E. Hyda_?da and F. Impact-du-domaine, 170 3.4.4.2. Interaction avec le partenaire rédox physiologique, p.174

S. Sharma, S. K. Ghoshal, B. Soni, P. Soucaille, and G. Goma, Hydrogen the future transportation fuel: From production to applications, Renew. Sustain. Energy Rev Coninuous acetone-butanol fermentation -influence of vitamins on the metabolic-activity of Clostridium acetobutilicum, Appl. Microbiol. Biotechnol, vol.43, pp.1151-1158, 1987.

]. J. Meyer, [FeFe] hydrogenases and their evolution: a genomic perspective, Cellular and Molecular Life Sciences, vol.64, issue.9, pp.1063-1084, 2007.
DOI : 10.1007/s00018-007-6477-4

J. Esselborn, C. Lambertz, A. Adamska-venkatesh, T. Simmons, G. Berggren et al., Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic Mechanism of O2 diffusion and reduction in FeFe hydrogenase Clostridia: The importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum, E. Cornillot, C. Croux, P. Soucaille, Physical and genetic map of the Clostridium acetobutylicum ATCC 824 chromosome, pp.607-616, 1997.

I. Vasconcelos, L. Girbal, and P. Soucaille, Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of Regulation of Carbon and Electron Flow in Clostridium acetobutylicum Grown in Chemostat Culture at Neutral pH on Mixtures of Gluco, J. Bacteriol, pp.176-1443, 1994.

]. S. Peguin and P. Soucaille, Modulation of Carbon and Electron Flow in Clostridium acetobutylicum by Iron Limitation and Methyl Viologen Addition, pp.61-403, 1995.

]. M. Yoo, G. Bestel-corre, C. Croux, A. Riviere, I. Meynial-salles et al., A Quantitative System-Scale Characterization of the Metabolism of Clostridium acetobutylicum, pp.1808-1823, 2015.

]. B. Meinecke, J. Bertram, and G. Gottschalk, Purification and characterization of the pyruvate-ferredoxin oxidoreductase from Clostridium acetobutylicum, Archives of Microbiology, vol.194, issue.3, pp.244-250, 1989.
DOI : 10.1007/BF00409658

C. M. Cooksley, Y. Zhang, H. Wang, S. Redl, K. Winzer et al., Targeted mutagenesis of the Clostridium acetobutylicum acetone???butanol???ethanol fermentation pathway, Metabolic Engineering, vol.14, issue.6, pp.630-641, 2012.
DOI : 10.1016/j.ymben.2012.09.001

D. P. Wiesenborn, F. B. Rudolph, and E. T. Papoutsakis, Thiolase from Clostridium acetobutylicum ATCC 824 and Its Role in the Synthesis of Acids and Solvents, Appl. Environ. Microbiol, vol.54, pp.2717-2739, 1988.

D. P. Wiesenborn, F. B. Rudolph, and E. T. Papoutsakis, Thiolase from Clostridium acetobutylicum ATCC 824 and Its Role in the Synthesis of Acids and Solvents, Appl. Environ. Microbiol, vol.54, pp.2717-2739, 1988.

]. Y. Zheng, L. Li, M. Xian, Y. Ma, J. Yang et al., He, Problems with the microbial production of butanol, pp.1127-1138, 2009.

]. S. Kim, Y. Jang, S. Ha, J. Ahn, E. Kim et al., Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum, Nature Communications, vol.3, issue.1
DOI : 10.1016/S0168-1656(99)00022-X

]. B. Sommer, D. Garbe, P. Schrepfer, and T. Brück, Characterization of a highly thermostable ßhydroxybutyryl CoA dehydrogenase from Clostridium acetobutylicum ATCC 824, J. Mol. Catal

]. D. Lehmann and T. Lütke-eversloh, Switching Clostridium acetobutylicum to an ethanol producer by disruption of the butyrate/butanol fermentative pathway, Metabolic Engineering, vol.13, issue.5, pp.464-473, 2011.
DOI : 10.1016/j.ymben.2011.04.006

V. K. Madan, P. Hillmer, and G. Gottschalk, Purification and Properties of NADP-Dependent l(+)-3-Hydroxybutyryl-CoA Dehydrogenase from Clostridium kluyveri, European Journal of Biochemistry, vol.121, issue.1, pp.51-57, 1973.
DOI : 10.1042/bj1210309

]. F. Li, J. Hinderberger, H. Seedorf, J. Zhang, W. Buckel et al., Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from Clostridium kluyveri, Journal of Bacteriology, vol.190, issue.3, pp.843-850, 2008.
DOI : 10.1128/JB.01417-07

]. W. Buckel and R. K. Thauer, Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1827, issue.2, 2013.
DOI : 10.1016/j.bbabio.2012.07.002

URL : https://doi.org/10.1016/j.bbabio.2012.07.002

Z. L. Boynton, G. N. Bennett, and F. B. Rudolph, Cloning, sequencing, and expression of clustered genes encoding beta-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824., Journal of Bacteriology, vol.178, issue.11, pp.178-3015, 1996.
DOI : 10.1128/jb.178.11.3015-3024.1996

Z. L. Boynton, G. N. Bennett, and F. B. Rudolph, Cloning , sequencing , and expression of genes encoding phosphotransacetylase and acetate kinase from Clostridium acetobutylicum ATCC Cloning , Sequencing , and Expression of Genes Encoding Phosphotransacetylase and Acetate Kinase from Clostridium acetobu, Appl. Environ. Microbiol, pp.62-2758, 1996.

]. K. Winzer, K. Lorenz, and P. Dürre, Acetate kinase from Clostridium acetobutylicum: a highly specific enzyme that is actively transcribed during acidogenesis and solventogenesis, Microbiology, vol.143, issue.10, pp.3279-3286, 1997.
DOI : 10.1099/00221287-143-10-3279

J. W. Cary, D. J. Petersen, E. T. Papoutsakis, and G. N. Bennett, Cloning and expression of Clostridium acetobutylicum phosphotransbutyrylase and butyrate kinase genes in Escherichia coli., Journal of Bacteriology, vol.170, issue.10, pp.4613-4618, 1988.
DOI : 10.1128/jb.170.10.4613-4618.1988

]. L. Sullivan, M. S. Cates, and G. N. Bennett, Structural correlations of activity of Clostridium acetobutylicum ATCC 824 butyrate kinase isozymes, Enzyme and Microbial Technology, vol.46, issue.2, 2010.
DOI : 10.1016/j.enzmictec.2009.10.001

E. M. Green, Z. L. Boynton, L. M. Harris, F. B. Rudolph, E. T. Papoutsakis et al., Genetic manipulation of acid formation pathways by gene inactivation in, pp.2079-2086, 2016.

N. R. Palosaari and P. Rogers, Purification and properties of the inducible coenzyme A-linked butyraldehyde dehydrogenase from Clostridium acetobutylicum., Journal of Bacteriology, vol.170, issue.7, pp.2971-2976, 1988.
DOI : 10.1128/jb.170.7.2971-2976.1988

M. Yoo, C. Croux, I. Meynial-salles, and P. Soucaille, Elucidation of the roles of adhE1 and adhE2 in the primary metabolism of Clostridium acetobutylicum by combining in-frame gene deletion and a quantitative system-scale approach, Biotechnology for Biofuels, vol.18, issue.15, 2016.
DOI : 10.1016/j.ymben.2013.03.003

]. L. Fontaine, I. Meynial-salles, L. Girbal, X. Yang, C. Croux et al., Molecular Characterization and Transcriptional Analysis of adhE2, the Gene Encoding the NADH-Dependent Aldehyde/Alcohol Dehydrogenase Responsible for Butanol Production in Alcohologenic Cultures of Clostridium acetobutylicum ATCC 824, Journal of Bacteriology, vol.184, issue.3, pp.821-830, 2002.
DOI : 10.1128/JB.184.3.821-830.2002

M. Wietzke and H. Bahl, The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum, Applied Microbiology and Biotechnology, vol.55, issue.5, pp.749-761, 2012.
DOI : 10.1016/j.jmb.2011.02.050

]. D. Liu, Y. Chen, F. Ding, T. Guo, J. Xie et al., Simultaneous production of butanol and acetoin by metabolically engineered Clostridium acetobutylicum, Metabolic Engineering, vol.27, pp.107-114, 2014.
DOI : 10.1016/j.ymben.2014.11.002

]. J. Meyer, [FeFe] hydrogenases and their evolution: a genomic perspective, Cellular and Molecular Life Sciences, vol.64, issue.9, pp.1063-1084, 2007.
DOI : 10.1007/s00018-007-6477-4

B. M. Hoffman, D. Lukoyanov, Z. Y. Yang, D. R. Dean, and L. C. Seefeldt, Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage, Chemical Reviews, vol.114, issue.8, pp.4041-4062, 2014.
DOI : 10.1021/cr400641x

J. Chen, Nitrogen Fixation in the Clostridia, Genet. Regul. Nitrogen Fixat. Free. Bact, pp.53-64, 2005.
DOI : 10.1007/1-4020-2179-8_3

H. Schindelin, C. Kisker, J. L. Schlessman, J. B. Howard, and D. C. Rees, Structure of ADP??AIF4 ???-stabilized nitrogenase complex and its implications for signal transduction, Nature, vol.387, issue.6631, pp.370-376, 1997.
DOI : 10.1038/387370a0

E. S. Boyd, G. J. Schut, E. M. Shepard, J. B. Broderick, M. W. Adams et al., Origin and evolution of Fe-S proteins and enzymes, Iron Sulfur Clust, Chem. Biol, 2014.

C. Kennedy and P. Bishop, Genetics of Nitrogen Fixation and Related Aspects of Metabolism in Species of Azotobacter: History and Current Status, Genet. Regul. Nitrogen Fixat. Free. Bact, pp.27-52, 2005.
DOI : 10.1007/1-4020-2179-8_2

]. B. Blanc, C. Gerez, and S. Ollagnier-de-choudens, Assembly of Fe/S proteins in bacterial systems, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1853, issue.6, pp.1436-1447, 2015.
DOI : 10.1016/j.bbamcr.2014.12.009

URL : https://hal.archives-ouvertes.fr/hal-01166873

]. B. Roche, L. Aussel, B. Ezraty, P. Mandin, B. Py et al., Reprint of: Iron/sulfur proteins biogenesis in prokaryotes: Formation, regulation and diversity, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1827, issue.8-9, pp.923-937, 2013.
DOI : 10.1016/j.bbabio.2013.05.001

F. W. Outten, Recent advances in the Suf Fe-S cluster biogenesis pathway: Beyond the Proteobacteria, Biochim. Biophys. Acta -Mol. Cell Res

M. K. Akhtar and P. R. Jones, Deletion of iscR stimulates recombinant clostridial Fe???Fe hydrogenase activity and H2-accumulation in Escherichia coli BL21(DE3), Applied Microbiology and Biotechnology, vol.70, issue.5, pp.853-62, 2008.
DOI : 10.1093/oxfordjournals.jbchem.a022409

G. Caserta, A. Adamska-venkatesh, L. Pecqueur, M. Atta, V. Artero et al., Chemical assembly of multiple metal cofactors: The heterologously expressed multidomain [FeFe]-hydrogenase from Megasphaera elsdenii, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1857, issue.11
DOI : 10.1016/j.bbabio.2016.07.002

URL : https://hal.archives-ouvertes.fr/hal-01353393

L. Huang, W. Hu, H. Yu, F. Li, H. Tao et al., Heterologous overproduction of 2[4Fe4S]- and [2Fe2S]-type clostridial ferredoxins and [2Fe2S]-type agrobacterial ferredoxin, Protein Expression and Purification, vol.121, 2016.
DOI : 10.1016/j.pep.2015.12.019

. Martin-verstraete, IscR of Clostridium perfringens represses expression of genes involved in Fe-S cluster biogenesis, Res. Microbiol, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01370878

L. E. Mortenson, R. C. Valentine, and J. Carnahan, An electron transport factor from Clostridiumpasteurianum, Biochemical and Biophysical Research Communications, vol.7, issue.6, pp.448-452, 1962.
DOI : 10.1016/0006-291X(62)90333-9

J. Meyer, Iron???sulfur protein folds, iron???sulfur chemistry, and evolution, JBIC Journal of Biological Inorganic Chemistry, vol.2, issue.235, pp.157-170, 2008.
DOI : 10.1111/j.1574-6976.2001.tb00587.x

URL : https://hal.archives-ouvertes.fr/hal-01188668

]. A. Sawyer and M. Winkler, Evolution of Chlamydomonas reinhardtii ferredoxins and their interactions with [FeFe]-hydrogenases, Photosynthesis Research, vol.112, issue.3, pp.11120-11137
DOI : 10.1073/pnas.1515240112

A. S. Rumpel, J. F. Siebel, M. Diallo, C. Far, E. J. Reijerse et al., Structural Insight into the Complex of Ferredoxin and [ FeFe ] Hydrogenase from Chlamydomonas reinhardtii, ChemBioChem, pp.1663-1669, 2015.

K. M. Ewen, M. Kleser, and R. Bernhardt, Adrenodoxin: The archetype of vertebrate-type [2Fe???2S] cluster ferredoxins, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1814, issue.1, pp.111-125, 2011.
DOI : 10.1016/j.bbapap.2010.06.003

T. A. Lyons, G. Ratnaswamy, and T. C. Pochapsky, Redox-dependent dynamics of putidaredoxin characterized by amide proton exchange, Protein Science, vol.29, issue.4, pp.627-639, 1996.
DOI : 10.1007/978-1-4757-2391-5_3

M. A. Hiruma, Y. Hass, W. M. Kikui, B. Liu, S. P. Lmez et al., The Structure of the Cytochrome P450cam???Putidaredoxin Complex Determined by Paramagnetic NMR Spectroscopy and Crystallography, Journal of Molecular Biology, vol.425, issue.22, pp.4353-4365, 2013.
DOI : 10.1016/j.jmb.2013.07.006

]. R. Kümmerle, M. Atta, J. Scuiller, J. Gaillard, and J. Meyer, Hydrogenase and Plant-Type Ferredoxins, Biochemistry, vol.38, issue.6, pp.1938-1943, 1999.
DOI : 10.1021/bi982416j

M. Atta, M. E. Lafferty, M. K. Johnson, J. Gaillard, and J. Meyer, Heterologous biosynthesis and characterization of the [2Fe-2S]-containing N-terminal domain of Clostridium pasteurianum hydrogenase1941, Biochemistry, pp.37-15974, 1998.

]. J. Meyer, M. H. Bruschi, and J. J. Bonicel, Amino Acid Sequence of [ 2Fe-2SI Ferredoxin from Clostridium pasteurianumt, pp.6054-6061, 1986.

C. Yeh, S. M. Chatelet, P. Soltis, J. Kuhn, D. C. Meyer et al., Structure of a thioredoxin-like [2Fe-2S] ferredoxin from Aquifex aeolicus, Journal of Molecular Biology, vol.300, issue.3, pp.587-595, 2000.
DOI : 10.1006/jmbi.2000.3871

L. E. Mortenson, Purification and analysis of ferredoxin from Clostridium pasteurianum, Biochimica et Biophysica Acta (BBA) - Specialized Section on Enzymological Subjects, vol.81, issue.1, pp.71-77, 1964.
DOI : 10.1016/0926-6569(64)90336-0

]. B. Darimont and R. , Sterner, Sequence, assembly and evolution of a primordial ferredoxin from Thermotoga maritima, EMBO J, vol.13, pp.1772-1781, 1994.

R. Eck and M. O. Dayhoff, Evolution of the Structure of Ferredoxin Based on Living Relics of Primitive Amino Acid Sequences, Science, vol.152, issue.3720, pp.363-366, 1966.
DOI : 10.1126/science.152.3720.363

B. S. Perrin and T. Ichiye, Identifying sequence determinants of reduction potentials of metalloproteins, JBIC Journal of Biological Inorganic Chemistry, vol.115, issue.6, pp.599-608, 2013.
DOI : 10.1021/ja00062a005

B. S. Perrin, S. Niu, and T. Ichiye, Calculating standard reduction potentials of [4Fe-4S] proteins, Journal of Computational Chemistry, vol.34, issue.7, pp.576-582, 2013.
DOI : 10.1021/bi00045a008

]. I. Daizadeh, D. M. Medvedev, and A. Stuchebrukhov, Electron Transfer in Ferredoxin: Are Tunneling Pathways Evolutionarily Conserved?, Molecular Biology and Evolution, vol.19, issue.4, pp.406-421, 2002.
DOI : 10.1017/S003358350000425X

]. O. Guerrini, B. Burlat, C. Léger, B. Guigliarelli, P. Soucaille et al., Characterization of Two 2[4Fe4S] Ferredoxins from Clostridium acetobutylicum, Current Microbiology, vol.25, issue.3, pp.261-267, 2008.
DOI : 10.1111/j.1574-6976.2001.tb00587.x

J. M. Moulis and V. Davasse, Probing the Role of Electrostatic Forces in the Interaction of Clostridium pasteurianum Ferredoxin with Its Redox Partners, Biochemistry, vol.34, issue.51, pp.16781-16788, 1995.
DOI : 10.1021/bi00051a028

M. Nakamura, K. Saeki, and Y. Takahashi, Hyperproduction of recombinant ferredoxins in escherichia coli by coexpression of the ORF1-ORF2-iscS-iscU-iscA-hscB-hs cA-fdx-ORF3 gene cluster, J. Biochem, pp.126-136, 1999.

C. J. Schwartz, J. L. Giel, T. Patschkowski, C. Luther, F. J. Ruzicka et al., IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins, Proceedings of the National Academy of Sciences, vol.183, issue.15, pp.98-14895, 2001.
DOI : 10.1128/JB.183.15.4562-4570.2001

]. S. Iwata, M. Saynovits, T. A. Link, and H. Michel, Structure of a water soluble fragment of the " Rieske " iron ? sulfur protein of the bovine heart mitochondrial cytochrome bc 1 complex determined by MAD phasing at 1 . 5 Å resolution, pp.567-579

]. L. Liu, T. Nogi, M. Kobayashi, and K. Miki, Ultrahigh-resolution structure of high-potential iron ± sulfur protein from Thermochromatium tepidum research papers, pp.1085-1091, 2002.

M. J. Maher, M. C. Wilce, J. M. Guss, and G. Anthony, Rubredoxin from Clostridium pasteurianum . Structures of G10A , G43A and G10VG43A mutant proteins . Mutation of conserved glycine 10

]. W. Lubitz, H. Ogata, O. Rudiger, E. Reijerse, and H. , Hydrogenases, Chemical Reviews, vol.114, issue.8, pp.4081-4148, 2014.
DOI : 10.1021/cr4005814

URL : https://hal.archives-ouvertes.fr/hal-00869039

H. Eilenberg, I. Weiner, O. Ben-zvi, C. Pundak, A. Marmari et al., The dual effect of a ferredoxin-hydrogenase fusion protein in vivo: successful divergence of the photosynthetic electron flux towards hydrogen production and elevated oxygen tolerance, Biotechnology for Biofuels, vol.71, issue.1, pp.10-1186, 2016.
DOI : 10.1128/AEM.71.10.6199-6205.2005

S. Abou-hamdan, P. Dementin, O. Liebgott, P. Gutierrez-sanz, A. L. Richaud et al., Understanding and Tuning the Catalytic Bias of Hydrogenase, Journal of the American Chemical Society, vol.134, issue.20, pp.8368-837110, 1021.
DOI : 10.1021/ja301802r

C. Greco, V. Fourmond, C. Baffert, P. Wang, S. Dementin et al., Combining experimental and theoretical methods to learn about the reactivity of gas-processing metalloenzymes, Energy Environ. Sci., vol.108, issue.11, p.10, 1039.
DOI : 10.1021/jp0366015

URL : https://hal.archives-ouvertes.fr/hal-01211585

]. Kaster, J. Moll, K. Parey, and R. K. Thauer, Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea, Proceedings of the National Academy of Sciences, vol.172, issue.3, pp.2981-2986, 2011.
DOI : 10.1111/j.1432-1033.1988.tb13941.x

M. F. Verhagen, T. O. Rourke, and M. W. Adams, The hyperthermophilic bacterium , Thermotoga maritima , contains an unusually complex iron-hydrogenase : amino acid sequence analyses versus biochemical characterization 1, Biochim. Biophys. Acta, pp.1412-212, 1999.

]. G. Schut and M. W. Adams, The Iron-Hydrogenase of Thermotoga maritima Utilizes Ferredoxin and NADH Synergistically : a New Perspective on Anaerobic Hydrogen Production ? ?, pp.4451-4457, 2009.

J. W. Peters, A. Miller, A. K. Jones, P. W. King, and M. W. Adams, Electron bifurcation, Current Opinion in Chemical Biology, vol.31, pp.31-146, 2016.
DOI : 10.1016/j.cbpa.2016.03.007

M. Winkler, J. Esselborn, and T. Happe, Molecular basis of [FeFe]-hydrogenase function, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1827, issue.8-9, pp.974-985, 2013.
DOI : 10.1016/j.bbabio.2013.03.004

]. S. Shima, O. Pilak, S. Vogt, M. Schick, M. S. Stagni et al., The Crystal Structure of [Fe]-Hydrogenase Reveals the Geometry of the Active Site, Science, vol.13, issue.1, pp.321-572, 2008.
DOI : 10.1007/s00775-007-0302-2

]. S. Vogt, E. J. Lyon, S. Shima, and R. K. Thauer, The exchange activities of [Fe]??hydrogenase (iron???sulfur-cluster-free hydrogenase) from methanogenic archaea in comparison with the exchange activities of [FeFe] and [NiFe]??hydrogenases, JBIC Journal of Biological Inorganic Chemistry, vol.1294, issue.1, pp.97-106, 2008.
DOI : 10.1016/0167-4838(96)00020-9

M. Horch, L. Lauterbach, O. Lenz, P. Hildebrandt, and I. Zebger, NAD(H)-coupled hydrogen cycling - structure-function relationships of bidirectional [NiFe] hydrogenases, FEBS Letters, vol.76, issue.207, pp.545-556, 2012.
DOI : 10.1128/AEM.00351-10

]. A. Volbeda, M. Charon, C. Piras, E. C. Hatchikian, M. Frey et al., Fontecilla-camps, Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas, Nature, pp.373-580, 1995.

]. A. Volbeda, E. Garcin, C. Piras, A. L. De-lacey, V. M. Fernandez et al., Fontecilla-camps, I.D.B.S. Cea-cnrs, A. V Martyrs, Structure of the [ NiFe ] Hydrogenase Active Site : Evidence for Biologically Uncommon Fe Ligands ?, J. Am. Chem. Soc, pp.7863-12989, 1996.

]. S. Dementin, V. Belle, P. Bertrand, B. Guigliarelli, G. Adryanczyk-perrier et al., Changing the Ligation of the Distal [4Fe4S] Cluster in NiFe Hydrogenase Impairs Inter- and Intramolecular Electron Transfers, Journal of the American Chemical Society, vol.128, issue.15, pp.5209-5218, 2006.
DOI : 10.1021/ja060233b

URL : https://hal.archives-ouvertes.fr/hal-00335157

]. S. Dementin, B. Burlat, V. Fourmond, F. Leroux, P. Liebgott et al., Rates of Intra- and Intermolecular Electron Transfers in Hydrogenase Deduced from Steady-State Activity Measurements, Journal of the American Chemical Society, vol.133, issue.26, pp.10211-1022110, 1021.
DOI : 10.1021/ja202615a

URL : https://hal.archives-ouvertes.fr/hal-00748321

B. Armstrong, O. Friedrich, and . Lenz, A unique iron-sulfur cluster is crucial for oxygen tolerance of a, Nat. Chem. Biol, vol.7, pp.310-318, 2011.

M. Rousset, Y. Montet, B. Guigliarelli, N. Forget, M. Asso et al., Fontecilla-camps, E.C. Hatchikian, [3Fe-4S] to [4Fe-4S] cluster conversion in Desulfovibrio fructosovorans [NiFe] hydrogenase by site-directed mutagenesis, Proc. Natl. Acad. Sci. U. S. A, pp.95-11625, 1998.

. Giudici-orticoni, The Hyperthermophilic Bacterium Aquifex aeolicus. From Respiratory Pathways to Extremely Resistant Enzymes and Biotechnological Applications, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00335386

P. Tamagnini, E. Leitão, P. Oliveira, D. Ferreira, F. Pinto et al., Cyanobacterial hydrogenases: diversity, regulation and applications, FEMS Microbiology Reviews, vol.31, issue.6, 2007.
DOI : 10.1111/j.1744-7909.2006.00271.x

URL : https://academic.oup.com/femsre/article-pdf/31/6/692/18128015/31-6-692.pdf

F. Roncaroli, E. Bill, B. Friedrich, O. Lenz, W. Lubitz et al., -sensing regulatory hydrogenase as revealed by M??ssbauer and EPR spectroscopy, Chemical Science, vol.63, issue.8, pp.4495-4507, 2015.
DOI : 10.1007/978-3-642-74599-7

S. Vitt, K. Ma, E. Warkentin, J. Moll, A. J. Pierik et al., The F 420 -Reducing [NiFe]-Hydrogenase Complex from Methanothermobacter marburgensis , the First X-ray Structure of a Group 3 Family Member, Journal of Molecular Biology, vol.426, issue.15, pp.2813-2826, 2014.
DOI : 10.1016/j.jmb.2014.05.024

R. C. Hopkins, J. Sun, F. E. Jenney, S. K. Chandrayan, M. Patrick et al., Homologous Expression of a Subcomplex of Pyrococcus furiosus Hydrogenase that Interacts with Pyruvate Ferredoxin Oxidoreductase, PLoS ONE, vol.6, issue.10, 2011.
DOI : 10.1371/journal.pone.0026569.t003

M. Boll, O. Einsle, U. Ermler, P. M. Kroneck, and G. M. Ullmann, Structure and Function of the Unusual Tungsten Enzymes Acetylene Hydratase and Class II Benzoyl-Coenzyme A Reductase, Journal of Molecular Microbiology and Biotechnology, vol.26, issue.1-3, pp.119-137, 2016.
DOI : 10.1159/000440805

M. W. Maness, J. W. Adams, B. Peters, E. S. Bothner, and . Boyd, Unification of [FeFe]hydrogenases into Three Structural and Functional Groups, Biochim. Biophys. Acta -Gen

L. Girbal, G. Von-abendroth, M. Winkler, P. M. Benton, I. Meynial-salles et al., Homologous and Heterologous Overexpression in Clostridium acetobutylicum and Characterization of Purified Clostridial and Algal Fe-Only Hydrogenases with High Specific Activities, Applied and Environmental Microbiology, vol.71, issue.5, pp.2777-2781, 2005.
DOI : 10.1128/AEM.71.5.2777-2781.2005

M. Demuez, L. Cournac, O. Guerrini, P. Soucaille, and L. , Complete activity profile of Clostridium acetobutylicum [FeFe]-hydrogenase and kinetic parameters for endogenous redox partners, FEMS Microbiol. Lett, vol.275, 2007.

G. , V. Abendroth, S. T. Stripp, A. Silakov, C. Croux et al., Optimized over-expression of [FeFe] hydrogenases with high specific activity in Clostridium acetobutylicum, Int. J. Hydrogen Energy, vol.33, pp.6076-6081, 2008.

Y. Nicolet, C. Piras, P. Legrand, E. C. Hatchikian, and J. C. , Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center, Structure, vol.7, issue.1, pp.13-23, 1999.
DOI : 10.1016/S0969-2126(99)80005-7

M. Winkler, S. Kuhlgert, M. Hippler, and T. Happe, Characterization of the Key Step for Light-driven Hydrogen Evolution in Green Algae, Journal of Biological Chemistry, vol.7, issue.52, pp.36620-36627, 2009.
DOI : 10.1016/S0969-2126(99)80005-7

P. M. Vignais, B. Billoud, and J. Meyer, Classi ¢ cation and phylogeny of hydrogenases 1, FEMS Microbiol. Rev, p.25, 2001.

S. Wang, H. Huang, H. H. Kahnt, A. P. Mueller, M. K. Pke et al., NADP-Specific Electron-Bifurcating [FeFe]-Hydrogenase in a Functional Complex with Formate Dehydrogenase in Clostridium autoethanogenum Grown on CO, Journal of Bacteriology, vol.195, issue.19, pp.4373-4386, 2013.
DOI : 10.1128/JB.00678-13

J. E. Meuser, E. S. Boyd, G. Ananyev, D. Karns, R. Radakovits et al., Evolutionary significance of an algal gene encoding an [FeFe]-hydrogenase with F-domain homology and hydrogenase activity in Chlorella variabilis NC64A, Planta, vol.84, issue.1, pp.829-843, 2011.
DOI : 10.1128/JVI.01698-09

S. D. Adamo, R. E. Jinkerson, E. S. Boyd, S. L. Brown, B. K. Baxter et al., Evolutionary and biotechnological implications of robust hydrogenase activity in halophilic strains of tetraselmis, PLoS One, vol.9, 2014.

T. Lautier, P. Ezanno, C. Baffert, V. Fourmond, L. Cournac et al., The quest for a functional substrate access tunnel in FeFe hydrogenase, Faraday Discuss., vol.304, pp.385-407, 2011.
DOI : 10.1111/j.1574-6968.2009.01883.x

J. W. Peters, W. N. Lanzilotta, B. J. Lemon, and L. C. , Seefeldt, X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution, Science, pp.282-1853, 1998.

K. Sybirna, P. Ezanno, C. Baffert, C. Léger, and H. Bottin, Arginine171 of Chlamydomonas reinhardtii [Fe???Fe] hydrogenase HydA1 plays a crucial role in electron transfer to its catalytic center, International Journal of Hydrogen Energy, vol.38, issue.7, pp.2998-3002, 2013.
DOI : 10.1016/j.ijhydene.2012.12.078

U. Ryde, C. Greco, and L. D. Gioia, Quantum Refinement of [FeFe] Hydrogenase Indicates a Dithiomethylamine Ligand, Journal of the American Chemical Society, vol.132, issue.13, pp.4512-4513, 2010.
DOI : 10.1021/ja909194f

A. Silakov, B. Wenk, E. Reijerse, and W. Lubitz, 14N HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge, Physical Chemistry Chemical Physics, vol.123, issue.16, pp.6592-6601, 2009.
DOI : 10.1007/s002140050244

G. Berggren, A. Adamska-venkatesh, C. Lambertz, T. R. Simmons, J. Esselborn et al., Biomimetic assembly and activation of [FeFe]-hydrogenases, Nature, vol.106, issue.7456, pp.499-66, 1038.
DOI : 10.1073/pnas.0905343106

URL : https://hal.archives-ouvertes.fr/hal-00869039

J. F. Siebel, A. Adamska-venkatesh, K. Weber, S. Rumpel, E. Reijerse et al., Hybrid [FeFe]-Hydrogenases with Modified Active Sites Show Remarkable Residual Enzymatic Activity, Biochemistry, vol.54, issue.7, pp.1474-1483, 2015.
DOI : 10.1021/bi501391d

A. Adamska-venkatesh, A. Silakov, C. Lambertz, O. R. Diger, T. Happe et al., Identification and characterization of the " super-reduced " state of the H-cluster in [FeFe] hydrogenase: A new building block for the catalytic cycle?, Angew. Chemie -Int, pp.51-11458, 2012.

V. Hajj, C. Baffert, K. Sybirna, I. Meynial-salles, P. Soucaille et al., FeFe hydrogenase reductive inactivation and implication for catalysis, Energy Environ. Sci., vol.6, issue.2, pp.715-719, 2014.
DOI : 10.1039/c3ee00043e

URL : https://hal.archives-ouvertes.fr/hal-01481475

D. W. Mulder, Y. Guo, M. W. Ratzloff, and P. W. King, Identification of a Catalytic Iron-Hydride at the H-Cluster of [FeFe]-Hydrogenase, Journal of the American Chemical Society, vol.139, issue.1, 2016.
DOI : 10.1021/jacs.6b11409

C. Sommer, A. Adamska-venkatesh, K. Pawlak, J. A. Birrell, O. Rüdiger et al., Proton Coupled Electronic Rearrangement within the H-Cluster as an Essential Step in the Catalytic Cycle of [ FeFe ] Hydrogenases Proton Coupled Electronic Rearrangement within the H-Cluster as an Essential Step in the Catalytic Cycle of [ FeFe ] Hydrogen, J. Am. Chem. Soc, pp.139-1440, 2017.

M. Sensi, C. Baffert, C. Greco, G. Caserta, C. Gauquelin et al., Reactivity of the Excited States of the H-Cluster of FeFe Hydrogenases, Journal of the American Chemical Society, vol.138, issue.41, 2016.
DOI : 10.1021/jacs.6b06603

URL : https://hal.archives-ouvertes.fr/hal-01400732

C. Baffert, L. Bertini, T. Lautier, C. Greco, K. Sybirna et al., CO Disrupts the Reduced H-Cluster of FeFe Hydrogenase. A Combined DFT and Protein Film Voltammetry Study, Journal of the American Chemical Society, vol.133, issue.7, pp.133-2096, 1021.
DOI : 10.1021/ja110627b

URL : https://hal.archives-ouvertes.fr/hal-00677449

C. Orain, L. Saujet, C. Gauquelin, P. Soucaille, I. Meynial-salles et al., Demonstrate That the Reaction Is Partly Reversible, Journal of the American Chemical Society, vol.137, issue.39, pp.12580-12587, 2015.
DOI : 10.1021/jacs.5b06934

URL : https://hal.archives-ouvertes.fr/hal-01211469

P. Knörzer, A. Silakov, C. E. Foster, F. A. Armstrong, W. Lubitz et al., Importance of the Protein Framework for Catalytic Activity of [FeFe]-Hydrogenases, Journal of Biological Chemistry, vol.22, issue.2, pp.1489-1499, 2012.
DOI : 10.1039/c0cc02962a

S. Morra, A. Giraudo, G. Di-nardo, P. W. King, G. Gilardi et al., Site Saturation Mutagenesis Demonstrates a Central Role for Cysteine 298 as Proton Donor to the Catalytic Site in CaHydA [FeFe]-Hydrogenase, PLoS ONE, vol.259, issue.10, 2012.
DOI : 10.1371/journal.pone.0048400.t001

S. Morra, S. Maurelli, M. Chiesa, D. W. Mulder, M. W. Ratzloff et al., The effect of a C298D mutation in CaHydA [FeFe]-hydrogenase: Insights into the protein-metal cluster interaction by EPR and FTIR spectroscopic investigation, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1857, issue.1, pp.98-106, 2016.
DOI : 10.1016/j.bbabio.2015.10.005

G. Hong, A. J. Cornish, E. L. Hegg, and R. Pachter, On understanding proton transfer to the biocatalytic [Fe???Fe]H sub-cluster in [Fe???Fe]H2ases: QM/MM MD simulations, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1807, issue.5, pp.510-517, 2011.
DOI : 10.1016/j.bbabio.2011.01.011

B. Ginovska-pangovska, M. Ho, J. C. Linehan, Y. Cheng, M. Dupuis et al., Molecular dynamics study of the proposed proton transport pathways in [FeFe]-hydrogenase, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1837, issue.1, pp.131-139, 2014.
DOI : 10.1016/j.bbabio.2013.08.004

A. J. Cornish, B. Ginovska-pangovska, A. Thelen, J. C. Da-silva, T. A. Soares et al., Single-Amino Acid Modifications Reveal Additional Controls on the Proton Pathway of [FeFe]-Hydrogenase, Biochemistry, vol.55, issue.22, 2016.
DOI : 10.1021/acs.biochem.5b01044

J. Cohen, K. Kim, M. C. Posewitz, M. L. Ghirardi, K. Schulten et al., Molecular dynamics and experimental investigation of H(2) and O(2) diffusion in [Fe]-hydrogenase, Biochem.Soc.Trans, pp.33-80, 2005.

J. Cohen, K. Kim, P. W. King, M. Seibert, and K. Schulten, Finding Gas Diffusion Pathways in Proteins: Application to O2 and H2 Transport in CpI [FeFe]-Hydrogenase and the Role of Packing Defects, Structure, vol.13, issue.9, pp.1321-1329, 2005.
DOI : 10.1016/j.str.2005.05.013

J. Noth, R. Kositzki, K. Klein, M. Winkler, M. Haumann et al., Lyophilization protects [FeFe]-hydrogenases against O2-induced H-cluster degradation, Scientific Reports, vol.52, issue.1
DOI : 10.1103/PhysRevB.52.2995

URL : http://www.nature.com/articles/srep13978.pdf

A. S. Bingham, P. R. Smith, and J. R. Swartz, Evolution of an [FeFe] hydrogenase with decreased oxygen sensitivity, International Journal of Hydrogen Energy, vol.37, issue.3, pp.2965-2976, 2012.
DOI : 10.1016/j.ijhydene.2011.02.048

J. Koo, S. Shiigi, M. Rohovie, K. Mehta, and J. R. Swartz, Characterization of [FeFe] Hydrogenase O 2 Sensitivity Using a New, Physiological Approach, J. Biol. Chem, vol.2, 2016.

I. Yacoby, S. Pochekailov, H. Toporik, M. L. Ghirardi, P. W. King et al., Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP+-oxidoreductase (FNR) enzymes in vitro, Proceedings of the National Academy of Sciences, vol.285, issue.5, pp.9396-9401, 2011.
DOI : 10.1074/jbc.M109.072645

G. Goldet, C. Brandmayr, S. T. Stripp, T. Happe, C. Cavazza et al., Electrochemical Kinetic Investigations of the Reactions of [FeFe]-Hydrogenases with Carbon Monoxide and Oxygen: Comparing the Importance of Gas Tunnels and Active-Site Electronic/Redox Effects, Journal of the American Chemical Society, vol.131, issue.41, pp.131-14979, 2009.
DOI : 10.1021/ja905388j

C. C. Page, C. C. Moser, and P. L. Dutton, Mechanism for electron transfer within and between proteins, Current Opinion in Chemical Biology, vol.7, issue.5, 2003.
DOI : 10.1016/j.cbpa.2003.08.005

L. E. Nagy, J. E. Meuser, A. S. Plummer, M. Seibert, M. L. Ghirardi et al., Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries, Biotechnology Letters, vol.373, issue.3, pp.421-430, 2007.
DOI : 10.1111/j.1574-6976.2001.tb00587.x

C. Greco, M. Bruschi, P. Fantucci, U. Ryde, and L. D. Gioia, Probing the Effects of One-Electron Reduction and Protonation on the Electronic Properties of the Fe-S Clusters in the Active-Ready Form of [FeFe]-Hydrogenases. A QM/MM Investigation., ChemPhysChem, vol.27, issue.17, pp.3376-3382, 2011.
DOI : 10.1002/jcc.20449

C. Greco, M. Bruschi, P. Fantucci, U. Ryde, and L. D. Gioia, Mechanistic and Physiological Implications of the Interplay among Iron À Sulfur Clusters in [ FeFe ] -Hydrogenases, A QM / MM Perspective J. Am. Chem. Soc, pp.133-18742, 2011.

M. C. Posewitz, P. W. King, S. L. Smolinski, L. Zhang, M. Seibert et al., -Adenosylmethionine Proteins Required for the Assembly of an Active [Fe] Hydrogenase, Journal of Biological Chemistry, vol.1490, issue.24, pp.25711-25720, 2004.
DOI : 10.1016/S0167-4781(00)00010-5

M. C. Posewitz, P. W. King, S. L. Smolinski, R. D. Smith, A. R. Ginley et al., Identification of genes required for hydrogenase activity in Chlamydomonas reinhardtii, Biochem. Soc. Trans, pp.33-102, 2005.

J. B. Broderick, A. S. Byer, K. S. Duschene, B. R. Duffus, J. N. Betz et al., H-Cluster assembly during maturation of the [FeFe]-hydrogenase, JBIC Journal of Biological Inorganic Chemistry, vol.15, issue.6, pp.747-757, 2014.
DOI : 10.1016/j.cbpa.2011.02.012

D. W. Mulder, E. S. Boyd, R. Sarma, R. K. Lange, J. Endrizzi et al., Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA(DeltaEFG), Nature, pp.465-248, 2010.

L. Cendron, P. Berto, S. D. Adamo, F. Vallese, C. Govoni et al., Crystal Structure of HydF Scaffold Protein Provides Insights into [FeFe]-Hydrogenase Maturation, Journal of Biological Chemistry, vol.17, issue.51, pp.43944-43950, 2011.
DOI : 10.1016/j.febslet.2010.11.052

N. Joshi, E. M. Shepard, A. S. Byer, K. D. Swanson, J. B. Broderick et al., Iron-sulfur cluster coordination in the [FeFe]-hydrogenase H cluster biosynthetic factor HydF, FEBS Letters, vol.178, issue.22, pp.3939-3943, 2012.
DOI : 10.1016/j.jmr.2005.08.013

G. Caserta, L. Pecqueur, A. Adamska-venkatesh, C. Papini, S. Roy et al., Structural and functional characterization of the hydrogenase-maturation HydF protein, Nature Chemical Biology, vol.158, issue.7, 2017.
DOI : 10.1107/S0108767307043930

URL : https://hal.archives-ouvertes.fr/hal-01548406

V. Artero, G. Berggren, M. Atta, G. Caserta, S. Roy et al., From Enzyme Maturation to Synthetic Chemistry: The Case of Hydrogenases, Accounts of Chemical Research, vol.48, issue.8, pp.2380-2387, 2015.
DOI : 10.1021/acs.accounts.5b00157

URL : https://hal.archives-ouvertes.fr/hal-01206573

I. Czech, S. T. Stripp, O. Sanganas, N. Leidel, T. Happe et al., The [FeFe]-hydrogenase maturation protein HydF contains a H-cluster like [4Fe4S]-2Fe site, FEBS Letters, vol.48, issue.1, pp.225-230, 2011.
DOI : 10.1021/bi9000563

E. M. Shepard, S. E. Mcglynn, A. L. Bueling, C. S. Grady-smith, S. J. George et al., Synthesis of the 2Fe subcluster of the [FeFe]-hydrogenase H cluster on the HydF scaffold, Proceedings of the National Academy of Sciences, vol.303, issue.5654, pp.10448-10453, 2010.
DOI : 10.1126/science.1088493

J. M. Kuchenreuther, The HydG Enzyme Generates an, Science, vol.343

Y. Nicolet, J. C. Fontecilla-camps, and M. Fontecave, Maturation of [FeFe]-hydrogenases: Structures and mechanisms, International Journal of Hydrogen Energy, vol.35, issue.19, 2010.
DOI : 10.1016/j.ijhydene.2010.02.056

URL : https://hal.archives-ouvertes.fr/hal-01145486

Y. Nicolet, P. Amara, J. M. Mouesca, and J. C. , Unexpected electron transfer mechanism upon AdoMet cleavage in radical SAM proteins, Proceedings of the National Academy of Sciences, vol.47, issue.12, pp.14867-14871, 2009.
DOI : 10.1021/ic701730h

J. N. Betz, N. W. Boswell, C. J. Fugate, G. L. Holliday, E. Akiva et al., [FeFe]-Hydrogenase Maturation: Insights into the Role HydE Plays in Dithiomethylamine Biosynthesis, Biochemistry, vol.54, issue.9, pp.54-1807, 1021.
DOI : 10.1021/bi501205e

V. Fourmond, C. Greco, K. Sybirna, C. Baffert, P. Wang et al., The oxidative inactivation of FeFe hydrogenase reveals the flexibility of the H-cluster, Nature Chemistry, vol.130, issue.4, pp.336-378, 2014.
DOI : 10.1021/ja711187e

URL : https://hal.archives-ouvertes.fr/hal-01481520

P. Liebgott, F. Leroux, B. Burlat, S. Dementin, C. Baffert et al., Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase, Nature Chemical Biology, vol.275, issue.1, pp.63-70, 2010.
DOI : 10.1038/nchembio.276

URL : https://hal.archives-ouvertes.fr/hal-00677689

J. S. Multani and L. E. Mortenson, Circular dichroism spectra of hydrogenase from Clostridium pasteurianum W5, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.256, issue.1, pp.66-70, 1972.
DOI : 10.1016/0005-2728(72)90163-6

D. Vinella, F. Fischer, E. Vorontsov, J. Gallaud, C. Malosse et al., Evolution of Helicobacter: Acquisition by Gastric Species of Two Histidine-Rich Proteins Essential for Colonization, PLOS Pathogens, vol.27, issue.12, pp.1-32, 2015.
DOI : 10.1371/journal.ppat.1005312.s008

URL : https://hal.archives-ouvertes.fr/hal-01258641

W. Fish, Rapid colorimetricmicromethod for the quantitation of complexed iron in biological samples, Methods Enzym, vol.54, pp.357-364, 1988.

G. Bertani, G. Bertani, . Studies, and . I. On, The Mode of Phage Liberation by Lysogenic Escherichia coli, J. Bacteriol, vol.62, pp.293-300, 1951.

H. Inoue, H. Nojima, and H. Okoyama, High efficiency transformation of Escherichia coli with plasmids, Gene, vol.96, issue.1, pp.96-119, 1990.
DOI : 10.1016/0378-1119(90)90336-P

L. Whitmore and B. A. Wallace, Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases, Biopolymers, vol.332, issue.5, 2008.
DOI : 10.1155/2005/263649

URL : http://onlinelibrary.wiley.com/doi/10.1002/bip.20853/pdf

V. Fourmond, C. Baffert, K. Sybirna, S. Dementin, A. Abou-hamdan et al., The mechanism of inhibition by H2 of H2-evolution by hydrogenases, Chemical Communications, vol.109, issue.61, p.49
DOI : 10.1073/pnas.1212258109

URL : https://hal.archives-ouvertes.fr/hal-01268212

A. Roy, A. Kucukural, and Y. Zhang, I-TASSER: a unified platform for automated protein structure and function prediction, Nature Protocols, vol.59, issue.4, 2010.
DOI : 10.1002/prot.22551

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew et al., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, Journal of Computational Chemistry, vol.22, issue.16, pp.2785-2791, 2009.
DOI : 10.1002/jcc.21256

URL : http://onlinelibrary.wiley.com/doi/10.1002/jcc.21256/pdf

R. Prabhu, E. Altman, and M. A. Eiteman, ABSTRACT, Applied and Environmental Microbiology, vol.78, issue.24, pp.8564-8570, 2012.
DOI : 10.1128/AEM.02443-12

S. Morra, A. Cordara, G. Gilardi, and F. Valetti, Atypical effect of temperature tuning on the insertion of the catalytic iron???sulfur center in a recombinant [FeFe]-hydrogenase, Protein Science, vol.282, issue.12, pp.2090-2094, 2015.
DOI : 10.1126/science.282.5395.1853

V. Augier, M. Asso, B. Guigliarelli, C. More, P. Bertrand et al., Removal of the high-potential iron-sulfur [4Fe-4S] center of the .beta.-subunit from Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of site-directed mutated enzymes, Biochemistry, vol.32, issue.19, pp.32-5099, 1993.
DOI : 10.1021/bi00070a018

M. T. Werth, H. Sices, G. Cecchini, I. Schröder, S. Lasage et al., Evidence for non-cysteinyl coordination of the [2Fe-2S] cluster in Escherichia coli succinate dehydrogenase, FEBS Lett, vol.29992, pp.1-4, 1992.

Y. Zhang, C. Yang, A. Dancis, and E. Nakamaru-ogiso, Electron paramagnetic spectroscopic studies of wild type and mutant Dre2 identify essential [2Fe-2S] and [4Fe-4S] clusters and their Cysteine ligands, J. Biochem, 2016.

J. M. Moulis, V. Davasse, M. Golinelli, J. Meyer, and I. , The coordination sphere of iron-sulfur clusters: lessons from site-directed mutagenesis experiments, JBIC Journal of Biological Inorganic Chemistry, vol.1, issue.1, pp.2-14, 1996.
DOI : 10.1007/s007750050017

E. Angov, C. J. Hillier, R. L. Kincaid, and J. A. Lyon, Heterologous Protein Expression Is Enhanced by Harmonizing the Codon Usage Frequencies of the Target Gene with those of the Expression Host, PLoS ONE, vol.227, issue.5, 2008.
DOI : 10.1371/journal.pone.0002189.s001

C. Van-dijk, S. G. Mayhew, H. J. Grande, and C. Veeger, Purification and Properties of Hydrogenase from Megasphaera elsdenii, European Journal of Biochemistry, vol.525, issue.2, pp.317-330, 1979.
DOI : 10.1016/0005-2744(78)90198-5

I. Rouvre, C. Gauquelin, I. Meynial-salles, and R. Basseguy, Impact of the chemicals, essential for the purification process of strict Fe-hydrogenase, on the corrosion of mild steel, Bioelectrochemistry, vol.109, 2016.
DOI : 10.1016/j.bioelechem.2015.12.006

I. Rouvre and R. Basseguy, Exacerbation of the mild steel corrosion process by direct electron transfer between [Fe-Fe]-hydrogenase and material surface, Corrosion Science, vol.111, 2016.
DOI : 10.1016/j.corsci.2016.05.005

S. Yang, L. G. Ljungdahl, and J. , A Four-Iron , Four-Sulfide Ferredoxin with High Thermostability from Clostridium thermoaceticum, pp.130-1084, 1977.

K. Tagawa and D. Arnon, Ferredoxins as Electron Carriers in Photosynthesis and in the Biological Production and Consumption of Hydrogen Gas, Nature, vol.47, issue.4841, pp.537-543, 1962.
DOI : 10.1016/0006-3002(60)91606-1

J. Cohen, K. Kim, M. C. Posewitz, M. L. Ghirardi, K. Schulten et al., Molecular dynamics and experimental investigation of H2 and O2 diffusion in [Fe]-hydrogenase, Biochem. Soc. Trans, pp.33-80, 2005.

]. B. Soni, P. Soucaille, and G. Goma, Continuous acetone-butanol fermentation ? influence of vitamins on the metabolic-activity of Clostridium acetobutilicum, Appl. Microbiol. Biotechnol, pp.27-28, 1987.

M. Demuez, L. Cournac, O. Guerrini, P. Soucaille, and L. , [FeFe]-hydrogenase and kinetic parameters for endogenous redox partners, FEMS Microbiology Letters, vol.275, issue.1, pp.113-121, 2007.
DOI : 10.1111/j.1574-6968.2007.00868.x

J. W. Peters, G. J. Schut, E. S. Boyd, D. W. Mulder, E. M. Shepard et al., [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation, hydrogenase diversity, mechanism, and maturation, pp.1350-1369, 2015.
DOI : 10.1016/j.bbamcr.2014.11.021

URL : https://doi.org/10.1016/j.bbamcr.2014.11.021

M. Yoo, G. Bestel-corre, C. Croux, A. Riviere, I. Meynial-salles et al., A quantitative system-scale characterization of the metabolism of Clostridium acetobutylicum, MBio, vol.6, pp.1808-01815, 2015.

C. Orain, L. Saujet, C. Gauquelin, P. Soucaille, I. Meynial-salles et al., Demonstrate That the Reaction Is Partly Reversible, Journal of the American Chemical Society, vol.137, issue.39, pp.12580-12587, 2015.
DOI : 10.1021/jacs.5b06934

URL : https://hal.archives-ouvertes.fr/hal-01211469

U. Ryde, C. Greco, and L. D. Gioia, Quantum Refinement of [FeFe] Hydrogenase Indicates a Dithiomethylamine Ligand, Journal of the American Chemical Society, vol.132, issue.13, pp.4512-4513, 2010.
DOI : 10.1021/ja909194f

M. Winkler, J. Esselborn, and T. Happe, Molecular basis of [FeFe]-hydrogenase function, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1827, issue.8-9, pp.974-985, 2013.
DOI : 10.1016/j.bbabio.2013.03.004

V. Fourmond, C. Greco, K. Sybirna, C. Baffert, P. H. Wang et al., The oxidative inactivation of FeFe hydrogenase reveals the flexibility of the H-cluster, Nature Chemistry, vol.130, issue.4, pp.336-342, 2014.
DOI : 10.1021/ja711187e

URL : https://hal.archives-ouvertes.fr/hal-01481520

B. Ginovska-pangovska, S. Raugei, and W. J. Shaw, Molecular Dynamics Studies of Proton Transport in Hydrogenase and Hydrogenase Mimics, Methods Enzymol, vol.578, pp.73-101, 2016.
DOI : 10.1016/bs.mie.2016.05.044

D. W. Mulder, Y. Guo, M. W. Ratzloff, and P. W. King, Identification of a Catalytic Iron-Hydride at the H-Cluster of [FeFe]-Hydrogenase, Journal of the American Chemical Society, vol.139, issue.1, pp.83-86, 2017.
DOI : 10.1021/jacs.6b11409

C. Sommer, A. Adamska-venkatesh, K. Pawlak, J. A. Birrell, O. Rüdiger et al., Proton Coupled Electronic Rearrangement within the H-Cluster as an Essential Step in the Catalytic Cycle of [FeFe] Hydrogenases, Journal of the American Chemical Society, vol.139, issue.4, pp.1440-1443, 2017.
DOI : 10.1021/jacs.6b12636

J. Meyer, [FeFe] hydrogenases and their evolution: a genomic perspective, Cellular and Molecular Life Sciences, vol.64, issue.9, pp.1063-1084, 2007.
DOI : 10.1007/s00018-007-6477-4

J. W. Peters, W. N. Lanzilotta, B. J. Lemon, and L. C. Seefeldt, X-ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution, Science, vol.282, issue.5395, pp.1853-1858, 1998.
DOI : 10.1126/science.282.5395.1853

R. Kümmerle, M. Atta, J. Scuiller, J. Gaillard, and J. Meyer, Structural similarities between the N-terminal domain of Clostridium pasteurianum hydrogenase and planttype ferredoxins, Biochemistry, vol.38, 1938.

S. Dementin, V. Belle, P. Bertrand, B. Guigliarelli, G. Adryanczyk-perrier et al., Changing the Ligation of the Distal [4Fe4S] Cluster in NiFe Hydrogenase Impairs Inter- and Intramolecular Electron Transfers, Journal of the American Chemical Society, vol.128, issue.15, pp.5209-5218, 2006.
DOI : 10.1021/ja060233b

URL : https://hal.archives-ouvertes.fr/hal-00335157

J. W. Peters, Structure and mechanism of iron-only hydrogenases, Current Opinion in Structural Biology, vol.9, issue.6, pp.670-676, 1999.
DOI : 10.1016/S0959-440X(99)00028-7

S. Morra, A. Cordara, G. Gilardi, and F. Valetti, Atypical effect of temperature tuning on the insertion of the catalytic iron???sulfur center in a recombinant [FeFe]-hydrogenase, Protein Science, vol.282, issue.12, pp.2090-2094, 2015.
DOI : 10.1126/science.282.5395.1853

J. Esselborn, C. Lambertz, A. Adamska-venkatesh, T. Simmons, G. Berggren et al., Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic, Nature Chemical Biology, vol.9, issue.10, pp.607-609, 2013.
DOI : 10.1016/j.jmr.2011.11.011

URL : https://hal.archives-ouvertes.fr/hal-01069155

K. Sybirna, P. Ezanno, C. Baffert, C. Léger, and H. Bottin, Arginine171 of Chlamydomonas reinhardtii [Fe???Fe] hydrogenase HydA1 plays a crucial role in electron transfer to its catalytic center, International Journal of Hydrogen Energy, vol.38, issue.7, pp.2998-3002, 2013.
DOI : 10.1016/j.ijhydene.2012.12.078

H. Long, C. H. Chang, P. W. King, M. L. Ghirardi, and K. Kim, Brownian Dynamics and Molecular Dynamics Study of the Association between Hydrogenase and Ferredoxin from Chlamydomonas reinhardtii, Biophysical Journal, vol.95, issue.8, pp.3753-3766, 2008.
DOI : 10.1529/biophysj.107.127548

M. Mccullagh and G. A. Voth, Unraveling the Role of the Protein Environment for [FeFe]-Hydrogenase: A New Application of Coarse-Graining, The Journal of Physical Chemistry B, vol.117, issue.15, pp.4062-4071, 2013.
DOI : 10.1021/jp402441s

M. Yoo, C. Croux, I. Meynial-salles, and P. Soucaille, Elucidation of the roles of adhE1 and adhE2 in the primary metabolism of Clostridium acetobutylicum by combining in-frame gene deletion and a quantitative system-scale approach, Biotechnology for Biofuels, vol.18, issue.15, 2016.
DOI : 10.1016/j.ymben.2013.03.003

T. Lautier, P. Ezanno, C. Baffert, V. Fourmond, L. Cournac et al., The quest for a functional substrate access tunnel in FeFe hydrogenase, Faraday Discuss., vol.304, pp.385-407, 2011.
DOI : 10.1111/j.1574-6968.2009.01883.x

S. Dusséaux, C. Croux, P. Soucaille, and I. , Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture, Metabolic Engineering, vol.18, pp.1-8, 2013.
DOI : 10.1016/j.ymben.2013.03.003

I. Rouvre, C. Gauquelin, I. Meynial-salles, and R. Basseguy, Impact of the chemicals, essential for the purification process of strict Fe-hydrogenase, on the corrosion of mild steel, Bioelectrochemistry, vol.109, pp.9-23, 2016.
DOI : 10.1016/j.bioelechem.2015.12.006

L. Whitmore and B. A. Wallace, Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases, Biopolymers, vol.332, issue.5, pp.392-400, 2008.
DOI : 10.1155/2005/263649

URL : http://onlinelibrary.wiley.com/doi/10.1002/bip.20853/pdf

D. Vinella, F. Fischer, E. Vorontsov, J. Gallaud, C. Malosse et al., Evolution of Helicobacter: Acquisition by Gastric Species of Two Histidine-Rich Proteins Essential for Colonization, PLOS Pathogens, vol.27, issue.12, 2015.
DOI : 10.1371/journal.ppat.1005312.s008

URL : https://hal.archives-ouvertes.fr/hal-01258641

A. Abou-hamdan, S. Dementin, P. P. Liebgott, O. Gutierrez-sanz, P. Richaud et al., Understanding and Tuning the Catalytic Bias of Hydrogenase, Journal of the American Chemical Society, vol.134, issue.20, pp.8368-8371, 2012.
DOI : 10.1021/ja301802r

V. Fourmond, C. Baffert, K. Sybirna, T. Lautier, A. Abou-hamdan et al., Steady-State Catalytic Wave-Shapes for 2-Electron Reversible Electrocatalysts and Enzymes, Journal of the American Chemical Society, vol.135, issue.10, pp.3926-3938, 2013.
DOI : 10.1021/ja311607s

URL : https://hal.archives-ouvertes.fr/hal-01268145

C. Baffert, L. Bertini, T. Lautier, C. Greco, K. Sybirna et al., CO Disrupts the Reduced H-Cluster of FeFe Hydrogenase. A Combined DFT and Protein Film Voltammetry Study, Journal of the American Chemical Society, vol.133, issue.7, pp.2096-2099, 2011.
DOI : 10.1021/ja110627b

URL : https://hal.archives-ouvertes.fr/hal-00677449

V. Fourmond, QSoas: A Versatile Software for Data Analysis, Analytical Chemistry, vol.88, issue.10, pp.5050-5052, 2016.
DOI : 10.1021/acs.analchem.6b00224

URL : https://hal.archives-ouvertes.fr/hal-01414965

A. Roy, A. Kucukural, and Y. , I-TASSER: a unified platform for automated protein structure and function prediction, Nature Protocols, vol.59, issue.4, pp.725-738, 2010.
DOI : 10.1002/prot.22551

A. Silakov, B. Wenk, E. Reijerse, and W. Lubitz, 14 N HYSCORE investigation of the Hcluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge, Phys. Chem. Chem. Phys, vol.11, 2009.

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew et al., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, Journal of Computational Chemistry, vol.22, issue.16, pp.2785-2791, 2009.
DOI : 10.1002/jcc.21256

J. Moulis, V. Davasse, M. Golinelli, J. Meyer, and I. , The coordination sphere of iron-sulfur clusters: lessons from site-directed mutagenesis experiments, JBIC Journal of Biological Inorganic Chemistry, vol.1, issue.1, pp.2-14, 1996.
DOI : 10.1007/s007750050017

V. Augier, M. Asso, B. Guigliarelli, C. More, P. Bertrand et al., Removal of the high-potential iron-sulfur [4Fe-4S] center of the .beta.-subunit from Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of site-directed mutated enzymes, Biochemistry, vol.32, issue.19, pp.5099-5108, 1993.
DOI : 10.1021/bi00070a018

M. T. Werth, H. Sices, G. Cecchini, I. Schröder, S. Lasage et al., Evidence for non-cysteinyl coordination of the [2Fe-2S] cluster in Escherichia coli succinate dehydrogenase, FEBS Lett, vol.29992, pp.1-40014, 1992.

T. Happe and J. D. , Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii, European Journal of Biochemistry, vol.80, issue.2, pp.475-481, 1993.
DOI : 10.1016/S0076-6879(67)11008-2

M. Winkler, S. Kuhlgert, M. Hippler, and T. Happe, Characterization of the Key Step for Light-driven Hydrogen Evolution in Green Algae, Journal of Biological Chemistry, vol.7, issue.52, pp.36620-36627, 2009.
DOI : 10.1016/S0969-2126(99)80005-7

J. S. Multani and L. E. Mortenson, Circular dichroism spectra of hydrogenase from Clostridium pasteurianum W5, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.256, issue.1, pp.66-700005, 1972.
DOI : 10.1016/0005-2728(72)90163-6

S. Morra, A. Giraudo, G. Di-nardo, P. W. King, G. Gilardi et al., Site Saturation Mutagenesis Demonstrates a Central Role for Cysteine 298 as Proton Donor to the Catalytic Site in CaHydA [FeFe]-Hydrogenase, PLoS ONE, vol.259, issue.10, 2012.
DOI : 10.1371/journal.pone.0048400.t001

K. Tagawa and D. I. Arnon, Ferredoxins as Electron Carriers in Photosynthesis and in the Biological Production and Consumption of Hydrogen Gas, Nature, vol.47, issue.4841, pp.537-543, 1962.
DOI : 10.1016/0006-3002(60)91606-1

S. Morra, S. Maurelli, M. Chiesa, D. W. Mulder, M. W. Ratzloff et al., The effect of a C298D mutation in CaHydA [FeFe]-hydrogenase: Insights into the protein-metal cluster interaction by EPR and FTIR spectroscopic investigation, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1857, issue.1, pp.98-106, 2016.
DOI : 10.1016/j.bbabio.2015.10.005

U. Schmidt, Free Radicals and Free-Radical Reactions of Monovalent and Divalent Sulfur, Angewandte Chemie International Edition in English, vol.3, issue.9, pp.602-608, 1964.
DOI : 10.1002/anie.196406021

B. Guigliarelli, A. Magalon, M. Asso, P. Bertrand, C. Frixon et al., Nitrate Reductase. Physiological, Biochemical, and EPR Characterization of Site-Directed Mutants Lacking the Highest or Lowest Potential [4Fe-4S] Clusters, Biochemistry, vol.35, issue.15, pp.4828-4836, 1996.
DOI : 10.1021/bi952459p

URL : https://hal.archives-ouvertes.fr/hal-01429839

Y. Zhang, C. Yang, A. Dancis, and E. Nakamaru-ogiso, EPR studies of wild type and mutant Dre2 identify essential [2Fe???-2S] and [4Fe???-4S] clusters and their cysteine ligands, Journal of Biochemistry, vol.1777, issue.1, pp.67-78, 2017.
DOI : 10.1371/journal.pone.0139699

V. Fourmond, C. Baffert, K. Sybirna, S. Dementin, A. Abou-hamdan et al., The mechanism of inhibition by H2 of H2-evolution by hydrogenases, Chemical Communications, vol.109, issue.61, pp.6840-6842, 2013.
DOI : 10.1073/pnas.1212258109

URL : https://hal.archives-ouvertes.fr/hal-01268212

S. G. Mayhew, The Redox Potential of Dithionite and SO-2 from Equilibrium Reactions with Flavodoxins, Methyl Viologen and Hydrogen plus Hydrogenase, European Journal of Biochemistry, vol.221, issue.2, pp.535-547, 1978.
DOI : 10.1016/0003-9861(75)90124-1

O. Guerrini, B. Burlat, C. Léger, B. Guigliarelli, P. Soucaille et al., Characterization of Two 2[4Fe4S] Ferredoxins from Clostridium acetobutylicum, Current Microbiology, vol.25, issue.3, pp.261-267, 2008.
DOI : 10.1111/j.1574-6976.2001.tb00587.x

J. Cohen, K. Kim, M. Posewitz, M. L. Ghirardi, K. Schulten et al., diffusion in [Fe]-hydrogenase, Biochemical Society Transactions, vol.33, issue.1, pp.80-82, 2005.
DOI : 10.1042/BST0330080

P. W. King, M. C. Posewitz, M. L. Ghirardi, and M. Seibert, Functional Studies of [FeFe] Hydrogenase Maturation in an Escherichia coli Biosynthetic System, Journal of Bacteriology, vol.188, issue.6, pp.2163-2172, 2006.
DOI : 10.1128/JB.188.6.2163-2172.2006

C. Gauquelin, Roles of the F-domain in [FeFe] hydrogenase, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1859, issue.2, pp.69-77, 2018.
DOI : 10.1016/j.bbabio.2017.08.010

URL : https://hal.archives-ouvertes.fr/hal-01614133