E. Immunology, . Therapy, . Polishacademy, . Sciences, and . Wroclaw, A characteristic feature of this cell line is a lack of receptors for estrogen, progesterone, and Her-2/neu (ErbB-2)MDA-MB-231 cell line is completely hormoneindependent , highly invasive, display a high ability to migrate, an increased growth in semi-solid agar and the ability to form metastases in athymic mice model. They have been identified as mesenchymal-like), and they present a G3 grade. Human skin endothelial microvascular HSkMEC cell line was established in prof. Claudine Kieda laboratory(Centre National de la Recherche Scientifique patent 99-16169) Human microvascular ECs were isolated and immortalized according to the method previously described and patented, These cells were derived from adenocarcinoma of the breast Their phenotype was shown to be stable in terms of adhesion molecules and typical EC characteristics. Human fibroblasticMSU1.1 cell line (human fibroblasts N° CVCL_9S81) derived from human skin fibroblasts was obtained from Cell Line Collection of C. Kieda laboratory, Centre National de la Recherche Scientifique in Orleans, 2004.

T. Human-aorta-fibroblasts, Obtained from Cell Lines Collection of Institute of Immunology and Experimental Therapy, Polish Academy of Sciences in Wroclaw, Cell line has been derived from aorta (ATCC® CRL-1999?)

H. Sinna and H. Kreipeb, A Brief Overview of the WHO Classification of Breast Tumors, 4th Edition, Focusing on Issues and Updates from the 3rd Edition, Breast Care, vol.8, issue.2, pp.149-154, 2013.
DOI : 10.1159/000350774

T. Vincent and R. Gatenby, An evolutionary model for initiation, promotion and progression in carcinogenesis, Int J Oncol, vol.32, pp.729-766, 2008.

T. Slaga, Overview of tumor promotion in animals, Environmental Health Perspectives, vol.50, pp.3-14, 1983.
DOI : 10.1289/ehp.83503

W. Friedewald and P. Rous, THE INITIATING AND PROMOTING ELEMENTS IN TUMOR PRODUCTION: AN ANALYSIS OF THE EFFECTS OF TAR, BENZPYRENE, AND METHYLCHOLANTHRENE ON RABBIT SKIN, Journal of Experimental Medicine, vol.80, issue.2, pp.101-127, 1944.
DOI : 10.1084/jem.80.2.101

A. Fallis, The Part played by Injury and Repair in the Development of Cancer, with some Remarks on the Growth of Experimental Cancers, J Chem Inf Model, vol.53, pp.1689-99, 2013.

I. Berenblum, The Cocarcinogenic Action of Croton Resin The Cocarcinogenic Action of Croton Resin, Cancer Res, vol.1, pp.44-52, 1941.

P. Devi, Basics of carcinogenesis, pp.16-24, 1989.

B. Weigelt and M. Bissell, Unraveling the microenvironmental influences on the normal mammary gland and breast cancer, Seminars in Cancer Biology, vol.18, issue.5, pp.311-332, 2008.
DOI : 10.1016/j.semcancer.2008.03.013

J. Flier, L. Underhill, and H. Dvorak, Tumors: Wounds That Do Not Heal, New England Journal of Medicine, vol.315, issue.26, pp.1650-1659, 1986.
DOI : 10.1056/NEJM198612253152606

S. Paget, The distribution of secondary growths in cancer of the breast. 1889, Cancer Metastasis Rev, vol.8, issue.00, pp.98-101, 1989.

I. Berenblum and P. Shubik, An Experimental Study of the Initiating Stage of Carcinogenesis and a Re-examination of the Somatic Cell Mutation Theory of Cancer, British Journal of Cancer, vol.3, issue.1, pp.109-127, 1949.
DOI : 10.1038/bjc.1949.13

M. Angelica and Y. Fong, A Novel Function for the nm23-H1 Gene: Overexpression in Human Breast Carcinoma Cells Leads to the Formation of Basement Membrane and Growth Arrest, J Natl Cancer Inst, vol.86, issue.24, pp.1838-1844, 1994.

M. Barcellos-hoff, D. Lyden, and T. Wang, The evolution of the cancer niche during multistage carcinogenesis, Nature Reviews Cancer, vol.59, issue.7, pp.511-519
DOI : 10.1038/nrc3036

L. Kopelovich, Genetic Predisposition to Cancer in Man: In Vitro Studies, Int Rev Cytol, vol.77, pp.63-88, 1982.
DOI : 10.1016/S0074-7696(08)62464-X

R. Kalluri and M. Zeisberg, Fibroblasts in cancer, Nature Reviews Cancer, vol.59, issue.Suppl. 3, pp.392-401, 2006.
DOI : 10.1046/j.1523-1755.2001.059002543.x

D. Senger, S. Galli, A. Dvorak, C. Perruzzi, V. Harvey et al., Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid, Science, vol.219, issue.4587, pp.983-988, 1983.
DOI : 10.1126/science.6823562

M. Mueller and N. Fusenig, Friends or foes ??? bipolar effects of the tumour stroma in cancer, Nature Reviews Cancer, vol.22, issue.1, pp.839-888, 2004.
DOI : 10.1200/jco.2004.22.14_suppl.3616

S. Barsky, W. Green, G. Grotendorst, and L. Liotta, Desmoplastic breast carcinoma as a source of human myofibroblasts, Am J Pathol, vol.115, pp.329-362, 1984.

P. Cirri and P. Chiarugi, Cancer associated fibroblasts: the dark side of the coin, Am J Cancer Res, vol.1, pp.482-97, 2011.

B. Pula, A. Jethon, A. Piotrowska, A. Gomulkiewicz, T. Owczarek et al., Podoplanin expression by cancer-associated fibroblasts predicts poor outcome in invasive ductal breast carcinoma, Histopathology, vol.11, issue.6, pp.1249-60, 2011.
DOI : 10.1038/bjc.1957.43

D. Ohlund, E. Elyada, and D. Tuveson, Fibroblast heterogeneity in the cancer wound, The Journal of Experimental Medicine, vol.1, issue.8, pp.1503-1526, 2014.
DOI : 10.1038/jid.2009.130

P. Gallagher, Y. Bao, A. Prorock, P. Zigrino, R. Nischt et al., Gene Expression Profiling Reveals Cross-talk between Melanoma and Fibroblasts: Implications for Host-Tumor Interactions in Metastasis, Cancer Research, vol.65, issue.10, pp.4134-4180, 2005.
DOI : 10.1158/0008-5472.CAN-04-0415

Y. Kojima, A. Acar, E. Eaton, K. Mellody, C. Scheel et al., Autocrine TGF-?? and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts, Proceedings of the National Academy of Sciences, vol.52, issue.24, pp.20009-20023, 2010.
DOI : 10.1016/0305-7372(95)90038-1

S. Kidd, E. Spaeth, J. Dembinski, M. Dietrich, K. Watson et al., Direct Evidence of Mesenchymal Stem Cell Tropism for Tumor and Wounding Microenvironments Using In Vivo Bioluminescent Imaging, Stem Cells, vol.116, issue.10, pp.2614-2637, 2009.
DOI : 10.1056/NEJM198612253152606

E. Spaeth, . Klopp-a, J. Dembinski, M. Andreeff, and F. Marini, Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells, Gene Therapy, vol.285, issue.10, pp.730-738, 2008.
DOI : 10.1634/stemcells.2004-0176

D. Radisky, P. Kenny, and M. Bissell, Fibrosis and cancer: Do myofibroblasts come also from epithelial cells via EMT?, Journal of Cellular Biochemistry, vol.99, issue.4, pp.830-839, 2007.
DOI : 10.1091/mbc.6.10.1287

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838476/pdf

J. Thiery, Epithelial???mesenchymal transitions in tumour progression, Nature Reviews Cancer, vol.59, issue.6, pp.442-54, 2002.
DOI : 10.1093/jnci/91.13.1113

D. Radisky, D. Levy, L. Littlepage, H. Liu, C. Nelson et al., Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability, Nature, vol.22, issue.7047, pp.123-130, 1038.
DOI : 10.1038/sj.onc.1206482

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784913/pdf

E. Zeisberg, S. Potenta, L. Xie, M. Zeisberg, and R. Kalluri, Discovery of Endothelial to Mesenchymal Transition as a Source for Carcinoma-Associated Fibroblasts, Cancer Research, vol.67, issue.21, pp.10123-10131, 2007.
DOI : 10.1158/0008-5472.CAN-07-3127

R. Kalluri, The biology and function of fibroblasts in cancer, Nature Reviews Cancer, vol.9, issue.9, pp.582-98, 2016.
DOI : 10.1371/journal.pgen.1003789

H. Kurosaka, D. Kurosaka, K. Kato, Y. Mashima, and Y. Tanaka, Transforming growth factor-?1 promotes contraction of collagen gel by bovine corneal fibroblasts through differentiation of myofibroblasts

X. Guo, H. Oshima, T. Kitmura, M. Taketo, and M. Oshima, Stromal Fibroblasts Activated by Tumor Cells Promote Angiogenesis in Mouse Gastric Cancer, Journal of Biological Chemistry, vol.1, issue.Suppl. 5, pp.19864-71, 2008.
DOI : 10.1016/S0006-291X(03)01544-4

B. Elenbaas and R. Weinberg, Heterotypic Signaling between Epithelial Tumor Cells and Fibroblasts in Carcinoma Formation, Experimental Cell Research, vol.264, issue.1, pp.169-84, 2000.
DOI : 10.1006/excr.2000.5133

N. Bhowmick, TGF-?? Signaling in Fibroblasts Modulates the Oncogenic Potential of Adjacent Epithelia, Science, vol.303, issue.5659, pp.848-51, 2004.
DOI : 10.1126/science.1090922

N. Bhowmick, E. Neilson, and H. Moses, Stromal fibroblasts in cancer initiation and progression, Nature, vol.124, issue.suppl. 1, pp.332-339, 2011.
DOI : 10.1002/jez.1401750405

C. Kuperwasser, T. Chavarria, M. Wu, G. Magrane, J. Gray et al., From The Cover: Reconstruction of functionally normal and malignant human breast tissues in mice, Proceedings of the National Academy of Sciences, vol.63, issue.7, pp.4966-71, 2004.
DOI : 10.1016/S0046-8177(85)80251-3

A. Olumi, P. Dazin, and T. Tlsty, A novel coculture technique demonstrates that normal human prostatic fibroblasts contribute to tumor formation of LNCaP cells by retarding cell death, Cancer Res, vol.58, pp.4525-4555, 1998.

A. Orimo, P. Gupta, D. Sgroi, F. Arenzana-seisdedos, T. Delaunay et al., Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion, Cell, vol.121, issue.3, pp.335-383, 2005.
DOI : 10.1016/j.cell.2005.02.034

A. Olumi, G. Grossfeld, S. Hayward, P. Carroll, T. Tlsty et al., Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium, Cancer Res, vol.59, pp.5002-5013, 1999.

H. Funahashi, H. Takeyama, Z. Tong, and S. Guha, CXCL8/IL-8 and CXCL12/SDF-1? Co-operatively Promote Invasiveness and Angiogenesis in Pancreatic Cancer, Int J Cancer, vol.124, pp.853-61, 2010.

M. Augsten, C. Hägglöf, E. Olsson, C. Stolz, P. Tsagozis et al., CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth, Proceedings of the National Academy of Sciences, vol.25, issue.35, pp.3414-3423, 2009.
DOI : 10.1038/sj.onc.1209497

N. Erez, M. Truitt, P. Olson, and D. Hanahan, Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NF-??B-Dependent Manner, Cancer Cell, vol.17, issue.2, pp.135-182, 2010.
DOI : 10.1016/j.ccr.2009.12.041

A. Toullec, D. Gerald, G. Despouy, B. Bourachot, M. Cardon et al., Oxidative stress promotes myofibroblast differentiation and tumour spreading, EMBO Molecular Medicine, vol.215, issue.6, pp.211-241, 2010.
DOI : 10.1002/path.2350

URL : http://embomolmed.embopress.org/content/embomm/2/6/211.full.pdf

P. Insel, Location, location, location, Trends in Endocrinology and Metabolism, vol.14, issue.3, pp.100-102, 2003.
DOI : 10.1016/S1043-2760(03)00029-8

R. Roy, Y. J. Moses, and M. , Matrix Metalloproteinases As Novel Biomarker s and Potential Therapeutic Targets in Human Cancer, Journal of Clinical Oncology, vol.27, issue.31, pp.5287-97, 2009.
DOI : 10.1200/JCO.2009.23.5556

T. Blick, H. Hugo, E. Widodo, M. Waltham, C. Pinto et al., Epithelial Mesenchymal Transition Traits in Human Breast Cancer Cell Lines Parallel the CD44hi/CD24lo/- Stem Cell Phenotype in Human Breast Cancer, Journal of Mammary Gland Biology and Neoplasia, vol.8, issue.4, pp.235-52, 2010.
DOI : 10.1089/scd.1.1994.3.165

S. Mani, W. Guo, M. Liao, E. Eaton, A. Ayyanan et al., The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells, Cell, vol.133, issue.4, pp.704-719, 2008.
DOI : 10.1016/j.cell.2008.03.027

I. Huijbers, M. Iravani, S. Popov, D. Robertson, S. Sarraj et al., A Role for Fibrillar Collagen Deposition and the Collagen Internalization Receptor Endo180 in Glioma Invasion, PLoS ONE, vol.5, issue.3, pp.1-12, 2010.
DOI : 10.1371/journal.pone.0009808.s003

T. Chun, K. Hotary, F. Sabeh, A. Saltiel, E. Allen et al., A Pericellular Collagenase Directs the 3-Dimensional Development of White Adipose Tissue, Cell, vol.125, issue.3, pp.577-91, 2006.
DOI : 10.1016/j.cell.2006.02.050

M. Paszek, N. Zahir, K. Johnson, J. Lakins, G. Rozenberg et al., Tensional homeostasis and the malignant phenotype, Cancer Cell, vol.8, issue.3, pp.241-54, 2005.
DOI : 10.1016/j.ccr.2005.08.010

A. Santhanam, A. Baker, G. Hegamyer, D. Kirschmann, and N. Colburn, Pdcd4 repression of lysyl oxidase inhibits hypoxia-induced breast cancer cell invasion, Oncogene, vol.18, issue.27, pp.3921-3953, 2010.
DOI : 10.1038/cr.2008.24

R. Pankov and K. Yamada, Fibronectin at a glance, Journal of Cell Science, vol.115, issue.20, pp.3861-3864, 2002.
DOI : 10.1242/jcs.00059

M. Zheng, D. Jones, C. Horzempa, A. Prasad, and P. Mckeown-longo, The First Type III Domain of Fibronectin is Associated with the Expression of Cytokines within the Lung Tumor Microenvironment, Journal of Cancer, vol.2, pp.478-83, 2011.
DOI : 10.7150/jca.2.478

N. Kobayashi, S. Miyoshi, T. Mikami, H. Koyama, M. Kitazawa et al., Hyaluronan Deficiency in Tumor Stroma Impairs Macrophage Trafficking and Tumor Neovascularization, Cancer Research, vol.70, issue.18, pp.7073-83, 2010.
DOI : 10.1158/0008-5472.CAN-09-4687

D. Hanahan and J. Folkman, Patterns and Emerging Mechanisms of the Angiogenic Switch during Tumorigenesis, Cell, vol.86, issue.3, pp.353-64, 1996.
DOI : 10.1016/S0092-8674(00)80108-7

G. Bergers and L. Benjamin, Tumorigenesis and the angiogenic switch, Nat Rev Cancer, vol.3, pp.1-10, 2003.

S. V. Ulahannan and J. Brahmer, Antiangiogenic Agents in Combination with Chemotherapy in Patients with Advanced Non-Small Cell Lung Cancer, Cancer Investigation, vol.27, issue.15, pp.325-362, 2011.
DOI : 10.1200/JCO.2008.20.8355

C. Kieda, R. Greferath, C. Da-silva, C. Fylaktakidou, K. Lehn et al., Suppression of hypoxia-induced HIF-1?? and of angiogenesis in endothelial cells by myo-inositol trispyrophosphate-treated erythrocytes, Proceedings of the National Academy of Sciences, vol.114, issue.3, pp.15576-81, 2006.
DOI : 10.1016/j.jconrel.2006.06.006

URL : https://hal.archives-ouvertes.fr/hal-00388055

S. Goel, A. Wong, and R. Jain, Vascular Normalization as a Therapeutic Strategy. Cold Spring Harb Perspect Med, 2012.

W. Kamoun, S. Chae, D. Lacorre, J. Tyrrell, M. Mitre et al., Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks, Nature Methods, vol.26, issue.8, pp.655-60, 2011.
DOI : 10.1016/0360-3016(93)90348-Y

R. Jain, Antiangiogenic therapy for cancer: current and emerging concepts, Oncology, vol.19, pp.7-16, 2005.

S. Goel, D. Duda, L. Xu, L. Munn, Y. Boucher et al., Normalization of the Vasculature for Treatment of Cancer and Other Diseases, Physiological Reviews, vol.57, issue.3, pp.1071-1121, 2010.
DOI : 10.1200/JCO.2008.20.9908

K. Bock, . De, M. Mazzone, and P. Carmeliet, Antiangiogenic therapy , hypoxia , and metastasis : risky liaisons , or not ?, Nature, vol.8, pp.393-404, 2011.

L. Rivera and G. Bergers, Tumor angiogenesis, from foe to friend, Science, vol.514, issue.2, pp.694-699, 2015.
DOI : 10.1038/nature13541

C. Kieda, E. Hafny-rahbi, B. Collet, G. Lamerant-fayel, N. Grillon et al., Stable tumor vessel normalization with pO2 increase and endothelial PTEN activation by inositol trispyrophosphate brings novel tumor treatment, Journal of Molecular Medicine, vol.15, issue.7, pp.883-99, 2013.
DOI : 10.1016/j.ccr.2009.01.021

URL : https://hal.archives-ouvertes.fr/hal-00817464

E. Lagory and A. Giaccia, The ever-expanding role of HIF in tumour and stromal biology, Nature Cell Biology, vol.262, issue.4, pp.356-65
DOI : 10.1038/nrc1187

Y. Qin, Y. Naito, O. Handa, N. Hayashi, A. Kuki et al., Heat shock protein 70-dependent protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells, Journal of Clinical Biochemistry and Nutrition, vol.49, issue.3, pp.174-81, 2011.
DOI : 10.3164/jcbn.11-26

E. Papakonstantinou, M. Roth, M. Tamm, O. Eickelberg, A. Perruchoud et al., Hypoxia Differentially Enhances the Effects of Transforming Growth Factor-beta Isoforms on the Synthesis and Secretion of Glycosaminoglycans by Human Lung Fibroblasts, Journal of Pharmacology and Experimental Therapeutics, vol.301, issue.3, pp.830-837, 2002.
DOI : 10.1124/jpet.301.3.830

A. Casazza, G. Conza, . Di, M. Wenes, V. Finisguerra et al., Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment, Oncogene, vol.3, issue.14, 2013.
DOI : 10.1055/s-2007-991540

S. Breiteneder-geleff, K. Matsui, . Soleiman-a, P. Meraner, H. Poczewski et al., Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is downregulated in puromycin nephrosis, Am J Pathol, vol.151, pp.1141-52, 1997.

B. Pula, W. Witkiewicz, P. Dziegiel, and M. Podhorska-okolow, Significance of podoplanin expression in cancer-associated fibroblasts: A comprehensive review, International Journal of Oncology, vol.42, issue.6, pp.1849-57, 2013.
DOI : 10.3892/ijo.2013.1887

J. Astarita, S. Acton, and S. Turley, Podoplanin: emerging functions in development, the immune system, and cancer, Frontiers in Immunology, vol.3, 2012.
DOI : 10.3389/fimmu.2012.00283

E. Martín, F. Gómez, C. Gamallo, and M. Quintanilla, a small mucin-like transmembrane glycoprotein associated with cell migration and cancer, Clin Transl Oncol, vol.5, pp.491-500, 2003.

A. Kunita, T. Kashima, Y. Morishita, M. Fukayama, Y. Kato et al., The Platelet Aggregation-Inducing Factor Aggrus/Podoplanin Promotes Pulmonary Metastasis, The American Journal of Pathology, vol.170, issue.4, pp.1337-47060790, 2007.
DOI : 10.2353/ajpath.2007.060790

G. Farr-a, M. Berry, K. A. Nelson-a, J. Welch, and M. , Characterization and cloning of a novel glycoprotein expressed by stromal cells in T-dependent areas of peripheral lymphoid tissues, Journal of Experimental Medicine, vol.176, issue.5, pp.1477-82, 1992.
DOI : 10.1084/jem.176.5.1477

G. Zimmer, F. Oeffner, V. Messling, T. Tschernig, H. Gröne et al., Cloning and characterization of gp36, a human mucin-type glycoprotein preferentially expressed in vascular endothelium, Biochemical Journal, vol.341, issue.2, pp.277-84, 1999.
DOI : 10.1042/bj3410277

M. Ugorski, P. Dziegiel, and J. Suchanski, Podoplanin -a small glycoprotein with many faces, Am J Cancer Res, vol.156, issue.2, pp.370-86, 2016.

V. Schacht, M. Ramirez, Y. Hong, S. Hirakawa, D. Feng et al., T1??/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema, The EMBO Journal, vol.22, issue.14, pp.3546-56, 2003.
DOI : 10.1093/emboj/cdg342

URL : http://emboj.embopress.org/content/embojnl/22/14/3546.full.pdf

M. Ramirez, G. Millien, A. Hinds, Y. Cao, D. Seldin et al., T1??, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth, Developmental Biology, vol.256, issue.1, pp.61-72, 2003.
DOI : 10.1016/S0012-1606(02)00098-2

K. Matsui, S. Breitender-geleff, . Soleiman-a, H. Kowalski, and D. Kerjaschki, Podoplanin, a novel 43-kDa membrane protein, controls the shape of podocytes, Nephrology Dialysis Transplantation, vol.14, issue.90001, pp.9-11, 1999.
DOI : 10.1093/ndt/14.suppl_1.9

A. Gandarillas, F. Scholl, N. Benito, C. Gamallo, and M. Quintanilla, Induction of PA2.26, a cell-surface antigen expressed by active fibroblasts, in mouse epidermal keratinocytes during carcinogenesis, 1<10::AID-MC3>3.0.CO, pp.10-18, 1997.
DOI : 10.1111/1523-1747.ep12486833

H. Schmid and . Gene, Gene Expression Profiles of Podocyte-Associated Molecules as Diagnostic Markers in Acquired Proteinuric Diseases, Journal of the American Society of Nephrology, vol.14, issue.11, pp.2958-66, 2003.
DOI : 10.1097/01.ASN.0000090745.85482.06

V. Levidiotis and D. Power, New insights into the molecular biology of the glomerular filtration barrier and associated disease. Review Article, Nephrology, vol.160, issue.2, pp.157-66, 2005.
DOI : 10.1038/73456

N. Rahadiani, J. Ikeda, T. Makino, T. Tian, Y. Qiu et al., Tumorigenic Role of Podoplanin in Esophageal Squamous-Cell Carcinoma, Annals of Surgical Oncology, vol.9, issue.5, pp.1311-1334, 2010.
DOI : 10.4049/jimmunol.177.12.8730

K. Dumoff, C. Chu, E. Harris, D. Holtz, X. Xu et al., Low podoplanin expression in pretreatment biopsy material predicts poor prognosis in advanced-stage squamous cell carcinoma of the uterine cervix treated by primary radiation, Modern Pathology, vol.129, issue.5, pp.708-724, 2006.
DOI : 10.1083/jcb.129.1.255

E. Martín-villar, D. Megías, S. Castel, M. Yurrita, S. Vilaró et al., Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition, Journal of Cell Science, vol.119, issue.21, pp.4541-53, 2006.
DOI : 10.1242/jcs.03218

L. Cueni, I. Hegyi, J. Shin, A. Albinger-hegyi, S. Gruber et al., Tumor Lymphangiogenesis and Metastasis to Lymph Nodes Induced by Cancer Cell Expression of Podoplanin, The American Journal of Pathology, vol.177, issue.2
DOI : 10.2353/ajpath.2010.090703

M. Kaneko, Y. Kato, A. Kameyama, H. Ito, A. Kuno et al., Functional glycosylation of human podoplanin: Glycan structure of platelet aggregation-inducing factor, FEBS Letters, vol.16, issue.2, pp.331-337, 2007.
DOI : 10.1093/glycob/cwj038

. Wicki-a and G. Christofori, The potential role of podoplanin in tumour invasion, British Journal of Cancer, vol.10, issue.1, 2007.
DOI : 10.1038/nm966

N. Kimura and I. Kimura, Podoplanin as a marker for mesothelioma, Pathology International, vol.80, issue.2, pp.83-89, 2005.
DOI : 10.1034/j.1600-0714.2003.00168.x

Y. Naito, G. Ishii, O. Kawai, T. Hasebe, Y. Nishiwaki et al., D2-40-positive solitary fibrous tumors of the pleura: Diagnostic pitfall of biopsy specimen, Pathology International, vol.73, issue.9, pp.618-639, 2007.
DOI : 10.1046/j.1440-1827.2002.t01-1-01423.x

Y. Kato, N. Fujita, A. Kunita, S. Sato, M. Kaneko et al., Molecular Identification of Aggrus/T1?? as a Platelet Aggregation-inducing Factor Expressed in Colorectal Tumors, Journal of Biological Chemistry, vol.151, issue.51, pp.51599-605, 2003.
DOI : 10.1084/jem.187.12.1965

K. Mishima, Y. Kato, M. Kaneko, R. Nishikawa, T. Hirose et al., Increased expression of podoplanin in malignant astrocytic tumors as a novel molecular marker of malignant progression, Acta Neuropathologica, vol.30, issue.5
DOI : 10.1016/S0002-9440(10)62311-5

M. Mahalingam, K. Ugen, K. Kao, and P. Klein, Functional role of platelets in experimental metastasis studied with cloned murine fibrosarcoma cell variants, Cancer Res, vol.48, pp.1460-1464, 1988.

H. Suzuki, Y. Kato, M. Kaneko, Y. Okita, H. Narimatsu et al., Induction of podoplanin by transforming growth factor-?? in human fibrosarcoma, FEBS Letters, vol.95, issue.2, 2008.
DOI : 10.1073/pnas.95.12.6733

K. Suzuki-inoue, Y. Kato, O. Inoue, K. Mika, K. Mishima et al., Involvement of the Snake Toxin Receptor CLEC-2, in Podoplanin-mediated Platelet Activation, by Cancer Cells, Journal of Biological Chemistry, vol.48, issue.36, pp.25993-6001, 2007.
DOI : 10.1126/science.1079477

P. Yuan, S. Temam, A. El-naggar, X. Zhou, D. Liu et al., Overexpression of podoplanin in oral cancer and its association with poor clinical outcome, Cancer, vol.20, issue.3, pp.563-572, 2006.
DOI : 10.1016/S0344-0338(11)81095-2

W. Forsee, R. Cartee, and J. Yother, Biosynthesis of type 3 capsular polysaccharide in Streptococcus pneumoniae. Enzymatic chain release by an abortive translocation process, J Biol Chem. 2000, vol.25275, issue.34, pp.25972-25980

A. Bretscher, K. Edwards, and R. Fehon, ERM proteins and merlin: integrators at the cell cortex, Nature Reviews Molecular Cell Biology, vol.12, issue.8, pp.586-99, 2002.
DOI : 10.1091/mbc.12.10.3060

A. Moustakas and C. Heldin, Signaling networks guiding epithelial?mesenchymal transitions during embryogenesis and cancer progression, Cancer Science, vol.4, issue.10, pp.1512-1532, 2007.
DOI : 10.1096/fj.04-2370com

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1349-7006.2007.00550.x/pdf

F. Scholl, C. Gamallo, S. Vilaró, and M. Quintanilla, Identification of PA2.26 antigen as a novel cellsurface mucin-type glycoprotein that induces plasma membrane extensions and increased motility in keratinocytes, J Cell Sci, vol.112, pp.4601-4614, 1999.

W. K?opocka and J. Bara?ska, Rola bia?ek z rodziny Rho w kontroli migracji komórek pe?zaj?cych, Postepy Biochem, vol.51, pp.36-43, 2005.

M. Gröger, R. Loewe, W. Holnthoner, R. Embacher, M. Pillinger et al., IL-3 Induces Expression of Lymphatic Markers Prox-1 and Podoplanin in Human Endothelial Cells, The Journal of Immunology, vol.173, issue.12, pp.7161-7170, 2004.
DOI : 10.4049/jimmunol.173.12.7161

M. Durchdewald, J. Guinea-viniegra, D. Haag, A. Riehl, P. Lichter et al., Podoplanin Is a Novel Fos Target Gene in Skin Carcinogenesis, Cancer Research, vol.68, issue.17, pp.6877-83
DOI : 10.1158/0008-5472.CAN-08-0299

Y. Shen, C. Chen, H. Ichikawa, and G. Goldberg, Src Induces Podoplanin Expression to Promote Cell Migration, Journal of Biological Chemistry, vol.1692, issue.13, pp.9649-56, 2010.
DOI : 10.1084/jem.20080809

A. Kawase, G. Ishii, K. Nagai, T. Ito, T. Nagano et al., Podoplanin expression by cancer associated fibroblasts predicts poor prognosis of lung adenocarcinoma, International Journal of Cancer, vol.75, issue.5, pp.1053-1062, 2008.
DOI : 10.1016/S0002-9440(10)65041-9

K. Shindo, S. Aishima, K. Ohuchida, K. Fujiwara, M. Fujino et al., Podoplanin expression in cancer-associated fibroblasts enhances tumor progression of invasive ductal carcinoma of the pancreas, Molecular Cancer, vol.12, issue.1, pp.168-178
DOI : 10.1158/0008-5472.CAN-03-2464

K. Shindo, S. Aishima, K. Ohuchida, K. Fujiwara, M. Fujino et al., Podoplanin expression in cancer-associated fibroblasts enhances tumor progression of invasive ductal carcinoma of the pancreas, Molecular Cancer, vol.12, issue.1, pp.168-1476, 2013.
DOI : 10.1158/0008-5472.CAN-03-2464

S. Aishima, Y. Nishihara, T. Iguchi, K. Taguchi, A. Taketomi et al., Lymphatic spread is related to VEGF-C expression and D2-40-positive myofibroblasts in intrahepatic cholangiocarcinoma, Modern Pathology, vol.9, issue.3, pp.256-64, 2008.
DOI : 10.1016/S0039-6060(99)70024-3

S. Hirohashi, Podoplanin expression identified in stromal fibroblasts as a favorable prognostic marker in patients with colorectal carcinoma, Oncology, vol.77, pp.53-62, 2009.

F. Carvalho, F. Zaganelli, B. Almeida, J. Goes, E. Baracat et al., Prognostic value of podoplanin expression in intratumoral stroma and neoplastic cells of uterine cervical carcinomas, Clinics, vol.65, issue.12, pp.1279-83, 2010.
DOI : 10.1590/S1807-59322010001200009

T. Yoshida, G. Ishii, K. Goto, S. Neri, H. Hashimoto et al., Podoplanin-Positive Cancer-Associated Fibroblasts in the Tumor Microenvironment Induce Primary Resistance to EGFR-TKIs in Lung Adenocarcinoma with EGFR Mutation, Clinical Cancer Research, vol.21, issue.3, pp.642-51, 2015.
DOI : 10.1158/1078-0432.CCR-14-0846

S. Ito, G. Ishii, A. Hoshino, H. Hashimoto, S. Neri et al., Tumor promoting effect of podoplanin-positive fibroblasts is mediated by enhanced RhoA activity, Biochemical and Biophysical Research Communications, vol.422, issue.1, pp.194-203, 2012.
DOI : 10.1016/j.bbrc.2012.04.158

A. Hoshino, G. Ishii, T. Ito, K. Aoyagi, Y. Ohtaki et al., Podoplanin-Positive Fibroblasts Enhance Lung Adenocarcinoma Tumor Formation: Podoplanin in Fibroblast Functions for Tumor Progression, Cancer Research, vol.71, issue.14, pp.4769-79, 2011.
DOI : 10.1158/0008-5472.CAN-10-3228

Q. Li, D. Zhang, Y. Wang, P. Sun, X. Hou et al., MiR-21/Smad 7 signaling determines TGF-??1-induced CAF formation, Scientific Reports, vol.33, issue.1, pp.2038-2048, 2013.
DOI : 10.1093/nar/gni130

S. Vasudevan, Y. Tong, and J. , Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation, Science, vol.35, issue.7, pp.1931-1935, 2007.
DOI : 10.1093/nar/gkm133

Q. Jing, S. Huang, S. Guth, T. Zarubin, A. Motoyama et al., Involvement of MicroRNA in AU-Rich Element-Mediated mRNA Instability, Cell, vol.120, issue.5, pp.623-657, 2005.
DOI : 10.1016/j.cell.2004.12.038

M. Chalfie, H. Horvitz, and J. Sulston, Mutations that lead to reiterations in the cell lineages of C. elegans, Cell, vol.24, issue.1, pp.59-69, 1981.
DOI : 10.1016/0092-8674(81)90501-8

M. Lagos-quintana, R. Rauhut, W. Lendeckel, and T. Tuschl, Identification of Novel Genes Coding for Small Expressed RNAs, Science, vol.294, issue.5543, pp.853-861, 2001.
DOI : 10.1126/science.1064921

A. Grimson, K. Farh, W. Johnston, P. Garrett-engele, L. Lim et al., MicroRNA Targeting Specificity in Mammals: Determinants beyond Seed Pairing, Molecular Cell, vol.27, issue.1, pp.91-105, 2007.
DOI : 10.1016/j.molcel.2007.06.017

C. Nielsen, N. Shomron, R. Sandberg, E. Hornstein, J. Kitzman et al., Determinants of targeting by endogenous and exogenous microRNAs and siRNAs, RNA, vol.13, issue.11, pp.1894-910, 2007.
DOI : 10.1261/rna.768207

J. Doench, C. Petersen, and P. Sharp, siRNAs can function as miRNAs, Genes & Development, vol.17, issue.4, pp.438-480, 2003.
DOI : 10.1101/gad.1064703

URL : http://genesdev.cshlp.org/content/17/4/438.full.pdf

M. Rodrigues, L. Nimrichter, D. Oliveira, J. Nosanchuk, and A. Casadevall, Vesicular Trans-Cell Wall Transport in Fungi: A Mechanism for the Delivery of Virulence-Associated Macromolecules?, Lipid Insights, vol.2, issue.1, pp.27-40, 2008.
DOI : 10.4137/LPI.S1000

A. Aravin, M. Lagos-quintana, and A. Yalcin, The Small RNA Profile during Drosophila melanogaster Development, Developmental Cell, vol.5, issue.2, pp.337-50, 2003.
DOI : 10.1016/S1534-5807(03)00228-4

M. Lagos-quintana, R. Rauhut, A. Yalcin, J. Meyer, W. Lendeckel et al., Identification of Tissue-Specific MicroRNAs from Mouse, Current Biology, vol.12, issue.9, pp.735-744, 2002.
DOI : 10.1016/S0960-9822(02)00809-6

S. Lin, J. Miller, and S. Ying, Intronic MicroRNA (miRNA), Journal of Biomedicine and Biotechnology, vol.335, issue.18, pp.1-13, 2006.
DOI : 10.1056/NEJM199610313351803

URL : http://doi.org/10.1155/jbb/2006/26818

S. Baskerville and D. Bartel, Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes, RNA, vol.11, issue.3, pp.241-248, 2005.
DOI : 10.1261/rna.7240905

Y. Lee, M. Kim, J. Han, K. Yeom, S. Lee et al., MicroRNA genes are transcribed by RNA polymerase II, The EMBO Journal, vol.13, issue.20, pp.4051-60, 2004.
DOI : 10.1016/S1097-2765(02)00541-5

Y. Altuvia, P. Landgraf, G. Lithwick, N. Elefant, S. Pfeffer et al., Clustering and conservation patterns of human microRNAs, Nucleic Acids Research, vol.33, issue.8, pp.2697-706, 2005.
DOI : 10.1093/nar/gki567

Y. Lee, K. Jeon, J. Lee, S. Kim, and V. Kim, MicroRNA maturation: stepwise processing and subcellular localization, The EMBO Journal, vol.21, issue.17, pp.4663-70, 2002.
DOI : 10.1093/emboj/cdf476

URL : http://emboj.embopress.org/content/embojnl/21/17/4663.full.pdf

B. Cullen, Transcription and Processing of Human microRNA Precursors, Molecular Cell, vol.16, issue.6, pp.861-866, 2004.
DOI : 10.1016/j.molcel.2004.12.002

T. Wheeler, J. Clements, S. Eddy, R. Hubley, T. Jones et al., Dfam: a database of repetitive DNA based on profile hidden Markov models, Nucleic Acids Research, vol.7, issue.D1, pp.70-82, 2013.
DOI : 10.1371/journal.pgen.1002384

G. Calin, C. Dumitru, M. Shimizu, R. Bichi, S. Zupo et al., Nonlinear partial differential equations and applications: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia, Proceedings of the National Academy of Sciences, vol.133, issue.2, pp.15524-15533, 2002.
DOI : 10.1016/S0165-4608(01)00583-0

M. Michael, O. Connor, S. Van-holst-pellekaan, N. Young, G. James et al., Reduced accumulation of specific microRNAs in colorectal neoplasia, Mol Cancer Res, vol.1, pp.882-91, 2003.

Y. Hayashita, H. Osada, Y. Tatematsu, H. Yamada, K. Yanagisawa et al., , Is Overexpressed in Human Lung Cancers and Enhances Cell Proliferation, Cancer Research, vol.65, issue.21, pp.9628-9660, 2005.
DOI : 10.1158/0008-5472.CAN-05-2352

Q. Ying, L. Liang, W. Guo, R. Zha, Q. Tian et al., Hypoxia-inducible MicroRNA-210 augments the metastatic potential of tumor cells by targeting vacuole membrane protein 1 in hepatocellular carcinoma, Hepatology, vol.10, issue.6, pp.2064-75, 2011.
DOI : 10.1159/000264680

J. Calvo-garrido, S. Carilla-latorre, and R. Escalante, Vacuole membrane protein 1, autophagy and much more, Autophagy, vol.4, issue.6, pp.835-842, 2008.
DOI : 10.4161/auto.6574

URL : http://www.tandfonline.com/doi/pdf/10.4161/auto.6574?needAccess=true

Y. Chen, J. Zhang, H. Wang, J. Zhao, C. Xu et al., miRNA-135a promotes breast cancer cell migration and invasion by targeting HOXA10, BMC Cancer, vol.66, issue.1, pp.111-121, 2012.
DOI : 10.1158/0008-5472.CAN-05-2828

URL : https://bmccancer.biomedcentral.com/track/pdf/10.1186/1471-2407-12-111?site=bmccancer.biomedcentral.com

C. Xu, S. Liu, H. Fu, S. Li, Y. Tie et al., MicroRNA-193b regulates proliferation, migration and invasion in human hepatocellular carcinoma cells, European Journal of Cancer, vol.46, issue.15, pp.2828-2864, 2010.
DOI : 10.1016/j.ejca.2010.06.127

S. Wang and E. Olson, AngiomiRs???Key regulators of angiogenesis, Current Opinion in Genetics & Development, vol.19, issue.3, pp.205-216, 2009.
DOI : 10.1016/j.gde.2009.04.002

S. Wang, A. Aurora, B. Johnson, X. Qi, J. Mcanally et al., The Endothelial-Specific MicroRNA miR-126 Governs Vascular Integrity and Angiogenesis, Developmental Cell, vol.15, issue.2
DOI : 10.1016/j.devcel.2008.07.002

J. Ratajczak, M. Wysoczynski, F. Hayek, . Janowska-wieczorek-a, and M. Ratajczak, Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leuk Off J Leuk Soc Am Leuk Res Fund, UK, vol.20, pp.1487-95, 2006.

M. Ciesla, K. Skrzypek, M. Kozakowska, A. Loboda, A. Jozkowicz et al., MicroRNAs as biomarkers of disease onset, Analytical and Bioanalytical Chemistry, vol.186, issue.5, pp.2051-61, 2011.
DOI : 10.4049/jimmunol.1002218

H. Valadi, H. Ekström, A. Bossios, M. Sjöstrand, J. Lee et al., Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nature Cell Biology, vol.175, issue.6, pp.654-663, 2007.
DOI : 10.1002/pmic.200400876

B. Bussolati, C. Grange, and G. Camussi, Tumor exploits alternative strategies to achieve vascularization, The FASEB Journal, vol.10, issue.9
DOI : 10.3171/2008.4.17492

A. Janowska-wieczorek, M. Wysoczynski, J. Kijowski, L. Marquez-curtis, B. Machalinski et al., Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer, International Journal of Cancer, vol.39, issue.5, pp.752-60, 2005.
DOI : 10.1016/0304-4157(91)90014-N

N. Davis, M. Sokolosky, K. Stadelman, S. Abrams, M. Libra et al., Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention, Oncotarget, vol.5, issue.13, pp.4603-50, 2014.
DOI : 10.18632/oncotarget.2209

M. Cortez, M. Nicoloso, M. Shimizu, S. Rossi, G. Gopisetty et al., miR-29b and miR-125a regulate podoplanin and suppress invasion in glioblastoma, Genes, Chromosomes and Cancer, vol.90, issue.Pt 21, pp.981-90, 2010.
DOI : 10.1002/gcc.20808

C. Kieda, P. Maria, K. Agnieszka, M. M. Dp, and R. C. Dd, New Human Microvascular Endothelial Cell Lines with Specific Adhesion Molecules Phenotypes, Endothelium, vol.89, issue.4, pp.242-61, 2002.
DOI : 10.1083/jcb.134.4.1063

Y. Song, S. You, Y. Lee, H. Chin, D. Chae et al., Activation of hypoxia-inducible factor attenuates renal injury in rat remnant kidney, Nephrology Dialysis Transplantation, vol.16, issue.3, pp.77-85, 2010.
DOI : 10.1007/s004670000461

K. Wendland, M. Thielke, A. Meisel, and P. Mergenthaler, Intrinsic hypoxia sensitivity of the cytomegalovirus promoter, Cell Death & Disease, vol.72, issue.10, 2015.
DOI : 10.1073/pnas.94.11.5798

S. Neri, G. Ishii, H. Hashimoto, T. Kuwata, K. Nagai et al., Podoplanin-expressing cancer-associated fibroblasts lead and enhance the local invasion of cancer cells in lung adenocarcinoma, International Journal of Cancer, vol.34, issue.4, pp.784-96, 2015.
DOI : 10.1038/onc.2013.584

M. Tsuneki, M. Yamazaki, S. Maruyama, J. Cheng, and T. Saku, Podoplanin-mediated cell adhesion through extracellular matrix in oral squamous cell carcinoma, Laboratory Investigation, vol.9, issue.8, pp.921-953, 2013.
DOI : 10.1186/1476-4598-9-287

D. Kerjaschki, H. Regele, I. Moosberger, K. Nagy-bojarski, B. Watschinger et al., Lymphatic Neoangiogenesis in Human Kidney Transplants Is Associated with Immunologically Active Lymphocytic Infiltrates, Journal of the American Society of Nephrology, vol.15, issue.3, pp.603-615, 2004.
DOI : 10.1097/01.ASN.0000113316.52371.2E

G. Semenza, Hypoxia-Inducible Factors in Physiology and Medicine, Cell, vol.148, issue.3, pp.399-408, 2012.
DOI : 10.1016/j.cell.2012.01.021

T. Dalmay and D. Edwards, MicroRNAs and the hallmarks of cancer, Oncogene, vol.25, issue.46, pp.6170-6175, 2006.
DOI : 10.1016/j.canlet.2006.03.024

A. Loboda, M. Sobczak, A. Jozkowicz, and J. Dulak, 1/Smads and miR-21 in Renal Fibrosis and Inflammation, Mediators of Inflammation, vol.7, issue.10, pp.10-1155, 2016.
DOI : 10.3390/jcm5040042

F. Fu, The role of miR-29b in cancer : regulation , function , and signaling, Onco Targets Ther, vol.8, pp.539-548, 2015.

A. Saadi, N. Shannon, P. Lao-sirieix, O. Donovan, M. Walker et al., Stromal genes discriminate preinvasive from invasive disease, predict outcome, and highlight inflammatory pathways in digestive cancers, Proceedings of the National Academy of Sciences, vol.102, issue.31, pp.2177-82, 2010.
DOI : 10.1073/pnas.0500904102

M. Augsten, Cancer-Associated Fibroblasts as Another Polarized Cell Type of the Tumor Microenvironment, Frontiers in Oncology, vol.12, issue.5, 2014.
DOI : 10.1038/nrc3261

L. Zhao, Y. Sun, Y. Hou, Q. Peng, L. Wang et al., MiRNA expression analysis of cancer-associated fibroblasts and normal fibroblasts in breast cancer, The International Journal of Biochemistry & Cell Biology, vol.44, issue.11, pp.2051-2060, 2012.
DOI : 10.1016/j.biocel.2012.08.005

D. Serpico, L. Molino, D. Cosimo, and S. , microRNAs in breast cancer development and treatment, Cancer Treatment Reviews, vol.40, issue.5, pp.595-604, 2014.
DOI : 10.1016/j.ctrv.2013.11.002

G. Collet, E. Hafny-rahbi, B. Nadim, M. Tejchman, A. Klimkiewicz et al., Review Hypoxia-shaped vascular niche for cancer stem cells, Wsp????czesna Onkologia, vol.1, pp.39-43, 2015.
DOI : 10.5114/wo.2014.47130

URL : https://hal.archives-ouvertes.fr/hal-01170749

C. Madsen, J. Pedersen, F. Venning, L. Singh, G. Charras et al., Hypoxia and loss of PHD2 inactivate stromal fibroblasts to decrease tumour stiffness and metastasis, EMBO reports, vol.16, issue.10, pp.1394-408, 2015.
DOI : 10.15252/embr.201540107

H. Leong and A. Chambers, Hypoxia promotes tumor cell motility via RhoA and ROCK1 signaling pathways, Proceedings of the National Academy of Sciences, vol.105, issue.16, pp.887-895, 2014.
DOI : 10.1093/jnci/djt164

URL : http://www.pnas.org/content/111/3/887.full.pdf

Y. Cheng, K. Zhao, G. Li, J. Yao, Q. Dai et al., Oroxylin A inhibits hypoxia-induced invasion and migration of MCF-7 cells by suppressing the Notch pathway, Anti-Cancer Drugs, vol.25, issue.7, pp.778-89, 2014.
DOI : 10.1097/CAD.0000000000000103

A. Nagelkerke, J. Bussink, H. Mujcic, B. Wouters, S. Lehmann et al., Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response, Breast Cancer Research, vol.18, issue.1, pp.10-3373, 1186.
DOI : 10.1158/1078-0432.CCR-11-1282

E. Tutunea-fatan, M. Majumder, and P. Lala, Abstract 5152: The role of CCL21/CCR7 chemokine axis in breast cancer induced lymphangiogenesis, Cancer Research, vol.71, issue.8 Supplement, pp.5152-5152, 2011.
DOI : 10.1158/1538-7445.AM2011-5152

A. Rizwan, M. Cheng, Z. Bhujwalla, B. Krishnamachary, L. Jiang et al., Breast cancer cell adhesome and degradome interact to drive metastasis, npj Breast Cancer, vol.11, issue.1, 2015.
DOI : 10.1074/mcp.M112.017558

G. Bendas and L. Borsig, Cancer Cell Adhesion and Metastasis: Selectins, Integrins, and the Inhibitory Potential of Heparins, International Journal of Cell Biology, vol.19, issue.4, p.676731, 2012.
DOI : 10.1158/1541-7786.MCR-09-0017

S. Boyle, W. V. Ingman, V. Poltavets, J. Faulkner, R. Whitfield et al., The chemokine receptor CCR7 promotes mammary tumorigenesis through amplification of stem-like cells, Oncogene, vol.170, issue.1, pp.105-120
DOI : 10.4049/jimmunol.170.9.4638

L. Brown, J. Guidi-a, S. Schnitt, L. Van-de-water, M. Iruela-arispe et al., Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast, Clin Cancer Res, vol.5, pp.1041-56, 1999.

A. Navarro, R. Perez, M. Rezaiekhaligh, S. Mabry, and I. Ekekezie, Polarized migration of lymphatic endothelial cells is critically dependent on podoplanin regulation of Cdc42, American Journal of Physiology-Lung Cellular and Molecular Physiology, vol.9, issue.1, pp.32-42, 2011.
DOI : 10.1016/j.ccr.2006.03.010

P. Carmeliet, Fibroblast Growth Factor-1 Stimulates Branching and Survival of Myocardial Arteries

Y. Sawa, New trends in the study of podoplanin as a cell morphological regulator, Japanese Dental Science Review, vol.46, issue.2, pp.165-72, 2010.
DOI : 10.1016/j.jdsr.2010.01.003

S. Hobbs, W. Monsky, F. Yuan, W. Roberts, L. Griffith et al., Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment, Proceedings of the National Academy of Sciences, vol.276, issue.6, pp.4607-4619, 1998.
DOI : 10.1038/scientificamerican0697-111

. C. Newman-a, M. Nakatsu, W. Chou, P. Gershon, and C. Hughes, The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation, Molecular Biology of the Cell, vol.22, issue.20
DOI : 10.1091/mbc.E11-05-0393

R. Chaves, M. De-matos, J. Buratini, . Jr, and J. De-figueiredo, The fibroblast growth factor family: involvement in the regulation of folliculogenesis, Reproduction, Fertility and Development, vol.24, issue.7, pp.905-920, 2012.
DOI : 10.1071/RD11318

T. Ito, G. Ishii, H. Chiba, and A. Ochiai, The VEGF angiogenic switch of fibroblasts is regulated by MMP-7 from cancer cells, Oncogene, vol.85, issue.51, pp.7194-203, 2007.
DOI : 10.1002/(SICI)1097-0215(20000115)85:2%3C281::AID-IJC21%3E3.0.CO;2-3