, pp.204-207, 2012.
DOI : 10.1109/JQE.2009.2017210

URL : http://arxiv.org/pdf/1108.4749

K. Rivoire, Z. Lin, F. Hatami, and J. Vu?kovi?, Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities, Applied Physics Letters, vol.97, issue.4, p.43103, 2010.
DOI : 10.1364/OL.29.001449

H. Benisty, New designs to confine light, Nature Physics, vol.71, issue.1, pp.9-10, 2005.
DOI : 10.1103/PhysRevB.71.165118

F. Jelezko, I. Popa, A. Gruber, C. Tietz, J. Wrachtrup et al., Single spin states in a defect center resolved by optical spectroscopy, Applied Physics Letters, vol.81, issue.12, pp.81-83, 2002.
DOI : 10.1016/S0925-9635(97)00037-X

D. Shi, M. E. Sadat, A. W. Dunn, and D. B. Mast, Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications, Nanoscale, vol.21, issue.18, pp.8209-8232, 2015.
DOI : 10.1080/02656730500158360

A. J. Gimenez, D. G. Ramirez-wong, S. E. Favela-camacho, I. C. Sanchez, J. M. Yáñez-limón et al., Optical detection of magnetic nanoparticles in colloidal suspensions, Journal of Magnetism and Magnetic Materials, vol.402, pp.150-155, 2016.
DOI : 10.1016/j.jmmm.2015.11.058

G. Waldherr, J. Beck, P. Neumann, R. Said, M. Nitsche et al., High-dynamic-range magnetometry with a single nuclear spin in diamond, Nature Nanotechnology, vol.80, issue.2, pp.105-108, 2012.
DOI : 10.1103/PhysRevA.80.052114

P. Maletinsky, S. Hong, M. S. Grinolds, B. Hausmann, M. D. Lukin et al., A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres, Nature Nanotechnology, vol.314, issue.5, pp.320-324, 2012.
DOI : 10.1126/science.1131871

J. K. Hohmann, M. Renner, E. H. Waller, and G. Von-freymann, Three-Dimensional ??-Printing: An Enabling Technology, Advanced Optical Materials, vol.19, issue.11, pp.1488-1507, 2015.
DOI : 10.1364/OE.19.005602

S. Maruo and J. Fourkas, Recent progress in multiphoton microfabrication, Laser & Photonics Review, vol.86, issue.54, pp.100-111, 2008.
DOI : 10.1088/1464-4258/7/8/008

Q. Li, M. T. Do, I. Ledoux-rak, L. , and N. D. , Concept for three-dimensional optical addressing by ultralow one-photon absorption method, Optics Letters, vol.38, issue.22, p.4640, 2013.
DOI : 10.1364/OL.38.004640

M. T. Do, T. T. Nguyen, Q. Li, H. Benisty, I. Ledoux-rak et al., Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing, Optics Express, vol.21, issue.18, p.20964, 2013.
DOI : 10.1364/OE.21.020964

URL : https://hal.archives-ouvertes.fr/hal-00857666

Q. C. Tong, D. T. Nguyen, M. T. Do, M. H. Luong, B. Journet et al., Direct laser writing of polymeric nanostructures via optically induced local thermal effect, Applied Physics Letters, vol.4, issue.18, p.183104, 2016.
DOI : 10.1007/978-3-642-10523-4_4

URL : https://hal.archives-ouvertes.fr/tel-01424960

Q. C. Tong, M. H. Luong, J. Remmel, M. T. Do, D. T. Nguyen et al., Rapid direct laser writing of desired plasmonic nanostructures, Optics Letters, vol.42, issue.12, pp.2382-2385, 2017.
DOI : 10.1364/OL.42.002382

Q. C. Tong, M. H. Luong, T. M. Tran, J. Remmel, M. T. Do et al., Realization of Desired Plasmonic Structures via a Direct Laser Writing Technique, Journal of Electronic Materials, vol.4, issue.62, pp.3695-3701, 2017.
DOI : 10.1515/nanoph-2014-0015

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas et al., A three-dimensional photonic crystal operating at infrared wavelengths, Nature, vol.9, issue.6690, pp.251-253, 1998.
DOI : 10.1364/OPN.9.2.000032

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich et al., Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication, Nature, vol.86, issue.6722, pp.51-54, 1999.
DOI : 10.1109/5.704260

J. H. Strickler and W. W. Webb, Three-dimensional optical data storage in refractive media by two-photon point excitation, Optics Letters, vol.16, issue.22, pp.1780-1782, 1991.
DOI : 10.1364/OL.16.001780

M. Alkaisi, R. Blaikie, S. Mcnab, R. Cheung, R. S. Cumming et al., Sub-diffraction-limited patterning using evanescent near-field optical lithography, Applied Physics Letters, vol.75, issue.22, pp.3560-3562, 1999.
DOI : 10.1116/1.590471

A. Mata, A. J. Fleischman, R. , and S. , Fabrication of multi-layer SU-8 microstructures, Journal of Micromechanics and Microengineering, vol.16, issue.2, p.276, 2006.
DOI : 10.1088/0960-1317/16/2/012

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature, vol.385, issue.6773, pp.53-56, 2000.
DOI : 10.1038/385321a0

N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, L. et al., Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique, Optics Express, vol.13, issue.23, pp.9605-9611, 2005.
DOI : 10.1364/OPEX.13.009605

N. D. Lai, T. S. Zheng, D. B. Do, J. H. Lin, and C. C. Hsu, Fabrication of desired three-dimensional structures by??holographic assembly technique, Applied Physics A, vol.45, issue.1, pp.171-175, 2010.
DOI : 10.1063/1.1954881

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1??m, Applied Physics Letters, vol.88, issue.22, p.221101, 2006.
DOI : 10.1103/PhysRevE.66.016610

H. Sun, S. Matsuo, and H. Misawa, Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin, Applied Physics Letters, vol.74, issue.6, pp.786-788, 1999.
DOI : 10.1063/1.117002

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, Two-photon direct laser writing of ultracompact multi-lens objectives, Nature Photonics, vol.15, issue.68, pp.2016-121, 2016.
DOI : 10.1021/nl5042325

M. Straub and M. Gu, Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization, Optics Letters, vol.27, issue.20, pp.1824-1826, 2002.
DOI : 10.1364/OL.27.001824

C. Rensch, S. Hell, M. V. Schickfus, and S. Hunklinger, Laser scanner for direct writing lithography, Applied Optics, vol.28, issue.17, pp.3754-3758, 1989.
DOI : 10.1364/AO.28.003754

D. Bratton, D. Yang, J. Dai, and C. K. Ober, Recent progress in high resolution lithography, Polymers for Advanced Technologies, vol.308, issue.2, pp.94-103, 2006.
DOI : 10.1143/JJAP.42.3913

S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, and A. Boisen, Processing of thin SU-8 films, Journal of Micromechanics and Microengineering, vol.18, issue.12, p.125020, 2008.
DOI : 10.1088/0960-1317/18/12/125020

M. T. Li, Q. Ledoux-rak, I. , L. , and N. D. , Optimization of LOPAbased direct laser writing technique for fabrication of submicrometric polymer two-and three-dimensional structures, 9127, 912703, International Society for Optics and Photonics, 2014.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8, Applied Physics Letters, vol.20, issue.2, p.24106, 2006.
DOI : 10.1364/OL.31.001367

S. Yang, M. Matthews, S. Elhadj, D. Cooke, M. Guss et al., Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica, Applied Optics, vol.49, issue.14, 2010.
DOI : 10.1364/AO.49.002606

J. Wei, Y. Wang, and Y. Wu, Manipulation of heat-diffusion channel in laser thermal lithography, Optics Express, vol.22, issue.26, pp.32470-32481, 2014.
DOI : 10.1364/OE.22.032470

M. Kuwahara, C. Mihalcea, N. Atoda, J. Tominaga, H. Fuji et al., Thermal lithography for 0.1 µm pattern fabrication, Microelectronic Engineering, pp.61-62, 2002.

M. Kuwahara, J. H. Kim, and J. Tominaga, Dot formation with 170-nm dimensions using a thermal lithography technique, Microelectronic Engineering, vol.67, issue.68, pp.651-656, 2003.
DOI : 10.1016/S0167-9317(03)00127-8

J. Wei, Z. Sun, F. Zhang, W. Xu, Y. Wang et al., Thermal melting of solid materials induced by ultrafast laser pulse irradiation as explosively homogeneous nucleation, Chemical Physics Letters, vol.392, issue.4-6, pp.415-418, 2004.
DOI : 10.1016/j.cplett.2004.05.081

B. Jung, J. Sha, F. Paredes, C. K. Ober, M. O. Thompson et al., Sub-millisecond post exposure bake of chemically amplified resists by CO 2 laser heat treatment, Advances in Resist Materials and Processing Technology XXVII, 2010.
DOI : 10.1117/12.848418

E. Wolf, Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field, Proc. R. Soc. Lond. A, pp.349-357, 1959.
DOI : 10.1098/rspa.1959.0199

M. Grupen and K. Kearfott, Numerical analysis of infrared laser heating in thermoluminescent material layers, Journal of Applied Physics, vol.8, issue.3, pp.1044-1049, 1988.
DOI : 10.1093/oxfordjournals.rpd.a083041

M. S. Brown and C. B. Arnold, Fundamentals of Laser-Material Interaction and Application to Multiscale Surface Modification, " in [Laser Precision Microfabrication DOI: 10, Series in Materials Science, issue.135, pp.91-120978, 1007.

J. Liu, B. Cai, J. Zhu, G. Ding, X. Zhao et al., Process research of high aspect ratio microstructure using SU-8 resist, Microsystem Technologies, vol.10, issue.4, pp.265-268, 2004.
DOI : 10.1007/s00542-002-0242-2

J. A. Matta and J. O. Outwater, The nature, origin and effects of internal stresses in reinforced plastic laminates, Polymer Engineering and Science, vol.37, issue.4, pp.314-319, 1962.
DOI : 10.1002/pen.760020411

T. F. Scott, C. J. Kloxin, D. L. Forman, R. R. Mcleod, and C. N. Bowman, Principles of voxel refinement in optical direct write lithography, Journal of Materials Chemistry, vol.16, issue.37, pp.14150-14155, 2011.
DOI : 10.1002/chem.200902309

K. Chen, I. Lin, and F. Ko, Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies, Journal of Micromechanics and Microengineering, vol.15, issue.10, p.1894, 2005.
DOI : 10.1088/0960-1317/15/10/015

D. S. Correa, L. D. Boni, A. J. Otuka, V. Tribuzi, and C. R. Mendonça, Two-Photon Polymerization Fabrication of Doped Microstructures, 2012.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, Achieving ??/20 Resolution by One-Color Initiation and Deactivation of Polymerization, Science, vol.83, issue.5, pp.910-913, 2009.
DOI : 10.1021/nl073164n

A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis et al., Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials, Optics Express, vol.17, issue.4, pp.2143-2148, 2009.
DOI : 10.1364/OE.17.002143

Q. Sun, K. Ueno, and H. Misawa, In situ investigation of the shrinkage of photopolymerized micro/nanostructures: the effect of the drying process, Optics Letters, vol.37, issue.4, pp.710-712, 2012.
DOI : 10.1364/OL.37.000710

H. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. Kim et al., Shape precompensation in two-photon laser nanowriting of photonic lattices, Applied Physics Letters, vol.85, issue.17, pp.3708-3710, 2004.
DOI : 10.1038/35036532

S. Maruo, T. Hasegawa, Y. , and N. , Single-anchor support and supercritical CO_2 drying enable high-precision microfabrication of three-dimensional structures, Optics Express, vol.17, issue.23, pp.20945-20951, 2009.
DOI : 10.1364/OE.17.020945

T. W. Lim, Y. Son, D. Yang, T. A. Pham, D. Kim et al., Net Shape Manufacturing of Three-Dimensional SiCN Ceramic Microstructures Using an Isotropic Shrinkage Method by Introducing Shrinkage Guiders, International Journal of Applied Ceramic Technology, vol.84, issue.10, pp.258-264, 2008.
DOI : 10.1063/1.2425022

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses, Journal of Micromechanics and Microengineering, vol.20, issue.3, p.35004, 2010.
DOI : 10.1088/0960-1317/20/3/035004

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, Raman spectra of pyridine adsorbed at a silver electrode, Chemical Physics Letters, vol.26, issue.2, pp.163-166, 1974.
DOI : 10.1016/0009-2614(74)85388-1

G. C. Schatz and R. P. Van-duyne, Electromagnetic Mechanism of Surface- Enhanced Spectroscopy, " in [Handbook of Vibrational Spectroscopy, 2006.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, Temporal Behavior of Radiation-Pressure-Induced Vibrations of an Optical Microcavity Phonon Mode, Physical Review Letters, vol.16, issue.22, p.223902, 2005.
DOI : 10.1364/JOSAB.16.000147

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity, Physical Review Letters, vol.432, issue.3, p.33901, 2005.
DOI : 10.1038/nature03118

J. Henderson, S. Shi, S. Cakmaktepe, C. , and T. M. , Pattern transfer nanomanufacturing using magnetic recording for programmed nanoparticle assembly, Nanotechnology, vol.23, issue.18, p.185304, 2012.
DOI : 10.1088/0957-4484/23/18/185304

A. Alfadhel, B. Li, and J. Kosel, Magnetic polymer nanocomposites for sensing applications, IEEE SENSORS 2014 Proceedings, pp.2066-2069, 2014.
DOI : 10.1109/ICSENS.2014.6985442

J. Kim, S. E. Chung, S. Choi, H. Lee, J. Kim et al., Programming magnetic anisotropy in polymeric??microactuators, Nature Materials, vol.24, issue.10, pp.747-752, 2011.
DOI : 10.1021/la7039493

I. Safarik and M. Safarikova, Magnetic techniques for the isolation and purification of proteins and peptides, BioMagnetic Research and Technology, vol.2, issue.1, p.7, 2004.
DOI : 10.1186/1477-044X-2-7

S. Seethapathy, T. Górecki, L. , and X. , Passive sampling in environmental analysis, Journal of Chromatography A, vol.1184, issue.1-2, pp.234-253, 2008.
DOI : 10.1016/j.chroma.2007.07.070

J. Melin and S. R. Quake, Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation, Annual Review of Biophysics and Biomolecular Structure, vol.36, issue.1, pp.213-231, 2007.
DOI : 10.1146/annurev.biophys.36.040306.132646

E. W. Jager, E. Smela, and O. Inganäs, Microfabricating Conjugated Polymer Actuators, Science, vol.290, issue.5496, pp.1540-1545, 2000.
DOI : 10.1126/science.290.5496.1540

H. Huang, M. S. Sakar, A. J. Petruska, S. Pané, N. et al., Soft micromachines with programmable motility and morphology, Nature Communications, vol.7, p.12263, 2016.
DOI : 10.1073/pnas.0914069107

URL : http://www.nature.com/articles/ncomms12263.pdf

I. A. Sukhoivanov and I. V. Guryev, Introduction to Photonic Crystals, [Photonic Crystals], Springer Series in Optical Sciences, pp.1-12, 2009.
DOI : 10.1007/978-3-642-02646-1_1

M. Kharboutly, M. Gauthier, C. , and N. , Modeling the trajectory of a microparticle in a dielectrophoresis device, Journal of Applied Physics, vol.106, issue.11, p.114312, 2009.
DOI : 10.1017/CBO9780511574498

URL : https://hal.archives-ouvertes.fr/hal-00524710

G. Kosa, M. Shoham, and M. Zaaroor, Propulsion Method for Swimming Microrobots, IEEE Transactions on Robotics, vol.23, issue.1, pp.137-150, 2007.
DOI : 10.1109/TRO.2006.889485

L. A. Liew, V. M. Bright, M. L. Dunn, J. W. Daily, R. et al., Development of SiCN ceramic thermal actuators, " in [Technical Digest, MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, pp.590-593, 2002.

H. Sun, K. Takada, and S. Kawata, Elastic force analysis of functional polymer submicron oscillators, Applied Physics Letters, vol.79, issue.19, pp.3173-3175, 2001.
DOI : 10.1103/PhysRevLett.83.4534

J. Z. Sun, M. C. Gaidis, E. J. O-'sullivan, E. A. Joseph, G. Hu et al., A three-terminal spin-torque-driven magnetic switch, Applied Physics Letters, vol.43, issue.8, p.83506, 2009.
DOI : 10.1063/1.3058680

J. Li, S. Sattayasamitsathit, R. Dong, W. Gao, R. Tam et al., Template electrosynthesis of tailored-made helical nanoswimmers, Nanoscale, vol.72, issue.16, pp.9415-9420, 2014.
DOI : 10.1088/0034-4885/72/9/096601

W. Gao, X. Feng, A. Pei, C. R. Kane, R. Tam et al., Bioinspired Helical Microswimmers Based on Vascular Plants, Nano Letters, vol.14, issue.1, pp.305-310, 2014.
DOI : 10.1021/nl404044d

L. Zhang, J. J. Abbott, L. Dong, B. E. Kratochvil, D. Bell et al., Artificial bacterial flagella: Fabrication and magnetic control, Applied Physics Letters, vol.94, issue.6, p.64107, 2009.
DOI : 10.1007/978-94-009-8352-6_1

A. Ghosh and P. Fischer, Controlled Propulsion of Artificial Magnetic Nanostructured Propellers, Nano Letters, vol.9, issue.6, pp.2243-2245, 2009.
DOI : 10.1021/nl900186w

S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-obregón et al., Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport, Advanced Materials, vol.22, issue.6, pp.811-816, 2012.
DOI : 10.1002/adma.200902337

J. Wang, H. Xia, B. Xu, L. Niu, D. Wu et al., Remote manipulation of micronanomachines containing magnetic nanoparticles, Optics Letters, vol.34, issue.5, pp.581-583, 2009.
DOI : 10.1364/OL.34.000581

H. Xia, J. Wang, Y. Tian, Q. Chen, X. Du et al., Ferrofluids for Fabrication of Remotely Controllable Micro-Nanomachines by Two-Photon Polymerization, Advanced Materials, vol.217, issue.29, pp.3204-3207, 2010.
DOI : 10.1109/TMAG.1981.1061188

Z. Cui, J. Rothman, M. Klaui, L. Lopez-diaz, C. A. Vaz et al., Fabrication of magnetic rings for high density memory devices, Microelectronic Engineering, vol.61, issue.62, pp.61-62, 2002.
DOI : 10.1016/S0167-9317(02)00476-8

B. D. Terris and T. Thomson, Nanofabricated and self-assembled magnetic structures as data storage media, Journal of Physics D: Applied Physics, vol.38, issue.12, p.199, 2005.
DOI : 10.1088/0022-3727/38/12/R01

M. Suter, O. Ergeneman, J. Zürcher, C. Moitzi, S. Pané et al., A photopatternable superparamagnetic nanocomposite: Material characterization and fabrication of microstructures, Sensors and Actuators B: Chemical, vol.156, issue.1, pp.433-443, 2011.
DOI : 10.1016/j.snb.2011.04.078

A. Lu, E. L. Salabas, and F. Schüth, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angewandte Chemie International Edition, vol.92, issue.8, pp.1222-1244, 2007.
DOI : 10.3181/00379727-158-40158

T. Hyeon, Chemical synthesis of magnetic nanoparticles, Chem. Commun, pp.927-934, 2003.

N. H. Hai, N. D. Phu, N. H. Luong, N. Chau, H. D. Chinh et al., Mechanism for Sustainable Magnetic Nanoparticles under Ambient Conditions, Mechanism for Sustainable Magnetic Nanoparticles under Ambient Conditions, p.1327, 2008.
DOI : 10.3938/jkps.52.1327

T. Phenrat, H. Kim, F. Fagerlund, T. Illangasekare, R. D. Tilton et al., Nanoparticles in Sand Columns, Environmental Science & Technology, vol.43, issue.13, pp.5079-5085, 2009.
DOI : 10.1021/es900171v

A. E. Deatsch and B. A. Evans, Heating efficiency in magnetic nanoparticle hyperthermia, Journal of Magnetism and Magnetic Materials, vol.354, pp.163-172, 2014.
DOI : 10.1016/j.jmmm.2013.11.006

K. Mahmoudi and C. G. Hadjipanayis, The application of magnetic nanoparticles for the treatment of brain tumors, Frontiers in Chemistry, vol.88, issue.276, p.109, 2014.
DOI : 10.1111/j.1349-7006.1997.tb00429.x

V. V. Mody, A. Cox, S. Shah, A. Singh, W. Bevins et al., Magnetic nanoparticle drug delivery systems for targeting tumor, Applied Nanoscience, vol.311, issue.2, pp.385-392, 2013.
DOI : 10.1016/j.jmmm.2006.11.177

A. Lu, W. Schmidt, N. Matoussevitch, H. Bönnemann, B. Spliethoff et al., Nanoengineering of a Magnetically Separable Hydrogenation Catalyst, Angewandte Chemie International Edition, vol.43, issue.33, pp.4303-4306, 2004.
DOI : 10.1002/anie.200454222

H. Markides, M. Rotherham, E. Haj, and A. J. , Biocompatibility and Toxicity of Magnetic Nanoparticles in Regenerative Medicine DOI: 10, 1155.

C. S. Troisi, M. Knaflitz, E. S. Olivetti, L. Martino, and G. Durin, Fabrication of new Magnetic Micro-Machines for minimally invasive surgery, 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.735-738, 2008.

Y. Tian and X. Shao, A Laser Fabrication of Magnetic Micromachines by Using Optimized Photosensitive Ferrofluids, Journal of Nanomaterials, vol.2016, p.2016, 2016.
DOI : 10.1021/ja026501x

J. Scholl, A. Koh, D. , and J. , Quantum plasmon resonances of individual metallic nanoparticles, Nature, vol.10, issue.7390, pp.421-427, 2012.
DOI : 10.1038/nmat3004

M. Goncalves, Plasmonic nanoparticles: fabrication, simulation and experiments, Journal of Physics D: Applied Physics, vol.47, issue.21, p.213001, 2014.
DOI : 10.1088/0022-3727/47/21/213001

P. Alonso-gonzalez, P. Albella, M. Mchnell, J. Chen, F. Huth et al., Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots, Nature Communications, vol.80, issue.1, p.684, 2012.
DOI : 10.1103/PhysRevB.80.153409

Y. Chen, M. Hong, and G. Huang, A protein transistor made of an antibody molecule and two gold nanoparticles, Nature Nanotechnology, vol.12, issue.3, pp.197-203, 2012.
DOI : 10.1021/cm980065p

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna, Physical Review Letters, vol.265, issue.1, p.17402, 2006.
DOI : 10.1021/jp001288h

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim et al., High-harmonic generation by resonant plasmon field enhancement, Nature, vol.127, issue.7196, pp.757-760, 2008.
DOI : 10.1038/nature07012

P. Zijlstra, J. W. Chon, and M. Gu, Five-dimensional optical recording mediated by surface plasmons in gold nanorods, Nature, vol.110, issue.7245, pp.410-413, 2009.
DOI : 10.1002/1521-4095(20020705)14:13/14<1000::AID-ADMA1000>3.0.CO;2-E

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White et al., Plasmonics for extreme light concentration and manipulation, Nature Materials, vol.91, issue.3, pp.193-204, 2010.
DOI : 10.1080/09500349608232782

S. Linic, P. Christopher, I. , and D. B. , Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nature Materials, vol.3, issue.12, pp.911-921, 2011.
DOI : 10.1021/jp953720e

W. Zhang, L. Huang, C. Santschi, M. , and O. J. , Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole Antennas, Nano Letters, vol.10, issue.3, pp.1006-1011, 2010.
DOI : 10.1021/nl904168f

URL : https://infoscience.epfl.ch/record/164800/files/127.pdf

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil et al., Organic plasmon-emitting diode, Nature Photonics, vol.4, issue.11, pp.684-687, 2008.
DOI : 10.1063/1.1646730

D. Englund, I. Fushman, and J. Vu?kovi?, General recipe for designing photonic crystal cavities, Optics Express, vol.13, issue.16, p.5961, 2005.
DOI : 10.1364/OPEX.13.005961

URL : http://arxiv.org/pdf/physics/0507156

X. Wang and B. Palpant, Large and Ultrafast Optical Response of a One-Dimensional Plasmonic???Photonic Cavity, Plasmonics, vol.82, issue.8, pp.1647-1653, 2013.
DOI : 10.1063/1.1556171

URL : https://hal.archives-ouvertes.fr/hal-00833481

X. Wang, R. Morea, J. Gonzalo, and B. Palpant, Coupling Localized Plasmonic and Photonic Modes Tailors and Boosts Ultrafast Light Modulation by Gold Nanoparticles, Nano Letters, vol.15, issue.4, pp.2633-2639, 2015.
DOI : 10.1021/acs.nanolett.5b00226

URL : https://hal.archives-ouvertes.fr/hal-01263294

C. Huang, A. Bouhelier, G. Colas-des-francs, A. Bruyant, A. Guenot et al., Gain, detuning, and radiation patterns of nanoparticle optical antennas, Physical Review B, vol.16, issue.15, p.155407, 2008.
DOI : 10.1103/PhysRevB.76.245403

URL : https://hal.archives-ouvertes.fr/hal-00472387

W. Lukosz and R. E. Kunz, Light emission by magnetic and electric dipoles close to a plane interface I Total radiated power, Journal of the Optical Society of America, vol.67, issue.12, p.1607, 1977.
DOI : 10.1364/JOSA.67.001607

M. T. Do, D. T. Nguyen, H. M. Ngo, I. Ledoux-rak, L. et al., Controlled coupling of a single nanoparticle in polymeric microstructure by low one-photon absorption???based direct laser writing technique, Nanotechnology, vol.26, issue.10, p.105301, 2015.
DOI : 10.1088/0957-4484/26/10/105301

URL : https://hal.archives-ouvertes.fr/hal-01355175

S. Merabia, S. Shenogin, L. Joly, P. Keblinski, and J. Barrat, Heat transfer from nanoparticles: A corresponding state analysis, Proceedings of the National Academy of Sciences, vol.117, issue.18, pp.15113-15118, 2009.
DOI : 10.1006/jcph.1995.1039

URL : https://hal.archives-ouvertes.fr/hal-00390390

S. Hashimoto, D. Werner, and T. Uwada, Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol.13, issue.1, pp.28-54, 2012.
DOI : 10.1016/j.jphotochemrev.2012.01.001

C. Mack, Conventional Resists: Exposure and Bake Chemistry, " in [Fundamental Principles of Optical Lithography, pp.191-222, 2007.

A. Dousse, J. Suffczy?ski, R. Braive, A. Miard, A. Lemaître et al., Scalable implementation of strongly coupled cavity-quantum dot devices, Applied Physics Letters, vol.94, issue.12, p.121102, 2009.
DOI : 10.1063/1.2711186

A. W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters et al., Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures, Scientific Reports, vol.7, issue.1, p.1577, 2013.
DOI : 10.1038/nmat2197

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann et al., Harmonic Nanocrystals for Biolabeling: A Survey of Optical Properties and Biocompatibility, Harmonic Nanocrystals for Biolabeling: A Survey of Optical Properties and Biocompatibility, pp.2542-2549, 2012.
DOI : 10.1021/nn204990n

URL : https://hal.archives-ouvertes.fr/hal-00688092

A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, P. et al., Zinc Oxide Nanocrystals for Nonresonant Nonlinear Optical Microscopy in Biology and Medicine, The Journal of Physical Chemistry C, vol.112, issue.29, pp.10721-10724, 2008.
DOI : 10.1021/jp801684j

J. Extermann, L. Bonacina, E. Cuña, C. Kasparian, Y. Mugnier et al., Nanodoublers as deep imaging markers for multi-photon microscopy, Optics Express, vol.17, issue.17, pp.15342-15349, 2009.
DOI : 10.1364/OE.17.015342

URL : https://hal.archives-ouvertes.fr/hal-00604352

R. Grange, T. Lanvin, C. Hsieh, Y. Pu, and D. Psaltis, Imaging with second-harmonic radiation probes in living tissue, Biomedical Optics Express, vol.2, issue.9, pp.2532-2539, 2011.
DOI : 10.1364/BOE.2.002532

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang et al., Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires, Nano Letters, vol.2, issue.4, pp.279-283, 2002.
DOI : 10.1021/nl015686n

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, Far-field Imaging of Optical Second-Harmonic Generation in Single GaN Nanowires, Nano Letters, vol.7, issue.3, pp.831-836, 2007.
DOI : 10.1021/nl0624420

L. Bonacina, Y. Mugnier, F. Courvoisier, R. L. Dantec, J. Extermann et al., Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy, Applied Physics B, vol.429, issue.3, pp.399-403, 2007.
DOI : 10.1007/s00340-007-2612-z

URL : https://hal.archives-ouvertes.fr/hal-00494021

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally et al., Tunable nanowire nonlinear optical probe, Nature, vol.424, issue.7148, pp.1098-1101, 2007.
DOI : 10.1557/mrs2005.26

URL : https://infoscience.epfl.ch/record/129293/files/Nature_Nakayama_2007.pdf

F. Treussart, E. Botzung-appert, N. Ha-duong, A. Ibanez, J. Roch et al., Second Harmonic Generation and Fluorescence of CMONS Dye Nanocrystals Grown in a Sol-Gel Thin Film, ChemPhysChem, vol.7, issue.7, pp.757-760, 2003.
DOI : 10.1007/BF02760507

V. L. Floc-'h, Caractérisation de l'organisation moléculaire par microscopie non-linéaire cohérente et incohérente, 2004.

A. Ibanez, S. Maximov, A. Guiu, C. Chaillout, and P. L. Baldeck, Controlled Nanocrystallization of Organic Molecules in Sol-Gel Glasses, Advanced Materials, vol.10, issue.18, pp.1540-1543, 1998.
DOI : 10.1002/(SICI)1521-4095(199812)10:18<1540::AID-ADMA1540>3.0.CO;2-1

N. Sanz, P. L. Baldeck, J. Nicoud, L. Fur, Y. Ibanez et al., Polymorphism and luminescence properties of CMONS organic crystals: bulk??crystals??and??nanocrystals??confined??in??gel-glasses, Solid State Sciences, vol.3, issue.8, pp.867-875, 2001.
DOI : 10.1016/S1293-2558(01)01192-X

E. Delahaye, N. Tancrez, T. Yi, I. Ledoux, J. Zyss et al., Second harmonic generation from individual hybrid MnPS3-based nanoparticles investigated by nonlinear microscopy, Chemical Physics Letters, vol.429, issue.4-6, pp.533-537, 2006.
DOI : 10.1016/j.cplett.2006.08.074

S. Brasselet, L. Floc-'h, V. Treussart, F. Roch, J. Zyss et al., Diagnostics of the Crystalline Nature of Single Organic Nanocrystals by Nonlinear Microscopy, situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy, p.207401, 2004.
DOI : 10.1021/jp9845874

L. Floc-'h, V. Brasselet, S. Roch, J. Zyss, and J. , Monitoring of Orientation in Molecular Ensembles by Polarization Sensitive Nonlinear Microscopy, The Journal of Physical Chemistry B, vol.107, issue.45, pp.12403-12410, 2003.
DOI : 10.1021/jp034950t

A. Renn, J. Seelig, and V. Sandoghdar, Oxygen-dependent photochemistry of fluorescent dyes studied at the single molecule level, Molecular Physics, vol.87, issue.3, pp.409-414, 2006.
DOI : 10.1063/1.2006217

V. Westphal and S. W. Hell, Nanoscale Resolution in the Focal Plane of an Optical Microscope, Physical Review Letters, vol.90, issue.14, p.143903, 2005.
DOI : 10.1103/PhysRevLett.90.095503

T. A. Driscoll, H. J. Hoffman, R. E. Stone, and P. E. Perkins, Efficient second-harmonic generation in KTP crystals, Journal of the Optical Society of America B, vol.3, issue.5, pp.683-686, 1986.
DOI : 10.1364/JOSAB.3.000683

L. L. Xuan, Génération de seconde harmonique à l'échelle nanométrique : nanocristaux de KTP, exaltation par un réseau métallique, 2009.

R. L. Sutherland, [Handbook of Nonlinear Optics, 2003.

G. Hansson, H. Karlsson, S. Wang, and F. Laurell, Transmission measurements in KTP and isomorphic compounds, Applied Optics, vol.39, issue.27, pp.5058-5069, 2000.
DOI : 10.1364/AO.39.005058

G. H. Patterson and D. W. Piston, Photobleaching in Two-Photon Excitation Microscopy, Biophysical Journal, vol.78, issue.4, pp.2159-2162, 2000.
DOI : 10.1016/S0006-3495(00)76762-2

A. M. Tang, [Fundamentals of Optical Parametric Processes and Oscillations, p.6, 1996.